
Linux System Administration



Table of Contents
Linux System Administration, Second Edition...............................................................................1

Foreword............................................................................................................................................3
Acknowledgments....................................................................................................................3

Introduction........................................................................................................................................4
The Benefits of Linux...............................................................................................................4
Who Should Buy This Book.....................................................................................................5
About the Second Edition........................................................................................................5
How This Book Is Organized...................................................................................................6

Chapter 1: The Basics of System Administration...............................................................6
Chapter 2: Installing Linux..................................................................................................6
Chapter 3: Startup and Shutdown......................................................................................6
Chapter 4: Tools of the Trade............................................................................................7
Chapter 5: Creating and Maintaining User Accounts.........................................................7
Chapter 6: Filesystems and Disk Management.................................................................7
Chapter 7: Linux Files and Processes...............................................................................7
Chapter 8: Software Administration...................................................................................7
Chapter 9: Backup and Restore.........................................................................................7
Chapter 10: Printers and the Spooling Subsystem............................................................7
Chapter 11: Serial Communications, Terminals, and Modems..........................................7
Chapter 12: TCP/IP Linux Networking...............................................................................8
Chapter 13: The X Window System...................................................................................8
Chapter 14: Setting Up Your Mail Server...........................................................................8
Chapter 15: Security..........................................................................................................8
Chapter 16: Performance Tuning.......................................................................................8
Chapter 17: Making Your Job Easier with Scripts..............................................................8
Chapter 18: Troubleshooting Your Linux System..............................................................8

Conventions Used in This Book...............................................................................................9
Help Us Help You..................................................................................................................10

Part I: The Basics.............................................................................................................................11
Chapter List............................................................................................................................11
Featuring................................................................................................................................11

Chapter 1: The Basics of System Administration........................................................................12
Overview................................................................................................................................12
Your Role as a System Administrator....................................................................................12
Tasks of a System Administrator...........................................................................................13

Configuring Hardware......................................................................................................13
Installing the Operating System.......................................................................................14
Installing Application Software.........................................................................................14
System Security...............................................................................................................14
Configuring the Kernel.....................................................................................................14
Creating Users and Groups.............................................................................................15
Software Updates.............................................................................................................15
Performance Tuning.........................................................................................................15
Disaster Recovery............................................................................................................15
Capacity Planning............................................................................................................16
Network Administration....................................................................................................16

i



Table of Contents
Chapter 1: The Basics of System Administration

"When You Have a Minute..."...........................................................................................16
Tools of the Linux Administrator............................................................................................16

Commands.......................................................................................................................17
System Logbook..............................................................................................................18
Communicating with Users..............................................................................................20

Working on the System as Root............................................................................................21
Becoming the Root User..................................................................................................21

In Sum....................................................................................................................................23

Chapter 2: Installing Linux..............................................................................................................24
Overview................................................................................................................................24
Benchmarks...........................................................................................................................24
Selecting Hardware................................................................................................................25

Minimal Acceptable Hardware.........................................................................................25
CPU Performance............................................................................................................25
Random Access Memory.................................................................................................26
Selecting Hardware by Intended Usage...........................................................................27
Specialized Hardware Performance Solutions.................................................................28
Types of Hardware to Avoid.............................................................................................33

Selecting a Linux Distribution.................................................................................................35
Red Hat Linux..................................................................................................................35
Mandrake.........................................................................................................................37
Caldera.............................................................................................................................37
SuSE Linux......................................................................................................................38
Slackware Linux...............................................................................................................38
Debian..............................................................................................................................39
The Choice Is Yours.........................................................................................................39

Installing Red Hat Linux.........................................................................................................40
Preparing for Installation..................................................................................................40
Choosing a Partitioning Scheme......................................................................................41
Installing a Server............................................................................................................42
Installing a Workstation....................................................................................................50
Tying Up Loose Ends.......................................................................................................51

In Sum....................................................................................................................................51

Chapter 3: Startup and Shutdown..................................................................................................52
Overview................................................................................................................................52
The Linux Boot Process.........................................................................................................52

The Master Boot Record..................................................................................................53
Boot Loaders..........................................................................................................................55

GRUB: Definition and Configuration................................................................................55
LILO: Definition and Configuration...................................................................................57

Creating a Boot Floppy..........................................................................................................60
Creating a LILO Boot Floppy............................................................................................60
Creating a Boot Floppy without a Boot Loader................................................................61

Using LOADLIN.....................................................................................................................61
Single−User Mode.................................................................................................................62
Initialization and Startup Scripts.............................................................................................63

The Red Hat Model..........................................................................................................63

ii



Table of Contents
Chapter 3: Startup and Shutdown

The Debian Model............................................................................................................67
User Initialization Files...........................................................................................................70

Modifying the Startup Procedure......................................................................................71
Startup Log Files..............................................................................................................75

Shutdown...............................................................................................................................76
Warning Users.................................................................................................................76
Shutdown Log Files..........................................................................................................76

In Sum....................................................................................................................................77

Chapter 4: Tools of the Trade.........................................................................................................78
Overview................................................................................................................................78
Locating Help Resources.......................................................................................................78

Man Pages.......................................................................................................................79
Info Pages........................................................................................................................81

Technical Support..................................................................................................................83
Configuration Support......................................................................................................83
Tailored Linux Development............................................................................................84
General Web Support......................................................................................................84

Webmin..................................................................................................................................85
Command−Line Tools............................................................................................................85

The Bash Shell.................................................................................................................86
Basic Commands.............................................................................................................91

In Sum..................................................................................................................................109

Part II: Managing Users, Processes, and Files...........................................................................110
Chapter List..........................................................................................................................110
Featuring..............................................................................................................................110

Chapter 5: Creating and Maintaining User Accounts.................................................................111
Overview..............................................................................................................................111
User Accounts......................................................................................................................111

The /etc/passwd File......................................................................................................112
Shadowed Passwords....................................................................................................113
Adding New Users.........................................................................................................116
Modifying User Accounts...............................................................................................118
Disabling User Accounts................................................................................................121
Deleting User Accounts..................................................................................................122

Groups.................................................................................................................................123
The Function of Groups.................................................................................................124
The /etc/group File.........................................................................................................124
Adding New Groups.......................................................................................................126
Modifying Groups...........................................................................................................128
Deleting Groups.............................................................................................................129

In Sum..................................................................................................................................130

Chapter 6: Filesystems and Disk Management..........................................................................131
Overview..............................................................................................................................131
Linux Filesystem Support.....................................................................................................131

Locating Filesystems......................................................................................................131

iii



Table of Contents
Chapter 6: Filesystems and Disk Management

Linux Native Filesystems...............................................................................................133
Foreign Filesystems.......................................................................................................137
Network Filesystems......................................................................................................140

Filesystem Design................................................................................................................141
The Physical Structure...................................................................................................141
Inodes and Directories...................................................................................................141

Accessing Filesystems.........................................................................................................142
Mounting and Unmounting Filesystems.........................................................................142
Using Removable Media................................................................................................149
Using Swap Space.........................................................................................................153

Updating and Maintaining Filesystems................................................................................154
Disk Partitioning.............................................................................................................154
Creating a Filesystem....................................................................................................158
Adding a Disk.................................................................................................................159
Replacing a Disk............................................................................................................160
Checking Filesystem Integrity........................................................................................161

In Sum..................................................................................................................................162

Chapter 7: Linux Files and Processes.........................................................................................163
Overview..............................................................................................................................163
The Filesystem Hierarchy Standard.....................................................................................163

Directory Layout.............................................................................................................165
File Characteristics..............................................................................................................167

Determining a Linux File's Type.....................................................................................168
File Types Defined.........................................................................................................170

Processes............................................................................................................................174
The Concept of Multitasking...........................................................................................174
Types of Processes........................................................................................................175
Parent Processes and Their Children............................................................................178
The init Process.............................................................................................................179
Managing Processes......................................................................................................180
Terminating/Restarting with the kill Command...............................................................182
Terminating/Restarting Processes Using Scripts...........................................................183

In Sum..................................................................................................................................184

Chapter 8: Software Administration............................................................................................185
Overview..............................................................................................................................185
Installing Binary Packages...................................................................................................185

Installing an RPM...........................................................................................................185
Installing a Debian Package...........................................................................................189
Installing a Tarball..........................................................................................................190

Compiling Source Code.......................................................................................................191
Compiling from Packages..............................................................................................191
Compiling Tarballs.........................................................................................................192

Kernel Compilation...............................................................................................................194
Why Compile Your Kernel?............................................................................................194
Obtaining a Kernel.........................................................................................................195
Kernel Configuration Options.........................................................................................195
Compiling the Kernel......................................................................................................199

iv



Table of Contents
Chapter 8: Software Administration

Installing the Kernel and Modules..................................................................................200
Testing Your New Kernel...............................................................................................201

Checking for OS Updates....................................................................................................202
The Importance of OS Updates.....................................................................................202
Locating Updates for Your Distribution..........................................................................203
Update Utilities...............................................................................................................205

In Sum..................................................................................................................................206

Chapter 9: Backup and Restore...................................................................................................207
Overview..............................................................................................................................207
Backup Strategies................................................................................................................207

Combining Full and Incremental Backups......................................................................207
Including Differential Backups........................................................................................208
Data−Specific Backups..................................................................................................209

Backup Media......................................................................................................................209
Tapes.............................................................................................................................210
CD−R and CD−RW........................................................................................................215
Other Alternatives..........................................................................................................216
Media Storage................................................................................................................217
Backup Commands and Utilities....................................................................................217
CD−R and CD−RW Backup Tools.................................................................................219

Linux Backup and Restore Tools.........................................................................................224
dump..............................................................................................................................224
restore............................................................................................................................227
tar...................................................................................................................................228
cpio................................................................................................................................233
afio.................................................................................................................................234
Third−Party Tools...........................................................................................................236
Tips while Restoring.......................................................................................................238

Backing Up the Operating System.......................................................................................239
Minimal Backups............................................................................................................239
Complete Backups.........................................................................................................240

Disaster Recovery Techniques............................................................................................240
Single−User Mode.........................................................................................................241
Using a Boot Floppy.......................................................................................................241
Rescue Mode.................................................................................................................242
Third−Party Recovery Software.....................................................................................244

In Sum..................................................................................................................................244

Part III: Communications and Networking..................................................................................246
Chapter List..........................................................................................................................246
Featuring..............................................................................................................................246

Chapter 10: Printers and the Spooling Subsystem....................................................................247
Overview..............................................................................................................................247
Printer Basics.......................................................................................................................247

Types of Printers............................................................................................................247
Printer Interfaces............................................................................................................250

The Linux Printing Process..................................................................................................252

v



Table of Contents
Chapter 10: Printers and the Spooling Subsystem

Tools of the Printing Trade.............................................................................................252
The LPRng Print Spooler...............................................................................................254
Alternative Printing Utilities............................................................................................258

Configuring Printers Using Red Hat's Printconf...................................................................259
Configuring Printers in Webmin...........................................................................................262
Printing with Other Distributions...........................................................................................262

Debian............................................................................................................................262
SuSE..............................................................................................................................262
Slackware.......................................................................................................................263

Kernel Support.....................................................................................................................263
Parallel−Port Printers.....................................................................................................263
RS−232 Serial Devices..................................................................................................265
USB Devices..................................................................................................................265
Remote Printing.............................................................................................................265

In Sum..................................................................................................................................268

Chapter 11: Serial Communications, Terminals, and Modems.................................................269
Overview..............................................................................................................................269
Understanding Serial Devices..............................................................................................269

Standard Serial Devices.................................................................................................269
Unusual Serial Devices..................................................................................................274

Configuring Terminals..........................................................................................................275
Understanding Terminals...............................................................................................275
Configuring a getty Program..........................................................................................276
Using a Serial−Port Console..........................................................................................278

Configuring Modems............................................................................................................279
Dial−out Modem Uses....................................................................................................279
Dial−in Modem Uses......................................................................................................288

Configuring Serial Printers...................................................................................................291
Special Considerations for Serial Printers......................................................................292
When to Use a Serial Printer..........................................................................................292

In Sum..................................................................................................................................292

Chapter 12: TCP/IP Linux Networking.........................................................................................294
Overview..............................................................................................................................294
Understanding TCP/IP Networking......................................................................................294

Network Stacks..............................................................................................................294
Network Addresses........................................................................................................296
Ports...............................................................................................................................298

TCP/IP Configuration...........................................................................................................299
Configuring Network Hardware......................................................................................299
Using DHCP for Configuration.......................................................................................300
Manually Configuring TCP/IP.........................................................................................302
Testing the Setup...........................................................................................................306

File Sharing..........................................................................................................................307
Sharing with Unix or Linux: NFS....................................................................................307
Sharing with Windows: Samba......................................................................................310

Internet Servers...................................................................................................................316
Available Servers...........................................................................................................316

vi



Table of Contents
Chapter 12: TCP/IP Linux Networking

Using a Super Server.....................................................................................................318
In Sum..................................................................................................................................321

Chapter 13: The X Window System..............................................................................................323
Overview..............................................................................................................................323
X Concepts..........................................................................................................................323

X as a Network Protocol.................................................................................................323
X Security.......................................................................................................................325
X Virtual Consoles..........................................................................................................327

Configuring an X Server.......................................................................................................328
XFree86 4.x....................................................................................................................328
XFree86 3.3.x.................................................................................................................330
Using an X Configuration Tool.......................................................................................331
Starting X Automatically.................................................................................................333

Configuring a Font Server....................................................................................................334
Adding Fonts to a Font Server.......................................................................................334
Configuring a New Font Server......................................................................................336
Unusual Font Servers....................................................................................................337

Building a User Interface atop X..........................................................................................338
Window Managers.........................................................................................................338
Widget Sets....................................................................................................................341
Desktop Environments...................................................................................................341
X Applications................................................................................................................343

In Sum..................................................................................................................................344

Chapter 14: Setting Up Your Mail Server.....................................................................................345
Overview..............................................................................................................................345
Understanding E−Mail Protocols..........................................................................................345

Push and Pull Protocols.................................................................................................345
SMTP.............................................................................................................................347
POP...............................................................................................................................348
IMAP..............................................................................................................................349

Configuring Sendmail...........................................................................................................351
Configuring Domains......................................................................................................351
Sendmail Configuration Files and Procedures...............................................................352
Address Masquerading..................................................................................................353
Configuring Relays.........................................................................................................354
Receiving Mail................................................................................................................357

Configuring POP and IMAP.................................................................................................358
Running POP and IMAP Daemons................................................................................358
Setting Up Mail−Only Accounts.....................................................................................359
Using Fetchmail to Acquire Mail from an ISP.................................................................360

Anti−Spam Measures..........................................................................................................364
The Problem of Spam....................................................................................................364
Preventing Outgoing Spam............................................................................................364
Stopping Incoming Spam...............................................................................................366

In Sum..................................................................................................................................369

vii



Table of Contents
Part IV: System Optimization and Improvement.........................................................................370

Chapter List..........................................................................................................................370
Featuring..............................................................................................................................370

Chapter 15: Security......................................................................................................................371
Overview..............................................................................................................................371
Types of Attacks..................................................................................................................372

Trojan Horse..................................................................................................................372
Back Door......................................................................................................................373
Trusted Host...................................................................................................................373
Buffer Overflow..............................................................................................................374
Scanning or Sniffing.......................................................................................................374
Spoofing.........................................................................................................................374
Denial of Service............................................................................................................375
Password Cracking........................................................................................................375
Social Attacks.................................................................................................................376
Physical Attacks.............................................................................................................376

Types of Security.................................................................................................................377
Securing the Authentication Process...................................................................................379

Hashing Passwords.......................................................................................................379
Shadow Passwords........................................................................................................381
Pluggable Authentication Modules (PAM)......................................................................382

File Permissions...................................................................................................................386
Protecting against Network Intrusion...................................................................................387

Firewalls.........................................................................................................................387
TCP Wrappers...............................................................................................................403
xinetd.............................................................................................................................406
Detecting Intrusion.........................................................................................................406
Applications for Detecting Intrusion................................................................................407

In Sum..................................................................................................................................408

Chapter 16: Performance Tuning.................................................................................................409
Overview..............................................................................................................................409
The Elements of Performance.............................................................................................409

Hardware Performance..................................................................................................409
Software Performance...................................................................................................411

Measuring Performance.......................................................................................................411
Finding Bottlenecks..............................................................................................................412

Using top to Find the Bottleneck....................................................................................412
traceroute.......................................................................................................................415

Tuning the System...............................................................................................................416
nice and renice...............................................................................................................416
Virtual Memory Tuning...................................................................................................417
Serial Port Tuning..........................................................................................................418
Filesystem Tuning..........................................................................................................418
Eliminating Unnecessary Processes..............................................................................422
Compiling for Efficiency..................................................................................................423
Tuning the X Window System........................................................................................425

Upgrading............................................................................................................................426
In Sum..................................................................................................................................426

viii



Table of Contents
Chapter 17: Making Your Job Easier with Scripts......................................................................428

Overview..............................................................................................................................428
Common Scripting Features................................................................................................428

Identifying a Script..........................................................................................................429
Variables........................................................................................................................429
Control Statements........................................................................................................430
Commands.....................................................................................................................430

The Bash Shell Scripting Language.....................................................................................431
Variables........................................................................................................................431
Conditional Expressions.................................................................................................432
Loops.............................................................................................................................434

Other Types of Scripts.........................................................................................................436
Perl Scripts.....................................................................................................................436
Python Scripts................................................................................................................438
awk and sed Scripts.......................................................................................................438

System Initialization Scripts.................................................................................................440
Writing an Initialization Script.........................................................................................440
Tailoring the rc.local Script.............................................................................................445

Using the cron Facility..........................................................................................................447
Running a Script at a Specific Time.....................................................................................449
Commands Often Used in Shell Scripts...............................................................................449

cat..................................................................................................................................450
cut..................................................................................................................................450
echo...............................................................................................................................451
sort.................................................................................................................................451
xargs..............................................................................................................................452
Using Pipes....................................................................................................................453

In Sum..................................................................................................................................453

Chapter 18: Troubleshooting Your Linux System......................................................................454
Overview..............................................................................................................................454
General Troubleshooting Techniques..................................................................................454
Boot Problems.....................................................................................................................456

FDISK Doesn't Recognize GNU/Hurd Partition.............................................................456
Making a New Boot Floppy to Replace a Lost One.......................................................456
GRUB Is Installed but Just Hangs..................................................................................457
LILO Messages and Their Meanings.............................................................................457
Making the System Boot a New Kernel..........................................................................458
Hardware Not Detected at Boot.....................................................................................459
Dual−booting with Another OS Like Windows...............................................................460
Can't Remove Boot Loader from the Master Boot Record.............................................461
Kernel Won't Load or Loads Only Partially....................................................................461

Login Problems....................................................................................................................461
Lost Password................................................................................................................461
Login Incorrect after Entering Username.......................................................................462
System Flashes Quick Message and Drops Back to login Prompt................................462
Login incorrect Message Logging in as root..................................................................463

Network Problems................................................................................................................463
Unknown Host Message................................................................................................463
Network Unreachable Message.....................................................................................464

ix



Table of Contents
Chapter 18: Troubleshooting Your Linux System

Kernel Compilation...............................................................................................................464
make menuconfig Generates an Error about ncurses.h................................................464
Signal 11 Error...............................................................................................................464
Do I Need to Reconfigure the Kernel with Every Upgrade?...........................................465
ld: unrecognized option −qmagic...................................................................................465

Filesystem Problems or Questions......................................................................................465
Creating a Linux Filesystem on a Floppy Disk...............................................................465
Creating a Windows Filesystem on a Floppy Disk.........................................................466
/proc/kcore.....................................................................................................................466
Which Interrupts Are Available?.....................................................................................466

X Window System Problems................................................................................................467
Booting into X, Login Prompt Disappears When Anything Is Entered...........................467
Cannot Allocate Colormap Entry....................................................................................467
Bypassing X...................................................................................................................467
The System Runs Very Slowly When Running X or Making a Kernel...........................468

Odds and Ends....................................................................................................................468
You've Deleted the Red Hat Package Manager and Can't Reinstall It..........................468
Shutting Down a System on the Network Remotely......................................................468
Permission Denied When Attempting NFS Mount.........................................................469
The free Command Reports Less Memory Than the Machine Has...............................469
Determining Which Packages Are on the System.........................................................470
modprobe Can't Locate Module module−name.............................................................470
The "You don't exist. Go away" Error Message.............................................................470
The Screen Is Full of Gibberish......................................................................................471

In Sum..................................................................................................................................471

List of Figures................................................................................................................................472

List of Listings...............................................................................................................................476

List of Sidebars..............................................................................................................................478

x



Linux System Administration, Second Edition
Vicki Stanfield
Roderick W. Smith

Associate Publisher: Neil Edde
Acquisitions and Developmental Editor: Maureen Adams
Editor: Cheryl Hauser
Production Editor: Kelly Winquist
Technical Editor: Sean Schluntz
Book Designer: Bill Gibson
Graphic Illustrator: Jeff Wilson, Happenstance Type−O−Rama
Electronic Publishing Specialist: Jeff Wilson, Happenstance Type−O−Rama
Proofreaders: Emily Hsuan, Nancy Riddiough, Laurie O'Connell, Yariv Rabinovitch
Indexer: Nancy Guenther
Cover Designer: Ingalls & Associates
Cover Illustrator: Ingalls & Associates

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights
reserved. The author(s) created reusable code in this publication expressly for reuse by readers. No
part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic, or other record, without the prior
agreement and written permission of the publisher.

First edition copyright © 2001 SYBEX Inc.

Library of Congress Card Number: 2002106413

ISBN: 0−7821−4138−2

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the
United States and/or other countries.

Some of the screen reproductions were produced using Gnu Image Manipulation Program. GIMP is
a freely available public domain package included as part of Linux.

Some of the screen reproductions were produced using xv (copyright 1994 by John Bradley).

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks
from descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is
based upon final release software whenever possible. Portions of the manuscript may be based
upon pre−release versions supplied by software manufacturer(s). The author and the publisher
make no representation or warranties of any kind with regard to the completeness or accuracy of
the contents herein and accept no liability of any kind including but not limited to performance,
merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or
alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1



To the memory of my father, who was infinitely supportive of all my endeavors.

—Rod Smith

To my sons, Geoffrey and Jake, for believing in me.

—Vicki Stanfield

2



Foreword
The Craig Hunt Linux Library is a series of highly technical books focused on specific Linux system
administration tasks. Individual books provide in−depth coverage of essential computer services.
The library includes books on DNS, Samba, sendmail, security, Apache, and NFS and Amd. An
experienced system administrator can pick up one of these books and have all of the information
necessary to master a given service. But all of these topical texts assume that the reader
understands basic Linux system administration. Where do you start if you need to master the
basics?

Start with Linux System Administration, Second Edition, by Vicki Stanfield and Roderick W. Smith.
This book covers the fundamental skills of system administration that must be mastered before
more advanced system administration tasks can be undertaken.

Daily system administration tasks are an essential part of running any Linux system. The
importance of good system administration cannot be exaggerated. The most vital part of a secure,
reliable computer system is a skilled system administrator. If you need help building that skill, a
system administration book is a good place to start. There is nothing intuitive or obvious about the
inner workings of any operating system, including Linux. A good book, like Linux System
Administration, Second Edition, helps you draw on the experience of others who have already faced
many of the challenges you will encounter.

The importance and appeal of the first edition of Linux System Administration was clearly
demonstrated when it was chosen as one of the winning books in the Most Indispensable Linux
Book category of the Readers' Choice Awards published in the November 2001 issue of the Linux
Journal. The second edition is even better, with expanded coverage and improved chapter
organization.

Use Linux System Administration, Second Edition, as the foundation volume of your own personal
Linux library. Start here and build your Linux bookshelf, adding books from the Craig Hunt Linux
Library that address the special topics you need to master.

—Craig Hunt
July 2002

Acknowledgments

The authors would like to thank everyone who supported the project, including Sybex associate
publisher Neil Edde, acquisitions and developmental editor Maureen Adams, editor Cheryl Hauser,
technical editor Sean J. Schluntz, and production editor Kelly Winquist. We are also grateful for the
expert teamwork of Jeff Wilson at Happenstance Type−O−Rama.

—Vicki Stanfield and Rod Smith

Thanks to Craig Hunt, for his insight. To Pat for all his help and support. To my family in
Indianapolis for their undying support.

—Vicki Stanfield

3



Introduction
Linux has made its mark in the commercial world as a server operating system. Figures from IDC in
2000 gave Linux a 24 percent share of the commercial server market, which is second only to the
38 percent market share held by Microsoft. In 2002, IDC projects Linux's total market share will be
41 percent by 2005. Additionally, the acceptance of Linux for commercial installation is accelerating
with the endorsement of companies like IBM, which optionally ship Linux preinstalled on its
hardware. The knowledge that a company such as IBM provides support for an operating system
comforts even the most timid IT manager.

Yet remote support, even from IBM, is insufficient for most servers. Servers are simply too
important. Critical corporate data is stored on servers. Desktop systems rely on servers for vital
services such as e−mail and file sharing. Organizations depend upon their servers, and servers
depend upon skilled on−site support from knowledgeable system administrators. This book focuses
on providing the necessary knowledge for you to become a skilled Linux system administrator.

If you're reading this introduction, you are already a Linux system administrator or are planning to
become one. Either way, you have made a good choice. Knowledge of Linux is an excellent skill for
now and for the future. As the current market share of Linux server systems continues to grow, so
does the demand for Linux system administrators.

Knowledge of Linux is an important "crossover" skill that can give you many more job opportunities.
If you come to Linux with a Unix background, you're well on your way to mastering Linux. Linux
uses the same command shells, file structure, and command−line tools as Unix does. A good book
may be all you need to turn Unix skills into Linux skills, even if your Unix experience was limited to
the Unix system you worked on in college.

A Windows NT/2000 administrator can use newly acquired Linux skills as a gateway to both Linux
and Unix jobs, which often pay more than do comparable jobs administering Windows systems.
Many organizations have mixed environments with both Unix and Windows systems. In those
organizations an employee with multiple skills is highly valued.

The Benefits of Linux

Linux didn't always get the recognition it now has as a serious server operating system. It began its
life as a computer enthusiast's dream—a free operating system available in source code that
actually encouraged enthusiasts to create their own operating system code. It originally entered the
corporate computer room through the back door. System administrators and programmers knew
that Linux could be used to address corporate computing problems. They just couldn't convince
management of that fact, and yet they brought Linux in anyway.

There are so many benefits to Linux it is easy to understand why system administrators were willing
to take this approach. These benefits are:

Open source code Linux is open source code. Nothing is hidden. The entire
operating system is available in source code that can be read by in−house support
staff or third−party support personnel. Having the source code means that support
staff can really know how the system works. This knowledge gives Linux better
third−party and in−house support than is possible for a proprietary operating system.
With a proprietary system, the inner workings of the operating system are trade
secrets. Linux removes the veil of secrecy to let you know exactly how things work.

4



Reliability Linux is extremely reliable. It simply does not crash. The Linux kernel is
protected from misbehaving applications and the kernel itself is very stable.

Availability Routine maintenance does not require taking the system offline.
Software can be installed, configured, started, stopped, and removed without
rebooting the system.

Proven tools Although Linux has only been in widespread commercial use for a few
years, the software tools that run on a Linux system are well−proven. Many of the
tools come from Unix, which has a 30−year history. For example, a tool like
sendmail, which provides Internet e−mail service, has been in continuous production
use for decades. Tools such as BIND for domain name service and Apache for Web
service are the most widely used software packages of their types in the world. Linux
gives you access to the best−known, best−tested software tools in existence. The
reliability of Linux is matched by the proven reliability of the tools that it uses.

All of these reasons and more contributed to the increasing popularity of Linux as a server operating
system. As more companies include Linux in their operating system mix or switch to Linux as their
only operating system, administrators find themselves looking for a good reference on Linux as a
server. This book fills that role.

Who Should Buy This Book

This book is written for the administrator responsible for the planning, installation, and support of
Linux servers. It was not written for the Windows user migrating to Linux with no Linux experience.
There are a number of books available for the Linux beginner. This book is for the administrator who
understands operating systems and hardware and has some understanding of Linux or Unix.

The Unix professional will benefit from the crossover of Unix to Linux knowledge presented by this
book. If you have Linux experience, this book delves into those areas of system administration that
you may not have investigated to provide you with a guide to server operations. The emphasis is on
performance, reliability, and availability rather than desktop applications.

Some knowledge of Linux or Unix is assumed. If you are a system administrator migrating from
another operating system, such as Windows NT/2000, you may find the philosophy of system
administration the same, but the techniques are very different. Before jumping into this book, you
should read an introductory text such as Mastering Linux, Second Edition, by Arman Danesh and
Michael Jang (Sybex, 2001).

About the Second Edition

Since the publication of the first edition of Linux System Administration in 2001, the Linux world has
both changed and stayed the same. Thus, this second edition is both different from and the same
as the first edition. Many of the topics covered in this edition are fundamentally the same, although
some details are different. For instance, the sendmail mail server (described in Chapter 14) hasn't
changed much—as noted earlier, it's a very mature product, so radical changes in its structure or
function are unnecessary. Nonetheless, various details have changed, such as new spam−fighting
techniques. All of this book's chapters have been updated to reflect such changes, some of which
are more fundamental than others.

5



When we wrote the first edition, the 2.2.x kernel series was current, although the 2.4.x kernel was
very close to release. Today, all major distributions ship with 2.4.x kernels, which bring features
such as improved support for USB devices and additional filesystems. Likewise, major user−space
packages such as KDE and GNOME have seen active development. This edition covers the new
and improved features, when appropriate.

Because the major topics relevant to Linux system administration are the same as they were in
2001, this book includes the same number of chapters, with the same titles as the first edition.
We've rearranged these chapters to make more coherent sections, however, as described shortly.
This change should make for a smoother read for those who want to read the book cover−to−cover.

As in the previous edition, Linux System Administration, Second Editon, is intended to be helpful to
administrators of all Linux distributions. We tend to use Red Hat Linux as a model whenever specific
examples are required, though. In the first edition, this decision led us to refer occasionally to the
Linuxconf configuration tool, because that's the GUI tool Red Hat has traditionally used. Red Hat
has been moving away from Linuxconf, though, and now ships with proprietary GUI tools. Rather
than refer to such tools, we now describe the cross−platform Webmin GUI configuration tool, which
can be used wi th any L inux d is t r ibut ion.  Of  course,  we cont inue to emphasize the
command−line−based administration methods and files that are common to all distributions, and
which are more flexible than any GUI configuration tool.

How This Book Is Organized

This book consists of eighteen chapters that illustrate different aspects of Linux system
administration. The chapters are grouped into four parts: The Basics; Managing Users, Processes,
and Files; Communications and Networking; and System Optimization and Improvement. If you're
new to system administration, read Part 1 first—it covers the basics. Beyond that, you can read
chapters in any order. Each chapter stands on its own. For example, if you are specifically
in terested in  per formance tuning,  you could jump d i rect ly  to  Chapter  16.  Here 's  a
chapter−by−chapter summary.

Chapter 1: The Basics of System Administration

This chapter describes the goals of a system administrator and provides an introduction to the tools
and techniques that the administrator uses to reach these goals.

Chapter 2: Installing Linux

Hardware selection is crucial when setting up a server. This chapter covers issues to consider in
hardware selection and the actual installation of a Linux operating system. Some variations between
different Linux distributions are covered.

Chapter 3: Startup and Shutdown

During the startup and shutdown of an operating system, many housekeeping activities are
performed. This chapter takes a close look at the files that are used to control the events in startup
and shutdown. The files used to configure the startup are also discussed.

6



Chapter 4: Tools of the Trade

This chapter covers the basic command−line tools available on Linux systems and how to use these
tools to make the job of system administrator easier. Also covered are the concepts of the
command−line interface, including pipes and redirection of input and output. The chapter also
directs you to some additional sources of documentation on these tools.

Chapter 5: Creating and Maintaining User Accounts

Everyone with a desktop computer does some system administration. Managing multiple users is
one of the things that separate the professional system administrator from the part−time
administrator. This chapter covers the management of user accounts. The purpose and
maintenance of groups is also covered.

Chapter 6: Filesystems and Disk Management

The system administrator is responsible for managing the Linux filesystem. This chapter covers the
native, foreign, and networked filesystems used by Linux. You will learn how to add new disks,
replace disks, and transfer data. You'll also learn how to work with removable media.

Chapter 7: Linux Files and Processes

When Linux is installed and running, there are a number of important processes running on the
system and key files distributed throughout the filesystems. This chapter describes the structure and
layout of files on Linux. It also explains the operation of processes (running programs).

Chapter 8: Software Administration

The installation, maintenance, and removal of software are important parts of the administrator's
task. This chapter covers the details of software administration from locating and installing software
to keeping the operating system updated.

Chapter 9: Backup and Restore

Data backup and recovery are crucial elements of maintaining a reliable system. Things can and do
go wrong. When important data is lost, it is the administrator's job to recover it. Backup strategies,
disaster recovery techniques, and the Linux tools and media used to implement these plans are
covered. Third−party tools are also described in this chapter.

Chapter 10: Printers and the Spooling Subsystem

Printers and the print subsystem on any operating system often give administrators more than their
share of problems. This chapter explains printers, the print spooling system, printer installation, and
the kernel support for printers.

Chapter 11: Serial Communications, Terminals, and Modems

Modems, terminals, and some printers rely on serial communications. Modems can be particularly
complex because they often require custom scripting. This chapter covers the various serial
devices—both the older RS−232 and the newer USB varieties—and provides the knowledge
necessary to set up serial communications.

7



Chapter 12: TCP/IP Linux Networking

Linux networking is built upon the Internet's TCP/IP protocols. This chapter describes these
protocols and explains how they are configured on a Linux system. It covers file sharing across the
network, including both the NFS system used to share files with Unix computers and the Samba
system used to share files with Windows computers. You'll also learn how to run network
applications from inetd and xinetd.

Chapter 13: The X Window System

X is the windowing system used by Linux, but X is more than a windowing system; it is also a
network protocol. This chapter describes the nature of X. You'll learn how to configure an XFree86
server and how to build a user desktop environment with X.

Chapter 14: Setting Up Your Mail Server

E−mail is still the most basic of all network services. Users expect it and they expect it to work. In
this chapter you'll learn about the protocols that underlie the e−mail system and you'll learn how to
properly configure them on a Linux server. Sendmail configuration is covered, as are techniques for
blocking unwanted spam.

Chapter 15: Security

Good security is good system administration. Every server must be secured. This chapter describes
security threats and the steps you must take to counter those threats. The tools used to secure your
system and monitor its security are discussed.

Chapter 16: Performance Tuning

Selecting the right hardware and properly installing the software get you only part of the way to
optimal performance. In this chapter you will learn how to tune your system to achieve maximum
performance. Everything from locating the bottlenecks to tuning the filesystem and the kernel is
addressed.

Chapter 17: Making Your Job Easier with Scripts

Automation of repetitive tasks makes the administrator's job much easier. Backups, report
generation, and disk cleanup are just a few areas where automation of tasks can provide relief. This
chapter covers shell scripts and Perl scripts. You will learn how to configure the cron utility to
schedule jobs for you. Additionally, you will learn how to use awk and sed to make better and
simpler scripts.

Chapter 18: Troubleshooting Your Linux System

Troubleshooting is one of the most important jobs of a system administrator. Many times a system
administrator is judged almost solely on this skill. This chapter describes general troubleshooting
techniques that can improve your skills as a troubleshooter. This chapter also covers some of the
most commonly encountered problems and provides solutions to those problems.

8



Conventions Used in This Book

This book uses certain typographic styles in order to help you quickly identify important information,
and to avoid confusion over the meaning of specific words. The conventions are listed below.

Italicized text indicates technical terms that are introduced for the first time in a chapter.
(Italics are also used for emphasis.)

• 

A monospaced font is used to indicate the contents of configuration files, messages
displayed at a text−mode Linux shell prompt, filenames, and Internet URLs. This font is also
used for code listings, such as configuration files.

• 

Italicized monospaced text indicates a variable—information that differs from one system or
command run to another, such as the name of a client computer or a process ID number.

• 

Bold monospaced text is information that you're to type into the computer, usually at a
Linux shell prompt. This text can also be italicized to indicate that you should substitute an
appropriate value for your system.

• 

Sometimes commands appear on lines by themselves. These lines use a monospaced font, just like
the font used for filenames or commands presented in the body of a paragraph. These lines begin
with a shell prompt character—a dollar sign ($) for commands that may reasonably be used by
ordinary users, or a pound sign (#) for commands that may only be used by the system
administrator. In such exchanges, information that the computer displays is in a normal
monospaced font and what you type is in a bold monospaced font, which makes it easy to
distinguish what you see from what you type.

In addition to these text conventions, which can apply to individual words or entire paragraphs, a
few conventions are used to highlight segments of text:

Note A Note indicates information that's useful or interesting, but that's somewhat
peripheral to the main discussion. A Note might be relevant to a small number of
networks, for instance, or refer to an outdated feature.

Tip A Tip provides information that can save you time or frustration, and that may not be entirely
obvious. A Tip might describe how to get around a limitation, or how to use a feature to perform
an unusual task.

Warning Warnings describe potential pitfalls or dangers. If you fail to heed a Warning, you may
end up spending a lot of time recovering from a bug, or even restoring your entire system
from scratch.

Sidebars

A Sidebar is like a Note, but is longer. Typically, a Note is one paragraph or less in length, but
Sidebars are longer than this. The information in a Sidebar is useful, but doesn't fit into the main
flow of the discussion.

Administrator's Logbook

Because the importance of logging all the configuration changes you make to a system is a major
theme of this book, throughout various chapters we have included "Administrator's Logbook"
sidebars illustrating the kinds of information you would record for the activity at hand.

9



Finally, note that Linux commands and output are often formatted for a screen display that is wider
than our printed page. To indicate where we have had to "wrap" part of a longer command onto a
separate line, we use the symbol  at the beginning of the continued portion. For example:

' /etc/printcap > ${TMP1} && cat ${TMP1} > /etc/printcap
&& rm −f ${TMP1}

To include this statement in an initialization script (as discussed in Chapter 14), you would type it as
a single line, omitting the line break and the  symbol. (In other words, don't look for a  key on
your keyboard!)

Help Us Help You

Things change. In the world of computers, things change rapidly. Facts described in this book will
become invalid over time. When they do, we need your help locating and correcting them.
Additionally, a 600−page book is bound to have typographical errors. Let us know when you spot
one. Send your suggested improvements, fixes, and other corrections to support@sybex.com. To
contact Craig Hunt for informat ion about upcoming books and talks on Linux, go to
http://www.wrotethebook.com/. Rod Smith can be reached at rodsmith@rodsbooks.com, and
operates a Web page at http://www.rodsbooks.com/. Vicki Stanfield can be reached at
vicki@thepenguin.org.

10



Part I: The Basics

Chapter List

Chapter 1: The Basics of System Administration
Chapter 2: Installing Linux
Chapter 3: Startup and Shutdown
Chapter 4: Tools of the Trade

Featuring

The role of a system administrator• 
Linux tools for system administrators• 
Selecting a Linux distribution• 
Sample Red Hat Linux installation• 
Finding help resources and technical support• 
Working with the Bash command line• 
LILO and the Linux boot process• 
Initialization and startup scripts• 
Shutting down the system• 

11



Chapter 1: The Basics of System Administration

Overview

If you ask ten system administrators what their job entails, you'll get ten different answers. Linux
system administration is a job that defines itself over the time you hold it, and redefines itself over
and over thereafter. In simple terms, the system administrator is the person responsible for
maintaining a computer system at peak efficiency. The analysis required to maintain the system
makes the job both challenging and rewarding. Users are the wildcards that make system
administration much more unpredictable than simple system maintenance. Changing user needs,
changing security environments, and changing applications, all conspire to change the system
administrator's role over time. Despite its changing nature, certain tasks confront all system
administrators on all Linux systems.

This chapter introduces some of the tasks that you will be expected to perform as a Linux system
administrator, along with a collection of tools that you'll need to be familiar with to do those tasks
successfully. A logbook is a critical, job−saving activity, so this chapter discusses some of the
issues involved in keeping one. The section on communicating with users discusses different
methods of communication and offers some hints about keeping the confidence of your users.
Finally, you'll learn about the superuser privilege and related security issues.

Essentially, this chapter outlines what system administration is. In that sense it is a map to the
contents of the rest of this book. When we describe a task that you'll perform as a Linux system
administrator or a tool that you'll use, we will point you to the chapter where that topic is described in
more depth. This book is, in a sense, a "mentor in a box," allowing you to benefit from our
experiences, both positive and negative, as you begin your endeavors as a Linux system
administrator.

Your Role as a System Administrator

A system administrator aims to be as transparent to the user as possible. How much the users need
to contact you is a good indicator of how well you are doing your job. If you do your system
administration tasks well, users will seldom need to think of you at all, except to recruit you for the
company softball team or, of course, when they want additional services from the Linux system.

Your workload will vary dramatically. You'll learn to cherish the lull times when there is little external
pressure, because they will enable you to work on projects to improve service and because you'll
know from experience that just around the corner something will happen that requires working
through the night or even several consecutive nights. If you spend the lull times evaluating your
system for potential security problems or areas where performance could be improved, you'll find
that there will be more low−pressure times as a result. Use the information in Chapter 15,
"Security," when looking at security and in Chapter 16, "Performance Tuning," when examining how
to improve your system's performance. The dynamic nature of system administration is the norm
rather than the exception.

It is impossible to estimate when a critical piece of hardware might require replacement or when the
operating system might crash, requiring you to come in and restart or troubleshoot it. For example,
in a network one of the authors worked on, the backup scripts were set to run at night, when system
usage was at its lowest, and to send e−mail to her pager upon completion of the backup process.
When it didn't, she'd have to come in to find out what was wrong and get the backups going again.

12



This, too, is part of the job. When you run into problems, Chapter 18, "Troubleshooting Your Linux
System," contains many troubleshooting tips; some of these have been lifesavers and all have been
useful as we progressed both as system administrators and as Linux users.

But what exactly is system administration? The term is so broad that no definition will give the whole
picture. A simple definition might be "the installation and maintenance of a computer system."
However, because a computer system might be anything from one computer to a networked system
containing hundreds of computers, and because each employer expects something different, these
few words don't define system administration in any strict sense. The real definition must include the
system administrator's role as the mediator between machine and user, since you are the judge
who decides whether problems are computer− or user−induced and the jury who determines what
should be done about it. Certainly you must be a doctor, capable of performing healing rituals when
the equipment is sick, but you must also be the counselor who breaks the news to the family when
something has gone wrong. You are mother, father, baby−sitter, guru, mentor, mechanic,
technician, programmer, hero, and villain to the users of your network.

Tasks of a System Administrator

A better way to define system administration might be to develop a list of tasks performed by a
system administrator. This is not a comprehensive list, largely because every time we become
comfortable with our job descriptions, something else is added, but it is a fairly complete list of tasks
you can expect to perform as a Linux system administrator:

Configuring hardware• 
Installing the operating system• 
Installing application software• 
Implementing system security• 
Configuring the kernel• 
Creating users and groups• 
Updating software• 
Performance tuning• 
Disaster recovery• 
Capacity planning• 
Network administration• 

Configuring Hardware

Any hardware configuration that is required to get the system up and running is the duty of the
system administrator. This includes determining which hardware will best meet the corporate goals;
selecting hardware in turn requires you to consider current capacity, expected capacity, cost,
compatibility, resource availability, and many other things that are job−specific. The installation and
configuration of that hardware also is your job. If the system does not come ready to run, you might
have to assemble it from its component parts. Even if the system arrives fully assembled, you'll find
that replacing components or disassembling a system that is being phased out will be your
responsibility. In the Linux world, you'll be far more likely to perform hardware configuration than in
the Microsoft or Unix world because Linux is a more hands−on system—or at least the general
public sees it that way. Don't worry, though; if you're like us, you'll love it!

13



Installing the Operating System

In the Unix and Microsoft Windows world, computers often come with the operating system
preinstalled, but in the Linux world the system administrator most often installs the operating
system. Although computers are now available with the Linux operating system preinstalled, most
companies prefer to avoid the additional cost and the restrictions imposed by the reseller's
preconceived notions about what a Linux system is, so they have their administrators install and
configure the computers. If you have multiple systems with similar configurations, you'll want to do
something like a "kickstart" installation, which allows you to script the installation and let it run while
you do one of the thousand other tasks you've been assigned. Sometimes you will inherit a working
system, thereby missing out on the experience of installing the operating system from scratch, but
eventually the system will require an upgrade or reinstallation, and that will be your responsibility.
Chapter 2, "Installing Linux," demonstrates the procedure for a typical Red Hat installation and
includes information on kickstart installations as well.

Installing Application Software

It is the system administrator's duty to install application programs and to make them available to
the appropriate users while restricting access by those who aren't intended to use these programs.
Typically this software exists on a networked machine and is available via either some type of
remote login or an NFS mount. These topics will be discussed in Chapter 12, "TCP/IP Linux
Networking." Protecting shared files also involves setting permissions, which we discuss in Chapter
15. You'll also be directly involved with supporting the installation of software on individual desktop
computers. This includes determining what the user is allowed to install without you or your staff
and providing assistance when needed. Additionally, you will probably be responsible for monitoring
software licensing, since strict financial penalties often befall those who are caught abusing a
software license. Fortunately, most of the software that you will use on a Linux machine will be
nonproprietary, so that will lessen your load.

System Security

Perhaps the most difficult duty of a system administrator is system security. This is the area that can
cause the most trouble for you. A corporate system is likely to have 24−hour Internet access, which
makes it a prime target for crackers who consider it fun to break into the system and cause
unexpected behavior or even crash the entire system. As you can probably imagine, the
management is not likely to have much patience in this area. Maintaining system security is a
manageable task, however, if you are methodical and cautious. Usually you'll be responsible for
changing passwords when the existing ones have exceeded their expiration dates or when an
employee has left the company. This involves developing a hard−to−guess password, or several of
them, changing them on the systems, and distributing them to those who need them. The topic of
passwords is covered in Chapter 15. Check the system's security even when it appears that things
are fine and follow the guidelines in Chapter 15, and you'll be fine.

Configuring the Kernel

The heart of the Linux operating system is a component called a kernel. This component is basically
an interface between the system hardware and the system application software. As system
administrator, you will have to do any configuration of the kernel that is required. This includes
things like restricting the size or number of files that a user can create, activating or disabling its
inherent capabilities to meet the needs of the system by adding or removing support for the
necessary services, adding support for new hardware or filesystems, and configuring a variety of
kernel−controlled parameters. We'll talk about the kernel, and how to configure it, more in Chapters

14



4, "Tools of the Trade," and 8, "Software Administration." Many new system administrators find this
to be a daunting task, but after a few kernel compilations, you'll feel comfortable with it and wonder
why it seemed so intimidating.

Creating Users and Groups

Whenever new users are added to the system, accounts must be created and configured to allow
them to do their work without creating a security risk. It is often difficult for you to know what
resources, for example, a new accountant really needs access to; so you'll benefit from working
closely with company management to determine what's appropriate for each position. We prefer to
create scripts that allow us to create a user by assigning defaults for the department to which the
new user is being assigned. This allows us to easily create an account for a new person in the
accounting department by creating a prototypical accounting department user and tweaking the
accounts from there. We talk about that more in Chapter 5, "Creating and Maintaining User
Accounts." At a minimum, a mail spool must be established for each user, and you'll be responsible
for configuring access to the mail spool and to an adequate mail client. Chapter 14, "Setting Up
Your Mail Server," covers the configuration of a mail server.

Software Updates

Inevitably, a network and its client machines will need updates to the software they use, both
system and application. In system software, these updates may be security fixes that lessen a
cracker's opportunity to exploit a flaw in a particular software package that could have been used to
get superuser access to the system. These updates are usually published on the manufacturer's
Internet sites, and you must make it your habit to check those sites on a regular basis and apply the
updates as soon as possible. On the application side, the update may be requested by end users or
by management—simply to add functionality to a software package. The users will remind you of
these, probably more often than you'd like. Chapter 8, "Software Administration," discusses these
and other software administration tasks in more detail.

Performance Tuning

One of the administrative tasks most noticeable to users is how well the administrator has tuned the
system. Although a systems person might view efficiency in terms of memory usage, users
generally makes this judgment based on how long it takes to bring up a Web browser or how long it
takes to load a page. As discussed in Chapter 16, "Performance Tuning," you can often tweak the
system to optimize these factors. Of course, no amount of optimization will make a system that is
inadequate for its workload run well. Users also judge system administrators by how quickly they
can replace or repair components that break. If the user's mouse stops functioning, the correction of
this problem is the most important thing in that user's immediate future. If you do not give these
problems adequate attention, you will likely find yourself a frequent scapegoat when a task doesn't
get finished.

Disaster Recovery

The creation and preservation of copies of the system in different states of development is an
extremely important task. After all the configuration of a system is performed, the last thing you want
to do is reload the operating system and application programs from the original media. You might
choose to use a disaster recovery package or just decide to be fastidious about your backups.
Reconfiguring a system is frustrating at best. It is difficult to reproduce the exact configuration that
you had before, and that is exactly what the users expect. You can take some of the pain out of
backing up a system by selecting a backup medium that is reasonably easy to handle and by

15



obtaining or creating the software to run the backups unattended. Added features, like a script that
e−mails you when the backups have finished, also provide some peace of mind. When the system
crashes and there is data that is not contained in a backup, other methods of data recovery are
required. Your familiarity with these methods will help you get through troubled times with less
frustration. Backups and disaster recovery are covered in Chapter 9, "Backing Up and Restoring."

Capacity Planning

As a Linux system administrator, you'll need to be aware of the limitations imposed by the hardware
and software involved in your system. You'll need to watch the network traffic to determine when
high usage creates a need for new hardware/software to be added. You'll need to watch disk space
usage to determine when a system is about to outgrow its storage. You'll also want to ensure that
you have sufficient printing and backup resources for the number and type of users in the system.
We'll discuss each of these elements in Chapters 6, "Filesystems and Disk Management," 10,
"Printers and the Spooling Subsystem," and 12, "TCP/IP Linux Networking."

Network Administration

Most companies that you'll work for will have an internal network (intranet) and will want connection
to the Internet. The system administrator is the person who sets up, maintains, and troubleshoots
these networks. Chapter 12, "TCP/IP Linux Networking," deals with networking topic and Chapter
18, "Troubleshooting Your Linux System," contains tips for troubleshooting network problems.

"When You Have a Minute..."

There are so many tasks that are performed by a system administrator that it is impossible to
mention them all. Our duties have included building network cables, installing a network, configuring
routers, answering user questions, assembling tables upon which the system equipment will sit, and
almost anything else you can think of. A system administrator who appears to have free time is fair
game. Never mind that you are compiling a kernel on a remote machine while downloading
accidentally deleted files from a backup. Users, managers, salespeople—they all think they have
the right to interrupt you and start you off on a wholly unexpected task if you aren't obviously doing
something already—and sometimes even when you are. Life for a system administrator is never
boring.

Tools of the Linux Administrator

Many tools and techniques are available to make the job of system administration less maddening,
and seasoned administrators usually have a suite of them that have proven useful. Some of these
are commonly used Linux commands, while others are scripting tools or methods that allow you to
automate your tasks. Whichever they are, the items listed below are general categories of tools that
will prove invaluable to you, as a system administrator. There are a number of Internet sites that
allow you to download some of these software tools and try them yourself. A site that provides
a c c e s s  t o  a  n u m b e r  o f  s y s t e m  t o o l s  s p e c i f i c a l l y  f o r  L i n u x  m a y  b e  f o u n d  a t
http://www.linuxapps.com/.

Most Linux distributions contain some tools that the distributors have found to be both stable and
useful. Unfortunately, each distribution of Linux has its own set of "essential" tools, making it more
difficult to switch between distributions. Worse still is the fact that Red Hat and some other
distributions are in a state of flux, developing new system administration tools and deprecating

16



existing ones rather frequently. We escape this problem by using a tool called Webmin, which we'll
discuss later in this chapter. However you get them, you will find that they are essential to happy
system administration. Here is a brief list of tools that you shouldn't be without.

Commands

There are hundreds of commands you can use to perform your administrative work. These
commands may be compiled programs written in C or some other language, programs written in an
interpreted language such as Python or Perl, or shell scripts that use the shell's inherent capabilities
to perform some task. Whichever type the command represents, each command is executed by
entering the command and any applicable parameters on the Linux command line or by clicking an
icon which is mapped to that command. We'll discuss specific commands in Chapter 4.

Linuxconf

Practically every flavor of Unix has several individual tools that each performs a single
administrative task, but most also have a general tool that combines many of the individual
capabilities into a single interface. IBM has its smit utility; Solaris uses the admintool. Until recently
Red Hat Linux used Linuxconf as its primary system administration tool. A product of the GNOME
project, Linuxconf was designed to perform many administrative duties. Few tools handled so many
different types of configuration tasks as the Linuxconf utility, but unfortunately, Linuxconf never
reached the state of reliability needed by a do−it−all tool. We'll mention Linuxconf occasionally
throughout this book since it is still in use, but our feeling is that there is a better do−in−all tool
available.

Webmin

Webmin is a tool, owned by Caldera Corporation, which allows many system administration tasks to
be performed within any browser that supports tables, forms, and Java. Available from
http://www.webmin.com/, it is governed under the BSD license, which makes it freely obtainable and
modifiable for commercial and noncommercial use. We prefer Webmin's consistent and reliable
interface to manage user accounts, network and Domain Name Server configuration, PPP setup,
mail server and client configuration, Samba, NFS, Apache configuration, and filesystem setup. The
main screen of Webmin is shown in Figure 1.1.

17



Figure 1.1: The Webmin main screen
As the name implies, Webmin is a web−based system administration tool that can be configured to
be accessible from the localhost, from within the local area network (LAN), or from outside the LAN
as well. We'll demonstrate Webmin's many uses in various chapters throughout the book.

Special−Purpose Shell Scripts

Many repetitive day−to−day functions, whether simple or complex, are accomplished by a specially
designed shell script. A shell script is a list of shell commands batched together in a file so that they
can be executed on demand. As Linux system administrators, we have written many, many shell
scripts, and you will as well. Chapter 17, "Making Your Job Easier with Scripts," is dedicated to this
topic.

System Logbook

To maintain some semblance of sanity, you need to keep your network—and your administrative
activities—organized. Many system administrators, at least the ones who have learned from prior
mistakes, keep a journal of the overall network configuration and the operating system and software
configurations for each computer. The lack of such preparation makes an unexpected reinstall a
painful experience. If you ever need to use your backup tapes to reinstall a system, time will be a
critical factor, since few users understand the time involved in such a procedure. You can minimize
the time required by knowing exactly what you had set up on that system. A journal of each change
you made to the system is invaluable at this point. You must keep the journal just as loyally as you
make your backups, because it is the combination of the two that will allow you to reinstall and
reconfigure quickly and efficiently.

We recommend that you buy several blank logbooks to be used exclusively for journal−keeping.
The hard−backed composition books used for college English classes are particularly good. These
are available in most grocery stores and in any office supply store. Buy one for each computer, or in
a really large network, for each class of computer. The books are cheap, and keeping one system's
journal separate from another system's journal makes it much easier to keep track. Think about
what separation makes sense in your system. If you can keep different categories of notes in

18



different colors, it makes it easier to find an entry that you need to reference. For instance, red might
denote major system problems, blue might be used for application installation and configuration,
etc. Keep all the logbooks in the same location, label them clearly, and use them without fail.

Start each journal by defining the system itself, specifically annotating each configuration detail. A
system's initial entry should include the computer's identification number as assigned for tracking
purposes and all the hardware information you can record. Include the CPU type and speed, the
type of motherboard and any configuration you performed, how much memory, the type and size of
hard drive(s), the type of video card and how much video memory it contains, what other drives the
system contains, what other cards the system contains and how they are configured, identification
numbers for each component, IRQ and DMA settings for any card, and any other information which
might be useful when installing or upgrading later. It's a lot of work to capture this data, but when
you need to assess whether a system will be able to run the newest virtual reality software package,
these are the details you'll need to know. Here's an example.

Administrator's Logbook: Initial Entry

System: E12345678 AMD K6−3 400MHz
MB: FIC503+ VIA Apollo MVP3 Chipset 1AGP,3PCI,3ISA,2DIMM

1MB Pipeline Burst SRAM
2 dual−channeled PCI Bus Mastering IDE
Baby AT

Memory: 2XCorsair PC−133 128MB sticks
Video: AGP Matrox Marvel G400
Sound: SB16
CD−Writer: Sony CRX140S/C

Next you'll want to create an entry for the operating system installation, to define just how the
installation progressed and detail any special configuration features. Certainly if there are any
glitches in the installation, this should be noted for future reference. Tracking down a hardware
failure is often a step−by−step process in which the diagnosis is made by looking at the system's
history of problems rather than a single failure. Include information about kernel configuration and
any changes to the default initialization process. You are, in effect, drawing a portrait of the system,
so you need to catch as many details as you can. The initial installation information is critical.

Administrator's Logbook: Operating System Installation

System: E12345678

Red Hat 7.3 stock KDE workstation installation

SWAP 64MB /dev/hda1
/boot 16MB /dev/hda2
/ 8112MB /dev/hda3
Guest user account created.

If you add a user account, list the date, the command, the user−specific data, and anything else
you'd need to replicate the action. It will take a little while to make this second nature, but when you

19



encounter a system failure, you'll consider the journal−keeping time well spent.

Some new system administrators realize that they need a journal, but they attempt to keep one on
one of the computers under their control. This is fine for a while, but if that system develops a
problem, there may be no journal available for use. You might say that you'd never make that
mistake. If so, congratulations, but we've heard a number of horror stories in which a computer that
was used to maintain the journal was the one that failed.

Throughout the rest of this book, we will include examples of possible journal entries for the topic
being discussed, in order to enforce the importance of journal−keeping and to illustrate the
information that's relevant in that context.

Communicating with Users

We've alluded to the lack of understanding that users will have of your job and the time required in
doing it. This gap in understanding is often caused by a lack of communication between system
administrators and users. Sometimes, in a rush to explain a delay that was not immediately
communicated to the user, a system administrator will make claims that are simply untrue. "I got
called away to do something for the boss, so I was unable to setup your mail client. I'll get to it as
soon as I can." Sometimes this is true, of course, but many system administrators make these
claims so often that they aren't believed or taken seriously by the users they serve. This makes the
job of communicating with users all the more difficult.

We have each found that once we establish ourselves as credible, users are not irritated when we
have to tell them that their task has been assessed a lower priority than another. Yes, they want the
job done as soon as possible, but most people have more than one responsibility and understand
when you do. Earn the trust of your users by being responsible and responsive, and your job will be
significantly less taxing. When there is a delay in a promised repair or configuration, a quick phone
call or e−mail will usually allow you to keep the user's trust. Many system administrators think that
they'll just explain the delay when they actually do the work, but we find that it is preferable to follow
the maxim "do unto others as you would have them do unto you." Truthfully, if you show respect to
your users, you will have their respect as well, and your work environment will be all the better for it.
Of course, most of you learned this from your mothers, but the number of system administrators
who don't follow this advice is astonishing.

There are several ways to communicate with your users. Reluctant computer users may respond
better to a telephone call; the more computer−savvy may prefer e−mail or an instant message.
E−mail is essential whenever you need to communicate something to more than one user or when
the communication is lengthy, but unless you use return receipts on your e−mail, you won't know if
users have even checked their e−mail at all. Instant messages have the advantage of allowing you
to see whether or not the user is online, but since some users remain logged in for days at a time, it
is not perfect either. We mention this to suggest that you tailor your communication method to the
specific user as much as possible.

However you communicate, be sure to give an approximate completion time for the requested task,
if only to give users some way to better estimate when they'll get their own tasks done. If your
estimate is far off the mark or you are interrupted by a higher priority task, you will find that a
follow−up e−mail will decrease the users' frustration, and you won't be called or e−mailed every few
minutes to find out when you'll get to their tasks.

Whichever method of communication is appropriate to your purpose, communication is a critical
factor in maintaining a good working relationship with the users who rely on you.

20



Working on the System as Root

Root access is the power of the system administrator. There's a t−shirt that bears the message,
"Bow down before me for I am root," and that isn't far from the way many system administrators
view things. For a new system administrator, having access to the root password is a very cool
thing. Root access means you are unstoppable. The root user, also known as the superuser, has
the authority to do anything, anywhere on the entire system. This power may include any computers
that are networked to that machine as well. You can do very significant things, but inherent to your
new power is the potential to make very significant mistakes! Root access allows you to make huge
mistakes if you are careless. The general rule is "don't log in as root unless you need to." If you
need to log in as root, perform the task that requires root access and immediately reassume the
identity of your normal user. You can use the sudo utility, which is described shortly, to minimize the
number of commands that you or your staff have to log in as root to perform as well as to record
which of you performed which task.

You can also use the /etc/securetty file to restrict the set of terminals from which root can log in.
This file is a list of TTY numbers, from vc/1 through vc/11 and tty1 through tty11 by default, which
the login program reads when it is run. The default settings mean that root is allowed to log in from
any of the virtual terminals but not remotely. Adding pseudoterminals (ttypn) would allow root to log
in remotely. This method is not very secure and in most cases should not be done. To completely
disable root login, forcing the use of su instead, /etc/securetty should be an empty file. Do not delete
the /etc/securetty file, since doing so means that root can log in from anywhere. The default setup is
very good and should rarely be changed.

Note In Linux, terminal and TTY most commonly refer to a virtual terminal, which is simply an
alternative login session. There are also physical devices called terminals, which should not
be confused with workstations. These teletypewriter (TTY) devices, consisting of little more
than a keyboard and monitor, were the only means of connecting to Unix mainframe and
minicomputers through the 1980s and sti l l  have uses today. Chapter 11, "Serial
Communications, Terminals, and Modems," shows how to configure these terminals.

Train yourself and the other users who are allowed access to the root password to be very
deliberate when logged in as root and not to abuse the power it gives. A mistake you make while
logged in as root could delete files that are required for the system to run properly. We once heard
of a system administrator who deleted the /tmp directory, causing the whole system to become
unstable. Another system administrator deleted the password file. Still another deleted the entire
/home directory, taking all the users' files and functionality away until it could be dumped from a
backup tape and making his boss very unhappy. In truth, most of these mistakes are recoverable if
you perform regular backups, but they are embarrassing and time−consuming.

Becoming the Root User

How does one become the root user? This section outlines the most commonly used techniques.

su [username]

If you logged in to the system under your own user account, you need to use the su command to
assume the privileges of root. The su command allows you to initiate a new shell in which your user
ID and group ID are temporarily replaced with the username you specify. It is important to note that
although you seem to "become" root, you are actually only using an effective user ID and group ID.
Your identity is still known to the system; your actions are still very traceable. The command to

21



change to the superuser is:

$ su

Using the su command without specifying a user name implies root. You will be prompted for the
root password and must properly authenticate to be granted root access. Failure to do so will send a
message to the root user about a failed su attempt.

If you successfully authenticate, you will retain the environment of your original user account but will
be allowed to change into directories owned by the root user, execute binaries that would not be
executable by your normal account, create files in directories that are restricted to root, and much
more. Your PATH will remain as it was with your normal user, so many of the more dangerous
commands will not be accessible unless you specify their full path.

su – [username]

Adding the – parameter starts a root login shell wherein the environment of the root user is
assumed as well. The command for this would be:

$ su –

You will be prompted for the root password, and failure to authenticate will leave you as your own
user and send a message of the failed su to the root user. If you authenticate successfully,
however, your working directory will be changed to root's home directory. From this point on, you
are effectively root, although your identity is still known.

Starting an X Session as Root

If your network uses the X Window System GUI interface (discussed in Chapter 13, "The X Window
System"), you can run an entire X session as root by changing to the root user and then starting X.
Everything done in that session will be performed as if you had logged in as root from the original
login prompt, although again your true identity will be recorded. It is easy to forget that you have
assumed superuser privileges, so this session should be handled with special care. One method of
ensuring that you don't forget that you started an X session as root is to use a totally different X
environment for the root user than for the other users. You might make the background of the root
user's X session red or yellow to flag the session as initiated by the superuser.

Because of the potential for disaster that is associated with doing general work as the superuser, it's
better to use your normal user account to log in and to initiate the X session. Once you have the X
session up and running, you can then bring up a terminal and use the su command to "become"
root within that terminal and perform the required tasks. As soon as you've finished, exit from the
superuser identity and proceed as your normal user. This method is far less dangerous.

sudo

sudo (which stands for "superuser do") is a Linux command that system administrators commonly
use to grant "superuser" or root privileges to a user or group of users temporarily so that they can
perform specific operations they would not otherwise be allowed to do.

sudo logs its use, keeping track of who used it and what was done. It also sends e−mail to the
superuser if someone tries to invoke sudo who does not have the necessary access to do so. Once
authenticated, sudo grants the requested privilege for five minutes at a time (this default is
configurable), and each command issued gets its own five minutes. The command looks like this:

22



$ sudo shutdown –r now

sudo first validates the user's identity by querying for a password. It then consults the file
/etc/sudoers to determine whether that user has permission to execute a command as the specified
user or as root if no other user is specified. The /etc/sudoers file looks like this:

# sudoers file.
#
# This file MUST be edited with the 'visudo' command as root.
#
# See the sudoers man page for the details on how to write a sudoers file.
#

# Host alias specification

# User alias specification

# Cmnd alias specification

# User privilege specification
root    ALL=(ALL) ALL
someuser   ALL=(ALL) ALL

If the user is listed in /etc/sudoers, a password prompt is issued. If the user can authenticate with
the appropriate password, the referenced operation is performed and a five−minute timer will be set.
During that f ive minutes, the authenticated user can perform sudo commands without
re−authenticating.

sudo is a critical tool. Thanks to it, you can grant certain users and administrative staff access to
perform some high−level tasks without actually giving them the root password. (Of course, you'll do
this only when the benefits of letting the user handle the task outweighs the potential risks. The user
needs to be not only trustworthy but technically competent.) This tool is available on most standard
distributions of Linux and is available for most flavors of Unix. For more extensive descriptions of
sudo, visit its home page at http://www.courtesan.com/sudo/man/sudo.html, and see Ramon
Hontanon's Linux Security (Sybex, 2001).

In Sum

This chapter has discussed many aspects of Linux system administration, but since the entire book
is about administration, it has only scratched the surface. Use this chapter as a guide to future
chapters. Next we'll work through the installation process, using Red Hat Linux as a model.

23



Chapter 2: Installing Linux

Overview

Linux system administrators often find themselves at the transition point between some other
operat ing system and L inux.  In  the process,  they are ca l led on to  make hardware
recommendations, install Linux on servers and workstations, and set these systems up for use.
These systems may be installed via a CD−ROM, from a hard disk, or even across a network (using
NFS, FTP, HTTP, or some other protocol). Sometimes they are installed individually and sometimes
in batch. Sometimes as an administrator you aren't transitioning but developing a plan for a
Linux−based network of servers and workstations and implementing that plan. Whatever the case,
the information in this chapter will help you along your way. To achieve the perfect system, you
need to have both optimized operating system and application software and state−of−the−art
hardware. In this chapter, we'll look at hardware performance issues that affect your selection as
well as the installation and initial configuration of the very capable Linux operating system onto a
server and a workstation.

Benchmarks

Although many claims are made about what hardware works most efficiently, it is very difficult to
compare the performance of differently configured systems. There are many benchmarking tools
available for Linux; these provide ratings that are easier to compare, but even with these you must
ensure that you're comparing systems that differ only in the item being compared. This controlled
comparison is not always possible but is preferable if it can be obtained. If you read benchmark
results in a white paper or on a Web site, remember to consider the source for dependability and
impartiality.

Here's an example. Ziff−Davis Media Inc., one of the leading information authorities for assessing
technology and the Internet, in January of 1999 posted on their site a synopsis of benchmarks
comparing several distributions of Linux and Windows NT running on like hardware. The Linux
boxes were running Apache and Samba only and the Windows NT boxes were running Internet
Information Server 4.0 with service pack 4. No unneeded services were running on any of the
machines being compared. The benchmarking tool was Ziff−Davis Media Benchmarks, one of the
industry standards. This test gave all of the Linux flavors tested a clear win over the Windows NT
boxes. Read the results on the Ziff−Davis site at: http://techupdate.zdnet.com/techupdate/filters/sp/.

Now consider another example. In April of 1999, a company called Mindcraft developed a set of
benchmarks comparing a Microsoft NT 4 server with a Linux server wherein Windows NT came out
the clear and decisive winner. Mindcraft admitted that Microsoft had funded the benchmarks but
claimed that they were fair.  Read the report and decide for yourself what to bel ieve:
http://www.mindcraft.com/whitepapers/first−nts4rhlinux.html.

To give you the whole story, Mindcraft offered to run the tests again with some Linux personnel
involved this time. The results were in favor of Microsoft again, but there was a lot of room for doubt.
The story is available here: http://www.mindcraft.com/whitepapers/openbench1.html.

This is not the only set of conflicting benchmarks between Linux and Windows—far from it. The
point is that benchmarks can be developed that will support any claim. Never take benchmarks at
face value unless you have carefully and methodically run them yourself. Don't immediately trust
your own benchmarks. Too many system administrators download benchmarking packages, run

24



them, and depend on the results. Evaluate the system load, configuration, and appropriateness of
the hardware/software combination for the task. Ensure that the systems are as equal as you can
make them, and then use the benchmarks for guidance.

Selecting Hardware

There are many factors that determine how well a computer system will perform. Certainly the
hardware plays a large part. Older or less capable hardware generally slows down a system.
Anyone who has upgraded from a low−end processor to a top−rated processor can tell you the
significance of the upgrade. Everything seems to go faster, even though only some functions have
actually sped up. Now try running poorly configured software on a state−of−the−art machine. It runs
better than on lesser hardware, but it is not the best that it can be. Reconfiguring will make a great
difference provided that the hardware can handle the system load. Optimized software on low−end
hardware is similarly disappointing. The trick is to optimize the software on the best hardware for the
intended task.

Just as a car's engine can determine how fast it will go, the hardware components in your Linux
system determine how it will perform. We'll look at the minimum acceptable hardware for a Linux
system and some example architectures for different types of Linux systems. We'll also discuss
some issues to consider in achieving optimal performance.

Minimal Acceptable Hardware

One of the best−known facts about Linux is that it can make use of old computer parts that you
have stored away somewhere. Many a high school student has salvaged an old 80386 machine and
turned it into a decent print server or mail server. Originally, Linux was designed to install on an
80386 with as little as 4MB of memory, but with the rapid changes in processor speed and memory
size, designing anything to work with only 4MB of memory became unnecessary. Red Hat requires
at least 32MB of memory (recommends a minimum of 64MB) and 350MB (recommends a minimum
of 650MB) of hard drive space (without X) for its 7.3 release. Other distributions have slightly
different recommended requirements, but these don't reflect differences in the needs of identically
configured systems; rather, they reflect differing default installations and usage assumptions.

Below is some basic information about selecting performance−oriented hardware for a Linux
system.

CPU Performance

One of the most important elements in determining a computer's performance is the Central
Processing Unit (CPU). A new CPU seems to hit the market almost weekly. In the Intel−compatible
x86 market, there are basically four players: Intel, Advanced Micro Devices, Inc. (AMD), VIA (which
bought Cyrix in 1999), and startup Transmeta. New faces are appearing in the microprocessor
technology market, but many target architectures other than the x86. Linux is known to run on all of
those listed here:

Intel/AMD/Cyrix 386SX/DX/SL/DLC/SLC• 
Intel/AMD/Cyrix 486SX/DX/SL/SX2/DX2/DX4• 
IDT WinChip• 
NexGen NX586• 
Cyrix 6x86, 6x86MX, and M−II• 

25



VIA Cyrix III• 
AMD K5, K6, K6−2, K6−III• 
AMD K7/Athlon (including the Duron series)• 
Transmeta Crusoe• 
Intel Pentium and Pentium MX• 
Intel Pentium Pro• 
Intel Pentium II (including the Celeron series)• 
Intel Pentium III• 
Intel Pentium IV• 

Note IDT and NexGen were bought out by VIA and AMD, respectively. Transmeta CPUs have yet
to become popular, but they're poised to make inroads in portable devices because of their
low power requirements. Many third parties resell CPUs under their own names, often with
adapter boards to make the CPUs work on a wider range of motherboards than originally
intended.

The current leaders of the market are the Intel Pentium IV and the many varieties of AMD K7 Athlon
processors including the Athlon, the Athlon MP, the Athlon XP, and the Athlon 4 for notebooks. For
in format ion on Inte l  processors look to ht tp : / /www. inte l .com/;  for  AMD, the s i te  is
http://www.amd.com/. Comparisons between the two are available on each site and independent
comparisons may be found using your favorite search engine. Historically, Intel has been the market
leader, with AMD playing catch−up, but in some specific applications like video rendering, AMD has
been benchmarked as faster. Because the competition between Intel and AMD is ongoing and
because each has its strengths and weaknesses, it is not possible to accurately determine an
overall winner between the two. It is better to look at the functions a computer will be asked to
perform and read all available comparisons between the processors you are considering before
choosing. Although Linux also supports VIA Cyrix chips, they are not really competitive with their
AMD and Intel counterparts. VIA Cyrix processors will give you no problems in Linux, but if it's
performance you're looking for, look to the Athlon or Intel processors.

Linux also runs on a wide variety of non−x86 CPUs. Of particular interest, the Linux ports to the
PowerPC (PPC), Alpha, and SPARC CPUs are all mature, and all these CPUs are supported by
several Linux distributions. But unless you need an unusual feature of one of these CPUs (such as
extraordinary floating−point power), you're probably better off going with an x86 CPU for Linux use,
because x86 hardware is inexpensive and Linux is still best supported on x86 systems. If you've got
an existing Macintosh or Alpha box, though, and want to run Linux on it, you can certainly do so.

Random Access Memory

There are two main categories of Random Access Memory (RAM): system and video. Although
video RAM is important in issues of rendering speed and graphic resolution, system RAM affects
the performance of all software, whether or not it is graphics−intensive. There are several types of
RAM on the market today. Of course, if you have a motherboard selected already, your RAM type
will be dictated by the type supported by that motherboard. If you haven't, however, you may find
yourself wading through the many subcategories of RAM available today. As of this writing,
synchronous dynamic RAM (SDRAM) and Rambus dynamic RAM (RDRAM), and Double Data Rate
(DDR) Ram are the most common types of system RAM, DDR being the fastest. Older systems
used ordinary dynamic RAM (DRAM) or variants of it.

Whenever possible, you should buy memory modules in the largest amounts that will support your
configuration. For instance, if there are four slots that will accept up to 256MB modules, it would be
better to buy two 256MB modules than four 128MB modules, since the former allows for system
growth without forcing you to replace existing modules. You can later add two more 256MB

26



modules for a total of 1GB instead of having to pull out the four 128MB modules and add four
256MB modules. Plan the most efficient upgrade path when you purchase computer components.

We've just outlined the bare−minimum hardware required to run Linux. As a system administrator,
your job is to develop systems that are performance−oriented rather than just inexpensive, so you'll
probably want more than the minimum. The next section describes system hardware requirements
in terms of the tasks that a given system needs to perform.

Selecting Hardware by Intended Usage

Now that we've seen the minimum hardware required for any Linux system, we can look at three
different categories of computer—a low−end workstation, a high−end graphics workstation, and a
basic server—and the minimal requirements for serving those roles effectively. These are opinions
based on our own experience. As Linux users often say, your mileage may vary. Use our
experience as a guideline, keeping in mind that the minimum requirements may be insufficient if the
system load becomes unusually high. We have tried to allow for a high system load, but at some
point, a more capable CPU, more memory, and/or hard drive space might be required. Always
consider the work being done and which parts of the system are being stressed the most. Look to
Chapter 16 for more optimization techniques and ways to determine when the current system is
overly taxed, and upgrade components as needed.

Configuration A: A Basic Workstation

The first configuration we'll look at is pretty much the minimum for any system that you will
purchase. Configuration A is a workstation used primarily for word processing:

Pentium II or AMD K6 CPU• 
64MB of RAM• 
CD−ROM drive• 
Floppy drive• 
20GB hard drive (IDE or SCSI)• 
SCSI disk controller (if appropriate)• 
SVGA graphics card with at least 8MB of video RAM• 
Ethernet card (10BaseT or as appropriate)• 
15−inch SVGA monitor• 

The hardware in this configuration is available for very little money overall. There is really no reason
to buy less than this. We consider 64MB of memory to be the minimum because most systems
come with this amount by default. Sometimes a system will come with only 32MB of memory, but
with a little extra effort you can usually find a system with 64MB from a different vendor for close to
the same cost. A system used for word processing is not very CPU−intensive. There generally are
not multiple tasks waiting to be serviced, so a high−speed CPU is really unnecessary. Similarly,
such a system is not generally going to require more than 64MB of memory. Documents are usually
broken into small enough pieces as to be manageable on this system. The floppy drive and
CD−ROM drive are simply for software update purposes and other general tasks. The 20GB hard
drive is the smallest that's readily available today, and is more than adequate for a basic installation.
Certainly storage space should continually be monitored to determine if and when additional space
is warranted. You can use either SCSI or IDE hard drives since speed is not critical on such a
system. The SVGA graphics card and monitor are the minimum readily available since this system
is not geared toward graphic applications. Even a 4MB video card will do if you have one lying
around somewhere. The network card need only be suitable to connect this system to the local
network. Usually this will be 10BaseT, although 100BaseT is growing more common, and 100BaseT

27



cards cost little more than 10BaseT cards. You may want to add more components if you have
additional specific needs, such as a modem, scanner, or CD−ROM burner.

Configuration B: A High−End Graphics Workstation

Configuration B is a workstation used to develop graphics or do desktop publishing:

Pentium III or AMD K6−2 or Athlon• 
512MB of RAM• 
CD−ROM drive• 
Floppy drive• 
40GB hard drive (IDE or SCSI)• 
SCSI disk controller (if appropriate)• 
SVGA graphics card with 32–64 MB of video RAM• 
Ethernet card (10BaseT or as appropriate)• 
17− or 21−inch SVGA monitor• 

Configuration B needs a more powerful processor since graphics production and desktop publishing
will each put a slightly higher load on the processor. The memory has been increased to 512MB to
allow the system to handle the large amounts of data involved in graphics or to load large
documents into memory. More hard drive space is needed since graphics files are generally quite
large, especially at higher resolutions. Similarly, a larger monitor is needed since the job of editing
graphics and other printed matter involved in the publishing process can cause eyestrain if
performed at too low a resolution.

Configuration C: A Basic Server

Configuration C is a server running basic services that the popular distributions turn on by default:

Pentium III or AMD Athlon• 
128MB of RAM• 
SCSI CD−ROM drive• 
Floppy drive• 
20GB SCSI hard drive• 
SVGA graphics card with 4MB of video RAM• 
Ethernet card (10BaseT or as appropriate)• 
15−inch SVGA monitor• 

In configuration C, we have selected a 128MB of memory even though a smaller amount would
probably be adequate if the Web serving or mail serving load were particularly light. You can use a
smaller hard drive than with the graphics workstation, since with POP3 mail that is retrieved from
the server to the user's workstation will no longer be stored on the server. Your specific needs may
dictate a larger hard disk if, for instance, you use IMAP instead of POP3. Restrictions to the size of
incoming mail also tempers the need for more storage. Certainly a system that has more than 50
users or is used in support of a Web site whose content is linked to a database would benefit from
additional space. The server's hard disk is SCSI because SCSI better handles heavy disk−access
loads, particularly in a multi−device configuration.

Specialized Hardware Performance Solutions

Beyond the minimal systems for specific uses described in the preceding examples, there are other
items the administrator should consider in planning a high−performance system. These include

28



support for multiple processors and disk subsystems. These items can make for a huge
performance gain in specific situations and almost none in other situations.

Symmetric Multiprocessing

One way to add computing power to a computer is to add additional processors to a motherboard
that supports Symmetric Multiprocessing (SMP). SMP allows you to share the processor's workload
across up to 16 processors in a single computer. In practice, because of limitations of the x86
architecture, actual implementation has not exceeded eight processors. Still, that's enough to
significantly speed up programs written to support SMP or systems that run multiple CPU−intensive
programs. Only multithreaded programs will truly benefit from SMP. Multithreading, also simply
referred to as threading, is the process of cloning processes to split the workload within a program
into separate processes that can be routed to separate processors in an SMP system. Basically, the
rule is: processes and kernel threads are distributed among processors; user−space threads are
not. If you notice that your single processor is idle much of the time because of a slow disk drive,
the system probably won't benefit much from additional processing power. If your system has many
simultaneously executing processes, and CPU load is very high, then you are likely to see
increased system performance with SMP. Since SCSI disk drives process multiple commands
without tying up the CPU, you can see significant gain when using multiple processors. The Linux
make command, used to compile kernels and other software packages, has a −j parameter that
allows it to take advantage of SMP and significantly speed up the process of building a kernel. The
syntax is shown below:

make [modules|zImage|bzImages] MAKE="make −jX"

(X is the maximum number of processes.) The distribution of the workload is not, by definition,
symmetrical since some specific functions may be assigned to a specific processor rather than
spread across all processors within the system. Be that as it may, you can see extremely significant
performance gains when adding up to three additional processors; beyond four processors,
however, the performance gains diminish. Adding a second processor does not usually double the
speed of the process compared to a single processor. It allows for portions of that process or an
entirely separate process to be handled by the second processor, thereby giving a performance
gain. However, if the process has not been designed to spread the workload among multiple
processors, there may be no gain at all.

Linux Clusters

Clustering is the process of coordinating the workload for a given project among several
independent computer systems, an alternative to the sharing of processors within one computer that
we just discussed. One example of clustering is Linux Virtual Server (LVS) clustering, as supported
in the Linux kernel and implemented by, among other things, Red Hat's Piranha environment.
Figure 2.1 illustrates the basic idea behind an LVS cluster. Essentially, the LVS router (there are
two in Figure 2.1 to avoid a single point of failure) interfaces between the Internet and a group of
identically configured servers. For example, the real servers in Figure 2.1 could all be configured as
identical Web servers. Instead of running a heavy Web server off just one computer, then, LVS
spreads the work across several computers. Provided the LVS router has fast enough network
interfaces, the result is an improvement in speed and reliability.

29



Figure 2.1: LVS cluster topology
LVS provides for floating server IP addresses. The LVS router has a fixed IP address for the outside
world. The IP address will be assigned to either the primary LVS router or its backup and will
automatically be transferred if the machine to which it is assigned goes down (a process known as
failover). In this instance, the IP address and the routing tables are synced from the downed
machine by the lvs daemon, which handles communication between the two machines. The pulse
daemon runs on both LVS machines to allow the secondary node to determine whether the primary
node is active. The ipvsadm command is the command−line tool for administering the LVS
machines in the cluster.

The rest of the cluster consists of real server machines to which FTP or HTTP service requests are
routed via the LVS machines' second network card. The LVS router machines each run one
daemon for each FTP or HTTP server running on each real server machine. This LVS router
daemon will connect to the port of the real server to ensure that the system is still available to take
the FTP or HTTP requests. Load balancing between the real servers may be based simply on which
server's turn it is, or it can be sophisticated enough to qualify as true load balancing. For more
information about this type of cluster, refer to the http://www.linuxvirtualserver.org/ Web site.

30



Disk Subsystems

Disk I/O is another potential bottleneck for systems that require very high performance. Disk access
is measured in milliseconds, RAM in nanoseconds. The two basic techniques for making disk I/O
more efficient are RAID (Redundant Arrays of Inexpensive Disks) and disk caching, both described
below. The method you choose depends entirely on your specific situation. A RAID array, which
requires a significant hardware investment, may or may not give you significant gain; maximizing
your disk cache is almost always a good thing.

RAID Arrays

There are several different levels of RAID, all of which use multiple hard disks connected to a single
computer to improve speed, reliability, or both. Levels 0–5, which are the most commonly used, are
primarily concerned with reliability (data redundancy) but do offer performance increases in read
operations. Redundancy allows for multiple copies of the same data on different drives so that if one
drive fails, the data is not lost. The different levels vary in performance as measured in read or write
times:

RAID0 This level is aimed specifically at increasing performance and provides no
redundancy. In RAID0, data is striped across multiple disks. Striping is a procedure
whereby several drives appear to the computer system as a single drive. On these
drives, the data is distributed into small partitions, intermixed in such a way that the
virtual drive seen by the computer is composed of stripes from each drive. This
allows simultaneous reads from multiple drives, which can give a significant
performance boost.

RAID1 This level performs mirroring of data, meaning that the same data is stored on
all drives. Reads tend to be faster than with a single drive since data can be read
simultaneously from both drives. Read−balancing had some problems in Linux
kernels, although this has been ironed out in the 2.4 kernels. If you wish to take
advantage of this, you should probably consider a kernel upgrade. Writes tend to be
slower since two copies of the data must be written. RAID1 may mirror data between
two local drives or between drives on two different hosts.

RAID2 Not supported in Linux, RAID2 uses error correction codes to compensate for
drives that do not have built−in error detection. Since most drives include error
correction now, RAID2 is seldom used.

RAID3 Not supported in Linux, RAID3 stripes the data across all drives at the byte
level. Parity information is stored on one of the disks in the array to protect against
data loss in the event of a single disk failure.

RAID4 Similar to RAID3, except that the data is striped at the block level. Parity is
maintained on one disk as in RAID3. This causes the parity disk to be the bottleneck.

RAID5 Similar to RAID4, except that parity is now split between all the disks in the
array. A RAID5 array can withstand a single disk failure. Write performance is
significantly slowed since a single write operation requires old data and parity to be
read from each disk, the new parity to be calculated, and the new data and parity to
be written to each disk in the array. However, the improvement in reading speed from
striping across multiple spindles goes a long way toward offsetting the overhead of
performing the write parity calculations. It is not unusual for a well−configured RAID5
software array to perform as well as or better than the individual disks would.

31



RAID can be implemented in hardware or software. The hardware implementations are extremely
fast and extremely costly. The software implementations, on the other hand, are relatively
inexpensive. As of kernel 2.2.16−22, which was standard for Red Hat 7.0, RAID0, RAID1, and
RAID4/RAID5 could be configured in the kernel. There was also an option to auto−detect RAID
partitions that worked by detecting any partitions created with a partition ID of 0xfd, as opposed to
the usual Linux partition type code of 0x83. (You can check or change a partition type code with the
Linux fdisk utility, as described in Chapter 6.)

To see what RAID support you already have installed, look at the /proc/mdstat file. If you are not
running any of the RAID modules that exist in /lib/modules/kernel_num/block, the file will not exist or
will contain the following:

Personalities : []
read_ahead not set
unused devices: <none>

If you have any RAID modules running, you'll see the RAID level(s) listed between the brackets
after Personalities.

Note Just because RAID support is present on your system doesn't necessarily mean that it's
being used. It's also possible to use RAID on some disks or partitions but not on others.

Let's assume a case where you want to stripe data (RAID0) across two partitions that you marked
as RAID partitions when you created them with the fdisk utility. For most RAID levels, these
partitions must be the same size. We're using IDE here, but SCSI works also. Now you need to
configure the /etc/raidtab file for your particular configuration. On the standard Red Hat 7.3 system,
this file won't exist until you create it. There are several examples you can use as models; look at
the raidtab man page for one of them. Listing 2.1 is a sample /etc/raidtab file, tailored to our
scenario.

Listing 2.1: A Sample /etc/raidtab File

 raiddev /dev/md0                   /* RAID device name */
        raid−level              0   /* RAID Level we use */
        nr−raid−disks           2   /* # of RAID disks */
        persistent−superblock   1   /* use the pers−sb */
        chunk−size              8   /* stripe size bytes */

        device                  /dev/hda9    /* partition */
        raid−disk               0        /* index */
        device                  /dev/hdb6 /* partition */
        raid−disk               1        /* index */

The /etc/raidtab file uses C−style comments—anything between /* and */ is a comment and is
ignored by the system. Important elements of Listing 2.1 include:

raid−level The RAID level, as described above.

nr−raid−disks The number of disks in the RAID array.

persistent−superblock Writes a special superblock to the RAID disk so time is not
wasted reading the one on the filesystem disk.

32



chunk−size The number of bytes that go into each stripe.

device For each disk (up to the value specified for nr−raid−disks), you must specify a
Linux partition device file to be used in the disk array. These partitions don't need to
be in equivalent positions on the physical disks—for instance, in Listing 2.1, the array
uses /dev/hda9 and /dev/hdb6.

raid−disk For each RAID device, you must specify the position in the RAID
array—which device is the first in the striping sequence, which is second, and so on.
These values are numbered starting with 0.

Now we have our raidtab file set up, and we've created the partitions to be auto−detected.
Auto−detection is configured into the Red Hat 7.3 kernel by default. Now use the insmod command
to start RAID−0 as follows:

# insmod raid0

Finally, you need to run the mkraid command to configure your RAID−0 array and format the
metadisk for use.

# mkraid
# mke2fs −j /dev/md0

Warning Issuing the mkraid command destroys any data that might have existed on the partitions
specified in the /etc/raidtab file. If you want to convert existing partitions to a RAID
configuration, you must first back them up, then do the conversion and restore data.

Note Using an mke2fs −j device command creates an ext3 filesystem on the device. This
device may then be used under ext2 where the journal file will be ignored or under
ext3 where a journal file is required.

Disk Caching

Disk caching uses system memory to cache disk I/O. Caching data from the disk into RAM
improves performance significantly because RAM access is much faster than disk access. The disk
cache stores the most recently used data from the hard drive in a memory buffer that was allocated
when the system started. When a program makes a disk read request, the disk caching software
intercepts the call and checks the cache buffer to see if it contains the required data. If so, the data
is read from memory instead of the disk. Buying hard drives with lower access times and activating
disk caching in your BIOS settings will give you significant performance gains.

The effectiveness of a cache is pretty much determined by its size. If the cache is too small, the
data is often flushed before it is even reused, rendering the cache useless. A cache that is too large
uses up free memory and can cause the system to swap to disk, which is also slow. Linux uses all
free RAM as a buffer cache, but this cache is automatically reduced in size when additional memory
is required by an application. There is no configuration required.

Types of Hardware to Avoid

Just as there are types of hardware that can make your system more efficient or easier to use, there
are types that can make it less so. Some hardware devices will actually slow the system down,
while others simply will be hard to support.

33



Proprietary Hardware

Proprietary hardware is any device for which the manufacturer supplies its own driver directly to
buyers rather than making the necessary information available for operating−system developers to
create the driver. This approach may pose a problem since all too often companies create drivers
for Microsoft products but neglect to create drivers for other operating systems, like Linux. The
Linux community is sometimes able to reverse−engineer a driver, but this takes time. More and
more companies are creating Linux−compatible drivers for their products, but this is a new trend, so
proprietary hardware remains a gamble. Until a few years ago, the information required to create
drivers for some Diamond video cards was considered proprietary, so these cards were not
recommended. Now Diamond makes this information available, and Diamond cards are supported
Linux hardware.

Some types of proprietary hardware (particularly modems and printers) are commonly referred to as
"Windows−only" devices, because drivers are typically only available for Windows. This designation
is fluid, however; today's "Windows−only" device may have a Linux driver available tomorrow.
Nonetheless, you shouldn't assume that any given device will have a Linux driver available in the
future.

Some proprietary devices use stripped−down hardware that requires extra attention from the
computer's CPU. This is particularly common in inexpensive internal modems (often called
WinModems or software modems, although the former term is a trademark of 3Com, and so
technically only applies to certain 3Com products), low−end laser printers, and so−called AC−97
sound hardware. Linux drivers are appearing for some of these devices, but it's usually best to avoid
them even when drivers are available, because they chew up CPU time that might be better spent
elsewhere.

Tip If you're stuck with a software modem, check http://www.linmodems.org/ for information on
d r i v e r s  f o r  t h e s e  d e v i c e s .  T h e  L i n u x  P r i n t i n g  S u p p o r t  D a t a b a s e
(http://www.linuxprinting.org/printer_list.cgi) hosts information on drivers for printers, including
the handful of proprietary−protocol printers for which Linux support exists, but may not ship with
Linux.

Hardware Compatibility

For other types of hardware, like CD−ROM drives, sound cards, and so on, Red Hat maintains a
compatibility list at http://www.redhat.com/apps/support. We have run across hardware that was not
supported, but most of it was supported in subsequent versions. SuSE lists its supported hardware
at http://www.suse.com/us/support/. Caldera posts its hardware compatibility information at
http://www.calderasystems.com/support/hardware/. Most other distributions rely on the
L i n u x − H a r d w a r e  C o m p a t i b i l i t y  H O W T O  a v a i l a b l e  a t
http://www.ibiblio.org/mdw/HOWTO/Hardware−HOWTO.html.

Despite the fact that various distributions have different hardware compatibility lists, hardware
compatibility actually varies very little between distributions. Most hardware support resides in the
kernel, which is the same from one distribution to another (give or take some minor tweaks).
Distributions may ship with slightly different kernel versions (2.2.16 versus 2.2.17, say), or one
distribution may incorporate experimental drivers into its kernel whereas another may forego that
uncertain benefit. If hardware works in one distribution, though, it's almost certain that you can make
it work in another by obtaining an updated kernel, possibly applying some patches, and recompiling
the kernel. (Chapter 8 discusses kernel compilation.) A few devices, such as video cards, printers,
and scanners, require support in non−kernel applications, but similar comments apply to these

34



devices.

Selecting a Linux Distribution

A Linux distribution is a package consisting of a selected kernel and supporting software that meets
the distributor's acceptable standards for hardware support and stability. The major Linux
distributions are generally considered to include Red Hat, Mandrake, Caldera, SuSE, Slackware,
Debian, and Corel. Each of these is available on CD−ROM and also via FTP over the Internet in a
form designed to be written to a CD−ROM or even, in the case of Slackware, to floppies designed to
initiate a network installation. (One good clearinghouse site for distribution image files is
http://www.linuxiso.org/.)

If you mention which distribution you intend to use to a Linux advocate, be ready for an explanation
of why a different distribution is better. On any Linux mailing list, friendly arguments called distro
wars frequently occur: one user mentions his distribution by name, and other members of the list
feel compelled to compare that distribution with whatever they are currently using. The fact that
these are e−mail lists usually prevents bloodshed.

Because Linux kernel development is separate from the development of individual distributions,
there are several common elements among the different distributions. Some of the more basic
common truths about Linux installations are listed below:

All distributions need to follow the Filesystem Hierarchy Standard (FHS) or its predecessor
the Linux File System Standard (FSSTND). Chapter 7 discusses the FHS in detail.

• 

Al l  major  d is t r ibut ions,  w i th  the except ion o f  S lackware,  have some sor t  o f
package−management system to help keep track of what packages have been installed and
what files these packages contain. The Red Hat Package Manager (RPM) is the most
common Linux package manager. It is used with Red Hat, Mandrake, SuSE, and Caldera.
Debian and Corel can handle RPM packages, although these two work best with Debian
packages. Slackware uses tarballs natively—file compilations created with the Linux tar
utility. It's possible to create a tarball from an RPM or Debian package. Chapter 8 covers
installation of packages in RPM, Debian, and tarball formats.

• 

All major Linux distributions use the Linux kernel, which has grown from Linus Torvalds'
original code. A few, like Debian, intend to be kernel independent, meaning that the
distribution will run with kernels other than that used in other Linux distributions. In Debian's
case, the HURD project is working toward producing a kernel that can be used instead of the
Linux kernel—although the HURD kernel is available, it is not yet recommended for use.

• 

The following sections discuss these distributions in sufficient depth to see the similarities, the
differences in the targeted user bases, and basic features of each.

Warning Don't try to compare version numbers across distributions. For instance, Red Hat Linux
7.3 is not necessarily more advanced than Debian Linux 2.2.

Red Hat Linux

Red Hat Linux is currently the most popular distribution in the United States and possibly worldwide.
It has a reputation for being easy to install and configure. Large improvements were made in the
install process as version 6 evolved. Now in version 7.3, Red Hat's installation is very smooth. Red
Hat's official Web site is located at http://www.redhat.com/.

35



Installation Features

Here are some of the most important installation features of Red Hat Linux. New features are added
all the time; check Red Hat's home page periodically for updated information.

Kudzu

The Red Hat distribution has made great progress in the area of hardware detection during the
install process with the introduction of the Kudzu utility. This utility, included beginning in version
6.1, looks for new hardware and allows the user to configure any new hardware that Kudzu
recognizes. In support of this, Kudzu maintains a file that defines the current hardware
configuration. For example, Figure 2.2 shows Kudzu's display for a system that was installed
without a mouse but now has a generic mouse attached.

Figure 2.2: The Kudzu utility recognizing a mouse
Kudzu runs automatically each time you boot the computer, or you can run it any time thereafter. It
probes for hardware and checks the current configuration to see if any hardware is new. If hardware
has been added or removed, it queries the user whether to add or remove the necessary drivers
now or wait until a later time. If the update is deferred, of course, Kudzu will present the same
question whenever it runs. Since any attempt by Kudzu to remove serial devices like consoles
would negatively impact the system, Kudzu does not check serial devices except when run from the
installation.

Kernel Modules

Versions of Red Hat Linux from 6.0 on have made more extensive use of kernel modules than did
previous versions. Kernel modules are drivers for hardware, filesystems, and so on, which are
compiled separately from the main kernel file. Under Linux, kernel modules can be loaded and
unloaded at any time after the main kernel has loaded, provided that the necessary hardware exists
(when unloading a module, the hardware must not be in use). As a result of the increased
modularization of recent versions of Red Hat, the system better adapts itself to your computer at
install time, loading more drivers you're likely to need and fewer drivers you don't need.

An example of this new kernel flexibility is the handling of Symmetric Multiprocessing (SMP)
support. Red Hat has included SMP support for some time now, but in order to take advantage of it,
you had to install the kernel source files, set up the appropriate configuration file, and compile the

36



new kernel. The monolithic kernel that remained on the system after an installation did not include
SMP support by default. Beginning in Red Hat 6.1, however, the install program probes to
determine how many processors the system contains. If there are more than one, the installed
kernel will include SMP support automatically. If there is only one processor, SMP support will not
be compiled into the kernel. Of course, if you add a processor later, you could recompile the kernel
to add SMP support.

Since Red Hat is a commercial company, they are able to offer support to their user community. We
discuss support options in Chapter 4, but for the purposes of comparison, Red Hat offers paid
support, Web−based support including the archives of the various Red Hat mailing lists, and 90
days of e−mail support with the boxed distribution.

Mandrake

Linux Mandrake (http://www.linux−mandrake.com/en/), at version 8.2 at press time, is a derivative of
Red Hat Linux, and so shares some of Red Hat's features, including the RPM package format and
the basic system startup procedures (discussed in Chapter 3). As time passes, however, the
Mandrake apple is moving farther from the Red Hat tree. Mandrake distinguishes itself from its
progenitor distribution in several ways:

Server selection Mandrake includes a slightly different mix of servers than does
Red Hat. Most noticeably, Mandrake 8.2 uses the Postfix mail server, rather than
sendmail, which still is standard with Red Hat.

Package optimizations Mandrake compiles most of its packages with Pentium CPU
optimizations. This means that Mandrake runs slightly faster on Pentium−class CPUs
(including compatible models from AMD and VIA/Cyrix), but it won't run at all on 386
or 486 CPUs.

Installation details Although the earliest Mandrake packages used a system install
program that was virtually identical to Red Hat's, the latest versions differ somewhat.
Most noticeably, Mandrake includes a partitioning utility that allows the user to resize
existing Windows partitions.

Of the popular Linux distributions, Mandrake is the most similar to Red Hat—aside from Red Hat
itself, of course. This fact makes Mandrake very compatible with binary packages built for Red Hat,
and makes it easy to transition from Red Hat to Mandrake.

Caldera

Caldera System's OpenLinux is designed for corporate commercial use. It is available only for the
Intel architecture. Caldera is a proven player in the Linux world and thus is likely to continue to
improve its distribution over time. OpenLinux has an eServer version as well as an eDesktop
version, specially tailored to those individual purposes. Additionally, there is OpenLinux 64, which is
especially designed for the corporate world. Caldera's Linux site is http://www.caldera.com/. At
press time, the current version of Caldera is 3.1.

Installation Features

OpenLinux includes LIZARD (Linux Wizard), a graphical installation program that detects your basic
hardware: mouse, keyboard, video, sound card, CD−ROM, hard drives, floppy drive, PCMCIA, and
Ethernet card. LIZARD then installs the Linux packages you've selected and does a basic

37



configuration for them. We successfully installed OpenLinux on an ACER laptop that wouldn't
accept a Red Hat installation without some tweaking.

On the other hand, Caldera's graphical startup screen is a little slow to appear, compared to other
distributions. LIZARD does not use the data that it probes during the installation to build a kernel
specific to your machine. The kernel it does leave is small but highly modularized. It does not
contain SMP support, but this can be added when you build a custom kernel. Caldera requires
32MB of RAM and a minimum of 300MB to install.

SuSE Linux

SuSE (pronounced "SUE−zuh") Linux, developed originally in Germany, is the leading distribution of
Linux in Europe. It is growing fast in the United States as well. SuSE is another favorite distribution
o f  ou rs  fo r  i t s  ease  o f  use  and  genera l  fee l .  I t s  Eng l i sh  Web page  i s  l oca ted  a t
http://www.suse.com/index_us.html. At press time, SuSE 8.0 is the latest release of this distribution,
and it's available for x86, I−64, PowerPC, and Sparc CPUs.

Installation Features

Readers of Linux Journal voted SuSE the easiest distribution to install in 1999, thanks largely to its
smooth graphical installation tool, YaST2, which provides extensive hardware detection and
configuration. YaST2 provides a basic configuration in support of networking, Internet access,
sound support, and printing. SuSE and Mandrake are the only major distributions installable by
DVD−ROM. Like most distributions, SuSE leaves the same kernel on each system to which it is
installed no matter what hardware was detected during a basic installation or upgrade; this kernel
contains all of the drivers for what SuSE considers common hardware.

Slackware Linux

Slackware, first released in April of 1992, was Walnut Creek Software's interpretation of the most
"Unix−like" Linux distribution available. Now an entity on its own, Slackware's Web site is available
at http://www.slackware.com/. The latest version of the software at press time is 8.0.

Installation Features

Many of us began with Slackware in the days when CD−ROM drives were uncommon and you had
to download the whole distribution onto about 50 floppy disks, which you could then use to install to
your hard drive. You can still install Slackware from downloaded floppies; it is the only major
distribution that still supports a floppy installation (although it is essentially a network installation
now). Most users prefer to install from a CD−ROM, an FTP site, or by NFS. Slackware provides
fewer GUI tools than do most major distributions, but this is by design; the philosophy is that the
user will better know the system if configuration files are set up manually rather than by a GUI setup
tool. This knowledge becomes especially critical when you are administering the system remotely
and are prevented by firewall constraints from bringing up an X session. Slackware and Debian are
the only major distributions whose installation programs don't provide at least a minimal X
configuration. Many users prefer to postpone this task until after the initial system has been
installed.

A minimal installation requires only 16MB of memory and 80MB of hard drive space.

38



Debian

Debian Linux is a rather unusual distribution in that it has been developed by a team of volunteers
rather than a company like Red Hat or Caldera. In the more formal distributions, decisions about the
installation process and which packages to include in the distribution are made by the board that
runs the company, in this case Red Hat, Inc. or Caldera Systems. Debian, however, quite willingly
accepts modifications from its user base. There is no single commercial backer for Debian. Given
that, there is no commercial support available, but there are mailing lists and IRC chats that provide
support from the user base. This apparent shortcoming is not seen as one by Debian users, who
take pride in the fact that Debian is developed by hackers for hackers. Security is tighter on the
default Debian system than any of the others that we've installed. Debian users tend to like having
more control over its development than with other distributions. Debian's Web site is located at
http://www.debian.org/.

Debian contains a package called apt, which automates the downloading and installation of
packages. Simply run apt−get install program and apt will download the program, download any
packages it requires, install them in the correct order, and query you for any data it requires. User
receptiveness to this concept varies widely. Many of us prefer to have a more direct involvement.
It's easy enough to download the updates from the distribution's Web site and install them
individually to watch the process and any errors it might generate. Debian is the fast−track Linux
distribution, by which we mean it is available for the widest variety of hardware platforms even
including some handhelds.

Installation Features

You may install Debian from floppies, CD−ROM, a hard drive partition containing the installation
files, or by NFS. A minimal Debian 2.2 installation requires at least 12MB of memory and 65MB of
hard disk, although in order to install X and the most commonly used packages, you would require
just under 1GB and would benefit greatly from a memory increase to at least 16MB. (If you have an
unusually slim system, the older Debian 2.1 can install in just 4MB of RAM and 35MB of disk
space.) The Debian installation procedure does not try to anticipate your choices about even the
most basic decisions. It won't select which disks you wish to use nor which partitions on those disks
will be used as the root partition or even which will be used as swap. Debian installs a minimal
"base" system from its installation medium. It then reboots into this base system, which has just
enough functionality to install any other packages you choose. The base system only has to support
floppy drives and hard drives. From that point, you can choose which kernel modules to load during
this initial phase of the installation.

Debian installs a highly modularized kernel, which means that most modules are available with the
default kernel. This kernel includes SMP support, as of Debian 2.2, but it still works on single−CPU
systems.

The Choice Is Yours

The difficulty of the typical Linux installation is a controversial topic. Many Microsoft advocates say
that Linux is too difficult for the average person to install. Conversely, you may often hear Linux
advocates state that Linux installation is simple. In our experience, neither is the exact truth. In fact,
you can't really speak of Linux installation generically, because each major distribution uses a
different install program. The various Linux install programs have come a long way to simplify the
installation process in the past few years, and some are definitely more advanced than others. As
you've seen, different distributions have different goals for the installation; some work to be
user−friendly for the new Linux user, while others target a more Linux−knowledgeable audience.

39



For this reason, a distribution is often selected by this criterion alone.

No book can cover all of the different Linux installation programs. In the following section we
proceed step by step through a Red Hat installation. Despite the fact that the underlying functions of
an installation are always the same, the installation details vary from distribution to distribution.
Always rely on the documentation that comes with your distribution for information about installation.

Installing Red Hat Linux

Now that we've discussed some of the basics about the major Linux distributions, it's time to do a
walk−through of a real install. We will use Red Hat as an example since it is the most commonly
installed distribution in the United States. We will first try a basic server installation and then look at
what would be different for a workstation installation.

Preparing for Installation

Before beginning an installation, you should do a few things to prepare. First, you should obtain the
installation media that you will use for the installation. For this installation, we'll use a CD copy of
Red Hat version 7.3.

Next you should identify the components of your computer system. Write down the manufacturer,
model number, DMA channel, and interrupt (if applicable) of your video card, modem, network card,
CD−ROM, hard drive(s), SCSI card, and sound card. Also note the number of cylinders and heads
and total size of the hard drive(s). You may never need this information; but if you do, you won't
need to shut down your system and take it apart to find it. You should keep this information near the
computer after the system is installed since you might need to reference it later. Add an entry to the
Administrator's Logbook detailing the installation.

Administrator's Logbook: Initial Installation

System: E12345678

Action: Installed Red Hat Linux 7.3

Installation Options: Basic server−class installation

Modifications: Added jed and joe editor packages

Hardware:

Video: ATI Xpert 98 (Mach 64, 8MB RAM)

Modem: External USR Sportster 56K Voice

Network Card: Linksys LNE100TX (PNIC Tulip Clone Chipset)

CD−ROM Drive: Pioneer DVD−113

Hard drives: Western Digital AC26400B 6.4GB & Maxtor 91000D8 9.1GB

SCSI Card: Generic Symbios 53c860−based host adapter

40



SCSI Device: External Iomega Zip−100 drive

Sound card: Integrated motherboard VIA 82c686a sound chipset

If you've purchased a Red Hat Official boxed set, it will include the image to create a boot diskette
that supports a CD−ROM installation like the one we'll perform. If your computer supports booting
from a CD−ROM, you can boot directly from the Red Hat CD−ROM and will not need to create a
boot disk. If it does not, or if you are installing from a different medium, you might have to create
your own boot disk as described later in this chapter.

Choosing a Partitioning Scheme

Disk partitioning is the division of the hard drive into logical parts that contain specific components
of the operating system.

Although most people choose a more structured file system layout, Red Hat 7.3 requires only one
Linux partition. Assuming its size is sufficient, this partition can contain both the root partition and all
the other directories that fall beneath. An advantage of this simplistic approach is that you don't
have to guess how large each filesystem will eventually grow to be. A disadvantage is that you
cannot set quotas for individual directory structures and you cannot mount any of the directories
under the root partition as read−only, since that requires the directory to live on its own partition.
More important still is the fact that dynamic data as exists within the /home directory coexisting with
the root filesystem is generally a bad idea, since corruption can cause the entire system to become
unstable and possibly even unable to boot at all.

In a more structured approach, you might find that you've set aside too little space for a partition and
need to find more space. There are several options for adding space:

Back up and reinstall, enlarging the partition in question.• 
Add a new drive to the system and move some of the data from the bloated partition to the
new one.

• 

Move some of the data from the bloated partition to another existing partition.• 
Create a symbolic link so that users will find the data where they expect it to be.• 

Note Just as there are "distro wars," there are also partitioning scheme wars. Linux users
have long argued about the optimum scheme, and there is no sign that they will stop.
One of the premier features of Linux, after all, is the freedom to disagree.

Red Hat has simplified the situation for new users by setting up installation classes. These classes
select a partitioning scheme and software packages appropriate to the chosen use. In each case,
you have the option of overriding that class's standard partitioning scheme and package selection.
There are four established installation classes: the Workstation−Class, the Server−Class, the
Laptop−Class, and the Custom−Class. In this case, we'll be performing a Server−Class installation.
The others are listed below for completeness.

Workstation−Class Installation

Use the workstation−class installation on an end−user desktop system. A system installed in this
way is not intended to act as a server, but it does set up the X Window System environment.

A workstation−class installation requires at least 850MB of free disk space. If your hard drive
already contains partitions of other types, like Windows, the workstation−class installation will

41



preserve those partitions and set up the Linux Loader (LILO) or GRUB to allow you to boot into
either operating system. The default partitioning for this class is a swap partition equal to twice the
amount of RAM or 32MB, whichever is larger, a 50MB /boot partition, and a root partition that uses
the hard drive's remaining space; a partition that is set to use the remaining space in a partition is
said to be growable. If you are unclear on what a root or a swap partition is, we'll study the actual
filesystem layout in Chapter 7 and discuss swapping and additional partitioning options in Chapter
6.

Server−Class Installation

The server−class installation by default installs a prepackaged Linux−based server. Much of the
required configuration is included, although certainly there are things that Red Hat couldn't guess
about your system, and these you have to set up yourself. The server−class installation requires
between 1.3GB of free disk space minimum without graphics and 2.1GB for everything including
GNOME and KDE. It is important to note that any previously created partitions, regardless of type,
will be deleted during the server−class install. By default the disk is partitioned into a swap partition
twice your RAM, a 384MB / partition, a growable /usr partition, a growable /home partition, a 256MB
/var partition, and a 50MB /boot partition.

Note The partition sizes described here are approximate. Because of the way the x86 BIOS
handles hard disks, partitions must fall on cylinder boundaries. Depending upon the disk size
and how the cylinders, heads, and sectors are arranged, a cylinder can easily be 5–10MB or
so in size. Therefore, Linux may not be able to create, say, a /boot partition that's exactly
50MB in size, and may instead create a 56MB /boot partition.

Laptop−Class Installation

The laptop−class installation is just like a workstation installation except that PCMCIA support is
added. The laptop−class requires 1.5GB minimum with either GNOME or KDE and only one
language supported and 1.8GB minimum if both GNOME and KDE are installed and only one
language is supported. By default, the disk is partitioned into a swap partition twice the size of the
amount of RAM in your system, a 50MB /boot partition, and a growable / partition.

Custom−Class Installation

The custom−class installation is the most flexible of the three. No decisions are made for you.
Although the partition layout begins as the laptop−class installation, you are free to change it. You
also must choose which packages will be installed, and whether or not to use a boot loader. Choose
this class of installation when you want to avoid writing over a partition that contains data that you
want to keep. This also allows you to pick and choose packages.

Installing a Server

Once you've determined which partitioning scheme to use, whether your own or one provided by
Red Hat, you'll need to boot the computer. In most modern computers, the motherboard's BIOS will
support booting from a CD−ROM. This is the method we'll use here. Ensure that the BIOS has the
correct boot sequence selected, put the CD−ROM in the drive, and reboot. On older computers,
you'll need to use the boot disk that was included with the boxed set or that you made. Regardless
of the method you use, a minimal Red Hat system will be loaded into RAM, and the installation will
be run from this minimal system.

Other Installation Media

42



Although the basic procedure presented here assumes you are installing from a CD−ROM (or from
a boot floppy with the CD−ROM in the CD drive), Red Hat Linux also allows you to install over a
network or from a hard drive. The standard procedure uses the boot.img file from the CD−ROM.
Other methods use different boot image files, which you must copy onto a floppy disk from the
CD−ROM's images directory. You can install from a network server via NFS, FTP, or HTTP using
the bootnet.img file. You can also install from a CD−ROM, NFS, FTP, HTTP, or hard drive accessed
via a PCMCIA device using the pcmcia.img file. And you can install from a hard drive using the
same boot.img image that you use for a local CD−ROM installation. The installation sequence is
much the same, with the exception of the boot disk. You'll need to create a boot disk if you wish to
install from a network server or a PCMCIA device. To write the boot images to a floppy, you may
use one of the methods listed below.

On a Windows system, use the RAWRITE command that is located on the CD−ROM in the
dosutils directory by booting into Microsoft Windows and executing RAWRITE. When asked
which image to copy, specify the correct one from the images directory on that same
CD−ROM. The Microsoft COPY command will not make a workable boot floppy.

• 

Use the following command under Linux or Unix to create a boot floppy:• 

# dd if=/mnt/cdrom/images/boot.img of=/dev/fd0 bs=1440k

The dd utility is quite a useful tool. An explanation in short is that if stands for in file
and of stands for out file. You are thus writing the boot.img out to /dev/fd0 using a
block size (bs) of 1440KB. Usually this may be run without specifying a block size.

Under Linux or Unix, you can also cat the image to /dev/fd0. Although this is
generally not recommended, the command would be as follows:

cat /mnt/cdrom/images/boot.img > /dev/fd0

Essentially, the installations are all the same once you've located the medium that
contains the packages to be installed.

A few seconds after rebooting, you'll see a text−based welcome screen that offers several options
for the installation process:

Graphical mode• 
Text mode• 
Low Resolution mode• 
No Framebuffer mode• 
No Probe mode• 
Media Check mode• 
Rescue mode• 

Graphical installation is the default when you've booted from a CD−ROM. Text−based installation is
the default if you used the boot floppy image that came in the Red Hat package. It does essentially
the same things as a graphical installation, so you should be able to follow this procedure if you
choose that route. Low resolution mode starts the installer with a resolution of 640×480. To disable
the framebuffer, enter no fb at the prompt to go into No Framebuffer mode. If you need to test the
install media, enter linux mediacheck at the prompt. Choose rescue mode when you need a way
to boot a basic Linux system in order to recover an installation that's gone bad (say, because you've
edited the startup files in a way that prevents the system from booting). Last, if you need a driver

43



that is on a separate disk, enter linux dd.

Selecting an Installation Method

The first two screens ask you to select the language you speak and the type of keyboard you use.
Assuming you booted from an IDE CD−ROM as we did, the next screen you'll see is the Mouse
Configuration screen, discussed in the next section. If you have a non−IDE CD−ROM drive, you'll
be offered an additional choice between SCSI and Other. If you choose SCSI, you'll be prompted to
select your SCSI Adapter from a list. Choose the adapter that most closely resembles the one in
your system. If your adapter is not recognized, you may enter additional options for the driver.
These options are the same ones that would be specified at the boot prompt to give the boot loader
information about an unrecognized SCSI adapter. These options are discussed in Chapter 3.

If your CD−ROM drive is neither SCSI nor IDE, you must select the Other option. CD−ROM drives
in this category are usually those run from a proprietary sound card. Such drives are extremely rare
in modern computers; you're only likely to find them in old 386 or 486 computers. You might have to
specify options for the driver that supports such a card.

If you've forgotten to put the CD−ROM into the drive, you'll be prompted to do so.

Configure the Mouse

The install next moves on to the Mouse Configuration screen, which offers a number of style
choices for PS/2, bus, and serial mice. Select the brand and style that matches your mouse. If none
look right, you may select the appropriate Generic choice, and it should work. Select the correct
device and port; if your system has been running Windows before, your selection should match the
port used there. If you have a two−button mouse, you'll want to select the Emulate 3 Buttons option
near the bottom of the screen. This will allow you to simulate the third button by pressing both
buttons at the same time. Three buttons are useful on a Linux system because X is built around a
three−button mouse. The middle button is often used to paste text selections in X applications.

Partition the Disk

The Install Options screen appears next. It requires that you choose the Install Type you've decided
to use to partition your disk.

The options you'll see on the Install Options screen are divided into Install options and the Upgrade
option. The Install options are the ones we discussed before: Workstation, Server System, Laptop,
and Custom System. These provide the partition schemes described earlier. There is only one
Upgrade option. It keeps the existing partition scheme and just upgrades the software. For this
example, we're using the Server System installation since, as a system administrator, you are likely
to be setting up server machines. You could also set up a server using a Custom installation to take
advantage of the greater flexibility in partitioning and package selection. In the end, the Server
System setup is easier and quicker to run through, but is likely to produce a Linux installation that's
bloated with packages you never use. A Custom System setup can produce a trimmer system, but
takes more up−front time and knowledge about what individual packages do. Because the server
installation will write over any existing installation, the subsequent Automatic Partitioning screen
warns you that it is about to erase any existing partitions on your hard drive and offers you the
alternative of creating your partitions manually with either Disk Druid or fdisk. You are also offered
the option of retracing your steps and performing a customized installation. To try out the
partitioning process for yourself, select the Manually Partition with Disk Druid option and press the
Next button. Figure 2.3 shows the Disk Druid Partitioning screen.

44



Figure 2.3: The Disk Druid Partitioning screen
If the system previously had Red Hat installed, the existing partitions will show up in the Partitions
area. Otherwise, you will begin with the standard partitioning for the Server−Class Installation.
Figure 2.3 shows an altered version of this partitioning scheme. You can delete any existing
partition by highlighting it and then selecting Delete. The partition will be removed and the Drive
Summary at the bottom will show the available space.

Note If you have set any of the remaining partitions to "Fill to maximum allowable size," the Drive
Summary will still reflect that it is 99% used.

If there are existing partitions that you want to keep, highlight each partition in Disk Druid, click the
Edit button, and ensure that the mount point (described shortly) and partition type are correct.
Delete any partitions that you don't want, or click the Add button to add additional ones. Clicking the
Add button will bring up this dialog box:

45



The swap partition will not have a mount point. Once you select the swap Partition Type, the Mount
Point option will be grayed out. Each of the other partitions must be assigned a mount point. Some
examples of mount points include /usr and /var, if these directories are to be on their own separate,
individual partitions. Some directories must not be on a separate partition from the / partition,
because files in these directories must be accessible during the boot process, before separate
partitions will have been mounted. These directories are /etc, /lib, /bin, /sbin, and /dev.

Specify the size of the partition in megabytes. The default is 1MB, which is fine if you mark the
partition as "Fill to maximum allowable size." You'll need to change it if you want to specify a size.
Also, if the system has more than one drive, you'll need to highlight the appropriate drive in the
Allowable Drives field.

If you have a Windows partition, it will show up on the Partition screen as well. You'll want to assign
it a mount point like /mnt/windows or /msdos. This will make it easy to access, since it will be
configured to be mounted at boot time.

You could more easily have chosen the Automatically Partition and Remove Data option in the
Automatic Partitioning screen and let the install process set up a typical server partition scheme as
described earlier. This is certainly the easier course of action, but doesn't give you the flexibility to
decide your own partition sizes or specify unusual partition layouts.

Configuring Networking

Following partition configuration, you'll see the Boot Loader Configuration screen. You must select
whether to install the GRUB boot loader, the Linux Boot Loader (LILO), or no boot loader. If you
select to install a boot loader, you must select whether to install it on the Master Boot Record or the
first sector of the disk's boot partition. This is discussed in the boot loader discussion in Chapter 3.
Next, enter any boot parameters that you need and select and name a boot image to load by
default. Selecting next takes you to the boot loader password screen if you selected to install a boot
loader or the Network Configuration screen if you did not.

46



Configuring Networking

If your system has a network card, Red Hat Linux asks you to specify your network configuration, as
shown in Figure 2.4. Enter the necessary information manually, or click the Configure Using DHCP
button if your network uses a DHCP server to dish out IP addresses. Chapter 12 describes the
TCP/IP networking options in more detail, if you need to set these options manually and don't know
what to enter. (In this case, you'll need to consult with your network administrator to learn what to
enter.)

Figure 2.4: If you enter TCP/IP networking information during installation, you won't have to do so
again after installation.
Configuring the Firewall

Following the Network Configuration screen, you'll see the Firewall Configuration screen. Your
choices are High Security, Medium Security, and No Firewall. You may also customize the firewall
rules. The default settings of a High Security firewall set up a system that will only accept DHCP
connections, DNS replies, and connections that you have specifically defined. While this is the most
secure, it is not practical on a system that runs a lot of services like FTP or IRC since those services
would deny any connection from a site that has not been specifically allowed through. You may also
set up a Medium Security firewall that allows you to define type of connections to allow through. You
might also choose to trust any packets from a given interface. We'll discuss these concepts
thoroughly in Chapter 15, "Security."

Configuring the Time Zone

After a self−explanatory Language Support Selection screen, the installer starts the Time Zone
Selection screen. There are so many time zone options as to make this a bigger task than it sounds.
Select the appropriate zone for your location or the offset from Universal Coordinated Time (UTC).
In either case, you must specify whether your system clock uses UTC. If you use the offset method,
you must also specify whether or not Daylight Savings Time is needed.

47



NoteHistorically, Unix systems have set their clocks according to UTC, or the time in Greenwich,
England, and have adjusted local time settings based on the computer's location in the world.
x86 PCs, by contrast, have historically set their clocks to the local time. Linux therefore needs
to understand both methods. A dedicated Linux server is generally best off with its hardware
clock set to UTC, because this is less likely to result in problems for various Linux utilities
derived from Unix utilities or when Daylight Savings Time changes are required. However, the
log entries will also use UTC timestamps, and this can be confusing. A system that
dual−boots between Linux and Windows or some other OS that uses a hardware clock set to
local time is better off using local time, to keep time synchronized between the OSes.

Configuring User Accounts

You'll need to set up an account to access when the system is rebooted; you'll do that in the
Account Configuration dialog box shown in Figure 2.5. You are required to set up the root account.
This process consists of specifying and verifying root's password. You can then either click Next to
continue or add one or more normal user accounts. It's a good idea to set up at least one user
account, so that you are not forced to log in as root. To do so, input the account name (username),
the password for that account, the same password again for verification, and the full name of the
user. At this point, you may continue to add other users or continue to the next screen, Selecting
Package Groups. You have several options for creating new users after the system has been
installed. See Chapter 6 for more information about creating user accounts.

Figure 2.5: The Account Configuration screen
Selecting Package Groups

Finally, the moment you've waited for: the Selecting Package Groups screen allows you to select
which software packages will be installed on your system, selecting them in preset server groups or
individually. The only group that is selected by default for the server class installation is the Classic
X Window System group. Many system administrators do not install any X Window System
components on some of their servers, but the option is there. You can also choose to install a news

48



server, an NFS server, a Windows file server, an anonymous FTP server, an SQL database server,
a Web server, or a DNS name server. The total install size, listed in the bottom−right corner of the
screen above the Back and Next buttons, is updated upon each selection or de−selection. If you'd
rather have a direct hand in package selection, click the Select Individual Packages button near the
bottom of the screen. When you click the Next button, you'll be taken to the Individual Packages
screen, shown in Figure 2.6.

Figure 2.6: The Individual Package Selection screen appears only if you click Select Individual
Packages in the Selecting Package Groups screen.
Here you can double−click on a specific package to see what it contains. Folders and individual
packages represented by boxes will be displayed on the right. If you highlight a single package,
information about that package appears near the bottom of the screen. This information includes the
name, the size in kilobytes, and a description of the package's function. A red check mark will
appear on each package selected for installation. If you're unfamiliar with what individual packages
do, it's best to leave the defaults until you're more familiar with the packages. You can always install
or remove packages after installing the OS proper, as described in Chapter 8, "Software
Administration." When you have completed your selections, hit the Next button.

Although the term "package" implies a self−contained unit, some packages rely on others for
support, and in some cases, your selections will not include a software package that is required to
support one that you have selected. This situation is called an unresolved dependency. The
Unresolved Dependencies screen will list these. You must then either click the Install Packages To
Satisfy Dependencies button to allow the installation program to include everything it needs, or go
back and attempt to fix these dependencies yourself. When you are finished, click Next.

Now that you've finished most of the larger interactive tasks of the installation, sit back and watch as
the packages are installed. Or do as most of us do, and go get a Coke or something. The speed of
your computer and the number of packages you've targeted for installation will, of course, determine
how long a break you'll get.

49



Boot Disk Creation

You'll next see the Boot Disk Creation screen. Insert a floppy disk into the drive and click the Next
button. You are given the option of skipping this step by checking the Skip Boot Disk Creation box,
but it is generally a bad idea to skip this step, since a boot disk can save you if your computer
refuses to boot. Problems with the root filesystem cannot be solved this way, because the boot disk
does not contain a root filesystem but instead uses the one on the computer. Troubleshooting is
covered in Chapter 18.

Another use for the boot disk is to boot the system if the MBR is overwritten. Some versions of
Microsoft Windows will overwrite the MBR if it is installed after Linux. This makes it impossible to
boot into Linux using the normal methods. Booting from a boot disk, however, allows you to reinstall
LILO or GRUB.

When the boot disk is finished, your installation is complete. Pop out the boot disk, select Exit, and
watch the reboot. A great deal of information will scroll by. If you need to see it again, use the
dmesg command once the system has booted and you've logged in to page it to the screen. You
may also use an editor to view /var/log/dmesg.

Installing a Workstation

Since the ratio of workstations to servers is typically quite high, chances are you'll be installing a lot
more workstations than servers. This section describes the differences between the installation of a
server, as presented in the previous section, and the workstation installation. The initial steps are
the same as with a server−class installation.

Selecting Package Groups

Of course, when you get to the Selecting Package Groups screen, the server options that we saw
before are not there. Instead you get to choose between a GNOME workstation, a KDE workstation,
a Software Development workstation, or a Games and Entertainment workstation. GNOME (GNU
Network Object Model Environment) and KDE (K Desktop Environment) are desktop environments
that enhance your X experience by providing an easy−to−use GUI "desktop," similar to those used
by Windows, MacOS, or other OSs. Chapter 13 covers X, including desktop environments and
X−based programs.

Despite the differences in precisely what package groups are available, workstation and server
installation are similar in that you can select package groups if you click the Select Individual
Packages option on the Selecting Package Groups screen. In principle, you could build nearly
identical systems starting from the server and workstation installation options by modifying the
individual package selections. In practice, of course, it's much faster to start with an appropriate
server or workstation installation option.

Configuring Your Video Card and Monitor for X

Next you'll encounter the X Configuration screen, shown in Figure 2.7. Configuring the X Window
System (Chapter 13) essentially means telling the installation program what video card and monitor
you'll use with that GUI. You will be asked to select your monitor from a list. Unless you're using an
unsupported video card, the Xconfigurator program will have detected it, and the information about
it will be displayed. The monitor information will be displayed also. Now you must choose what you
want to accomplish in the area of X configuration. You can customize X configuration, set up the
system to use a graphical login screen instead of the usual command−line one, or skip X

50



configuration entirely. For this example, select Test This Config. If you see a box asking whether or
not you can read it, click the OK button.

Figure 2.7: The X Configuration screen
Tying Up Loose Ends

Next you will be greeted with the message that your Red Hat installation is complete. Remove any
floppy or CD−ROM still in its drive and reboot the system. Remember that if you skipped the boot
loader installation, you must put your boot disk into the floppy drive. After your computer finishes
powering up, assuming you went with the GRUB boot loader, you'll see the graphical boot loader
menu. Select a boot label corresponding to the operating system that you wish to work in. The
default boot label for your Red Hat 7.3 system will be Red Hat Linux (2.4.28−3). If you specified any
other boot labels during the installation, you may boot them by scrolling to the one you want and
then pressing Enter. If you press the Enter key alone, the default boot entry will be booted. If you do
nothing, the boot loader will pause for the specified timeout period (30 seconds by default) and then
will boot the default boot entry. When your system is booted, you'll be greeted with a login prompt.
Enjoy.

In Sum

In this chapter we saw how to implement disk caching, RAID, and clustering using Linux. We took a
look at the most popular Linux distributions and the hallmark features of each. We discussed
hardware configuration and, if you were following along, you have now installed a Linux server and
a Linux workstation. In the next chapter we get into the internals of the Linux operating system,
familiarizing you with the startup and shutdown processes.

51



Chapter 3: Startup and Shutdown

Overview

The process of starting up Linux is multifaceted. So much happens during a system boot that it is
easy to lose touch with what procedures actually take place. Much of the wizardry of system
administration is simply familiarity with a process such as booting. Knowing this process well makes
it fairly easy to configure the system, to fix it when it breaks, and to explain it to your users. To
understand the Linux startup, we'll walk through it from start to finish in this chapter. Linux startup
and shutdown are further complicated by the fact that there are two different standards for how they
are done: the BSD−style startup method and the System V–style method. Understanding the
differences between the two is important since some Linux distributions—Debian and Slackware for
example—use BSD−style system initialization scripts, while other distributions, such as Red Hat
and Caldera, use System V–style startup scripts.

In this chapter we talk about the boot loaders (GRUB, LOADLIN, and LILO)—what they are and
how they work. We look at different boot methods, including booting into single−user mode and
booting from a floppy. We examine the Linux startup scripts in some detail, and the related user
startup files that run when a user logs in to the system. Finally we discuss the log files that help you
to troubleshoot when a system won't start up normally.

The system performs a similar sequence of tasks after you command it to shut down. There are
many active processes that must be shut down and devices and filesystems that must be
unmounted to avoid causing damage to your system. This process also occurs in stages. We'll also
walk through this process to gain a full understanding of how shutdown works and what it does. The
shutdown scripts and log files are discussed in order to make the whole process clear.

The Linux Boot Process

When you start up a Linux system, a series of events occurs after you power up and before you
receive a login prompt. This sequence is referred to as the boot process. Although this sequence
can vary based on configuration, the basic steps of the boot process can be summed up as follows:

The Basic Input/Output System (BIOS) starts and checks for hardware devices. Stored in
the computer's ROM (Read−Only Memory), the BIOS is described as firmware because it is
built into the hardware memory. The BIOS will automatically run when the power is applied
to the computer. The purpose of the BIOS is to find the hardware devices that will be needed
by the boot process, to load and initiate the boot program stored in the Master Boot Record
(MBR), and then to pass off control to that boot program. In the case of Linux, the BIOS
performs its checks and then looks to the MBR, which contains the first−stage boot loader,
such as GRUB or LILO. After finding the boot loader, the BIOS initiates it.

Note Sometimes, however, the MBR contains another boot loader, which in turn finds the
boot loader on the first sector of a Linux partition.

1. 

The BIOS hands over control to the first−stage boot loader, which then reads in the partition
table and looks for the second−stage boot loader on the partition configured as bootable.

2. 

The first−stage boot loader runs the second−stage boot loader, which then finds the kernel
image and runs it.

3. 

The kernel image contains a small, uncompressed program that decompresses the
compressed portion of the kernel and runs it. The kernel scans for system information,

4. 

52



including the CPU type and speed. Its drivers scan for other hardware and configure what
they find. The kernel then mounts the root filesystem in read−only mode to prevent
corruption during the boot process.
The kernel starts the init process by running /sbin/init.5. 
As outlined in the later section "Initialization and Startup Scripts," the init process starts up
getty programs for the virtual consoles and serial terminals and initiates other processes as
configured and monitors them until shutdown.

6. 

This general boot process can be affected by various factors even within the same distribution. For
instance, the steps above assume the system has only one bootable kernel image. That's probably
the case when you first install, but you might also have a bootable sector installed with another
operating system, like Windows, or a different distribution of Linux. Later, if you install a different
version of the kernel and compile it, you'll have to configure your boot loader to see it. As you'll see
later in the chapter, there are a number of parameters that you can specify at the boot prompt, but
first let's take a closer look at the Master Boot Record.

The Master Boot Record

The Master Boot Record (MBR) plays a crucial role in the bootup process. Located on the first disk
drive, in the first sector of the first cylinder of track 0 and head 0 (this whole track is generally
reserved for boot programs), it is a special area on your hard drive that is automatically loaded by
your computer's BIOS. Since the BIOS is loaded on an electronically erasable programmable
read−only memory (EEPROM) chip, which is generally not reprogrammed at the user/administrator
level, the MBR is the earliest point at which a configured boot loader can take control of the boot
process. Figure 3.1 shows a hard drive with its MBR and five Linux partitions.

53



Figure 3.1: A hard drive's partition layout
Three of these (/dev/hda1 through /dev/hda3) are primary partitions that are pointed to directly, and
two (/dev/hda5 and /dev/hda6) are logical partitions that reside within an extended partition
(/dev/hda4). This baroque arrangement is the result of early limitations on the number of partitions
in the PC's partition table and is further discussed in Chapter 6, "Filesystems and Disk
Management." Linux uses the Third Extended Filesystem (ext3fs), which is also detailed in Chapter
6. Basically, the filesystem is the structure imposed on each partition for the purpose of organizing

54



files. It is the underlying frame to which the data is added.

Boot Loaders

There are several boot loaders to choose from. Alternatives include System Commander, NTLDR,
Linux Loader (LILO), and the Grand Unified Bootloader (GRUB). System Commander is a boot
management utility that allows you to choose from up to 100 operating systems at boot time.
Information is available at http://www.v−com.com/. NTLDR is the boot manager for Windows NT.
More information about NTLDR is available at http://www.microsoft.com/. Most likely, the default
boot loader for your distribution will be either LILO or GRUB, but any of these boot loaders can be
installed after the initial operating system installation. Whichever you choose, this boot loader is the
first non−BIOS step in the boot process.

GRUB: Definition and Configuration

As of Red Hat 7.2, Red Hat began to use GRUB as the default boot loader. The main advantage of
GRUB over LILO is that GRUB is far more flexible. GRUB does not require you to run an install
program each time you make changes. If you make changes to LILO, say updating a kernel image
that is included in the LILO configuration, and forget to run the LILO installer program, you might
have to boot a rescue disk to get back into your system. With GRUB, you do not encounter this
problem. Additionally, you can view some information from your system using the GRUB boot
prompt, which is not possible with other boot loaders.

GRUB comes with several different pre−configured files to be used to boot its supported operating
systems: BSD FFS, DOS FAT16 and FAT32, Minix fs, Linux ext2fs and ext3fs, ReiserFS, and VSTa
fs. GRUB is much larger than other boot loaders, but the size is justified by the flexibility that the
extra features offer. GRUB's ability to access data on any device that is recognized by the BIOS is
one feature that we wouldn't want to do without. For example, you may view the /etc/fstab file before
the system is completely booted, by using the cat command at the GRUB prompt like this:

grub> cat /etc/fstab

Another nice feature is the ability to decompress files that were compressed using gzip; the
decompression is transparent to the user. GRUB also cares less about disk geometries than other
boot loaders. In fact, you can relocate the kernel image and GRUB will still find it. Other boot
loaders have to know the block location of the image.

The GRUB configuration files are intended to be human−readable. The grub.conf file is a little
strange to those used to LILO, but it takes very little time to get used to. See Listing 3.1. Each
section that defines a bootable kernel or non−Linux partition is known as a stanza.

Listing 3.1: A Sample grub.conf File

# grub.conf generated by anaconda
#
# Note that you do not have to rerun grub after making changes to this file
# NOTICE:  You do not have a /boot partition.  This means that
#          all kernel and initrd paths are relative to /, eg.
#          root (hd0,0)
#          kernel /boot/vmlinuz−version ro root=/dev/hda1
#          initrd /boot/initrd−version.img
#boot=/dev/hda
default=0

55



timeout=10
splashimage=(hd0,0)/boot/grub/splash.xpm.gz
password −−md5 $1$ÅÀnFvá6Q$6T7hhyN2k74Fizf29eOH70
title Red Hat Linux (2.4.7−10enterprise)
    root (hd0,0)
    kernel /boot/vmlinuz−2.4.7−10enterprise ro root=/dev/hda1
    initrd /boot/initrd−2.4.7−10enterprise.img
title Red Hat Linux−up (2.4.7−10)
    root (hd0,0)
    kernel /boot/vmlinuz−2.4.7−10 ro root=/dev/hda1
    initrd /boot/initrd−2.4.7−10.img
title Red Hat Linux−up (2.4.7−10)
    root (hd1,0)
    kernel /boot/vmlinuz−2.4.7−10 ro root=/dev/hda1
    initrd /boot/initrd−2.4.7−10.img

As you can see from Listing 3.1, GRUB's configuration file is very simple. First, GRUB counts hard
drives and floppy drives from 0 instead of 1, so the first hard drive is hd0. The default=0 line
specifies that the default boot image wil l be the first hard entry l isted, "Red Hat Linux
(2.4.7−10enterprise)" in the example file.

The timeout line indicates that GRUB will wait 10 seconds for input from the user before continuing
to boot.

The splashimage, as you may have guessed, is the image displayed on the GRUB boot menu.

Since GRUB is so powerful, allowing significant changes to occur via its command line, the
password option is used to prevent any interaction with GRUB until a password is supplied with a −p
option. Without the −−md5 parameter, the password would be displayed in cleartext instead of in its
MD5 encrypted form. The next few stanzas deal with specific kernel images. The first boots the
enterprise kernel and initrd image using the first partition on the first hard drive as the root partition.
The second stanza boots the vmlinux−2.4.7−10 image and initrd image, using the same root
partition. The last stanza boots the same kernel image as stanza two, but finds its root partition on
the first partition of the second hard drive instead of the first.

initrd Images

Linux includes support for RAM disks, which are disk filesystems loaded from a floppy or hard disk
but stored in RAM during use. RAM disks can be useful during system installation or maintenance,
because they obviate the need for physical disk access. An initial RAM disk (initrd) image is a
kernel−specific image that allows some setup functions to occur before the root filesystem is
mounted. An initial RAM disk causes the system startup to occur in two stages: the kernel comes up
first with a minimal set of drivers, and then the RAM disk image loads additional modules as
needed. This two−stage process allows the boot process to take advantage of devices that require
modules that would not normally be available until the boot process is completed. This is especially
important if you wish to load a Linux system that is on a RAID array, since support for any RAID
other than RAID−0 is modular and not found in the default kernel. Until recently, initrd was used
during an installation from a PCMCIA or SCSI hard drive or CD−ROM. Now, however, the Red Hat
installation program allows you to find your SCSI− or PCMCIA−driven hard drives and CD−ROMs. If
you need to create an initrd image, use /sbin/mkinitrd. This command has the following format:

mkinitrd image−name kernel−version

56



So for the 2.4.7−10kernel (the kernel−version number must match the /lib/modules/ directory name),
the command would look like this:

# /sbin/mkinitrd initrd.2.4.7−10.img 2.4.7−10

LILO: Definition and Configuration

Prior to Red Hat 7.2, Red Hat and the other popular Linux distributions launched LILO by default to
complete the Linux boot process. In most situations, LILO was copied to the MBR. In other
situations, LILO was installed in the first sector of the Linux boot partition. In this scenario, LILO is
known as the secondary boot loader and must be initiated by another boot loader. For our
purposes, we'll assume that LILO is loaded in the MBR.

As seen in Figure 3.1, the MBR contains program code (LILO), a 64−byte partition table identifying
four primary partitions, and a 2−byte magic number used to determine whether or not the sector is
really a boot sector. Since a sector is 512 bytes long and since LILO must share this space, LILO is
limited in size to 446 bytes. In order to accommodate this restriction, the boot loader has been split
into two phases. The first phase uses LILO in the MBR to locate the second−stage boot loader,
which is almost always located in /boot/boot.b on the drive that contains the root Linux filesystem or
the /boot partition if it is separate from the root partition. This second−stage boot loader then gets
copied into RAM over the first−stage boot loader to continue the boot process.

LILO is very versatile and allows you to boot multiple kernel images as well as the boot sector of
any other bootable partition on the system. This bootable partition might point to a Windows 95 or
98 partition, a Windows NT partition, or any of a number of other operating systems, allowing you to
boot any one of them. You must make LILO aware of the images and any other operating systems
that it is expected to boot. To do that, you'll add information about each kernel image or operating
system into the /etc/lilo.conf file, including a label by which to refer to each image. Then you'll run
the lilo program as described later in this section. LILO loads the selected kernel image and the
corresponding initrd image—if there is one—into memory and relinquishes control to that kernel.

LILO is configured using the /etc/lilo.conf file. The basics of LILO are very simple, but its power lies
in the many options that can be passed if needed. The lilo.conf file in Listing 3.2 demonstrates
options suitable for a computer that boots two different Linux distributions (installed on /dev/hdb1
and /dev/hdc1), both of which use the same kernel. The computer has an Adaptec 152x SCSI
adapter and a SoundBlaster sound card, both of which require certain kernel options (set via the
append line) to work correctly. The following sections describe the lilo.conf file's details.

Listing 3.2: A Sample lilo.conf File

#Global Section
boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
message=/boot/message
linear
default=linux
password=password
append="aha152x=0x140,12,7,0,0 sb=240,5,1,5,300"

#Per−Image Section
image=/boot/vmlinuz−2.4.7−10−1

57



    label=linux
    read−only
    root=/dev/hdb1

image=/boot/vmlinuz−2. 4.7−10−1
    label=debian
    read−only
    root=/dev/hdc1
    initrd=/boot/initrd−2.4.7−10−1.img

image=/boot/vmlinuz−2.4.7−10
        label=orig
        read−only
        root=/dev/hdb1

other=/dev/hda1
    label=msdos

The Global Section

The first section of the /etc/lilo.conf file applies globally to any kernels that are to be booted from
LILO. The first line in the global section shows that LILO is to be installed in the MBR on the first
disk, /dev/hda. If LILO were to be the secondary boot loader, this reference would be to the Linux
boot partition, writing LILO there.

The system map in use is /boot/map. This file is a symbolic link to the system map for a kernel that
you have created. It is basically made up of debugging information for that kernel. Even Linux
system administrators don't usually use this file unless they are doing kernel development work.

The next line identifies the boot loader code proper. Typically this is /boot/boot.b. This file contains
both the code that will reside in LILO's space in the boot sector and the extra code LILO relies upon
to complete the boot process.

LILO's default behavior is to wait 4 seconds for you to press the Shift key and boot the default
kernel if you do not. The prompt instruction tells LILO to instead prompt the user for which image to
boot. This is what causes the lilo: prompt that you have probably seen.

The timeout parameter in the next line sets the time (in tenths of a second) to wait for keyboard
input. After this period, the default kernel is automatically booted. If you enter the timeout parameter
without a numeric value, the timeout period is infinite. If you are in text mode, pressing Tab during
the timeout period displays a listing of available kernel images. Many distributions use a graphical
boot screen now that allows you to scroll through the list of available images. In order to pass
parameters to the kernel on the LILO prompt, you need to hit Ctrl+X.

The next line identifies a file containing a message to display before the boot prompt. The message
file is limited to 65,535 bytes. Changing or removing the message file requires you to rebuild the
map file.

If the linear parameter is included, it forces the generation of linear sector addresses instead of the
sector/head/cylinder addresses that are used by default. This is necessary if you've configured your
BIOS to use any drives in Linear Block Addressing (LBA) mode.

The default parameter sets the default kernel image to be booted if no other image label has been
given. If no default parameter exists, LILO treats the first kernel specified as the default.

58



Adding a password=password line in the global options section of your lilo.conf (of course replacing
password with your password) allows you to protect your system from unauthorized rebooting.
Alternatively, you may add a password parameter in each individual stanza to protect certain boot
setups differently. For example, you might choose to password−protect the Debian setup but not the
Red Hat setup. Typically, the password option is global.

The append line is particularly important. Any parameters that the kernel needs in order to boot
correctly can be appended. Typically this line is used to specify parameters for hardware that isn't
automatically detected, as in this example. The append line in Listing 3.2 includes the information
for an Adaptec 1520B SCSI interface card and a SoundBlaster sound card. Notice that there is no
comma between the two append strings, since each one includes commas. Likewise, there are no
spaces in each individual append string since the list of strings is space−delimited. The format for
these items varies depending upon the item type. Information about hard drives is commonly
appended and is specified as follows:

append="hd=cccc,hhhh,ssss"
linear

where cccc indicates the number of cylinders that the drive has, hhhh indicates the number of
heads, and ssss indicates the number of sectors. You may also use an append line to let LILO know
about undetected memory or to test how the system would run with less memory, by indicating less
memory than you actually have. The amount of memory can be specified in kilobytes (with a suffix
of k) or in megabytes (using a suffix of M). To specify an amount of memory, use the following
append line:

append="mem=128M"

The Per−Image Section

The stanzas that follow the global section in Listing 3.2 define two specific Linux kernel images and
a bootable Windows partition. For each one, the image= line specifies the image or partition
location. The label= line identifies the name that will be used at the LILO prompt. If read−only is
included in the stanza, the root filesystem will be mounted as read−only originally (when it is subject
to a filesystem check); it is remounted read−write later in the boot process. The root= line tells
where the root directory for the specified kernel is located. Finally, if there is need for an initrd
image, its location is specified on a line that begins initrd=.

Now let's look at the specific stanzas to understand the differences. The first stanza, with the label
linux, boots a kernel image located at /boot/vmlinuz−2.4.7−10−1, initially as read−only. The root
partition to use is located at /dev/hdb1, the boot sector of the first partition of disk 2.

Now, looking at the second stanza, labeled debian, we see that it uses the same kernel image, also
booted as read−only, but it uses a different root directory and includes an initrd image, as was
described in the GRUB section above. The difference in the root partition is because this stanza
boots a different Linux installation—specifically, a Debian Linux setup instead of the Red Hat
distribution booted with the linux stanza. The root files for the Debian distribution are located on the
first partition of the third IDE disk, /dev/hdc1. Since we are using the same kernel in both places, we
use an initrd image to change the modular information as appropriate for the Debian distribution.

The fourth stanza points to a Windows 98 installation. This stanza is simpler than the previous
three. It doesn't need to contain anything beyond an other= line, to specify the path to that operating
system's boot sector, and a label line, which specifies the name to be input at the LILO prompt to
start up that operating system. The information needed to boot Windows is contained in the boot

59



sector of /dev/hda1 because it is a secondary boot loader, run by the primary Linux Loader.

Running the LILO Program

After lilo.conf is configured as you want it, you must use the lilo program to install it to the Master
Boot Record. This is typically done with the following command:

# /sbin/lilo

There are many options you can use on the command line here for unique situations, but they aren't
frequently needed. The one option that gets a lot of use is –r, which is used when you are in rescue
mode or some other situation where the drive containing the lilo.conf file is mounted and not part of
the active system. The –r option tells the system to chroot to the specified directory and run the
command from there. For instance, let's say that you are booted into rescue mode and have
mounted /dev/hda1 as /mnt/tmp. You have repaired the incorrect lilo.conf, which is actually located
at /mnt/tmp/etc/lilo.conf at present. If you try to run /sbin/lilo, the system will look for /etc/lilo.conf
instead. You use the following command to tell it to pretend that /mnt/tmp is the / directory, thereby
forcing LILO to read /mnt/tmp/etc/lilo.conf as if it were /etc/lilo.conf. The command looks like this:

# /sbin/lilo –r /mnt/tmp

There are so many options available with LILO that it is impractical to list them all in a general book
like this one. The BootPrompt−HOWTO provides an exhaustive list and is available online at
http://www.linuxrx.com/HOWTO/sunsite−sources/BootPrompt−HOWTO.html.

Now let's look at different ways to boot your system.

Creating a Boot Floppy

What do you do to recover from disk or system failure like a lost boot sector or a disk head crash,
when the kernel you've created won't boot the system and you've forgotten to create a stanza for
your working kernel, or when you use LILO and you've copied a new kernel over an old one and
forgotten to rerun lilo? One method is to boot from a floppy. A boot floppy is a basic requirement for
every computer, whether workstation or server. This section shows how to create one.

There are two types of floppy boot disks. One uses a boot loader, while the other boots directly from
the kernel on the disk without the benefit of a loader such as GRUB or LILO. If you need to pass
parameters to the kernel during the boot, use a floppy with a boot loader.

Creating a LILO Boot Floppy

Let's assume that you want to boot from a floppy disk using LILO. You can change the boot line of
the /etc/lilo.conf file to tell it to write the LILO image to /dev/fd0 or whatever designation represents
your floppy drive. Running /sbin/lilo after that change will create a LILO boot floppy that contains the
information normally written to the MBR.

Most distributions give you an easier method, an executable called mkbootdisk, usually located in
/sbin. Any boot disk you create using /sbin/mkbootdisk will contain a kernel image, an initrd.img file,
a /boot directory containing the second−stage boot loader and a system map, a /dev directory
containing the floppy device and the root filesystem device, and an /etc directory containing lilo.conf.
When you boot from this disk, you will get a LILO prompt and a chance to enter any extra

60



information that LILO might need. The command looks like this:

# /sbin/mkbootdisk 2.2.16−22

Creating a Boot Floppy without a Boot Loader

Alternately, you can copy the kernel to a floppy using the dd command, which produces a boot disk
that is independent of a boot loader. If your kernel is vmlinuz−2.4.7−10, do the following:

# dd if=/boot/vmlinuz−2.4.7−10 of=/dev/fd0

Then tell the kernel on the floppy what your root partition is, using the rdev command. The rdev
command can be used to set the image root device, as in our next example, or less commonly, the
swap device, RAM disk size, or video mode. If no setting information is included, the current values
are displayed. The command to set the root partition to the first partition on the second IDE disk is
as follows (this example assumes that your root partition is located in the first partition of the second
drive):

# rdev /dev/fd0 /dev/hdb1

With or without a boot loader, the floppy boots much the same way as the system did before. The
difference is that the boot program uses the boot sector on the floppy instead of the MBR on the first
disk drive. Also, if you are using the floppy without a boot loader, and if your BIOS is set to try
booting from the floppy disk, your system will boot the kernel contained in the disk without offering a
boot prompt.

Using LOADLIN

LOADLIN (Load Linux) is a DOS executable that can initiate a Linux system boot. This program
comes with most Linux distributions. Red Hat places it in the dosutils directory of the first installation
CD−ROM. Copy the LOADLIN.EXE file to a DOS partition or DOS boot floppy. (You might want to
create a C:\LOADLIN directory.) You'll also need to copy a Linux kernel image file, probably located
in /boot on your Linux system, to the DOS partition or floppy. From this point, you can boot Linux
(which we will assume is located on the first partition on the second IDE drive) as follows:

C> LOADLIN C:\vmlinuz root=/dev/hdb1 ro

To boot using a RAM disk image, use this form of the command:

C> LOADLIN C:\vmlinuz root=/dev/ram rw initrd=C:\rootdsk.gz

To boot from a root floppy in drive A, use this command:

C> LOADLIN C:\image root=/dev/fd0 rw ramdisk=1440

LOADLIN is sometimes used if your Linux system won't boot because of a LILO configuration
problem and you need to get back into the system to fix the LILO boot information; it's also useful if
you are forced to restore from a backup and don't have a running system from which to start the
restore. This can also be done with a Linux boot floppy as we've already described, so it really
comes down to personal preference.

61



TipLOADLIN can be particularly handy if you have a piece of hardware that requires initialization in
DOS before it can be used in Linux. For example, some sound cards must be initialized into a
special SoundBlaster compatibility mode before they can be used in Linux, and the programs to
do this only run under DOS. You can create a DOS partition that runs the sound card
initialization program from CONFIG.SYS or AUTOEXEC.BAT and then launches LOADLIN. The
result is a Linux boot with the hardware in a condition that Linux can accept.

WarningAlthough LOADLIN works from the DOS prompt in Windows and from the DOS
compatibility mode of Windows 95 and 98, that mode has been effectively removed from
Windows Me/NT/2000/XP. Therefore, LOADLIN does not work from a full Windows
Me/NT/2000/XP boot without special handling, although it does work from a Windows Me
e m e r g e n c y  f l o p p y  o r  W i n d o w s  9 5 / 9 8  b o o t  f l o p p y .  S e e  t h e  H O W T O  a t
http://www.tldp.org/HOWTO/mini/Loadlin+Win95−98−ME.html for further instructions.

Single−User Mode

Single−user mode is a maintenance mode in which a root shell is started and no other users may
log in. The prompt will change to a pound sign (#) to indicate that this is a root shell. This mode may
be initiated using the command init 1 or by adding the word single or the number 1 after the image
label at the LILO prompt. If you are on the system doing work and decide you need to go into
single−user mode, type init 1. If you use LILO and have rebooted because of a kernel panic or the
like, simply add a 1 after your image label when the LILO prompt comes up, as in:

LILO:  linux single

or

LILO:  linux 1

If you are using GRUB and need to enter single−user mode, you must go to the graphical GRUB
screen, and select the Red Hat boot label. Then press E to edit it. Arrow down to the kernel line,
and press E to edit it. At the prompt, enter the word: single. When you are taken back to the GRUB
screen that contains the kernel information, press B to boot the system into single−user mode.

When your system is booted into single−user mode, the initialization tasks relating to the multiuser
environment are skipped, and if the init program is used to switch to single−user mode, all daemon
processes are stopped. The init process next starts a Bourne shell as the root user on /dev/console.
The root filesystem is mounted, and other filesystems are available to be checked or mounted. No
daemons are run automatically, and some resources may not be available because their home
filesystem is not mounted.

If, for instance, /usr is on a separate partition (that is, if it's a separate filesystem), any commands in
/usr/bin, /usr/sbin, or /usr/X11R6/bin won't be available unless you mount the /usr partition manually.
Typing exit at the prompt will log you out of the single−user shell, while Ctrl+D will boot the system
into its normal multiuser mode.

You might also reach a system−initiated single−user mode if there is a problem in the boot process.
In this case, you are dropped to a root shell, where you have root access and can make the
changes necessary to make the system bootable. This most often occurs when the fsck process run
during the boot fails and the system needs you to check and repair the filesystem manually.

62



One use for single−user mode is to change the root password when it is unknown, for example
when an employee leaves the company without providing the password. There is no way to retrieve
the old password, but single−user mode gives you root access so you can use the passwd
command to enter a new root password. When you reboot into multiuser mode, the new password
will allow you root access as before.

This illustrates the security threat posed by allowing unrestricted access to the system console and
the danger of single−user mode. Obviously, you don't want just anyone to be able to boot your
system and change the root password. To secure single−user mode, you can make your boot
loader require a password as already described in both the specific GRUB and LILO sections.

For the best security, you should password−protect the BIOS and set it to not boot from a floppy.
These two actions configure the computer to be unbootable from a floppy disk unless the user has
the BIOS password. If you don't take these steps, an intruder with physical access to the computer
could simply insert a Linux boot floppy and modify the system on disk. Given more time, though, an
intruder with physical access could remove the hard disk or use recovery jumpers on the
motherboard to bypass these precautions. Short of encrypting all data on your disk, there's nothing
you can do to prevent tampering if an intruder can open the computer's case.

Initialization and Startup Scripts

Earlier in the chapter, we identified initialization as the final stage of the startup process. The
initialization process varies a bit between distributions. These differences range from the locations
and names of the scripts to what is actually run by default. We'll start by looking at the process,
discussing differences as we come across them. The initialization process begins when the kernel
starts the init program. This program parses the /etc/inittab file to determine the specifics of what
programs to run and what run level to leave the system in when it is finished. We'll look at an
example from Red Hat (which uses the System V–style script) and another from Debian (which
uses the BSD model). Slackware and SuSE's methods are very similar to that seen in the Debian
model. Slackware comes with an empty rc.local by default.

The Red Hat Model

All distributions customize their initialization scripts somewhat, but most inittab files are very similar.
Listing 3.3 shows an example inittab file from a Red Hat 7.3 system.

Listing 3.3: A Sample inittab File

#
# inittab       This file describes how the INIT process should set up
#               the system in a certain run−level.
#
# Author:       Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
#               Modified for RHS Linux by Marc Ewing and Donnie Barnes
#

# Default runlevel. The runlevels used by RHS are:
#   0 − halt (Do NOT set initdefault to this)
#   1 − Single user mode
#   2 − Multiuser, without NFS (The same as 3, if you do not have networking)
#   3 − Full multiuser mode
#   4 − unused
#   5 − X11

63



#   6 − reboot (Do NOT set initdefault to this)
#
id:3:initdefault:

# System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

# Things to run in every runlevel.
ud::once:/sbin/update

# Trap CTRL−ALT−DELETE
ca::ctrlaltdel:/sbin/shutdown −t3 −r now

# When our UPS tells us power has failed, assume we have a few minutes
# of power left.  Schedule a shutdown for 2 minutes from now.
# The following lines were added on 9/17/01 for a CyberPower 700 AVR UPS

#UPS signals a power outage.
pf:12345:powerfail:/sbin/powstatd.fail

# UPS signals power restored before the shutdown kicks in.
pr:12345:powerokwait:/sbin/powstatd.ok

# UPS signals low battery power: emergency shutdown.
pn:12345:powerfailnow:/sbin/powstatd.low

# Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

# Run xdm in runlevel 5
# xdm is now a separate service
x:5:respawn:/etc/X11/prefdm −nodaemon
pptp:35:respawn:/usr/sbin/pptpd −f # pptpd−0.9.9−1

The file begins with a block of comments, including a summary of the run levels used in Red Hat;
let's take a moment to look at the six run levels and their uses:

0 Used to halt the system. To do this, the system performs an INIT 0 command and the
system is halted. as the comment says, you should not set initdefault to this.

1 Puts the system into single−user mode.
2 Puts the system into a multiuser mode but does not support networking.
3 Puts the system into the standard full multiuser mode but does not automatically start

X.
4 Unused
5 X11; puts the system into standard multiuser mode with a graphical (X−based) login.

64



6 Signals the system to reboot itself. Again, do not set INITDEFAULT to this.
Note The meaning of run levels between 2 and 5 is somewhat arbitrary. Although most

distributions use the conventions outlined here, not all do. For example, SuSE uses
run level 2 as a full multiuser mode with networking, and starts X with run level 3
rather than 5.

In the first uncommented line, the init program is told what run level to use after a reboot. The line
looks like this:

id:3:initdefault:

The first part of this line, id, simply represents the word initdefault. The number 3 indicates that the
system should start in run level 3 by default. For a system that uses the X Window System graphical
environment (discussed in Chapter 13), you would instead use this command:

id:5:initdefault:

Keep in mind that specifying an initial run level of 5 will cause an inability to log in if X has a problem
that prevents it from starting. Typically, you'll see one of two things happen: Either the screen will
repeatedly clear as the system tries to start X, fails, tries again, and so on; or the system will try to
start X once, fail, and drop back to run level 3.

Following the run level line, the next uncommented line in Red Hat's inittab file tells the init program
which script to start:

si::sysinit:/etc/rc.d/rc.sysinit

Here we've chosen to run the rc.sysinit script, which we'll look at in detail in a moment. Since the
second colon−delimited field, the run level field, is empty, this script will run at boot time for all run
levels. The rest of the line, /etc/rc.d/rc.sysinit, is the exact command to run.

The rc.sysinit script performs many functions. These include:

Setting the path and the hostname, and checking whether networking is activated• 
Mounting the /proc filesystem• 
Setting the kernel parameters• 
Setting the system clock• 
Loading keymaps and fonts• 
Starting swapping• 
Initializing the USB controller (if present) along with its attached devices• 
Checking the root filesystem, if required• 
Setting up PPP• 
Remounting the root filesystem as read−write• 
Loading modules as appropriate• 

After the rc.sysinit file exits, the inittab starts the /etc/rc.d/rc script with the appropriate run level as
an argument. The rc script then executes all of the scripts pointed to by the symbolic links contained
in the directory for that run level. If the run level is 3, for example, the scripts pointed to by the links
in /etc/rc.d/rc3.d are run. Listing 3.4 shows this directory for a default Red Hat 7.3 installation.

Listing 3.4: The /etc/rc.d/rc3.d File Contains Links to the Scripts for Run Level 3.

K01kdcrotate   K20rwhod      K74ypxfrd   S13portmap  S85gpm
K05atd         K25squid      K75netfs    S17keytable S90crond

65



K10webmin      K34yppasswdd  K86nfslock  S20apcupsd  S90vmware
K15httpd       K35dhcpd      K92ipchains S20random   S90xfs
K15mysqld−skip K35smb        K96pcmcia   S35identd   S91powstatd
K15postgresql  K44rawdevices S05kudzu    S55sshd     S95anacron
K20nfs         K45named      S06reconfig S56xinetd   S97rhnsd
K20rstatd      K72autofs     S08iptables S60lpd      S99linuxconf
K20rusersd     K74apmd       S10network  S78mysqld   S99local
K20rwalld      K74ypserv     S12syslog   S80sendmail S99webmin

You'll notice that each file begins with an S or a K. The system first runs the scripts whose names
start with K to kill their associated processes, if running. Next, the system runs the scripts whose
names start with S to start the associated processes. Changing a K name to start with S (such as
renaming K20nfs to S20nfs) makes Linux start the process rather than kill it when entering the run
level, and changing an S name to K causes Linux to kill the process when entering the run level.
This is how Linux controls what processes to start in a given run level. Actually the files here are
only symbolic links to the actual scripts which exist in /etc/rc.d/init.d.

Note There are too many services running on this default install of Red Hat 7.3. See Chapter 15,
"Security," for information about the security implications of having a lot of unnecessary
processes running.

After the run level 3 processes are killed or started, the /sbin/update command in the inittab file is
run. This command flushes the kernel buffers and writes their data to the hard drive. This is basic
housekeeping to improve kernel performance.

The next line sets the Ctrl+Alt+Delete key combination to indicate a reboot of the system.
Sometimes this is commented out on a system that is easily accessed to prevent allowing just
anyone from rebooting it. The –t option indicates that the init process is to wait 3 seconds before
telling its dependent processes to restart themselves. The shutdown occurs as if you had initiated
the following shutdown command:

# /sbin/shutdown –t3 –r now

The pf line of the inittab file then sets the system up to run a different kind of shutdown if an
attached uninterrupted power supply (UPS) indicates that power has failed. This shutdown is
scheduled to occur 2 minutes after this notification. The following pr line, however, indicates that the
shutdown is to be cancelled if the init process receives a notification that the power was restored
before the shutdown was initiated. The pn line indicates still another type of shutdown for use when
the UPS indicates low power.

The next six uncommented lines, with identifiers 1–6, run mingetty programs for the virtual
terminals. These programs are essential since they initialize the ttys, provide the login and retrieve
the user−input data, and then start a login process for the user. Without these lines, no users could
log into the system.

The next to the last line, with the identifier of x, is set by the 5 in the second colon−delimited field to
run the X Display Manager (XDM) process for run level 5 only. An XDM allows you to log into run
level 5 directly. Red Hat 7.3 uses prefdm as its XDM program, but the program used varies from
one distribution to another. KDE and GNOME each have their own display managers if you choose
to use them; they are KDM and GDM respectively.

Finally, the last line respawns the Point−to−Point Tunneling Server daemon (pptpd), which allows
virtual private network connections to be made to the Linux host.

66



If /etc/inittab contained any additional lines that specified no run level (meaning to run at boot time
only) or run level 3, they would be run. You can add any such lines yourself, if you have something
that you need to start only in a certain run level. Usually the Red Hat default inittab is fine as it
comes.

You don't typically customize the rc.sysinit file or the run level scripts, since the rc.local file was
included for that purpose. It is run next. This is the file where you make your local changes to the
startup process. This file runs after all of the other initialization files and can therefore be used to
override any settings made during the earlier initialization steps. By default, this file creates the login
banners /etc/issue and /etc/issue.net. These files are used to set the display that will precede the
login prompt when a user logs in locally (/etc/issue) or remotely (/etc/issue.net). By default, the
/etc/issue file contains something like this:

Red Hat Linux release 7.3 (Valhalla)

Many system administrators think this is too much information to give to someone who may be
trying to crack your system. It might be better to change the /etc/issue banner to something more
generic like "Welcome to localdomain" or to give your users any information you believe they need
before entering your system. If you change the /etc/issue file directly, it will be overwritten when the
/etc/rc.d/rc.local file is run again. You must change this in /etc/rc.d/rc.local to make the change
permanent. Since this file is one big if clause, any commands that you wish to add should be added
before the last fi.

The Debian Model

Debian's inittab file is only slightly different from Red Hat's version. Listing 3.5 shows a sample
Debian inittab.

Listing 3.5: Debian's inittab File

# /etc/inittab: init(8) configuration.
# $Id: inittab,v 1.8 1998/05/10 10:37:50 miquels Exp $

# The default runlevel.
id:2:initdefault:

# Boot−time system configuration/initialization script.
# This is run first except when booting in emergency (−b) mode.
si::sysinit:/etc/init.d/rcS

# What to do in single−user mode.
~~:S:wait:/sbin/sulogin

# /etc/init.d executes the S and K scripts upon change
# of runlevel.
#
# Runlevel 0 is halt.
# Runlevel 1 is single−user.
# Runlevels 2−5 are multi−user.
# Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5

67



l6:6:wait:/etc/init.d/rc 6
# Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin

# What to do when CTRL−ALT−DEL is pressed.
ca:12345:ctrlaltdel:/sbin/shutdown −t1 −a −r now

# Action on special keypress (ALT−UpArrow).
kb::kbrequest:/bin/echo "Keyboard Request−−edit /etc/inittab to let this work."

# What to do when the power fails/returns.
pf::powerwait:/etc/init.d/powerfail start
pn::powerfailnow:/etc/init.d/powerfail now
po::powerokwait:/etc/init.d/powerfail stop

# /sbin/getty invocations for the runlevels.
#
# The "id" field MUST be the same as the last
# characters of the device (after "tty").
#
# Format:
#  <id>:<runlevels>:<action>:<process>
1:2345:respawn:/sbin/getty 38400 tty1
2:23:respawn:/sbin/getty 38400 tty2
3:23:respawn:/sbin/getty 38400 tty3
4:23:respawn:/sbin/getty 38400 tty4
5:23:respawn:/sbin/getty 38400 tty5
6:23:respawn:/sbin/getty 38400 tty6

# Example how to put a getty on a serial line (for a terminal)
#
#T0:23:respawn:/sbin/getty −L ttyS0 9600 vt100
#T1:23:respawn:/sbin/getty −L ttyS1 9600 vt100

# Example how to put a getty on a modem line.
#
#T3:23:respawn:/sbin/mgetty −x0 −s 57600 ttyS3

Under Debian, the first uncommented line in inittab sets the default run level to level 2. You'll
remember that this level is a multiuser mode that doesn't include networking.

The next line in inittab instructs the init process to run the /etc/init.d/rcS file, which we'll look at next.
Like its Red Hat counterpart, it executes the S and K scripts for the specified run level. It sets up
Ctrl+Alt+Del slightly differently than the Red Hat model, and adds an Alt+Up−Arrow shortcut to
define a keyboard request function. The rcS script then sets up UPS power functions similar to Red
Hat's, adding a function for immediate shutdown. The getty programs are set up, although Debian
only has the first tty respawning a getty when the system is at run level 5. The last part of Debian's
inittab gives examples of how to run getty programs on a serial line and a modem line. Listing 3.6
shows the Debian rcS file.

Listing 3.6: The Debian rcS File

#! /bin/sh
#
# rcS      Call all S??* scripts in /etc/rcS.d in
#          numerical/alphabetical order.
#
# Version:  @(#)/etc/init.d/rcS  2.76  19−Apr−1999  miquels@cistron.nl
#

68



PATH=/sbin:/bin:/usr/sbin:/usr/bin
runlevel=S
prevlevel=N
umask 022
export PATH runlevel prevlevel

#
#  See if system needs to be set up. This is ONLY meant to
#  be used for the initial setup after a fresh installation!
#
if [ −x /sbin/unconfigured.sh ]
then
  /sbin/unconfigured.sh
fi

#
#    Source defaults.
#
. /etc/default/rcS
export VERBOSE

#
#  Trap CTRL−C &c only in this shell so we can interrupt
#  subprocesses.
#
trap ":" INT QUIT TSTP

#
#    Call all parts in order.
#
for i in /etc/rcS.d/S??*
do
    # Ignore dangling symlinks for now.
    [ ! −f "$i" ] && continue

    case "$i" in
        *.sh)
            # Source shell script for speed.
            (
                trap − INT QUIT TSTP
                set start
                . $i
            )
            ;;
        *)
            # No sh extension, so fork subprocess.
            $i start
            ;;
    esac
done

#
#    For compatibility, run the files in /etc/rc.boot too.
#
[ −d /etc/rc.boot ] && run−parts /etc/rc.boot

#
#    Finish setup if needed. The comment above about
#    /sbin/unconfigured.sh applies here as well!
#
if [ −x /sbin/setup.sh ]
then

69



  /sbin/setup.sh
fi

The rcS file sets up some environmental variables, including the PATH variable. It then runs a
special configuration shell script if the system is running for the first time after installation. The rcS
script then runs other scripts, which do things like enable virtual memory, mount filesystems, clean
up certain log directories, initialize Plug−and−Play devices, load kernel modules, configure PCMCIA
devices, set up serial ports, and run System V init scripts. The rcS script will call certain scripts in
/etc/rc.d before it relinquishes control. These include:

rc.local Similar to the Red Hat rc.local, it serves the same purpose.

rc.modules Loads kernel modules: network card, PPP support, and other modules.
If this script finds rc.netdevice, it will call that script as well.

rc.pcmcia Probes for any PCMCIA devices that exist on the system and configures
them. This is most useful for laptop users, who probably have a PCMCIA modem or
network card.

rc.serial Configures the serial ports by running the appropriate setserial commands.

rc.sysvinit Looks for System V init scripts for the desired run level (symbolic links in
/etc/rc.d/) and runs them. Similar to the Red Hat version, this rc.sysvinit script runs
the scripts pointed to by the symbolic links in the appropriate subdirectory. In the
case of run level 3, all links in /etc/rc3.d/ will be run.

Again, once this work is finished, the init program initiates a getty process and the XDM process,
which displays a login prompt, and then waits for a login attempt or some other process that needs
attention.

Now that we have the system initialized, let's look at what happens when a user logs in. You will
need to know this process well so that you can troubleshoot user login problems.

User Initialization Files

A different type of initialization happens when a user logs in. This is not a system−wide initialization
like the boot process. It is another sequence for user−specific initialization. But just as with the
system initialization files, the system administrator is responsible for the user initialization files. The
example that follows shows the sequence for the Bash shell, which is the Linux default shell. If you
are using a different shell, the sequence will be similar.

When a user logs in, the system user configuration files are run first. These files are scripts and are
sourced in instead of being executed. A file is sourced via the "dot" command. To source the .login
file, for example, use the following command:

. /home/someuser/.login

Note Sourcing a file executes each command as if it were typed in at the command
prompt rather than as a separate program. The sourced file's environment becomes
part of the shell in which it is run. A file does not have to be executable to be

70



sourced.
The first to be sourced is /etc/profile. This file is intended to contain system−wide environmental
variable definitions and programs to be started by all users when they log in; for example, it can
include a calendar program that lists company events and other useful information. It also sources
in any files that exist in the /etc/profile.d directory. This directory exists because it is easier for an
RPM to add a script file there than to add lines to /etc/profile.

When the /etc/profile script is finished, the system looks in the user's home directory for a
.bash_profile, a .bash_login, or a .profile in that order. The first of these that it finds is sourced in.
Usually this is the .bash_profile file. The first thing this file does is to source in .bashrc if it exists in
the user's home directory. After that it sets some environmental variables. The .bashrc file contains
user−specific aliases and functions. The .bashrc file in turn sources the /etc/bashrc file, which
contains system−wide functions and aliases, including the prompt that the users of the system will
see.

When the user logs out of the Bash shell, the .bash_logout file will be sourced. It should contain any
commands necessary to clean up after the user. This may include deleting any files in a temporary
directory owned by that user.

Modifying the Startup Procedure

As a general rule, you should not have unused services running on your computers; you should turn
off any services that are automatically initiated at boot time but are not used. Conversely, any
services that you want to have started automatically but are not turned on at boot time by default
should be configured to start in the appropriate run levels. For example, some distributions run
PCMCIA by default; but most desktop computers do not use PCMCIA, so it should be disabled.
Similarly, any of the r command services (rsh, rlogin, rexec, and so on) for remote users should be
disabled if they are not being used. And if you are sti l l  using them, you should look at
http://www.openssh.com/ for a more secure alternative. The r commands are commonly targeted by
outsiders looking for security vulnerabilities to exploit. Leaving such services running provides a port
that expects input, and this port could potentially be used to access the system. To disable the
service, thereby closing the port, modify the set of services that are automatically started at bootup;
to do this, use the ntsysv utility, which is part of the standard Red Hat 7.3 distribution. This
console−based utility configures the current run level by default but may be passed a −level option
to configure another level. Figure 3.2 illustrates the ntsysv utility. The ntsysv utility is used at system
installation but may also be run from the command line. You may select or deselect the listed
services by selecting or deselecting the box in front of the service name; in this case, PCMCIA is
disabled for the current run level.

71



Figure 3.2: Use the ntsysv utility to control which services are automatically started at bootup
Another tool for adding, deleting, or reordering services in run levels 2–5 is the tksysv utility, which
is available as part of the Red Hat distribution. This utility is X−based and is quite good. It presents
a display of each of the services that are started and stopped at the various run levels and allows
you to delete or add as needed. The principles of its use are basically the same as for ntsysv.
Figure 3.3 shows the tksysv utility.

Figure 3.3: The tksysv utility

72



The KDE environment has its own graphical manager for SysV scripts, ksysv. It is also quite nice
and features drag−and−drop capabilities. Since it is a KDE tool, it is X−based. In resolutions higher
than 640×480, you need to display it at full size since the smaller default size obscures the process
names. (The program does, however, provide help when you mouse over a process name.) Figure
3.4 illustrates the ksysv utility.

Figure 3.4: The ksysv utility
Still another option is the command−line chkconfig utility, which gets bonus points for being easy to
use and independent of X. This is especially helpful since many distributions do not include X with
server installations. If you pass chkconfig a −−list switch, it will display a list of all SysV scripts and
whether each is turned on or off at each run level. Listing 3.7 shows the output. The −−add and
−−del switches allow you to alter the processes in each run level.

Listing 3.7: Sample chkconfig Output

syslog         0:off   1:off   2:on    3:on    4:on    5:on    6:off
crond          0:off   1:off   2:on    3:on    4:on    5:on    6:off
netfs          0:off   1:off   2:off   3:off   4:off   5:off   6:off
network        0:off   1:off   2:on    3:on    4:on    5:on    6:off
random         0:off   1:off   2:on    3:on    4:on    5:on    6:off
rawdevices     0:off   1:off   2:off   3:off   4:off   5:off   6:off
xfs            0:off   1:off   2:on    3:on    4:on    5:on    6:off
xinetd         0:off   1:off   2:off   3:on    4:on    5:on    6:off
reconfig       0:off   1:off   2:off   3:on    4:on    5:on    6:off

73



anacron        0:off   1:off   2:on    3:on    4:on    5:on    6:off
httpd          0:off   1:off   2:off   3:off   4:off   5:off   6:off
apmd           0:off   1:off   2:on    3:off   4:off   5:off   6:off
atd            0:off   1:off   2:off   3:off   4:off   5:off   6:off
named          0:off   1:off   2:off   3:off   4:off   5:off   6:off
keytable       0:off   1:off   2:on    3:on    4:on    5:on    6:off
gpm            0:off   1:off   2:on    3:on    4:on    5:on    6:off
ipchains       0:off   1:off   2:on    3:off   4:on    5:on    6:off
pcmcia         0:off   1:off   2:on    3:off   4:off   5:off   6:off
kdcrotate      0:off   1:off   2:off   3:off   4:off   5:off   6:off
kudzu          0:off   1:off   2:off   3:on    4:on    5:on    6:off
linuxconf      0:off   1:off   2:on    3:on    4:on    5:on    6:off
lpd            0:off   1:off   2:on    3:on    4:on    5:on    6:off
nfs            0:off   1:off   2:off   3:off   4:off   5:off   6:off
nfslock        0:off   1:off   2:off   3:off   4:off   5:off   6:off
sshd           0:off   1:off   2:on    3:on    4:on    5:on    6:off
identd         0:off   1:off   2:off   3:on    4:on    5:on    6:off
portmap        0:off   1:off   2:off   3:on    4:on    5:on    6:off
ypxfrd         0:off   1:off   2:off   3:off   4:off   5:off   6:off
rstatd         0:off   1:off   2:off   3:off   4:off   5:off   6:off
rusersd        0:off   1:off   2:off   3:off   4:off   5:off   6:off
rwalld         0:off   1:off   2:off   3:off   4:off   5:off   6:off
rwhod          0:off   1:off   2:off   3:off   4:off   5:off   6:off
smb            0:off   1:off   2:off   3:off   4:off   5:off   6:off
sendmail       0:off   1:off   2:on    3:on    4:on    5:on    6:off
rhnsd          0:off   1:off   2:off   3:on    4:on    5:on    6:off
ypbind         0:off   1:off   2:off   3:off   4:off   5:off   6:off
yppasswdd      0:off   1:off   2:off   3:off   4:off   5:off   6:off
ypserv         0:off   1:off   2:off   3:off   4:off   5:off   6:off
autofs         0:off   1:off   2:off   3:off   4:off   5:off   6:off
dhcpd          0:off   1:off   2:off   3:off   4:off   5:off   6:off
mysqld         0:off   1:off   2:off   3:on    4:on    5:on    6:off
nscd           0:off   1:off   2:off   3:off   4:off   5:off   6:off
ntpd           0:off   1:off   2:off   3:on    4:off   5:on    6:off
squid          0:off   1:off   2:off   3:off   4:off   5:off   6:off
vmware         0:off   1:off   2:off   3:on    4:on    5:on    6:off
apcupsd        0:off   1:off   2:off   3:on    4:off   5:off   6:off
mysqld−skip    0:off   1:off   2:off   3:off   4:off   5:off   6:off
postgresql     0:off   1:off   2:off   3:off   4:off   5:off   6:off
iptables       0:off   1:off   2:on    3:on    4:on    5:on    6:off
isdn           0:off   1:off   2:on    3:on    4:on    5:on    6:off
webmin         0:off   1:off   2:on    3:on    4:off   5:on    6:off
arkeia         0:off   1:off   2:on    3:on    4:on    5:on    6:off
xinetd based services:
       amanda: off
       amidxtape:      off
       finger: off
       linuxconf−web:  off
       rexec:  off
       rlogin: off
       rsh:    off
       auth:   on
       telnet: on
       tftp:   off
       wu−ftpd:        on
       talk:   off
       ntalk:  off
       pop−3:  on
       chargen:        off
       chargen−udp:    off
       daytime:        off
       daytime−udp:    off
       echo:   off

74



       echo−udp:       off
       time:   off
       time−udp:       off
       sgi_fam:        on
       amandaidx:      off

You can also use Webmin to configure services to be run. Select the Bootup and Shutdown tab
from the System group. You'll see a list of services, an indication of whether or not each service will
be started at boot time, and a brief description of the service. Click a service name, and you'll be
able to perform the typical start, stop, and status functions. Webmin is a terrific tool, which is
distribution−independent and well worth the time it takes to learn it.

Startup Log Files

Sometimes it is helpful to see what the system did when booting up. The most common way to do
this is to view the /var/log/dmesg file, which is a record of the kernel ring buffer. This file gives
basically the same information that scrolls quickly down the screen at bootup. You may view this file
with an editor like vi or Emacs if you have root privileges or by running the /bin/dmesg binary, which
anyone on a system can execute:

# /bin/dmesg

There is also useful information in /var/log/boot.log. This file logs successful and unsuccessful starts
and stops of the /etc/rc.d/init.d scripts. If the start or stop is unsuccessful, this log may indicate why.

Another useful log file is /var/log/messages. This file contains information written by klogd, the
logger for kernel messages. The syslogd daemon, which logs system messages from processes
that do not belong to the kernel, also writes to /var/log/messages. Administrators should examine
this file on a regular basis so that problems not immediately obvious to a user do not go unnoticed.

System logs like /var/log/maillog and /var/log/messages are rotated on a regular basis by the
logrotate script. This script is configured by the /etc/logrotate.conf file. This file allows you to specify
how to rotate the files, whether to store them in a compressed format, when to remove a file from
/var/log, and whether to mail the log to someone.

Finally, since /proc is a virtual filesystem that contains information pertaining to the kernel currently
being run, it provides a lot of helpful information. Following are some of the more helpful files and
directories in /proc:

File Contents
/proc/interrupts IRQ information
/proc/cpuinfo CPU information
/proc/dma DMA information
/proc/ioports I/O information
/proc/meminfo Available, free, swap, and cached memory information
/proc/lodamg System load average
/proc/uptime Time since last reboot
/proc/version Information about kernel version
/proc/scsiI Information about SCSI devices
/proc/ide Information about IDE devices

75



/proc/net Network information
/proc/sys Kernel configuration parameters

Shutdown

Red Hat uses the BSD−style shutdown command. This command's syntax is:

shutdown [options] time [message]

When the system has been signaled to shut down, all logged−in users are notified that the system is
going down using either the standard message or the one specified as a parameter to the shutdown
command. All processes are then sent a SIGTERM signal to tell them that the computer is going
down. This gives these processes time to shut down cleanly. The shutdown command then signals
the init process to change the run level to 0 (halt) if the option −h was provided or 6 (reboot) if the −r
option was used instead.

The /etc/rc.d/rc script is run with an argument of 0 or 6 as appropriate. This changes the run level
and runs the scripts pointed to by the symbolic links in /etc/rc.d/rc0.d or /etc/rc.d/rc6.d as
determined by the argument passed to the /etc/rc.d/rc script.

If a user hits Ctrl+Alt+Del to initiate a shutdown, the shutdown command will check for an
/etc/shutdown.allow file. If this file exists, it is read in and used to determine whether the user who
initiated the shutdown has permission to shut down the system. The /etc/shutdown.allow file
contains pairs of hostnames and usernames. If the hostname of the system attempting to shutdown
is listed, and the username next to it is a user who is currently logged on, the shutdown will
proceed.

Most modern Linux distributions also provide a shutdown option on the XDM login screen. This
allows inexperienced users to shut down after logging out, in a manner reminiscent of Windows NT
or 2000.

Warning Users

The shutdown command sends the users on the system a message telling them that the system is
being shut down, whether it is a reboot or a halt, and when the shutdown will occur. You may add a
message of your own to tell why, when the system will be brought back up, or any other information
which you'd like your users to know. As the shutdown time approaches, the message will be
repeated. The frequency of the message increases as the shutdown time gets nearer.

It is best not to make the shutdown period so short that users cannot finish with their applications
and exit the system. Of course, there will be times when the shutdown must occur right away; this
can't be helped, but adding a message telling the users when they can expect access to the system
again may help soften the blow.

Shutdown Log Files

Some of the same log files used with the startup process are also used for logging shutdown. Any
problems with the kernel that occur during shutdown will be annotated in /var/log/messages. The
/var/log/boot.log will report any problems relating to the processes run by the init program from
/etc/rc.d/init.d. The distinction between these files is not clear−cut, however, and messages about
the same problem tend to show up in both. If, for instance, the eth0 device wasn't detected, you'd
see something like the following in /var/log/boot.log:

76



May 21 13:03:46 somedomain ifup: Delaying eth0 initialization.
May 21 13:03:46 somedomain network: Bringing up device eth0 failed

While this won't tell you everything you need to solve the problem, it will point you in the right
direction. The messages in /var/log/messages tend to be more helpful. The message about the
same problem from /var/log/messages looks like this:

May 21 12:03:46 somedomain modprobe: modprobe: Can't locate module eth0
May 21 12:03:46 somedomain ifup: Delaying eth0 initialization.
May 21 12:03:46 somedomain network: Bringing up device eth0 failed

These more helpful messages tell you that the problem occurs when attempting to load the
modules, usually meaning that this module or one of its dependencies can't be found.

In Sum

Starting a Linux system involves the interaction of a wide range of software, from the computer's
BIOS to the Linux startup scripts. Critical components that you can configure include the installation
of a boot loader (LILO, GRUB, and LOADLIN are common for Linux) and the specification of what
services should be run. Most Linux systems use scripts in the /etc/rc.d directory tree to control these
services, and these configurations can be edited manually or by using tools such as ntsysv or
tksysv. Shutting a system down is also a process that involves running specialized system scripts.
At all steps along the way, information is logged to assorted files, which you can consult when
troubleshooting your system.

In the next chapter we'll look at the tools that a system administrator uses on a regular basis.
Familiarity with these tools will make being a Linux system administrator much less difficult.

77



Chapter 4: Tools of the Trade

Overview

Just as mechanics must be able to use their tools skillfully to keep a vehicle in working condition, so
also must a Linux system administrator be able to use the tools of the trade to maintain a workable
Linux system. In either case, what looks to the layman to be magical is in fact the implementation of
some skill learned via experience. Success comes from knowing what has to be done, having the
resources to do it, and implementing what you know. Remember that every task is a tool you might
need later. In view of this, system administrators must learn the basic elements of the job to the
point where they are second nature. Only then can these elements be used as building blocks to
accomplish tasks that are more challenging.

In this chapter, we identify several such building blocks. We discuss information tools like man
pages, info pages, and Web−based Linux support services before looking at some command−line
tools that will be useful in building a solid foundation of Linux systems administration experience.
We give you some basic commands to store in your Linux toolbox, explain how you can make
commands work together to solve bigger tasks with piping and redirection, talk about the different
ways of locating specific files on your system, and discuss the use of quoting, the history list, and
various Bash shell commands.

Locating Help Resources

One of the most important elements in establishing yourself as a system administrator is
demonstrating that you know where to find an answer you don't know offhand. Some really sharp
system administrators will advise you never to admit that you don't know something. We
wholeheartedly disagree with this approach. Yes, some people become angry when the answer isn't
one that you can give without verifying the information, but it should never change your policy of
being honest. More often than not, people are relieved to hear an honest reply as long as you come
back with the answer in a reasonable time. When asked something that you don't readily know,
always give the same basic answer: "I haven't seen that one in a while, but I know where to get the
information you need. I'll be back with you as soon as I get it."

If you can't recall the answer, take the honest approach and forget about the knowledgeable strut.
The knowledgeable strut puts you in a position of having to be (or at least appear to be) omniscient,
and none of us are that. We also have found that people who pretend to know all the answers tend
to come off as arrogant, and some clients love to prove an arrogant system administrator wrong.
You are less of a target if you are honest about your abilities—as long as one of those abilities is the
ability to find an answer.

To find answers when you need them, look at the numerous information resources that are
available. One of the features we like most about Linux is the availability of resources. On a
Microsoft Windows machine, you can't just bring up a page of useful information on a command.
There are documents and online help features in Windows, but those tools generally don't answer
questions unless they fit into a specific mold, or they get almost to the point where they're helpful
and then stop. They don't offer enough information to piece together the answers that exist between
the lines. In Linux and other Unix−like operating systems, the information is most often there if you
know what you're looking for.

78



Man Pages

Man (short for "manual") pages are online documents that describe the format and functioning of
commands and files as well as some other tools available on your Linux system. Man pages are not
meant to be comprehensive but rather to give general information about usage. Man pages aren't
meant to take the place of the source documentation, but instead to highlight how to use the
referenced resource. Unless the system was installed without them, man pages are readily
available from the command line. Simply type man man to get the man page on how to use man
pages. The basic format of the command is:

man [options] [section] topic

There is a configuration file for the man command located at /etc/man.config. This file allows you to
configure the environment variables that the man command uses if you don't wish to specify them
on the command line. The options include the path that should be searched for man pages, the
order in which the manual sections should be searched, and whether to store the man pages in a
compressed format.

Man pages are grouped into sections or categories as outlined in Table 4.1. A given command can
have man pages in different categories if appropriate; for example, the umount command has a
page in section 2 for the programmer's system call and a page in section 8 for its use as a system
administration tool. Some packages, like Tcl, separate their pages into a different section rather
than including them in the categories listed.

Table 4.1: Online Manual Sections Specified in the man Command

Section Category
1 User commands that may be started by anyone
2 System calls (kernel functions)
3 Library functions
4 Devices
5 File format descriptions
6 Games
7 Miscellaneous
8 System administration tools that only root can execute
9 More kernel routine documentation
n New documentation that may be recategorized
o Old documentation that may go away soon
l Documentation referring to this specific system

If you don't remember the name of the command you want to know about, man has an option that
will look for a keyword in the Whatis database, a set of files containing short descriptions of system
commands. In this way, if you know that the purpose of the command you want is to add a user, you
can specify:

$ man −k user

The output, an excerpt of which is listed below, will be a list of man page topics that contain the
word user in the description, along with the section each page is in and a simple description of the
topic.

79



access (2)    Check user's permissions for a file
chage (1)     Change user password expiry information
useradd (8)   Create a new user or update default new user
              information
userdel (8)   Delete a user account and related files

You can see from this that the command you want is useradd; running man on that command
produces the display shown in Listing 4.1.

Listing 4.1: The Man Page Display for useradd

USERADD(8)                                             USERADD(8)

NAME
       useradd  −  Create  a  new user or update default new user
       information

SYNOPSIS
       useradd [−c comment] [−d home_dir]
               [−e expire_date] [−f inactive_time]
               [−g initial_group] [−G group[,...]]
               [−m [−k skeleton_dir] | −M] [−p passwd]
               [−s shell] [−u uid [ −o]] [−n] [−r] login

       useradd −D [−g default_group] [−b default_home]
               [−f default_inactive] [−e default_expire_date]
               [−s default_shell]

DESCRIPTION
   Creating New Users
       When invoked without the −D option,  the  useradd  command
       creates  a  new user account using the values specified on
       the command line and the default values from  the  system.
       The new user account will be entered into the system files
       as needed, the home directory will be created, and initial
       files  copied, depending on the command line options.  The
       version provided with Red Hat Linux will  create  a  group
       for  each  user  added  to the system, unless −n option is
       given.  The options which apply to the useradd command are

...The OPTIONS section has been omitted for space reasons...

NOTES
       The  system  administrator  is responsible for placing the
       default user files in the /etc/skel directory.
       This version of useradd was modified by Red  Hat  to  suit
       Red Hat user/group convention.

CAVEATS
       You may not add a user to an NIS group.  This must be per−
       formed on the NIS server.

FILES
       /etc/passwd − user account information
       /etc/shadow − secure user account information
       /etc/group − group information
       /etc/default/useradd − default information
       /etc/skel − directory containing default files

SEE ALSO
       chfn(1),  chsh(1),  crypt(3),  groupadd(8),   groupdel(8),
       groupmod(8), passwd(1), userdel(8), usermod(8)

80



AUTHOR
       Julianne Frances Haugh (jfh@bga.com)

                                                                1
(END)

The useradd display is typical of a man page for a command. After the command's name, you see a
synopsis of the formal syntax, a description of its use, its possible arguments (omitted here for
space reasons), any caveats or restrictions on its use, any references to related commands, and the
author's name and e−mail address. Non−command man pages include similar sets of data as
appropriate.

Man pages, by default, use the less −is command to write the information to a file that you can view.
The less command is simply a filter that pages through a file, displaying each page on your screen.
(We'll talk more about it in a few pages.) Similar programs are cat and more, which you may have
used before. You may change the man command's default viewer by adding the −P option followed
by the name of the viewer program you wish to use. Or you can configure this change in
/etc/man.conf, or by resetting the PAGER environment variable.

If the man pages aren't installed, and there is room on the system, install them. To do this, use the
rpm command as described in Chapter 8. You'll find invaluable information in these pages. Many
times, we have needed to use some rarely used capability of a Linux command and found the
format for that command in the man page. An added benefit in Linux is that the man pages are
available in a number of languages—just in case you'd like to get an explanation of the ls command
in Indonesian.

Info Pages

Although man pages have been the standard source of information about Unix commands for many
years, the GNU Project has more recently introduced the concept of info pages, and the Linux
community is moving toward replacing man pages with info pages. Man pages for many commands
are no longer being updated and instead direct you to the corresponding info page for information.

From our point of view as users, info pages are very similar to man pages. They are grouped into
the same categories as man pages. The critical difference that drives the info page movement is the
advantage of using the Texinfo format.

Texinfo is a documentation system that uses a single file to create both online display and printed
output. That is, only one file must be maintained in support of printed documentation and the info
page. This is a tremendous time−saver for the program's developer who, under the man page
system, had to create both a user's manual for printing and a man page for on−screen viewing.

A Texinfo file is a plain ASCII text file that also contains @−commands (commands preceded by an
@), which tell the typesetting and formatting programs how the text is intended to be formatted. A
Texinfo file may be edited with the editor of your choice, but the GNU Emacs editor has a special
Texinfo mode that provides special Texinfo−related features. You can read Info files using the
standalone Info program or the Info reader built into the Emacs editor. There is not a great deal of
difference in the material whichever way you do it, although the deprecation of the man command
means that the info page is more likely to contain up−to−date information. The command to list the
info page for the useradd command is:

# info useradd

81



The output looks like Listing 4.2.

Listing 4.2: The Info Page Display for useradd

File: *manpages*,  Node: useradd,  Up: (dir)

USERADD(8)                                             USERADD(8)

NAME
       useradd  −  Create  a  new user or update default new user
       information

SYNOPSIS
       useradd [−c comment] [−d home_dir]
               [−e expire_date] [−f inactive_time]
               [−g initial_group] [−G group[,...]]
               [−m [−k skeleton_dir] | −M] [−p passwd]
               [−s shell] [−u uid [ −o]] [−n] [−r] login

       useradd −D [−g default_group] [−b default_home]
               [−f default_inactive] [−e default_expire_date]
               [−s default_shell]

DESCRIPTION
−−−−−Info: (*manpages*)useradd, 184 lines −−Top−−−−−−−−−−−−−−−−−−−−−−−−
Welcome to Info version 3.12h. "C−h" for help, "m" for menu item.

As you can see, the info page presents essentially the same information as the old man page
format. The info system has an equivalent to the keyword option mentioned in the man page
section. Use this format:

# info −−apropos user

The output looks a little different, but the information is essentially the same as generated by the
man page keyword search. See Listing 4.3 below.

Listing 4.3: An Excerpt of an Info Page Using apropos (useradd)

"(info−stnd)Invoking Info" −− remembering user keystrokes
"(texinfo)kbd" −− user input
"(texinfo)Variables Commands" −− User options, marking
"(texinfo)Macros" −− User−defined Texinfo commands
"(bfd)howto manager" −− BFD_RELOC_ALPHA_USER_GPDISP
"(bfd)howto manager" −− BFD_RELOC_ALPHA_USER_GPRELHIGH
"(bfd)howto manager" −− BFD_RELOC_ALPHA_USER_GPRELLOW
"(bfd)howto manager" −− BFD_RELOC_ALPHA_USER_LITERAL
"(bfd)howto manager" −− BFD_RELOC_ALPHA_USER_LITUSE_BASE

Those of us who have used man pages for so long may find the info pages a little awkward at first,
but they're here to stay. For now, system administrators will benefit from getting to know them both.

82



Technical Support

Linux has a reputation as a do−it−yourself operating system, and for this reason many corporate
users have not taken it seriously. Mailing lists and online frequently asked questions lists have long
been available, but this informal support didn't really gain Linux acceptance in the business market.
Companies that would otherwise have used Linux shied away. Corporate customers hesitated to
buy something with such informal support. Fortunately, there are some enlightened corporate
executives who agree with us that getting technical support from a user community is actually better
than from a commercial vendor, and for a couple of reasons. First, you get the benefit of the
collected experience of your peers. Also, with commercial software you are dealing with "planned
obsolescence," and the answer for many questions turns out to be "you need to buy an upgrade to
do that."

In response to Linux's reputation as an unsupported operating system, several third−party
companies offer fee−based technical support plans for businesses and individuals. This has been
an area of substantial development in the last few years. Corporate users can now point to these
new support sources when pitching the use of Linux to their clients and to their management. Here's
a look at the most important online support sources, both commercial and from the user community.

Configuration Support

Users of early Red Hat found the support offered by the company to be disappointingly limited to
installation issues and often unresponsive. Red Hat's Web site contained a database of previously
answered questions, but problems with the search engine often rendered this database
unsearchable.

After the release of version 5.1 greatly increased their sales volume, Red Hat began revamping its
support program. They improved their installation support and reworked their online database.
Web−based support was offered as well as support through e−mail and telephone. As of Red Hat
7.3, this support is offered with the Personal Edition and the Professional Edition of Red Hat. The
Personal Edition offers 30 days of Web or e−mail installation support, while the Professional Edition
offers 60 days. Support contracts for post−installation problems and per−incident support are
available as well. Some other distributions have similar programs.

Most third−party companies that offer Linux support have searchable databases on their Web sites,
which they encourage you to use as the first level of support. Many of these same companies also
offer more formalized support in the form of 24/7 e−mail support, telephone support, and
Web−based support, each intended to have a very quick turnaround time. You may need to
exchange several e−mails with the support personnel before the matter is resolved, but this can all
take place in a matter of hours. Support Web sites often have Web−based forms to gather all the
necessary data and then channel it to a support engineer who responds via e−mail or telephone.
Call−in telephone support is not usually intended to be the primary channel for support.

Some third−party support sites, such as Enterprise Linux Support at http://e.linux−support.net/, offer
fee−based telephone and Web−based support at hourly or daily rates, depending upon how long it
takes to solve the particular problem. Web−based support is generally significantly cheaper than
telephone support. This same company offers support by volunteer engineers under the name Free
Linux Support at http://support.marko.net/. The success of the engineers is monitored, and the best
engineers are offered paid positions with Enterprise Linux Support.

O t h e r  t h i r d − p a r t y  s u p p o r t  s i t e s ,  a s  w e l l  a s  c o m p a n i e s  l i k e  R e d  H a t
(http://www.redhat.com/apps/support/) and Caldera (http://www.caldera.com/support/), offer

83



pay−by−the−incident support, where the charge is a given rate per problem regardless of how
much—or how little—time the problem takes to solve. The charge per incident is widely variable.
Distributors generally offer installation support free for a given time after the purchase of a boxed
distribution.

Also available are traditional support contracts, which offer to support any problem within a given
period for a set amount of money. These contracts specify what the telephone support hours are
and what the expected response time is.

Tailored Linux Development

In 1998, LinuxCare (http://www.linuxcare.com/) began to offer distribution−neutral support programs
to businesses as well as individuals. LinuxCare's primary business is to develop customized Linux
software for business customers. They provide assistance in the areas of Linux kernel extension,
system optimization, device driver development, and application porting. They also offer consulting
services in the areas of Linux security, network management, and project management in general.

A  n u m b e r  o f  s m a l l ,  W e b − b a s e d  c o m p a n i e s ,  s u c h  a s  L i n u x  C o n s u l t i n g
(http://www.linux−consulting.com/), offer fee−based support services in the form of customized
Linux server and client machines, Linux system administration tools and scripts, specialized Linux
software, and Linux maintenance. The number of consultant firms is growing rapidly. A simple
search of the Internet can find a consultant who will develop whatever Linux−related software you
need.

General Web Support

Nearly every distribution has at least one mailing list available to users of the distribution or others
who have distribution−specific questions. Messages are addressed to the appropriate list, and the
list handler mails them to the other members of that list as appropriate. It is a very effective way to
obtain support information. You simply e−mail your question to the list; others read your post and
e−mail their responses to the list. Sometimes the list handler creates a digest version of the list,
meaning that instead of receiving each e−mail individually, you receive a composite post when the
waiting message queue reaches a given capacity. We highly recommend joining the digest version
of the list for you distribution!

Red Hat uses several mailing lists as shown at http://www.redhat.com/mailing−lists. The most
common are named redhat−announce−list, redhat−watch−list, and redhat−list. The announce list,
as the name implies, announces events that affect the Red Hat community. The watch list alerts its
members to security issues, and the redhat list is for general issues. redhat−list is available in digest
format. In addition to these lists, there are several other lists, for example the sound−list and the
pam−list, which deal with more specific problems; each is detailed on the above−mentioned site.

The Debian distribution has many lists as well, also including a debian−announce list for
announcing events and a debian−user list for general user questions. The debian−user list is
available in digest form. You can find information about them and how to subscribe at
http://www.debian.org/MailingLists/subscribe.

Slackware has two basic lists: slackware−announce and slackware−security. Each is available in
digest format as well. More information may be found at http://www.slackware.com/lists.

SuSE Linux also has several mailing lists, including suse−announce−e for announcements in
E n g l i s h ,  s u s e − l i n u x − e  f o r  g e n e r a l  d i s c u s s i o n s  i n  E n g l i s h ,  s u s e − s e c u r i t y ,  a n d

84



suse−security−announce. Other lists are specific to Motif, Oracle, IMAP, Applixware, and other
t o p i c s .  M o r e  i n f o r m a t i o n  o n  t h e s e  l i s t s  i s  a v a i l a b l e  a t
http://www.suse.com/support/us/mailinglists/index.html.

A number of sites archive the various Linux−related lists. Very useful is Google.com's site, located
at http://www.google.com/. What you'll find there is a search engine that will perform various Web
searches to include a groups search that will respond to your query with a list of related posts from
the various lists that are archived there. Select the one that most closely resembles what you're
interested in, and you'll see the text from that post. It's especially useful to enter error messages as
the query, possibly followed by the word Linux. This works quite well for those errors that don't
seem to be documented anywhere else.

For example, you might enter the following in the search window:

"You don't exist; go away" Linux

This generates about 1720 hits; several of these detail the problem. (In case you're curious, the
error means there is no utmp entry for your shell or you don't own the tty/pty you're logged in on.)

Webmin

There are several administrative tools available. Many distributions create their own custom tools.
To avoid having to use a different tool on computers using different distributions, we recommend the
use of the Webmin tool for administrative tasks. Webmin performs most of the major system
administration tasks that you'll need. Webmin is used via a Web browser like Netscape. If you use
version 7.2 or newer, Webmin is Secure Socket Layer (SSL) enabled by default, so you will have to
use the secure version of the HTTP: HTTPS.

To install Webmin, download the latest rpm and move it to /usr/local/packages or wherever you
choose to store packages that you download and install.

Change the directory to /usr/local/packages and use the appropriate rpm command to install. For
example, webmin−0.92−1.i386.rpm would be installed using the following command:

# rpm −uhv webmin−0.92−1.i386.rpm

Note Remember that if you use the u for update and the package doesn't already exist, it will be
installed. If it does already exist, it will be updated instead.

To test the installation, bring up your browser to port 10000 using SSL on the localhost. With
Netscape, the command would look like this:

netscape http://localhost 10000

Next log in as root with your regular root password.

Command−Line Tools

Linux provides a number of command−line tools to support you in your system administration
duties. This section first looks at the command−line techniques that help you use commands more
effectively, like pipes, redirection, wildcards, and tildes. As you'll see, all of these features are

85



provided by the shell, which by default for most distributions of Linux is the Bash shell. The
remainder of the chapter summarizes the basic command−line programs—commands—that you
use every day. All of these pieces fit together to help you accomplish the day−to−day tasks of a
Linux administrator.

The Bash Shell

The shell assigned to a particular user serves as the command interpreter for that user's session.
Commands are input and interpreted in a specific way by the shell; the same commands might be
interpreted differently by a different shell. That is to say that a command typed into a Bash shell
session might not work as intended under the C shell. A user has to understand the nuances of the
shell he or she uses to take full advantage of its functionality. The default shell in Linux is the
Bourne Again Shell, or Bash. The Bash shell includes features from the Bourne shell, the Korn
shell, and the C shell. Bash reads its configuration from the .bash_profile and .bashrc files, which
are discussed further in Chapter 3 in the context of user−specific startup scripts.

Bash, like other Unix shells, has certain special characteristics, which we will discuss here. The
Bash shell, like other shells, contains a set of built−in commands for use within the shell
environment. Other special characteristics include Bash's usage of environment variables, piping
and redirection, wildcards, quoting, the tilde, command and pathname extensions, and the history
list.

Built−in Commands

The Bash shell's built−in commands add functionality that would be impossible or inconvenient to
obtain externally. For example, cd, break, continue, and 'exec' can't be implemented outside the
shell since their purpose is to directly manipulate the shell itself. Other commands, like the history,
kill, or pwd built−in commands, could be implemented externally but are built in for convenience. A
complete list is available in the Bash man or info page.

Environment Variables

Environment variables are strings, set by the Bash shell or some other program, that make data
available to other programs. These strings are called "environment" variables because they are
globally accessible and are therefore part of the environment. The following variables are set in the
/etc/profile file under Red Hat:

PATH
USER
LOGNAME
MAIL
HOSTNAME
HISTSIZE
HISTFILESIZE
INPUTRC
MYSQL_UNIX_PORT

The PATH variable is redefined on several levels, since different users need to have access to
different files and directories. Setting an environment variable in a Bash shell has two steps: setting
the value and then exporting it. Sometimes you will see this as two separate commands:

HISTSIZE=1000
export HISTSIZE

86



It may be more efficient to do only one step as follows:

export HISTSIZE=1000

To display the current value of an environment variable, use the echo command:

echo $HISTSIZE

You can access these variables from within a C program using the getenv function.

Piping and Redirection

Piping and redirection are such powerful tools that it's frustrating to find yourself on a system that
either doesn't handle pipes or handles them badly. Most Unix−like operating systems handle both
pipes and redirection similarly.

Piping

When you execute a command in Linux, it has three streams opened for it. The first is for input and
is called Standard In (stdin). The next is for output and is called Standard Out (stdout). The last is
the error stream and is called Standard Error (stderr).

Piping is the practice of passing the first program's stdout into the stdin of another program. You do
this by listing the first command followed by a pipe ( | ) and then the command where the first
command's output is being sent. For example, if your task is to back up certain files on your system,
you can funnel the file listing that is output from a find command into stdin of the cpio command,
prompting cpio to store only the listed files on your tape:

# find /home/user | cpio −ocvB /dev/st0

The output of the find command would look something like this:

/home/user
/home/user/calendar
/home/user/linus.au
/home/user/.bash_logout
/home/user/.bash_profile
/home/user/.bashrc

When this output is piped into the cpio command, each of these files is added to the archive and
written to the tape drive specified as /dev/st0 (the first SCSI tape drive).

If you want to exclude all sound files with the extension .au, you could pipe the find command
through a grep command and then into the cpio command. The command would then look
something like this:

# find  /home/user | grep −v ".au" | cpio −ocvB /dev/st0

In this case, the file list output by the find command would be filtered to exclude all of the files that
end in the extension .au, and only the remaining files would be added to the archive.

87



Redirection

Redirection is the practice of changing where the stream comes from or is written to. One common
use is to route the system log to a vacant console and update it as messages are added. You do
this by listing the tail command followed by an output redirection character ( > ) and then the device
where the output is to be sent. If you wanted the output of the command to go to the console device
designated by /dev/tty9 rather than to stdout, you would enter this:

# tail −f /var/log/messages > /dev/tty9

When you execute this command, the output of the tail command will be redirected to console 9,
causing the system log (/var/log/messages) to be displayed there and, since the −f argument is
present, appending new output as it is written to the system log.

Sometimes you want to take input from somewhere other than stdin. This is also redirection, and
you can use the same principle illustrated above. Simply follow the command that requires input
with the input redirection character ( < ) and the file that contains the data to be input. Let's say that
a file contains a list of names to be sorted in a particular order. By changing the stdin for the sort
command, we can make it take the names from the file, reorder them, and write them to stdout. The
command would look like this:

# sort < namelist

You can use the two redirection operators in the same command sequence when you need to take
stdin from one file and send stdout to another. A common use of this is to sort the lines in a file and
output the sorted lines into a new file. With redirection it would look like this:

# sort < namelist > sortedlist

Another common use of redirection is to send both stdout and stderr to a file in order to save the
data for examination. This is a very useful tool for tracking down a problem. This can be done for
any two I/O streams and not just stdout and stderr. You need to know that standard input is
considered the first stream and numbered 0; standard output numbered 1, and standard error is
numbered 2, since the numeric representation is used in redirection. Using stdout and stderr, the
command would look like this:

# backup > backup.log 2>&1

Note The 2>&1 means to route stderr (2) wherever stdin (1) goes. The ampersand (&) often
relates to memory location or addresses.

Redirection as above causes backup.log to write over any file previously known as backup.log. If
you want to append the output from a command to backup.log instead of writing over it, you'd use
the >> symbol. This is especially good for log keeping. The command would look like this:

# backup >> backup.log 2>&1

Wildcards

Bash, like most other Unix shells, allows the use of special characters called wildcards to reference
more than one file at a time. DOS and Windows, of course, also offer wildcards, but the difference is
that in Linux, these special characters are expanded by the Bash shell and not by the program itself.
That is, if you launch a program that has special characters in its argument string, the program does
not need to know how to handle them; they are translated by the Bash shell before being passed to

88



the application. Instead of the wildcard characters, for instance, the program would receive a
space−delimited list of all files matching the wildcard construct. The user may restrict this capability
if the wildcard characters are intended to be interpreted by the program rather than the shell. There
are three wildcard characters frequently used in Linux, each interpreted differently by the Bash
shell: the asterisk, the question mark, and the bracket pair.

The aster isk is  of ten cal led the "splat" ;  the st r ing b*.bmp might  be pronounced as
"b−splat−dot−bmp." Its purpose is to replace a string of any number of characters in sequence.
Thus b*.bmp matches with any file whose name begins with b and has the .bmp extension. The files
blue.bmp, barney.bmp, bermuda.bmp, and before_you_go_away.bmp would all match.

The string *.* matches all files that contain a period; be certain that you really mean to act on all files
in the directory when you use this string. The string .* matches any dot file.

Many a user has deleted important files by specifying an incorrect wildcard string as an argument to
the rm command. The "joke" that is often played is trying to get the new guy to run rm −rf * from the
root directory. This is a forced removal of all files and directories. It's ugly if you have no backup.

The question mark represents any one character. The string file_? would match all of the following:
file_1, file_2, file_A, or file_b. The string file.??? would match any file named file that has a
three−character extension.

The bracket pair is used to define a list or range of characters to be matched. The string file[0−9]
would match file0, file1, file9. The string [a−zA−Z] would match any single alphabetical character.
The string [a−zA−Z0−9] would match any alpha or numeric character.

Quoting

As you've seen, shell commands assign special meanings to ordinary alphanumeric characters, so
when these characters are used within strings literally, there needs to be some way to prevent the
shell from interpreting the characters. In the Bash shell, quoting is the basic technique for this.
There are three quoting mechanisms: the escape character, single quotes, and double quotes:

The backslash (\) is the Bash escape character. It causes the next character to be taken
literally.

• 

Single quotes preserve the literal value of each character within the quotes. A single quote
may not occur between single quotes, since the enclosed quote would be interpreted as the
closing single quote.

• 

Double quotes protect the literal value of all characters contained within, except for the dollar
sign ($), the tick mark ('), the double quote ("), and the backslash (\). If a quoted string
contains an environment variable that is to be expanded, double quotes allow this. Single
quotes prevent the expansion.

• 

The Tilde

The tilde can save you several keystrokes every day. If a pathname/file combination begins with a
tilde, everything preceding the first / is treated as a possible login name. In the case of
~user/some_files, the ~user would be replaced by the home directory of user. In most cases, this
would be expanded to /home/user/some_files. If the resulting login name is a null string, as in
~/myfiles, the tilde is replaced by the username of the user who executed the command.

If the tilde is followed by a plus sign, the ~+ is replaced by the present working directory. If the plus

89



sign is replaced by a dash, the previous working directory is used instead.

Command and Pathname Expansion

One of the most convenient features of the Bash shell is command−line completion. Using this
feature, you can type in the first few letters of a command until your string becomes unique, and hit
the Tab key to force the Bash shell to complete the command name for you. Here's an example. If
you enter the letters lp and press Tab, nothing will happen since several commands begin with the
letters lp. If you hit the Tab key again, Bash will list all of the commands in your PATH that meet that
description.

You can then simply enter the lptest command, if that's what you're looking for. If you'd prefer,
however, you may type only enough letters to uniquely match that command—in this case, lpt and
then hit the Tab key. This time, the lptest command will be completed for you.

This works equally well for filenames. If you go to your home directory and type ls m and hit the Tab
key, nothing will happen—unless you have only one file or subdirectory beginning with the letter m.
Pressing Tab again, however, will yield a list of all files or subdirectories within your home directory
that begin with m. You can then type in the complete file or directory name or enough letters to
make it unique followed by the Tab key.

The History List

The history list allows you to retrieve previously entered commands for reuse instead of having to
remember and retype them. This feature is useful when the command is lengthy or frequently used.
The .bash_history file is a list of commands like those shown in Listing 4.4.

Listing 4.4: The .bash_history File

man lsattr
lsattr
lsattr |more
man find
man ls
pine myfriend@hometown.com
clear
pine
clear
exit
pine
su
pine otherfriend@nothome.com
clear
exit
pine myfriend@hometown.com
su
startx
exit

To create the history list, the shell stores all of the commands that were executed during a session
in a file called by default .bash_history. (You can rename this file by setting the environment
variable HISTFILE to the new name, and you can determine how many commands will be retained
by setting the HISTSIZE environment variable.)

90



The easiest way to retrieve a command from the history list is by using the arrow keys, especially if
the command was recently entered. The up arrow retrieves the previous command from the history
list, and the down arrow retrieves the next command. You may traverse the entire history list this
way if you wish, but if HISTSIZE is large, this can become tedious.

An alternate way to fetch a command from the history list is to enter on the command line an
exclamation point followed by enough letters to uniquely identify the command you wish to retrieve.
The most recent iteration of the command is then retrieved and executed. Entering !pine at the
command l ine would retr ieve the last  p ine command in the .bash_history f i le ,  p ine
myfriend@hometown.com. If you knew that you had recently used the pine command to write to
otherfriend, you could type !pine o at the prompt and the pine otherfriend@nothome.com command
would be retrieved. Entering history at the command line will yield a list of the commands in your
current .bash_history file.

Basic Commands

Although there are exceptions, basic Linux commands generally take one of the following forms:

command [−option] target
command [−option] source destination

Linux command names, like filenames, are case−sensitive. Although most commands are
completely lowercase, some options are uppercase. The man pages discussed above are
invaluable when using unfamiliar commands. Even someone who has been administering a system
for 20 years can learn something new about the functionality of the basic commands. New options
are being added all the time, as are entirely new commands.

The Linux commands presented below are some of the most commonly used. These definitions are
not intended to be comprehensive but to give you a general idea of their use. Although we show the
general syntax of each command listed, this is not a formal command reference, defining every
option of each command. For a complete reference, see the appropriate man page. Later chapters
discuss many of these commands in more detail, in the context of their administrative uses.

User Account Commands

The commands in this section allow you to work with user accounts. They include the commands to
create a user, to delete a user, and to perform various other common user functions. More
information on user−specific tasks is available in Chapter 5, "Creating and Maintaining User
Accounts."

adduser

There is actually no adduser command under Red Hat; to accommodate users who have used this
command in other Unix varieties, it is symbolically linked to the useradd command, explained below.

finger

finger [options] [username][@host]

The finger command is used to display information about the system's users. Since this command
can be used remotely by giving the target user's name as username@host, it is usually disabled as
a security measure.

91



groups

groups [username]

The groups command prints a list of groups to which the specified user belongs. If no user is
specified, the groups are given for the user who issued the command.

newgrp

newgrp [group]

The newgrp command is used to change the user's group identity. The specified group must exist in
the /etc/groups file, and if the group has been assigned a password, the user is first prompted for
that password. Once the password is accepted, the user retains the current username but is given
the privileges belonging to the specified group.

last

last [−num] [options] [ −f file ] [name] [tty]

The last command searches the /var/log/wtmp file and lists all the users who've logged in since the
file was created. The num option may be used to specify how many logins back from the last login
to include. The −f option allows you to specify a different file to search instead of the wtmp file. The
name and tty options will filter the output by user and/or tty.

mesg

mesg [y|n]

The mesg command controls write access to a workstation. If write access is allowed, other users
may use the write command to send messages to the terminal. An argument of y turns on access,
and n turns off access. If no argument is provided, the current setting will be displayed.

passwd

passwd [options] [username]

The passwd command is used to change the password of the user executing the command. If you
are the superuser, you can specify a different username in order to change that user's password
instead. Password security is discussed in Chapter 15.

pwd

pwd

The pwd (print name of working directory) command is used to list the path of your current directory.
If you need the full path for a script and don't want to type it all in, you can issue the pwd command,
cut the output, and paste it into the editor being used to create the script.

su

su [options] [−] [user] [args]

The su command runs a shell with the effective user ID and group ID of user. This is typically used
to become the root user for a task requiring that level of privilege, but it is much safer if the system

92



is set up for the use of sudo.

sudo

sudo [options]

The sudo command is used to allow users to execute commands on their workstations that are
normally reserved for the superuser. It is discussed more thoroughly in Chapter 7.

useradd

useradd [options] login_name

The useradd command creates a new user on a Red Hat system. Different options allow you to
specify things like the password, the shell, and the user identification number. When invoked with
the −D option, the information is used to update the default new user information.

userdel

userdel [−r] login_name

The userdel command deletes the system account files for a user and removes the user's entry
from /etc/passwd. Unless the −r option is given, the userdel command leaves that user's home
directory and all the user's files in place.

usermod

usermod [options] login_name

The usermod command modifies the specified user's account information. The options allow you to
change several settings, including the home directory, login name, password, and shell.

File−Handling Commands

This section contains commands geared toward file creation and management. Most of these are
the basic commands you are likely to use almost daily.

cat

cat [options] filename(s)

The cat command dumps a file to stdout. Often stdout is then redirected into another command via
a pipe or to a different file. It is often used to concatenate two or more files, thereby creating a new
file. The command to do this is

cat file1 file2 file3 >newfile

chmod

chmod [options] mode(s) filename(s)
chmod [options] octal_mode(s) filename(s)

The chmod command is used to change the access mode of files. Only the owner of the file or the
superuser may alter its access. There are two methods for expressing the mode you wish to assign.
The first is the symbolic method, wherein you specify letters representing the mode. This requires

93



that you specify the following information.

Who is affected:

u User who owns the file
g Group (only users in file's group)
o Other users
a All (default)
What operation:

+ Add permission
− Remove permission
= Set permission, overwriting old permissions
What kind of permission:

r Read
w Write
x Execute
s User or group ID is temporarily replaced with that of the file
t Set sticky bit: keep executable in memory after exit
For example, ug+x would add execute privileges for the user and members of the group, and o+rw
would allow other users not in the specified group to read and write the file.

Some administrators prefer the octal method, which uses a sequence of three numbers to represent
the permissions for the user, group, and others. The new permissions completely override the
previous assignment. Three digits are computed, representing the user, group, and others,
respectively. To compute them, you add up the integers corresponding to the permissions you wish
to grant at each level. The result is a three−digit number in which the first number represents the
User permissions, the second the Group permissions, and the third the Other permissions. The
values assigned to each permission are as follows:

1 Execute
2 Write
4 Read
Thus, read and write permissions would assign a 6 (2+4). Read, write, and execute would assign a
7 (1+2+4). Using this method, 755 would grant the user read, write, and execute privileges, and
both group members and all others would have read and execute. Four−digit numbers may be used
as well, with the first place denoting the special or sticky bit. See the info page on chmod for more
information.

chown

chown [options] newowner filename(s)
chown [options] newowner.newgroup filename(s)

The chown command changes the owner of the specified file or files to the owner listed as an
argument. This command can also be used to change both the owner and the group settings on the
specified file. To do this, append a period followed by the new group to the owner name.

94



chgrp

chgrp [options] newgroup filename

The chgrp command is used to change only the group setting for the file. You must own the file or
be the superuser to use this command. The new group may be specified by group name or ID.

cp

cp [options] source destination
cp [options] source directory

The cp (copy) command is used to copy the source file to destination. If the source and destination
are both filenames, the duplicate will be placed in the current directory. They can also be full paths,
meaning that either the source file or the destination file might not be in the current directory.
Alternately, the second argument may be a directory, in which case source will be copied into the
new directory, retaining its old name. You may specify the −r option to recursively copy the source
directory and its files and subdirectories to destination, duplicating the tree structure in the new
location.

dd

dd [options] if=infile of=outfile [bs=blocksize]

The dd command makes a copy of the input file specified as if=infile using the given blocksize if
included to standard output or to the output file specified as of=outfile. This command may be used
to write data to a raw device. This command is often used to write a bootable image to a floppy disk:

# dd if=boot.img of=/dev/fd0

diff

diff [options] file1 file2

The diff (difference) command displays the lines that differ between the two files listed as
arguments. This is useful when you need to see the exact changes made to a file. For example, if a
program source file won't compile after several additions have been made, and you'd like to back
out of the changes one at a time, you would diff the current version against the last compiled
version.

file

file [options] [−f namefile] [−m magicfiles] file

This command determines the file type of the named file using the information in the default magic
file or the one passed as a parameter. The file command is discussed in Chapter 7.

find

find [path] [expression]

The find command is discussed in detail later in this chapter. It is used to locate files that meet the
criterion specified by the expression.

95



grep

grep [options] string targetfile(s)

The grep (get regular−expression pattern) command searches for a specified string in the target file
or the stdin stream if no filenames are given. grep is used quite often in a piped command to filter
data before passing it on or in scripts. A list of characters enclosed in ([]) brackets as the string
argument matches any of the characters in the list. For example, the string [Hh]ello matches either
Hello or hello. The string [A−Za−z] matches any letter in either lowercase or capital form. The string
[0−9] represents any one−digit number. The carat ^ indicates the beginning of a line, and the dollar
sign $ indicates the end of a line. Thus the use of the string ^[A−Z] would match any line that began
with a capital letter. Options include −i to ignore differences in case between the string and the input
file line, −l to print the names of files containing matches, −r to attempt to match the string within all
subdirectories as well, and −v to return all nonmatching lines.

head

head [options] filename(s)

The head command prints by default the first ten lines of the specified file(s). The optional −n
argument allows you to define how many lines, starting with line 1, will be printed.

ispell

ispell filename

The ispell program checks the spelling of all words in the named file and prompts the user to accept
the present spelling, replace it with a suggested spelling, add it to the dictionary, look up a specified
string in the dictionary, change capital letters to lowercase, or quit the program. To learn about other
more sophisticated uses see the man page.

less

less [options] filename

The less command starts up a file viewer that allows up and down movement within the file being
viewed. The less command doesn't require the entire file to be read in before starting, so it tends to
start up faster than commands that do. This command is very frequently used on the command line
as well as from within another program.

ln

ln [options] target linkname
ln [options] target(s) directory

The ln (link) command creates a link, named linkname, to target. If a directory is specified in place
of a link name, the link will be created in that directory and named the same as the target. This
concept is discussed in Chapter 7, "Linux Files and Processes."

more

more filename

The more command starts a very primitive but often used file viewer. It outputs a page of data to the
screen (or stdout) and scrolls to a new page when the user hits the spacebar. The more command

96



is often the last part of a pipe command, allowing the user to page through the output.

mv

mv file1 file2

The mv (move) command moves the file or directory from the location specified by file1 to that
specified as file2. In Linux, this command is also used to rename a file.

rm

rm [options] filename(s)

The rm command removes or unlinks the given file or files. This may take effect recursively if the −r
option is given or interactively if the −i option is given. By default, Red Hat aliases rm to rm −i in an
attempt to protect the user from accidentally removing files, by forcing acknowledgment before
actually unlinking the file(s).

tail

tail [options] filename(s)

The tail command prints by default the last 10 lines of the specified files. The optional −n argument
allows you to define how many lines starting backward from the last line will be printed.

Process−Oriented Commands

The commands in this section are used to control processes and are all pretty common. We will
look at processes in Chapter 7.

ps

ps [options]

The ps (print status) command gives the status of the current processes. The process list may be
filtered or the output format may be changed by specifying related options.

pstree

pstree [options] [pid|user]

The pstree command displays a tree of processes with the root at the specified PID or at init if no
PID is specified.

halt

halt [options]

The halt command annotates the /var/log/wtmp file that the system is being rebooted and then halts
it. If halt is called when the system is not in run level 0 or 6 (the run levels that cause the system to
reboot), the much gentler shutdown command will be issued instead. Any users who are logged in
will be notified that the system is going down, and no additional users will be allowed to log in. All
processes are notified as well, giving them time to exit gracefully. Run levels are discussed in more
detail in Chapter 3.

97



shutdown

shutdown [−t sec] [options] time [warning−message]

The shutdown command brings down the system in a safe way. The shutdown command issues a
warning to the users and to the currently running processes so that they can clean up before the
system goes down. The shutdown command then sends a run level change request to the init
process. If the shutdown is intended to halt the system (option −h), the requested run level is 0. If
the system is to be rebooted (option −r), the run level is 6. If the shutdown is intended to put the
machine in single−user mode (neither option −r nor −h), the run level is 1.

reboot

reboot [options]

The reboot command is identical to the halt command described above, except that the system is
returned to the default run level upon completion of the shutdown.

init

init [run level]

The init command initiates a change to the specified run level. The /etc/inittab then calls the
/etc/rc.d/rc script, passing it the specified run level. The rc script causes the appropriate processes
to be started for that run level. For example, to go to run level 3, the rc script runs the scripts pointed
to by the symbolic links contained in the /etc/rc.d/rc3.d directory. The /etc/rc.d directory only exists
in systems with SysV−style initialization scripts. The rc#.d directories are directly under /etc in Linux
distributions that use the BSD−style initialization scripts. SuSE Linux does it a little differently still,
putting the scripts that on a SysV system would be in /etc/rc.d/init.d directly in the /etc/rc.d directory.
The init process will be described in some detail in Chapter 7 and was covered in Chapter 3 as well.

kill

kill [−s signal] [−p] [−a] PID
kill −l [signal]

The kill program sends the given signal to the process whose PID is listed. By default this is the
SIGTERM signal, which requests that the process terminate. Sometimes the process ignores the
SIGTERM signal and has to be given a different variation of the kill command, kill −9 PID. Either the
number or the signal name may be used. The number is preceded only by the hyphen, as in the kill
−9 example; the signal name, however must be preceded by −s:

The kill program with the −p option does not send a signal but only outputs the PID of the process
that would receive the signal if sent. To generate a list of signals, use the kill −l format, the output of
which is shown below:

 1) SIGHUP       2) SIGINT       3) SIGQUIT      4) SIGILL
 5) SIGTRAP      6) SIGIOT       7) SIGBUS       8) SIGFPE
 9) SIGKILL     10) SIGUSR1     11) SIGSEGV     12) SIGUSR2
13) SIGPIPE     14) SIGALRM     15) SIGTERM     17) SIGCHLD
18) SIGCONT     19) SIGSTOP     20) SIGTSTP     21) SIGTTIN
22) SIGTTOU     23) SIGURG      24) SIGXCPU     25) SIGXFSZ
26) SIGVTALRM   27) SIGPROF     28) SIGWINCH    29) SIGIO
30) SIGPWR

98



killall

killall [options] [−s signal] process_name

The killall command kills processes by name rather than PID as kill does. It is a much newer
command than the kill command, so many of us forget about it. It is a more intuitive version, though,
and saves you the trouble of determining the PID.

top

top [options]

The top command yields a continuous real−time listing of active processes, listing the most
CPU−intensive first and also including memory usage and runtime information. This is very useful if
your system suddenly seems to be running slowly, and you're trying to track the cause. Simply run
the top command.

nice

nice [options] [command [arguments]]

The nice command runs the included command at an adjusted scheduling priority. It allows you to
be "nice" to other users by making a really resource−intensive job run at a lower priority. The priority
range is between 20 and −20. A priority of 0 is average; 20 holds the process until nothing else is
placing demands on the system; and −20 indicates the maximum priority. If no command is
specified, nice prints the current scheduling priority.

When you issue a command, you can precede it with the word nice to cause it to assume a lower
priority. For example, this command starts a backup process, setting its nice value to 19 so that it
won't dominate other processes. (Note that you must precede a priority by a dash, so a positive nice
value looks like a negative value, and a negative value would use two dashes.)

# nice −19 backup

renice

renice priority [[−p] PID] [[−g] group] [[−u] user]

The renice command changes the priority of the running processes specified by PID, process group
name, or username to the given priority. The priority range is between 20 and −20. A priority of 0 is
average, 20 holds the process until nothing else is placing demands on the system, and −20
indicates the utmost urgency. Users may only renice their own processes, but the superuser can
renice any user's processes.

Since the renice command is used for processes that are already running, use the top command to
determine which of them are dominating the system's resources. To do so, simply type top at the
command prompt. The top output as shown below includes a %CPU column and a %MEM column,
which indicate what percentage of each of these resources the process is using. (We have omitted
the SIZE, RSS, SHARE, STAT, and LIB columns to make the data easier to interpret.)

PID  USER PRI   NI     %CPU      %MEM         TIME  COMMAND
3652 user   1    0     29.6      34.1       614:16  backup
1452 root   1    0      1.9      11.1        14:30  X

99



You can see that the backup process is taking more than its fair share of the system's resources. If
you want to give it a lower priority, 19, simply issue the renice command like this:

# renice 19 −p 3652

Filesystem Commands

In Chapter 7, we'll look at some general characteristics of Linux's ext3 filesystem. We stated in
Chapter 3 that a filesystem is the structure imposed on each partition for the purpose of organizing
files, and that simple definition will suffice for now. The commands in this section allow you to do
things like check, fix, and mount a filesystem. The ext2 filesystem, which preceded the current
default of ext3, required more maintenance than the journaling filesystems that are the standard
now. The tools in this section are frequently used on the ext2 filesystem.

df

df [options] filesystem

The df (disk filesystem usage) command reports the number of free disk blocks and inodes on the
specified device, mount point, directory, or remote resource. This information, if checked
periodically, can let you know when you are about to outgrow a filesystem. Likewise, it can show
when you have a runaway process generating errors in the /var/log/messages file, thereby filling up
the /var partition (or / if /var is not a separate partition). Looking at the sample df output shown in
Listing 4.5, you can see the number of blocks used and available and the percentage of the
filesystem that is currently being used.

Listing 4.5: Sample df Output

Filesystem           1k−blocks      Used Available Use% Mounted on
/dev/hdb1              2016016    467476   1446128  24% /
/dev/hdb6              7558368   4987292   2187128  70% /usr
/dev/hda8              6048320   2393976   3347104  42% /home

fdisk

fdisk [options] device
fdisk [−s] partition

The fdisk (fixed disk) command allows you to view and change partition table information for the
given device. Use the second form shown above to get the size of the specified partition. If you use
the first form, the session will become interactive, and a menu of commands will be available to you.
This command is useful when you want to reinstall or add a new disk to the system.

Another useful option is −l, which allows you to list the partitions on a specified device as shown in
Listing 4.6.

Listing 4.6: Sample Output of the fdisk −l Command

# fdisk −l /dev/hda

Disk /dev/hda: 255 heads, 63 sectors, 2491 cylinders
Units = cylinders of 16065 * 512 bytes

   Device Boot    Start       End    Blocks   Id  System

100



/dev/hda1   *         1       255   2048256   83  Linux
/dev/hda2           256      2491  17960670    5  Extended
/dev/hda5           256       893   5124703+  83  Linux
/dev/hda6           894      1021   1028128+  83  Linux
/dev/hda7          1022      1054    265041   82  Linux swap
/dev/hda8          1055      1819   6144831   83  Linux

fsck

fsck [options] [−t fstype] filesystem

The fsck (filesystem check) command is used to check and repair a filesystem. This command is
run at bootup by the rc.sysinit process with the −a option, which tells it to check each filesystem
listed in /etc/fstab unless the sixth field for that filesystem in the /etc/fstab is zero. If it detects a
problem, it will report that there was an "unexpected inconsistency." You will have the option of
entering the root password to do maintenance or dropping to single−user mode, where you can run
fsck manually and fix the problem. When you run it manually, fsck will evaluate the problem and fix
it (although some data will most likely be lost), and make the system bootable again.

tune2fs

tune2fs [options] device

The tune2fs command is used to fine−tune the characteristics of a filesystem. You can change the
number of times the filesystem may be remounted before a filesystem check is forced, the
maximum time that can elapse before it must be checked, the error behavior of the filesystem, and
so on. Attempting to adjust parameters on a filesystem that is mounted as read/write will damage
the filesystem! More on the usage of tune2fs is found in Chapter 16.

mkdir

mkdir [options] director(ies)

The mkdir (make directory) command creates one or more directories with the names specified. If a
fully qualified path is given, the directories will be created there; otherwise, they will be created in
the current directory. We will discuss the mkdir command in Chapter 7. Here is an example of how it
would be used to create a directory under user's home directory:

mkdir /home/user/new_dir

mke2fs

mke2fs [options] device [blocks−count]

The mke2fs command is used to create a Linux filesystem on the specified device. The
blocks−count argument sets the number of blocks on the device, although it may be omitted to allow
mke2fs to set the filesystem size.

mount

mount [options] [mountpoint] [device_node] [−t filesystem_type]

The mount command attaches the filesystem referenced as device_node to the mount point
specified as mountpoint. If the filesystem is listed in the /etc/fstab file, either the mountpoint or the

101



device_node may be supplied alone. If the filesystem type is different than specified in /etc/fstab or
if the filesystem is not listed there, a filesystem type should be specified (although it is sometimes
recognized automatically). The following example mounts the CD−ROM located at /dev/hdc on the
mount point /mnt/cdrom.

# mount /dev/hdc /mnt/cdrom −t ext2

umount

umount [options] device|mount_point [−t vfstype]

The umount command detaches the listed filesystem or the filesystem mounted on the specified
mount point from the Linux tree. The filesystem cannot be unmounted when it contains open files,
has a user currently located somewhere in its directory tree, contains a swap file that is in use, or
has other filesystems mounted in its tree.

showmount

showmount [options] [host]

The showmount command queries the mount daemon on a remote machine about the status of its
NFS server. If no options are specified, the showmount command returns a list of all clients who are
mounting from that host.

ulimit

ulimit [options] [limit]

The ulimit command can be used to determine resource limits for a shell and the processes started
by it. The arguments to ulimit include −a to report all current limits, −c for maximum core size, −f for
maximum file size, −n for the number of open files, and −u for the number of processes available
per user. The ulimit may also be used to adjust these limits by specifying the correct argument
followed by the new numeric value. Preceding the options with an H sets hard limits, which cannot
be increased once set. A soft limit, preceded with an S, can be increased until it reaches the hard
limit. If neither H nor S is given, a soft limit is assumed.

To determine what the hard limit is on the maximum core size, use the ulimit command as listed
below. The return value shows that on a Red Hat system, there is no hard limit to the size of a core
file.

# ulimit −Hc
unlimited

To set the maximum core size to 1024, issue the following command:

# ulimit −c 1024

Now check your work by issuing the ulimit −c command without a value. The result should be the
value you specified.

mkswap

mkswap [options] device [size]

102



The mkswap command creates a swap area on the specified device or file. A swap area is used to
hold pages written out from memory, making it possible to read them back into memory more
quickly. In Linux, a swap space twice the size of the amount of memory in the system is usually
sufficient. Most often, the device that contains the swap space is a disk partition, but a file created
with a dd command can also be used, like this:

# dd if=/dev/zero of=/dev/swapfile bs=1024 count=65536

The copy command will not work to create a swap file. When the device or file is created, the
swapon command must be used to activate the swap area.

A swap partition is typically created when the Linux system is first installed. Refer to Chapter 2 for
more information on how to create swap space as a separate partition.

swapoff

swapoff [−a]
swapoff specialfile(s)

The swapoff command disables swapping on the specified devices or files. If swapoff is called with
an −a option, all swap entries in /etc/fstab will be disabled.

swapon

swapon [−v] [−p priority] specialfile(s)
swapon [−a]

The swapon command enables swapping on the specified devices or files or on all devices listed in
/etc/fstab if the −a option is given. This is usually done by the system initialization script when the
run level is changed.

sync

sync [options]

The sync command flushes the filesystem buffers, thereby forcing any data waiting there to be
written to the disk. This command is necessary when you mount another filesystem and make
changes to it to ensure that everything that was to be written to the mounted filesystem actually
was.

fuser

fuser [options] filesystem

The fuser (file user) command determines which user is using a file from a given filesystem or is
currently in a directory belonging to the given filesystem. This is important if you try to unmount a
filesystem and are told that it is busy. The −m option is necessary if the filesystem is mounted.
Using the −u option gives both process and corresponding user information for the filesystem. The c
after several process IDs in the following example indicates that those processes are running from
the current directory.

# fuser −mu /home
/home:          1456(user)  4271c(user)  4301  4301c(user)
                4456c(user)  5729(user)

103



Network Commands

The commands in this section work with network connections and are used frequently. These
commands allow you to determine whether a network interface is operational and to check its
efficiency. Chapter 12 deals with TCP/IP connections and Chapter 15 deals with the security issues
related to such connections.

ifconfig

ifconfig [interface]
ifconfig interface [address_family_type] [options] address

The ifconfig command displays the status of currently active network interfaces. If an interface is
listed as the only argument, ifconfig will return the status of that interface. The ifconfig command
may also be used to configure network interfaces, although it is seldom used that way except in
configuration scripts. Listing 4.7 shows the output from this command.

Listing 4.7: Sample Output from the ifconfig Command

eth0    Link encap:Ethernet  HWaddr 00:40:05:A0:52:33
        inet addr:192.168.1.1  Bcast:192.168.1.255  Mask:255.255.255.0
        UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
        RX packets:5861 errors:1 dropped:0 overruns:0 frame:1
        TX packets:5051 errors:0 dropped:0 overruns:0 carrier:0
        collisions:1 txqueuelen:100
        Interrupt:9 Base address:0xf600

lo      Link encap:Local Loopback
        inet addr:127.0.0.1  Mask:255.0.0.0
        UP LOOPBACK RUNNING  MTU:3924  Metric:1
        RX packets:4404 errors:0 dropped:0 overruns:0 frame:0
        TX packets:4404 errors:0 dropped:0 overruns:0 carrier:0
        collisions:0 txqueuelen:0

ppp0    Link encap:Point−to−Point Protocol
        inet addr:216.126.175.225  P−t−P:216.126.175.2 
Mask:255.255.255.255

        UP POINTOPOINT RUNNING NOARP MULTICAST  MTU:1500  Metric:1
        RX packets:2191 errors:0 dropped:0 overruns:0 frame:0
        TX packets:2125 errors:0 dropped:0 overruns:0 carrier:0
        collisions:0 txqueuelen:10

netstat

netstat [options]

The netstat command displays network connections, routing tables, interface statistics, masquerade
connections, netlink messages, and multicast memberships. The −n option forces the output to use
numeric IP addresses rather than hostnames.

ping

ping [options] host

The ping command is used to test network connections. It sends a signal to the indicated host, waits
to receive a reply packet, and reports the receipt or lack of response. The ping command is

104



primarily used for troubleshooting network connections. Examples are given in Chapter 18.

route

route
route [options] add [−net|−host] target [options]
route [options] del [−net|−host] target [options]

The route command is used to display and manipulate the IP routing table. It is primarily used to set
up static routes to hosts or networks.

ftp

ftp [options] host

The ftp command starts the interface to the Internet's File Transfer Protocol, allowing users to
transfer files to and from a remote site. It is typically run interactively, although this can be turned off
with the −i option.

telnet

telnet [options] [host|port]

The telnet command uses the Telnet protocol to communicate with the specified host or in
command mode if no host is given. In command mode, telnet takes commands like OPEN (to open
a host site), CLOSE (to close a host site), QUIT (exits the telnet session completely), STATUS, and
a few others. Typically the telnet daemon is not run by default for security reasons.

ssh

ssh [−l login_name] hostname | user@hostname [command]

The ssh command is a secure program for logging into a remote machine or executing a command
on a remote machine. ssh uses one of the two Secure Shell Protocols to authenticate the user
beyond the simple username/password checking performed by telnet.

traceroute

traceroute [options] destination_host

The traceroute command allows you to determine the path that packets take through the network to
the destination host. traceroute displays each router hop along the way. This is very helpful
information when a transmission to that host fails and a remote network outage or routing problem
is suspected. Each intermediate router is listed with the time (in milliseconds) that the hop took.
Listing 4.8 shows sample output.

Listing 4.8: Sample Output from the traceroute Command

traceroute to 216.15.152.66 (216.15.152.66), 30 hops max, 38 byte 
packets

 1  lvhun1.popsite.net (216.126.175.4)  107.606 ms  98.544 ms99.231 ms
 2  bhm1−core1.popsite.net (216.126.175.1)  106.141 ms 109.084 ms  
109.090 ms

 3  atl−core1−s1−3.popsite.net (216.126.168.221)  116.211 ms 108.875 ms  
109.361 ms

 4  h4−0.atlanta1−cr4.bbnplanet.net (4.0.138.245)  176.592 ms 238.687 ms  

105



209.170 ms
 5  p1−1.atlanta1−nbr1.bbnplanet.net (4.0.5.206)  113.971 ms 108.913 ms  
119.981 ms

 6  p11−0−0.atlanta1−br1.bbnplanet.net (4.0.5.121)  119.803 ms 114.610 ms  
114.952 ms

 7  4.0.2.142 (4.0.2.142)  120.051 ms  2099.758 ms  2069.831 ms
 8  104.ATM3−0.XR1.ATL1.ALTER.NET (146.188.232.58)  169.836 ms 159.737 ms  
159.888 ms

 9  195.at−2−0−0.TR1.ATL5.ALTER.NET (152.63.81.26)  169.878 ms 159.800 ms  
159.851 ms

10  129.at−6−0−0.TR1.STL3.ALTER.NET (152.63.0.190)  169.855 ms 169.727 ms  
229.888 ms

11  289.ATM7−0.XR1.STL1.ALTER.NET (152.63.89.157)  2049.869 ms 169.716 ms  
169.912 ms

12  193.ATM11−0−0.GW1.STL1.ALTER.NET (146.188.224.65)  179.874 ms 
169.756 ms  169.876 ms

13  cybercon−gw.customer.alter.net (157.130.124.126)  149.941 ms 
149.748 ms  149.872 ms

14  server.dialupnet.com (216.15.152.66)  159.815 ms  159.665 ms 
4049.903 ms

Printer Management Commands

The commands in this section deal with the printers on your network and how they schedule print
jobs. Chapter 10 gives more detail on managing printers.

lpc

lpc [command [argument]]

The lpc (line printer change) command allows you to control printing jobs that have been sent to a
printer on your network. You can disable or enable a printer or printer queue, thereby preventing or
allowing additional jobs to be sent to that printer. You can prioritize the waiting print jobs. You can
also check the status of a printer or printer queue or printer daemon. All of these are tasks you will
be asked to do on a fairly regular basis as a system administrator. Chapter 10 explains the specifics
of this command.

lpq

lpq [−l] [−Pprinter] [job #] [user]

The lpq (line printer queue) command looks at the print spool for the specified printer (or the default
printer) and reports the status of the specified job or all jobs for the specified user if no job number
is specified. This command is discussed more thoroughly in Chapter 10.

lpr

lpr [−Pprinter] [−#num] [−C class] [−J job] [−T title] [−U user]
[−i [numcols]] [−w pagewidth] [filetype_options] [name]

The lpr (line printer) command spools named files for printing when resources become available.
Among its options, you can specify the printer device with −P, the number of copies to print, and the
page width. This command is discussed in Chapter 10.

106



lprm

lprm [−Pprinter] [−] [job #] [user]

The lprm (line printer remove) command is used to remove print jobs from the queue of the
specified or default printer. If a job number is specified, only that job will be removed. If a username
is specified by the superuser, all jobs for that user will be removed. If only a dash is given, all jobs
owned by the user who issued the command will be removed. If the superuser gives this command
with the − (dash) option, the printer spool will be emptied.

Other Useful Commands

A few commonly used commands don't fit into any of the other categories.

date

date [options] [+FORMAT]
date [options] [MMDDhhmm[[CC]YY][.ss]]

The date command prints or sets the system's date and time. If no option is specified, the current
date and time will be printed to stdout in this format:

[DAY MON DD hh:mm:ss TIMEZONE YYYY]

You may change the format by adding + and a format string to the command. The format string can
take any form you like as long as you use a defined set of symbols, which you can find in the man
page.

Here are a couple of examples:

# date +%m/%d/%y
 9/1/00

When you specify date information as an argument in the form:

[MMDDhhmm[[CC]YY][.ss]

the system's date will be changed to the given date and time:

# date 0901182600.00
Fri  Sep   1  18:26:00  CDT  2000

hdparm

hdparm [options] device

The hdparm (hard disk parameters) command retrieves or sets specified parameters of the
specified hard drive. This command was primarily developed for use with IDE hard drives, but some
parameters apply to SCSI drives, too.

dmesg

dmesg [−c] [−n message_level] [−s buffersize]

107



The dmesg (display messages) command displays the messages that scroll across the screen
during bootup. Assume that Sam User was working on one of your Linux systems today and began
complaining that the system's sound card didn't work anymore. You know that a friend of yours is
far better at troubleshooting sound problems, and she owes you a favor. Run the dmesg command,
redirecting the output to a file. Mail the resulting file to your friend and race her to the answer.

free

free [options]

The free command is used to show how memory is being used on the system, allowing you to
determine whether adding memory would be advantageous. It displays the amount of free and used
physical and swap memory. In Linux, memory is used very efficiently; any memory not being used
by a process is used for buffering to allow the system to react more quickly. As a result, the output
from the free command might be confusing. Listing 4.9 shows an example.

Listing 4.9: Output of the free Command

            total     used    free     shared   buffers    cached
Mem:        127808  124668    3140     105668      3264     65716
−/+ buffers/cache:   55688   72120
Swap:       265032   20504  244528

You see in the free output that there is a total of 127,808KB (128MB) of memory but that only
3140KB is listed as free. Some of the memory usage is normal but much of it is due to the Linux use
of chip memory for buffers and cache. The −/+ buffers/cache line shows the memory used and free
(respectively), not counting disk cache—in other words, it reflects memory used by the kernel,
programs, and data, but not memory used by buffers and disk cache. The best indicator of whether
you need more memory is the swap usage displayed. In this example, the system is using only
20,504KB of 265,032KB of the available swap space. Since so little swapping is being done, it is
clear that this system has sufficient memory—at least for the current level of operations.

umask

umask [−S] [mode]

The umask command sets the permission mode assigned to a file created by the initiating user. The
mode is interpreted as octal if it begins with a number and symbolic if it begins with a letter. To print
the current umask as octal, simply call umask with no arguments. The umask command may be run
with only a −S argument if you want the output in symbolic mode.

uname

uname [options]

The uname command prints out system information including the hardware type, the hostname, the
kernel's name, release, and version number, and the processor type.

uptime

uptime

The uptime command tells how long the system has been running since its last reboot. It lists the

108



current time, how long the system has been up, how many users are logged in, and system load
averages.

In Sum

Now that we've discussed some of the basic tools that you'll use, you're ready to experiment with
the tools in this chapter; familiarity with them will make your system administration duties much
easier. We'll look at the one of the most common system administration tasks, maintaining user
accounts, in Chapter 5. Knowing the intricacies of this process will allow you to perform this task
efficiently, freeing you up for the fun stuff like troubleshooting and scriptwriting.

109



Part II: Managing Users, Processes, and Files

Chapter List

Chapter 5: Creating and Maintaining User Accounts
Chapter 6: Filesystems and Disk Management
Chapter 7: Linux Files and Processes
Chapter 8: Software Administration
Chapter 9: Backup and Restore

Featuring

Creating and maintaining user accounts• 
Creating and working with groups• 
Authorization and authentication techniques• 
Linux support for filesystems• 
Mounting and unmounting filesystems• 
Updating and maintaining filesystems• 
Installing binary packages• 
Compiling source code• 
Compiling the kernel• 
Keeping your operating system updated• 
Backup strategies and media• 
Linux and third−party backup and restoration tools• 
Disaster recovery techniques• 

110



Chapter 5: Creating and Maintaining User Accounts

Overview

Managing users and groups is a large part of your job as a system administrator. User accounts
provide users with access while limiting their access as appropriate. User accounts also identify
individual users so that you have the ability to track what your users are doing. Setting up user
accounts is one of the most visible jobs you'll have. Learning to do it efficiently will save you hours in
the long run, and the confidence you'll exude from knowing it well will put you in good standing with
your users.

Linux uses two or three files to maintain user and group information. The /etc/passwd file stores
information about user accounts, and /etc/group stores information about groups. Linux systems
also use a file called /etc/shadow to maintain passwords. Later in the chapter you'll see examples of
these files. You'll also see that all the basic administrative tasks of adding, removing, and modifying
user and group accounts can be done in any of three ways: by manually editing the account's entry
in /etc/passwd or /etc/group, by using Linux command−line utilities that pass the relevant
information to those files, or by using a GUI tool like Webmin to enter the same information.

User Accounts

Different types of users have different needs and may be assigned different types of accounts.
Selecting the right type of account will ensure that the user has the needed access without allowing
unnecessary access that compromises security. Common account types include:

TCP/IP network access accounts to link PPP and SLIP users to the server (and perhaps
beyond) via TCP/IP networking protocols

• 

UUCP network accounts, which allow for networking using older protocols• 
Normal login accounts (also called shell accounts)• 
Mail accounts (POP, virtual POP, or IMAP) for mail retrieval only• 
FTP−only accounts• 

The two special account types you'll encounter most frequently are Point−to−Point Protocol (PPP)
and Post Office Protocol (POP) accounts. Both of these account types obviate the need for a user's
home directory to exist. Both POP and PPP users never directly log into a user shell on the system,
so such users have no need for a home directory. When you create an account for someone who
doesn't need shell access, a POP user for example, set the login shell to /bin/false. This way, even
if the user attempted to log in at a console or through a protocol such as Telnet, the session would
immediately terminate with an error exit code of 1—in other words, the login attempt would fail, even
if the user presented a correct password.

The POP user's Mail User Agent (MUA) authenticates with the mailer system itself. The PPP user
does need a login shell of sorts, though. The login shell is effectively the PPP daemon itself, and
authentication is performed when the connection is created. Create a home directory for the PPP
user at /home/loginname where loginname is the user's login and set the PPP user's login shell set
to /usr/lib/linuxconf/lib/ppplogin. This gives you a user as if created by Webmin. Alternatively you
can set the user's home directory to /bin/false since PPP users won't actually log into an account on
the PPP server system. Some systems locate ppplogin in an alternate location, so be sure to check
what is appropriate for your system.

111



The /etc/passwd File

Information about each user is contained in the /etc/passwd file. As a system administrator, it is
critical that you clearly understand this important file. In the excerpt shown in Listing 5.1, you'll
notice that root is listed first. The root user is always assigned the user ID (UID) 0 and group ID
(GID) 0. Other special users and accounts associated with services and daemons are listed after
root and always have UID and GID values below 100; Red Hat starts UIDs at 500 just to be safe.
Last, regular, and special accounts for individual users are listed.

Listing 5.1: An Example of an /etc/passwd File

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:operator:/root:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher−data:
ftp:x:14:50:FTP User:/home/ftp:
nobody:x:99:99:Nobody:/:
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
named:x:25:25:Named:/var/named:/bin/false
marty:x:500:500:Not Feldman:/home/marty:/bin/bash
ernie:x:501:501:Earnest too:/home/ernie:/bin/csh
betty:x:502:502:Ready Betty:/home/betty:/bin/pop
donald:x:503:503:Unka Donald:/home/donald:/bin/bash

Looking at the last entry, Donald's record, you can see the following colon−delimited fields:

Username Donald's username is not capitalized. Typically, initial capitalization is not
used in order to avoid upper/lowercase confusion. There is no default value for the
username field.

Encrypted Password Technically, this field holds the password for users; however,
this particular Linux system is using shadow passwords, which are held in
/etc/shadow. Therefore the /etc/password file contains an x in the second field to
indicate to login that the actual password is held elsewhere. Shadow passwords are
discussed more fully later in this chapter.

User ID Throughout the system, any file owned or created by Donald will have this
number associated with it. It is actually this UID that will be associated with Donald's
files, and the human−friendly donald is what is displayed to us, for example by the ls
command. Also, every process executing on the system will be associated with a
UID. Typically it's the UID of the user who starts up the process.

Default GID This is Donald's login group. All files are owned by both a user and a
group. When Donald creates a new file, it will by default receive his GID value, which
will also be associated with the file. It is no coincidence that Donald has a GID equal

112



to his UID, as do all of the other users listed in the password file in Listing 5.1. This is
by design under Red Hat, an approach called user private groups. We will explore
this approach later. Other Linux distributions, for example SuSE, use the traditional
approach where all users are default members of one large collective group, typically
named users. One of your jobs as a system administrator is to decide whether to use
your distribution's default group assignment scheme or use another one.

User Description This field holds descriptive information about the user (Unka
Donald in this example). In some organizations, it contains phone numbers, mail
stops, or some other contact information. Its contents are included with the finger
utility's report.

User's Home Directory When the user is authenticated, the login program uses this
field to define the user's $HOME variable. By default, in all Linux distributions, the
user's home directory will be assumed to be /home/username. If the user's home
directory can't be accessed, the user will be defaulted to the root (/) directory.
"Landing" in the root directory when you log in is always an indication that something
is awry.

User's Login Shell When the user is authenticated, the login program also sets the
users $SHELL variable to this field. By default, in all Linux distributions, a new user's
login shell will be set to /bin/bash, the Bourne Again Shell. If no shell is specified in
/etc/password, the system defaults to the Bourne shell, /bin/sh. Special user
accounts sometimes require that the user's login shell be set to something other than
a shell path, as was discussed above in the example of creating a PPP user account.

Listing 5.1 reveals over a dozen system accounts (with UIDs of less than 100) in addition to the user
accounts (with UIDs of 500 or above in Red Hat). Some of these accounts, such as root, bin,
daemon, and halt, are more−or−less required on any Linux system. Others, such as mail, news,
games, gopher, and ftp, are associated with specific servers or program collections. Your Linux
system can get by without these accounts, but if you install certain programs, they may not work
correctly, because they'll assume that these accounts are present. Other accounts, such as nobody,
fall in between these two cases; they may be used by several different packages but aren't strictly
required for basic functionality.

Some programs add users to /etc/passwd during installation. The qmail mail server, for example,
adds several entries for its own use. If you install such a program but then remove its users, the
program may fail to operate correctly, or at all. You should, however, remove any such accounts if
you remove the software that required them.

Tip It's a good idea to back up the /etc/passwd file (as well as the /etc/shadow file, which stores
passwords, and /etc/group, which stores group information) soon after system installation, as
well as after adding or deleting users. This can make it easier to recover the system if you ever
need to reinstall. It can also help you track down system break−ins, because crackers often
create their own accounts. These often have a UID of 0, giving them root privileges even if they
use another username on the account. Crackers also sometimes add passwords (revealed in
/etc/shadow on most systems) and login shells to normal system accounts, such as ftp.

Shadowed Passwords

When a user picks or is assigned a password, it is encoded with a randomly generated value
referred to as the salt. Using the salt, any password can be stored in 4096 different ways. The salt

113



value is stored with the encrypted password. When a user logs in and supplies a password, the salt
is first retrieved from the stored encrypted password. The supplied password is then encoded with
the salt value and compared with the stored password. If there is a match, the user is authenticated.

Because it is used to obtain user and group names from the system−held UIDs and GIDs, the
/etc/passwd file must be readable by anyone on the system, and this makes it vulnerable to attack.
Anyone can pull out a user's encrypted password string and compare it against a generated list of
dictionary words that have been encrypted using the same algorithm used to encode the password.
A cracker trying to break the password generates the list by encrypting simple dictionary words
using all 4096 salt values. If the password string matches one in the list, the person running the test
has that user's password. In order to combat this security risk, the concept of shadowing was
adopted.

Shadowing solves the problem by relocating the passwords to another file (/etc/shadow). Only root
can read and write to the /etc/shadow file. By default, most Linux distributions use shadow
passwords. Listing 5.1 shown earlier reflects this fact; all its password entries are x, which indicates
that the password is shadowed.

Refer back to the last line in Listing 5.1. The password field in the donald entry is replaced with an x.
A line in /etc/shadow contains the encrypted version of Donald's password as well as some other
information:

donald:HcX5zb8cpoxmY:11088:0:99999:7:0::

The fields in the /etc/shadow file are as follows:

Username This is Donald's login name, which matches the one we saw in the
/etc/passwd file.

Encrypted Password This is where the actual encrypted password is stored on a
system using password shadowing.

Last Password Change This is the date that the last password change took place
written as the number of days since January 1, 1970.

Days Until Change Allowed This defines the number of days that must elapse
between password changes. This is typically set to 0, allowing the user to change the
password as often as desired.

Days Before Change Required This sets the maximum number of days the user will
be allowed to keep the same password. After the specified time period, the user will
be forced to change the password. If password changes are not forced, this field is
set to 99999.

Days Warning Before Password Expires This field is used to set the number of
days prior to password expiration you want the user to be notified. Typically the user
is notified a week in advance, so this field is set to 7.

Days Between Expiration and Deactivation This sets the number of days that an
account may be expired before the account is disabled. If inactivation is not intended
to be automatic, the field is set to −1 or left empty.

114



Account Expires This field shows the date the account will be disabled, represented
as the number of days since January 1, 1970. This is particularly useful for students
with set graduation dates and temporary employees. If this type of automatic
deactivation is not to be used, the field is set to −1 or left empty.

Special Flag This field is reserved for future use. It typically remains empty.

Shadow passwords were first used in SCO Xenix, but the Shadow Suite was freely distributable.
Red Hat doesn't use the Shadow Suite, but instead uses the PAM modules to perform the same
function. The utilities involved in maintaining shadowed passwords include the following:

pwconv  Uses the values of PASS_MIN_DAYS, PASS_MAX_DAYS, and
PASS_WARN_AGE from /etc/login.defs to add new entries to the /etc/shadow file
and removes any entries in /etc/shadow that don't have corresponding entries in
/etc/passwd.

Tip Since most Unix variations use the same format for their /etc/passwd
files, it is possible to migrate users directly from a Unix platform to
Linux. If the Unix system is using shadowed passwords, you must first
run the command to "unshadow"— pwunconv, listed next. Copy the
appropriate user lines from the passwd file of the other machine into
the /etc/passwd file on Linux and run pwconv to reapply shadowing.

pwunconv

Checks the /etc/passwd file against the /etc/shadow file, updating the /etc/passwd
entries with corresponding /etc/shadow entries by putting the /etc/shadow password
field into the corresponding line in /etc/passwd. The /etc/shadow file is removed upon
completion. Some password aging information is lost. This effectively disables
shadow passwords. You're only likely to need to do this if you must use some
outdated utility that insists on seeing passwords in /etc/passwd, or if you want to
manipulate accounts as one file, as when migrating users from another system.

grpconv

Performs the same function as the pwconv utility but on groups from the /etc/group
file instead. This is covered more thoroughly in the Groups section below.

grpunconv

Performs the same function as the pwunconv utility but on groups instead. This is
covered more thoroughly in the Groups section below.

Administrator's Logbook: Password Conversion

Date: 01/20/2002

System: E12345678

Action: Used pwunconv to convert from shadowed to nonshadowed passwords in order to integrate
usernames from System E12248271, which uses nonshadowed passwords.

115



Date: 01/22/2002

System: E12345678

Action: Used pwconv to re−enable shadowed passwords after successful integration of accounts
from System E12248271.

Adding New Users

To add a new user to the system, you must have root access, and you must follow a series of
general steps. The required steps are:

Create a record for the user in /etc/passwd.1. 
Set the user's password.2. 
Verify the login shell selection for the user.3. 

There are also two optional steps. These help to configure a useful environment, but not all account
types require these steps. They are:

Create a home directory for the user, setting the permissions as appropriate.4. 
Populate the user's home directory with various useful files. You might want to add a
company−specific README file, for instance, for the benefit of new users.

5. 

You can perform these as single discrete steps, but you can ease your administrative burden by
automating the process using either user−creation scripts, which have existed for years, or
graphical user interfaces, which have appeared more recently.

Adding a User from Webmin

For the simplest default accounts, many administrators find it best to work from the command line,
specifying switches to the useradd and passwd commands, as described in the next section. To
create accounts that include some nondefault elements, however, you may prefer to work with a
GUI, such as Webmin. In particular, creating any of the special accounts mentioned earlier in this
chapter from within a GUI takes care of the peculiarities of that account's specific authentication
sequence. Using a GUI tool helps to maintain consistency and provides excellent cues for the
optional fields.

In order to create a user account using Webmin, simply point your web browser to port 901 using
the following format:

http://hostname:901/

You will then be prompted to log in. See Chapter 4 for more information about installing and logging
into Webmin.

Once the Webmin screen comes up, you'll need to select Users and Groups. Below the Users
Listing, select the "Create a new user" link. Doing so will bring up the Create User window, as
shown in Figure 5.1. Set the appropriate values for the new user and click the Save button.

116



Figure 5.1: Webmin's Create User screen lets you specify the parameters for a new user.
The only information you truly must enter to add a user with Webmin is the username and the home
directory. It's also useful to enter something in the Full Name field, however. Currently, Webmin
requires you to enter a home directory even for a user with the shell set to /bin/false, but there is a
checkbox near the end with which you can specify whether or not to create a home directory if it
doesn't already exist, so Webmin functions correctly. If necessary, you can enter a nonstandard
home directory or group, or specify a particular user ID for the user. If you leave these fields blank,
Webmin will assign default values. As simple as it is to add a new user, you may be tempted to
utilize many of the options presented on the interface, but for the most part the system defaults are
adequate. Once you've entered the correct information, click Save to create the account. Webmin
creates the necessary entries in /etc/passwd and /etc/shadow; a password must be set separately.

As shown in Figure 5.1, there are four major categories of information you can add:

User Details Basic information provided in /etc/passwd and /etc/group.

Password Options Policy enforcement for password aging—the account's
expiration date, number of days between enforced password changes, and so on.

Group Membership Membership in a primary and secondary group.

Upon Creation Whether or not to create the home directory, copy files into the home
directory, or create the user in other modules.

If you want to change any of these characteristics, do so before you click Save to create the
account. Alternatively, you can alter an account's settings after it's been created by clicking the
User's name in the User Listing on the Users and Groups window. This brings up the information for
the selected user and provides similar options as the Create User screen discussed above.

117



Adding Users from the Command Line

Adding a user from the command line also requires the five steps listed earlier. You can use the
useradd command to accomplish all of the steps except assigning a password. The useradd
command accepts the information needed for the individual fields in the /etc/passwd file as
arguments, as follows:

useradd [−D] [−g default_group] [−b default_home] [−s default_shell] username

The useradd command creates a new user account using the values given on the command line
(supplying default values for any items not specified). useradd enters data into the appropriate
system files. It then creates the user's home directory at /home/username by default or at the
location specified by the −b option. The useradd command copies sample configuration files from
/etc/skel. In Red Hat, a group with the same name as the user is created, and the user is added to
that group. (Other distributions handle groups differently, as explained further in the "The Function
of Groups" section later in this chapter, which also describes Red Hat's approach in more detail.)

Next give the user a password, using the passwd command:

# passwd donald
New UNIX password:
Retype new UNIX password:

Tip It is possible to pass a password on the command line with the −p option, but you must
first encrypt the password using the crypt command. If you don't, the system assumes
that the string is encrypted and your login won't work.

The configuration files contained in /etc/skel are intended to be set up for the typical user in that
system. The files in this directory should include .Xdefaults, .bash_logout, .bash_profile, .bashrc,
.kderc, .kde/, and Desktop/. You may add any files that will routinely be contained in your users'
home directories.

Default values for certain user characteristics may be set in the /etc/login.defs file. The mail
directory, which typically is set to /var/spool/mail/username, is set via the MAIL_DIR variable in that
file. Password aging information is also stored in the login.defs file. The minimum and maximum
UID and GID values are stored there for automatic selection by the useradd command.

Modifying User Accounts

Most system administrators make changes to user accounts by editing the appropriate files. It is
often easier to use a text editor to edit the passwd file to change a simple configuration detail like
the user's shell than to bring up a GUI utility or use usermod at the command line. We'll show you
all three, and you can decide which you prefer.

Manually Modifying User Accounts

The most direct way to modify a user's account information is to edit the corresponding entry in
/etc/passwd. For example, suppose you wish to change our hypothetical user Donald's shell to the
C shell. Use your favorite editor to open the /etc/passwd file. Donald's line looks like this:

donald:x:503:503:Unka Donald:/home/donald:/bin/bash

Simply change the /bin/bash to /bin/csh, and save the file. The next time Donald logs in, he will be
using the C shell. Of course, other information, including the user's name string, Unka Donald, may

118



be changed as well. You can change the home directory, but you must create the new directory and
move any files from the old directory to make it usable. Do not change the UID or GID unless you
really know what you're doing. If you change these fields inadvertently, Donald will lose access to
his files, since the system sees the owner and group designation numerically and uses the
/etc/passwd file to convert them for output in human readable format to the user.

In principle, it's also possible to edit the contents of /etc/shadow in a similar manner. In practice,
though, most of its contents come in a form that's less easily handled by humans. The password is
encrypted, so you can't change it by hand unless you're simply copying a password from another
system (which is potentially risky). The time information is entered in units of days since 1970,
which is awkward to compute. All in all, it's best to leave /etc/shadow alone.

Modifying User Accounts with Webmin

To modify any user's account, take the following steps:

Start Webmin by setting your browser to:

http://hostname:901/

1. 

Open Users and Groups.2. 
Select the account that you'd like to change by double−clicking the username.3. 
You will then be presented with the Create User information screen, which is similar to
Figure 5.1, with any existing values filled in. The biggest changes are in the Upon Save
section, where you are asked whether to move the home directory or change the
owner/group settings. In addition to the Save button, there are buttons to view any recorded
login information, read e−mail, and delete the user. Figure 5.2 displays these options.

Figure 5.2: Editing a user offers slightly different options than when adding a user.

4. 

Change the appropriate fields, and select Save to accept the modified user information.5. 
Close the browser.6. 

119



Modifying User Accounts with usermod

To use the usermod utility to alter a field in a user's password record from the command line, use
the following command:

usermod [−c comment] [−d home_dir [−m]] [−e expire_date] 
[−f inactive_time] [−g initial_group] [−G group[, ]]
[−l login_name] [−p passwd] 
[−s shell] [−u uid] [−o] [−L|−U] login

The important usermod options and their meanings are:

−c comment The string that will replace the current comment.

−d home_dir [−m] New home directory. If −m is specified, move the contents of the
old home directory to the new home directory, which is created if it doesn't already
exist.

−e expire_date The date, in YYYY−MM−DD format, on which the user account will
be disabled.

−f inactive_time The number of days after password expiration until the account is
permanently disabled. Use −1 to turn off the automatic disabling feature and 0 to
disable the account immediately upon password expiration.

−g initial_group The user's new initial login group. The group must exist.

−G  group  O ther  g roups  to  wh ich  the  user  shou ld  be long .  The  l i s t  i s
comma−delimited, with no white space. The groups listed must already exist. If the
user is currently a member of a group that isn't listed, he or she will be removed from
that group.

−l login_name The name of the user will be changed to this login name. This will
cause the files owned by this user to show the new login name as owner since the
UID will be matched to the entry in the /etc/passwd file. You probably want to change
the home directory to use this new login_name as well. You may not change the
login_name of a user who is currently logged in.

−p password The user's new password as encrypted by the crypt command. If you
pass plain text, it will appear in /etc/passwd as plain text. If you then run pwconv, the
/etc/shadow file will contain the plain text password. If the user attempts to log in
using the same text string, access will be denied, because the system will attempt to
decrypt the text string taken from /etc/shadow before it matches it to the input
password string. To change a password, you normally use the passwd command,
not usermod.

−s shell This is the shell that the user will be assigned at login. Entering a blank for
this option causes the system to select the default shell, which in Linux is Bash.

−u uid The numeric value of the user's ID. This value must be unique unless you
also specify the −o option. System accounts will normally be assigned a UID
between 0 and 99. User accounts on most Linux systems begin with 500, leaving
100–499 for other uses. When the UID is updated using usermod, any files owned by

120



the user and existing in the user's home directory will be updated to the new UID so
that the /etc/passwd file will assign the correct owner to these files. Files outside the
user's home directory will retain the old UID number, meaning that an ls −l of these
files will show the numeric version of the old UID or a different user's name if a new
user has been assigned the old UID.

−L Places an exclamation mark in front of the user's password in the /etc/passwd file,
which disables the user's ability to log in.

−U Removes the exclamation mark from the user's entry in the /etc/passwd file,
re−enabling the user's password.

login The user's login name.

Disabling User Accounts

If you need to deactivate an account but believe that the account will be needed again in the future,
you'll want to disable it instead of deleting it. A deleted account and a disabled account look exactly
the same to a user attempting to log in using that account, but a disabled account does not remove
the user's home directory or any files owned by that user.

Manual Disabling

The simplest way to disable an account is to make sure that the user's password has expired. To do
this, you can modify the user's entry in /etc/shadow. As discussed earlier, dates in this file are
represented as the number of days since January 1, 1970. The third field in an entry is the date the
password was last modified, and the eighth field is the date the account will expire. So you first want
to change the user's password; the third field in the entry will then reflect today's date. Subtract one
from that number, insert the new number immediately before the last colon, and save the file.

donald:HcX5zb8cpoxmY:11088:0:99999:7:0::

Subtracting 1 from 11088 yields 11087, so you'd change the entry to this:

donald:HcX5zb8cpoxmY:11088:0:99999:7:0:11087:

Disabling an Account with Webmin

To disable a user's account, follow these steps:

Start Webmin as previously described.1. 
Open Users and Groups.2. 
Select the account that you'd like to disable. You'll then be presented with the User
Information screen, which resembles Figure 5.2.

3. 

Change the Expiry Date in the Password Section to today's date.4. 
Click Save.5. 
Close the browser.6. 

Disabling an Account with chage

There is no useradd/usermod equivalent that allows you to disable a user's account, but you can
use the chage (change aging) command to update the user's password expiration date to
yesterday. chage allows you to input this as the number of days since January 1, 1970, or in the

121



YYYY−MM−DD format as follows:

# chage −E 2000−8−12 someuser

If the date is passed, the account will be disabled but can be enabled later using the same method.
When the user attempts to log in, he or she will see the following message:

Your account has expired; please contact your system administrator

Deleting User Accounts

If you are sure that you will not need a user's account again, you can delete it. Deleting an account
basically reverses the steps you took to create it. The steps to delete an account are:

Delete the record for the user in /etc/passwd.1. 
Back up the user's files.2. 
Delete the user's files.3. 
Delete the user's home directory.4. 

You'll also need to search the system for any other files owned by this user and either remove them
or reset their ownership. Removing a user's account may all be done by hand or via tools as before.

Manually Deleting an Account

First you'll want to remove the user's /etc/passwd entry. When pwconv is run again, the /etc/shadow
entry for that user will be automatically removed as well. Next, remove the home directory and all of
the files contained therein using an rm command like the following:

# rm −r /home/donald

The rm command will remove the /home/donald directory and all the files and subdirectories it
contains. If you're confident enough and would rather not be prompted, you can add the −f option to
the above command (making it rm −rf /home/donald), which instructs Linux not to prompt you
about removing files. This is very dangerous, so you might want to just endure the prompts.

Tip It's a good idea to back up a deleted user's account before running the rm command. You can
do this by archiving the files using the tar backup utility (described in Chapter 9) and storing the
files on floppy disk, high−capacity removable disks like Iomega Zip disks, CD−R discs, or tape.
Keeping a deleted user's files on hand in this way can be handy if you discover you've deleted
the wrong account or if you need to recover a particular file from the ex−user's account for
some reason.

Next you need to search the computer for other files owned by the deleted user and determine what
to do with these files. Use the find command for this as follows:

# find / −gid 503 −uid 503

Assuming Donald's user ID was 503 and his original group ID had never been changed, this
command would generate a list of files by full path that were owned by Donald or had his group ID.
You'll then need to look through the file list and determine what to do with each file. If you decide to
keep a file but change its ownership, you can use the chown command, as follows:

# chown betty.users /opt/somefile

122



The above command changes the ownership of /opt/somefile to betty, and changes group
ownership to the users group. You can omit the period and group name if you don't want to change
the group, or add an −R parameter before the username to recursively change every file within a
d i r ec to r y .  Fo r  i n s tance ,  t he  f o l l ow ing  command  changes  t he  owne rsh ip  o f  t he
/home/samba/sharedfiles directory and all its files and subdirectories to betty, but doesn't change
the group associated with the files:

# chown −R betty /home/samba/sharedfiles

Deleting an Account with Webmin

You can also delete a user using the Webmin utility. To do so, follow these steps:

Start Webmin as previously described.1. 
Open Users and Groups.2. 
Select the account that you'd like to disable. You'll then be presented with the User
Information screen, which resembles Figure 5.2.

3. 

Press the Delete button.4. 
Click Delete User if you want to leave the user's home directory intact or Delete User and
Home Directory if you want to remove the user's home directory.

5. 

Wait for the confirmation screen.6. 
Close the browser.7. 

Deleting an Account with userdel

The userdel utility will remove a user's entry in the /etc/passwd file and optionally remove that user's
home directory and all the files and subdirectories it contains. Any files owned by that user outside
the home directory will remain on the system and will appear as owned by the user's ID when
displayed via an ls −l command. The userdel command to delete our hypothetical Donald's passwd
entry and home directory looks like this:

# userdel −r donald

You may also choose to delete Donald's /etc/passwd entry but leave all the files in his home
directory by omitting the −r.

Use the find command shown earlier to locate all files owned by Donald or in his group. Those files
must be handled manually.

Groups

You saw earlier in the chapter that each user has a default group identity, called a login group,
which is assumed upon logging in to the system. Once authenticated by /bin/login, the user
assumes the group identity specified in the /etc/passwd file. In Red Hat, a user's default group ID is
the same as the user ID; in some other Linux distributions, all users are by default put in a single
group, typically called users. Linux administrators can create new groups, associating users for
specific purposes such as projects that require certain users to have access to the same set of files.
The next sections show how to add and remove groups, and how users can become members of
different groups.

123



The Function of Groups

Groups are an integral part of Linux security. As described in Chapter 7, every file has an
associated permissions string. This string specifies the presence or absence of read, write, and
execute permission to each of three classes of users: the file's owner, the file's group, and all users
on the system (often called world permissions). By controlling the group setting for files and by
assigning users to particular groups, you can enhance the internal security of your Linux system.
For instance, if your system is being used by two different sets of employees, each of which is
working on one project, you can create two groups, one for each set of employees. By denying
world access to users' files, you can prevent employees in one group from reading files created by
members of the other group. If a few users belong to both groups, you can make those users
members of both groups, so they can read both groups' files.

Because every Linux installation is unique, it's impossible for a Linux distribution to come with a
default group setup that's appropriate for all environments. The packagers of Red Hat can't know
what groups you'll need, any more than they can know what users you'll need. Nonetheless, the
account creation tools make certain default assumptions about how you might group your accounts.
Different distributions do things in different ways.

In Red Hat, every time a new user is added, a group with the same user ID and numeric ID as that
user is created. Say the user is donald again. A user group called donald would be created, and the
user donald would be added to that user private group. The umask (see Chapter 4) is set to 002,
which means that any file created by donald will have read−write permission for him (the owner) and
for the donald group and read−only for world. This works well since we know that donald has
membership in the group by default. Since Donald is the only member of his user private group,
only he and the superuser can access files with the group set to donald. Anyone can be added to
the donald group and will then have group access to any files that Donald creates with this umask.

Other distributions don't always work this way. Some create a single group (generally called users),
and place all users in this group. Thus, both the donald and betty accounts by default belong to the
users group. Typically, the umask is 022, so users can read each other's files, but cannot write to
them. This is a shared−group approach.

On small workstations, both these approaches tend to work well, because workstations tend to have
just one or two users, and the implications of group membership have small consequences. At
worst, you may need to add one or two users to each other's groups in the user private group
approach, or create a couple of new groups and change default group membership in the shared
group approach. On larger systems, though, you're likely to need to create a more complex
configuration. In an academic environment, for instance, you may need to create groups for different
courses; and in a work environment, you may need to create groups for different working groups.
The tools to do this parallel the tools used to create user accounts in many respects.

The /etc/group File

Information about each group is contained in the /etc/group file. Just as with /etc/passwd, it is critical
that any system administrator clearly understand this important file. Its structure is fairly simple.
Listing 5.2 shows an excerpt from a typical /etc/group file.

Listing 5.2: A Portion of the /etc/group File

root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon

124



...other entries ommitted...
slocate:x:21:
project2038:x:1000:ernie,betty
marty:x:500:
ernie:x:501:
betty:x:502:
donald:x:503:

Each entry declares a group name, password, a numeric group ID (called the GID), and a list of
group members. Often the list of group members will be empty, meaning that only the user with the
same name as the group is a member. Table 5.1 lists the default groups that Linux creates
automatically upon installation.

Table 5.1: Default Linux Groups

Group GID Members Description
Root 9 Root Superuser group
Bin 1 root,bin,daemon Running programs
daemon 2 root,bin,daemon Running programs
Sys 3 root,bin,dam System group
Adm 4 root,adm,daemon Administrative group
Tty 5 Access to terminals
Disk 6 root Access to disk device files
Lp 7 daemon, lp Printing group
Mem 8 Kernel memory access
Kmem 9 Kernel memory access
wheel 10 root Users with near−root privileges
Mail 12 mail Used by mail utilities
News 13 news Used by Usenet news utilities
Uucp 14 uucp Used for UUCP networking
Man 15 Used for man page access
games 20 Group for storing game high scores
gopher 30 Used by the Gopher utility
Dip 40 Dialup IP group (PPP, SLIP)
ftp 50 Group for FTP daemon
nobody 99 Low−security group
users 100 Default user group on many systems
Utmp 22 Used for utmp utility
Xfs 43 Used by the X font server
apache 48 Used by the Apache daemon
named 25 Used by DNS
floppy 19 Group for access to low−level floppy disk

devices
pppusers 44 Users whose only access is PPP
popusers 45 Users whose only access is POP
slipusers 46 Users whose only access is SLIP

125



Adding New Groups

Just as users can be added manually, with a command−line utility, or using Webmin, groups can
also be created in any of these ways. The different methods are explained below so that you can
choose the method you prefer. (Once you've created a new group, you presumably want to add
users to that group. This process is described shortly, in "Changing Group Membership.")

Manually Adding a Group

Because the structure of the /etc/group file is fairly simple, administrators typically add groups by
directly editing the file. To create a group with an initial set of group members, simply add the
usernames of the users to the comma−delimited list at the end of the entry. For instance:

cs101:x:101:donald,betty,ernie

To check your work, the id command reports all of the groups a user has membership in. The output
for the root user looks like this:

# id
uid=0(root) gid=0(root) 
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel

Note It's not normally necessary to add root to groups you create. root is a very special
account, which can read and write any file or directory on the computer, so it doesn't
need membership in ordinary user groups. root belongs to several system groups as
a matter of convenience for handling those groups.

The groups command may be used instead to give the same basic information:

# groups
root bin daemon sys adm disk wheel

Adding a Group with groupadd

To add a new group, use the groupadd command, which uses the parameters passed on the
command line to create a new group, relying on system defaults for any parameters you don't
specify. The new group will be added to the system files as needed. The syntax for the groupadd
command is as follows:

groupadd [−g GID [−o]] [−r] [−f] group

The meanings of the various groupadd parameters are as follows:

−g GID The numeric value of the group's ID. The GID must be unique unless the −o
option is given. The value must not be a negative number. Under Red Hat and some
other distributions, the default is to select the smallest remaining ID that is greater
than 500 and greater than the ID of any other group. Still other systems use a value
greater than 100 and greater than the ID of any other group. System accounts use
the values between 0 and 499 under Red Hat and between 0 and 99 on some other
systems.

−r  Designates that the added group wil l  be a system group. Under many
distributions, the group will be assigned the first available GID under 499 unless the
−g option specifies a GID to be used instead. Other systems use a boundary of 99.

126



−f If a group of the specified name already exists, forces the groupadd command to
leave that group as it exists on the system and continue without returning an error
message. (Ordinarily, groupadd would complain about the attempt to reuse a group
name.) Also this option changes the way that −g behaves in Red Hat, so that if −g is
given without −o, the group will be added using the smallest GID available as if
neither −g nor −o were specified.

group The name of the new group being created.

Adding a Group with Webmin

You can also use the Webmin utility to add new groups. To do so, follow these steps:

Select Users and Groups from Webmin page.1. 
Scroll down to the Groups section.2. 
Click the Create a new group button. You will then be presented with a User Groups screen
as shown in Figure 5.3.

Figure 5.3: You can specify user group information using the Create Group screen.

3. 

Specify the group's name, password, Group ID, and any alternate members.4. 
Click Create.5. 

Changing Group Membership

All actions performed by a user are performed under a specific user ID and group ID. Therefore,
although a user may belong to more than one group (by adding the username to multiple /etc/group
entries, as described earlier), a user may only act as a member of one group at a time. Ordinarily,
this is not terribly important, but it can be in some cases. For instance, a user might need to create
files that carry a certain group membership, so that other members of the appropriate group can
read those files. Every user has a primary group affiliation, specified in the user's /etc/passwd file
entry. Upon logging in, the user acts as a member of that group. The newgrp command provides a

127



means for users to temporarily change the group associated with their actions. (The command sg is
frequently a synonym for newgrp.) To use newgrp, type the command, a hyphen (which causes the
system to reinitialize the user's environment variables), and the new group name. For instance, to
become a member of the project1 group, type:

$ newgrp − project1

If the user donald has used newgrp to join the group project1, when he creates a new file, such as a
project document, it will show up in a long listing (ls −l) with group ownership by the new group:

−rw−r−−r−−   1 donald   project1      10332 Aug 20 16:07 proj_doc

NoteAlthough you need to use the newgrp command to create files with group ownership other
than your primary group (or use chown or chgrp to change ownership after the fact), this isn't
necessary to read files owned by a group to which you belong, but which isn't your primary
group. For instance, if Donald is normally a member of the donald group but is also a member
of the project1 group, he can read project1 files even without using newgrp, provided the files
have group read permissions.

By design, the administrator can configure newgrp to require authentication for group access, but
this doesn't seem to work correctly in the Red Hat distribution, so we advise you to avoid assigning
passwords to groups.

Modifying Groups

The modification of groups may be done manually, via the command−line groupmod tool, or via
Webmin. You can modify the group name, the group ID number, and group members. You might
need to change a group name or ID number on one system to bring two or more computers'
configurations in line with one another or to change your scheme for group layouts. Adding and
removing group members is an ordinary part of system administration.

Manually Modifying a Group

To manually modify group information, edit the /etc/group file. Here you can change the group
name, GID, and the members. If you wish to change other information, it is much easier to use the
useradd or the Webmin utility.

As an example, consider the following group definition:

project1:x:503:donald,betty

Suppose you want to give the group a more descriptive name and add a new user, emily. You could
change the definition as follows:

moonshot:x:503:donald,betty,emily

Thereafter, the group ID will appear in program listings and the like as moonshot, not project1.
(Even existing files will be changed.) When changing to this group, group members will need to
specify moonshot as the group name, and the user emily will be able to use the group's resources.

Warning Changing the GID, like changing the UID of a user, will "orphan" files owned by
the group. The recovery process is the same as described earlier for altering
existing files' UIDs. Unless you have a compelling reason to do so, it's best not to
change the GID of an existing group.

128



Modifying Group Information with groupmod

The characteristics of a group may be modified with the groupmod command. All appropriate
system files are updated. The syntax for groupmod is similar to that of groupadd:

groupmod  [−g GID [−o]] [−n group_name] group

−g GID The numeric value of the group's ID. This value must be unique unless the
−o parameter is specified. As with the groupadd command, group IDs must be
nonnegative and should not fall between 0 and 99 unless the group is a system
group.

−n group−name The new name of the group.

group The old name of the group.

Modifying Group Information with Webmin

The Webmin utility may be used to modify a group. Simply navigate to the Users and Groups option
as before. When presented with the group list, highlight the one you wish to modify. You will then be
presented with the Edit Group screen as shown in Figure 5.4, with the existing values filled in. Make
changes as needed, and then click the Save button.

Figure 5.4: You can change user group information using the Edit Group screen.
Deleting Groups

Groups may also be deleted using the same three methods as in other account management tasks:
manually editing the /etc/group file, using the command−line (the groupdel command), or using
Webmin.

129



Deleting a Group with groupdel

You can delete groups using the groupdel command; this command deletes any entries that refer to
the named group:

groupdel group

The groupdel command does not, however, search for files with that GID. That must be done
separately with the find command, as follows:

# find / −gid group

Deleting a Group with Webmin

The Webmin utility can also be used to delete a group. Simply select the Users and Groups option
as before. When presented with the group list, highlight the one you wish to delete. You will then be
presented with the Edit Group screen as shown in Figure 5.4, with the existing values filled in. Click
the Delete button.

Manually Removing a Group

Although you can remove a group simply by editing the /etc/group file to delete the line that
corresponds to the group you wish to remove, that's not as efficient as the other methods. If you
remove the group's entry in /etc/group, you should probably remove the corresponding entry in the
/etc/gshadow file (in which shadowed group passwords are stored, if you have elected to use group
passwords). If you do not use passwords for your groups, this file will not be automatically updated.

In Sum

As a multiuser OS, Linux relies upon user accounts and groups to maintain security and keep the
system usable to all its users. Over the years, manual methods, text−based tools, and GUI tools
have been developed to manage these accounts and groups. However you do it, though, it's
important that you understand how Linux handles its accounts and groups—the relationship
between usernames and UIDs or group names and GIDs; where passwords are stored; and how
users are assigned to groups. Understanding these topics will allow you to effectively manage your
user base, whether it's just one or two people or thousands. These subjects are also critically
important for securing the files and processes your system uses. We discuss filesystems and disk
management in the next chapter.

130



Chapter 6: Filesystems and Disk Management

Overview

One of Linux's strengths as an operating system is its support for a wide variety of filesystems. Not
only does Linux support its own native filesystem, the Second Extended Filesystem (ext2fs or ext2),
but it also supports a wide array of filesystems used by other Unix−like OSs, Windows, MacOS, and
others. This support makes Linux a particularly effective OS in a multi−boot environment, and it can
also be quite useful for a Linux−only system. You can use Linux's extensive filesystem support to
read removable media and even hard disks from other computers.

Note The word filesystem has two meanings. As used in this chapter, filesystem
means a disk− or network−based data structure used for storing files. It also
refers to the hierarchy of directories and files on a disk. In this second sense, the
filesystem is a logical structure that you can view with a file manager or with
Linux commands such as ls. (Chapter 7 discusses filesystems in this second
sense.) By contrast, the low−level data structures that constitute a filesystem in
i t s  f i r s t  mean ing  a re  la rge ly  inv is ib le  to  you  as  a  user  o r  sys tem
administrator—but their effects are important nonetheless, as illustrated
throughout this chapter.

In order to access these filesystems, you must understand the tools that Linux uses to make this
access possible. Most crit ically, you must recognize how Linux mounts and unmounts
filesystems—that is, how the OS grafts a removable disk or hard disk partition onto its existing
directory structure. In addition, you should be familiar with the tools available to help you prepare a
filesystem for use and keep it working smoothly.

This chapter begins with an overview of Linux's filesystem capabilities, including the major
filesystems it supports. The discussion then moves to practical issues of filesystem handling—how
to mount and unmount both hard disk and removable−media filesystems. It concludes with a look at
maintaining your filesystems and adding new ones.

Linux Filesystem Support

Linux filesystem support is excellent, but not perfect. Most distributions lack support for at least
some filesystems in their default installations. To use these filesystems, you must locate the
appropriate drivers and, in all probability, recompile your kernel. Other filesystems work, but their
features are limited. Most importantly, many filesystem drivers are available in read−only
forms—they can be used to read files from the foreign filesystem, but not write to the filesystem. Still
others work in full read/write mode, but their feature sets don't mesh perfectly with Linux's
assumptions and requirements. For all these reasons, you must understand the specific filesystems
you're using in order to be aware of the limitations and work around them where possible.

Locating Filesystems

Most Linux filesystems come with the Linux kernel, and Red Hat Linux includes most of these
filesystems in its default configuration. Many of these filesystems are available as kernel modules.
You can find out which filesystem modules are available by typing the following command:

$ ls /lib/modules/x.y.z/kernel/fs

131



In this command, x.y.z is the kernel version number, such as 2.4.18−3. In response, you'll see a set
of filesystem driver directories, such as hfs, each of which contains one or more kernel modules,
such as hfs.o. These modules are usually named after the filesystems they implement. Some of
these driver files are support modules, however, and not independent filesystems. Also, be aware
that not all filesystems appear in this directory—some are built into the kernel file itself. Most
importantly, the filesystem from which Linux boots must be built into the kernel.

Preparing to Use a Standard Filesystem

If a filesystem you want isn't present on your computer, you can check the Linux kernel to see if it's
present in the kernel source tree but not compiled for your system. To do so, you must check the
filesystems available in the Linux kernel File Systems and Network Filesystems configuration
menus (Figure 6.1 shows the kernel File Systems menu). Chapter 8 discusses the kernel
configuration menus and kernel configuration options in greater detail.

Figure 6.1: Filesystems marked as experimental appear only if you opt to make experimental
features available in the Code Maturity Level Options menu.
When you've opened the appropriate kernel configuration menu, you can scroll through the list of
available filesystems to find the one you want. If you're unsure of what filesystem a given kernel
option implements, click the Help button for that filesystem to see a brief description. Once you've
selected your desired filesystems, you must recompile your kernel and kernel modules and then
configure your system to use the new kernel, as described in Chapter 8.

Locating Unusual Filesystems

A few filesystems don't ship with the regular Linux kernel. Most of these are development
filesystems—they're new enough that they have yet to be added to the kernel. The most interesting

132



of these filesystems are two new journaling filesystems, JFS and XFS, which are described shortly,
in "Journaling Filesystems." (That section includes pointers to these filesystems' homes on the
Internet.) Two other journaling filesystems, ext3fs and ReiserFS, have been included in kernels
since early in the 2.4.x kernel series.

If you're looking for a specific filesystem and can't find it in the kernel, try doing a search on Google
Groups (ht tp : / /groups.google.com/) ,  or  wi th  a Web search engine such as Yahoo!
(http://www.yahoo.com/) or Google (http://www.google.com/). There's a good chance you'll find a
lead.

Most nonstandard filesystems require that you patch your Linux kernel—that is, add files to the
kernel source tree. These patches usually come with instructions for accomplishing this task, so you
should follow those instructions. You can then select the kernel driver as just described in
"Preparing to Use a Standard Filesystem," and compile a kernel or kernel modules with the
necessary support.

Linux Native Filesystems

A native filesystem is one that can be used as the primary filesystem for an OS. Linux can run using
nothing but a single native filesystem; that is, it doesn't need a mix of two or more separate
filesystems. An OS's native filesystems are often designed for a specific OS, although in some
cases an OS "inherits" or "adopts" a native filesystem from a predecessor or related OS. Linux has
inherited and adopted filesystems and has had Linux−specific filesystems designed for it. This is in
contrast to foreign filesystems, which are designed for another OS. As a general rule, foreign
filesystems don't mesh as well with Linux as do native filesystems. In some cases, these definitions
become blurred, as you'll soon discover.

This discussion separates native filesystems into two camps: traditional and journaling. Other
categorizations could also be made, but for our purposes this one is quite useful. "Traditional" does
not mean insignificant or poorly performing. Linux's ext2 filesystem falls into the traditional category,
but remains a good performer in most respects, and is very important in 2002. Traditional
filesystems are, however, likely to fade away by mid−decade, if not earlier, in favor of one or more
journaling filesystems.

Traditional Filesystems

Traditional filesystems are derived from filesystem technologies that go back to the 1970s, if not
earlier. Some of these have been updated over the intervening years, and some were even created
in the 1980s and 1990s; but these filesystems share some important characteristics. Most notably,
these filesystems all suffer from the need to perform an extensive filesystem check if they're not
shut down properly.

In a traditional filesystem, when the computer writes data to disk, it does so in pieces. The computer
may perform some disk reads to locate available disk space, then modify on−disk pointers to
allocate space for a file, then write the data to the disk, and then update the on−disk pointers to
complete the operation. As a result, the filesystem as a whole may be in an inconsistent state at any
given moment—one disk structure may indicate that space is allocated to a file, while another
indicates that the same space is free.

Of course, once all operations are completed, the disk state is consistent. The problem comes when
a disk is not properly unmounted. If the power fails or the computer crashes, the disk may wind up
in an inconsistent state; and without the pending operations in memory, Linux cannot know what

133



disk structures may be affected. Linux must therefore perform a lengthy check of the disk's contents
to resolve inconsistencies. This is the reason for the long delay while Linux runs fsck on its disks
when starting after a crash. (Linux also runs fsck after several normal startups, to ensure that no
inconsistencies have crept onto the disk because of bugs or other problems.) Perhaps worse than
the length of the disk check procedure is the fact that it sometimes uncovers serious corruption. In a
worst−case scenario, you may lose all the data on a disk.

Traditional Linux native filesystems include the following:

Minix The Minix filesystem, which uses the type code minix at mount time, was
Linux's first filesystem. This filesystem originated with the Minix OS, hence its name.
By today's standards, the Minix filesystem is quite primitive; for instance, its
maximum size is 64MB. Some people continue to use it on floppy disks, however.

Extended The Extended Filesystem, more commonly known as ext or extfs and
called ext in a mount command, was a unique design that borrowed heavily from
other Unix filesystems. Extfs has been surpassed and was removed from the
standard Linux kernel with the 2.2.x kernel series.

Second Extended The Second Extended Filesystem, usually called ext2 or ext2fs,
uses a mount code of ext2. It was the standard filesystem for Linux systems until
2001, but in 2001 and 2002 many distributions have begun a shift towards journaling
filesystems. Ext2fs is based on extfs but has substantially expanded capabilities.
Ext2fs is the basis for development of one journaling filesystem, as described shortly.

Xia The Xia Filesystem, called xiafs at mount time, was an extension to the Minix
filesystem and competed with extfs and ext2fs. Ext2fs has come to surpass Xiafs in
all important measures. The Xiafs option was removed from the 2.2.x kernel.

ISO−9660 This filesystem is unusual in that its use is restricted to CD−ROM discs. In
some sense, it's not really a native filesystem; but as CD−ROMs intended for use in
Linux invariably use the ISO−9660 filesystem, it's included in this list. Plain ISO−9660
is very limited in filename length, and it lacks Linux's ownership and permissions.
The Rock Ridge extensions to ISO−9660 correct these shortcomings, allowing
CD−ROMs to contain these important features. Another filesystem, Joliet, is used in
conjunction with at least a minimal ISO−9660 filesystem and provides long filenames
for Windows systems. Linux can also read Joliet CD−ROMs, if appropriate support is
compiled into the kernel. All three variants use the iso9660 filesystem type code.

In 2002, the most important traditional Linux filesystem is clearly ext2fs. You'll only find extfs and
Xiafs on museum pieces, and although the Minix filesystem continues to live in 2.4.x kernels, its
practical use is restricted to floppy disks. ISO−9660 and its extensions are important, but only for
CD−ROMs.

Although ext2fs is good by traditional filesystem standards, it has its limits. Most important at the
moment is the disk check's duration problem; however, ext2fs is also limited to a maximum
filesystem size of 16 terabytes (16,384GB). Although 16TB disks are still not available for desktop
computers at this writing, filesystems take sufficient development time that filesystem developers
need to start planning for these disks well before their introduction.

Note Linux relies upon a Virtual Filesystem (VFS) layer to implement features used by all
filesystems. In the 2.2.x kernels, the VFS imposed a partition−size limit of 4TB and a

134



file−size limit of 2GB. The kernel developers have rewritten most of the code
responsible for these limits for the 2.4.x and later kernels, and any remaining
stragglers will no doubt be dealt with by the time 4TB disks become available.

Journaling Filesystems

With small hard disks, the need to perform a disk check after a system crash or power outage is a
bearable nuisance. Such a disk check typically takes no more than a few minutes, and because
Linux seldom crashes, the check is not usually a major problem—unless it uncovers serious
corruption on the disk, in which case files may be lost. On larger disks, however, the disk check
takes a longer time. On big multigigabyte disks, which are extremely common today, a disk check
can take several minutes—or even hours! Such a delay is more than a minor nuisance, particularly
if it's imposed on a server that must be up at all times.

One solution to lengthy disk checks is to implement a journal, which is an on−disk list of pending
operations. As the OS calls for on−disk changes such as file writes, the filesystem driver writes
information concerning these changes to the journal. When the OS makes real changes to the disk
structures, it makes them in such a way that, when they're finished, the disk is in a consistent state;
then the OS clears the journal. The result is that, should a power outage or system crash occur, the
OS knows which files and disk structures may be affected by the problem, because all the pending
changes are recorded in the journal. The OS can therefore undo or redo operations indicated by the
journal, producing a consistent filesystem. This greatly reduces the post−crash startup time.

Some overhead is associated with maintaining a journal, but in practice, most journaling filesystems
use more advanced designs than do non−journaling filesystems. This means journaling filesystems
often (but not always) outperform traditional filesystems. These filesystems also typically support
much larger maximum filesystem sizes than does ext2fs.

Two of the four journaling filesystems described here are now included in 2.4.x kernels. These
filesystems aren't quite as well tested as Linux's tried−and−true ext2fs, but all are now useable for
at least some purposes. The four contenders for the next−generation Linux filesystem crown follow:

Third Extended The Third Extended Filesystem (ext3 or ext3fs) is an extension to
ext2fs. The basic idea is to take ext2fs and add a journal. One of this filesystem's
great advantages is that you can convert an ext2 filesystem into an ext3 filesystem
by running a single command; your data remain intact. It also uses standard ext2fs
utilities for creating, tuning, and otherwise manipulating filesystems. As you might
expect, ext3fs's type code is ext3. This filesystem is included in the 2.4.x kernels, and
is the default filesystem for some distributions, such as Red Hat 7.3.

ReiserFS This filesystem is a completely new design, which was added to the 2.4.1
Linux kernel. ReiserFS has earned a reputation for stability and efficient use of disk
space, particularly when a partition has many small files. Use the reiserfs type code
t o  a c c e s s  R e i s e r F S  p a r t i t i o n s .  T h e  m a i n  R e i s e r F S  W e b  s i t e  i s  a t
http://www.namesys.com/. ReiserFS is the preferred fi lesystem for some
distributions, such as SuSE.

XFS XFS is Silicon Graphics's (SGI's) journaling filesystem. It's been used on SGI
Unix workstations and servers (which run the IRIX OS), and the company has ported
it to Linux and released it under the GPL. This filesystem supports maximum
filesystem sizes of up to 16,384 petabytes (PB; 1PB is 1024TB), and maximum file
sizes of up to 8192PB. (Even with the 2.4.x kernel, though, Linux's VFS imposes

135



much lower limits.) XFS holds the lead in supporting advanced features like Access
Control Lists (ACLs), which provide an alternative method of file access control to the
standard Unix−style permissions. In 2002, few programs support ACLs, though. This
filesystem's type code is xfs. You can learn more at http://oss.sgi.com/projects/xfs/.
XFS is not integrated into the Linux kernel, as of version 2.4.18.

JFS IBM's Journaled Filesystem (JFS) was originally developed for the AIX OS;
however, IBM has released its advanced filesystem under the GPL and is actively
supporting its porting to Linux. In addition to its journal, JFS supports a maximum
filesystem size of 32PB and a maximum file size of 4PB. Use the jfs filesystem type
code when mount ing  JFS par t i t ions .  More in format ion  is  ava i lab le  a t
http://oss.software.ibm.com/developerworks/opensource/jfs/. Like XFS, JFS isn't yet
included in the standard kernel, as of version 2.4.18.

All of these filesystems offer substantial improvement over ext2fs in that the journaling feature
reduces startup time after a system crash or power outage. Increased partition and file sizes in XFS
and JFS are also a great boon. All of these filesystems support dynamic partition resizing, although
the code to support it is not always entirely stable and complete at this writing. You should check on
the status of this feature if it's important to you.

In 2002, all of these filesystems are usable, but they differ in reliability. ReiserFS is generally
considered the most reliable, but ext3fs and XFS both have good reputations. JFS lags behind the
others somewhat, but in 2002 it's as good as ReiserFS was a year or two before. All of these
filesystems require their own utilities for checking filesystem integrity, creating filesystems, and so
on. All of these filesystems come with appropriate utilities to perform these tasks, but some include
more or more sophisticated tools. In 2002, XFS is unusually complete in this respect, while JFS lags
the others.

Some distributions ship with support for more than two of these filesystems. For instance, SuSE 7.3
includes ReiserFS, ext3fs, and JFS support. You can also patch your kernel to support any of these
filesystems. (Read the filesystem's documentation for detailed instructions.) With the exception of
ext3fs, converting an existing system to use a journaling filesystem requires backing up, creating
the new filesystem, and restoring your files. With ext3fs, you can convert an existing partition by
issuing a command like the following:

# tune2fs −j /dev/hda3

This command adds an ext3fs journal to the /dev/hda3 partition. If the filesystem was mounted
when you issued this command, it creates a file called .journal that holds the journal. If the
filesystem was not mounted, the journal file is completely invisible. To use the journaling features,
you must change your mount options so that Linux mounts the filesystem with the ext3 type. If you
fail to make this change, you'll lose read/write access to the filesystem; the ext2fs drivers refuse to
mount an ext3fs partition for read/write access.

Administrator's Logbook: Kernel Patching

System: E12345678

Action: Patched 2.4.18 kernel with XFS 1.1 support.

136



Foreign Filesystems

In addition to its native filesystems, Linux supports a wide range of filesystems that are mostly used
with other OSs. This filesystem support is important in dual−boot configurations, when exchanging
removable media between OSs, and when using Linux to recover data from a hard disk that
originally resided in another computer. In most cases, you do not want to use a foreign filesystem to
store Linux's core files. These filesystems often lack features that are critical for Linux's use, such
as ownership and permissions. In a few cases, the filesystems support these features, but Linux's
implementation of the filesystem is weak in one way or another.

Microsoft Filesystems

When used in a dual−boot environment, Linux must often coexist with one version or another of
Windows. Also, removable media—floppy disks, Zip disks, LS−120 disks, and so on—are often
created on Windows systems. It's therefore important that Linux support Microsoft's filesystems.
Fortunately, Linux includes at least minimal support for all of the following filesystems in common
use on Windows and on related operating systems:

FAT The File Allocation Table (FAT) is a data structure after which Windows 9x/Me's
filesystem is named. Originally used on DOS computers, FAT has been extended in
two ways: the size of the FAT data structure, and the capacity to store long
filenames. These extensions are described shortly.

HPFS Microsoft developed the High−Performance Filesystem (HPFS) for use with
OS/2 1.2, when Microsoft and IBM were still partners. Today, IBM uses HPFS in its
OS/2 product line. Linux's HPFS support was read−only through the 2.2.x kernel
series, but a read/write HPFS driver ships with 2.4.x kernels. This driver is unusual in
that it stores Linux ownership, group, permissions, and other features using HPFS
extended attributes (EAs), which OS/2 uses to store icons and other ancillary file
data. The Linux filesystem type code for HPFS partitions is hpfs.

NTFS The New Technology Filesystem (NTFS) is the preferred filesystem for
Windows NT, 2000, and XP. NTFS is a fairly advanced journaling filesystem that
supports a system of ownership similar to Linux usernames. Unfortunately, Linux's
NTFS support is weak. Although read/write drivers have been available in the 2.2.x
and later kernels, the write support is marked as being "dangerous" in the kernel
compilation scripts. Also, these drivers don't support NTFS's security features. With
the release of Windows 2000, Microsoft made changes to NTFS (often referred to as
NTFS 5.0). Linux's NTFS drivers can cope with NTFS 5.0 partitions, but using the
read/write support on these partitions is inadvisable. Linux's type code for NTFS
partitions is ntfs. Red Hat does not include a compiled NTFS driver in its default
installation, so you must locate one or recompile your kernel if you want to access
NTFS partitions from Red Hat.

Note Because Linux's NTFS write support is so dangerous, it must be enabled separately from the
main NTFS support in the Linux kernel.

The most useful and stable Linux driver for Microsoft filesystems is the driver for FAT. This driver is
extremely stable—in contrast to some foreign filesystems, it's quite safe to write to FAT partitions.
FAT filesystems actually come in several varieties, differing along two dimensions:

Bitness: The FAT data structure uses pointers that are 12, 16, or 32 bits in size. Increasing
FAT size equates to increasing maximum partition size. The 12−bit FATs are used mostly on

• 

137



floppy disks; 16−bit FATs allow partitions of up to 2GB; and 32−bit FATs support partitions of
up to 2TB. Linux's FAT drivers auto−detect the FAT size, which is often indicated as a suffix
to the filesystem name, as in FAT−16 and FAT−32.
Filename length: The original FAT fi lesystem, as used by DOS, supported only
eight−character filenames with an optional three−character extension (the so−called 8.3
filename limit). With Windows 95, Microsoft introduced an extension to FAT known as VFAT,
which supports long filenames. Linux supports its own FAT extension, known as UMSDOS,
which places Linux ownership and permissions information on FAT filesystems along with
long filenames. VFAT and UMSDOS are incompatible extensions.

• 

Because Linux auto−detects the FAT size, there's no need to use separate Linux filesystem types
for different FAT sizes. Linux uses three type codes for each of the filename length options,
however. If you mount a filesystem with the msdos type code, Linux restricts filenames to 8.3 limits.
If you use the vfat type code, Linux uses VFAT long filenames. If you use umsdos, Linux uses
UMSDOS long filenames. In most cases, vfat is the most appropriate type code with which to
access FAT partitions, because it allows for exchange of files with long filenames between Linux
and Windows systems.

Note A common misconception is that FAT−32 and VFAT are somehow linked. They aren't. You
can access a FAT−16 or even FAT−12 disk using VFAT long filenames; and you can mount a
FAT−32 partition with the Linux msdos driver to use only 8.3 filenames.

UMSDOS is unusual because it allows Linux to treat a FAT partition like a native filesystem. You
can run a Linux system entirely from a UMSDOS partition, and in fact some distributions support
installing Linux directly on a UMSDOS partition. This configuration tends to be slow, however,
because Linux's FAT support, although stable, isn't as fast as its support for ext2fs.

Apple Filesystems

If you run Linux on a Macintosh or need to exchange data with Macintosh users, you're likely to
need support for a Macintosh filesystem. In 2002, four such filesystems exist, although only three
are in common use and only two sport Linux drivers:

MFS The Macintosh Filesystem (MFS) was used by the earliest Macintoshes. It's
almost never used on anything but 400KB floppy disks, which are extremely rare
today. Linux does not include MFS support.

HFS The Hierarchical Filesystem (HFS) was the replacement for MFS. Used on
800KB and larger floppy disks and all Macintosh hard disks until 1998, HFS is quite
common in the Macintosh world. The Linux 2.2.x and later kernels include read/write
HFS support, using the filesystem type code hfs. The write support is considered
experimental, however, and occasionally damages hard disks. It's therefore best to
restrict use of this support to blank floppy disks. Macintosh CD−ROMs often use HFS
rather than ISO−9660.

NoteAlthough 800KB Macintosh floppies use HFS, Linux cannot read these disks,
even with an HFS−enabled kernel. These disks use an uncommon low−level
disk−recording technique, and standard x86 hardware cannot cope with it.
Apple switched to PC−style low−level recording technologies with its 1.44MB
floppies, so Linux can read Macintosh 1.44MB floppies, as well as other
removable media.

138



HFS+ The follow−on to HFS borrows many features from Unix−style filesystems, but
it stops short of adding a journal. New Macintoshes invariably ship with their disks
formatted for HFS+, but this filesystem is not used much on removable media. (The
MacOS X installation CD−ROM is an exception; it uses HFS+.) Linux support for
HFS+ is in the alpha stage and is not yet integrated into the kernel. The Linux HFS+
Web page is http://sourceforge.net/projects/linux−hfsplus/.

FFS MacOS X provides the option to use the Unix Fast Filesystem (FFS), which is
described in the next section. Many MacOS X systems continue to use HFS+,
though.

If you need to exchange removable media between Macintosh and Linux systems, you can do so.
HFS is the best choice for a filesystem; and if you use a floppy disk, it has to be a 1.44MB floppy or
a rare 720KB HFS floppy. Alternatively, you can use FAT, because modern Macintoshes support
FAT. In theory, you can use FFS for exchanges with a Macintosh running MacOS X, but this option
is tedious to implement.

If you run Linux on a Macintosh, you may want to create an HFS partition to be used for data
exchange between Linux and MacOS. Because Linux can't read HFS+ partit ions, this
data−exchange partition is a practical necessity when you want to share files across OSs.

Miscellaneous Filesystems

In addition to Microsoft and Apple filesystems, Linux supports a wide variety of other foreign
filesystems. Most are of extremely limited utility and interest. Here are some highlights:

BeFS BeOS uses its own journaling filesystem, known as BeFS. A read−only Linux
d r i v e r  f o r  t h i s  f i l e s y s t e m  i s  a v a i l a b l e  f r o m
http://hp.vector.co.jp/authors/VA008030/bfs/. The author claims to be working on
read/write support, but it does not yet exist. The driver also does not yet work with
2.4.x kernels, as of mid−2002. Although BeOS is a single−user OS, BeFS supports
file ownership and permissions similar to those used in Linux. In theory, BeFS could
become a contender for a native journaling filesystem, but the others have a
commanding lead in 2002. BeFS also lacks support for file access time−stamps,
which may hinder its abilities as a native Linux filesystem. BeFS's filesystem type
code is befs.

Note The 2.4.x kernels include support for another filesystem, known as
BFS, that is completely unrelated to BeFS. BFS is used for storing
critical system startup files on SCO's UnixWare OS.

FFS/UFS The Fast Filesystem (FFS; aka Unix Filesystem or UFS) was developed
early in the history of Unix. It's still used by many Unix and derivative systems,
including FreeBSD and Solaris. In principle, FFS/UFS could have been adopted as a
native Linux filesystem, but Linux's write support for this filesystem is still considered
dangerous, much as is Linux's support for writing to NTFS. FFS has been around
long enough to spawn several minor variants, but one Linux driver handles them all.
FFS's filesystem type code is ufs.

UDF The Universal Disk Format (UDF) is a filesystem designed for recordable CD,
DVD, and recordable DVD media. Linux includes UDF support in the 2.4.x kernel
series, but the write support is marked "dangerous" and is very limited in terms of

139



supported hardware. This filesystem's type code is udf.

You can browse the Linux kernel configuration menus to learn about other filesystems supported by
Linux. If you're looking for support of a specific filesystem and can't find it in the kernel menu, try a
Web search.

Network Filesystems

Some filesystems are designed for use over a network, as opposed to on a hard disk. You can
mount these filesystems in Linux much as you do disk−based filesystems, and then perform normal
file−access operations on the filesystem. Network filesystems supported by Linux include the
following:

NFS Sun's Network Filesystem (NFS) is the preferred method of file sharing for
networks of Unix or Linux computers. The Linux kernel includes both NFS client
support (so that Linux can mount another system's NFS exports) and core routines to
help a Linux NFS server, which is separate from the kernel. NFS's filesystem type
code is nfs.

Coda This is an advanced network filesystem that supports features omitted from
NFS. These features include better security (including encryption) and improved
caching. The Linux kernel includes Coda client support, and separate packages are
n e e d e d  t o  r u n  a  C o d a  s e r v e r .  T h e  m a i n  C o d a  h o m e p a g e  i s  a t
http://www.coda.cs.cmu.edu/. Coda's filesystem type code is coda.

SMB/CIFS The Server Message Block (SMB) protocol, which has been renamed the
Core Internet Filesystem (CIFS), is the usual means of network file sharing among
Microsoft OSs. The Linux kernel includes SMB/CIFS client support, so you can
mount SMB/CIFS shares. You can configure your Linux computer as an SMB/CIFS
server using the Samba package (http://www.samba.org/). The filesystem type code
for SMB/CIFS shares is smbfs.

NCP The NetWare Core Protocol (NCP) is NetWare's file sharing protocol. As with
SMB/CIFS, Linux includes basic NCP client support in the kernel, and you can add
separate server packages to turn Linux into an NCP server. NCP's filesystem type
code is ncpfs.

It's important to recognize that the network filesystem is completely independent of the filesystems
used on both the server and client for disk access. Consider a Linux computer that's running
Samba, sharing files for a Windows system. The server makes files available using the SMB/CIFS
network filesystem. Locally, these files may be stored on any filesystem that Linux supports—ext2fs,
ISO−9660, ReiserFS, FAT, or anything else. These filesystems all look identical to the client, except
where the underlying filesystem has a limitation that obtrudes itself, such as 8.3 filename limits
when Linux uses its msdos driver to access FAT, or the read−only nature of ISO−9660 or BeFS.
Likewise, if Linux uses NFS to mount a remote filesystem, it's unimportant whether the server is
using ext2fs, FFS, HFS+, or anything else. This characteristic means that you can give a computer
access to filesystems it cannot natively understand, as when Linux accesses HFS+ from a
Macintosh running an NFS server, or when Windows XP accesses JFS through a Linux system
using SMB/CIFS.

Chapter 12, "TCP/IP Linux Networking," covers network filesystem configuration in more detail.

140



Filesystem Design

In order to understand what can be done with filesystems, it's helpful to understand some of the
data structures from which they're built. Because ext2fs is the most common Linux filesystem, this
section describes ext2fs and its data structures. Other Linux native filesystems use similar
structures, although some of the details differ. (Ext3fs is identical to ext2fs at this level of analysis.)
Non−Linux filesystems often differ in more details, but many of the basic principles still apply.

The Physical Structure

The ext2 filesystem is composed of block groups, which may or may not be sequential on the
physical disk. Figure 6.2 shows the physical structure of an ext2 filesystem.

Figure 6.2: Each block group is largely independent of the others, which can aid recovery in the
event of data corruption.
Each block group contains filesystem control data: a superblock and filesystem descriptors. It also
contains filesystem data: a block bitmap, an inode bitmap, an inode table, and data blocks. Inodes
are explained in the next section. Normally about 5 percent of these blocks are set aside to allow
the superuser room to recover a filesystem that has reached its capacity and become unusable by
ordinary users.

Tip Ext2fs allows you to choose the logical block size when you create the filesystem, commonly
1024, 2048, or 4096 bytes. Larger block sizes can speed up I/O since fewer disk head seeks
are needed when more data is read during each seek. Large blocks do, however, waste more
disk space since the last block is almost never full. Larger block sizes therefore leave a larger
amount of unused space than do smaller block sizes.

Inodes and Directories

All of the important information about a file, except for its name and location in the directory tree, is
stored in a data structure called an inode. The inode stores:

Locking information• 
The access mode• 
The file type• 
The number of links to the file• 
The owner's user and group IDs• 

141



The size of the file in bytes• 
Access and modification times• 
The inode's time of last modification• 
The addresses of the file's blocks on disk• 

Each file is assigned a unique inode when it is created. The name of the file is stored separately in a
directory−name cache entry. The inode number of each entry in the directory−name cache can be
used to obtain the corresponding inode cache entry, which contains the specific information about
the file represented by that inode. Figure 6.3 illustrates this structure. (The howdy.wav and
sound.wav files are hard links—two directory entries that point to the same inode, and hence the
same file data. Hard links are described further in Chapter 7, "Linux Files and Processes.") In this
way, a command to obtain a directory listing is fast since it doesn't have to concern itself with the
actual data in a file but only that contained in the inode.

Figure 6.3: Directory entries, inodes, and the locations of files on disk need not all come in the same
order.
When a file is opened, it locks its entry into the inode cache to indicate that it is in use. Inactive files
are kept in memory, with an inactive inode that may still contain data pages from its previously
associated file if the inode has not yet been reclaimed by the filesystem. When an inactive inode is
reused, its data pages are flushed to make room for the inode's new data.

Accessing Filesystems

The preceding discussion outlines the major filesystems available for the 2.4.x Linux kernels, and
how they structure data internally. Actually using these filesystems requires practical knowledge of
several Linux commands and configuration files. The most important of these in day−to−day
operations are the commands used to mount and unmount filesystems. Some additional
peculiarities arise when it comes to accessing removable media such as floppy disks, Zip disks, and
CD−ROM discs.

Mounting and Unmounting Filesystems

Linux provides two methods for mounting hard disk filesystems: manual mounting via the mount
command, and automatic mounting at boot time via entries in /etc/fstab. (It's also possible to
auto−mount removable media, as described later in "Using Removable Media.") To stop using a
filesystem, you must unmount it by using the umount command. (Yes, that's spelled correctly;
umount is missing the first n.)

142



Using the mount Command

Linux uses the mount command to make a filesystem available. Here is the basic format of this
command:

mount [−t fstype] [−o options] device dir

The fstype is the filesystem type, such as ext2, vfat, or jfs. You can often omit the −t parameter, and
Linux will correctly detect the filesystem type. The preceding discussion of filesystems for Linux
includes these type codes.

device is the Linux device file associated with the filesystem. For instance, /dev/sdb4 indicates the
fourth partition on the second SCSI disk, and /dev/fd0 indicates the first floppy disk.

dir is the mount point, which should be an empty directory. (You can use a nonempty directory, but
then you lose access to the files stored in that directory for as long as the filesystem is mounted.)

The options are special codes that give Linux instructions on how to treat filesystem features. Some
options apply to most or all filesystems, but others are filesystem−specific. Type man mount for a
discussion of the filesystem options that apply to most of the standard Linux filesystems, and
consult the filesystem's documentation for information on rarer filesystem options. Table 6.1
summarizes the most important filesystem options.

Table 6.1: Important Filesystem Options for the mount Command

Option Supported Filesystems Description
defaults All Uses the default options for this filesystem. It's

used primarily in the /etc/fstab file (described
shortly) to ensure that there's an options column
in the file.

loop All Uses the loopback device for this mount. Allows
you to mount a file as if it were a disk partition. For
instance, entering mount −t vfat −o loop
image.img /mnt/image mounts the file image.img
as if it were a disk.

auto or noauto All Mounts or does not mount the filesystem at boot
time, or when root issues the mount −a command.
Default is auto, but noauto is appropriate for
removable media. Used in /etc/fstab.

user or nouser All Allows or disallows ordinary users to mount the
filesystem. Default is nouser, but user is often
appropriate for removable media. Used in
/etc/fstab. When included in this file, user allows
users to type mount /mountpoint, where
/mountpoint is the assigned mount point, to mount
a disk.

owner All Similar to user, except that the user must own the
device file. Some distributions, such as Red Hat,
assign ownership of some device files (such as
/dev/fd0, for the floppy disk) to the console user,
so this can be a helpful option.

143



remount All Changes one or more mount options without
explicitly unmounting a partition. To use this
option, you issue a mount command on an
already−mounted filesystem, but with remount
along with any options you want to change. This
feature can be used to enable or disable write
access to a partition, for example.

ro All Specifies a read−only mount of the filesystem.
This is the default for filesystems that include no
write access, and for some with particularly
unreliable write support.

rw All read/write filesystems Specifies a read/write mount of the filesystem.
This is the default for most read/write filesystems.

uid=value Most filesystems that don't
support Unix−style
permissions, such as vfat,
hpfs, ntfs, and hfs

Sets the owner of all files. For instance, uid=500
sets the owner to whoever has Linux user ID 500.
(Check Linux user IDs in the /etc/passwd file.)

Option Supported Filesystems Description
gid=value Most filesystems that don't

support Unix−style
permissions, such as vfat,
hpfs, ntfs, and hfs

Works like uid=value, but sets the group of all files
on the filesystem. You can find group IDs in the
/etc/group file.

conv=code Most filesystems used on
Microsoft and Apple OSs:
msdos, umsdos, vfat, hpfs,
ntfs, hfs

If code is b or binary, Linux doesn't modify the
file's contents. If code is t or text, Linux
auto−converts files between Linux−style and
DOS− or Macintosh−style end−of−line characters.
If code is a or auto, Linux applies the conversion
unless the file is a known binary file format. It's
usually best to leave this at its default value of
binary, because file conversions can cause
serious problems for some applications and file
types.

nonumtail vfat Normally, Linux creates short filenames when
using VFAT in the same way as Windows; for
instance, longfilename.txt becomes
LONGFI~1.TXT. Using this parameter blocks the
creation of the numeric tail (~1) whenever
possible, so the file becomes LONGFILE.TXT.
This can improve legibility in DOS, but may cause
problems if you use Linux to back up and restore
a Windows system, because the short filenames
may be changed after a complete restore.

eas=code hpfs If code is no, Linux ignores OS/2's Extended
Attributes (EAs). If code is ro, Linux reads EAs
and tries to extract Linux ownership and
permissions information from them, but doesn't
create new EAs. If code is rw, Linux stores
ownership and permissions information in EAs,
overriding the settings provided by the uid, gid,
and umask options.

144



case=code hpfs, hfs When code is lower, Linux converts filenames to
all lowercase; when code is asis, Linux leaves
filenames as they are. The default for HFS and
HPFS in 2.4.x kernels is asis; for the read−only
HPFS in the 2.2.x kernels, it's lower.

fork=code hfs Sets the HFS driver handling of Macintosh
resource forks. Options are cap, double, and
netatalk. These correspond to the methods used
by the Columbia AppleTalk Package (CAP),
AppleDouble, and Netatalk networking systems
for storing resource forks on Unix systems. If you
use one of these networking packages and want
to export Macintosh filesystems, you should use
the appropriate code.

afpd hfs Use this parameter if you want to export
filesystems using Netatalk. This option makes the
filesystem fully read/write compatible with
Netatalk, but causes problems with some
Linux−native commands.

norock iso9660 Disables Rock Ridge extensions for ISO−9660
CD−ROMs.

nojoliet iso9660 Disables Joliet extensions for ISO−9660
CD−ROMs.

With these mount options at hand, you should be able to mount filesystems with the characteristics
you desire. In most cases, Linux−native filesystems don't require any special filesystem options.
Foreign filesystems, however, often benefit from one or more options. Filesystems that don't support
Linux's permissions, in particular, usually benefit greatly from the uid, gid, and umask options. You
might want to use a command similar to the following to mount a VFAT partition, for instance:

# mount −t vfat −o uid=500,gid=100,umask=002 /dev/hdc8 /dos/drive−e

This command gives ownership to all files on the VFAT partition to whoever has user ID 500
(usually the first user created on a Red Hat system), gives group ownership to group 100, and
removes write access to the world but leaves write access for the owner and group. The result is
that user 500 and anybody in group 100 can both read and write files on the partition, but users who
aren't in group 100 can only read files on the partition.

Creating /etc/fstab Entries

When Linux boots, it needs to know what filesystems to mount and at what locations in its directory
tree in order to produce a usable system. If you've created separate partitions for /usr, /home, and
/var, for instance, Linux must know to mount the appropriate partitions at these points—it will do you
no good to have Linux mount your user files (which should go at /home) at /usr, where program files
normally reside. Linux's solution to this problem is the /etc/fstab file, which contains default mount
assignments.

This file comprises a series of lines, one per filesystem. Lines preceded by a pound sign (#) are
ignored by Linux. Each line is a series of entries separated by whitespace, as illustrated in Listing
6.1.

145



Listing 6.1: A Sample /etc/fstab File

#device      mountpoint   fs      options   dump fsck
/dev/hda2    /            ext2    defaults     1 1
/dev/hdb7    /home        jfs     defaults     0 2
/dev/hda3    /dos         msdos   umask=0      0 0
server:/home /server/home nfs     ro           0 0
/dev/cdrom   /mnt/cdrom   iso9660 noauto,user  0 0
/dev/fd0     /mnt/floppy  auto    noauto,user  0 0
/dev/hdb8    swap         swap    defaults     0 0

The /etc/fstab file's columns contain the following information:

device This column lists the device filename associated with the disk or partition.
One of the devices in Listing 6.1, server:/home, is an NFS share. For this device,
server is the name of the server, and /home is the directory it exports.

mountpoint This column indicates the mount point for the filesystem. The first entry
is usually /, the root filesystem. Linux normally reads the /etc/fstab file from the root
filesystem, but once it gets this file, it remounts the root filesystem using the options
specified in this file. A swap partition, which is used as an extension of RAM, uses a
mount point of swap or none.

fs You must specify the filesystem type code for most filesystems. If you use any
nonstandard filesystems, such as jfs for the /home partition in Listing 6.1, you must
ensure that you've compiled your kernel with that support. It's also critically important
that the root partition's filesystem be compiled into the kernel (rather than as a
module), or else Linux won't be able to read its startup files. The /mnt/floppy mount
point in Listing 6.1 specifies a filesystem type code of auto. Linux can auto−detect
many filesystem types, and this configuration is particularly convenient for
removable−media devices such as floppy drives.

Warning Don't confuse the /etc/fstab filesystem type code of auto (which
tells Linux to auto−detect the filesystem type) with the auto mount
option (which tells Linux to mount the filesystem at boot time).

options You can specify options from Table 6.1, as well as any other options you
discover, for any filesystem. The noauto,user combination used for the floppy disk
and CD−ROM drive in Listing 6.1 is particularly useful for removable−media devices,
because it allows ordinary users to mount and unmount these devices. Be sure not to
put spaces between mount options, just commas.

dump This column contains a 1 or 0, indicating that the dump utility should or should
not back up the specified partition when it's run. This utility is filesystem−specific, and
JFS still lacks a dump program, which is why it's set to 0 for the JFS /home partition
in Listing 6.1.

fsck This column indicates the file system check order. When Linux boots, it checks
filesystems with non−0 values in this column for corruption, in the order specified by
this column's value. Normally, the root partition has a value of 1, while other Linux
native filesystems have higher values. XFS and ext3fs partitions should have values
of 0, because these filesystems handle this task automatically whenever they're
mounted. Most non−native filesystems lack fsck utilities, and so should have 0

146



values, as well.

When you install Linux, it creates an initial /etc/fstab file based on the information you gave the
installation programs about your partitions. You can modify this configuration to add partitions not
understood by the installation routines (such as BeFS partitions, if you have BeOS installed); to
fine−tune the configuration (such as adding extra parameters for FAT partitions); and to add
variants, particularly for removable media. It's a good idea to test your mount options by issuing
them directly with the mount command before adding them to /etc/fstab. (Of course, this doesn't
make much sense for some options, such as noauto and user.) Once you've modified /etc/fstab, you
can test its configuration by typing mount −a. This causes Linux to reread /etc/fstab and mount any
filesystems that are not mounted but that are listed without a noauto option in /etc/fstab.

You can also modify /etc/fstab using GUI configuration tools. In Webmin, for example, you can
select the Disk and Network File systems item in the System area, as shown in Figure 6.4. This
configuration page presents a summary of information on the computer's filesystems. By clicking a
mount point (in the Mounted As column), you can adjust the mount options, as shown in Figure 6.5.
You can also mount and unmount a filesystem from this page.

Figure 6.4: GUI system configuration tools let you edit /etc/fstab via a point−and−click interface.
Using the umount Command

When you're done using a filesystem, you can issue the umount command to unmount it. The basic
syntax for this command is as follows:

umount [−a][−f][−t fstype] mountpoint | device

The meanings of the options are as follows:

−a If this option is specified, umount tries to unmount all the partitions specified in
/etc/fstab. This is an option you should not issue in normal operation, although you
might in emergency recovery situations after restoring a system to health.

147



−f When you specify −f, umount forces the unmount operation. This option can be
useful if an ordinary umount command fails, which often occurs when an NFS server
goes down.

−t fstype If you use this parameter, umount unmounts filesystems of the specified
type.

mountpoint This is the mount point on which the device is mounted, such as
/mnt/floppy or /home.

device This is the device on which the filesystem resides, such as /dev/fd0 or
/dev/hdb8.

Normally, you use umount without most options and specify only the mount point or the device, not
both. For instance, you might type umount /mnt/floppy to unmount the floppy disk.

The umount command is most useful when applied to removable−media devices, because these
devices are typically mounted and unmounted on a regular basis while Linux is running. Most
installations leave hard disk partitions permanently mounted, so they need not be explicitly
unmounted. Linux automatically unmounts these partitions when it shuts down, however; and you
may need to temporarily unmount a normally mounted partition when performing certain types of
system maintenance, such as moving the contents of a partition to a new hard disk.

Figure 6.5: Webmin uses mount option descriptions that are more verbose than the actual options in
/etc/fstab.
WarningLinux locks most removable devices, such as CD−ROM and Zip drives, so that you can't

eject the disk while it's mounted. When you unmount the disk, the eject button will work
again. Floppy disk drives on x86 computers, however, cannot be locked. It's therefore
possible to eject a floppy disk while it's still mounted. Because Linux caches writes to its
filesystems, this mistake can cause serious filesystem corruption. Be very careful to

148



unmount a floppy disk before ejecting it.
Using Removable Media

Linux's model of the disk world makes little distinction between hard disks and removable disks. You
use the same mount and umount commands to access both types of devices, and you can create
similar /etc/fstab entries for both types of media. Nonetheless, there are a few caveats and special
features that apply to removable media only.

Accessing Floppy Disks

The most important caveat concerning floppy disks is about accidentally ejecting them, as noted in
the preceding Warning. Beyond this, you can access floppy disks as if they were very small hard
disk partitions. The usual device file for accessing floppies is /dev/fd0. If your system has two floppy
drives, the second is accessible as /dev/fd1. There are also a number of specialized device access
files, such as /dev/fd0H1440, which provide forced access to a disk of a specific capacity, such as
1440KB for /dev/fd0H1440. (In normal operation, you can use /dev/fd0 to access disks of any
capacity.)

If you're presented with an unformatted floppy disk, you must format it. In DOS or Windows, this
procedure is handled with a single command, FORMAT. In Linux, by contrast, you perform two
actions. First, you do a low−level format using the fdformat command, as in fdformat /dev/fd0. (It's
here that the capacity−specific device files can be most useful, because they can force a format at a
specified capacity.) Second, you create a filesystem on the disk, as described in "Creating a
Filesystem" later in this chapter.

Most filesystems that you use on hard disks can be used on floppy disks, with a few exceptions.
Most notably, some journaling filesystems require journal files larger than floppies can hold. You
can use Linux's ext2fs on floppy disks, but ext2fs has enough overhead that it's not the best choice.
The Minix filesystem is popular on floppy disks because it includes support for Linux permissions
and ownership, and it consumes less overhead than ext2fs. FAT filesystems, too, are popular on
floppies, even for transfer between Linux systems. The drawback to FAT is that you lose Linux
ownership and permissions unless you also archive files into a tar or similar carrier file.

Disk Access without a Filesystem

It's possible to access a floppy disk without using a filesystem per se. This is commonly done by
writing a tar file directly to a floppy disk. Suppose you want to transfer a directory, somedir, between
systems. You can do so by issuing the following tar command on the source system:

$ tar −cvf /dev/fd0 somedir

This command copies the contents of somedir to a tar file on the floppy disk. You can reverse the
process on the target system by issuing this command:

$ tar −xvf /dev/fd0

Of course, you can also transfer tar files in a similar way by mounting a disk with a filesystem and
then using an appropriate tar file on the disk (such as /mnt/floppy/somedir.tar) rather than the device
file (/dev/fd0). Why use direct access, then? It's most useful when transferring files between
versions of Unix that don't share an appropriate common filesystem. You can be sure that a tar file
written without a filesystem can be read by any Unix−like OS, because tar is so widely available.
Support for any given filesystem is not so universal, although FAT filesystem support is extremely

149



common on modern Unixes.

One unusual shortcut used for access to floppy disks is the Mtools package. It's a set of programs
that allow access to FAT floppy disks (or, in principle, other removable media formatted with FAT)
without explicitly mounting them. Mtools includes a series of commands named after DOS
disk−access commands. These include mdir (to take a directory listing), mcopy (to copy a file), mdel
(to delete a file), and mformat (to create a FAT filesystem on a floppy). These commands use a
DOS−style drive letter in place of Linux's device identifier. For instance, to copy a file to a floppy,
you would type mcopy filename a:. Mtools can be a very useful method for copying a few files to or
from a FAT floppy, but if you want to give programs direct access to files on a floppy, you must
mount it normally. Mtools comes with most Linux distributions. You can read more about it at
http://mtools.linux.lu/.

A package similar to Mtools, called HFS Utilities (http://www.mars.org/home/rob/proj/hfs/), exists for
accessing Macintosh floppies. These utilities use an h prefix to the DOS−style commands, as in hdir
and hformat. The package also includes a GUI front−end.

Note As noted earlier, standard x86 PC hardware is incapable of reading the low−level data
recording methods used by Apple for its 400KB and 800KB floppy disks. The HFS Utilities
package doesn't provide a magical way around this limitation.

Accessing High−Capacity Removable Disks

High−capacity removable disks such as Iomega Zip disks, Imation LS−120 disks, and Castlewood
Orb drives are becoming increasingly popular as typical file sizes increase. As a general rule, Linux
has no problem with these devices, but there are a few caveats.

The most important of these is to ensure that the device's interface (ATAPI, SCSI, parallel−port,
USB, or something else) is compatible with Linux. For the most part, this isn't a problem. Some of
the rarer parallel−port or USB devices sometimes pose problems, though, particularly with pre−2.4.x
kernels. Check with http://www.linux−usb.org/ for details on USB device support.

There are two ways to treat high−capacity removable devices: as big floppy disks or as removable
hard disks. In the first case, you use the main device file to access the drive, as in /dev/hdb for an
EIDE or ATAPI drive that's configured as the slave drive on the primary EIDE chain, or as in
/dev/sda for a SCSI drive that's got the lowest SCSI ID number of all SCSI disks. Treating
removable disks in this way is common for some media, such as magneto−optical drives. It has the
advantage that you don't need to worry about partitioning the disks.

More frequently, removable disks are handled as if they were hard disks. In this arrangement, the
disk is partitioned with fdisk (discussed shortly, in "Disk Partitioning") or a similar disk−partitioning
tool. You then access the partition when creating and mounting filesystems. For instance, you might
access /dev/hdb1 or /dev/sda4. One problem with this approach is that the partition number can
vary from one disk to another. Iomega Zip disks commonly use the fourth partition, but some other
disk types and tools use the first partition. You may therefore need to create multiple /etc/fstab
entries to handle all the possibilities, particularly if you exchange disks with several people.

Note Macintosh Zip disks are partitioned using the Mac's partition table, which is different
from the partition table used on x86 PCs. Linux's HFS driver, however, includes
limited support for the Macintosh partition table, so you can mount Macintosh Zip

150



disks as if they were big floppies (using /dev/hdb, /dev/sda, or similar "numberless"
device files). Alternatively, you can compile Macintosh partition table support into
your Linux kernel and mount the fourth partition on the removable disk.

You can use any filesystem on a large removable disk that you can use on a hard disk. In particular,
ext2fs works well on removable disks. FAT and HFS are also popular choices, particularly when you
want to exchange data with Windows or Macintosh users, respectively. The journal files used by
journaling filesystems may consume a large percentage of a removable disk's capacity. For
instance, ReiserFS creates a journal file that's 32MB in size—roughly a third the capacity of a
100MB Zip disk.

Reading CD−ROM Discs

CD−ROM discs are not terribly unusual in terms of how they're mounted and accessed. There are
two factors to keep in mind:

Read−only access. CD−ROM discs are by nature read−only. The rw option therefore has no
effect, and you cannot write to CD−ROM discs.

• 

Filesystem choices. Although Linux can mount a CD−ROM created using just about any
filesystem, ISO−9660 dominates the CD−ROM filesystem landscape. Many discs created for
the Macintosh market, however, use HFS instead of or in addition to ISO−9660. Discs
created with Linux or Unix in mind usually include Rock Ridge extensions, while Joliet is a
common addition to discs created for the Windows market. It's possible to create a
CD−ROM with ISO−9660, Rock Ridge, Joliet, and HFS, pointing to some combination of the
same and different files.

• 

Note For purposes of mounting a disc for read access, CD−R and CD−RW discs and
drives are just like CD−ROM discs and drives. To write to one of these discs, you
normally use special software such as the mkisofs and cdrecord combination
(discussed in Chapter 9), or a GUI front−end such as X−CD−Roast. Linux includes
experimental UDF support for more direct read/write access to CD−RW media, but
this support is limited in 2002.

You can use the mount command's −t parameter, along with −o and the norock and nojoliet options,
to specify how Linux will try to mount a CD−ROM. Table 6.2 summarizes the possibilities.

Table 6.2: Mount Options for CD−ROMs

Mount Options Linux's Action
−t hfs Mounts the CD−ROM using HFS, if possible.
−t iso9660 Mounts the CD−ROM using Rock Ridge, if present. If

Rock Ridge is not present but Joliet is, and if the
kernel includes Joliet support, Linux uses Joliet;
otherwise, it uses plain ISO−9660.

−t iso9660 −o norock Mounts the filesystem using Joliet, if the CD−ROM
includes a Joliet filesystem and the kernel includes
Joliet support. Otherwise, plain ISO−9660 is used.

−t iso9660 −o nojoliet Mounts the CD−ROM using Rock Ridge, if present. If
Rock Ridge is not present, plain ISO−9660 is used.

−t iso9660 −o nojoliet,norock Mounts the CD−ROM using plain ISO−9660.

151



Automating Removable−Media Access

Microsoft's OSs treat removable disks differently than does Linux. In a Microsoft OS, each
removable disk has a drive letter, such as A: for the first floppy disk. There's no need to explicitly
mount a removable disk; you can simply specify a file on a removable disk by inserting the drive
letter in front of the file's name, as in A:\SOMEFILE.TXT. This approach is convenient for users but
has the drawback of possibly making it unsafe to cache disk writes, so performance suffers. Some
hardware notifies the OS when the user presses the eject button, allowing the OS to finish any
cached disk accesses before ejecting the disk. When using such a device, cached disk writes are
possible.

This discussion is relevant to Linux because many new Linux users are accustomed to the Windows
method of handling disks. These users expect to be able to read and write files on the disk without
explicitly mounting the disk, much less relying on the superuser to do the job. Linux provides several
workarounds for these users. Specifically:

The user and owner mount options, which are normally used in /etc/fstab, allow users to
mount and unmount removable disks. Although these options don't provide truly automatic
access, they can be adequate for users with some Linux know−how. They're also a critical
first step to some other possibilities.

• 

Window managers and file managers can be customized to run specific commands when a
user clicks on an icon or picks an item from a pop−up menu. Such a configuration can allow
users who are uncomfortable with a text−based shell to issue mount and umount
commands. Configuration details vary substantially from one program to another, so consult
the appropriate package documentation for details.

• 

The default configurations for the KDE and GNOME desktop environments include
automated access to CD−ROM and floppy disks similar to the access in Windows.
Double−click on the appropriate desktop icon, and the system mounts the disk and opens a
browser window on the disk's contents. You can later select an unmount option from the
appropriate icon's context menu to unmount the disk. These options rely on the presence of
user or owner options in /etc/fstab. Some configurations (including the default GNOME setup
in Red Hat 7.3) mount a removable disk automatically when it's inserted in a drive.

• 

An automounter is a tool that monitors access attempts to specified directories and, when
one is detected, mounts a specified device at that location. Once all opened files are closed,
the automounter waits a specified time and then unmounts the device. This configuration
can be convenient for mounting, but may pose problems for certain media types because of
the delays when unmounting. Floppies can be particularly troublesome in this respect
because you won't know when it's safe to eject a floppy, except by issuing a command such
as df to see if the disk is still mounted.

• 

Of these options, /etc/fstab configuration has already been described. GUI configurations (including
those for window managers and desktop environments) vary a lot from one package to another, so
you should check your package's documentation for details. The automounter requires the most
elaborate configuration. To use this tool, follow these steps:

Check that your kernel configuration includes both the Kernel Automounter support in the
Filesystems area and NFS Filesystem Support in the Network File Systems area. These
options are included in the standard Red Hat 7.3 kernel. (Kernel compilation is discussed in
Chapter 8.)

1. 

I f  i t 's  not  a l ready instal led,  instal l  the autofs package. The exact f i lename is
autofs−3.1.7−28.i386.rpm in Red Hat 7.3, but it may be called something else in other
distributions.

2. 

152



Edit the automounter's configuration file, /etc/auto.master. It normally contains a single line
that lists the base automount point (/misc by default), the configuration file for that mount
point (/etc/auto.misc by default), and a timeout value (60 by default). Change any of these
parameters as needed. If this line is commented out, uncomment it to activate it.

3. 

Edit the /etc/auto.misc configuration file. This file should list specific subdirectories within the
base automount point (/misc), filesystem type codes, and device files for each device you
want auto−mounted. For example:

floppy   −fstype=auto   :/dev/fd0
maczip   −fstype=hfs    :/dev/sda

This example sets the automounter to check /misc/floppy for floppy disk accesses using any
filesystem (type auto) and /misc/maczip for HFS filesystems mounted on a SCSI Zip drive
(/dev/sda).

4. 

Start the automounter by typing /etc/rc.d/init.d/autofs start. It should start up automatically
when you reboot the computer, as well. (If you're not using Red Hat, you may need to use
another startup script, or start the automounter manually by typing automount /misc file
/etc/auto.misc.

5. 

You do not create directories within the /misc directory for each mount point. Instead, the
automounter detects attempts to access nonexistent directories and dynamically creates them when
mounting the device. This fact can make the automounter ineffective if you use a file manager,
since these programs typically only let you access existing directories. The automounter is useful,
however, when you use command−line tools.

Note In addition to autofs, a second automounter implementation, the automounter daemon (amd),
is available for Linux. See "Linux NFS and Automounter Administration," by Erez Zadok, for
the most complete documentation of amd available.

Using Swap Space

One type of disk access is critically important to Linux but has not yet been mentioned in this
chapter: swap space. This is disk space that's set aside as auxiliary to system memory (RAM).
Suppose your computer has 256MB of RAM, but you want to run 380MB worth of programs on the
system. Swap space allows you to accomplish this, by treating disk space as if it were RAM. The
result is that you can run all 380MB worth of programs—albeit more slowly on this 256MB computer
than on a machine that has in excess of 380MB of RAM.

Linux typically assigns one or more disk partitions as swap space. These partitions use the type
code 0x82 (Linux swap), as described in "Disk Partitioning." It's also possible to use an ordinary disk
file as swap space. Normally, Linux sets up a swap partition during system installation, so this
feature is handled automatically. You may want to adjust this default configuration, however.

You can find out how much swap space your system currently has by typing free, which produces
output like the following:

          total     used    free  shared   buffers   cached
Mem:     127752   121416    6336   61108     26748    53316
−/+ buffers/cache: 41352   86400
Swap:    136512     4928  131584

Pay particular attention to the line labeled Swap. Under the Total column is the number of kilobytes
of swap space available to the system. The Used and Free columns list how much of that space is

153



in use and available, respectively. If the Used value begins to approach the Total value, you should
consider adding more swap space.

Tip It's difficult to anticipate how much swap space a system will need, because it depends on how
the computer is to be used. One rule of thumb is to create swap space equal to twice your
system's physical RAM. In fact, if you're using a 2.4.x kernel, you should always exceed this
value, because under rare conditions, the 2.4.x kernel may crash if it has less swap space than
this.

To add more swap space, follow these steps:

Set aside appropriate disk space. You can do this in either of two ways:

Create a new disk partition for the swap space. This approach can be difficult
because it requires that you repartition your hard disk.

♦ 

Create an empty file of the appropriate size on a Linux−native filesystem. For
example, the command dd if=/dev/zero of=/swap bs=1024 count=n creates an
appropriate file (called /swap) that's n kilobytes in size.

♦ 

1. 

Issue the mkswap command on the new swap space you've created. For a partition, you'll
type something like mkswap /dev/sdc5. For a file, the command will resemble mkswap
/swap. This command prepares the space to store swap information.

2. 

Use the swapon command to add the new swap space, as in swapon /dev/sdc5 or swapon
/swap. Enter another free command, and you'll see that the available swap space has
increased by the size of your new swap partition or file.

3. 

To make the use of swap space permanent, you should add an /etc/fstab file entry for the swap
space. This entry uses the mount point and the filesystem type code entries of swap, but otherwise
resembles other /etc/fstab entries. For instance, both of the following lines add swap space:

/dev/sdc5 swap     swap    defaults     0 0
/swap     swap     swap    defaults     0 0

Once you've added these entries, Linux uses the specified swap space after a reboot.

If you want to stop using a specific swap partition or file, you can use the swapoff command, which
works much like the swapon command—for instance, swapoff /dev/sdc5.

Updating and Maintaining Filesystems

Before you can use a filesystem, you must prepare one. If you obtain a new disk, you must break it
into partitions and create filesystems on those partitions. Only then will you be able to mount the
filesystems. These steps are necessary when adding a disk and when replacing one, but the
precise details of these operations differ. There's also the issue of filesystem maintenance. In some
situations—particularly after a system crash or power failure—Linux must check its filesystems for
integrity. You may need to supervise this process, so it's important to understand what goes on
during such a check.

Disk Partitioning

If you've bought a new disk, your first task once you've connected it to your computer is to partition
the disk. This procedure carves the disk into smaller chunks so that you can share the disk across

154



multiple OSs, or subdivide the space used on a single OS to protect files on one partition should
another develop problems. Chapter 2 briefly discusses these issues, and it describes partitioning a
disk during a Red Hat Linux installation session. You can also use assorted partitioning tools after
installation, to change your configuration or to add a new disk.

Tip If you want to change an existing partition configuration, one of
the best tools available is PartitionMagic, from PowerQuest
(http://www.powerquest.com/). This commercial package allows
you to add, delete, move, resize, and copy FAT, HPFS, NTFS,
ext2fs, and Linux swap partitions, without damaging their
c o n t e n t s .  T h e  o p e n  s o u r c e  G N U  P a r t e d
(http://www.gnu.org/software/parted/parted.html) provides some
of PartitionMagic's functionality. ReiserFS, XFS, ext2fs, and
ext3fs all include their own partition−resizing utilities, but they
aren't as easy to use or as flexible as PartitionMagic.

Planning a Partition Layout

Before you begin working with partitioning software, it's important to design an appropriate partition
layout. Unfortunately, it's hard to give simple and complete rules for doing this, because every
system's needs are different. What's suitable for a high−level news server may be wholly
inappropriate for a desktop workstation. Here are some rules of thumb to keep in mind:

Keep it simple. The simpler the configuration, the better. Complex configurations can be
difficult to maintain. Further, if a system has many partitions, it's more likely that one of them
will run out of room while another has plenty of free space.

• 

Keep related data together. Because the time required to access data varies with the
distance from one point to another on a disk, it's best to keep related data in one area. One
consequence of this rule is that in a multi−OS configuration, you should keep the partitions
for each OS contiguous.

• 

Put the most−used data in the center. Heavily accessed partitions should go in the middle of
a range of partitions. Swap partitions typically see a lot of use, so they should be positioned
in between nonswap partitions.

• 

Split OSs across disks. If you have two or more operating systems, you may be tempted to
put one OS entirely on one disk and another on a second disk. If you split both OSs across
both disks, however, you'll achieve slightly better performance because two sets of disk
heads are working in both OSs.

• 

Isolate critical data. Consider putting particularly important or much−used data on partitions
separate from other files. This can reduce the risk of damage to those data should a disk
error in another part of the disk occur. Similarly, if a heavily used partition runs out of disk
space, the problems this causes can be isolated. Putting /home and, on some servers, /var
and /tmp, on their own partitions are typical examples of this rule of thumb.

• 

Put the Linux kernel under the disk's 1024−cylinder mark. Old BIOSes and versions of the
Linux Loader (LILO) couldn't boot the Linux kernel if it resided in an area past the 1024th
cylinder. One easy way around this limitation is to create a small (5–20MB) partition under
that point and mount it as /boot. Recent versions of LILO and GRUB don't suffer from this
problem, but if you've got old hardware, you may need to use this workaround.

• 

Note The 1024−cylinder mark is the point where the 1024th cylinder of the disk, as
reported by an EIDE drive or SCSI host adapter, lies. On modern hard disks, this
point works out to just under 8GB.

You shouldn't take any of these rules as being absolute. Indeed, they sometimes contradict one

155



another. For instance, the data−isolation rule is at odds with the keep−it−simple rule. In the end,
you'll need to decide which rules best reflect your own personal preferences and needs for the
system, and create a partitioning scheme that reflects these factors. For new Linux administrators,
we typically recommend a root (/) partition, a /home partition, a swap partition, possibly a /boot
partition, and whatever partitions are necessary to support any other OSs that exist on the
computer. Creating more partitions can be difficult because it's hard to judge how large to make
them. Another administrator's experience is of limited use in making that judgment, because the
systems may be used in radically different ways. Once you've gained some experience, or if you
see a compelling reason to do so initially, you may want to separate out partitions for /var, /tmp,
/usr, /usr/local, /opt, and other directories.

Linux Disk−Partitioning Software

Linux's main partitioning tool is called fdisk (for fixed disk). It's named after the DOS FDISK utility
but works quite differently. To use fdisk, type its name followed by the device file you want to
modify, such as /dev/sda or /dev/hdb, thus:

# fdisk /dev/hdb

Warning Every x86 OS has its own disk−partitioning software. Linux's fdisk is unusually flexible,
and so can produce partitions that other OSs don't like. As a general rule of thumb, you
should use each OS's partitioning tools to create its own partitions. Alternatively, you can
use a more OS−neutral tool, such as PartitionMagic, to do the job for all OSs.

On modern disks, you'll likely be told that the number of cylinders exceeds 1024. You can safely
ignore this warning. Once fdisk is running, you see only a prompt that reads Command (m for help):.
You type single−character commands at this prompt in order to accomplish various tasks. You can
type m or ? to see what these commands are. Table 6.3 summarizes the most important ones.

Table 6.3: Important Linux fdisk Commands

fdisk Command Meaning
d Deletes a partition
l Displays a list of known partition type codes
m or ? Displays a summary of commands
n Creates a new partition
p Displays the disk's current partition table
q Quits without saving changes
t Changes a partition's ID type code
v Verifies the partition table; checks that it's internally consistent and returns

basic information
w Saves (writes) changes and exits from the program

It's generally a good idea to start any fdisk session with a p command to display the current
contents of the disk. This allows you to verify that you're modifying the correct disk, and gives you
the partition numbers for partitions you might want to delete. You also need this information in
planning where to put new partitions.

WarningDon't make changes to any partitions that are currently mounted. Doing so can confuse
Linux and possibly cause a system crash. You can unmount a partition and then delete it,
if that's your intention. To change a partition's size, use a dynamic partition resizing tool;

156



or you can back the partition up, resize it, and restore the backup. Some ext2fs partition
resizers require that you separately resize a partition with fdisk and resize the filesystem
with the partition resizer. Follow those tools' instructions, if you use them.

Once you've seen what (if anything) already exists on the disk, you can proceed to delete, add, and
otherwise modify the partition table using fdisk's commands. Consider the following fdisk exchange:

Command (m for help): p

Disk /dev/hdb: 255 heads, 63 sectors, 1216 cylinders
Units = cylinders of 16065 * 512 bytes

   Device Boot    Start       End    Blocks   Id  System
/dev/hdb1           257      1216   7711200    5  Extended
/dev/hdb2             1       192   1542208+  fb  Unknown
/dev/hdb3           193       256    514080   17  Hidden HPFS/NTFS
/dev/hdb5           257       516   2088418+   6  FAT16
/dev/hdb6           517       717   1614501    7  HPFS/NTFS

Command (m for help): n
Command action
   l   logical (5 or over)
   p   primary partition (1−4)
l
First cylinder (718−1216, default 718): 718
Last cylinder or +size or +sizeM or +sizeK (718−1216, default 1216): +400M

In this situation, the initial configuration included five partitions, and the n command added a new
one. fdisk gave the option of creating a logical or primary partition. The x86 partitioning scheme
originally provided for only four partitions per disk, which soon became inadequate. The workaround
was to use one of the original four primary partitions as a placeholder for a potentially large number
of logical partitions. The "placeholder" primary partition is then referred to as an extended partition.
In Linux, the primary partitions use numbers from 1 to 4; the logical partitions are numbered 5 and
up. Linux doesn't care whether its partitions are primary or logical, so we recommend using mostly
or exclusively logical partitions for Linux. This reserves primary partitions for OSs that do need
them, such as DOS, Windows, and FreeBSD.

Linux's fdisk lets you specify partition sizes either in terms of an ending cylinder number or in bytes,
kilobytes, or megabytes. The preceding example specified a 400MB partition starting at cylinder
718.

Tip For the final partition on a disk, enter the size by specifying an ending cylinder number that
corresponds to the maximum available. This practice minimizes the amount of unused disk
space.

By default, fdisk creates partitions that use the type code 0x83 (Linux native). Such partitions are
suitable for holding Linux's ext2fs or any of the journaling filesystems available for Linux. If you want
to create a Linux swap partition or a partition to be used in another OS, however, you must change
its type code. You do this with the t command, which prompts you for a hexadecimal code. If you
don't know the code, type L at this point for a list. (You can enter a code that's not on the list if you
like, but fdisk won't be able to identify the associated OS if you do so.) You can use this feature to
convert a partition created with another tool for use by Linux.

Note Linux doesn't actually use the partition type codes except during installation. Instead, Linux
relies on the −t parameter to mount, or on Linux's auto−detection algorithms, to determine the
partition type. Many other OSs, however, rely upon the partition type codes to determine what

157



partitions they use.

When you're done editing the partition table, look it over with the p command; then verify that
everything's okay with the v command. Chances are that v will report your disk has some number of
unallocated sectors. This is normal and reflects sectors lost to the standard PC method of accessing
the disk. You should write down the partition numbers and your intended uses for them, so that you
don't forget these details. Once you're satisfied with your new partitioning scheme, type w to commit
the changes to disk and exit.

Tip Linux's fdisk does not alter any on−disk structures until you enter the w command. If you create
an unusable disk structure and want to start over again from scratch, you can type q to quit
without saving the changes. When you start fdisk again, you'll see the same starting conditions
you saw initially.

Creating a Filesystem

Filesystems aren't completely blank slates. To function, they rely upon the presence of certain key
components, even when they contain no actual files. These initial data structures include pointers to
the root directory and whatever data structures the filesystem uses to allocate space, boot sector
code, and perhaps some files or directories required by the OS or filesystem (such as the
lost+found directory that appears on every ext2 filesystem). The process of writing these core data
structures to disk is sometimes referred to formatting a disk. This term is common in the Microsoft
world, but it's ambiguous, because it can also refer to creating new magnetic marks the disk
mechanism uses to locate individual sectors on the disk. To avoid ambiguity, it's common in the
Linux world to refer to the process of writing sector marks as low−level formatting, and to laying out
initial filesystem data structures as high−level formatting or creating (or making) a filesystem.

For floppy disks, the DOS and Windows FORMAT command performs both low−level and
high−level formats, although it may skip the low−level format if that's already been done. In Linux,
the fdformat program (described earlier in "Accessing Floppy Disks") performs a low−level format on
floppy disks. Under any OS, special utilities are used to perform low−level formats on hard disks
and high−capacity removable disks. These utilities are sometimes integrated into the BIOS,
especially for SCSI disks. It's unlikely that you'll need to perform low−level formats on hard disks.

In Linux, each filesystem has its own utility to create a filesystem. These utilities are usually named
mkfs.fsname, where fsname is a code for the filesystem; for instance, mkfs.ext2 to create an ext2 or
ext3 filesystem. Often these utilities go by other names, too, such as mke2fs. The mkfs utility is a
front−end to all these specific filesystem−creation programs. Here is the syntax for this command:

mkfs [−t fsname] [options] device [size]

The options to this command are as follows:

−t fsname Specify the filesystem type with this option. Then mkfs calls mkfs.fsname.

options You can pass filesystem−specific options to the program that does the
actual filesystem creation. Precisely what options are available varies from one
filesystem to another; check the mkfs.fsname man page for details. Common options
include the following:

−c Checks the device for bad blocks.

158



−l filename Reads a list of known bad blocks from filename.

−v Displays extra information during the filesystem creation process.

device This is the only truly required parameter. Use it to tell the program on what
device to make the filesystem, such as /dev/sdb1 or /dev/fd0.

size You can tell the system to create a filesystem of a particular size, measured in
blocks that are typically 1024 bytes in size. If you omit this parameter, the program
creates a filesystem that fills the partition or device.

Red Hat Linux includes filesystem−creation utilities for ext2fs/ext3fs, ReiserFS, the Minix filesystem,
and FAT (the FAT tool is called mkfs.msdos; but as there are no differences at filesystem creation
time between ordinary FAT and long filename−enabled VFAT, you can use this utility to create
VFAT filesystems). In addition, the Mtools package includes another FAT filesystem creation
program, and the HFS Utils package includes a program to create Macintosh HFS filesystems. The
JFS and XFS projects include their own mkfs.fsname utilities. Aside from FAT, Linux utilities to
create most non−Linux filesystems are rare. As an example of filesystem creation, the following
commands both create a FAT filesystem on a floppy disk:

# mkfs.msdos /dev/fd0

and

# mformat a:

Tip If you want to use ext2fs on floppy disks or other removable media, use the −m 0 parameter to
mkfs.ext2. The −m parameter specifies the percentage of disk space that's reserved for use by
root. This percentage can be safely set to 0 for removable disks, but it's best to leave it at its
default value of 5 for most disk partitions, especially the root (/) partition.

Adding a Disk

As your system grows, it accumulates files. What's more, as time goes on, file sizes increase.
Real−time video files, for instance, can easily consume literally gigabytes of disk space, compared
to the kilobytes that were common for personal productivity applications of just a decade ago. To
cope, you may want to add a new hard disk to an existing computer that's been in service for a
while.

Most x86 computers sold today use EIDE disks. These disks are inexpensive and easy to find, but
they have a disadvantage: A typical computer can support just four EIDE devices. Because
common add−on devices, such as CD−ROM drives, tape backup drives, and high−capacity
removable−media drives, also use the EIDE interface, you may be limited to just one or two EIDE
hard disks. Beyond that, you'll have to either add another EIDE controller or add a SCSI adapter.
SCSI adapters can host either 7 or 15 devices, depending upon the SCSI variant, and SCSI hard
disks often outperform their EIDE cousins. Unfortunately, SCSI disks are generally more expensive
than equivalent EIDE devices. Check your current inventory of disk devices before buying a new
one to determine what type of device to buy.

When it comes to actually adding a disk, the partitioning and filesystem creation procedures outlined
earlier are the critical ones in terms of software configuration. Depending on the disk's intended role,
you may want to transfer some files to the new disk, as well. Overall, the steps involved in adding a
new disk are as follows:

159



Check your hardware and decide on a disk type and model.1. 
Add the disk hardware, paying attention to characteristics such as EIDE master/slave status
and SCSI termination and ID.

2. 

Partition the disk in a way that's suitable for your system.3. 
Create filesystems on the new disk's partitions.4. 
Mount the new disk's partitions.5. 

If you want to transfer data, you can do so in between steps 4 and 5. The usual procedure is to
select a directory to move to the new disk. For instance, you might move /opt to a new disk. To do
so, follow these steps:

Follow steps 1 through 4 just above.1. 
Mount the new partition at a temporary location. This can be an existing mount point, such
as /mnt/floppy; or one you create specifically for this purpose. The remaining steps assume
that you're using /mnt/floppy as a temporary mount point.

2. 

Change to the base of the directory you want to move, as in cd /opt.3. 
Type the following command to copy all files to the new filesystem:

# tar clpf − . | (cd /mnt/floppy; tar xpvf −)

Note The −l parameter keeps tar from moving into filesystems mounted on the
source directory. If you want to transfer two current filesystems onto one
new one, you'll need to omit this parameter. It's included in step 4
because omitting it can sometimes cause problems. In particular, be
careful not to copy the /proc filesystem, which is a pseudo−filesystem that
contains system information. Copying it is wasteful and potentially
dangerous. Another potential pitfall lies in copying a filesystem on which
the destination filesystem is mounted, which results in an endless loop
unless the −l tar parameter is specified. Both problems are most likely to
occur if you attempt to move the root (/) filesystem.

4. 

Check, as best you can, that the new partition contains the files that it should.5. 
Remove the files from their original location. For instance, type rm −r /opt/*.

Warning Step 6 is potentially very dangerous. If there's been an error in copying the
files, removing the originals will result in data loss. You might want to skip
this step for a while. If you do, you can mount the new partition over the
contents of the original directory. You'll then access the new partition
rather than the old directory. When you're satisfied that all is well,
temporarily unmount the new partition and come back to perform step 6.

6. 

Unmount the new partition from its temporary location.7. 
Mount the new partition at the (now empty) directory that held the original files.8. 
Edit /etc/fstab to reflect the new filesystem mount point.9. 

This procedure allows you to remove much of the load from one disk by spreading it across two.
You may encounter complications, however. Specifically, if you want to move a directory that's
normally in heavy use, such as /usr, you may have problems deleting the directory. In such cases,
you may need to resort to an emergency boot disk to perform steps 6 and 9, skipping the
intervening steps.

Replacing a Disk

Fundamentally, you can treat a disk transplant much as you do a disk addition; it's just that you're

160



moving everything from one disk to another. Here are some special caveats to keep in mind:

If you're replacing a disk because you can't add any more disks to your system, you'll need
to temporarily disconnect a device, such as a Zip or CD−ROM drive, in order to perform the
replacement. Alternatively, you can use a tape backup device as an intermediary storage
device, but this is likely to slow down the process.

Note You can use a network storage device, such as a server system, as an
intermediary storage device. If you do so, it's best to use tar to back up the
files to the network server. Copying the files directly may result in the loss of
important filesystem characteristics.

• 

Step 4 of the second procedure in "Adding a Disk" specifies use of the −l parameter to tar.
This parameter keeps the transfer restricted to one filesystem, which helps avoid problems
with /proc or endless loops that result when copying the root filesystem. When moving an
entire installation, it's best to do so one filesystem at a time.

• 

When you've finished copying all the files, edit /etc/fstab on the destination system to reflect
the partition assignments as they will exist after you've removed the original disk. For
instance, if the original disk is /dev/sda and the new one is /dev/sdb, removal of /dev/sda
changes all the /dev/sdb partitions to equivalently numbered /dev/sda partitions. The new
disk's /etc/fstab file should include references to itself as /dev/sda.

• 

Create a DOS boot floppy and put on it a copy of your Linux kernel and the LOADLIN.EXE
program from the Linux installation CD. You'll use this floppy to boot your copied system for
the first time. If you don't have a copy of DOS handy, FreeDOS (http://www.freedos.org/) can
serve this function quite well. Note the device identifier that the root filesystem will have
when the original hard disk is removed.

• 

When you've copied everything and removed the old disk, boot with the DOS boot floppy.
Type LOADLIN VMLINUZ root=/device ro, where VMLINUZ is your Linux kernel filename
and /device is the device ID of the root partition. This procedure should boot Linux. If
necessary, you can then edit /etc/lilo.conf and type lilo to install LILO on the new disk, or
edit /etc/grub.conf. Thereafter, the new disk should boot without the aid of a floppy, just as
did the original disk.

• 

Warning Don't remove any partitions or overwrite any data on your old hard disk until you're sure
all your important data exist on the new disk. If you miss a partition or make an error in
copying the original disk's data, keeping the original around for a brief period can save
you a lot of aggravation when you discover the problem.

Checking Filesystem Integrity

At every boot, Linux checks that its filesystems were shut down correctly. If they weren't, Linux
initiates a filesystem check, which is performed by a utility called fsck.fsname, where fsname is the
filesystem name. (Like mkfs.fsname, these utilities often go by other names, such as e2fsck for
fsck.ext2. The fsck utility is a front−end that calls the appropriate filesystem−specific utility.) The
filesystem check process is most important for ext2fs, because an unclean shutdown can leave
ext2fs in an inconsistent state, resulting in lost or damaged files; a filesystem check prevents this.
One of the prime advantages of journaling filesystems, as explained earlier, is that they require only
very minimal filesystem checks after a system crash. JFS relies upon an fsck program to perform
this check, but the others can do the checks automatically at boot time. Linux lacks programs for
checking most foreign filesystems; you must normally use programs native to those OSs to perform
such checks. (FAT is an exception to this rule; there is a Linux fsck.msdos program.)

The operations of a filesystem check vary from one filesystem to another. For ext2fs, it involves five
separate passes through the filesystem, the first two of which take 90 percent or more of the

161



program's running time. Each pass detects and corrects a different class of filesystem errors. If all
goes well, this process completes automatically, without the need for human intervention; it just
takes some time—a time that can be measured in tens of minutes or even hours on multigigabyte
partitions.

Unfortunately, the filesystem check process sometimes does require human intervention. When this
happens, you're likely to see a message that the operation failed and that you must run fsck
manually. You must type the root password to gain limited access to the system, whereupon you
should issue the fsck command on the partition that caused the problem, as in fsck /dev/hda9. The
program is likely to ask you bewildering questions concerning whether it should duplicate specific
inodes or store lost files in the lost+found directory. Unless you know a great deal about the design
of the filesystem that's being checked, you should select the default for each of these questions.
When this is over, type shutdown now −r to reboot the computer and hope for the best.

Even when an ext2fs partition has been cleanly unmounted, Linux sometimes issues an fsck on the
filesystem at boot time. This is because ext2fs has a maximum mount count—a maximum number
of times that Linux will mount the partition before it requires a check, in order to ensure that errors
haven't crept onto the system. There's also a maximum time between checks, for similar reasons.
You can determine these values for any given ext2fs partition by using the dumpe2fs program. (This
program produces a lot of output, so you should pipe it through less, as in dumpe2fs /dev/hda9 |
less.) Look for lines labeled Maximum mount count and Check interval. Typical values are 20
mounts and 6 months, respectively.

You can alter these values (and several others) using the tune2fs program. Include the −c
parameter to adjust the maximum mount count, and the −i parameter to adjust the check interval.
For instance, type tune2fs /dev/hda9 −c 5 −i 1m to reduce the limits to 5 mounts or 1 month. (You
can also use d and w for units to the −i parameter, to indicate days and weeks, respectively.)

Naturally, filesystems other than ext2fs use different criteria for determining when to force a
filesystem check. Most include flags that let them spot a filesystem that was not cleanly unmounted,
but any given filesystem may or may not include equivalents to the forced checks by time or number
of mounts included in ext2fs. Equivalents to the dumpe2fs and tune2fs programs may exist for
specific filesystems, but not usually.

In Sum

Linux has unusually strong support for a wide variety of filesystems. In 2002, the transition from
Linux's traditional ext2 filesystem to journaling filesystems is underway, but it's unclear which of the
four journaling contenders will ultimately become the most popular. In terms of foreign filesystem
support, Linux is unsurpassed; it can at least read, and often write, filesystems from all major x86
OSs, and from many non−x86 OSs.

Using filesystems under Linux entails issuing a mount command and accessing files using normal
Linux programs and shell commands. You can add entries to /etc/fstab to have the computer
automatically mount filesystems at boot time, or to allow non−root users to do so.

Filesystem creation and maintenance involves several tools, including the fdisk tool for partition
creation, mkfs and its helper programs for filesystem creation, and fsck and its helper programs for
filesystem integrity checking. Understanding how to use these tools is critically important for
upgrading and maintaining your system.

162



Chapter 7: Linux Files and Processes

Overview

A Linux system is made up of files of various types; essentially, everything on the system is a file.
These files are organized hierarchically into directories, since having all files in one large directory
would be far too chaotic. As development in Linux is often done individually or in small groups, it
became obvious early on that the hierarchy needed some defined structure that all developers could
work within so that pieces developed by one group would fit with those developed by another. The
basic characteristics of the hierarchy were defined first in the File System Standard (FSSTND),
which was the consensus resulting from a lengthy discussion on a specially created Linux mailing
list. The Filesystem Hierarchy Standard (FHS), a subsequent version of the FSSTND, was intended
to standardize file systems between Linux and Unix for compatibility between different software
packages, distributions, and networked systems.

This chapter discusses the history of these two standards and what they brought to Linux. It
explains the file concept, including file types and file naming. It looks at the filesystem hierarchy as it
has evolved, and outlines the intended purpose for each of the top−level directories. The chapter
also discusses the different types of files that together form a Linux filesystem. Finally, you'll learn
about the processes that perform the actual work on a Linux system, how to track them, and how to
administer them. As a system administrator, you must know the filesystem that you are working on
and its restrictions and limitations in order to allocate system space efficiently and avoid pitfalls. Just
as with city ordinances, you can sometimes get by without knowing them intimately, but you might
find that your lack of knowledge gets you into trouble.

The Filesystem Hierarchy Standard

The history of the Filesystem Hierarchy Standard encapsulates the open−source development of
Linux as a whole. Even if you're not a history buff (or an open source "true believer"), understanding
the issues that the developer community set out to solve in defining the standard can help you
better understand the system you're working with today.

Linus Torvalds intended the Linux operating system to compensate for the problems he
encountered when trying to use the Minix operating system to connect him to a computer at Helsinki
University where the computer lab was overcrowded, making it hard for him to complete his class
assignments. In its very early days, Linux was developed in tandem with the Minix operating
system, allowing Linus to share disks between the Minix and Linux sides. At that point, the Linux
filesystem was in fact the Minix filesystem. Soon thereafter, a Virtual Filesystem (VFS) layer was
developed to handle the file−oriented system calls and pass the I/O functions to the physical
filesystem code, allowing Linux to support multiple filesystems. Developed for use as an
instructional tool, the Minix filesystem supported only 14−character filenames and limited its support
to filesystems smaller than 64 megabytes. In April 1992, after the integration of the VFS into the
kernel, a new filesystem, the Extended File System or extfs, was implemented and added to Linux
version 0.96c.

Although extfs was significantly more usable than the Minix filesystem, it still lacked some features
that Linus wanted. Additionally, its practice of tracking free blocks and inodes via a linked list did not
allow for optimum performance, because, as the filesystem was used, the list became unsorted and
the filesystem became fragmented. Released in alpha version in January of 1993, the Second
Extended File System (ext2fs) grew out of the desire to fix the problems of extfs and to ensure a

163



focus on excellent performance, robustness, and flexibility to allow users to use new features
without having to reformat their filesystems. ext2fs supports filenames as long as 255 characters
and filesystems as big as 4TB. As of kernel 2.4.15, a journaling file was added to prevent the user
from having to wait for filesystem checks at every reboot. At this point, ext2fs became ext3fs. Linux
is still using this filesystem, although as described in Chapter 6, several alternatives are available.

Note The term filesystem has two meanings. Chapter 6 discussed a filesystem in terms of
the low−level layout of data on the disk. In this chapter, the word filesystem refers to
the placement of files and directories within the directory structure on the disk.

Transition from extfs to ext2fs solved many technical problems, but procedural problems remained;
administrators did not always agree on how to use the filesystem. That is, administrators and
distribution maintainers didn't always put the same files in the same locations, leading to confusion.
In August 1993, a programmer named Olaf Kirsh posted a message to one of the most important
Linux discussion groups, discussing the possibility of designing a common standard for filesystem
layout. It turned out that many Linux users had something to say about this topic, and soon a new
mailing list was created specifically to house the discussion. The goal was to form a consensus
about creating a standard filesystem hierarchy that would support the needs of the Linux file and
directory structure.

A few of the problems that the Linux community sought to solve were:

The need to define which binaries belonged in /bin and which belonged in /usr/bin• 
The disorder caused by having both binaries and configuration files in /etc• 
The need to separate site−wide configuration files from local configuration files to facilitate
the sharing of these files where appropriate

• 

The need to move changeable files out of /usr so that partition could be mounted as
read−only

• 

The consensus for solving these and other problems was formalized into a filesystem hierarchy
standard specific to the Linux operating system, called FSSTND. The first official version of the
FSSTND was released in February 1994, and two subsequent revisions were released over the
next year. The FSSTND defined a standard filesystem structure for Linux systems, mapped where
specific types of files and directories belong, and clarified what was intended to be contained in
specific system files. Linux FSSTND 1.2 is the final version of this standard and is quite interesting
reading.

Since BSD supporters needed to solve these same problems, in 1995, the focus turned to Unix−like
systems in general and the Filesystem Hierarchy Standard (FHS) was born.

The FHS may be applied to any filesystem layout that:

Conforms to a hierarchical structure• 
Handles file data consistently• 
Includes data−protection mechanisms• 

The FHS begins by defining shareable data and unshareable data. Shareable data can be used by
more than one host without alteration. Unshareable data is exclusive to one host and would require
tailoring for use by another host. For example, it might be beneficial to share a text document
across hosts, but sharing a configuration file that is tailored to the specific hardware on the host
machine would not be beneficial.

164



FHS ensures that shareable files are not interspersed with unshareable files, so that a partition
containing shareable data may be shared with another host without making an unshareable file
available to that host. In the old Unix standard, shareable files and unshareable files existed
together on the same partition. The /usr partition is a good example. It contained unshareable data
until the /var system was created. Now, unshareable /usr files are stored in /var and linked into the
/usr directory tree, leaving /usr perfectly shareable.

FHS further distinguished between static files and dynamic files. Static files are files that require
superuser permission to change. Program files are a perfect example. Dynamic files are those that
may be changed without the superuser's involvement, either by some process that runs
automatically on schedule or manually by a user without root privileges. Examples include user data
and log files.

Directory Layout

The Linux directory layout is largely determined by the FHS requirement to group similar data and
not blur the boundaries between the groups. The top−level directories are intended to contain
specific groups of like data. Furthermore, the subdirectories within each top−level directory contain
data that meets the constraints for the top−level directory as well as some further constraint. As a
result, each top−level directory is defined in terms of what it contains. Although there are still
variations among the different Unix−like systems, the differences are minor; the top−level directories
in a Red Hat system provide a model that can be used to describe any Linux system.

/ (mandatory) The root filesystem is the base of the directory hierarchy. Although the
root user's home directory on most Linux distributions is /root, if /root doesn't exist, /
is used instead. The / filesystem is intended to remain uncluttered, so as a rule, you
should avoid creating new directories or files there. Unfortunately, this rule often
goes unheeded by novice system administrators.

Warning Although / and /root are both pronounced "root," they're very
different directories. The former is the base of the Linux
filesystem, and the latter is the home directory for the superuser.

/bin (mandatory) The /bin directory contains binaries that are required in single−user
mode regardless of their assigned execution privilege. This directory is not intended
to have subdirectories. Commands intended to be run primarily by individual users
should be placed in /usr/bin instead.

/boot (mandatory) The /boot directory contains all the files needed to boot the
system except configuration files and the map installer. This directory stores data
that are used before the kernel begins the system initialization as defined by
/etc/inittab. (See Chapter 3 for a discussion of the system startup process.) The
Linux kernel may be stored in /boot or in /, but kernels stored in /boot should be given
filenames that include the complete version as well, such as /boot/vmlinuz−2.4.7−10,
since more than one kernel image is likely to be stored there.

/dev (mandatory) The /dev directory contains block and character device files as well
as sockets and named pipes. As you'll see later in this chapter, it is the directory
where all of your devices hang out. If a device that you need doesn't exist in /dev, it
may be created with the mknod command or the MAKEDEV script.

/etc (mandatory) The /etc directory, usually pronounced "et−see," contains

165



configuration files for the host. Over the past few years, directories have been added
under /etc to better organize configuration files. For example, there has long been an
/etc/X11 directory, which contains the X configuration files. Recent additions include
/etc/ppp and /etc/httpd. This directory structure makes finding a file in /etc a little
easier.

/home (optional) The /home directory contains the individual users' home directories.
Some system administrators prefer not to use the /home directory concept but
instead place user directories in a /var/users directory or even a /usr/users directory.
Sometimes the /home directory is actually a symbolic link to /usr/home or some other
directory within the /usr hierarchy; this is probably a bad idea since the /usr directory
is intended to be mountable as read−only and home directories typically contain
dynamic data. Most Linux system administrators simply leave the user's home
directories in /home, and most Linux distributions follow this pattern as well.

/lib (mandatory) The /lib directory contains shared libraries needed at system bootup
or to run top−level commands (located in the /bin directory). Libraries in support of
the commands in /usr are stored in /usr/lib.

/mnt (optional) The /mnt directory contains temporary mount points for storage
devices like hard drives or floppy drives specific to the host. Each mount point is
actually a directory that will contain the device's filesystem once it is mounted. In the
case of a mounted CD−ROM containing an /etc directory and file1 and file2 in its
root, the files would be available as /mnt/cdrom/etc/, /mnt/cdrom/file1, and
/mnt/cdrom/file2. By the standard, this directory must contain mount points for the
CD−ROM and the floppy drive at a minimum, but each Linux distribution determines
which mount points to include and usually includes many more than this. Some
distributions, like SuSE, place mount points for CD−ROM and floppy drives in the /
directory, rather than in /mnt.

/opt (optional) The /opt directory is intended to contain all of the data required to
support software packages added to the original system. The /opt directory is a
feature borrowed from the AT&T SysV Unix filesystem hierarchy and commonly used
in the Solaris world. It is also commonly found in the SuSE distribution, but the Red
Hat distribution and most others avoid the use of /opt.

/proc (optional) The /proc directory contains a virtual filesystem—that is, one that
doesn't correspond to a physical disk device. This filesystem contains process and
kernel information specific to the kernel that is currently running. The information
stored in /proc is very useful when you are trying to track down problems with your
system. /proc contains a listing of interrupts, devices, I/O ports, and a lot more. It also
contains a directory for each process currently running; the directory name is the
process number. This directory includes such things as the command line that
initiated the process and other environmental information pertaining to the process.
The last section of this chapter provides a detailed look at processes and their role in
the Linux filesystem.

/root (optional) The /root directory contains configuration files for the root user's
account. This directory was created to prevent cluttering up the / directory with the
root user's configuration files. Most distributions are set up so that if there is no /root
directory, the root user's account defaults to /.

166



/sbin (mandatory) The /sbin directory originally contained only static binaries but now
contains binaries that are administrative in nature and are restricted to superuser use
only. These binaries may also be used by the system during the boot process.
Binaries that do not require execution prior to the mounting of the /usr partition are
stored in /usr/sbin or, if host−specific, in /usr/local/sbin.

/tmp (mandatory) The /tmp directory is used whenever a program needs to write a
file that will be removed when the program is terminated. The /tmp directory is
typically flushed at reboot or at some interval defined by the administrator. If /var is
on its own partition, /tmp is often a link to /var/tmp; this frees up space on the root
partition. The Red Hat distribution uses the tmpwatch command to automatically
clean out any file in /tmp or /var/tmp that has not been recently accessed. In Red Hat
7.3, recently is defined as 10 days (240 hours) for /tmp and 30 days (720 hours) for
/var/tmp, but this is easily changed. tmpwatch is run from a script in the
/etc/cron.daily directory. See Chapter 17 for more information on the cron daemon
and scripting. The time period may be adjusted as appropriate for your system. The
actual commands included in the script are:

/usr/sbin/tmpwatch −f 240 /tmp
/usr/sbin/tmpwatch −f 720 /var/tmp

/usr (mandatory) The /usr directory stores shareable read−only data. Because of
this, /usr, if made a separate partition, can be mounted as read−only. To facilitate
this, /usr should contain only static data, using links to changeable data in the /var
directory to preserve this characteristic.

/var (mandatory) The /var directory contains variable data files like logs, lock files,
and process−specific data files. The existence of a /var directory makes it possible to
mount /usr as read−only since files written during system operations are stored in
/var instead of in /usr. Since /var contains the system log, /var/log/messages, any
problem that sends frequent error messages could fill the /var directory. For this
reason, /var is often created on a separate partition from the rest of / to avoid filling
up the / partition and not being able to log in. It is important to note that not all
directories under /var are shareable; /var/log is an example of one that is not.

Of course, anyone with superuser privileges can create directories in the / directory. This is
generally to be avoided to prevent cluttering up the / directory. For more information on the
unde r l y i ng  d i r ec to r y  s t r uc tu re ,  r e fe rence  t he  FSSTND,  wh i ch  may  be  f ound  a t
http://www.pathname.com/fhs/.

File Characteristics

To the average user, a file is a sequence of information bytes, stored together and named as a
collective entity. A file can be an executable program, a document, a database, a shell script, or any
other collection of bytes that has a collective meaning. In fact, virtually everything in Linux is seen
by the system as a file, including the directories and devices.

Filenames in Linux (ext3 or reiser filesystem) can range up to 255 characters and may or may not
be terminated with an extension. Filenames are case−sensitive, like nearly everything else in Linux.
This means that the names File.txt, FILE.txt, file.txt, and FiLe.txt would all refer to different files. The
case sensitivity of filenames, combined with their variable length, gives you great flexibility. Not only

167



are there more names available to you, but you can use specific capitalization patterns to indicate
certain types of files. For instance, you might start directory names with a capital letter.

Note In DOS, filenames are always one to eight characters, followed by a period, followed by a
zero to three−character extension. The VFAT filesystem used by Windows 9x and ME adds
long filenames still with the one to three−character extension, but keeps the short filenames
as well. You can see the short filenames by starting a DOS shell and using the DIR
command. Later versions of Windows display the full filename in the DOS shell as well.

Determining a Linux File's Type

Knowing a file's type tells you a great deal about the file itself. For example, each different graphic
file type has a different internal format; most include a header containing specific information about
that graphic's size and other attributes. If you write a translator to read in a graphic of a given type
and output that same graphic in a different file format, you need to know the file's format so you can
parse the file properly. Since Linux files aren't required to have a file extension, you sometimes
have to determine a file's type using another method. File types may be determined in a number of
ways. Certainly the file extension, if present, does the work for you, but when it doesn't, you can use
commands like ls and file to determine the type.

The file Command

The file command was created to allow a user to determine a file's type and is the best tool for this
purpose. The format for the file command is:

file [options] [−f namefile] [−m magicfiles] file

Whereas the ls command doesn't differentiate between the various "normal" file types (as discussed
in the next section), the file command does. The file command attempts to determine the file type of
the file identified by the file argument. Alternately, the −f option can be used to identify a file that
contains names of files whose type is to be determined. The file command is supported by a file
named magic (/usr/share/magic by default on most distributions) that contains information on all the
file types that the file command knows about. You can specify a different magic file with the −m
option on the command line. The file command will use this magic file to determine, to the best of its
"knowledge," what type of file you've specified. The file command's output will usually include one of
the following key words: text, executable, or data. Listing 7.1 contains two examples of the data
produced by the file command.

Listing 7.1: The Output of the file Command Varies with the Type of File It Examines

$ file openssh−2.5.1p1.tar.gz
openssh−2.5.1p1.tar.gz: gzip compressed data, deflated,  last modified: 
Mon Feb 19 04:54:46 2001, os Unix

$ file test_table.c
test_table.c: C program text

You'll notice that the first file was identified as compressed data created on a Unix system, and
modified Mon Feb 19 04:54:45 2001. If the file is a text file, the file command tries to determine its
computer language as in the second example, where some code written in the C language was
correctly identified.

168



The ls Command

The ls command is one of the most often used Linux commands. ls provides information about a
file, including its type. The name ls means listing because the command lists all of the files in a
directory. The syntax for ls is simple:

ls [options] [file or directory name]

The ls command without arguments produces output like that in Listing 7.2.

Listing 7.2: The Output of the ls Command Entered without Arguments

$  ls
sshd  sshd.old   sshd1   sshd1.old   visudo

If no arguments are specified, you simply get a listing of filenames, which by default does not
include any filenames that begin with a dot. You can use arguments to further define what the listing
will include. The −l option (which stands for "long listing") allows you to examine the permission
string, the owner, the file size, the date it was last modified, and the filename as in Listing 7.3.

Listing 7.3: The Output of the ls −l Command

$  ls −l
lrwxrwxrwx    1 root  root        5  May   3 18:24  sshd −> sshd1
lrwxrwxrwx    1 root  root        5  May   3 18:20  sshd.old −> sshd1
−−rwxr−x−x    1 root  root   649246  May   3 18:24  sshd1
−rwx−−−x−−x   1 root  root   649246  May   3 18:20  sshd1.old
−−−x−−−x−−x   1 root  root    56712  Sep   2 11:00  visudo
brw−rw−−−−    1 root  disk   41,  0  Mar  23  2001  bcpcd
crw−−−−−−−    1 root  root   68,  0  Mar  23  2001  capi20
srwx−−−−−−    1 root  root        0  May   3 17:41  gpmctl
prw−−−−−−−    1 root  root        0  May   3 15:34  initctl
drwxr−xr−x    3 root  root     4096  Sep  20  2001  state

You'll remember that directories, symbolic links, devices, and text files are all files under Linux. The
first character in the permission string located in column 1 of the ls −l output indicates the file type. It
only differentiates between regular files (−), directories (d), links (l), character special files (c), block
special files (b), pipes (p), and sockets (s). These file types are discussed further in the "File Types
Defined" section later in this chapter.

Tip Although the sample output in Listing 7.3 shows each of the file types that we've
mentioned, the character special files and block special files do not typically appear in
the same directory with other files. They are primarily found in the /dev directory and
are included in this example for illustration purposes.

The ls command has several other arguments. These are the most commonly used:

−a Lists the files whose names begin with a period (.) in addition to the normal ls
output. There's nothing special about these files, except that they're normally not
shown in ls output and other directory listings; the leading period is simply Linux's
way of hiding files, similar to the hidden bit on DOS or Windows computers.

169



−−color[=WHEN] Indicates whether or not to use colors to distinguish file types.
WHEN may be never, always, or auto.

−d or −−directory Lists the directory names instead of their contents.

−G or −−no−group Does not display group information.

−i or −−inode Prints index number of each file.

−n or −−numeric−uid−gid Lists numeric UIDs and GIDs instead of names.

−R or −−recursive Lists subdirectories recursively.

−s or −−size Prints the size of each file in blocks.

−S Sorts by file size.

−t Sorts by modification time.

File Types Defined

Although the file command generally recognizes text, executable, and data as distinct file types, and
extensions can help identify the application that produced a file, it is helpful to think in terms of the
strict file types used by the ls command. Table 7.1 lists the file types that ls recognizes. The Symbol
column shows the symbol that appears at the beginning of the permission string set for a file of that
type. We'll talk more about permission strings in Chapter 15. The last column contains an example
of the specified type of file.

Table 7.1: File Types Recognized by ls

Type Symbol Example
Normal file none chapter1.doc, myprogram.c
Directory d /usr
Links l /dev/mouse
Named pipe p /dev/initctl
Socket s /dev/printer
Block device file b /dev/fd0
Character device file c /dev/console

Normal Files

Normal files include binaries, text files, shell scripts, image files, and generally any file that does not
fall under one of the other categories. Most of the files on your system fall into this category. The
word normal is applied as a catchall to differentiate these files from the other, more specialized file
types discussed below. In general, it is best to categorize normal files as either binary or text files.

Text files contain minimally formatted or unformatted text, using only characters available in the
ASCII (and sometimes the ANSI) character set. A binary file is a file that may contain byte values
outside of the ASCII and ANSI character sets. Image files, executable files, compressed archive
files, and various other files are some examples. Some applications, such as word processors, may

170



produce a file that contains both text and binary data. These files could be considered either text or
binary, depending upon the details of the format and the exact criteria used in classifying the files. It
is safer and more common to consider such files as binary files, since file corruption could result if
the ASCII mode of FTP were used to transfer these files due to the restricted character set.

Directories

Directories are logical containers for files; they allow you to organize your files into a hierarchy
instead of storing all of them in the root directory. A directory may contain other directories as well
as individual files. A directory can be identified in ls −l output by the d prefixed to its permission
string.

In Linux, directories are created with the mkdir command, browsed with the ls command, and
removed with the rmdir command. We've discussed the ls command earlier in the chapter. The
mkdir command will create a directory if the supporting directory structure already exists and the
specified directory within this structure does not. The mkdir command syntax is very simple:

mkdir [options] [path] directory_name

The mkdir command has only three possible parameters:

−m, −−mode=MODE Sets the permission mode for the new directory (as in chmod).

−p, −−parents Creates parent directories as needed. Prevents generation of an error
if the directory exists.

−v −−verbose Prints a message for each created directory.

The rmdir command removes the specified directory if it is empty. If the directory is not empty, an
error is generated. The syntax for the rmdir command is similar to the mkdir command.

rmdir [options] [path] directory_name

The rmdir command has the following arguments:

−−ignore−fail−on−non−empty By default, a directory must be empty before it can
be removed; this option tells Linux to ignore any failure message based solely on the
fact that the directory is not empty. The failure is ignored only to continue execution;
the non−empty directory is not removed.

−p, −−parents Removes any parent directories that become empty after the
specified directory is removed.

−v −−verbose Gives diagnostic data upon each successful removal of the directory.

The benefits of grouping related files into a hierarchical structure should be thoroughly familiar to
every system administrator (in fact, to every user). First, by grouping the data in a rational fashion,
you avoid the need to wade through every file on your system to find the one you want. Thus you
might have an Images directory, a Sound directory, etc.

Another benefit of separating your files into directories is that they are easier to back up. If you
place all variable files in a separate directory structure from the static files, you can then back up
just the files that might have changed since the previous backup, without having to continuously

171



back up all the files that never change. You might want to create a Document directory to contain all
of the documents created using StarOffice or some other word processing software. This makes it
easy for you to back up everything on your system once a week and to back up these document
files daily. We'll talk more about backup strategies in Chapter 9.

Links

A link is a way of allowing several filenames access to the same file. Links come in two varieties:
hard links and symbolic links, often called soft links. Hard links are simply files with different paths
that have separate directory entries, each pointing to the same inode. Referencing Chapter 6's
discussion of inodes, howdy.wav and sound.wav are hard links to the same file, because they share
the same inode.

Since an inode is device−specific, both files in a hard−linked pair must be contained on the same
disk partition. Deleting the link will not remove the original file and vice versa. If a file was linked to
another file and then either file is deleted, re−creating a new file with the same name as the old one
will not reestablish the link between the two files, since the new file will have a different inode. Hard
links cannot be used to link two directories, because the standard commands for removing
directories won't remove the link.

Hard links are created with the ln command. The syntax for this command is as follows:

ln [options] target [link_name]
ln [options] targets directory_name

The link command shown below creates a hard link to the /usr/local/netscape/netscape−navigator
file; this link is called netscape and is located in the /usr/local/bin directory.

# ln /usr/local/netscape/netscape−navigator /usr/local/bin/netscape

The link is only created if the file and directory permissions allow the user to do so. If the last
argument is a link name, a link with that name will be created. If the last argument is an existing
directory's name, links named for each specified target will be created in that directory. It is
important to note that hard links do not have the l in the permissions string; to tell if a file has more
than one link, look at the link count in the ls −l output.

A symbolic link is basically a pointer to another file. In the case of symbolic links, the linked file is
assigned a completely different inode. To create a symbolic link to illustrate this, we again use the ln
command, but we add the −s option. For example:

ln −s /home/user/example_file /tmp/example

Now, by using the −i option to the ls command, we can see that the two inode numbers are
different.

$ ls −i example_file /tmp/example

176449 /tmp/example   719925 example_file

Most operations performed on a symbolic link are actually performed on its target file. If an editing
command uses a symbolic link as its argument, the edit will actually take place in the file referenced
by the symbolic link. Some commands, like rm (remove), act on the link itself, leaving the target file
intact. The permission string on a symbolic link is not used. It will always be lrwxrwxrwx. The actual
permissions are determined by the referenced file's permission string.

172



In contrast to hard links, a symbolic link can be used to link directories. If you move or delete the
linked−to file, the symbolic link will be left "dangling," pointing at nothing, unlike a hard link in which
the file contents would still exist and be accessible from the link. If you delete a symbolic link,
re−creating a new file of the link's name won't automatically restore the link; you must use the ln
command again to re−create the link. If you have a symbolic link pointing to a file and you remove
the file and then re−create it in the same location, the symbolic link will reference the new file. It may
be helpful to think of a symbolic link as a card in a library's card catalog.

Pipes

A named pipe, also called a FIFO (first in, first out), is a special file type that allows independent
processes to communicate with each other. The first process opens a specified file—the pipe—for
writing. That process or another opens the same file for reading. The processes communicate via
that file. All communication between the process and the pipe is unidirectional. Each time the file is
opened, whether for reading or writing, the open function blocks other processes from opening the
same pipe for the same activity. That is, if the pipe is opened for read−only, the open function will
not return, thereby blocking any requests to open that same pipe for read−only; attempts to open
the pipe for writing will cause the open for read−only to terminate. If, on the other hand, the pipe is
opened for writing, all attempts to open the same pipe for writing will be blocked, but the first
attempt to open it for reading will be allowed. The rules for blocking are as follows:

If you open the pipe for both reading and writing, then the open function will not perform
blocking.

• 

If you open the pipe for reading, the open function will not return until another process opens
the FIFO for writing, unless O_NONBLOCK is specified, in which case the open succeeds.

• 

If you open for writing, the open function will not return until another process opens the FIFO
for reading, unless O_NONBLOCK is specified, in which case the open fails.

• 

For example, suppose you want to display a daily fortune as your .signature file. You could use the
name of that file as a pipe from a fortune−generating program. Now every time any program tries to
read from your .signature file, the reading program will pause for your program to supply a fortune
as your .signature.

The specifics for reading and writing using named pipes require programming functions that are
beyond the scope of this book. The creation of a named pipe, however, is very much part of a
system administrator's job. There are two ways to create a named pipe: using the mkfifo command
or using the mknod command if mkfifo isn't available. These two commands each create a named
pipe called test_fifo:

$ mkfifo test_fifo
$ mknod test_fifo p

The ls command may be used to verify that the FIFO was created:

$ ls −l test_fifo
prw−rw−r−−   1 user    user          0 Jan 29 14:50 test_fifo

Sockets

Sockets are virtual connections between two processes. Unlike named pipes, sockets may be
unidirectional or bidirectional. The standard input−output library contains a socket library function,
called socket(), which creates a communication endpoint and returns a file descriptor containing its
local host's network address and the port number to which the second process may attach in order

173



to communicate with the first. If you have ever used an Internet address in the format
http://12.34.56.78:10/, you were connecting to a specific socket.

Devices

Linux recognizes two kinds of devices, differing in the way they exchange data with the CPU. The
first type is the random−access block device, such as SCSI, floppy, or IDE disk drives. A block
device file is a buffered file. Data is added to the buffer until some predetermined event occurs,
typically a full buffer. At this point the buffer is flushed to the device, and the data−collection process
begins again. Your hard drives are prime examples of block devices. If data were saved to a hard
drive character by character, it would be exceedingly slow.

The second type of device is the character device, such as a tape drive, modem, or serial mouse.
Character device files are used for unbuffered reads and writes. This means that the data is sent
out as soon as it is received. The character device /dev/console is a great example. Of course, you
don't want your system buffering the keystrokes before sending them to the console. You want to
see them as they are being typed.

Devices of either type are represented in the filesystem as device files and are stored in the /dev
directory, which also includes sockets and pipes. When you read from or write to a device file, the
data comes from or goes to the device represented by that file.

Processes

The filesystem that we have examined is only one of the internals of Linux. This filesystem by itself
is static. The activity on a Linux system is represented as processes, which open and manipulate
files within the filesystem.

Each program that is run by a computer's CPU is called a process. A command may include many
processes. There are several processes running at any one time on a Linux system. As a system
administrator, you will be directly responsible for ensuring that the necessary system processes are
run and for maintaining the schedule by which they are run. You are further responsible for
managing the system so that the higher priority processes get the CPU's attention first. Last, you
must ensure that the memory space is adequate to house all the processes that must be run. To do
these things, you need to know the fundamental details about what a process is and how it works.

The Concept of Multitasking

The most precious resource in the system is the CPU. There is usually only one CPU, so its usage
must be optimized. Linux is a multiprocessing operating system, which means that one of its goals
is to dish out CPU time among various processes. If there are more processes than CPUs, the rest
of the processes must wait for the CPU to become available. Multiprocessing is conceptually
simple; processes execute until some situation forces them to stop. Typically this is because a
system resource that is needed is unavailable. In a multiprocessing system, several processes are
kept in memory at the same time so that when one process is forced to stop, the CPU can be used
by another process instead of sitting idle. The CPU is shared among multiple processes (tasks);
hence the name multitasking.

174



Types of Processes

There are three basic types of processes: interactive processes, batch processes, and daemon
processes. The kernel manages these processes and assigns each a unique process ID (PID) in
ascending order until the highest defined process number is reached; at this point it starts at the first
unused number again. The only process ever assigned a PID of 1 is the init process, which has a
parent PID of 0 to distinguish it from the other processes. We'll talk more about this important
process in a moment.

Processes are owned in much the same way that files are owned; the user ID of the user who starts
the process is assigned as the real user ID of the process. Likewise, the group ID of the user is
assigned as the real group ID of the process. But it is not the real user ID and group ID that
determine the process's access rights and who can start and stop it. Instead, entities called the
effective UID and GID are used. If the executable has its permission set suid, then the process will
be run as if the owner of that file had executed it and will allow access for anyone in the group it was
assigned. The UID and GID in effect during the execution of the suid executable are referred to as
the effective UID and GID. If the executable has not been set suid, the real UID and GID are also
the effective UID and GID.

Warning It's somewhat common to use a set suid binary to allow ordinary users to
perform tasks that would otherwise require superuser privileges. The mount
command, for example, has its suid bit set and is owned by root, so ordinary
users can mount partitions under certain circumstances. This practice is
potentially dangerous, however, because a bug in an suid root program can
give local users superuser access to the system. Programs that are routinely
installed in this way are therefore subjected to extraordinary security scrutiny.
You should not use this feature willy−nilly, because it can easily produce a
security breach.

Interactive Processes

Some processes are run interactively by users in a terminal session. If you log into a Linux system
and run a mail reader, the mail reader process is an interactive process. While you are interacting
with the mail reader, it is running in the foreground, actively attached to the terminal process. A
process running in the foreground has full control of the terminal until that process is terminated or
interrupted. A background process is suspended, returning terminal control to the parent of the
suspended process. The background process may be able to continue its work in the
background—if the continuation does not require interaction with the terminal. Interactive process
control, or job control as it is commonly called, allows a process to be moved between the
foreground and the background, restarted in the background if applicable, or restarted in the
foreground.

Let's assume that you are running a backup process in the foreground using the tar command, tar
zcf /dev/st0 /. You have observed the output and determined that the backup is properly running.
You might want to do something else on that terminal, necessitating that you move the tar process
to the background. Type Ctrl+Z. You will see a message on your terminal to indicate that the
process has been stopped:

[1]+      Stopped       tar zcf /dev/st0  /

The process will be stopped, waiting in the background. But what if you aren't sure that the process
is actually running? Use the jobs utility to list the background processes.

175



$ jobs
[1]+      Stopped       tar zcf /dev/st0  /

As you see, the stopped process is just out there waiting for you. To allow the backup process to
continue in the background, type bg at the command line. Running the jobs program again will
yield:

[1]+      Running       tar zcf /dev/st0  /

At this point, you may let it run on in the background until it terminates when the backup has
completed, or you may use the fg command to bring the process to the foreground again.

If you want to start a process in the background, simply append an ampersand to the command.
The tar command would then look like this:

$ tar zcf /dev/st0  /  &

You will then be given a process ID, which looks like this:

[2]  4036

You can then bring the process to the foreground using the fg command as we did before or let it
run its course in the background.

Technically, interactive processes in X work the same as they do in text mode; however, most GUI
environments include default methods of launching programs that are effectively the same as
appending an ampersand on a command line. Running an X program in the background doesn't
make the X program inaccessible, though; it still opens a window and displays its output. Your
experience is therefore one in which programs appear to run side−by−side, and you use mouse
clicks, or perhaps merely mouse movements, to bring one process or another to the foreground. All
the visible programs are active and running, even if they are not doing much when you're not
interacting with them directly. If you launch an X program from an xterm or other terminal window,
however, the xterm will become unresponsive unless you include the ampersand in the command. If
you use Ctrl+Z to regain control of the xterm, the X program you launched from the xterm becomes
unresponsive unless you then type bg to allow both processes to run. It's easy to become confused
and think that an X program has crashed, when in fact it's just been stopped after having been
launched from an xterm.

Batch Processes

Batch processes are submitted from a queue and have no association with a terminal at all. Batch
processes are great for performing recurring processes at some time when the system usage is low.
To accomplish this on a Linux system, use the batch and at commands. The at command is really
pretty simple to use. Let's assume that you want to run the tar command that we just used in the
interactive process example at 2:00 in the morning tomorrow. You would use the at command as
shown below:

# at 2:00
at> tar −zcf /dev/st0 /

After entering this command, you must press Ctrl+D. The system responds with a warning that the
command will be run using /bin/sh, since some shell scripts are written only for a specific shell, and
then gives a recap of what shell will be used to run the process:

176



warning: commands will be executed using (in order) a) $SHELL b) login 
shell c) /bin/sh

To schedule something to happen on a specific date, use at like this:

# at 23:55 12/31/02
at> tar −zcf /dev/st0 /

Again, use Ctrl+D to terminate input to at. Now check your work with the atq command, which lists
all processes that you've scheduled with the at command. The output resembles the following:

1     2002−09−01  02:00  a
2     2002−12−31  23:55  a

Now let's assume that you decide it's too risky to run your backup with only 5 minutes left in the year
and decide to cancel that job. Use atrm like this:

# atrm 2

Now check your work with the atq command:

# atq
1    2002−09−01  02:00  a

If you want to restrict the usage of the at command, you can do so using the /etc/at.deny and
/etc/at.allow files. On most distributions, the default installation creates an empty /etc/at.deny and no
/etc/at.allow. This means that any user can use the at facility. If you wish to deny at privileges to the
user steve, simply add him to the /etc/at.deny file. If you wish to only allow root to use at, create an
/etc/at.allow file with only the word root in it. If the /etc/at.allow file exists, only the users listed
therein will be allowed to use at. If there is no /etc/at.allow file, any user not listed in the /etc/at.deny
file can use at.

If you need to run a CPU−intensive process in the background when the system load is low, use the
batch command. The batch command will try to run the command immediately, but it will only be
allowed to run when the system load is less than 0.8. You can manually check the system load by
looking at the /proc/loadavg file or by running the top command. Assuming that you want to run our
trusty backup when the system usage is low, use the batch command as follows:

# batch
at> tar −zcf /dev/st0 /

Once again, use Ctrl+D to terminate input. Now when the system load drops below 0.8, the backup
will start.

Daemons

Daemons are server processes. These processes run continuously in the background until the
service they represent is called. For instance, httpd (the Apache Hypertext Transfer Protocol
daemon) is a standalone Web server service. It is typically started at boot time but spends most of
its time monitoring the port assigned to Apache, looking for work. When data comes in on port 80
(Apache's default port), httpd picks up the traffic and starts processing it as appropriate. When the
job is done, it returns to a listening mode.

A special daemon exists to monitor ports for other daemons, which have been assigned to it. This

177



daemon, traditionally called inetd but replaced by xinetd in more recent distributions, is referred to
as a TCP/IP super server. It is started at bootup, and listens to the ports assigned the processes
that are listed in the /etc/inetd.conf file (or /etc/xinetd.conf, for xinetd). Chapter 12 discusses
daemons and super servers in more detail, and the security aspects of xinetd over inetd are
discussed in Chapter 15.

Parent Processes and Their Children

When a process needs to perform several functions in order to complete its task, it cannot exit until
all of the functions are finished. This means that if a system needs to do several database queries
to complete a task, it might not update the screen until all of the queries have been completed. In
order to prevent such an obvious lag, the parent process can initiate child processes to complete
the subtasks in a more expedient manner by performing as many of them as possible
simultaneously. The creation of child processes is called forking. Each child process is assigned a
new PID, but also retains its parent's ID as the PPID. This helps you track which process called
which child process. The child process is a duplicate of the parent process, inheriting nearly all of its
parent's environment with the exception of its PID. The child then uses the exec command to
replace itself in memory with the binary code of a program that can perform the requested function.
When the replacement program finishes its task, it exits.

Listing 7.4 shows an excerpt from the table of processes as output by the ps −ajx command.

Listing 7.4: Sample ps Output

PPID   PID  PGID SID TTY TPGID STAT   UID   TIME COMMAND
  0     1     0   0  ?     −1 S        0   0:09 init [3]
  1     2     1   1  ?     −1 SW       0   0:21 [kflushd]
  1     3     1   1  ?     −1 SW       0   0:17 [kupdate]
  1     4     1   1  ?     −1 SW       0   0:00 [kpiod]
  1     5     1   1  ?     −1 SW       0   0:16 [kswapd]
  1     6     6   6  ?     −1 SW<      0   0:00 [portmap]
  1    381   381 381 ?     −1 SW       0   0:00 [apmd]
  1    434   434 434 ?     −1 S        0   0:00 syslogd −m 0
  1    445   445 445 ?     −1 S        0   0:00 klogd
  1    477   477 477 ?     −1 S        0   0:00 crond
  1    493   493 493 ?     −1 S        0   0:00 inetd
  1    764   764 764 tty1 835 SW       0   0:00 [login]
  1    766   766 766 tty3 766 SW       0   0:00 [mingetty]
  1    767   767 767 tty4 767 SW       0   0:00 [mingetty]
  1    768   768 768 tty5 768 SW       0   0:00 [mingetty]
  1    769   769 769 tty6 769 SW       0   0:00 [mingetty]
764    788   788 764 tty1 835 SW     500   0:00 [bash]
788    810   810 764 tty1 835 SW       0   0:00 [su]
810    811   811 764 tty1 835 SW       0   0:00 [bash]
811    835   835 764 tty1 835 SW       0   0:00 [vi]

You can see that this display contains a great deal of useful information. Looking at the PPID and
PID fields, you can follow the parent/child lineage. For example, the init process started several
processes: kflushd, kupdate, kpiod, kswapd, portmap, apmd, syslogd, klogd, crond, inetd, login, and
several mingetty processes. We know this by looking at the PPID field, since process 1 is the init
process. If you look at the login process numbered 764 and then at the bash process numbered
788, you can detect that the bash process is forked off the login process. Since bash is the login
shell, which is started upon login, this makes sense. The su process that is process 810 is being run
under that bash shell, since the PPID is the PID of the bash process.

178



Looking at the process group ID (PGID), we can see that kflushd, kupdate, kpiod, and kswapd all
belong to the bin group. The session ID (SID) that follows tells us that these processes belong to
the same session. The PGID and the SID are set to the PID of the calling process, so we know that
these processes were called by the init process.

The TTY field tells where the process is running. The files started up as part of the initialization
process typically have a ? in this field since they are not tty−specific. The processes specific to a tty
list that tty number (or, in the case of a remote login, a pts number).

Tip A tty is a login session connected to the standard output pipe; that is, it is local to the
CPU. Linux has six terminals (ttys) defined by default. A pts entry indicates a login by
telnet or xterm. pts/0 is the first such login.

The TIME column shows the total amount of system (CPU) time used by the process so far; this is
not equivalent to the amount of clock time since the process started, because we are on a
multitasking system.

The process status codes (STAT) can be interpreted using the following information as taken
directly from the ps man page:

D uninterruptible sleep (usually IO)
R runnable (on run queue)
S sleeping
T traced or stopped
Z a defunct ("zombie") process
W has no resident pages
< high−priority process
N low−priority task
L has pages locked into memory(for real−time and custom IO)

We've hardly scratched the surface of the ps command, but we will revisit it when we discuss
managing processes a little later in this chapter. First we will examine the initialization process used
by Linux. Some of the details vary from distribution to distribution; this discussion uses the Red Hat
process as a model, pointing out differences in other distributions where appropriate.

The init Process

The most important process in a Linux system is init. The first process started on a Linux system, it
is assigned the PID 1. The init process is owned by the root user and has a PPID of 0.

The last thing the kernel does when it boots is to start the init process. The init process controls the
rest of the boot process by checking and mounting the filesystems, starting the necessary daemons,
and doing whatever else it has been configured to do. Chapter 3 discussed how to configure the init
process.

When a parent process dies before all of its child processes have died, the remaining child
processes are said to be orphan processes. These processes are required to have a parent
process, so the init process adopts the orphan processes until they, too, are completed or killed.

Listing 7.5 illustrates what happens when a user logs in to your system. Earlier in the chapter we
saw the output from the ps −ajx command. This time we use the −aux parameter set, which displays
the user who owns the process, the process ID, the percentage of the CPU that this process is
consuming, the amount of memory that this process is consuming, and the time the process started.

179



Listing 7.5: Partial Output from the ps −aux Command

root  4270  0.0  0.8  2212  1120  pts/2 S  20:58  0:00  login − user
user  4271  0.1  0.8  1760  1032  pts/2 S  20:58  0:00  −bash
user  4301  0.1  0.6  1708   848  pts/2 S  21:00  0:00  vi todo

You can see in Listing 7.5 that a login process with a PID of 4270 was started for the user user;
logins are always owned by root. Since it has a pts number, it is a remote login. This login process
forked off a child process with a PID of 4271. This child process is the bash shell that was initiated
by the login process when the user logged in.

Since user logged in remotely, a pts was assigned instead of a tty number. In old versions of Red
Hat, remote ttys are referred to as ttyp0, ttyp1, etc. In Red Hat 6.0 and later, remote ttys are referred
to as pts/0, pts/1, etc. The init process runs as long as the system is active. Nothing else can run
without the parent init process. We introduced the init process in Chapter 3 when we discussed
system startup and shutdown. You'll remember that during a system shutdown, init performs the
reverse of its bootup procedure. It kills all other running processes, unmounts all filesystems, and
stops the processor, along with anything else it has been configured to do.

Managing Processes

Part of your responsibility as system administrator is to manage the system's processes to prevent a
runaway process (one that has started consuming system resources far beyond what it should) from
causing your system to crash. You need to understand how to obtain information about the
processes that are running. We have looked at a couple of examples of the ps command to
illustrate earlier points. Now we'll look at ps more formally. The ps (process status) command is the
most often used method of obtaining data about current processes. The ps command called without
arguments will display all of the processes running from that specific login including their PIDs, tty
information, CPU time, and the command that started the process. The ps command becomes more
useful if you add some arguments, as you can see in Listing 7.6.

Listing 7.6: Output from the ps −e Command

PID   TTY    TIME      CMD
   1  ?      00:00:09  init
   2  ?      00:00:22  kflushd
   3  ?      00:00:17  kupdate
   4  ?      00:00:00  kpiod
   5  ?      00:00:20  kswapd
   6  ?      00:00:00  mdrecoveryd
 296  ?      00:00:00  ppp−watch
 365  ?      00:00:00  portmap
3653  tty2   00:00:00  vmware
3654  tty2   00:00:05  vmware
3655  tty2   00:00:01  vmware
3864  tty2   00:00:41  ld−linux.so.2
3887  tty2   00:00:00  netscape−commun
3946  ttyS1  00:00:00  pppd
4024  tty2   00:00:01  kvt
4025  pts/1  00:00:00  bash
4269  ?      00:00:00  in.rlogind
4270  pts/2  00:00:00  login
4271  pts/2  00:00:00  bash
4301  pts/2  00:00:00  vi
4317  pts/0  00:00:00  man

180



4318  pts/0  00:00:00  sh
4319  pts/0  00:00:00  sh
4322  pts/0  00:00:00  groff
4323  pts/0  00:00:00  less
4326  pts/0  00:00:00  grotty
4328  pts/1  00:00:00  ps

You can see that the output from ps −e gives you the basic information about all the running
processes. The output includes the PID, the tty, the time, and the command itself. This is quite
sufficient when you are trying to obtain the PID of a process to kill it or restart it.

The output from ps −au, as shown in Listing 7.7, displays information in a user−oriented format (u)
that includes all processes on this terminal, including those of other users.

Listing 7.7: Output from the ps −au Command

USER  PID %CPU %MEM VSZ  RSS TTY  STAT START   TIME COMMAND
user  4025 0.0  0.7 1760 988 pts/1  S  18:17   0:00 bash
user  4331 0.0  0.6 2532 884 pts/1  R  21:32   0:00 ps au

System administrators more often use a version of the ps command that gives this information for
all the processes on this terminal as well as all daemon processes, such as the ps −aef command
illustrated in Listing 7.8.

Listing 7.8: Output from the ps −aef Command

 UID   PID  PPID  C STIME TTY          TIME CMD
root     1     0  0 Sep28 ?        00:00:09 init [3]
root     2     1  0 Sep28 ?        00:00:22 [kflushd]
root     3     1  0 Sep28 ?        00:00:17 [kupdate]
root     4     1  0 Sep28 ?        00:00:00 [kpiod]
root     5     1  0 Sep28 ?        00:00:20 [kswapd]
root     6     1  0 Sep28 ?        00:00:00 [mdrecoveryd]
bin    365     1  0 Sep28 ?        00:00:00 portmap
root   381     1  0 Sep28 ?        00:00:00 [apmd]
root   434     1  0 Sep28 ?        00:00:00 syslogd −m 0
root   445     1  0 Sep28 ?        00:00:00 klogd
daemon 461     1  0 Sep28 ?        00:00:00 /usr/sbin/atd
root   477     1  0 Sep28 ?        00:00:00 crond
root   493     1  0 Sep28 ?        00:00:00 inetd
root   509     1  0 Sep28 ?        00:00:00 [lpd]

This form of the command is very useful when you are looking for information on a specific daemon.
Simply pipe the command into a grep command to see whether the daemon in question is running.
This is especially useful in a script where the other output would confuse the situation. For this
reason, it is one of the versions of the ps command that is most commonly used by system
administrators. The man page for the ps command lists the many options available to tailor the
output to what you need.

The command top uses the /proc filesystem to display all active processes along with the
percentage of CPU power and percentage of memory that each one is using. You can also do this
with a ps command, but top is better in that it is a continuous listing that is updated in real−time in
order by CPU usage and is configurable. If you prefer a more visually pleasing version, try

181



GTK/Gnome Top, found in most Linux distributions or available from http://www.tucows.com/. The
most CPU−intensive programs are listed first, as shown in Figure 7.1. This is extremely helpful
when your system is running slowly, and you want to find out which process is dominating the CPU.
In the case of Figure 7.1, one process (gnp) is consuming 91% of the CPU time. This might or might
not be a sign of trouble, depending upon whether that process should be consuming a lot of CPU
time. The top command also lists specifics such as uptime, the number of users, the number of
processes and their status, and how real memory and swap space are being used.

Figure 7.1: Sample output of top command
Terminating/Restarting with the kill Command

You know how to see what processes are dominating your CPU and slowing down your system, but
what do you do about it? To terminate a process on a Linux system (and in most other Unix−like
systems), you use the kill command. Issued with only a process ID as an argument, the kill
command will send a signal to the process telling it to terminate. Some processes are able to catch
the signal and cannot be killed so easily—the "John Wayne" processes, which simply ignore the kill
signal. For these you must use a −9 argument, making the command look like this:

$ kill −9 234

The −9 cannot be caught, so the process whose ID is specified will terminate. It's generally a good
idea to try issuing the kill command without the −9 argument first, because some programs close
themselves more cleanly this way, without leaving behind temporary files and so on.

If you need to restart a daemon, because it is hung up or because you've made a configuration file
change, you can do this by entering the kill command with a −1 argument before the process ID, as
in the example below.

# kill −1 234

Do not combine this with the −9 argument. Using

182



# kill −HUP 234

will do the same thing. You may notice when you speak to other system administrators that HUP is
sometimes used as a verb, basically meaning restart.

Note Linux supports a command called nohup, which launches a program in such a
way that it ignores the HUP kill signal. This allows you to run a program so that it
survives a logout, which can be handy if you want to run a program that will be
running for a very long time, but you don't want to tie up a terminal or xterm
window with that program. To use this utility, just place it before an ordinary
command, as in nohup number−cruncher.

Terminating/Restarting Processes Using Scripts

In Red Hat (as in many versions of Unix), each daemon has a single script that allows you to kill it,
check its status, or restart it. The handling of these scripts is based on run levels. Run levels were
more thoroughly discussed in Chapter 3. For now you only need to remember that the system has
several modes it can boot into. The selection of the run level allows only certain processes to be
started by the init process. On Red Hat systems, these scripts exist in the /etc/rc.d/init.d directory,
one for each daemon that is to be started or shut down by the system either at bootup or run level
change. Under the /etc/rc.d/ directory, there is a subdirectory for each possible run level, which
contains symbolic links to the scripts that should be run for that level. Most scripts contain the
capability to start, stop, status−check, and restart their specific daemons.

To kill the sendmail daemon, for instance, you use the stop option:

# /etc/rc.d/init.d/sendmail stop

An alternative method is to use the service command shorthand, which replaces the path to the
service command with the word service followed by the name of the service like this:

# service sendmail stop

Whichever syntax you select, if the daemon is stopped, you'll see the message:

Shutting down sendmail: [OK]

The [OK] will be replaced by [FAILED] if the daemon was not shut down as shown below. This
might happen if the daemon that you are trying to kill is not currently running.

Shutting down sendmail:    [FAILED]

If you wish to start a daemon that is not currently running, substitute the word start for stop:

# /etc/rc.d/init.d/sendmail start

or

# service sendmail start

The system will then attempt to start up the sendmail daemon. A message confirming the
successful startup will be displayed.

Starting sendmail:    [OK]

183



If you just want to know whether a daemon is running, instead of searching through a ps listing, you
may use the script in /etc/rc.d/init.d, which governs that daemon, specifying the status option, as in:

# /etc/rc.d/rc.local/sendmail status

or

# service sendmail status
sendmail (pid 4437) is running...

Last, you may restart a daemon that is currently running—or as some would say, you can "HUP" the
daemon. To do this for sendmail, you would use

# /etc/rc.d/init.d/sendmail restart

or

# service sendmail restart

You will then see the message

Shutting down sendmail: [OK]

if the shutdown succeeded, or

Shutting down sendmail: [FAILED]

if the shutdown was unsuccessful. Following the shutdown line, you will see

Starting sendmail: [OK]

if the sendmail daemon started, or

Starting sendmail: [FAILED]

if it did not. A failure during the shutdown phase will not automatically prevent the daemon from
restarting, although a problem with that daemon might cause both the shutdown and the startup to
fail.

Shutting down sendmail: [FAILED]
Starting sendmail: [FAILED]

In Sum

We've looked at the ext3 filesystem: how it developed and how it is laid out. We've also looked at
processes and process management using such commands as ps, fg, bg, and top. We showed you
where the init process, which was introduced in Chapter 3, fits into the scheme of things. You may
wish to refer back to Chapter 3 if the startup process and the role that the init process plays in it are
not yet clear.

Now that we've discussed the different types of processes and files, we'll move on to a discussion of
how these files are installed and managed.

184



Chapter 8: Software Administration

Overview

Most Linux distributions ship with a wide variety of software packages, many of which you can
select during system installation. On occasion, however, you'll find that you need to install additional
programs, or upgrade packages you've already installed. Depending on which Linux distribution
you're using, you may have a choice of several different package formats, which are methods of
distributing software in a single file, often including information about which other programs a new
one requires. Most Linux programs rely upon glibc, for instance, and packages can specify this
dependency.

In addition to the choice of package format, software can be distributed in either binary or source
code form. The former is ready−to−run software. The latter consists of the original program code
files, which must be compiled into a binary form. Source code packages are more portable than
binary packages—you can use the same source package on both x86 and PowerPC computers, for
example. You can also modify source code if you know how to program in whatever language the
package uses.

Updating existing packages can be as important as adding new ones. Updates may fix bugs and
security flaws, or add features that new programs require. One particularly important update is that
of the kernel, the core of the Linux system. (Technically, Linux is the kernel; almost everything else
in a Linux distribution works on other OSes, at least once recompiled.) The usual way to update the
kernel is by recompiling it. This task can be intimidating to new Linux administrators, but it's very
important that you understand how to do it, because kernel recompilation provides many benefits
and may be the only way to accomplish certain tasks in Linux.

Installing Binary Packages

Software installation procedures vary from one Linux distribution to another. Most distributions today
use Red Hat Package Manager (RPM) files or Debian packages, but Slackware uses tarballs—files
created by the tar program, which contain none of the sophisticated dependency information
supported by RPM and Debian packages. A few others, such as Stampede Linux, use their own
proprietary formats. As a general rule, if you get a binary package, get one that uses the package
format favored by your distribution. If necessary, you can often convert from one format to another
with the alien program, or you can install a tarball. (All Linux distributions can read tarballs.) It's
always cleanest to start with the correct package format.

Installing an RPM

Most modern Linux distributions use the RPM format, although some use Debian packages.
Fortunately, installing RPMs is a simple process.

Warning Upgrading an RPM package sometimes wipes out the package's configuration files. Back
up these files (which may be located in a wide variety of locations but are usually
somewhere in /etc) before upgrading a program.

185



Basic rpm Options

Use the rpm program to install or upgrade a package at the shell prompt. This program has the
following syntax:

rpm [operation][options] [package−files|package−names]

Table 8.1 summarizes the most common rpm operations, and Table 8.2 summarizes the most
important options. Be aware, however, that rpm is a very complex tool, so this chapter can only
scratch the surface of its capabilities. In fact, an entire book (Ed Bailey's Maximum RPM, Red Hat
Press, 1997) is devoted to this utility. The rpm man pages contain information on operations and
options more obscure than those listed in Tables 8.1 and 8.2. Many of rpm's less used features are
devoted to the creation of RPM packages.

Table 8.1: Common rpm Operations

rpm Operation Description
−i Installs a package; the system must not contain a package of the

same name.
−U Installs a new package or upgrades an existing one.
−F or −−freshen Upgrades a package only if an earlier version already exists.
−q Queries a package: Finds if a package is installed, what files it

contains, and so on.
−V or −y or −−verify Verifies a package: Checks that its files are present and unchanged

since installation.
−e Uninstalls a package.
−b Builds a binary package, given source code and configuration files.
−−rebuild Builds a binary package, given a source RPM file.
−−rebuilddb Rebuilds the RPM database, to fix errors.

Table 8.2: Common rpm Options

rpm Option Used with
Operations

Description

−−root dir Any Modifies the Linux system having a root directory
located at dir. This option can be used to maintain
one Linux installation discrete from another one,
say during OS installation or emergency
maintenance.

−−force −i, −U, −F Forces installation of a package even when it
means overwriting existing files or packages.

−h or −−hash −i, −U, −F Displays a series of pound signs (#) to indicate the
progress of the operation.

−v −i, −U, −F Used in conjunction with the −h option to produce a
uniform number of hash marks for each package.

−−nodeps −i, −U, −F, −e Performs no dependency checks. Installs or
removes the package even if it relies on a package
or file that's not present, or is required by a
package that's not being uninstalled.

186



−−test −i, −U, −F Check for dependencies, conflicts, and other
problems without actually installing the package.

−−prefix path −i, −U, −F Sets the installation directory to path (works only
for some packages).

−a or −−all −q, −V Queries or verifies all packages.
−f file or−−file file −q, −V Queries or verifies the package that owns file.
−p package−file −q Queries the uninstalled RPM package−file.
−i −q Displays package information, including the

package maintainer, a short description, and so on.
−R or −−requires −q Displays the packages and files upon which this

one depends.
−l or −−list −q Displays the files contained in the package.

rpm is an extremely useful tool because it maintains a database of information on installed
packages. This database includes information such as package names and version numbers, the
files associated with packages, checksums for each file, and files and packages upon which
packages depend. The database allows an RPM−based distribution to detect incompatibilities or
missing features required by specific new packages. This helps you avoid damaging your system
should you attempt to install a package containing files that conflict with another package. You
avoid the frustration of finding that a new program relies upon libraries you don't have installed.
Warned up front about such problems, you can correct them most easily.

Using Text−Based Tools

To use rpm, you combine one operation with one or more options. In most cases, you include one
or more package names or package filenames, as well. (A package filename is a complete
filename, but a package name is a shortened version. For instance, a package filename might be
samba−2.2.3a−6.i386.rpm, while the matching package name is samba.) You can either issue the
rpm command once for each package, or list multiple packages, separated by spaces, on the
command line.

When installing or upgrading a package, the −U operation is generally the most useful because it
allows you to install the package without first uninstalling the old one. This one−step operation is
particularly helpful when packages contain many dependencies, because rpm detects these and
can perform the operation should the new package fulfill the dependencies provided by the old one.

To use rpm to install or upgrade a package, issue a command similar to the following:

# rpm −Uvh samba−2.2.3a−6.i386.rpm

You could also use rpm −ivh in place of rpm −Uvh if you don't already have a samba package
installed.

Warning It's possible to distribute the same program under different names. Upgrading in this
situation may fai l ,  or i t  may produce a duplicate instal lat ion, which can yield
program−specific malfunctions. Red Hat has described a system for package naming to
avoid such problems, but they still occasionally occur. It's therefore best to upgrade a
package using a subsequent release provided by the same individual or organization that
provided the original.

187



You can verify that the package is installed with the rpm −qi command, which displays information
such as when and on what computer the package was built. Listing 8.1 demonstrates this
command. (rpm −qi also displays an extended plain−English summary of what the package is,
which has been omitted from Listing 8.1.)

Listing 8.1: RPM Query Output

$ rpm −qi samba
Name        : samba          Relocations: (not relocateable)
Version     : 2.2.3a              Vendor: Red Hat, Inc.
Release     : 6               Build Date: Wed 10 Apr 2002 07:38:10 PM EDT
Install date: Thu 09 May 2002 07:23:20 AM EDT Build Host: daffy.perf.redhat.com
Group       : System Environment/Daemons Source RPM: samba−2.2.3a−6.src.rpm
Size        : 6852698                       License: GNU GPL Version 2
Packager    : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>
URL         : http://www.samba.org/
Summary     : The Samba SMB server.

Using GUI Tools

Many Linux distributions include GUI tools to help you install, remove, update, and query RPM
packages. Red Hat and Mandrake, for instance, come with Gnome RPM (Figure 8.1). To add a
package using Gnome RPM, follow these steps:

Figure 8.1: Gnome RPM is one of several GUI tools for manipulating packages installed on an
RPM−based Linux computer.

As root, start Gnome RPM by typing gnorpm in an xterm window.1. 
In the main Gnome RPM window, click the Install button. Gnome RPM displays an Install
dialog box in which you can select RPMs.

2. 

Click the Add button in the Install dialog box. In the file selection dialog box that appears,
locate and select the RPM files you want to install, clicking Add after selecting each file.
When you've selected and added all your files, click Cancel. You'll see the Install dialog box
again, with your additions visible.

3. 

Make sure that there are check marks in the boxes next to all the packages you want to
install, and then click the Install button. Gnome RPM installs the packages.

4. 

188



You can use Gnome RPM in a similar manner to update, delete, or query RPM packages. GUI
configuration utilities in other distributions, such as Caldera and SuSE, differ in details but have
similar functionality.

Installing a Debian Package

Debian, Xandros (formerly Corel), and Libranet Linux all use Debian packages rather than RPMs.
Debian packages are incompatible with RPM packages, but the basic principles of operation are the
same. Like RPMs, Debian packages include dependency information, and the Debian package
utilities maintain a database of installed packages, files, and so on. You use the dpkg command to
install a Debian package. This command's syntax is similar to that of rpm:

dpkg [options][action] [package−files|package−name]

The action is the action to be taken; common actions are summarized in Table 8.3. The options
(Table 8.4) modify the behavior of the action, much like the options to rpm.

Table 8.3: dpkg Primary Actions

dpkg Action Description
−i or −−install Installs a package.
−−configure Reconfigures an installed package: Runs the

post−installation script to set site−specific options.
−r or −P or −−remove or −−purge Removes a package.
−p or −−print−avail Displays information about a package.
−l pattern or −−list pattern Lists all installed packages whose names match

pattern.
−L or −−listfiles Lists the installed files associated with a package.
−C or −−audit Searches for partially installed packages and suggests

what to do with them.

Table 8.4: Options to Fine−Tune dpkg Actions

dpkg Option Used with
Actions

Description

−−root=dir All Modifies the Linux system using a root directory
located at dir. Can be used to maintain one Linux
installation discrete from another one, say during OS
installation or emergency maintenance.

−B or −−auto−deconfigure −r Disables packages that rely upon one being removed.
−−force−things Assorted Forces specific actions to be taken. Consult the dpkg

man page for details of things this option does.
−−ignore−depends=package −i, −r Ignores dependency information for the specified

package.
−−no−act −i, −r Checks for dependencies, conflicts, and other

problems without actually installing the package.
−−recursive −i Installs all packages, matching the package name

wildcard in the specified directory and all
subdirectories.

189



−G −i Doesn't install the package if a newer version of the
same package is already installed.

−E or −−skip−same−version −i Doesn't install the package if the same version of the
package is already installed.

As an example, consider the following command, which installs the samba_2.0.7−3.4_i386.deb
package:

# dpkg −i samba_2.0.7−3.4_i386.deb

If you're upgrading a package, you may need to remove an old package. To do this, use the −r
option to dpkg, as in

# dpkg −r samba

Note It's possible to use both RPM and Debian packages on one computer, and in fact
some distributions (such as Xandros/Corel Linux) explicit ly support this
configuration. Using both package formats reduces the benefits of both, however,
because the two may introduce conflicting packages and they cannot share their
dependency information. It's therefore best to use just one package format.

The Debian package system includes a set of utilities known collectively as the Advanced Package
Tool (APT). The most important program in this package is apt−get, which you can use to
automatically or semiautomatically maintain a system. This tool is described briefly in the upcoming
section, "Update Utilities."

Some Debian−based Linux distributions, such as Xandros/Corel Linux, include GUI front−ends to
dpkg; they're similar to the Gnome RPM program for RPM−based systems. If you're more
comfortable with GUI tools than with command−line tools, you can use the GUI tools much as you'd
use Gnome RPM.

Installing a Tarball

If you have Slackware Linux or another distribution that uses tarballs, you can install software by
using the Linux tar utility. You can also use this method if you want to install a tarball on a Linux
distribution that uses a package management tool. We recommend using RPM or Debian packages
whenever possible, however.

WarningWhen installing a program over an older version on Slackware Linux, the new files should
overwrite the old ones. If you install a tarball on a system that normally uses packages,
however, or if you install a tarball that was created using a different directory structure
than what your current system uses, you may end up with duplicate files. This can cause
confusion, because you might end up using the old binaries after installing the new ones.
You should therefore remove the old package as well as you can before installing a binary
tarball. Check the directory structure inside a tarball by typing tar tvfz package.tgz. This
command displays all the files in the tarball, including their complete paths.

Tarball installation is a fairly straightforward matter. As root, you issue commands similar to the
following, which install the files from the samba.tgz file located in the /root directory:

# cd /
# tar xvfz /root/samba.tgz

190



Note that the first command (cd /) is important; without it, you'll install the files under the directory
you're currently in, not in the usual directory tree. (It is possible, however, that the tarball might have
to be installed under some directory other than /, in which case you should follow the directions that
come with the package.)

Note Chapter 9 describes the tar utility in greater detail.

Administrator's Logbook: Binary Tarball Installation

System: E12345678

Action: Installed Samba from binary tarball, samba.tgz. Files located in /opt/samba.

Compiling Source Code

It's frequently desirable or necessary to compile a program from source code. Situations when you
might want to do this include the following:

You can't find a binary package for the program. This is particularly likely when you run
Linux on a non−x86 system, such as a Macintosh.

• 

The binary packages you've found rely upon different support libraries than what you have.
Recompiling often works around this problem, although sometimes the source code itself
requires libraries other than what you have.

• 

You want to enable options that are not used in the available binary packages. These
options may optimize a package for your computer or add functionality.

• 

You want to modify the source code. If there's a bug that's been fixed since the last binary
package was released, or if you want to add a feature or modify a program in some way, you
have little choice but to compile from source code.

• 

In the first two cases, you can often compile from a source RPM, which is an RPM file containing
source code. It's also possible to create Debian packages from source code, given appropriate
control files. In the latter two cases, it's easiest to obtain a source tarball, make your modifications,
and install directly from the compiled code. Creating a package from modified or optimized source
code is seldom worthwhile for a one−computer installation. If you maintain several Linux computers,
though, you might want to read the RPM HOWTO document or Ed Bailey's Maximum RPM to learn
how to generate a binary RPM from a source code tarball. You can then install the customized
package on all your computers after compiling it on just one system.

Compiling from Packages

Source RPM files are identified by the presence of .src. in the filename, rather than .i386. or some
other architecture identifier. For example, samba−2.2.3a−6.src.rpm is the source RPM for the
Samba package that comes with Red Hat 7.3; samba−2.2.3a−6.i386.rpm is the matching binary for
x86 computers. If you wanted to compile the source RPM on Yellow Dog Linux (for Macintosh and
other PPC−based systems), the result would be samba−2.2.3a−6.ppc.rpm.

Note Some non−source RPM files are architecture independent. These can contain
documentation, fonts, scripts, and so on. They're identified by a .noarch. filename
component. These RPMs can be installed on systems using any CPU.

191



To compile a source RPM package, you add the −−rebuild operation to the rpm command, thus:

# rpm −−rebuild samba−2.2.3a−6.src.rpm

If all goes well, you'll see a series of compilation commands run as a result. These may take
anywhere from a few seconds to several hours to run, depending on the package and your
computer's speed. On a typical 500MHz Intel−architecture computer, most packages compile in a
few minutes.

Building a package requires that you have necessary support libraries installed—not just the
libraries required by the final binary package, but also the matching development libraries. These
libraries aren't always included in source RPM dependency information, so it's not unusual to see a
compile operation fail because of a missing library. If this happens, examine the error message and
then check the list of requirements on the program's home page. With luck, the failure message will
bear some resemblance to a requirement listed on the package's home page. You can then locate
an appropriate development RPM (which usually contains devel in its name), install it, and try again.

Tip You can often use the command rpm −qpi packagefile to locate the program's home page.
The package maintainer often has a home page, as well.

Once a package has successfully compiled, you'll find one or more matching binary RPM files in the
/usr/src directory tree. Most distributions name a directory in this tree after themselves, such as
/usr/src/redhat on Red Hat systems. This directory contains an RPMS directory, which in turn has
one or more subdirectories named after the architecture, such as i386 or ppc. (Most packages built
on Intel−architecture computers place binaries in the i386 subdirectory, but some use i586 or some
other name.) The RPM files you find in this subdirectory are binary packages that you can install
just like any other binary RPM. Most source RPMs create one binary RPM file when built, but some
generate multiple binary RPM files.

Administrator's Logbook: RPM Source File Installation

System: E12345678

Action: Compiled Samba 2.2.3a from source RPM & installed resulting binary RPM.

It's possible to compile a Debian package from source code, but the process is somewhat different
for this. Instead of a binary Debian package, you must locate and use a control file, which you can
use in conjunction with a regular source code tarball.

Compiling Tarballs

If you don't want to or can't create a package file, you can compile source code from an original
source tarball and install the compiled software directly. You then give up the advantages of RPM or
Debian packages, however. Whenever possible, it's best to use a binary package or to create your
own binary package from a source package, rather than install directly from a source tarball.

Note Some administrators prefer using original source tarballs because they know the source code
hasn't been modified by the package maintainer, as is quite common with RPM (including
source RPM) files.

192



You can unpack a tarball using a command like tar xvzf sourcecode.tgz. This usually produces a
subdirectory containing the source code distribution. You can unpack this tarball in a convenient
location in your home directory, in the /root directory, in the /usr/src directory, or somewhere else.
Some operations involved in compiling and installing the code may require root privileges, though,
so you might not want to use your home directory.

Unfortunately, it's impossible to provide a single procedure that's both complete and accurate for all
source code tarballs. This is because no two source code packages are exactly alike; each
developer has his or her own style and preferences in compilation and installation procedures.
Some elements are quite commonly included, however:

Documentation Most source tarballs have one or more documentation files.
Sometimes these appear in a subdirectory called doc or documentation. Other times
there's a README or INSTALL file, or OS−specific files (README.linux, for
instance). Read the ones that are appropriate.

Configuration options Most large programs are complex enough that they require
precompilation configuration for your OS or architecture. This is often handled
through a script called configure. The script checks for the presence of critical
libraries, compiler quirks, and so on, and creates a file called Makefile that will
ultimately control compilation. A few programs accomplish the same goal through
some other means, such as typing make config. Sometimes you must answer
questions or pass additional parameters to a configuration script.

Compilation To compile a package, you must usually type make. For some
packages, you must issue individual make commands for each of several
subcomponents, as in make main. The compilation process can take anywhere from
a few seconds to several hours, depending on the package and your computer's
speed.

Installation Small packages sometimes rely on you to do the installation; you must
copy the compiled binary files to /usr/local/bin or some other convenient location.
You may also need to copy man page files, configuration files, and so on. The
package's documentation will include the details you need. Other packages have a
script called install or a make option (usually typing make install) to do the job.

Post−installation configuration After installing the software, you may need to
configure it for your system by editing configuration files. These may be located in
users' home directories, in /etc, or elsewhere. The program's documentation should
provide details.

The traditional location for packages compiled locally is in the /usr/local directory tree—/usr/local/bin
for binaries, /usr/local/man for man pages, and so on. This placement ensures that installing a
program from a source tarball won't interfere with package−based programs, which typically go
elsewhere in the /usr tree. Most source tarballs include default installation scripts that place their
contents in /usr/local, but a few don't follow this convention. Check the program's documentation to
find out where it installs.

Administrator's Logbook: Source Code Package Installation

System: E12345678

193



Action: Compiled & installed Samba 2.2.3a. Located in /usr/local/samba.

Kernel Compilation

The Linux kernel is a particularly critical and complex component on any Linux system. It therefore
deserves special consideration in any discussion of software installation and maintenance. Although
you can install a precompiled updated kernel much as you can other precompiled packages, doing
your own kernel compilation offers certain advantages, as described shortly.

The kernel compilation and installation process has its own quirks, so this section covers the
process in detail, starting at setting the compilation options and proceeding through rebooting the
computer to use the new kernel.

Why Compile Your Kernel?

With any luck, your computer booted and ran immediately after you installed Linux on it. This fact
means that the Linux kernel provided with the distribution works. Why, then, should you go to the
bother of compiling a new kernel? The most important advantages to custom kernel compilation are:

Architecture optimization The kernel includes optimization options for each of
several classes of CPU—80386, 80486, and so on. Most distributions ship with
kernels that are optimized for 80386 CPUs. By compiling a kernel for your particular
CPU model, you can squeeze a little extra speed out of your system.

Removing unnecessary drivers The default kernel includes drivers for a wide
variety of hardware components. In most cases, these drivers do no harm because
they're compiled as modules (separate driver files), which aren't loaded unless
necessary. A few are compiled into the kernel proper, however. These consume
memory unnecessarily, thus degrading system performance slightly.

Adding drivers You may need to add a new or experimental driver to your system.
This may be necessary if you're using an unusually new component, or if there's a
bug fix that's not yet been integrated into the main kernel tree. Such changes often
require you to patch the kernel—to replace one or more kernel source code files. For
details on how to do this, check with the site that provides the new driver.

Changing options You may want to change options related to drivers, in order to
optimize performance or improve reliability. As you examine the kernel configuration
procedure, you'll see many examples of such options.

Upgrading the kernel You may want to run the latest version of the kernel.
Sometimes you can obtain an upgrade in precompiled form, but occasionally you'll
have to compile a kernel from source code.

Of course, kernel compilation isn't without its drawbacks. It takes time to configure and compile a
kernel. It's also possible that the kernel you compile won't work. Be sure to leave yourself a way to
boot using the old kernel, or you'll have a hard time booting your system after a failed upgrade.
(This chapter describes how to boot the computer into either the old or the new kernel.)

194



On the whole, compiling your own kernel is something that every Linux system administrator should
be able to do, even if it 's not something you do on every system you maintain. Using a
custom−compiled kernel helps you optimize your system and use cutting−edge drivers, which can
give your system an advantage. In some cases, this is the only way you can get certain features to
work (as with drivers for particularly new hardware).

Obtaining a Kernel

Before you can compile a kernel, you must obtain one. As for other software packages, you obtain a
kernel either precompiled or in source code form; and in RPM, Debian package, or tarball form. We
favor installing a kernel from source tarball form, because it allows you to be sure you're working
from an original standard base. Kernel RPMs, in particular, are often modified in various ways.
Although these modifications can sometimes be useful, they can also interfere with the smooth
installation of patches should they be needed. (On the other hand, the kernels distributed as RPMs
sometimes include the very patches you might want to install, thus simplifying matters.)

One of the best places to look for a kernel is http://www.kernel.org/. This site includes links to
"official" kernel source tarballs. You can also find kernel files on major FTP sites, such as
ftp://ibiblio.org/. If you want to use an RPM or Debian package, check for kernel source code files
from your distribution's maintainer. If you use an RPM or Debian kernel package, you may need to
download two files: one with the kernel source code proper, and one with the kernel header files.
Tarballs typically include both sets of files in a single tarball.

A complete 2.4.18 kernel tarball is 29MB in size; a 2.5.5 kernel tarball is 33MB. (Kernels are also
available in bzipped tar files, which are somewhat smaller than the traditional gzipped tar files. You
use bzip2 to uncompress these files rather than gzip.) Because of their large size, these kernel files
may take quite some time to download.

Once you've downloaded the kernel tarball, you can unpack it in the /usr/src directory. The tarball
creates or installs to a directory called linux.

Warning If /usr/src already has a directory called linux, you should rename it to something else and
create a new linux directory for the new source package. This will prevent problems
caused by unpacking a new source tree over an old one, which can create
inconsistencies that cause compilation failures.

You can unpack a kernel tarball just as you would any other source code tarball:

# tar xvzf ~/linux−2.4.18.tar.gz

If your source tarball uses bzip2 compression, you can use a command similar to the following to
extract it:

# tar xvf ~/linux−2.4.18.tar.bz2 −−use−compress−program bzip2

Kernel Configuration Options

Once you've extracted your kernel tarball, you can proceed to configure it. Use any of the following
three commands to accomplish this task:

make config This command runs a text−based configuration tool that asks you
specific questions about each and every configuration option. You can't skip around

195



arbitrarily from one option to another, so this method is quite awkward.

make menuconfig Like make config, this option presents a text−based configuration
tool. The make menuconfig tool uses text−mode menus, though, so you can skip
from one option to another. This is a good way to configure the kernel if you're using
a text−based console login.

make xconfig This command also uses menus for configuration, but the menus are
X−based, so you can configure the kernel using mouse clicks in X.

The kernel configuration options are arranged in groups. If you use make menuconfig or make
xconfig, you can select one group to see a list of items in that group, as shown in Figure 8.2.
Groups often have subgroups, so you may need to examine quite a few menus before you find a
particular driver or option.

Figure 8.2: Kernel compilation options are arranged hierarchically, with each main−menu option
generating its own menu, which is displayed in a separate window when make xconfig is used.
Note A new kernel configuration tool, CML2 (http://tuxedo.org/~esr/cml2/) is under development

and should be integrated into the Linux kernel as part of the 2.5.x kernel series. This may
change many details of kernel configuration, but the basic principles should remain
unchanged.

Describing every available kernel configuration option would be quite tedious, as well as inevitably
incomplete, because options are constantly being added and changed. Therefore, Table 8.5 merely
presents an overview of the main kernel headings in the 2.4.x kernel series. The 2.5.x kernel series
is new enough at the time of this writing that its contents are almost certain to change in the near
future.

Kernel Version Numbers

Each Linux kernel has a version number of the form x.y.z.

The x number is the major version number, and in 2002 this number is 2.• 

196



The y number denotes an important change to the kernel and has a special meaning.
Even−numbered y values are considered stable—they're unlikely to contain major bugs, and
they don't change much from one minor release to another. An odd y number denotes a
development kernel, which contains features that are experimental. Development kernels
may be unstable and may change substantially over time. Unless you're desperate to use a
feature introduced in a development kernel, you shouldn't use one of these.

• 

The z number represents a minor change within a given stable or development kernel. In
stable kernels, these represent minor bug fixes and occasionally the addition of important
new (but well−tested) drivers. Within development kernels, incrementing z numbers
represent major bug fixes, added features, changes, and (being realistic) bug introductions.

• 

When Linus Torvalds believes that a development kernel is becoming stable and contains the
features he wants in that kernel, he calls a code freeze, after which point only bug fixes are added.
When the kernel stabilizes enough, a new stable release is made based on the last development
kernel in a series (a number of test releases may exist leading to this new stable release). At this
writing, the current stable kernel version is 2.4.18, and the latest development kernel is 2.5.5. This
development series will eventually lead to the release of a 2.6.0 or 3.0.0 kernel.

Table 8.5: Linux 2.4.x Kernel Configuration Options

Kernel Configuration Menu
Item

Subsumed Options

Code Maturity Level Options This menu provides options allowing you to select experimental
drivers and features.

Loadable Module Support Modern kernels typically include many features in loadable modules
(separate driver files). This menu lets you enable support for these
modules and set a couple of options related to it.

Processor Type and
Features

You can configure the system to optimize the kernel for your
particular CPU, as well as enable CPU−related options such as
floating−point emulation (which is not required for modern CPUs).

General Setup This menu contains an assortment of miscellaneous options that
don't fit anywhere else, such as types of binary program files
supported by the kernel and power management features.

Memory Technology Devices
(MTD)

This menu allows you to enable support for certain types of
specialized memory storage devices, such as flash ROMs. Chances
are you don't need this support on a workstation or server.

Parallel Port Support Here you can add support for parallel−port hardware (typically used
for printers and occasionally for scanners, removable disk drives, and
other devices). Support for specific devices must be added in various
other menus.

Plug and Play Configuration The 2.4.x kernel includes support for ISA plug−and−play (PnP)
cards. Prior kernels relied upon an external utility, isapnp, to
configure these cards. You can use the kernel support or the old
isapnp utility, whichever you prefer.

Block Devices Block devices are devices such as hard disks whose contents are
read in blocks of multiple bytes. This menu controls floppy disks,
parallel−port−based removable disks, and a few other block devices.
Some block devices, including most hard disks, are covered in other

197



menus.
Multi−Device Support Logical Volume Management (LVM) and Redundant Arrays of

Independent Disks (RAID) are advanced disk management
techniques that can simplify partition resizing, increase disk
performance, or improve disk reliability. The configuration of these
options is beyond the scope of this book, but they can be enabled
from this kernel configuration menu.

Networking Options You can configure an array of TCP/IP networking options from this
menu, as well as enable other networking stacks, such as DDP (used
for AppleTalk networks) and IPX (used for Novell networks). Network
hardware is configured in another menu.

Telephony Support This menu lets you configure specialized hardware for using the
Internet as a means of linking telephones.

ATA/IDE/MFM/RLL Support Most x86 computers today use EIDE hard disks, and you enable
drivers for these devices from this menu. Related older disk drivers
are also enabled from this menu, as are drivers for EIDE CD−ROMs,
tape drives, and so on.

Kernel Configuration Menu
Item

Subsumed Options

SCSI Support Here you enable support for SCSI host adapters and specific SCSI
devices (disks, CD−ROM drives, and so on).

Fusion MPT device support The Fusion MPT device is a unique mix of SCSI, IEEE 1394, and
Ethernet hardware. You activate support for it from this menu.

IEEE 1394 (FireWire)
Support

This menu allows you to enable support for the new IEEE 1394
(a.k.a. FireWire) interface protocol, which is used for some video and
disk devices.

I2O Device Support This menu allows you to use I2O devices. Intelligent Input/Output
(I2O) is a new scheme that allows device drivers to be broken into
OS−specific and device−specific parts.

Network Device Support This menu contains options for enabling support of specific network
hardware devices. This includes PPP, which is used for dial−up
Internet connections.

Amateur Radio Support You can connect multiple computers via special radio devices, some
of which are supported by Linux through drivers in this menu.

IrDA (Infrared) Support Linux supports some infrared communications protocols, which are
often used by notebook and handheld computers. You can enable
these protocols and hardware in this menu.

ISDN Subsystem Integrated Services Digital Network (ISDN) is a method of
communicating at up to 128Kbps over telephone lines. You can
enable support for ISDN cards in this menu.

Old CD−ROM Drivers (not
SCSI, not IDE)

Some old CD−ROM devices used proprietary interfaces. Linux
supports these cards, but you must enable appropriate support with
the settings in this menu. If you use a modern EIDE or SCSI
CD−ROM, you do not need to enable any of these options.

Input Core Support If you want to use a USB keyboard or mouse, enable support for
these devices in this menu. You can also set a few other input device
options here.

Character Devices Character devices, in contrast to block devices, allow input/output
one byte (character) at a time. Enable support for such devices

198



(serial ports, mice, and joysticks, for instance) in this menu.
Multimedia Devices If you have a video input or radio card in the computer, check this

menu for drivers.
File Systems This menu has options for supporting specific filesystems such as

Linux's native ext2fs or Windows's FAT.
Console Drivers In this menu you can set options relating to how Linux handles its

basic text−mode display.
Sound You can configure your sound card drivers in this menu.
USB Support If your system uses any USB devices, you can enable support for

USB—and for specific devices—in this menu. You need basic USB
support from this menu when using the Input Core Support keyboard
or mouse drivers described earlier.

Bluetooth Support Bluetooth is a short−range wireless technology intended for
keyboards, printers, and the like. You can enable support for this
technology in this menu.

Kernel Hacking This menu provides options that give you some control over the
system even if it crashes. It's useful primarily to kernel programmers.

You should take some time to examine the kernel configuration options. Each option has an
associated Help item (see Figure 8.2). When you select it, you can see help text about the
configuration option in question—at least, usually (sometimes the text is missing, particularly for
new features).

Most kernel features have three compilation options: Y, M, and N. The Y and N stand for Yes and
No, referring to compiling the option directly into the kernel or not compiling it at all. M stands for
Module. When you select this option, the driver is compiled as a separate driver file, which you can
load and unload at will. (Linux can normally auto−load modules, so using modules is transparent.)
Modules help save memory because these drivers need not be constantly loaded. Loading modules
takes a small amount of time, however, and occasionally a module may not load correctly. It's
generally best to compile features that you expect to use most or all of the time directly into the
kernel, and load occasional−use features as modules. For instance, on a network server, you'd
compile your network card's driver into the kernel, but you might leave the floppy disk driver as a
module.

When you're done configuring the kernel, click Save and Exit in the main menu to save your
configuration. The configuration program responds with a message telling you to type make dep to
continue the compilation process; it then exits.

Compiling the Kernel

Once the kernel is compiled, you need to run several commands in succession:

# make dep
# make bzImage
# make modules

The first of these creates dependency information, so that the compiler knows each component's
dependencies and can compile components as appropriate. This process typically takes a minute or
two.

The second command, make bzImage, compiles the Linux kernel proper. The result of running
make bzImage is a kernel file located in /usr/src/linux/arch/i386/boot (i386 will be something else on

199



non−x86 computers). This file is called bzImage. Running make bzImage typically takes from
several minutes to over an hour.

Tip If you're using a computer with little RAM, try closing large memory−hungry programs, such as
Netscape, before compiling the kernel. On particularly small systems, closing down X entirely
can speed up kernel compilation.

The make modules command compiles the kernel module files. Depending on how many items you
elected to compile as modules and the speed of your hardware, this process may take anywhere
from a minute or two to over an hour.

If all these make commands execute without reporting any errors, you have a new kernel. It is not
yet installed on the computer, however. That involves several additional steps.

Installing the Kernel and Modules

The kernel file proper, bzImage, must be placed somewhere suitable for booting. In principle, this
can be anywhere on the hard disk. Most Linux computers use either the Linux Loader (LILO) or the
Grand Unified Boot Loader (GRUB) to boot the kernel. Many of the steps for configuring these tools
are identical.

The 1024−Cylinder Boundary

Versions of LILO prior to 21.3 suffered from the drawback that they could not boot a Linux kernel if
that kernel resided above the 1024−cylinder boundary. The standard BIOS calls can't read beyond
the 1024th cylinder, and because LILO uses the BIOS, LILO can't read past that point, either. LILO
21.3 and later, however, can work around this problem on modern BIOSs (most of those released
since 1998) by using extended BIOS calls that can read past the 1024th cylinder. GRUB has always
been able to use these extended BIOS calls.

If you're using an old BIOS, you can create a small (5–20MB) partition below the 1024th cylinder
and place the kernel in that partition. Typically, this partition is mounted as /boot. Even if you don't
create such a partition, the Linux kernel often resides in the /boot directory.

Moving the Kernel and Installing Modules

To place the kernel file in /boot, you can issue a simple cp or mv command:

# cp /usr/src/linux/arch/i386/boot/bzImage /boot/bzImage−2.4.18

This example copies the bzImage kernel file to a new name. It's a good way to make sure you can
easily identify the kernel version, particularly if you experiment with different kernel versions or
kernel options.

Installation of the kernel modules is handled by another make command in the kernel source
directory: make modules_install. This command copies all the compiled kernel modules into a
subdirectory of /lib/modules named after the kernel version—for instance, /lib/modules/2.4.18.

Configuring LILO

Systems that use LILO frequently present a prompt that reads lilo: at boot time. You type an OS or
kernel label to boot it. Some LILO configurations use menus, though, and these can be harder to

200



distinguish from GRUB configurations based solely on boot−time behavior. Once you've booted, try
checking your system for files called /etc/lilo.conf and /boot/grub/grub.conf; if only one is present,
chances are your system uses the like−named boot loader.

If your system uses LILO, you can tell LILO about your new kernel by editing /etc/lilo.conf, the LILO
configuration file. This file should contain a group of lines resembling the following:

image=/boot/vmlinuz−2.4.18−3
        label=linux
        initrd=/boot/initrd−2.4.18−3.img
        read−only
        root=/dev/hda7

This group of lines identifies the boot kernel (vmlinux−2.4.18−3 in this example), provides a label for
the kernel (linux), and sets assorted other options. You should duplicate this set of lines and then
edit one of the two sets. Change two things:

Alter the image= line to point to the bzImage kernel file you've compiled and placed in the
/boot directory.

• 

Modify the label= entry. You might call the new kernel linux−2418, for example.• 

Warning Do not simply change the existing boot description in lilo.conf. If you do so and if your new
kernel is flawed in some important way—for instance, if it lacks support for your boot disk
or filesystem—you won't be able to boot Linux. Duplicating the original entry and
modifying one copy ensures that you'll be able to boot into the old kernel if necessary.

After you save the new lilo.conf file, type lilo to reinstall LILO with the new settings. The lilo program
should respond by displaying a series of Added messages, one for each label provided in
/etc/lilo.conf.

Configuring GRUB

In broad strokes, GRUB configuration is like LILO configuration, but many details differ. The GRUB
configuration file is /boot/grub/grub.conf, and like /etc/lilo.conf, it contains groups of lines that define
Linux (or other OS) boot options. Here's an example from a Red Hat 7.3 system:

title Red Hat Linux (2.4.18−3)
        root (hd0,4)
        kernel /vmlinuz−2.4.18−3 ro root=/dev/hda11
        initrd /initrd−2.4.18−3.img

As with LILO configuration, you can add a kernel by duplicating these lines. You must then modify
one of the two copies: Change the title line to give the new entry a unique title, and the kernel line to
point the system to your new kernel.

After you change /boot/grub/grub.conf, there's no need to reinstall GRUB in the boot sector, as
there is for LILO by typing lilo. You should be able to reboot and see the new option in the GRUB
menu.

Testing Your New Kernel

At this point, you're ready to test your new kernel. To do so, shut down the computer and reboot.
When the system reboots, one of two things will happen, depending on how LILO or GRUB is
configured:

201



You'll see a prompt reading lilo:. If this happens, type the name for the new kernel
image—this is what you entered on the label= line in /etc/lilo.conf.

• 

You'll see a list of kernel images and OSes. You should be able to select the new kernel
image from this list by using the keyboard arrow keys and then pressing Enter.

• 

If all goes well, your new kernel will boot and your system will start up normally. You should then
test all your system's hardware devices to be sure the kernel and its modules are working correctly.
Try out your CD−ROM drive, floppy disk, modem, and so on. If you have problems with a device,
recheck your kernel configuration options.

Administrator's Logbook: Replacing a Kernel

System: E12345678

Action: Upgraded kernel from 2.4.7 to 2.4.18.

Important options: Included Symbios 53c8xx SCSI and DEC Tulip drivers in kernel file proper;
omitted unused EIDE drivers.

Boot options: Kernel file is /boot/bzImage−2.4.18; booted from GRUB as Linux with 2.4.18 kernel.

Checking for OS Updates

One particularly critical aspect of software installation is keeping your system up−to−date. As
described in this section, OS updates are important for keeping your system secure and bug−free.
Most distributions maintain Web pages or FTP sites from which you can download OS updates, and
there are other sites you can check for updated software.

The Importance of OS Updates

In late 1999, a bug was discovered in named, the DNS server run on many Linux systems and
included in the package called BIND. This bug allowed anybody to break into a computer running
named and acquire root privileges. The next several months saw countless systems compromised
as script kiddies (delinquents with little real skill) broke into computers running the standard BIND
package. During most of this period, however, fixed versions of named were readily available on
most distributions' Web pages. Had administrators spent five minutes locating, obtaining, and
installing the updated server, they would have saved hours of frustration rebuilding compromised
systems.

Of course, today's Linux distributions don't ship with that compromised version of named; their
packages have been updated to fix the bug. The point is that one must protect against bugs in
important programs that can open holes in a system's security. A security problem might be
discovered tomorrow in a server you run today. If so, your system can be compromised. Indeed, if
your system is always connected to the Internet, it's extremely likely that it will be compromised
under those circumstances. Given the fact that security flaws are common, it's important that you
keep your system's servers and other programs up−to−date.

Security problems aren't restricted to servers. Non−server programs are also often flawed. If your
system has multiple users, these bugs can be exploited to gain root access. The fact that the
compromise is local in origin doesn't simplify your task; you must clean up the problem, most likely

202



by wiping all data and restoring from a backup or reinstalling the OS.

In addition to security−related problems, bugs sometimes affect system stability or the reliability of
specific programs. Fortunately, most core Linux programs are well tested and contain few glaring
stability problems. Nonetheless, minor problems do occasionally crop up, so updating your system
can be quite worthwhile.

On occasion, you may need to upgrade an entire system. You might be running Red Hat 7.0 and
want to upgrade to Red Hat 7.3, for example. A major upgrade like this is usually done in response
to new features rather than minor bug fixes. Red Hat 7.3, for instance, uses the 2.4.18 kernel and
XFree86 4.2 rather than the 2.2.16 kernel and XFree86 4.0. These changes are very important if
you need features offered by the 2.4.18 kernel or XFree86 4.2. Most Linux distributions offer ways
to upgrade the OS as a whole, typically through the usual installation routines. These go through
and replace every updated package, and then reboot into the updated OS.

WarningAll package updates, and particularly whole−OS updates, have the potential to introduce
problems. The most common glitches produced by updates relate to configuration files,
because the updates often replace your carefully tuned configuration files with default
files. You should therefore always back up a package's configuration files before updating
the package. In the case of a whole−OS update, back up the entire /etc directory. Your
administrative log files, too, can be important in making your system work again,
particularly when the updated package requires a different configuration file format. Good
notes on how you've configured one package can help you get its replacement in working
order.

Locating Updates for Your Distribution

Most Linux distributors maintain Web pages or FTP sites with information on and links to updated
packages. Table 8.6 summarizes the locations of these sites for many common distributions. Some
of these sites are quite minimal, offering just a few updated packages and little or nothing in the way
of explanation concerning the nature of the problems fixed. Others provide extensive information on
the seriousness of problems, so you can better judge which packages are worth updating and which
are not.

Table 8.6: URLs for Major Linux Distribution Updates

Distribution Update URL
Caldera http://www.calderasystems.com/support/security/ and

ftp://ftp.caldera.com/pub/updates
Debian http://www.debian.org/security/
Libranet http://www.libranet.com/support.html
Mandrake http://www.linux−mandrake.com/en/security/
Red Hat http://www.redhat.com/apps/support/errata/
Slackware http://www.slackware.com/getslack/
SuSE http://www.suse.com/us/support/security/
TurboLinux ftp://ftp.turbolinux.com/pub/turbolinux−updates/
Xandros/Corel http://www.xandros.com/support.html
Yellow Dog ftp://ftp.yellowdoglinux.com/pub/yellowdog/updates/

203



Your distribution maintainer is usually the best source of updates for critical system components
such as libc, XFree86, and major servers. By using an update provided by your distribution
maintainer, you can be reasonably certain that the update won't conflict with or cause problems for
other packages that come with the distribution. In cases such as the following, however, you may
want or need to look elsewhere for updates.

Unavailable updates If your distribution's maintainer is slow in producing updates,
you may have little choice but to look elsewhere when you learn of a problem with an
important package.

Prior self−updates If you've previously updated a package using another source,
you may want to stick with that source rather than return to the distribution
maintainer's package. Presumably you've already worked through any compatibility
issues, and it may be a nuisance to have to do this again if you revert to the original
supplier.

Package substitutions You might decide to replace a standard package with an
altogether different program that provides similar functionality. For instance, if you
use Postfix to replace sendmail on a Red Hat Linux 7.3 system, you won't find Postfix
updates on Red Hat's Web site.

Package additions Just as with substituted packages, you won't find updates for
programs that don't ship with the original distribution. For example, you'll have to turn
to Sun (http://www.sun.com/) for StarOffice updates.

Kernel updates As described earlier in "Obtaining a Kernel," the Linux kernel can be
updated via prepackaged files, but it's often beneficial to compile the kernel yourself
from original source code.

Even if you don't intend to go to third parties or to official home pages for specific programs, you
should consult sources other than your distribution's errata Web page for information on important
security flaws and bug fixes. You will often learn of critical updates and security issues from such
sources. Following are three of note.

Secur i ty  newsgroups  The  Usene t  newsgroups  comp.secur i t y .un ix ,
comp.os.linux.security, and others devoted to specific products can alert you to
important security issues. If you read these groups on a daily basis and take action
based on important alerts you read there, you can greatly enhance your system's
security.

Security Web pages There are many Web sites devoted to security issues. Some
helpful ones include http://www.linuxsecurity.com/, http://www.cert.org/, and
http://www.ciac.org/ciac/.

Product Web pages Check the Web pages for important individual packages to
learn about updates. Although news about security−related updates should appear
quickly on other forums, reports of feature changes and other updates may not travel
so quickly. Nonetheless, some of these updates may be important for you. You'll
need to decide for yourself which packages are important enough to monitor in this
way, and how often.

Maintaining an up−to−date system can take a great deal of effort. In most cases, it's best to

204



concentrate on security updates and updates to packages that are of most importance to your
particular system. Occasionally updating the entire OS may also make sense, but this is a fairly
major task and is frequently unnecessary. (Even in 2002, Red Hat 5.2—a distribution that's roughly
three years old—is still adequate for many purposes, although it needs many individual package
updates to be secure.)

Administrator's Logbook: Updating Programs

System: E1234567

Action: Updated samba−2.0.3 to samba−2.2.3a to provide support for Windows 2000 clients.

Update Utilities

Linux distributions are increasingly shipping with utilities designed to help you automatically or
semiautomatically update your software. These programs can help you keep your system up to date
with minimal fuss, but they're not without their drawbacks. Examples include the following:

APT The Debian APT package, mentioned earlier, consults a database of packages
and compares entries in the database to packages on your system. APT is part of a
standard Debian installation, but there are ports of it to RPM−based systems—check
http://apt4rpm.sourceforge.net/ for details.

Red Hat's Update Agent Red Hat ships with a program it calls Update Agent to help
you keep your system up−to−date. This package is quite complex; consult
http://www.redhat.com/docs/manuals/RHNetwork/ref−guide/ for more information.

YaST and YaST2 The SuSE text−mode and GUI administration tools include the
ability to check SuSE's Web site for information on package updates, and to
automatically update your system with the latest packages.

Because it's available on a wide variety of platforms, we describe APT in slightly more detail here.
To use it, follow these steps:

If necessary, install the APT package. It's usually installed on Debian systems by default, but
for RPM−based systems, you must obtain and install it.

1. 

Edit the /etc/apt/sources.list file to include a pointer to an appropriate Web or FTP site with
information relevant for your distribution. For instance, the following line works for Debian
systems (consult the package documentation for information on sites for specific
RPM−based distributions):

deb http://http.us.debian.org/debian stable main contrib non−free

2. 

Type apt−get update to have the system retrieve an up−to−date package list.3. 
Type apt−get −s −u upgrade to obtain a report on packages for which updates are
available.

4. 

Type apt−get upgrade to obtain and install all the packages found in step 4.5. 

Warning Step 5 is potentially risky, because it effectively gives control of your system to whomever
maintains the package update database. Updated packages occasionally introduce bugs,
so performing a mass update isn't without its risks. You might prefer upgrading individual

205



packages by typing apt−get upgrade package−name for only those packages you want
to update.

Tip You can include steps 3 and 4 in a daily cron job, and send the results to your user
account, to obtain a daily report on updated packages. You can then decide which you
want to install.

Other package update tools work in a similar way, and have similar caveats, although they often
work in GUI mode rather than in the command−line mode favored by APT. No matter what tool you
use, one limitation is that they support only those upgrades that are officially sanctioned by your
distribution maintainer. You'll need to use other methods to update third−party packages.

In Sum

Installing, removing, and updating programs are very important tasks for any Linux system
administrator. Most Linux systems today use the RPM or Debian package formats, both of which
allow for easy package handling by maintaining a database of packages and the individual files
associated with these packages. When necessary, you can build a package file from source code,
or install software without using an RPM or Debian package. This approach is particularly useful for
the Linux kernel itself, which can benefit more than other programs from customizations unique to
each computer. In all cases, ensuring that your programs are up−to−date requires some effort,
because you must keep an eye on important security developments as well as watch for the
addition of features you might want to make available on your system.

206



Chapter 9: Backup and Restore

Overview

One of the most important system administration tasks is to reliably create and verify backups.
Failure to do so might go unnoticed for several weeks or even months; unglamorous tasks like
backups tend to slip through the cracks all too often. The first time a system on the backup list fails
and there is no backup from which to restore it, however, you can count the seconds before
someone gets a very serious reprimand—perhaps to the point of losing the job entirely. This might
seem excessive, but if the data is valuable enough to make the backup list, you can bet that
someone will miss it if it's gone.

If you work for a software company or any company that stores the working version of its "product"
on the computers under your administrative control, backups are especially critical. Hundreds or
thousands of employee−hours might be lost if the system failed without a recent backup. A system
administrator is expected to prevent such loss and will probably not hold that title for long if unable
to do so. Think of it as health insurance for your computers. You wouldn't go without health
insurance, and neither should your computers.

Backup Strategies

Defining a backup strategy means deciding how much information you need to back up, and how
often. At one extreme are full backups which, as you might guess, back up everything. If you do a
full backup every night, you'll certainly be able to restore anything to the state it was in the previous
night. But this is very time consuming and requires significantly higher media consumption than
other methods, since you will be backing up everything every night. An alternative is the incremental
backup, including only those files that have changed (or are likely to have changed) since the last
backup. Most administrators try to develop backup strategies that combine these two methods,
reducing the time expended backing up the system without sacrificing the ability to restore most of
what was lost.

In addition to formal backups of a computer or network, you may want to archive specific data. For
instance, you might want to store data from scientific experiments, the files associated with a project
you've just completed, or the home directory of a user. Such archives are typically done on an
as−needed basis, and may work best with different hardware than you use to back up an entire
computer or network.

Combining Full and Incremental Backups

Including incremental backups in your strategy saves a great deal of time and effort. Much of the
data on your system (whether a network or a single computer) is static. If data hasn't changed since
the last reliable backup, any time spent backing it up is a waste. There are two ways to determine
which files to include on an incremental backup. The first is to use commands that look for files
newer than the date of the last full backup. The second method is to determine which data is most
likely to be changed and to include this data, whether actually changed or not, on the incremental
backup.

Most backup strategies combine full backups with incremental backups (often referred to as daily
backups), to cover the more dynamic data. Typically each night, when the system's workload is at
its lowest, a backup of one of these forms is performed.

207



One plan, illustrated in Table 9.1, is to rotate between four sets of tapes (or whichever medium you
choose; we'll look at the backup media options shortly). Starting with set 1, do a full backup on
Sunday when system usage is likely to be at its lowest and do an incremental backup every other
day of that first week. Move to tape set 2 for the next week, doing the full backup on Sunday as
before. Move on to tape sets 3 and 4 as appropriate. At the end of the fourth set, store the tape from
Sunday of week 4 as the monthly backup and replace that tape with a new one. Other than the
monthly tape, reuse the tapes from the previous month for the next sequence. Once a year, archive
a monthly tape as the archive for that year.

Table 9.1: Backup Plan with Full and Incremental Backups

Sun Mon Tue Wed Thu Fri Sat
week1 F I I I I I I
week2 F I I I I I I
week3 F I I I I I I
week4 F I I I I I I

This method has several advantages. Since it takes four weeks for the level 0 backup tape to get
recycled, restoring the system to the status from a specific day of the month requires only that you
dump from the latest full backup tape and then from the latest incremental. Typically, the missing or
errant file will be discovered within the month covered by the tape. If not, check the monthly tape.
There are a few isolated scenarios that might not be covered; any file changed after the previous
night's backup and deleted before the next night's would lose any of those changes, but this is a
very solid plan overall.

Including Differential Backups

The term differential backup is sometimes used to refer to a backup consisting of all files that have
changed since the previous backup at any level. This differs from an incremental backup, which
includes everything that has changed since the last full backup, because the immediately previous
backup might be a full backup, an incremental backup, or another differential backup. This type of
backup is illustrated in Table 9.2. In view of the savings in time over the full/incremental plan shown
above, it certainly merits consideration.

Table 9.2: Backup Plan with Full and Differential Backups

Sun Mon Tue Wed Thu Fri Sat
week1 F D D D D D D
week2 F D D D D D D
week3 F D D D D D D
week4 F D D D D D D

Comparing this method to that shown in Table 9.1, you can see that we have replaced the
incremental backups with differential backups. The problem with doing this is that you now have to
restore multiple backups if the system goes down on any other day than Sunday after the full
backup, in order to get the system back to its previous state. For instance, if the system went down
on a Friday night, you would have to load the previous Sunday's full backup and the differential
backups for the following Monday through Friday. While the backup itself takes less time, restoring
actually takes much longer. Table 9.3 illustrates an alternative strategy, combining all three backup
methods.

208



Table 9.3: Backup Plan with Full, Incremental, and Differential Backups

Sun Mon Tue Wed Thu Fri Sat
week1 F D D I D D D
week2 F D D I D D D
week3 F D D I D D D
week4 F D D I D D D

This version adds an incremental backup on Wednesdays. Since an incremental backup is
available, if a problem occurred after Wednesday's backup, you could restore the previous full
backup and the incremental backup from that day. Otherwise, you would have to restore the most
recent full backup, the latest incremental tape if one has been made since the full backup, and then
any differential backups made since the incremental (or since the full backup if no incremental
exists). To clarify, if the system went down on Tuesday night after the backups ran, you'd have to
restore three tapes: Sunday's full backup, Monday's differential backup, and Tuesday's differential
backup. If the system went down on Friday night, you'd have to restore four tapes: Sunday's full
backup, Wednesday's incremental backup, and Thursday's and Friday's differential backups.

Data−Specific Backups

There may also be a need for data−specific backups, which target data that has been added to the
system and are performed on a routine basis like once or twice a month. This technique is often
used for specific types of data for which long−term storage requirements might be different. For
example, a company's payroll accounting data might be entered on the 15th and the last day of
every month. If this data is simply included in an incremental backup, it will be written over within a
month. The archived monthly backup would capture the previous month's end−of−month payroll but
would not capture the mid−month payroll at all. The company might need to keep the data for the
two payroll days, saving several months' or even years' worth of data. A separate backup of this
data might be done on the 15th and the last day of the month, after the data is considered to be
stable, and archived independently.

Basically, a backup strategy must be fitted to the computer system for which it is being designed. A
little forethought will save a great deal of grief in the long run. Consider the types of data, whether
the data is static or dynamic, and any known fluxes in the system, and create a backup plan that will
ensure that all concerns are met.

Backup Media

What medium should you use for backups? Choose a media type based upon how much data you'll
be archiving, whether or not you intend to do unattended backups, how much money you have to
spend on new hardware and media, and what hardware you already have available to you. The
options are almost endless, and the costs are highly variable. In most cases that we've
encountered, the hardware on hand was what we used. After some great technological leap, you
might convince the boss that some new hardware is in order.

The options we'll discuss in the following sections include a variety of tape formats, CD−R backups,
floptical disks, Bernoulli boxes and other removable drives, or even floppy disks. You should choose
what makes the most sense for the system you're protecting given the resources at your disposal.

209



Tapes

Tapes are generally considered to be the best backup medium in terms of capacity and cost.
Additionally, with the size of hard drives ever increasing, tape is the only real alternative for
unassisted backup, since most other options require media switching. Tape drives may be internal
or external. Often companies purchase internal drives for servers to facilitate automatic backups
and external drives to be shared among several workstations. Instead of sharing an external drive,
it's also possible to use one computer as a backup server for an entire network. Such a system can
use NFS, Samba, or other tools to back up remote machines.

There are many different types of tape available. If you don't already have a tape drive and decide
to use this backup approach, you'll want to consider which type of tape you'd like to use. Tape
capacity is an important factor. Determine the space required for a full backup and increase it by at
least 50 percent to determine what type of tape best meets your requirements. Keep in mind that
there are autoloaders to allow unattended backups across multiple tapes. Another factor is what
backup software package you intend to use; of course, the list of equipment supported by the
package you choose will limit your choices. Here are some of the most common choices:

8mm helical scan• 
4mm helical scan (DAT)• 
quarter−inch cartridge linear tape (QIC)• 
Travan (a QIC derivative)• 

Helical Scan

Helical scan tapes use a rotating head/drum assembly to read and write, as illustrated in Figure 9.1.
The head writes "swipes" on the diagonal instead of parallel to the tape's edge.

Figure 9.1: Helical scan
This is the same method used by VCR tapes. The 4mm helical scan tapes are very similar to digital
audio tapes (DATs), but have slightly different magnetic tape properties, and so aren't reliably
interchangeable. There is an 8mm version as well, which is similar to 8mm videotape. Most helical
scan drives do internal data compression. Hardware data compression reduces the CPU load on
the computer if you want to compress your backups, and it is more reliable than the compression
used with some backup packages, such as tar. Any compression technique produces uneven
amounts of compression, though; text tends to compress well, whereas binary formats don't
compress as well, and some precompressed data (such as GIF images) may actually increase in
size if "compressed" again.

210



Warning Many tape drive manufacturers, whether their products have hardware compression or
not, quote estimated compressed capacities for their drives. If you don't use compression,
or if your data aren't as compressible as the manufacturer assumes, you won't get the
rated capacity from these drives.

Helical−scan drives typically start at about $500 and go up in price to well over $1,000.
Low−capacity DAT tapes cost less than $10, but higher capacity tapes cost $30 or more.

QIC and Travan Linear Tape

Quarter−inch cartridge linear tape (QIC) was developed in 1972 by the 3M Corporation (now called
Imation). More recently, 3M released a QIC variant known as Travan, which dominates the low end
of the tape marketplace in 2002. QIC and Travan tapes, like helical−scan tapes, look and work
much like audio−tape cassettes, with two reels inside, one taking up tape and the other holding it.
The difference from helical−scan technology is that linear tape technologies write data in parallel
bands that lie perpendicular to the length of the tape, rather than at an angle. This configuration
simplifies the design of the tape head, thus reducing the cost of the tape drive. It's more difficult to
achieve high data densities with this design, though.

The reels are driven by a belt that is built into the cartridge. A capstan, a metal rod that projects
from the drive motor, presses the tape against a rubber drive wheel. As shown in Figure 9.2, the
head contains a write head with a read head on either side. The write head writes data
longitudinally, and one read head (depending upon the direction the tape is running) attempts to
verify the data that has just been written. If the data passes verification by the read head, the buffer
is flushed and filled with new data from the system memory. If errors are found, the segment is
rewritten on the next length of tape. (Very low−end QIC and Travan devices lack this
read−after−write capability, and so are less reliable.) Capacity is added by adding more tracks.
Capacities vary from a few megabytes for obsolete devices sold in the 1980s to over 10GB for
modern devices.

211



Figure 9.2: Reading and writing linear tape
Compared to helical−scan drives, QIC and Travan drives are noisy. Neither type has a clear
advantage in capacity or reliability (although each type has its proponents who claim a reliability
advantage). QIC and Travan drives cover a wider range of capacities and budgets, though, with
low−end devices being less reliable and lower in capacity. As a general rule, QIC and Travan drives
are less expensive to buy than are helical−scan drives, with prices starting at $200 or less.
High−end units can cost over $1,000, though. The QIC and Travan tapes are more expensive,
starting at $30 or so. This makes QIC and Travan a good choice if you expect to buy few tapes, but
helical−scan drives may be better if you plan to buy many tapes.

Newer Options

Recent developments have provided new types of tape for higher−end systems. Among these are
digital linear tape (DLT) in a single or multiple configuration, Mammoth (8mm) drives in a single or
multiple configuration, Advanced Intelligent Tape (AIT) drives in a single or multiple configuration,
and robotic storage management systems, which run without any human intervention. These
systems are quite nice to have, but the cost is often prohibitive.

Digital Linear Tape

Digital linear tape drives vary in capacity and configuration from the low−end 10GB drives to the
newer automated DLT tape libraries, which can store 1.5 Terabytes of data (compressed among up
to 48 drives).

DLT drives use 0.5"−wide metal particle tapes; these are 60 percent wider than 8mm. Data is
recorded in a serpentine pattern on parallel tracks grouped into pairs. As shown in Figure 9.3, the
tape is passed through a head guide assembly (HGA), which consists of a boomerang−shaped
aluminum plate with six large bearing−mounted guides arranged in an arc. The tape is gently guided
by a leader strip and wound onto a take−up reel without the recorded side of the tape ever touching
a roller. There are also mechanisms that continually clean the tape as it passes, to increase tape
life.

212



Figure 9.3: The digital linear tape (DLT) drive mechanism
A track is recorded using the entire length of the tape, and then heads are repositioned and another
full−length path is laid down on the return trip. Some newer DLT tape drives record two channels
simultaneously using two read/write elements in the head, effectively doubling the transfer rate
possible at a given drive speed and recording density. DLT technology uses a file mark index
located at the logical end of the tape to minimize search time.

When we checked prices recently, a DLT library cost about $12,000—out of reach for most of us.
Single−tape DLT drives are more in line with DAT prices, starting at a bit over $1,000. Still, if you
have the need for high−capacity, reliable storage, there are few systems that can beat it. The cost
per MB of data stored is actually quite reasonable.

Mammoth

Exabyte's Mammoth drive is another viable option for higher capacity storage. The 5.25" half−height
Mammoth drives can read almost all of the earlier versions of Exabyte 8mm tapes in addition to the
higher 20/40GB tapes they were designed to use. The Mammoth drives are also available in library

213



systems, which can store terabytes of data. The Mammoth tape drive cleans the read and write
heads automatically at every load and unload. It has a good transfer rate, 180MB per minute,
making it plenty fast for backups. The cost is still quite significant, ranging from around $1,000 for
the 14/28GB drives to around $11,000 or more for the 1.2/2.4TB multidrive Mammoth2 models.

Advanced Intelligent Tape

AIT is a relative newcomer that provides significant advantages over its predecessors in the areas
of efficiency and reliability. The media is stronger and thinner. The new technology uses a pure
magnetization layer and a diamond−like coating (DLC), which together allow a higher recording
density. Changes in the drive heads decrease the tape tension, reducing tape wear. The drive head
changes also significantly reduce the requirement for drive cleaning; the drive now prompts the user
when a cleaning is needed. AIT even adds a flash memory chip to the tape. This chip stores specific
information about the tape, increasing the speed of reads.

Uncompressed capacities for AIT tapes are 25GB, 35GB, 50GB, and 100GB. The cost for these
tapes begins at about $50 for the 25GB variety. The drives start at a little over $400.

Robotic Systems

The emerging robotic systems vary widely in storage capacity and degree of automation. At the low
end are auto−loading tape libraries that hold around six tapes and feed them into a single drive as
guided by a scripted set of instructions. These are not uncommon and make backups a great deal
easier when the backups don't fit on a single tape. Beyond these are several levels of complexity. At
the top are completely robotic systems, which require no human intervention for day−to−day
operations. There are so many different types that we'll leave their exploration to you.

Tape Interfaces

The technology underlying the tape mechanism is certainly important in evaluating tape
technologies, but another issue is also quite important: how the tape interfaces with the computer.
There are five interfaces that have been or are being used:

Floppy The floppy interface was used on many inexpensive tape drives from the
mid−1990s and earlier. Early versions of these drives were generally plagued by
poor performance and weren't very dependable. When they did work, they were very
slow, rewound the tapes so often that they tended to wear out quickly, and in the
process ran quite hot. Linux supports floppy tape through the ftape utility. ftape
supports drives that conform to both the QIC−117 and one of the QIC−80, QIC−40,
Q I C − 3 0 1 0 ,  a n d  Q I C − 3 0 2 0  s t a n d a r d s .  A  f u l l  l i s t i n g  i s  a v a i l a b l e  a t
http://www.informatik.uni−siegen.de/softdocs/howto/Ftape−HOWTO−5.html. Few
floppy−interfaced tape drives exceed 1.6GB in capacity, which is frustrating with
modern hard−drive sizes.

Parallel port The parallel port was used by many early external tape drives. It's got
many of the same drawbacks as the floppy interface, and has fallen into disfavor.
Like floppy−interfaced drives, parallel−port drives are supported by the ftape
package.

USB The Universal Serial Bus (USB) is starting to be used by some low−end
external tape drives. USB speed is limited, however, so high−speed drives typically
don't use it. Linux's USB support is quite limited in the 2.2.x kernels, but is better in
the 2.4.x kernels. USB tape drives in Linux are still very new, so you may encounter

214



problems with such devices.

IDE/ATAPI The IDE port is becoming popular for low−end internal tape drives. These
devices are often referred to as Advanced Technology Attachment Packet Interface
(ATAPI) drives. ATAPI units don't suffer from the speed problems of floppy,
parallel−port, or USB devices.

SCSI The Small Computer System Interface (SCSI) port has long been a favorite for
mid−range and high−end tape drives. SCSI supports both internal and external
devices, and many high−end tape drives are available only in SCSI form.
Unfortunately, SCSI drives are often more expensive than their ATAPI counterparts.

As a general rule, the best interface type is SCSI, because it's fastest and supports the largest
number of devices per interface—7 or 15, depending upon interface type, compared to 2 per
controller for IDE/ATAPI with the average computer coming with 2 controllers on the motherboard
and PCI IDE cards which can be added. Available cards come in 1, 2, and 4 controller
configurations for 2, 4, and 8 drives. IDE/ATAPI drives are acceptable for workstations or if you're
working on a tight budget. In the future, USB drives might be acceptable if you need portability, but
as of the time of this writing, USB tape drives and Linux are an evolving combination not yet
completely reliable for continuous data streams. Floppy− and parallel−interfaced drives are old
news. You might use one to back up a low−capacity system if you happen to have the drive
available, but for most serious applications, something newer is more appropriate.

CD−R and CD−RW

A CD−ROM is a Write Once/Read Many (WORM) storage medium in which microscopic pits are
inscribed on the aluminum layer of a plastic disc to represent data. Once inscribed, the tracks
formed by the pits are read optically by a noncontact head, which scans in a roughly radial pattern
as the disc spins just above it. The head moves at a constant linear velocity, thereby assuring a
constant data rate. Since the head speed is constant, the disc must rotate at a decreasing rate as
the data track is scanned from its beginning near the center of the disc to its end nearer the outer
edge of the disc. (Many modern CD−ROM drives don't use a constant linear velocity, though, and
so have variable data transfer rates from different parts of the disc.)

A CD writer (CD−R or CD−ROM Recordable) is simply a CD reader with a laser strong enough to
burn optical equivalents of CD−ROM pits into a special CD−R disc that's coated with an optical dye.
Some of these discs are intended to be multisession, meaning that you can write some portion of
the disc and then fill the remaining space at a later time, while others are written to and cannot be
supplemented later. On a CD−RW (CD−Rewritable), the laser can not only write data, it can erase
the disc, leaving a clean surface as if the CD−RW hadn't been used. In any of the above forms,
these discs are quite vulnerable to scratching and heat damage.

Writable CD−ROMs are becoming quite popular for backups as well. CD−RW discs only work in
players equipped to recognize them. There is an increase in cost for the CD−RW discs over the
CD−R discs. The price for a 50−pack of CD−R discs with jewel cases starts at around $19. The
price for 50 CD−RW disks with jewel cases starts around $28 and goes up as the discs are certified
at higher write speeds. CD−ROMs hold approximately 650MB of data, so you'll probably need
several to do a full backup.

CD−R and CD−RW are relatively low−cost options for backup. Since each disc will only hold up to
650MB of data, and since hard−disk capacities are always going to exceed that, you are stuck
changing discs when one gets full or buying a CD changer in addition to the writer and the media.

215



This eliminates any real cost savings over tape. We prefer to use tape or some other high−capacity
option.

Other Alternatives

Alternatives to tape and CD−R include floptical disks, Bernoulli boxes, and other removable drives.
The perfect system would combine fast random access, dependability, and a high storage capacity.

Some Oldies

As hard drives continue to increase in capacity, innovation in backup systems is required to keep
up. As a system administrator, you might find that you have older backup equipment that doesn't
quite handle the job. You might also find that the word "free" overrides any arguments for a new
backup system, requiring you to become familiar with the old one. These are a few of the legacy
storage devices still in common use.

Floptical Drives

Floptical disk drives, intended to replace standard floppy disks, read and write data with lasers that
are much more precise than the drive heads used on a standard floppy drive. They use a 3.5" Very
High Density disk, which looks like a regular 3.5" floppy but has a capacity of up to 21MB. The
floptical drives will also read the old 720KB and 1.44MB floppies, allowing you to replace your old
3.5" floppy drive instead of sacrificing an additional drive bay. Another selling point is that the 21MB
disks don't require a proprietary format like most of the removable storage drives. Unfortunately,
these drives didn't really catch on and didn't provide enough space−per−dollar to really take over
the market.

Bernoulli Drives

The Bernoulli drive takes cartridges that are the dimensions of a 5.25" floppy disk but over 0.25"
thick. They have a rigid case that makes them one of the most durable formats of removable
storage available. Bernoulli cartridges hold 230MB of uncompressed data, which gave them an
edge over the 120MB QIC tapes that were common when this technology first hit the market.
Largely due to increased capacity of modern tape drives, the Bernoulli drives are no longer being
produced, so they probably should be avoided unless you already have one.

Removable Drives

Removable drives like the Iomega Jaz and Zip drives may be used for backup and were commonly
used in this way until recent hard−drive capacities made them less practical. The first version of the
Jaz drive had a 1GB capacity, and the newer version doubles that. Jaz 2 uses an UltraSCSI
interface, which connects to a PCI bus, an ATAPI interface that connects to the IDE chain, a
PCMCIA interface, or a parallel port. Being SCSI, these drives work with Mac computers too. The
Zip drive uses either a 100MB disk or a 250MB disk. Although it is useful for transferring files that
are too large to be held on a floppy between computers, it can hardly be considered a viable backup
option.

Magneto−optical Drives

Another older technology is the magneto−optical drive. This type of rewritable drive uses a laser to
heat the disk to a point where a magnet can change the location's polarity. A disk location that
hasn't been "hit" represents a 0, and a location that has been hit represents a 1. This process
requires two passes of the drive head, and the combination of laser and magnet makes the drive

216



head very heavy. An improvement on this method, Light Intensity Moduled Direct OverWrite
(LIMDOW), builds the magnet into the disk itself. While the capacity of the original magneto−optical
disks topped out at about 2.6GB, the LIMDOW technology could more than quadruple this, making
the technology potentially useful in creating backups. The largest capacity we have seen is 5.2GB,
offered by some Hewlett−Packard and Sony drives. These drives do have large price tags,
however, starting at around $1,000.

Media Storage

Media storage is important, too. Magnetic media are vulnerable to heat, moisture, and electrical or
magnetic proximity and have a tendency to degrade over time (just as VCR tapes do).
Magneto−optical drives, on the other hand, are a combination of both magnetic and optical
technology. The fact that they store data magnetically altered with the help of a heating laser makes
the medium more resistant to heat or electrical damage, so storage requirements are less
restrictive. Purely optical technologies (CD−R and CD−RW) are the most likely to be of archival
quality. CD−R storage lifetimes are estimated at 10–100 years, depending upon dye type and who's
doing the estimating. Certainly locations that are characteristically damp, excessively dry, or very
hot would pose a hazard to any storage media and should probably be avoided when planning
media storage.

Hierarchical Storage Management

In many situations, the media are stored on−site, despite the fact that if the building burned down or
suffered catastrophic damage, both the computers and the backups could be destroyed. If it is
possible, you should store at least some portion of the backups in a different location. One option
would be to store the monthly and incremental backups on−site but to store the annual backups
off−site. This doesn't give you 100 percent recoverability, but it is a step in the right direction.
Another option is to store weeks 1 and 2 on−site, weeks 3 and 4 off−site, and then to swap every
second week. Of course another option is to make duplicate full backups and store one set on−site
for quick restores and the other off−site for safekeeping. Examine the trade−off between time spent
up front and the cost in employee hours to rebuild what would be lost, and make a smart decision
about where to store the backups.

True hierarchical storage management is not limited to spreading the backups across multiple
storage locations. It also provides some automated process by which files (on the hard drives) that
are no longer used (static files) can be moved to tape or to some optical medium. This creates
usable space on the hard drives in addition to meeting archiving needs.

For example, consider the fictitious WeAin'tThem Inc., a software company that creates and
markets its own operating system. WeAin'tThem has a working (development) version of its
software and a copy of the last released version for use in customer support. It does development
work on a server system, which holds the developing software version (2.5), compilers and libraries
that it requires, and the last released version (2.4). As the development of new modules continues,
the disk fills up. When the developing software is released, version 2.4 is archived to tape, and a
new development version (3.0) is begun. Now the system has versions 2.5 and 3.0 on it, and
version 2.4 is safely tucked away in case a customer who had chosen not to upgrade due to
hardware incompatibility needs customer support.

Backup Commands and Utilities

In the next section, we'll discuss various backup commands at your disposal. We'll look at utilities
that facilitate the handling of the hardware itself, command−line backup commands, and GUI−based

217



backup packages. Most of them are included with the main Linux distributions; the others can be
downloaded from Internet sites.

Tape Utilities

Tape utilities are programs that help manage tape access and usage. These aren't backup
programs, in fact they often do not write to the tape at all; instead, they perform functions necessary
to the backup process like finding a specific position on the tape or allowing you to re−tension the
tape.

mt

The mt utility performs a number of tape operations, such as moving to or finding a specified
position on the tape, setting or checking the tape's tension, setting or checking the tape's
compression, setting or checking the block size or density, and erasing the tape. The mt command
is used when you need to rewind the tape prior to writing to it, to erase the tape, to reposition the
head before a write, or to auto−eject the tape when the backup has been completed.

If you are using QIC tapes, you should always re−tension the tape before you write to it. For some
reason, QIC tapes are much more sensitive to tension than are other tapes. The command to do
this with a nonrewinding tape drive is:

# mt −f /dev/nftape reten

NoteThis discussion uses /dev/nftape as the tape device. You may need to use another device file,
as discussed shortly. In any event, mt is normally used with nonrewinding device files, which
do not rewind the tape automatically after each access. Rewinding devices, by contrast,
automatically rewind the tape after each access. The former are used when you want to store
more than one backup per tape, and the latter are used when you want to write a single
backup to a tape or access only the first backup that already exists on a tape.

The mt utility is also used to erase the tape. You'll usually need to do this before using ftape with a
tape that was preformatted since ftape sometimes doesn't like the formatting that is on a new tape.

# mt −f /dev/nftape erase

The mt utility is useful when you want to move forward on the tape. The following sample command
will move two files forward on the tape:

# mt −f /dev/nftape fsf 2

Note In reference to a tape drive, a file is a single backup, which may contain many files from the
disk. Think of it as a tarball stored on tape (which it may in fact be). You might store multiple
backups on one tape, particularly when doing incremental or differential backups.

To put more than one backup on a single tape, you must use the mt utility with its eof keyword. The
following command moves the tape just past the end of the written data, where the next backup can
begin. Any attempt to read the tape after issuing this command will result in errors, but it's
necessary if you want to write data to a tape without overwriting existing data.

# mt −f /dev/nftape eof

218



rmt

The rmt utility is used by the remote dump and restore utilities to manipulate a tape drive located on
a remote backup server in the same way that mt does with local tape drives. The rmt utility accepts
requests specific to the manipulation of magnetic tapes, performs the requested manipulation, and
then responds with a status indicator. rmt is not usually started separately but is rather used with an
rexec or rcmd call, both of which are used to execute a command on a remote server.

Tape Device Names

Backup commands invariably require you to identify the tape device by name. The tape device
name will vary depending upon the interface to which it is connected and the number of devices on
that chain. There are IDE tape devices, SCSI tape devices, and ftape devices (both
floppy−interfaced and parallel−interfaced). USB devices work like SCSI devices.

IDE/ATAPI

Tape devices that use the IDE interface are accessed through the /dev/ht0 (rewinding) and
/dev/nht0 (nonrewinding) device files. If you have more than one IDE/ATAPI drive, change the 0 to 1
or above to address the second and subsequent drives.

A modern computer motherboard usually will support two IDE chains, although they may not both
be enabled in the system's BIOS. Each chain supports up to two devices (hard disks, tape drives,
and so on). Historically, the motherboard did not provide the IDE connections itself but relied upon
the existence of an IDE controller card. Few systems use separate IDE controllers now. Although it
is possible to accommodate additional IDE devices by adding an IDE controller card to a system's
existing IDE chains on the motherboard, the requirement for each controller to have a unique
interrupt makes this difficult to configure. For this reason, you're better off using SCSI if you need
more than four devices.

SCSI

The first SCSI tape drive is attached to /dev/st0 if it is rewinding or /dev/nst0 if it is nonrewinding. To
refer to subsequent drives, increment the number as needed. Because SCSI host adapters support
7 or 15 devices, depending upon the adapter type, and each adapter uses a single interrupt, SCSI
is well−suited for systems with lots of disk and tape drives.

ftape

An ftape device uses one of four methods of access depending upon the floppy tape drive itself.
The /dev/rft0 (rewinding) and /dev/nrft0 (nonrewinding) devices provide access to the first device;
incrementing the number provides access to additional ftape−driven drives. For compatibility,
/dev/ftape and /dev/nftape are symbolic links to /dev/rft0 and /dev/nrft0, respectively. These device
filenames work for both floppy−interfaced and parallel−port–interfaced drives driven via ftape.

Old 3.0x versions of ftape supported driver−level compression via the /dev/zqft0 and /dev/nzqft0
device files. This feature was removed from the 4.0 and later releases of the software, however, in
order to provide improved error−recovery features.

CD−R and CD−RW Backup Tools

Archiving data to CD−R or CD−RW (subsequently referred to collectively as CD−R for brevity's
sake) is an option if you have a small amount of data to store, but isn't really helpful when you're

219



backing up an entire network. If you are doing incremental backups on a system that doesn't have
many large files changing, CD−R might be an option. Sometimes, CD−R is useful for the archival
backups mentioned earlier in this chapter. The long shelf life of CD−R media makes them a good
choice for long−term archival storage, in fact. For larger backup jobs, though, tape is generally
superior.

CD−R Commands

Writing to a CD−R is a two−step process:

The data (whether data files or audio files) must be accumulated and assembled into an
image, which also includes any required formatting information.

• 

The created files must be written to the CD−R, usually with the utility cdrecord.• 

Note You'll see later in this chapter that some GUI−based utilities perform these two functions
without clearly identifying them as separate steps.

A certain amount of the free space on a CD−R must be reserved for storing the ISO−9660
filesystem (usually a few megabytes). This format, the standard filesystem for CD−ROMs, exists in
three levels. Level 1 uses the 8+3 file naming convention and requires that the data be contiguous.
Directory trees must not be nested more than eight levels deep under Level 1. The filenames on
these discs can be viewed under both Linux and DOS. Level 2 allows longer filenames, and as a
result, DOS may not be able to read all the files on a Level 2 disc. Level 3 does away with the
requirement that the data be contiguous, keeping the less restrictive file naming convention, and
again DOS may not be able to read all its files. In order to make the ISO−9660 format more useful in
the Unix world, Rock Ridge extensions were added. These extensions define a way to handle
mixed−case filenames and symbolic links. If this disc is read on a system that doesn't have the
Rock Ridge extensions, the filenames won't display in their long format. Microsoft developed a
different way of storing long filenames on CD−ROM and CD−R discs, known as Joliet. You can
create a Joliet CD−R from Linux, but for storing Linux files, Rock Ridge is superior, because Joliet
doesn't support Linux file ownership or permissions. Creating a mixed Rock Ridge/Joliet CD−R is
possible and useful in a mixed−OS environment.

mkisofs

The mkisofs command creates the ISO−9660 filesystem image to be written to the CD by the
cdrecord utility. This image includes the data files as well as the formatting information. The mkisofs
utility does not, however, contain any CD−R driver code and therefore does not write the image to
the CD−R. The developers chose this approach mainly to allow users to test an image from the hard
drive before writing it to the CD−ROM. Historically, writing an image as it is being created was also
potentially unreliable on slower computers.

To create a CD−R image file, you must pass mkisofs the name of a directory to be turned into a
CD−R, the name of an output file, and any of a large number of optional parameters. A fairly basic
example is:

$ mkisofs −r −J −o cd_image.iso /source/directory

This example creates an image file called cd_image.iso from the contents of /source/directory. The
−r parameter adds Rock Ridge extensions (with some changes to permissions and ownership to
help make the disc portable), and the −J parameter adds a Joliet filesystem. The mkisofs man page
includes extensive discussion of the many additional parameters available for this utility.

220



You may use the loopback capability of Linux to check whether the image created by mkisofs has a
directory structure and permissions that match the original files. Loopback is the capability that
allows you to mount a file as if it were a disk partition. To do this, use the following command,
inserting the correct name for the created image and the correct path to the mount point you wish to
mount the image on:

# mount −t iso9660 −o loop cd_image.iso /mnt/tmp

Tip We typically create a /mnt/tmp file for mounting partitions or files that are not so
permanently mounted as CD−ROM drives and floppy drives. You can use it to mount
anything temporarily, regardless of device type.

Compare /mnt/tmp to wherever your original files are located until you are convinced that the
contents are the same. Then use the following command to unmount the CD−R image that you've
created:

# umount /mnt/tmp

cdrecord

Once you've made and tested an image file, you'll use the cdrecord utility to actually write the
CD−ROM image to the blank CD−R. cdrecord was designed for use with SCSI or ATAPI CD
recorders. It can write data, audio, mixed, and multisession discs and supports most CD recorders
available. cdrecord is run from the command line and has a great many options. The man page is
quite helpful, but the process is not simple. The simplest case, a pure data image copied to with an
ISO−9660 filesystem on a sufficiently quick system using the device at SCSI target ID 6 as its
target, allows you to run the command as follows:

# cdrecord −v speed=2 dev=0,6,0 cd_image.iso

For better readability, the SCSI settings of the writer are stored in three environment variables:
SCSI_BUS, SCSI_ID, and SCSI_LUN.

If you use cdrecord to overwrite a CD−RW, you must add the option blank=blanktype to erase the
old content. The program can blank the CD−RW in several different ways, as summarized in Table
9.4.

Table 9.4: Options for Blanking a CD−RW Disc with cdrecord

blanktype value Description
help Displays a list of possible blanking types.
all Completely erases the entire disc. This may take a long time.
fast Erases key data structures on the disc; fast but incomplete.
track Erases a single track.
unreserve Unreserves a reserved track.
trtail Erases the tail of a track.
unclose Uncloses last session; allows writing additional information to a previously

finished writing session.
session Erases the last session.

On a sufficiently speedy machine, the output of mkisofs can be directed into cdrecord using a pipe.
First you need to obtain the image size. To do this, use this form of the mkisofs command:

221



# mkisofs −R −q −print−size cd_image.iso
832

Next, pipe the mkisofs command into the cdrecord command, passing the image size returned from
the above command with the tsize parameter to cdrecord as shown:

# mkisofs  −R −t 832 cd_image.iso | cdrecord −v fs=6m speed=2 dev=0,6,0 −

If you are unsure what device numbers to use, run the command:

# cdrecord −scanbus

The output looks like this:

Cdrecord 1.10 (i686−pc−linux−gnu) Copyright (C) 1995−2001 Jörg Schilling
Linux sg driver version: 3.1.19
Using libscg version 'schily−0.5'
scsibus0:
cdrecord: Warning: controller returns wrong size for CD capabilities page.
        0,0,0     0) 'ATAPI−CD' 'ROM−DRIVE−50MAX ' '50LT' Removable CD−ROM
        0,1,0     1) *
        0,2,0     2) *
        0,3,0     3) *
        0,4,0     4) *
        0,5,0     5) *
        0,6,0     6) *
        0,7,0     7) *
scsibus1:
        1,0,0   100) *
        1,1,0   101) *
        1,2,0   102) 'HP      ' 'C1130A          ' '3540' Processor
        1,3,0   103) *
        1,4,0   104) 'CONNER  ' 'CTT8000−S       ' '1.17' Removable Tape
        1,5,0   105) 'SONY   ' 'CD−R  CRX140S  ' '4.05' Removable
        1,6,0   106)  *
        1,7,0   107)  *

To obtain information about one specific device, use the following:

cdrecord dev=1,5,0 −checkdrive
[root@opus root]# cdrecord dev=1,5,0 −checkdrive
Cdrecord 1.10 (i686−pc−linux−gnu) Copyright (C) 1995−2001 Jörg Schilling
scsidev: '1,5,0'
scsibus: 1 target: 5 lun: 0
Linux sg driver version: 3.1.19
Using libscg version 'schily−0.5'
Device type    : Removable CD−ROM
Version        : 4
Response Format: 2
Capabilities   : SYNC
Vendor_info    : 'SONY    '
Identifikation : 'CD−RW  CRX140S  '
Revision       : '1.0e'
Device seems to be: Generic CD−ROM.

X−CD−Roast

X−CD−Roast, illustrated in Figure 9.4, is an X−based front end for CD programs like mkisofs,
cdparanoia, and cdrecord. It gives a nice interface from which to run these programs, which are

222



usually command−line driven. This program is growing quite popular with Linux users and is
available from http://www.xcdroast.org/.

Figure 9.4: The X−CD−Roast main screen
Device Access

You may have noticed in the example of cdrecord that the command didn't take a conventional
device filename. Instead, this utility takes a SCSI device specification in the form

bus,id,lun

where bus is the SCSI bus (0 on systems with just one SCSI host adapter), id is the SCSI ID
number of the CD−R drive, and lun is the logical unit (LUN) of the drive (almost always 0). This
identification ultimately leads the utility to use the SCSI generic devices (/dev/sgx, where x is a letter
from a forward). Unlike SCSI devices for tape drives, hard disks, and so on, the SCSI generic
devices are designed to allow access to any type of SCSI device, which is why cdrecord uses
them—these devices allow the sort of low−level access that's required for writing to a CD−R drive.
You must be sure that the SCSI generic support is compiled into your kernel (or available as a
kernel module). This option is called SCSI Generic Support in the SCSI Support kernel configuration
menu.

This all works well for SCSI devices, but what about IDE/ATAPI CD−R drives? For these, you must
turn on a Linux kernel feature that allows an IDE device to masquerade as a SCSI device. The
option is in the Block Devices kernel configuration menu and is called SCSI Emulation Support;
compile it in and run the following command:

modprobe ide−scsi

Let's assume for this example that your device is the first device on the second IDE chain. You'll
need to let the kernel know to view this IDE device as SCSI; simply add hdc=ide−scsi to your boot
loader file, and in the case of LILO run the lilo command. After this your CD−R drive will turn up as a
SCSI generic device.

223



Note Chapter 6 covers kernel compilation in more detail.

Most CD−R drives can be accessed as ordinary CD−ROM drives for read−only access. For SCSI
devices, the appropriate device filenames are /dev/scd0 (or higher numbers), and for IDE/ATAPI
drives, the device filenames are /dev/hda through /dev/hdd or above, depending upon the chain to
which the device is attached and its master/slave status. This read−only CD−ROM access does not
help in making backups, but it can be useful in restoring data from a CD−R you've created.

Linux Backup and Restore Tools

Linux provides several command−line tools you can use to back up files: dump and rdump, restore,
tar, cpio, and afio. There are also several GUI third−party packages, which we'll look at shortly.
Although some system administrators prefer to have a GUI where they can just click a few buttons
to kick off the backup, many administrators are accustomed to working from the command line and
find that method faster. Additionally, commands like afio allow you to Telnet or SSH to the computer
controlling the backup, use the ps command to find out how long the backup process has been
running, and use that information to determine how much longer it will take. Or you can incorporate
these commands into a script and have that script page you when the process completes. We'll give
you both options, and you can choose.

dump

The dump utility (which comes with most Linux distributions, including Red Hat) looks at the
specified filesystem and determines what needs to be backed up as determined by a specified
dump level. The dump format is inode−based, unlike that of tar, cpio, and afio. The dump format
requires that all directories be written to the backup before other files in the backup. The directories
are written in ascending inode order, and then the files are added in ascending inode order as well.
The command must specify the incremental level for the dump and the subset of the filesystem to
act upon.

Note Because dump operates on a lower level of filesystem access than do most other
backup utilities, any given dump program must have explicit support for any
filesystem you use. The standard Linux dump utility handles ext2/ext3 filesystems,
but not FAT filesystems or the Reiser journaling filesystem. Trying to use dump on
such filesystems won't cause problems, but neither will it work. Linux's dump may
eventually be upgraded to handle more filesystems, though.

Basic dump Operation

The dump command's basic syntax is this:

dump [−level] [−b blocksize] [−B records] [−f file] [−u] directory

The meanings of these parameters are as follows:

−level The incremental level.

−b blocksize The size (in bytes) of a dump block.

−B records The size of the tape in dump blocks. Combined, blocksize and records
allow dump to handle tapes that are smaller than the data to be backed up; if dump

224



must back up more than blocksize × records bytes, it pauses when it reaches this
limit and prompts you to change tapes.

−f file The file to which the backup should be written—normally a tape device file, as
described earlier.

−u This parameter causes dump to store data about its backup history in
/etc/dumpdates. Without this parameter, incremental backups won't work correctly.

directory The directory or filesystem device file to be backed up.

The incremental dump backs up a file if it has changed since the previously recorded backup. A
standard dump incremental scheme begins at Level 0 and extends to Level 9, 0 being a full dump
and 1–9 being incremental. Each incremental level backs up all files changed since the last backup
of a lower incremental level. If you perform a series of dump operations (say, one per day) using the
same non−0 dump level, the result is a series of incremental backups, as described earlier in this
chapter. If you increase the dump level with each backup (say, 1 on Monday, 2 on Tuesday, and so
on), the result is a series of differential backups, as described earlier in this chapter.

dump in Action

Suppose you want to implement an incremental backup strategy in which you do a full backup on
Sundays and back up all files changed since Sunday every other day of the week. The dump
commands for the Sunday would be something like this, assuming that you need to back up /, /usr,
and /var to a SCSI tape unit at /dev/nst0:

# dump 0uf /dev/nst0 /
# dump 0uf /dev/nst0 /usr
# dump 0uf /dev/nst0 /var

The dump commands for each of the remaining days of the week would look like this:

# dump 5uf /dev/nst0 /
# dump 5uf /dev/nst0 /usr
# dump 5uf /dev/nst0 /var

You could also use any other non−0 dump level for the incremental backups. A level of 5 gives you
the flexibility of performing an unscheduled differential backup by using a higher level, should there
be some critical files you need to back up. You can also perform an incremental backup that resets
the normal incremental file count should you make a lot of changes early in the week that you don't
want to subsequently back up again. You do this by running a backup at a level less than 5, making
sure to specify the u parameter to update the /etc/dumpdates. For instance, the command

# dump 4uf /dev/nst0 /

would update the /etc/dumpdates so that running the level 5 dumps the rest of the week would not
back up what was on the level 4 backup. When restoring, you'd need to restore the most recent
level 0, followed by the level 4, and then by the most recent level 5.

Of course, if you deviate from your usual backup schedule, you should carefully label your backup
tapes to prevent confusion.

As an example, let's look at the output from a level 0 dump of /usr/local/bin, because a relatively
small directory makes the output manageable. The command we'll use is:

225



# dump 0uf /dev/nst0 /usr/local/bin

The output looks like this:

  DUMP: Date of this level 0 dump: Thu Mar 21 08:09:35 2002
  DUMP: Date of last level 0 dump: the epoch
  DUMP: Dumping /dev/hdb1 (/) to /dev/nst0
  DUMP: mapping (Pass I) [regular files]
  DUMP: mapping (Pass II) [directories]
  DUMP: estimated 120147 tape blocks.
  DUMP: Volume 1 started at: Thu Mar 21 08:09:41 2002
  DUMP: dumping (Pass III) [directories]
  DUMP: dumping (Pass IV) [regular files]
  DUMP: DUMP: 230552 tape blocks on 1 volumes(s)
  DUMP: finished in 148 seconds, throughput 1557 KBytes/sec
  DUMP: Volume 1 completed at: Thu Mar 21 08:12:09 2002
  DUMP: Volume 1 took 0:02:28
  DUMP: Volume 1 transfer rate: 1557 KB/s
  DUMP: level 0 dump on Thu Mar 21 08:09:35 2002
  DUMP: DUMP: Date of this level 0 dump: Thu Mar 21 08:09:35 2002
  DUMP: DUMP: Date this dump completed:  Thu Mar 21 08:12:09 2002
  DUMP: DUMP: Average transfer rate: 1557 KB/s
  DUMP: Closing /dev/nst0
  DUMP: DUMP IS DONE

This output is pretty self−explanatory. The dump wrote 230,552 blocks onto one tape in 148
seconds.

Dumping Remotely

It's possible to specify a remote backup server with dump by modifying the form of the dump device
filename. Instead of a simple device file, you must specify the backup server's name, a colon, and
the device filename on that server, thus:

# dump 0uf buserver:/dev/nst0 /usr

On some networks, though, this can result in a slow backup. A better option may be to pipe the
backup through rsh:

# dump 0uf − /usr | rsh buserver dd of=/dev/rmt0

One problem with a remote backup like this is that the backup server must be running rshd (or
in.rshd), the remote shell daemon. This utility has great potential as a security hole, particularly on
any system that's connected to the Internet. What's worse, you must normally run rshd with its −h
parameter to allow root access, which increases the potential for security problems. On the whole,
it's best to use this access method only when the backup server is well protected behind a firewall.
Ideally, the backup server should have no other network duties, should have no users aside from
those necessary to maintain it, and should be devoid of any software that a cracker might find useful
in penetrating your network, should the worst occur.

Some system administrators use ssh to avoid this problem. Simply establish an ssh connection from
the server to the client, passing the dump command as a command to be executed on the client
once the connection is made. If the tape drive is on the server, pipe the output into a dd command
with the tape drive on the server specified as the outfile. The command looks like this:

# ssh client_system "dump 0uf − /usr" | dd of=/dev/rmt0

226



Historically, remote use of dump has been through a separate rdump utility. On most Linux systems
today, rdump is a symbolic link to the ordinary dump utility, which has acquired rdump's network
functionality.

restore

Use the restore utility to extract a backup that was made with dump. restore has two modes:
interactive and noninteractive. The interactive mode allows you to select one or more files to
restore, while the noninteractive mode restores the entire backup. You must use a nonrewinding
tape device if you have multiple archives.

Restoring Interactively

Let's assume that you need to restore /usr/local/bin from the backup we made earlier with dump.
Load the appropriate backup tape, change directory to the directory from which the dump was done
(/usr), and run the following command:

# restore −i −f /dev/nst0

The −i flag tells restore to start an interactive session. When this command executes, you will get a
restore> prompt. Use the ls command to see what is on the tape. Here it indicates that the local
directory structure is on the tape. It doesn't list what's under local, simply the directory itself.

restore> ls
.:
local/

Since we know that the bin directory, which contains what we want to restore, is under local, we can
type add bin at the restore prompt to add the bin directory to the list of items to be restored and then
type extract:

restore> add bin
restore> extract

If there had been multiple archives on a single tape, you'd use the −s option to specify which you
wanted to restore. For example, the command to restore from the second archive on the tape is:

# restore −i −s 2 −f /dev/nrst0

Noninteractive Restore

To restore files as a batch, first change directory to the location where you'd like to restore; the
paths used are relative. If the tape contains multiple archives, you may use the mt command
described earlier in this chapter to find the correct tape position, or you can use the −s option to
restore as we did in the interactive example.

You can get a listing of files on the tape by using the −t option. To look for a specific file, use:

# restore −t −f /dev/nst0 local/bin/ntpd

The response should look like this:

Dump   date: Thu Sep 21 11:38:21 2000
Dumped from: the epoch

227



Level 0 dump of /usr on opus:/dev/hdb6 (dir /local/bin)
Label: none
    375916      ./local/bin/ntpd

If you want a listing of all the files on the tape, omit the last argument as follows:

# restore −t −f /dev/nst0

Here is an excerpt of the results:

Dump   date: Thu Sep 21 11:38:21 2000
Dumped from: the epoch
Level 0 dump of /usr on opus:/dev/hdb6 (dir /local/bin)
Label: none
         2      .
    358337      ./local
    374625      ./local/bin
    375916      ./local/bin/ntpd
    376041      ./local/bin/sudo
    375917      ./local/bin/ntpdate
    375918      ./local/bin/ntptimeset
    375919      ./local/bin/ntpdc

You may list specific files to restore using the −x option as follows:

# restore −x /usr/local/bin −f /dev/nst0

Remote Restore

As with dump, restore can be used to restore files from a tape device in a remote backup server
computer. The backup must have been done with an inode−based backup utility like dump or
rdump. The specification of the device must be preceded by a colon, as shown below:

# restore rf buserver:/dev/nst0

Historically, remote restores have been done through a separate rrestore command. On modern
Linux systems, this command is a symbolic link to the ordinary restore command, which has
acquired network functionality.

tar

tar is one of the older tape archiving tools, but it is probably the most portable. Solaris tar, as ported
to Linux, backs up to tape or a file on a file−by−file basis, excluding special files such as device
files. GNU tar (included in all Linux distributions) is better in that it does back up device files. One of
the primary problems with tar, especially problematic with compressed tar archives, is error
recovery. Corrupted tar backups typically lose hundreds of kilobytes of data before being able to
"resynchronize" and begin restoring data again. If the backup becomes corrupted, compressed tar
archives cannot be recovered at all since the archive is made up of one big compressed image of
the archived files. While this provides for greater compression than if each were compressed
separately, any corruption of the file makes the entire archive unusable.

Basic tar Features

tar does not have any compression functionality built into it but instead uses the external gzip or
compress utilities to provide this feature. In addition to the data recovery problems, another

228



disadvantage to a gzipped tar archive is that you cannot add a file to an existing archive, and in
order to extract an individual file from an existing archive, you must uncompress and search the
entire archive. A less critical drawback to the tar program is its lack of any form of buffering. While
buffering is not absolutely necessary to the creation of system backups, it significantly increases
throughput and speeds up the process tremendously.

As you'll see if you check the man pages, tar is an enormous package, with many options. This
book could easily devote a chapter to explaining how to use the tar package. Most of what you'll do,
however, can be covered with a few common commands. Table 9.5 lists the primary tar commands,
and Table 9.6 lists the qualifiers for these commands. Whenever you run tar, you use exactly one
command and you usually use at least one qualifier.

Table 9.5: tar Commands

Command Abbreviation Purpose
−−create c Creates an archive.
−−concatenate A Appends tar files to an archive.
−−append r Appends files to an archive.
−−update u Appends files that are newer than those in an archive.
−−diff or −−compare d Compares an archive to files on disk.
−−list t Lists archive contents.
−−extract or −−get x Extracts files from an archive.

Table 9.6: tar Qualifiers

Qualifier Abbreviation Purpose
−−directory dir C Changes to directory dir before performing

operations.
−−file [host:]file f Uses file called file on computer called host as

the archive file.
−−listed−incremental file g Performs incremental backup or restore, using

file as a list of previously archived files.
−−one−file−system l Backs up or restores only one filesystem

(partition).
−−multi−volume M Creates or extracts a multi−tape archive.
−−tape−length N L Changes tapes after N kilobytes.
−−same−permissions p Preserves all protection information.
−−absolute−paths P Retains the leading / on filenames.
−−verbose v Lists all files read or extracted.
−−verify W Verifies the archive after writing it.
−−exclude file (none) Excludes file from the archive.
−−exclude−from file X Excludes files listed in file from the archive.
−−gzip or −−ungzip z Processes the archive through gzip or gunzip.

Of the commands listed in Table 9.5, the most commonly used are −−create, −−extract, and −−list.
The most useful qualifiers from Table 9.6 are −−file, −−listed−incremental, −−one−file−system,
−−same−permissions, −−gzip, and −−verbose.

229



WarningThe tar −−one−file−system option is critically important to backups. Ordinarily, tar backs
up everything under the directory it's been given as input. Although this works fine if you
feed tar the name of a directory that has nothing mounted on it, it can cause problems for
certain types of mounts. For example, if you tell tar to back up the root directory (that is, /),
the program backs up everything mounted on that directory or any subdirectory, including
NFS or Samba shares served by other machines. Worse, tar also backs up the Linux
/proc filesystem, which is a virtual filesystem that represents the computer's status,
including all its memory. At restoration time, tar tries to overwrite the /proc filesystem's
contents, which is likely to cause serious problems, possibly even including a system
crash. For this reason, it's best to always use −−one−file−system and feed tar the names
of each partition you want to back up. An alternate method that you might see is to pass a
file naming which files to exclude (including /proc/) with the −X option or the −exclude
option.

The tar command backs up files to or from files. Because Linux treats hardware devices as if they
were files, you can tell tar to back up to or from an appropriate hardware device file, in order to use
that device directly. (This approach works best for tape devices; for CD−R and CD−RW drives, it's
necessary to pipe tar's output through CD−R control software like cdrecord, and for disk devices, it's
best to store the archive as a regular file on a filesystem, although you can store the archive "raw"
to the device.)

A Sample tar Operation

A typical tar command to back up a computer looks like this:

# tar −−create −−verbose −−gzip −−one−file−system −−same−permissions
−−file /dev/st0 / /home /usr/local

This command can be expressed somewhat more succinctly using command abbreviations:

# tar cvzlpf /dev/st0 / /home /usr/local

In either form, this tar command backs up the root ( / ), /home, and /usr/local filesystems to /dev/st0
(the first SCSI tape device). The assumption here is that the computer has three Linux partitions,
corresponding to the three specified directories. A system with different partitions would need to
specify the appropriate local partitions.

For an incremental or differential backup, you could add the −−listed−incremental parameter, as in
this example:

# tar cvzlpf /dev/st0 −−listed−incremental /root/increments / /home
/usr/local

This command stores information on the incremental backup in the /root/increments file, and uses
the contents of that file to designate which files are to be backed up. To perform a series of
incremental backups, you would issue the command as above. Before running another backup, you
would make a copy of the increments file. After making the backup, overwrite the new increments
file with the backup. This way, tar will back up the same files the next time you use this option, plus
any additional ones that have changed. To perform a differential backup, you would leave the
increments file alone and refer to it each time you do a backup. tar will then modify the increments
file, and will back up only files changed since the last incremental backup.

If you want to create multiple archives on a single tape, you must use the mt command, described

230



earlier in this chapter, in conjunction with a nonrewinding tape device. You can then step past
existing archives to read or write second, third, and subsequent archives.

Archiving to a Local Directory

You can use tar to create compact archives of files that you can then move around, store on floppy
disks or the like, and transfer over a network. The command

# tar cvzf archive.tgz /usr/local/bin

creates a compressed archive of the /usr/local/bin directory and names that archive archive.tgz. The
archive is created in the directory from which the command was issued. The output looks something
like this:

tar: Removing leading '/' from archive names
usr/local/bin/
usr/local/bin/gpg−check
usr/local/bin/gpg−encrypt
usr/local/bin/gpg−sign
usr/local/bin/gpg−sign+encrypt

The command tar xvzf archive.tgz uncompresses the archive and sends the output to a directory
under the current directory; tar uses relative pathnames by default. If the usr/local/bin directory
doesn't exist in the present working directory, it will be created there.

The command to read a listing of an archive's contents with tar, following the same format, is tar tvzf
archive.tgz. The output will include the file paths and the equivalent of an ls −l.

If you wish to use full paths—to write to /usr/local/bin without regard to the directory from which the
command was run—you can use the P qualifier. The resulting commands would be

# tar cvzPf archive.tgz /usr/local/bin

and

# tar xvzPf archive.tgz

The output would list the full paths instead of the relative paths listed earlier and would be identical
for the archive and extract commands:

/usr/local/bin/
/usr/local/bin/gpg−check
/usr/local/bin/gpg−encrypt
/usr/local/bin/gpg−sign
/usr/local/bin/gpg−sign+encrypt

Unpacking this archive with the command we used before would put the files into /usr/local/bin
instead of /current/directory/usr/local/bin.

On occasion, you may want to move files from one location on a disk to another. You can use cp to
do this, but cp tends to drop ownership and other information. Rather than remember the cp
parameters to work around these problems, you may want to use tar. You can use a Linux pipe to
do the job, tarring files to a process that untars them in another location, thus:

# cd /source−dir

231



# tar cpf − . | (cd /destination−dir; tar xpvf −)

The result of the preceding two commands is a duplication of the contents of /source−dir in
/destination−dir, including ownership, permissions, symbolic links, and so on. This command can be
very useful if you want to back up to a backup hard disk. If your system goes down, you can swap in
the backup hard disk, boot with an emergency boot floppy, and be running the backup system in a
matter of minutes.

Keep in mind that different versions of tar behave differently. GNU tar strips the "/" off of the path by
default, resulting in a tarball with a relative path instead of an absolute one. Some versions do not,
however, so you must be careful to not accidentally write to the wrong location.

Archiving to Another Computer Remotely

To write the archive to a file on another computer, you simply precede the archive name with the
name of the computer followed by a colon. This option, like the remote dump access described
earlier, uses the rshd or in.rshd daemon on the destination system, so you can access a remote
tape drive directly. Thus the archival commands would be something like:

# tar cvzf remote:/dev/st0 /usr/local/bin
# tar xvzf remote:/dev/st0

Archiving to a Floppy Disk

Yes, Virginia, it is possible to back up your system to floppy disks, but it will be painful. Each floppy
disk will hold 1.44MB of data. This technique is most useful for copying individual files from one
system to another using floppies, or copying files between Linux and other Unix systems that don't
share common filesystems. By writing a tarball directly to floppy, you bypass the need for a
filesystem. Assume that you have a file /tmp/biggraphic.gif, with a size of 1.88MB. Obviously this
won't fit on a standard 3.5" floppy. You can use the tar command with the −M option as follows:

# tar −cvMf /dev/fd0 /tmp/biggraphic.gif

When the backup image reaches the floppy's capacity, you will be prompted for a new floppy:

Prepare volume #2 for /dev/fd0 and hit return:

Put the second floppy in the drive and press the Enter key, and tar will continue the backup process.
Each time the floppy capacity is exceeded, you will get this same prompt with an appropriate
volume number.

To extract the file from the floppies, put the first volume in the drive and use the following command:

# tar −xvMf /dev/fd0

You will be prompted to put in the subsequent floppies, as you were when the archive was written.
Unfortunately, the tar command won't allow you to compress a multi−volume backup. If you attempt
to do so, you will get the following error:

tar: Cannot use multi−volume compressed archives
tar: Error is not recoverable:  exiting now

Although tar will write to standard output with the −O argument, it will not read a file list from
standard input, unlike many other archiving utilities. Many consider this to be a major disadvantage.

232



The next two archiving utilities, cpio and afio, have this capability.

cpio

The cpio utility, named for the cp command and input/output or I/O, was designed to have the
advantages of both dump and tar, including the ability to back up and restore special files and to
provide for the extraction of single files or directories from a cpio archive. Its primary use is to
transfer files from one computer to another rather than archiving. However, because cpio reads
from standard input and writes to standard output, it is a great candidate for scripted backups.
Because the output may be redirected to either a file or a raw device, this command is quite
versatile and is frequently used in place of tar.

Adding the −depth option to the find command whose output is piped into cpio preserves the
date/time stamps by listing the files before their parent directories. As a result, the directory is
created along with the files using the stored date/time stamps. All of the files retain the stored
stamps, but when the find command passes the directory name to cpio, it recognizes that the
directory already exists and only resets the date/time stamp for the directory, leaving the files with
the date/time stamps from the tape. The use of cpio has dropped off somewhat with the advent of
the afio tool.

Archiving to a Local Directory

Since cpio expects the list of files to archive to come from standard input, it is typically used with the
find command. Input and output follow standard redirection rules. cpio uses the o argument to
create an archive. The i argument is used to unpack the archive, and the t argument is used to list
the contents of the archive.

Let's start with a simple example. To archive the files in the current directory into a file named
archive.cpio, use the following command:

# find . | cpio −o  > archive.cpio

The output will look something like this:

cpio:  .: truncating inode number
cpio:  usr/local/bin: truncating inode number
cpio:  usr/local/bin/gpg−check: truncating inode number
cpio:  usr/local/bin/gpg−encrypt: truncating inode number
cpio:  usr/local/bin/gpg−sign: truncating inode number
cpio:  usr/local/bin/gpg−sign+encrypt: truncating inode number

To dump the archive to the current directory, use the i argument:

# cpio −i  < archive.cpio

The output of this command will be a count of the blocks written.

To obtain a listing of the files contained in the archive, use the t option as follows:

# cpio −t < archive.cpio

This command will output the list of the files that would be written out if the archive were dumped.
The output would look like this:

233



cpio:  .
cpio:  usr/local/bin
cpio:  usr/local/bin/gpg−check
cpio:  usr/local/bin/gpg−encrypt
cpio:  usr/local/bin/gpg−sign
cpio:  usr/local/bin/gpg−sign+encrypt

Archiving to Tape

As with tar, this is the archiving operation you'll use for regular backups. To archive to tape instead
of to a file on the same disk drive or network, replace the archive name with the device name of the
tape drive. If the tape drive were the first device on the SCSI chain, the device name would be
/dev/st0. The commands to write, retrieve, and list the files contained in the present working
directory to that tape drive would be:

# find . | cpio −o > /dev/st0
# cpio −i < /dev/st0
# cpio −t < /dev/st0

The output will look pretty much the same as the example earlier.

Archiving to Another Computer Remotely

To make cpio write to another computer, you can use the −F parameter to specify a remote server
name and filename on that server. This process uses the rshd or in.rshd daemon on the backup
server. You can specify a tape device filename on the backup server to send data to that device.
Thus the command would be something like:

# find . | cpio −o  −F buserver:/dev/st0

Archiving to a Floppy Disk

Because of the severely limited storage capacity, archiving to a floppy disk makes sense only for
copying a few files, not for backing up a system. To write to a floppy, simply replace the tape device
name with the device for the floppy, usually /dev/fd0. The resulting command would look like this:

# find . | cpio −o > /dev/fd0

To extract the file from the floppy, use the following command:

# cpio −i < /dev/fd0

To list the files on the floppy, use −t instead of −i.

afio

The afio utility ships with some, but not all, Linux distributions. It doesn't come with Red Hat 7.3, but
is part of the Red Hat Power Tools package, and is readily available from Linux archive sites,
including RPM Find (http://rpmfind.net/linux/RPM/AByName.html). Some administrators consider
afio the most useful backup program, thanks to its compression algorithm. Instead of compressing
the entire archive as one like tar, afio compresses the data file by file, so that if corruption occurs,
no more than one or two files will be lost. The rest of the archive is recoverable even though
compressed. When you've experienced the frustration of trying to restore a tarred archive and
discovering after 30 minutes that the archive is corrupted, you'll really come to appreciate afio.

234



Another feature of afio that you'll come to appreciate is its double−buffering capability. afio uses a
memory buffer to store data until a separate write process writes the data in the buffer out to the
tape or other medium. This allows afio to continue working even if the tape drive can't keep up with
the data stream. Tape drive wear caused by stops and starts is greatly reduced since the tape drive
nearly always has data waiting to be written.

Archiving to a Local Directory

Since afio expects the list of files to archive to come from standard input, it is typically used with the
find command. afio uses the −o argument to initiate a backup. Just as with tar, the −i argument is
used to unpack the archive and the −t argument is used to list the contents of the archive.

Let's start with a simple example. To archive the files in the current directory to an archive named
archive.afio, use the following command:

# find . | afio −o /root/archive.afio

Warning If you create an afio archive in the same directory you're backing up, the archive
will contain an early copy of itself, increasing its size. It's therefore best to create
the archive in some other directory.

To dump the archive to the current directory, use the −i argument:

# afio −i /root/archive.afio

To obtain a listing of the files contained in the archive, use the t option as follows:

# afio −t /root/archive.afio

To add compression to the mix, add the −Z option to the afio command line. To create a
compressed archive, for instance, use the following command:

# find . | afio −oZ /root/archive.afio.gz

Archiving to Tape

In order to archive to tape instead of just to a file on the same disk drive, the archive name should
be replaced by the device name of the tape drive. If the tape drive were the first device on the SCSI
chain, the device name would be /dev/st0. The resulting commands would be:

# find /usr/local/bin | afio −o /dev/st0
# afio −t /dev/st0
# cd /; afio −i /dev/st0

Archiving to Another Computer Remotely

To write the archive to a file on another computer or to read an archive stored on another computer,
you simply precede the archive name with the name of the computer followed by a colon. This
function, as with similar functions of dump, tar, and cpio, relies upon the rshd or in.rshd daemon on
the backup server computer. Thus the archival commands would be something like:

# find /usr/local/bin | afio −o buserver:/dev/st0
# afio −t buserver:/dev/st0
# cd /; afio −i buserver:/dev/st0

235



Archiving to a Floppy

Again, this operation is primarily for backing up a few files, not whole systems. If you remember
from the tar example, each floppy disk will hold roughly 1.44MB of data. Assume that you have that
same file, /tmp/biggraphic.gif, which is 1.88MB. The afio command will automatically make multiple
volumes if it senses that the current floppy's capacity has been reached. No special arguments must
be passed, although this example uses the −v parameter to increase the verbosity of messages
from the program:

# ls /tmp/biggraphic.gif | afio −ov /dev/fd0

When the backup image reaches the floppy's capacity, you will be prompted to put in a new floppy
as shown:

"/dev/fd0" [offset 1m+421k+0]: No space left on device
afio: Ready for volume 2 on /dev/fd0
afio: "quit" to abort, anything else to proceed. >

Put the next floppy in the drive and press the Enter key, and afio will continue the backup process.
You'll see something like this to tell you it's continuing:

afio: "/dev/fd0" [offset 1m+421k+0]: Continuing

Each time the floppy capacity is exceeded, you will get the same "Ready for volume…" prompt with
an appropriate volume number. When the archive has been completely written, you'll see this:

tmp/biggraphic.gif −− okay

To extract the file from the floppies, put the first volume in the drive and use the following command:

# afio −iv  /dev/fd0

You will be prompted to put in the subsequent floppies with the same command as was used when
the archive was written.

Third−Party Tools

Several backup tools have been developed, by vendors and individuals alike. Many of these tools
are free, and a few even include the source code. Most of these backup packages are GUI−based,
since tar, cpio, and afio work quite well from the command line. Some of these packages are
included with established distributions, and some are not. Some of these packages create the
different levels of backups (full, differential, and incremental) that we discussed earlier in this
chapter, specifying each by name while others leave it to you to set these up by hand.

AMANDA

The Advanced Maryland Automatic Network Disk Archiver, AMANDA, is a client−server backup
utility developed at the University of Maryland. It allows the administrator of a local area network to
back up drives from any of the networked hosts to a single backup server. Later versions can use
Samba to back up Windows hosts as well. The AMANDA front−end can use the dump utility or GNU
tar to perform the backup/restore functions. It is available on a number of platforms, and there are
no restrictions on the platforms the clients and server must use. However, if even one system in the
LAN uses a pre−2.4.0 version of AMANDA, all must use pre−2.4.0 versions. AMANDA 2.4.0 and

236



subsequent versions are not compatible with preceding versions. Whereas most backup packages
require the user to establish which type of backup to run and when to run it, AMANDA develops its
own schedule of full and incremental backups, considering tape conservation as well as the number
of tapes required for a restore.

AMANDA is available for download at http://www.amanda.org/download.html as well as from many
other network sites.

Taper

Taper is a simple but reasonably complete archiving utility, shown in Figure 9.5. It will archive to
some parallel−port tape devices, SCSI tape drives as supported by the kernel, IDE tape drives as
supported by the kernel, or floppy tape drives.

Figure 9.5: The Taper main screen
Taper allows you to search the archive for a particular file and has a recovery module for corrupt
archives. It allows for unassisted backups, allowing you to specify whether the backup is to be a full
or an incremental one.

Taper is available in most Linux distributions. You will need at least ncurses 4.1 to compile Taper.
T h e  f o r m s  l i b r a r y  i s  a l s o  r e q u i r e d .  T a p e r  c a n  b e  d o w n l o a d e d  f r o m
http://www.void.jump.org/taper.html.

BRU

Enhanced Software Technologies (EST) began developing their backup product in 1985 for Unix.
The first Linux−specific version was marketed in 1994. Red Hat partnered with EST and started
offering a trial version of BRU backup and restore on the Linux Applications CD included with the
boxed set as of Red Hat version 6.1. EST is also partnered with SuSE Linux and Caldera
OpenLinux.

BRU runs either as a command−line tool or with the command xbru as a very polished graphical
product, with tremendous visual appeal. The introductory screen is shown in Figure 9.6 and is even
nicer in color.

237



Figure 9.6: The BRU main screen
The BRU backup and restore utility has received a great deal of public recognition and was voted
the "Best of Show" in its category at the 2000 LinuxWorld Conference. It is a highly scalable
package, which performs well when backing up single workstations as well as a networked
client/server backup strategy.

BRU will make a full backup, a Level 1 backup (equivalent to an incremental backup), and a Level 2
backup, which backs up all files modified since the last Level 1 backup.

Amanda, Taper, and BRU are the most common of the available backup packages, but new choices
are developed all the time. Find your favorite Linux application site, http://www.linux.org/apps/ for
instance, and look through the list. Find several that interest you, download, and install them. Do
test backups and restores with the ones that appeal to you before deciding which to use regularly.

Tips while Restoring

Although restoring files from a backup is a rather simple procedure if the backups were done
properly, there are definitely some things to remember here to avoid mishaps.

Be sure you understand whether the paths specified by the backup software are relative or
absolute so that you restore to the intended location. If you are restoring over the top of an
existing system, you must be sure that you are in the correct directory so that you don't write
over files unintentionally. If a backup was made using relative paths, writing to the wrong
place is unlikely to cause any harm, because it will simply place everything under the
present working directory. If you have created a backup with absolute paths, however, the
files will overwrite the files already there. That is, an absolute−path backup of /usr will write
over the existing /usr tree. It is certainly okay to write over this tree intentionally, but many
have done so inadvertently to their dismay.

• 

Read the tape label just before putting it in the drive. It's unfortunately easy to grab a tape,
put it down in a stack of tapes, and then pick up the wrong one. You may not discover that
you are extracting the wrong archive until the process finishes, leaving you to extract the
correct backup in your "free" time.

• 

238



Buy reasonably good quality media. You don't have to buy the best, but definitely buy a tape
that is going to stand up to the recurring use. Name−brand tapes are more likely to survive
repeated uses than are generic or minor−brand tapes. This applies to CD−Rs as well. For
archival CD−R storage, gold/gold media (which appear gold on both sides) and silver/blue
(silver on top, blue on bottom) are likely to last longer than are gold/green media. The
storage media that work best for you may depend on your tape or CD−R drive; for some
drives certain types of tapes last the longest, or certain CD−R brands produce the fewest
duds. Pay attention to trends and save your company some money by buying the type the
drive likes.

• 

Never pull tapes out while they are active; let the tape finish and rewind. If you've used a
nonrewinding device file, let it finish the current process and then rewind the tape with mt.
Most tape drives automatically rewind a tape when you insert it in the drive, if it's not already
rewound, so removing a nonrewound tape won't save you any time in the long run. Pulling
an active tape out of the drive is a good way to damage the tape.

• 

If you get errors when trying to read or write to a tape, try cleaning the drive heads with the
appropriate cleaner tape. Often dirty heads cause a tape drive to report write or read errors
incorrectly. Don't forget to follow the drive manufacturer's instructions about tape cleaning.

• 

If you get errors when you write a CD−ROM, try a slower write speed or a better quality of
media. Also try to reduce the bus load for the appropriate data bus.

• 

Before using a tape drive for real backups, perform a test backup of a lot of static data (such
as the contents of the /usr directory tree) and use your tape software's comparison feature
(such as tar's −−diff or −−compare commands). If the software reports changes to files that
should not have changed, you should track down the source of the problem. One of us once
discovered a bizarre incompatibility between a tape drive and an Iomega Zip drive when
used on one SCSI host adapter. The problem caused errors when reading data from the
tape drive. The incompatibility vanished when both drives were connected to another host
adapter. You want to discover such difficulties before you need to use the drive for actual
data recovery.

• 

Backing Up the Operating System

Preceding sections of this chapter have discussed backup tools and commands, but in practice it's
necessary to know what to back up. There are two philosophies concerning backups: minimal and
complete. A minimal backup backs up only those files that are unique to your system, such as
configuration files and user data. A complete backup backs up the entire computer. Each approach
has its pluses and minuses.

Minimal Backups

The idea behind a minimal backup is that, in the event of a disaster such as a hard disk crash, you
can obtain new hardware (if necessary), reinstall Linux from scratch, and restore a small backup
from tape, CD−R, or some other medium to recover a working system that's identical or nearly
identical to the system you'd been using. Linux is reasonably well−suited to such an approach,
because configuration files, user files, and most other system−specific files are confined to specific
directories, such as /etc, /home, /usr/local, and /var.

Suppose that you want to back up these four directories, leaving the bulk of the Linux system in /usr
(aside from /usr/local) "backed up" in the form of the original Linux installation CD−ROM. You might
use a command like the following to perform this task using tar and a SCSI tape drive:

# tar cvplf /dev/st0 /etc /home /usr/local /var

239



Minimal backups have certain advantages, including speed, a reduced need for tapes, and the
capability to recover the system without creating an elaborate disaster recovery plan (you'll reinstall
a complete system and then use it to restore your system−specific data). On the down side, you can
easily miss something important (including software upgrades installed after the initial system
installation), and to work properly, you'll need to take careful notes on what you installed during
system installation and afterward, in order to create an initial post−restore configuration that
matches your system's state at backup time. On the whole, it's usually better to perform a complete
backup, unless you don't have the tape capacity to conveniently back up your entire system. Some
systems can benefit from a mixed approach: Use a complete backup on occasion, and minimal
backups more frequently. This approach resembles an incremental backup, but is more
hit−or−miss.

Complete Backups

A complete backup backs up everything on the computer, with the possible exception of selected
files you know you won't be wanting after a restore—for instance, you might explicitly exclude the
/tmp directory's contents. In principle, you can perform a complete backup by backing up the /
directory and all its subdirectories, but as described earlier, you want to avoid backing up the /proc
filesystem, because it's not a disk−based filesystem at all. This filesystem stores information on the
computer's state, so backing it up is a waste of tape at best, and restoring it can cause serious
problems, potentially even including a system crash.

A complete backup takes more time and tape than a minimal backup, and restoring such a backup
after a disaster requires some preparation, as described shortly. On the plus side, once you've
recovered such a backup, you won't need to fine−tune your configuration or worry about missed
files or program upgrades—if done properly and completely, your recovered system will be a virtual
clone of its state before being backed up.

Depending upon your software, you may be able to perform a complete backup by backing up / and
specifying files or directories to exclude, or by backing up each filesystem independently. For
instance, to back up / and exclude /proc using tar, you might issue the following command:

# tar cvpf /dev/st0 / −−exclude=proc

This particular command omits the leading / from /proc, because tar stores files in its archive in a
relative manner by default. If you include the / in /proc, tar will not exclude /proc. The potential for
confusion may make it easier to get the correct results by using the −l parameter to tar and
specifying each filesystem you want to back up, thus:

# tar cvplf /dev/st0 /home / /usr/local /boot

This command backs up four filesystems (/home, /, /usr/local, and /boot), but of course you should
adjust the filesystems for your computer. You can list the filesystems in any order, but keep in mind
that it will be quicker to restore files from the filesystems you list first. This example lists /home first,
on the theory that users may accidentally delete files from their home directories and want them
restored.

Disaster Recovery Techniques

Backing up your system regularly and methodically goes a long way toward protecting it, but there
are still situations that call for something different. If you forgot to run LILO or can't boot the kernel

240



you just made, you don't need to reinstall, but you do need some sort of disaster recovery. Disaster
recovery methods allow you to log onto your system, so that you can fix it or retrieve important files
before damaged equipment takes the system down permanently. There are several methods to
choose from, depending upon the problem and what you need to do to repair it. Among these are
booting in single−user mode, from an emergency boot disk, and in rescue mode.

Single−User Mode

Single−user mode boots your computer to run level 1. The local filesystems are mounted as usual,
and the system's initialization scripts are run, but there is no network access. You are placed in a
system maintenance shell where root may use the console but no one else is allowed to log in at all.
If your system boots but does not allow you to log in when it has completed booting, try rebooting
and entering linux single at the LILO boot prompt:

LILO boot: linux single

Since this method uses the ailing system's own initialization scripts, any error in these scripts may
still be a problem; no daemons run in this mode, however, so problems caused by a daemon's
failure to start will likely be fixable in this mode. Single−user mode also uses the system's own
kernel, so if the kernel is causing a panic, this won't help either. If a filesystem has problems,
single−user mode will attempt to mount it as usual and will probably fail at that point.

Single−user mode is great for getting on a system when you've forgotten the root password,
allowing you to run LILO when you have forgotten to do so after creating a new kernel image, and to
fix some other problems that don't prevent the system from reaching single−user mode. You can
take advantage of the fact that no one else can log in to perform functions like installing software,
making backups (if the system can stay in single−user mode for a long time without disruption), and
doing other standard maintenance functions that benefit from root solitude.

Using a Boot Floppy

Chapter 2's discussion of installing Linux, as demonstrated on a Red Hat system, noted that
creating a boot floppy is a useful installation option. In the early days of Linux, the packaged
distributions came with at least one boot and one root floppy. These floppies were required for
installation. The boot floppy contained all the files needed for a LILO−initiated bootup of a particular
system. The root filesystem was contained on the root floppy. Using this method, you could boot the
installed system using the boot floppy and specifying the location of the installed root partition, or
you could boot the image on the root floppy.

Install Boot Disk

There are two flavors of boot disks these days. The first is used to boot into the installation and is
typically referred to as an install disk. These days, most CD−ROM distributions provide a bootable
CD−ROM, removing the need for a boot disk. Still, if your computer BIOS does not allow booting
from a CD−ROM or if your CD−ROM is not functioning, you'll need to create the boot disk by
copying the correct boot image to a floppy. If your distribution does not come with a ready−made
boot disk, you must create one using one of the boot disk images from your installation CD−ROM.
Some bootable CD−ROMs can be used directly in much the same way as an emergency floppy.

There are three images that can be used for this disk because different install methods require that
different capabilities be built into the kernel. If your distribution came with a premade boot disk, it
probably is equivalent to one made from boot.img, since it is the most commonly used boot image.

241



There is also a bootnet.img image to be used for installing from a non−PCMCIA network device. A
pcmcia.img image is available for installation via a PCMCIA device like some CD−ROM drives,
Ethernet adapters, or hard drives.

Since the install disks allow you to boot your system and use a virtual terminal, they can sometimes
be used to repair flaws, but some of the same restrictions apply as with single−user mode. The boot
disk contains only a kernel image, so all the initialization is performed using the system's own files.

There are several ways to create an install floppy. If you have a working Windows system, you may
create the disk by using RAWRITE.EXE. This binary is located in the dosutils directory on a Red
Hat CD−ROM. To use it, execute the command and tell it which of the images in the images
directory you wish to write to floppy and which device to write to.

If you are lucky enough to have a Linux or other Unix machine available, you can create the disk
using dd with a variation on the following command:

# dd if=/mnt/cdrom/images/boot.img of=/dev/fd0

On some systems you'll need to specify the block size. See the man page for the dd command for
more details. You may also use the cat command as follows:

# cat /mnt/cdrom/images/boot.img >/dev/fd0

You must not use the cp command, because the idea is to transfer the raw image without any
formatting, and the cp command requires a formatted disk.

Emergency Boot Floppy

The second type of boot floppy is a standalone boot image created specifically for your system
during an install or by running the command /sbin/mkbootdisk. This disk is typically referred to as an
emergency boot floppy. It contains a root filesystem along with customized boot data for the system
it was built from rather than the generic data provided with the distribution boot floppy. The
standalone boot floppy can be used to boot your system if you cannot or do not wish to run LILO or
some other boot manager.

It is important to remember that a boot floppy uses files on the existing system when it boots. It
needs to find the second−stage boot loader, which is typically /boot/boot.b, the initialization files,
and a kernel image on the computer you are booting. If the problem you are trying to fix is in one of
these files, you won't be able to boot using a boot floppy. You'll need to use Red Hat's rescue mode.

Rescue Mode

A Linux distribution's rescue mode boots a small but complete Linux system completely
independent of the installed Linux system. From this mode, you can mount the computer's devices,
edit configuration files, run a filesystem check, or do a number of other repair functions depending
upon the problem. Since both single−user mode and boot disks depend upon files from the installed
system itself and certain types of problems cannot be fixed these ways, rescue mode is the only
way to fix some problems that you'll encounter.

Many distributions' CD−ROMs include the ability to boot into a rescue mode of one sort or another.
This section focuses upon Red Hat's rescue mode, but the principles are the same for other
distributions.

242



If boot loader has been overwritten by another operating system, you cannot boot from the kernel
and initialization files on your hard drive, because there is no way to access them; so you need to
use rescue mode. If hardware problems make it impossible to boot using your own initialization
scripts, use rescue mode and mount that drive to retrieve whatever you can before it dies. If you've
made a mistake in /etc/fstab and incorrectly given the mount point for the / partition, you can use
rescue mode to edit the file and reboot. You can even use rescue mode to recover a complete tape
backup to a new hard disk after an old one has died.

To boot into rescue mode, you need to boot from a Red Hat boot disk or from a floppy containing
either the PCMCIA boot image or the bootnet image. When you reach the boot prompt, simply type
linux rescue. When the system boots, you will be in rescue mode and will have a Bash # prompt.
You will be able to run any of the commands selected as essential by your distribution. For Red Hat
7.3, these are available:

Anaconda gzip mkfs.ext2 ps
Badblocks head mknod python
Bash hwclock mkraid python1.5
cat ifconfig mkswap raidstart
chattr init mlabel raidstop
Chmod insmod mmd rcp
Chroot less mmount rlogin
Clock ln mmove rm
collage loader modprobe rmmod
Cp ls mount route
Cpio lsattr mpartition rpm
Dd lsmod mrd rsh
ddcprobe mattrib mread sed
depmode mbadblocks mren sh
Df mcd mshowfat sync
e2fsck mcopy mt tac
Fdisk mdel mtools tail
Fsck mdeltree mtype tar
fsck.ext2 mdir mv touch
fsck.ext3 mdu mzip traceroute
ftp mformat open umount
gnome−pty−helper minfo pico uncpio
Grep mkdir ping uniq
Gunzip mke2fs probe zcat
If your root filesystem is undamaged, you can mount it and use the chroot command to run
commands as if the original root filesystem were your root directory. You can mount all the partitions
on this root filesystem and essentially run your own system. Under Red Hat 6.2 and beyond, you
are required to create your own devices, so before you can mount /dev/hda1, you'll need to use the
mknod command to create /dev/hda, /dev/hda1, and /dev/hda2.

# mknod /dev/hda b 3 0
# mknod /dev/hda1 b 3 1
# mknod /dev/hda2 b 3 2
# mkdir /mnt/olddisk

243



# mount /dev/hda1 /mnt/olddisk
# mount /dev/hda2 /mnt/olddisk/usr
# chroot /mnt/olddisk

This example reflects a system that exists as two separate partitions: / and /usr. If you don't know
the partitioning scheme of the system you're attempting to fix, you can use fdisk to determine it
(after you've created the device file for your hard disk, that is). The fdisk utility will allow you to
determine partition types and sizes; this is usually enough information to make a good guess as to
the scheme being used. If you are wrong, don't worry; attempting to mount the wrong partition will
not harm the system.

Third−Party Recovery Software

Recently, several third party−vendors have begun marketing recovery packages. In the past,
backups were considered by many to be sufficient. Because recovery utilities are common in
Windows, users converting from that environment often want to see these tools in Linux.

BRU

Enhanced Software Technologies (EST) uses the technology behind its BRU backup−and−restore
package discussed earlier as the backbone to a line of data recovery products.

QuickStart Data Rescue

The QuickStart Data Rescue package provides the ability to perform disaster recovery using a
single boot disk. Once booted with the QuickStart Data Rescue disk, your system will be able to
detect most tape drives. After the tape drive is detected, you will be able to use the graphical
interface to reinstall your system with the configuration as it was captured in the original use.
Normally, if a system crashes, you need to reinstall the operating system and perform some
configuration tasks (to make the system see your tape drive, for instance) before you can even
begin to dump the needed elements from tape. With QuickStart Data Rescue, you just boot from the
disk and start putting your data back.

Undeleting Files

It's easy to accidentally delete a file. Part of the purpose of backups is to allow recovery of such
files, but if the file hadn't been backed up before its accidental deletion, the backup does no good.
Therefore, there are undelete utilities available, and certain window managers use a trash can icon
by default, which doesn't immediately delete files, instead storing them in a temporary limbo before
deleting them. The rm command does not actually erase the deleted file from the disk but instead
removes the file's inode or index pointer, leaving the data in place until that same inode is reused.
Because the data still exists, it is often possible to retrieve it. While the ext2 filesystem motivated
several undeletion packages/methods, the new ext3 system is much more stable, so the utilities that
were being developed, GtkRecover for instance, are no longer being developed. The command−line
version of this, Recover, still exists, although not much development activity is presently going on.

In Sum

Backup is an important topic, and one that covers a lot of territory. Effective backups rely upon an
appropriate choice of hardware, selection of a reasonable backup schedule, and use of good
backup software. Linux works with most modern backup hardware and provides many choices of

244



backup software. Your backup schedule, of course, is yours to set.

Backing up your data is not enough. You must have a good recovery plan in case of disaster. At a
minimum, you should be able to boot an emergency recovery disk of some sort in order to restore
data from a backup. This same or another recovery disk should allow you to edit your main system's
files, in case you accidentally damage some critical file like /etc/fstab. There are also assorted tools
available to help you recover data, even without a conventional system backup. All of these tools
and techniques play an important role in safeguarding your system's data from accidental loss, or
even from sabotage by a cracker.

Take a break and obtain your beverage of choice. When you return you'll learn about printers and
the spooling subsystem.

245



Part III: Communications and Networking

Chapter List

Chapter 10: Printers and the Spooling Subsystem
Chapter 11: Serial Communications, Terminals, and Modems
Chapter 12: TCP/IP Linux Networking
Chapter 13: The X Window System
Chapter 14: Setting Up Your Mail Server

Featuring

Understanding serial devices• 
Configuring terminals and modems• 
Configuring serial printers• 
The printing process in Linux and the lpd print spooler• 
Creating printers in Red Hat• 
Kernel support for printing• 
Remote printing• 
Bash shell scripting• 
Administrative scripting in other languages• 
Understanding and configuring TCP/IP networking• 
File sharing• 
Internet servers and super servers• 
Configuring the X Window System• 
Building a user interface atop X• 
Setting up a mail server• 
Protecting against spam• 

246



Chapter 10: Printers and the Spooling Subsystem

Overview

Printers are critical tools for most businesses, and that makes the ability to set up and administer
printing a very important system administration task. You will find that many of the emergency calls
you receive are from users who cannot print a document they need for an upcoming meeting. Even
when something small goes wrong with a printer, it seems like a crisis to anyone who needs that
printer at that specific time. A successful system administrator must understand the printing process
and be able to successfully troubleshoot basic printing problems.

Printing under Linux works somewhat differently than does printing under most non−Unix operating
systems. If all works well, these differences are transparent to your users, but you must understand
many of Linux's printing details and peculiarities in order to set up and troubleshoot a Linux printing
queue. You must also understand how these queues interact with clients if the computer functions
as a print server for other computers. This chapter outlines the types of printers commonly used
today, the tools Linux provides for controlling printer operation, and basic installation and
configuration.

Printer Basics

Printers are classified both by the way they print and the way they connect to the computer. There
are three main types of printers and four types of printer interfaces you may encounter. Familiarity
with these printer basics makes you a more capable system administrator and helps your users to
trust that you know what you're doing. A brief introduction to types of printers and the ways they
interface with the computer will be helpful. If you already know these basics, you can skip ahead to
"The Printing Process in Linux."

Types of Printers

Printers differ radically in the way they create images on paper. Impact printers mechanically strike
characters against inked ribbons to transfer an image to paper. These have limited and specialized
uses in today's business world; more common are nonimpact printers, which transfer images by
other means. Impact printers include line printers, daisy−wheel printers, and dot−matrix printers.
Nonimpact printers include laser printers and ink−jet printers. Some of the earliest common printers
for mainframe computers were line printers—big, fast, and noisy. Daisy−wheel printers were
introduced in 1970, offering the same print quality as typewriters. Soon after, the dot−matrix printer
effectively replaced the daisy−wheel. Laser printers hit the scene in 1975 but the cost was
prohibitive, so most businesses continued to use dot−matrix printers. In 1976 when the first ink−jet
came out, it too was cost−prohibitive. In 1988, Hewlett−Packard released the DeskJet ink−jet
printer, which was priced at $1,000. Although many users kept their dot−matrix printers instead of
paying for the better capability, this series of printers opened the door to widespread use of ink−jets
by home users. Laser printers were still far too expensive and didn't do color like the ink−jets. In
1992, Hewlett−Packard introduced the LaserJet 4, which supported resolutions up to 600×600.
Color laser printers were introduced in 1994. The market now is pretty much shared between ink−jet
and laser printers. There are, however, a few printer types that are important in niche markets, such
as dye sublimation and thermal wax transfer printers, which are popular in graphic arts
departments.

247



Dot−Matrix Printers

Dot−matrix impact printers have a number of pins (usually between 9 and 24) arranged in a vertical
line. The printer shoots some of them into an inked printer ribbon, leaving a number of dots on the
paper, which produces a fuzzy, low−quality representation of the intended letter. The fuzziness is
due to the mechanical nature of the pins; they simply cannot be made small enough to hide the fact
that the letters are made up of dots. To its advantage, however, this type of printer first introduced
the possibility of printing graphics since it was not restricted to letters like the daisy−wheel printers
that preceded dot−matrix models in the marketplace.

Today, dot−matrix printers are rare because they're slow, noisy, and produce lower−quality print
than competing ink−jet and laser printers. Nonetheless, they cling to life in certain applications. The
primary advantage of these printers is that, because they rely upon impact technology, they can
print multipart forms. You'll therefore see dot−matrix printers in use in some retail establishments for
printing receipts and invoices.

Linux support for dot−matrix printers is quite good. A handful of printer languages, led by Epson's
ESC/P, have long dominated the dot−matrix market, and Linux's Ghostscript utility supports these
common dot−matrix printer languages. Therefore, if you find yourself needing to support a
dot−matrix printer, chances are you can get it working from Linux.

Ink−Jet Printers

Whereas dot−matrix printers rely on impact through an inked ribbon to create images on the paper,
ink−jet printers shoot small drops of ink through nozzles onto the page. Like the pins of a dot−matrix
print head, ink−jet nozzles can be arranged to form characters or other images but create smaller
dots that are less easily discerned as such. The printing mechanism moves horizontally as the
paper is slowly drawn through the printer. Early models produced dots large enough that the print
quality was on a par with that of dot−matrix printers, but the technology quickly improved to the point
where the images rival laser printers in image quality.

Generally cheaper to buy than laser printers, ink−jet printers are more expensive to maintain. The
system contains 1–6 ink cartridges, which have to be replaced or refilled when empty. (Each
cartridge produces 1–6 colors; all modern ink−jets are color printers, although the earliest models
printed only black.) These cartridges can be quite expensive and may print only a few pages before
requiring replacement, leading to high per−page costs. Ink−jet printers work best with specially
coated paper that prevents the ink from spreading as it dries. Care should be taken when removing
a printed sheet from an ink−jet printer, since the ink will smear unless it is allowed sufficient time to
dry. Regular printer paper may be used, but the image is often slightly blurred by the way the drops
of ink soak into it.

NoteYou can buy ink refill kits for most popular ink−jet printer models. These kits can greatly
reduce the cost of printing, but refilling can be a messy process and doesn't always work
correctly. Printer manufacturers discourage this process, and they may refuse warranty
service if they discover you've been refilling, although refill manufacturers claim any such
action is illegal. To the best of our knowledge, this claim has never been tested in court.

Laser Printers

Laser printers offer the best print quality. Introduced commercially by Hewlett−Packard in 1984, they
have come to dominate the office market as their price has fallen compared to other printer types. A
laser printer transfers a full−page image to paper electrostatically, much like a photocopier. But

248



while a photocopier begins by copying the image from its source photographically, a laser printer
begins with computer data, which the printer's onboard processing converts into instructions that
drive a laser beam, tracing the image onto a cylindrical drum. Figure 10.1 illustrates the process.
The fineness of the laser beam enables laser printers to achieve very high resolution for both text
and graphics, in the range of hundreds of dots per inch (dpi).

Figure 10.1: Laser printing
Modern laser printers are several times faster than the average ink−jet and are good for use where
large volumes of printing need to be produced quickly and at high quality. Laser printers are less
sensitive to paper characteristics than are ink−jets, so you can get by with less expensive paper.
The toner used in place of ink in laser printers is also less expensive than ink−jet ink, at least on a
per−page basis. (Toner cartridges usually cost more than ink−jet cartridges, but the toner cartridges
print many more pages.) Most laser printers in 2002 print only black, but color models are slowly
growing in popularity. Fortunately for those who do not have the money to spend for a color laser
printer, mid−level ink−jet printers still offer better quality color printing than all but the highest quality
color laser printers.

Obsolete and Rare Printer Types

The history of computer printing is littered with technologies that have seen their heyday and have
now faded into obscurity. There are also printer types that are produced and used in certain niche
markets. These technologies include:

Daisy−wheel printers Daisy−wheel printers are named after the appearance of their
print heads, which resemble the petals of a flower. At the tip of each "petal" is a

249



raised image of a character. These petals are struck against an inked ribbon, much
as in a dot−matrix printer. These devices were a common means of producing
high−quality text at one time, but they've been made obsolete by laser printers, which
produce better text faster and less noisily.

Line printers Line printers use impact technology, much like daisy−wheel and
dot−matrix printers. These printers use a series of wheels with letters on them. Each
wheel spins independently, so an entire line of text can be composed and printed at
once, hence the name. The Linux line printer daemon (lpd) program takes its name
from this type of printer but works with other printer types. These printers are still in
use with large mainframe computers.

Dye−sublimation printers These printers use dyes rather than inks to create their
images. The printer heats the dyes until they turn gaseous, and the gas then hits the
paper, producing a colored dot much like that produced by an ink−jet printer. These
printers produce excellent color output, but they're expensive and slow.

Thermal wax transfer This technology uses colored waxes rather than the colored
inks of ink−jet technology. While these printers fall between dye−sublimation and
ink−jet printers in cost, thermal wax transfer printers generally produce better color
printing than color laser printers.

Plotters A plotter uses pens, dragged across the paper by a robotic arm, to produce
output. These devices are often used to produce large pages of line art, as in
architectural drawings.

You're unlikely to encounter any of these printer types, but you might, particularly if you're
administering a Linux print server used in a graphics art department or some other environment
where a specialized printer type is desirable. The main thing to be concerned about with these
printers is compatibility with Linux's Ghostscript utility. As described shortly, printers used with Linux
must either understand the PostScript printer language natively or must be supported by
Ghostscript. Unusual printers may satisfy neither requirement. If the printer is supported, however,
you can treat it just like any other printer.

Printer Interfaces

Printers can be made accessible to a computer in several ways. In the simplest case, a printer can
be connected directly to a standalone workstation via the parallel, RS−232 serial, or Universal Serial
Bus (USB) port. In the business world, however, the connection will more likely be to a networked
workstation or to a dedicated print server. A print server is a computer or dedicated network device
that has one or more printer interfaces and a network interface. The print server accepts print jobs
from other computers on the network, and directs those jobs to the printer. A Linux computer can
function as a print server, either in a dedicated fashion or in addition to performing other tasks. In
Linux, a file named printcap contains the basic configuration for each printer. Some printers have
network interface cards built directly into them and can also be accessed by setting up the
appropriate entry in the printcap file. We'll talk more about this file in a little while.

Parallel Port

Most printers connect to computers via the parallel port. These can be anything from dot−matrix
printers to modern laser printers. Parallel printers use an interface by which data is transferred on
more than one wire simultaneously. A parallel port carries one bit on each wire, thus multiplying the

250



transfer rate obtainable over a single cable by the number of wires. Along with data, control signals
are sent on the port as well to say when data is ready to be sent or received.

There are now enhanced high−speed parallel ports, conforming to the IEEE 1284 standard, which
provide communication with external devices, including printers. These advanced ports support
bidirectional transfers to 2MBps. Keep in mind, however, that high−speed parallel ports are intended
to run devices within 20 feet of the computer; short, high−quality cables are essential to high
throughput. Signals sent on cables longer than 20 feet will degrade in proportion to the length of the
cable.

Most of this chapter's discussion of Linux printing support and configuration applies to printers
connected to a parallel port. Typically, though, only a few configuration details need to be changed if
you're using an RS−232, USB, or networked printer.

RS−232 Serial Port

RS−232 serial ports were initially developed for use by terminal servers, but they now support a
number of other devices like serial mice and serial printers. RS−232 serial ports are slower than
parallel ports, so they aren't used very often for printers, which usually require high−speed
interfaces, particularly when printing graphics. Some printers can be used as either parallel or
RS−232 serial depending upon the way you connect them to the computer.

RS−232 serial ports can handle situations where there is more distance between the printer and the
computer. A serial printer can run 50 feet at around 38.4Kbps (4.8KBps, roughly 500 times slower
than the 2MBps of a parallel port). The cable length can be extended via an electrical interface like
EIA−530 (a.k.a. RS−422).

Chapter 11, "Serial Communications, Terminals, and Modems," shows how to configure serial
printer connections.

USB Ports

The latest type of printer interface is the USB port. This is an updated type of serial port that
supports much higher speeds than the older RS−232 serial port—up to 1.5MBps, or very close to
parallel−port speeds. USB also allows you to connect up to 127 devices to a single port, whereas
both parallel and RS−232 serial ports allow only one device per port. These facts have made USB
devices increasingly popular, and not just for printers—keyboards, mice, scanners, tape backup
devices, modems, digital cameras, and more are available in USB form. Among printers, USB is
most common in low−end and mid−range ink−jet printers, and particularly those marketed for
Macintosh users. (Current Macintoshes lack both parallel and RS−232 serial ports.)

From a Linux perspective, the main drawback to USB is that USB is still new enough that Linux's
support for USB is immature. In fact, USB support in the 2.2.x Linux kernel series is essentially
nonexistent. The 2.4.x kernels do include USB support, but some early distributions don't use 2.4.x
kernels by default. Many distributions do, however, include a back−port of the 2.4.x USB support to
their 2.2.x kernels. The end result is that you can use a USB printer, but you may need to update
your kernel or choose an appropriate distribution. Because USB printers are comparatively untested
under Linux, you may also encounter problems because of the immature drivers.

251



Networked Printers

The term networked printer refers to a printer attached to a computer accessible via the network or
to a printer that has a built−in network card and is assigned its own network address. The latter is
sometimes called an Ethernet printer. (Note that a parallel, RS−232 serial, or USB printer may
become a networked printer simply by attaching it to a print server.) A networked printer is set up
via the same printcap file and requires less configuration than other connection types, since Linux
can print to any networked printer that supports the LPD protocol (and most do). You must set up a
printcap entry on any other computers on the network that need access to a networked printer.

The Linux Printing Process

Printing under Linux begins with a process called print spooling. A print spooler is a program that
accepts print jobs (requests for a certain document to be printed) from a program or network
interface, stores them in a spool queue, and then sends them to a printer one at a time. Print
spooling is critical on a system where a second or subsequent print job might be sent before the first
job has been completed. The print spooler holds these jobs and allows an administrator to manage
them. Typically, this management includes deleting jobs, reordering jobs, or restarting the printer or
its queue. The most common print spooling software package for Linux has historically been the line
printer daemon or lpd package, which was borrowed from BSD's Net 2 package. Other print
spoolers include LPRng and CUPS. Red Hat and Caldera are two distributions that use LPRng by
default. Debian gives a choice of lpd or LPRng. Many others use lpd. Both systems are quite similar
in practice, and this chapter emphasizes their way of doing things.

Tools of the Printing Trade

No matter what specific printing system you use, there are certain common utilities and
configuration files of which you should be aware. These include the /etc/printcap file (or its
equivalent), Ghostscript, and the printer queue's filter set. The details of these packages and their
configurations determines what printers you can use, and precisely how programs print on the
computer.

The printcap File

The lpd and LPRng print spoolers use a configuration file called /etc/printcap. This name is short for
printer capabilities, and that's what the file describes. It contains entries providing configuration data
for all the printers connected to the computer, either locally or via network. Each printer's entry
contains information such as the printer's name, its spooling directory, the maximum file size it can
accept, and so on. The spooler reads this file each time it starts and each time it is called.

The printcap file has a complicated format and is usually created and edited with some sort of
configuration tool. These tools make the job of creating a printcap file much easier. Red Hat uses
the Printconf utility, discussed later in the chapter.

You'll see an example of a printcap file on a Red Hat system when we look at the lpd spooler.

CUPS and some other printing systems don't use a printcap file; instead, they use other files,
located in the /etc/cups directory in the case of CUPS, such as /etc/cups/printers.conf. The format of
these files is different from the format of a printcap file, but they accomplish the same tasks.

252



Ghostscript

Traditionally, Unix programs have been written under the assumption that a printer is one of two
things: a line printer that understands little or no formatting, or a PostScript printer. PostScript
printers can accept downloadable fonts, bitmapped graphics, vector graphics, and many other
features. In fact, PostScript is a full−blown programming language, comparable in many ways to C,
Perl, and the like. PostScript, however, is designed for creating printed output, so it's heavy on
graphics manipulation features.

Because Linux has inher i ted so many Unix programs, L inux has a lso inher i ted the
PostScript−centric nature of its printer system. Unfortunately, PostScript printers have traditionally
been more expensive than otherwise similar non−PostScript printers, and many Linux developers
have been unable to afford PostScript printers. In order to create more than primitive monospaced
text−only output, therefore, Linux requires a helper application. This application is Ghostscript
(http://www.cs.wisc.edu/~ghost/), which converts PostScript into a wide variety of other formats,
including formats that can be understood natively by many non−PostScript printers.

The public has come to expect PostScript−capable printers, so non−PostScript printers are less
common in the business world these days. Still there might be situations where knowledge of the
non−PostScript side of printing will come in handy. When using a non−PostScript printer, then, the
printing process proceeds as follows: An application (WordPerfect, xfig, Netscape, or whatever)
produces a PostScript file. This file is fed into a Linux printer queue, which sends the file through
Ghostscript. The queue then passes Ghostscript's output on to the printer. The result is that you can
configure the application as for a PostScript printer, even when the printer is really a low−end
ink−jet that could never understand PostScript.

All major Linux distributions ship with Ghostscript, but not with the latest version of the program.
Ghostscript is unusual in its licensing. The latest versions are free for noncommercial distribution,
but any distribution for money requires negotiation of license terms with the copyright holder,
Aladdin. Older versions of Ghostscript, however, are available under the GNU General Public
License (GPL), and so can be distributed on commercial Linux CD−ROMs without dealing with
onerous licensing issues. In most cases, the older GNU Ghostscript is quite adequate. If you want
the latest Ghostscript features, check the Ghostscript Web site; you can download the latest version
and use it, so long as you don't include it in any product you distribute for money.

TipUnless your printer understands PostScript natively, most or all of your Linux printing will rely
upon Ghostscript to handle the printer. Therefore, it's critically important that your printer either
be a PostScript printer itself or be supported by Ghostscript. The Linux Printing Support
Database (http://www.linuxprinting.org/printer_list.cgi) is a cross−reference database of printer
models and their Ghostscript drivers, including comments on how well these drivers work.
Consult it before buying a printer or if you're having trouble getting a printer to work in Linux.

Ghostscript itself typically requires very little in the way of configuration. It includes drivers for many
different printers, and the program that calls it (such as the print queue or magic filter) specifies
what driver to use. In some cases, though, you may want to add fonts to Ghostscript or even
recompile it with unusual drivers. If you need to add fonts to Ghostscript, it can be done by editing
the /usr/share/ghostscript/version/Fontmap file, where version is the Ghostscript version number
(6.52 in Red Hat 7.3). Most programs that print with unusual fonts embed them in their output
PostScript files, so there's no need to add fonts to Ghostscript explicitly.

253



Magic Filters

One critical piece of information that the print spooler software finds in the printcap file is the magic
filter, or print filter, to be used with a given printer. A magic filter is software that receives a file from
standard input, performs an action based on the file's type, and then outputs the result on standard
output.

When a print spooler such as LPRng is called with a filename or stream as an argument, it
examines the printcap entry for the specified printer. If the appropriate stanza specifies a print filter,
lpd sends the document or stream through that filter, thereby producing output in the proper format.
The printer will not print properly if sent a file it does not understand. There are numerous file
formats used for printing: straight text, PostScript, image files of various types, and so on. The print
filter decides what to do with each file type—whether to send it directly to the printer, process it
through Ghostscript, or process it through some other program.

With a plain text file, for example, the magic filter has nothing to do. If it receives a PostScript file,
however, the magic filter for a non−PostScript printer would call Ghostscript to translate the file for
printing. Three packages that provide these filters are rhs−printfilters (used by Red Hat), APSFilter
(used by most distributions and discussed later in this chapter), and Magicfilter. You must ensure
that any program called by your filter, like Ghostscript, is on the system as well. If you stick with the
default printer tools used by your distribution, this should be adequate. If you adjust your print filter
configuration, though, you'll need to carefully review its documentation to learn what other tools it
requires.

The LPRng Print Spooler

LPRng is a modern re−implementation of the old lpd printing system. LPRng includes equivalents to
most of the lpd tools and utilities, although some of the details differ. Most of the information
presented here about LPRng also applies to the older lpd system.

Both LPRng and the original lpd system are built around the line printer daemon, lpd. This is the
program that monitors print requests and kicks off the appropriate subprogram to accomplish the
desired task. The Line Printer Daemon Protocol is defined in Request for Comment (RFC) 1179.
The term lpd is used to refer both to the daemon itself and more broadly to the set of programs used
to perform the various functions associated with a print spool. These include the lpd, lpr, lpq, lpc,
and lprm programs. The most important is the daemon itself, lpd, which provides the spooling
functionality.

Note It's important to distinguish between the original lpd package and the lpd program. The
former indicates a specific set of programs with a particular history. The latter
indicates a program of a particular name, versions of which come with both the
original lpd package and the newer LPRng. Much of the following discussion of lpd
refers to the program, not the specific package; this discussion applies to both the
original lpd package and the new LPRng package.

Basic lpd Functionality

A master line printer daemon runs constantly to keep track of any print spooling needs on the
system. The master lpd is started at boot time in the same way as other daemons we discussed
when we talked about system initialization. Red Hat has an lpd script in /etc/rc.d/init.d, which is run
at boot time. You can start or stop LPRng at other times by issuing a command consisting of the full
path to the lpd script, a space, and one of the following: start, stop, status, or restart. When the line

254



printer daemon is started, it reads the /etc/printcap file, discussed earlier. Listing 10.1 shows an
example of a printcap file.

Listing 10.1: An Example printcap File

lp|lp0|lexmark:\
        :sd=/var/spool/lpd/lexmark:\
        :mx#0:\
        :sh:\
        :lp=/dev/lp0:\
        :if=/var/spool/lpd/lexmark/filter:
lp1|hp4000:\
        :sd=/var/spool/lpd/hp4000:\
        :mx#0:\
        :sh:\
        :rm=tennessee:\
        :rp=hp4000:\
        :if=/var/spool/lpd/hp4000/filter:
lp2|epson:\
        :sd=/var/spool/lpd/epson:\
        :mx#0:\
        :sh:\
        :if=/var/spool/lpd/epson/filter:\
        :af=/var/spool/lpd/epson/acct:\
        :lp=/dev/null:

This printcap file example contains the configuration for a directly connected Lexmark Optra 40, a
remote HP LaserJet 4000, and a remote SMB/Windows Epson Stylus Color 800. The first line
assigns the local printer's name, in this case lp|lp0|lexmark. This is actually a specification for three
names, each separated from the others by vertical bars (|). In this case, users can refer to the
printer as lp, lp0, or lexmark, with identical results. lp is the default for the first printer on most
sys tems.  The  nex t  uncommented  l i ne  se ts  the  spoo l ing  d i rec to ry  fo r  the  p r in te r
to/var/spool/lpd/lexmark. The line beginning with :mx sets the maximum file size in kilobytes; the 0
in our example sets it to unlimited. The next line sets up the printer to suppress the page header,
which when present provides information on who ran the print job, to make sorting print jobs easier
in a busy printing environment. The next line sets the printer device name to /dev/lp0. This device
name is the printer's hardware device file—the file to which LPRng ultimately sends its output. This
name may or may not bear any resemblance to the print spool name defined earlier. The line
beginning with :if provides the path to the file that contains the filter information for any print types
defined for that printer. These options and more are documented in the printcap man page.

The sample printcap file contains stanzas (sections) for two more printers. The lp1|hp4000 entry is
for a printer located on a machine with a hostname of tennessee, located on the same network as
the local machine. The difference in this stanza is that instead of an lp line, it contains an rm line,
which specifies the machine to which the printer is connected; and an rp line specifying the queue
name on that machine. This second queue also has its own spool directory.

The lp2|epson entry is for an SMB/Windows 95/NT printer. The standard Red Hat print queue
format doesn't place information on SMB print servers in the printcap file; instead, that information is
located in the .config file in the spool directory. For an SMB printer, you must include a username
and password for the host machine. For security reasons, the username and password on the
Windows machine should not be the same as that user's account on the Linux machine. We'll
discuss printing to a networked Windows printer later in the chapter.

255



After reading through the printcap file and printing anything left in the queue, the line printer daemon
goes into a passive mode, waiting for requests to print files, reorder print jobs in the queue, or
display the waiting print jobs. It uses the system calls listen and accept to determine whether any
such requests are made.

As mentioned above, the line printer daemon package includes other programs necessary to the
printing functionality. These binaries perform specific functions, which we'll look at next.

lpr

The lpr program is the spooling command that makes requests of lpd. lpr makes contact with the
line printer daemon when it needs to put a new print job into the spool. The format is basic:

lpr path−to−file [arguments]

When you print from an application under Linux, the program runs lpr, specifying a stream from
which to read. This data may take any of several forms, including PostScript, raw text, JPEG
graphic, and so on. lpr passes the data to lpd, which checks the printcap file for specifics about the
printer. If the printcap entry includes a filter line, lpd sends the data (document) through that filter as
discussed earlier. Once the document is filtered, lpd sends it to the queue specified in the printcap
entry for that printer.

Commonly used arguments to lpr include:

−Pqueuename Forces output to a particular printer instead of the default printer or the
printer specified by the PRINTER environment variable. Do not include
a space between −P and queuename.

−h Suppresses the printing of a header page.
−m mail_addr Sends mail to mail_addr upon completion of the print.
−#num Prints num copies of each file.
−T title Title to print on cover page.
lpq

The lpq command controls the queue examination program, which lists the print jobs currently
waiting in the queue. The lpq command returns the user's name, the job's current place in the
queue, the files that make up the print job, a numeric identifier for the job, and the total size of the
job in bytes. To check the queue for a specific printer, use the −P option, as with the lpr command.
To check the queue for jobs owned by a specific user, enter a username as an argument. In action,
lpq looks like this:

$ lpq −Php4000
Printer: lp is lp@localhost
Printer: lp@speaker  'raw'
 Queue: 3 printable jobs
 Server: pid 12180 active
 Unspooler: pid 12181 active
 Status: printing 'user@speaker+179', file 1 'yacl−egcs.txt', size 
4172, format 'l' at 18:06:54

 Rank   Owner/ID          Class Job  Files           Size Time
active  user@speaker+179     A  179 yacl−egcs.txt    4172 18:06:54
2       user@speaker+182     A  182 tweener.txt      4879 18:07:05
3       user@speaker+186     A  186 kms94.ps       125700 18:07:16

256



Note The output format of LPRng, as shown above, differs from the format of the original
lpd's lpq. LPRng's listing is more complete, but lpd's provides much of the same
critical information, including a job ID number and the name of the file being printed.

lpc

The LPRng System Control program, or lpc, provides the capability to disable or enable a print
queue, to reorder the print jobs in a queue, and to obtain status information about a printer, a
queue, or a job. These commands are applicable to any printer in the /etc/printcap file as specified
by the associated name or to all printers.

If issued without an argument, the lpc session will be interactive and an lpc> prompt will be
returned. You can also include the lpc command in a script, using the following format:

lpc [subcommand]

The available subcommands are as follows:

abort Terminates any printing in progress and then disables further printing to the
specified printer(s). The queue is left intact so that the waiting print jobs will be
printed when the start command is next issued. Sometimes, if a printer has stopped
printing for no apparent reason, issuing the abort command followed by the start
command will get things going again.

disable Turns the queue off so that it won't accept any more jobs, although the
superuser can still queue print jobs. Printing is not halted, so anything in the queue
already or added by the superuser will print. When a printer is to be deactivated, you
should issue the disable command followed by the stop command.

down Turns the specified print queue off, disables printing to that queue, and logs a
message to the printer status file. Subsequent attempts to run the lpq command will
indicate that it is down and output the status message.

enable Enables spooling on the specified printer's queue so that it will accept new
jobs.

exit Terminates the interactive lpc session.

reread Tells the lpd daemon to reread its configuration file.

start Enables printing and starts a spooling daemon for the specified printer(s).

stop Stops lpd after the current job has been completed and disables printing.

topq [printer] [jobs] Places the jobs in order at the top of the queue (after the
currently printing job) for the specified printer(s). Unless topq has been used to
reorder them, the jobs will be in FIFO order (first in first out).

up Enables the queue for the specified printer and starts a new printer daemon for
that queue.

As an example, suppose you want to reorder the jobs in the lexmark print queue so that job 186
from the earlier lpq example prints before job 182. (Ordinarily, job numbers are assigned in
ascending order according to print order.) You might use the following command to accomplish this

257



goal:

# lpc topq lexmark 186 182

lprm

The lprm command allows you to remove a job or jobs from the spool queue of the default printer.
You may pass a −P option with a printer name to specify a different printer. Entering the lprm
command with the number of a job in the queue removes that job. You can also use lpq to see the
job numbers in a queue, as described earlier.

Issuing lprm with an argument of − removes all jobs the initiator owns, clearing the queue entirely if
issued by the superuser. If the superuser issues the lprm command followed by a username, all
jobs for that user will be removed. Thus, if you wish to remove job 11 and you are the owner or the
superuser, you may issue the following command:

$ lprm  11

If you're the superuser and you want to remove all the jobs owned by someuser, you could enter the
following command:

# lprm  someuser

Alternative Printing Utilities

Red Hat 7.3 ships with LPRng and the rhs−printfilters package as the basic printing system and
print filter set, respectively. CUPS is installed but doesn't get configured by default. These are not
the only options available, however. In fact, some distributions default to alternative systems, such
as the older lpd, the newer CUPS, or alternative magic filters. It's almost always easiest to use
whichever package comes with your distribution, but you may want to consider replacing a package
under some circumstances.

Alternatives to LPRng

There are several spooling packages on the market. Traditionally, lpd has been the most popular,
but Linux distributions are beginning to abandon it, for various reasons. One disadvantage is that
the original lpd package's lpr, lpc, lpq, and lprm are each SGID commands, and all except lpc are
also SUID. This means that anyone running these binaries temporarily assumes the privileges of
the owner of the binary (SUID) or the group of the binary (GUID). This allows restricted access to
resources that are not meant to be manipulated by the basic user. This is a potential security
problem since any user who finds a way to break out of the program or to exploit some weakness in
the program may use these privileges—especially if the user or group is root—to wreak havoc
system−wide.

There are also a great many things that a spooling program could do that lpd doesn't do. Among
these are load balancing between different print queues and tighter authorization constraints.
Nonetheless, you may still find yourself using lpd with some distributions. If you do, the preceding
discussion of LPRng is applicable, aside from a few minor details like the exact format of lpq's
output. LPRng is a more secure and streamlined package, and so is generally preferable to lpd.

LPRng is an enhanced version of the lpd package. It provides the lpr, lpc, and lprm programs in an
implementation that requires much less overhead and doesn't require SUID root. It supports
dynamic redirection of print queues, load balancing, automatic job holding, very clear diagnostics,

258



security checks, load balancing among multiple printers, and improved handling of permission and
authorization issues. For secure printing, LPRng supports Kerberos 5, MIT Kerberos 4 extensions to
LPR, PGP, and simple MD5−based authentication. LPRng ships with Caldera OpenLinux, Red Hat,
and Debian. You can learn more about LPRng at http://www.lprng.com/.

The Common Unix Printing System (CUPS) is another package that aims to overcome lpd's
limitations. It takes a more radical approach than does LPRng, though, entirely abandoning the
printcap file and adding new network printing protocols. CUPS does incorporate common lpd−style
printing programs, such as lpr, to ease the transition from one system to another. Most importantly,
CUPS provides a means for applications to query the printing system about a printer's capabilities,
which CUPS extracts from PostScript Printer Description (PPD) files you install. With the standard
lpd system, either the applications must make assumptions about a printer's capabilities (such as
paper size), or you must configure every application individually. If CUPS catches on, programs will
be able to obtain this information automatically, easing administrative effort. Currently, though, few
applications take advantage of CUPS's unusual features although CUPS is installed by default in
several distributions. You can learn more at http://www.cups.org/.

If you want to experiment with an alternative printing system, do so on a test system, at least
initially. Some packages may not get along well with these new systems, because their lpd
compatibility is not perfect. Once you've determined that your major applications work with the new
system, you can consider installing it on your main systems, possibly including any print servers you
maintain.

Alternative Filter Packages

The rhs−printfilters package is quite adequate for most uses. It can distinguish raw ASCII text,
PostScript, various graphics file formats, and a handful of others. If you use these filters as part of
your printcap file, as described earlier, then the filter will automatically handle the printing of any of
these file types. These print filters are also integral to using a standard Red Hat print queue to print
to a printer that's hosted on a Windows print server. This filter package is not the only print filter
available for Linux, however. Alternatives include:

APSFilter This package aims to be a platform−neutral filter package. It handles more
file formats than does the standard Red Hat rhs−printfilters package. You can learn
more at http://www.apsfilter.org/.

Magicfilter Like APSFilter, Magicfilter is a full−featured filter package, which can
handle more file formats than can the standard Red Hat filters. The package is
available from ftp://sunsite.unc.edu/pub/Linux/system/printing/.

Many distributions ship with either APSFilter or Magicfilter, so you may already be using one of
these without knowing it. In most cases, switching from one filter package to another provides few
benefits and many hassles, because printing systems are built from a rather long chain of programs.
If one link changes something that a subsequent link relies upon, the system stops working. Unless
you've investigated your alternative package and find that it does something the one you're currently
using doesn't do, it's generally best to stick with whatever comes with your distribution.

Configuring Printers Using Red Hat's Printconf

Each Linux distribution includes a preferred tool to add an entry to the printcap file and create the
printer's spool directory under /var/spool/lpd. Red Hat uses a program called Printconf; since Red

259



Hat used to use a tool called Printtool, Printconf is accessed by the executable located at
/usr/bin/printtool. This GUI tool, shown in Figure 10.2, creates entries for the /etc/printcap file and
provides links to the corresponding magic filters as well. You start this tool by typing print in an
xterm window.

Figure 10.2: Red Hat's Printconf facility
To add a printer using Printconf, follow these steps:

Start the Printconf utility. You'll see its main screen, as shown in Figure 10.2, although you
may not see any defined printers.

1. 

Click the New button. Printconf responds by displaying the Add a New Print Queue dialog
box, in which you can select from among five different printer types (see Figure 10.3).

Figure 10.3: You can elect to define a local printer or one of four different types of network
printers.

2. 

260



Click the printer type you want to define and enter a name for the queue for this printer. The
remaining instructions assume you opt for a local printer. The network printer definitions are
similar, but ask for information on the print server name rather than a local printer port.

3. 

Click Next in the Set the Print Queue Name and Type dialog box. Printconf displays
information about the printer ports it has detected. If there is more than one, you must select
the port to associate with the printer to be added. (For network printers, additional
information specifying the information for that type of printer will be requested instead.) This
port detection doesn't always detect all your ports, particularly if you're using an RS−232
serial or USB printer. You can safely ignore these omissions.

4. 

Click Next in the Configure a Local Printer screen. Printconf displays the Select a Print
Driver dialog box shown in Figure 10.4.

Figure 10.4: The Select Print Driver dialog box lets you select the model of the printer you
are installing.

5. 

Select the appropriate driver for the printer you are installing. If the driver does not appear,
look in the printer's documentation to see if another type is suggested for use. Although
Printconf used to require you to enter a lot of information about your printer configuration, it
now uses the default values. To change these values, you must edit the printer by selecting
Edit from the main screen shown in Figure 10.2.

6. 

After verifying the information for the queue to be created, click Finish, and Create the New
Print Queue dialog box. The queue should appear in the main Printconf window (Figure
10.2).

7. 

Select File → Restart LPD in the Printconf window's menu to restart the line printer daemon.8. 

At this point, the printer should be defined. You can click its name in the Printconf window and
select the tests under the Test menu item to test the configuration. The Print ASCII Test Page item
prints plain ASCII, but there are several other page types that you can test; select the one that best
represents what you intend to print from the new printer. These printouts include tips on fixing minor
problems, should they appear on the printouts. If the printout doesn't appear from this item, then
you've may have selected the wrong printer device file during printer installation or the drivers may
not be loading. (The problem could also be more prosaic, as in a failure to turn on the printer.)

261



To filter PostScript files for non−PostScript printers, most Linux distributions use GNU Ghostscript
instead of Aladdin Ghostscript, which supports more printers than the GNU version. If you find that
Printconf does not support your printer, you may wish to install Aladdin Ghostscript. The magic
filters used by Printconf are taken from the rhs−printfilters package, which supports PostScript and
other common input types.

Configuring Printers in Webmin

Since each Linux distribution seems to have its own proprietary tool to add an entry to the printcap
file and create the printer's spool directory, you might choose to use Webmin to perform these
tasks. Webmin is available in all distributions, so you don't have to deal with several different tools if
your company uses more than one distribution of Linux. (This is quite common in companies that
write software since it is useful to test on each different distribution.)

Start Webmin by pointing your browser to http://localhost:10000/ or https:/localhost:10000/ if
you have configured Webmin to run in SSL mode.

1. 

Select the hardware icon.2. 
Select the Printer Administration icon.3. 
Select Add a New Printer.4. 
Select a Print Destination as appropriate for the printer interface being used.5. 
Select the Printer Driver for the model of printer being added.6. 
Click Create to finish the job.7. 

Printing with Other Distributions

Other Linux distributions, such as Debian, SuSE, and Slackware, use essentially the same printing
process as we've described for Red Hat, but they may use different spooler software and/or
configuration tools. Mandrake users can use the same Printconf utility just described.

Debian

Debian offers a choice between the standard lpd package and LPRng, discussed earlier. There are
several options for configuration tools. APSFilter version 5 is a good choice, since it adds support
for LPRng.

Another very usable option is the Magicfilter package. Magicfilter will ask you a few questions about
your printer and then configure it for you. It is a good option if you're not getting the results you want
with the APSFilter package.

Many Debian users simply edit the printcap file by hand. The man page for printcap clearly lists the
options and what they represent. As long as the format is followed, the entry should work.

SuSE

The printing system on SuSE Linux is based on APSFilter but has some SuSE−specific
enhancements. SuSE's APSFilter will recognize all common file formats (including HTML, if html2ps
is installed). There are three ways to set up printers on SuSE systems:

262



An interactive tool called YaST will let you configure PostScript, DeskJet, and other printers
as supported by Ghostscript drivers. YaST will create /etc/printcap entries for several types
of printers (raw, ASCII, auto, and color) in local, network, Samba, or Novell Netware
configurations. YaST will also create the appropriate spool directories. YaST will add
apsfilterrc files, which allows you to fine−tune things like paper size, paper orientation,
resolution, printer escape sequences, and some Ghostscript settings. Launch YaST by
typing yast at a command prompt.

• 

SuSE's APSFilter package contains a setup script that is a modified version of the original
APSFilter's setup script. To invoke it, run the command lprsetup. The lprsetup program
contains online help and default answers to questions about adding, deleting, or setting up a
line printer on your system. It prompts for data, showing the default answer in brackets [ ].
Pressing the Enter key accepts the default. After you have answered all of the questions,
lprsetup creates the spooling directory, links the output filter, and creates an /etc/printcap
entry for the printer.

• 

You can configure the print queues manually, by editing /etc/printcap in your favorite editor.
If you want to use APSFilter in this way, you'll need to configure the package manually.
Consult the APSFilter documentation for details. This procedure is most likely to be useful if
you don't want to use a magic filter for some reason—say, if you only print PostScript files
and have a PostScript printer.

• 

Slackware

Slackware uses APSFilter to set up printing. You must have the following packages installed:

a1/lpr.tgz
ap1/apsfilt.tgz
ap1/ghostscr.tgz
ap1/gsfonts.tgz

Run the following command as root to begin printer setup:

# /usr/lib/apsfilter/SETUP

Setup is actually quite easy with APSFilter's setup utility. Still, most Slackware users like the
"rawness" of Slackware and prefer not to use GUI−based tools at all. They, like the Debian users
mentioned earlier, prefer to hand−edit the printcap file.

Kernel Support

Printer port support is built largely into the kernel source files. Parallel ports require that several
modules be included. RS−232 serial printing is accomplished with much less fuss and requires no
real printer−specific adaptation when the kernel is configured. USB printing requires the use of a
2.4.x or USB−patched 2.2.x kernel compiled with support for both USB and USB printers, as
described in Chapter 11. Remote printing requires no printer−specific kernel options.

Parallel−Port Printers

If you are unsure whether your kernel has parallel−port printer support built in, look at
/var/log/dmesg to see if a line containing lp0, lp1, or lp2 appears. A 2.2.16 kernel with an HP
DeskJet 690C printer attached might produce the following dmesg lines:

parport0: PC−style at 0x378 [SPP]

263



parport_probe: succeeded
parport0: Printer, HEWLETT−PACKARD DESKJET 690C
lp0: using parport0 (polling).

A kernel earlier than 2.1.33 will not say parport, since this method was not introduced until later, but
you should still see something like lp0 or lp1 in your output. Depending upon the exact kernel
options, the exact printer in use, and whether or not the printer is powered on when the system
boots, you may or may not see any reference to the specific printer model attached to the parallel
port. Another way to check is to cat the /proc/devices file and grep the output for lp. If lp is contained
within this file, printing is enabled in the running kernel. Use this command:

$ cat /proc/devices |grep lp
6 lp

If your kernel has compiled printer support as a module, these tests may not work, because the
printer device won't turn up until you try to print. Therefore, don't be too concerned if you don't see
any evidence of a printer device. Try printing. If it doesn't work, try checking /proc/devices, as just
described. If there's no evidence of a printer device, it's possible that your kernel printer modules
aren't loading for some reason.

The lp Device Driver

Under kernels earlier than 2.1.33, the printing device was /dev/lp0, /dev/lp1, or /dev/lp2, depending
upon which parallel port your printer was connected to. This is a static attachment, so any of these
may be correct on your system. If one doesn't work, try the next. When the lp driver is built into the
kernel, the kernel will accept through LILO an lp= option to set interrupts and I/O addresses.

Syntax:

lp=port0[,irq0[,port1[,irq1[,port2[,irq2]]]]]

Example:

lp=0x3bc,10,0x278,5,0x378,7

This example would set up three PC−style ports, one at 0x3bc with an IRQ of 10, one at 0x278 with
an IRQ of 5, and one at 0x378 using IRQ 7. Some systems will have only one parallel port set up in
this way.

The parport Device

The parport device was added to kernels 2.1.33 and newer to correct several of the problems that
existed in the old lp device driver. The parport device can share the ports between multiple device
drivers and dynamically assign available parallel ports to device numbers rather than simply
equating an I/O address with a specific port number: a printer on the first parallel port might not be
assigned /dev/lp0 using parport. The development of the parport device brought about the capability
to run many new devices via the parallel port, including Zip drives, Backpack CD−ROMs, and
external hard disks. It is possible to share a single parallel port among several devices, and all the
corresponding drivers may safely be compiled into the kernel.

You must have CONFIG_PARPORT and CONFIG_PARPORT_PC set to YES in your kernel
configuration if your parallel port is PC compatible (all IBM−compatibles and some Alpha machines
have PC−style parallel ports). If your printer is not serial, you must have CONFIG_PRINTER set to
YES in your kernel configuration. Use the same tests as listed above to check for printing support.

264



RS−232 Serial Devices

A printer attached to a standard RS−232 serial port requires only that the serial port be enabled and
that the printcap entry be set up correctly. Serial support is almost always built into the kernel by
default to accommodate modems and other serial devices, and these ports support printing
capability as well. Chapter 11 discusses Linux support for RS−232 serial connections.

USB Devices

USB printers require special attention in Linux, because of the need for USB−patched 2.2.x or 2.4.x
kernels. In particular, you need both basic USB support (including support for either the UHCI or
OHCI USB controller, whichever your USB port uses) and support for USB printers. Once this
support is compiled and the appropriate device files are installed, USB printers may be accessed
using the /dev/usblpn device, where n is a number from 0 up. (This file may appear in a subdirectory
of /dev, such as /dev/usb.) Chapter 11 covers USB devices in more detail.

Remote Printing

On a network, a workstation may be configured to print to a printer attached to a different host
machine on the network or to a standalone printer with an internal network interface card (NIC). In
the first case, the host machine might be a Linux or Unix box or a machine running some version of
Microsoft Windows. In the second case, the printer runs its own server software that's functionally
identical to a Linux/Unix or Windows print server.

Linux to Linux

In the case of Linux−to−Linux printing, you'll need to configure printing on both the server (the
machine to which the printer is attached) and the client (the machine that submits a print job). There
are two steps to this overall configuration, beyond basic network setup:

Configure the server to print to the printer it controls. You should test local printing functions
as described earlier in this chapter. You can perform this configuration manually or via a GUI
utility such as Printconf or Webmin.

1. 

Configure the client to print to the network printer hosted by the server, as described earlier
in this chapter. You can perform this configuration manually or via a GUI utility such as
Printconf or Webmin.

2. 

Both of these steps have been covered in the preceding discussion. Once you configure the print
server to print locally, it's automatically configured to accept remote print jobs, at least if you're using
LPRng as delivered with Red Hat 7.3. This makes printer setup very easy, but it's also a potentially
big risk, because it means that any miscreant who wants to can send huge print jobs to your printer.
The older lpd printing system is a bit less promiscuous by default. To accept remote print jobs with
the old lpd, you must enter the names or IP addresses of the computers from which lpd will accept
the jobs in the /etc/hosts.lpd file (or in /etc/hosts.equiv, but this file grants permission to use a range
of additional services, so it's best not to use it in most cases).

To block random Internet systems from using your LPRng print server, you should edit the
/etc/lpd.perms file. This file includes a lengthy set of comments describing the details of its
configuration. To simply block all but local machines, you can use entries that take one of two
forms:

ACCEPT SERVICE=X REMOTEIP=127.0.0.1/255.0.0.0

265



REJECT SERVICE=X NOT REMOTEIP=192.168.98.0/255.255.255.0

or

ACCEPT SERVICE=X REMOTEHOST=localhost
REJECT SERVICE=X NOT REMOTEHOST=*.threeroomco.com

These examples block connections that do not originate from the 192.168.98.0 IP block or from the
threeroomco.com domain, respectively, while still allowing connections from the server itself. You
can do much more with the lpd.perms file than you can with the old−style lpd's hosts.lpd file. For
instance, you can allow or deny access based on the remote user, and you can allow or deny users
or machines access to specific LPRng features. The default lpd.perms file contains many
commented out examples, so it's well worth examining if you want to fine−tune your configuration.

Note Although LPRng leaves your print server open to outsiders' printing on it by default,
its more sophisticated security features make it a more secure printing package if
you configure it properly.

When Windows Is Involved

Things get a bit more complicated when either the local or the destination machine is running some
version of Microsoft Windows. Windows printers use a protocol called the Server Message Block
(SMB), renamed the Common Internet File System (CIFS), to provide shared printing. Trying to get
Windows and Linux computers to share printers using their native tools is like trying to get two
people who don't understand the same language to have a conversation. Fortunately, Linux
includes a package that teaches Linux to "speak" the Windows file and printer sharing language of
SMB/CIFS: Samba.

Samba is such an important tool for mixed networks that it is the subject of a companion volume in
the Craig Hunt Linux Library, Roderick W. Smith's Linux Samba Server Administration (Sybex,
2001). There's a brief introduction to Samba in Chapter 12 of this book. Briefly, Samba is an open
source software suite that provides SMB/CIFS file and print services to clients that might be running
any version of Windows, OS/2, or a number of other OSes. Samba runs on Linux, other versions of
Unix, VMS, and several other OSes. Other sources of information about Samba include an excellent
SMB−HOWTO and  seve ra l  Samba  ma i l i ng  l i s t s .  The  ma in  Samba  Web  page  i s
http://www.samba.org/.

Since we're dealing with printing in this chapter, the next two sections show how to use con3 Samba
to print from a Windows machine to a printer attached to a Linux box and from a Linux machine to a
printer attached to a Windows machine.

Printing from Windows to a Linux Printer

Assuming that you have configured a Linux computer to print to a local printer, you have only to set
up a Samba share to allow the Windows computers on the LAN to print to it. You'll do this in the
smb.conf file that is created when you install Samba. (This file is located in /etc/samba in Red Hat
7.3, but may be in /etc, /etc/samba.d, or elsewhere on other distributions.) Add printing configuration
to your smb.conf as shown in Listing 10.2:

Listing 10.2: A Sample smb.conf File Allowing Networked Windows Computers to Print to a Linux
Printer

[global]

266



workgroup = ARBORETUM
printing = bsd
encrypt passwords = Yes

load printers = Yes
     log file = /var/log/samba−log.%m
     lock directory = /var/lock/samba

[printers]
     comment = All Printers
     security = Server
     path = /var/spool/samba
     browseable = No
     printable = Yes
     public = Yes
     create mode = 0700

Samba configuration involves setting up global options that apply to all shares (in the [global]
section of the smb.conf file) and options for specific shares or share types. Listing 10.2 shows only
one share—the [printers] share. This share is special because it creates a separate printer share for
each printer that's defined in /etc/printcap. This option relies upon the load printers = Yes parameter
in the [global] section. (Alternatively, you can share just some printers by creating share definitions
for each one individually.) Also of critical importance is the workgroup = ARBORETUM global
parameter. This sets the Samba server's NetBIOS workgroup name, which is similar to a domain
name. If this option is set incorrectly, you won't be able to see the Samba server in the Windows
computers' Network Neighborhood browsers. In the case of Listing 10.2, the server is a member of
the ARBORETUM workgroup.

One other critical Samba configuration issue relates to authentication. Unlike Linux−to−Linux
printing, SMB/CIFS printing sends a password between machines to authorize printing. By default,
Samba accepts cleartext (unencrypted) passwords and checks them against the normal Linux login
passwords. Since Windows 95 OSR2 and Windows NT service pack 3, however, Microsoft has
programmed Windows computers to send encrypted passwords by default. Because SMB/CIFS
uses a different password encoding method than does Linux, Samba can't rely on the normal Linux
password database when using encrypted passwords. Therefore, you must create a new password
database using Samba's smbpasswd utility, which allows you to set Samba's encrypted passwords
much as the Linux passwd utility lets you set Linux's login passwords. To use this utility to add a
user, pass it the −a parameter and the username you wish to add (this username must correspond
to an existing Linux user):

# smbpasswd −a someuser
New SMB password:
Retype new SMB password:

The passwords don't echo when you type them. If you've not used the utility before, it will complain
that it can't open the smbpasswd file, but will create a new one despite this error. To use the
encrypted passwords, you must add an encrypt passwords = Yes parameter to the [global] section
of smb.conf, as shown in Listing 10.2.

WarningWindows 9x and Me systems store passwords locally that you send to servers. This can
be a potentially major security problem, particularly if users' Samba and Linux login
passwords are identical. There are many ways to reduce the risk posed by Windows'
storing passwords locally. The least difficult of these is to ensure that the Samba
encrypted passwords don't correspond to normal Linux login passwords. You might also
separate the Samba server from other Linux servers and workstations or use a separate

267



printing−only account on the Linux server for printing (users would have to enter this
password, not their normal Linux login password, to print from Windows).

Printing from Linux to a Windows Printer

To print from Linux workstations on a network to a printer attached to a Windows machine, each
Linux machine needs a printcap entry for that printer. This is fairly easy to create using Red Hat's
Printconf, which has an option for setting up an SMB/Windows 95/NT Printer (see Figure 10.3).
Other spooling packages have similar setup options. Next you must ensure that you have the script
/usr/bin/smbprint, which comes with most Samba packages, including the one that ships with Red
Hat 7.3. The smbprint script intercepts a normal printer queue's process to send the print file
through a utility called smbclient, which can be used to communicate with SMB/CIFS servers. Thus,
if smbprint is called from a print queue's filter, it bypasses part of the normal printing mechanism
and initiates an SMB/CIFS print request. Most smart filter packages know how to handle this task.

In Sum

Much of the complexity of printing derives from the fact that there are so many options
available—there are many different types of printers, as well as differences from one model to
another; Linux provides an assortment of printing utilities; and network printing presents an
assortment of additional options and challenges. Understanding each of these areas and their
interactions can help you create a workable Linux printing system. There's no point in buying an
unsupported printer for use in Linux, for instance. Fortunately, each piece of the Linux printing
puzzle, from physically connecting a printer to configuring a Linux computer as a print server, is
understandable. If you approach the task one step at a time, you can get your Linux system
working, and even serve printers to other computers in the process.

268



Chapter 11: Serial Communications, Terminals, and
Modems

Overview

Throughout much of the history of computing, serial ports have been important hardware devices.
Serial ports allow us to connect two computers together or to connect a computer to another device,
such as a printer or mouse. The general−purpose nature of serial ports has allowed them to be
used for a wide variety of tasks. The downside to serial ports is that they're slow. The traditional
RS−232 serial port on x86 computers is usually capable of a maximum transfer rate of 115,200 bits
per second (bps). A more recent type of serial port, the Universal Serial Bus (USB) is faster, at
12,000,000bps (12Mbps), with an even faster version beginning to emerge. This rate compares to
100Mbps for modern Ethernet devices. All in all, the RS−232 serial port is not as important today as
it once was, but the USB port has become an important interface method for low−speed external
devices. Nonetheless, there are many jobs for which the RS−232 serial port is still well−suited. This
chapter covers those jobs, which include linking "dumb" text terminals to a Linux system, using
modems to connect to other systems over telephone lines, and using printers connected via serial
ports. (Although mice are often connected via the serial port, their configuration and use is
comparatively simple; it is covered in Chapter 13, "The X Window System." Most printers are
connected via parallel ports, and their configuration is covered in Chapter 10, "Printers and the
Spooling Subsystem.") This chapter also covers USB configuration, which is very different from
RS−232 configuration.

Understanding Serial Devices

Before digging into the details of how to use serial ports to accomplish specific goals, it's helpful to
understand precisely what a serial port is and how Linux treats the low−level serial port hardware.
These details dictate what can and cannot be done with a serial port under Linux, and how you
communicate with the serial hardware.

Standard Serial Devices

Most x86 computers come with two built−in RS−232 serial ports. These devices typically use 9−pin
male connectors on the computer, as shown in Figure 11.1, but some serial ports (particularly on
older computers and noncomputer devices) use 25−pin connectors. The connectors on modems,
printers, and other serial devices are usually female.

269



Figure 11.1: Modern x86 motherboards include a wide variety of connectors in standardized
locations.
USB connectors are physically quite different from RS−232 connectors, as you can see in Figure
11.1. Some of the advantages of USB ports over standard RS−232 serial ports are:

Higher speed Standard USB supports speeds of up to 12Mbps, roughly 100 times
as fast as standard RS−232. A new USB version, USB 2.0, is starting to become
available in 2002, and is capable of 480Mbps speeds.

Multi−device support RS−232 ports support just one device per port. USB, by
contrast, allows you to connect multiple devices to a single USB connector, although
you must use a hub to do this job. A hub simply links several USB devices to a single
USB port.

Hot swappable devices You can attach and detach USB devices while the
computer is running. This is risky with RS−232, since a short could conceivably
damage the device or the computer.

As a general rule, RS−232 serial devices are well−supported in Linux. USB support varies from one
device to another, because Linux requires kernel drivers for particular device types. As a general
rule, common USB devices, such as mice, keyboards, and printers, are well−supported, but you
s h o u l d  c h e c k  y o u r  k e r n e l  c o n f i g u r a t i o n  o p t i o n s ,  o r  t h e  L i n u x  U S B  W e b  s i t e
(http://www.linux−usb.org/), for details. Linux support for USB 2.0 is still embryonic, but will no doubt
become usable as USB 2.0 devices become more common. If you're using an old 2.2.x kernel,
you'll need to upgrade or patch it to obtain USB support.

Enabling Serial Support in the Kernel

Whether you use RS−232 or USB, it's necessary that you understand the kernel configuration
options needed to use the devices. You may not need to deal with these options explicitly, because
most distributions ship with appropriate kernel support enabled, at least for common devices and
uses. You can read more about kernel configuration in Chapter 8, "Software Administration."

For RS−232 devices, kernel configuration options lie in the Character Devices kernel configuration
menu (Figure 11.2). Specifically, to use the standard two serial ports, you should select Y or M for
the Standard/Generic (8250/16550 and Compatible UARTs) Serial Support option. You don't need
to select kernel options for specific RS−232 serial devices, such as modems or printers. Details of

270



communicating with specific devices are handled by appropriate user−level programs, such as pppd
or lpd.

Figure 11.2: The Linux Character Devices kernel configuration menu includes the main RS−232
serial devices option.
Configuring Linux's USB support is somewhat more complex, because you need to select several
options in the USB Support kernel configuration menu (Figure 11.3). Specifically, you need to select
one or more options in each of three option classes:

271



Figure 11.3: USB support requires selecting drivers for specific USB devices.
Support for USB This top−level option is required if you want to use any USB
device.

USB controller support There are three classes of low−level USB controllers. The
first two are the Universal Host Controller Interface (UHCI) and the Open Host
Controller Interface (OHCI). The third, the Enhanced Host Controller Interface
(EHCI), is used for USB 2.0. EHCI drivers are not included in the standard kernel as
of 2.4.18, but are available in the 2.5.x development kernels. Select whichever one
your motherboard or plug−in USB card supports. If you don't know which your
system uses, select all of them or check the output of dmesg to see which your
system uses. For UHCI, you have a choice of the main driver or an alternate driver.
In most cases, the main driver works well, but if you have problems with it, try the
alternate driver.

Specific device support You must select drivers for specific classes of USB
devices, and in some cases even for specific models. The bulk of the USB Support
kernel configuration menu is composed of USB device classes, so scan through it to
locate your devices. In some cases, you may also need to select options in other
kernel configuration menus. For example, some USB cameras require you to enable
Video for Linux support in the Character Devices menu, and you must enable input
core support in the Input Core Support menu to use USB keyboards and mice.

Using Serial Device Files

Traditional RS−232 devices use device filenames of the form /dev/ttySn, where n is a number from
0 up. To communicate with a serial device, you (or a program you use) send characters to this
device file. For instance, the following command sends the string ATDT555−4321 to a modem
attached to /dev/ttyS0, causing the modem to dial 555−4321.

272



$ echo "ATDT555−4321" > /dev/ttyS0

Note In the past, the /dev/cuan devices were used as a variant method of accessing serial
ports. Use of /dev/cuan is discouraged today, however, and support for these
devices may disappear in the future, although it's still present up to at least the
2.4.18 kernel.

Because the serial device interprets the characters, there is no need for cross−device
standardization of commands sent over the RS−232 serial port; modems accept different
commands than do printers, which use different commands than mice, and so on. There are,
however, some Linux commands that can affect how the serial interface works. Of particular
importance is the setserial command, which sets the RS−232 port's parameters, such as its speed.
A simplified syntax for this command is as follows:

setserial [−ab] device [parameters] ...

The −a and −b options cause the program to display information on the hardware's settings, such as
the interrupt request (IRQ) used by the port. −a results in a multiline display, and −b produces a less
complete single−line output. You can pass a wide assortment of parameters to the program in order
to change how it configures the port. These are the most important parameters:

port portnum This option sets the I/O port number to portnum. The I/O port is a
hexadecimal number, such as 0x03f8, which indicates where in memory the input to
and output from the serial port occur. Unless you're using very unusual hardware,
you shouldn't need to adjust this setting.

irq irqnum You can tell Linux to use an unusual IRQ number with this parameter. As
with the port parameter, chances are you won't need to use this option.

uart uarttype RS−232 serial ports are controlled by universal asynchronous
receiver/transmitters (UARTs), which come in several varieties. Linux usually detects
the UART type correctly at bootup, but if it gets this detail wrong, you can correct the
matter by using the uart parameter. (An incorrect port type is likely to produce
unreliable serial port operation.) Most modern motherboards use 16550A UARTs, so
uarttype would be 16550A for these boards. Very old hardware may use earlier
UARTs, such as the 16450; and some devices use more recent ones, like the 16650.

baud_base speed This parameter sets the speed of the serial port. The usual value
for speed is 115200, which is the fastest speed in bps that most serial ports support.

These options and parameters just scratch the surface of setserial's capabilities. Read its man page
for more information on esoteric features you can control with the program. This utility is most useful
when you use simple programs and daemons with the serial port. More sophisticated programs and
daemons can set the serial port's speed and other features themselves.

Unlike the RS−232 serial port, there isn't a single device file for each USB port on your computer.
Instead, Linux maps each device to its own device file. The reason for this arrangement is simple:
Using a hub, it's possible to connect more than one USB device to each USB port. Suppose a USB
port hosts a printer, a mouse, and a modem. Each of those devices acquires its own entry in /dev or
/dev/usb, so you can address each device appropriately. Precisely how you handle these devices
varies from one device and program to another. For instance, you would normally reference a USB
mouse in your XFree86 configuration file, as described in Chapter 13, whereas you'd reference a
printer's file in/etc/printcap, as described in Chapter 10. Table 11.1 summarizes some of the more
common USB device files, including their major and minor numbers, which define the interface

273



between the device file and the kernel's drivers. It's important to realize that the device filenames
are largely arbitrary; you can access a device under any filename you like, so long as that filename
identifies a device file created via mknod with the appropriate type, major number, and minor
number, as described shortly. Some USB devices, such as disk devices and speakers, are treated
as if they were non−USB devices, such as SCSI disks and ordinary sound cards, respectively.
Others use new major and minor numbers, and usually new device filenames.

Table 11.1: Methods of Accessing USB Devices in the 2.4.x Kernel

Device Device Filename Type Major Number Minor Number
Disk devices /dev/sdn Block 8 0–240
Modem /dev/usb/acm/n Character 166 0 up
Mouse /dev/usb/mousen or

/dev/input/mousen
Character 180 or 13,

respectively
16 and up or 32
and up,
respectively

Printer /dev/usb/lpn Character 180 0 and up
Scanner /dev/usb/scannern Character 180 48–63
Speakers Normal audio devices,

such as/dev/audio and
/dev/mixer

Character Varies Varies

USB−to−parallel
adapter

/dev/usb/lpn Character 180 0 and up

USB−to−RS−232
adapter

/dev/usb/ttyUSBn Character 188 0 and up

The /dev/usb directory is often implemented using a special USB device filesystem, which attempts
to create device files dynamically for supported devices. If your computer doesn't use this
filesystem, you may need to create a device file to access a USB device. You may do so with the
mknod command, which uses the following syntax:

mknod filename type major minor

In this command, filename is the device filename, type is either b for block devices or c for character
devices, and major and minor are the major and minor numbers listed in Table 11.1. These are
sometimes documented in files in the /usr/src/linux/Documentation/usb directory, but documentation
on this point is still spotty in 2002.

Unusual Serial Devices

Some serial devices are rare and nonstandard implementations of RS−232 ports. The problem with
the standard implementation of RS−232 serial devices is that it's difficult to add ports beyond the
two included on most motherboards. Adding third and fourth ports presents only minor difficulties.
Most add−on ports come configured to "share" interrupts with the first two ports, but it's necessary
to reconfigure these boards to use unique IRQs because Linux doesn't normally work well with this
arrangement.

NoteInternal modems traditionally include serial port hardware along with modem hardware.
Adding such a modem works just like adding a serial port. It's sometimes helpful to disable an
unused motherboard serial port before adding an internal modem, so that the internal modem
can take over the identity of one of the first two regular ports. This can normally be done in the

274



computer's BIOS setup screens. Many modern internal modems don't have serial port
hardware. These devices are often called WinModems, controllerless modems, or software
modems (although the first term technically applies only to 3Com products). There are Linux
drivers for a few such devices—check http://www.linmodems.org/ for details. Many don't work
under Linux, however, and so should be avoided.

The problem with using a unique IRQ for each serial port is that the x86 architecture allows for only
15 interrupts, and some are required for other devices, so it's not possible to assign unique IRQs to
more than a handful of serial ports. To overcome this problem, some companies have developed
multiport serial cards, which place several RS−232 ports on one card and one IRQ. Because these
devices use nonstandard hardware, they require their own unique drivers. If you have need of such
a device, check the Linux kernel configuration area for character devices (Figure 11.2). Depending
upon the type of device, you may need to select the Extended Dumb Serial Driver Options item or
Nonstandard Serial Port Support. In either case, you must select appropriate options for your
specific board. You should study these options before buying the hardware, so you're sure you get
something supported in Linux. Another option if you need many RS−232 serial ports is to use
USB−to−RS−232 adapters, which can provide many RS−232 ports on a single IRQ.

Configuring Terminals

One of the most common uses for an RS−232 serial port on a multiuser system is as a port for a
terminal. A terminal is a device or computer that's used as a means of controlling another computer.
Because most x86 computers have two RS−232 ports plus their normal keyboard and monitor, it's
possible for three people to simultaneously use a single computer if two people access the
computer via terminals. (Of course, you can add more serial ports or use networking connections to
further increase that number, if you like.) Although most Linux distributions don't come
preconfigured to use terminals, it's not difficult to add this capability to a system.

Note Terminal access is almost always performed through RS−232 ports. You can use a
USB−to−RS−232 adapter, however, to connect RS−232 terminals to a Linux computer via the
computer's USB ports.

Understanding Terminals

To understand terminals, it's helpful to think back to the days when Unix systems came in boxes the
size of a dishwasher, if not larger. In those days, dozens or hundreds of users accessed a Unix
system through dumb terminals—devices that roughly resembled the first−generation iMac
computers, at least to the naked eye. Inside these dumb terminals was extremely simple circuitry,
no hard disk, and only enough memory to handle the local display and a few extra lines of text. With
virtually no processing capability, they were input/output devices, not computers. These devices
could take what a user typed at the keyboard and echo it out a serial port, and they could display
what was received from the serial port on the screen. These capabilities were very useful when a
"real" computer cost millions of dollars and had to be used by many people. Such terminals were
the primary means of accessing Unix systems through the 1980s. They were common in corporate
and educational settings and are still in use today. (Your local library may use dumb terminals to
provide patrons with access to its online book catalog, for example.)

NoteDumb terminals are text−only devices; they cannot be used to run X−based programs such as
StarOffice or the GIMP. There is, however, another variety of terminal that can be used with X
programs: an X terminal. X terminals usually interface through a network port, not a serial
p o r t .  T h e  N C D  X  T e r m i n a l  m i n i − H O W T O  d o c u m e n t

275



(http://www.tldp.org/HOWTO/mini/NCD−X−Terminal.html) provides information on these
devices.

Because of Linux's Unix heritage, Linux includes the software necessary to support dumb terminals;
using it is a matter of changing a few default configurations. Once this is done, you can plug in a
dumb terminal and use it. Why would you want to do this? For the same reasons large
organizations used (and still use) dumb terminals, such as stretching resources and providing
access to a computer to more people than would otherwise be possible. If you don't need to run X
programs, a dumb terminal can provide perfectly adequate access to a Linux computer.

Instead of a dumb terminal, you can use an outmoded computer. If you have an old 8088−based
PC gathering dust in a closet, for instance, you can wipe it off, set it up, link it to a Linux computer,
and use a simple DOS terminal program to make it work like a dumb terminal. Similarly, specialized
devices like palmtop computers often come with terminal programs, so you can access a Linux
computer from such devices.

TipOn rare occasions, X can lock up, leaving Linux unresponsive. Technically, Linux hasn't
crashed, and it's usually possible to recover from such problems—if you have some way in
other than the system's keyboard. Such a way in is often remote network access, but this isn't
always an option. Using dumb terminal access, even from a palmtop computer, can let you kill
or reconfigure X, thus recovering control of the system without using the Reset switch.

When you use another computer as a terminal, you must normally link the two computers through a
null modem cable. These cables link one computer to another, and they're wired differently than the
cables that link a computer to a modem. Most computer stores sell null modem cables.

If you want to use one Linux computer as a terminal for another, you can do so, although it's more
common to use Ethernet hardware and the Telnet or SSH program to log in to one computer from
another. Linking two Linux computers via serial ports requires you to use a Linux terminal program
on one computer, as described later in this chapter, in "Calling a Remote Text−Mode System."

Note Linux uses virtual terminals to provide text−mode access to a Linux system from its main
keyboard and monitor (which are collectively referred to as the console). To configure Linux to
use "real" terminals, you extend this configuration to support serial devices as well as the
console, as described shortly.

Configuring a getty Program

In most cases, the goal when using a terminal (either dumb terminal hardware or a terminal
emulator) is to have the terminal display a Linux login: prompt when the user starts the terminal.
Linux normally presents these prompts using a program called getty, or some variant of that, such
as mingetty, mgetty, or agetty.

Note The original getty program goes by that name. Various replacements use similar names and
do similar things. The word getty can therefore refer to either the original getty program or the
class of similar programs that fill basically the same role. For the most part, the word is used
in the latter sense in this chapter.

Linux runs getty programs from the /etc/inittab file. In Red Hat 7.3, the default /etc/inittab file
contains the following lines:

# Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1

276



2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Each line in the /etc/inittab file contains colon−delimited entries that tell the system to run specific
types of services. The preceding entries tell Linux to run the /sbin/mingetty program for each of the
first six virtual consoles in run levels 2 through 5. The result of these entries is that you can type
Alt+1 through Alt+6 (in combination with Ctrl, if you're currently running X) to shift to any of six
virtual consoles. You can log in to any of these to run programs, even under different usernames.

To expand the default configuration to support terminals run over a serial port, it's necessary to add
some further entries to /etc/inittab. To do so, follow these steps:

Insta l l  the mget ty  package.  On a Red Hat  7 .3 system, the package name is
mgetty−1.1.28−3.i386.rpm, and it's on the second CD−ROM.

Note Different distributions use different getty programs by default. Red Hat's
mingetty can't handle serial port traffic, but some default getty programs can
handle the serial port, so this step may not be necessary with all
distributions. If you use something other than mgetty, however, some of the
following details may differ; consult your getty program's documentation for
details.

1. 

To add support for a terminal attached to /dev/ttyS0, add the following line to /etc/inittab just
after the existing mingetty lines:

S0:2345:respawn:/sbin/mgetty −s 57600 −r /dev/ttyS0

2. 

Type telinit Q to tell Linux to reexamine the /etc/inittab file and make appropriate
changes—namely, to run mgetty.

3. 

You may need to make adjustments to step 2 for your particular needs. Specifically, step 2 runs the
terminal at 57,600bps (the −s 57600 parameter) and uses /dev/ttyS0. Using higher speeds may
make sense with some modems or direct links, but some terminals only support lower speeds. The
−r parameter indicates that the connection is direct—that is, not via a modem. Modem logins, as
described shortly, require a few changes to this configuration.

Once logged on using a terminal, the user can run Linux text−mode programs, including text−based
administrative tools (assuming the user has sufficient privileges, of course). Some programs,
however, rely on text−positioning protocols. These protocols were originally used with particular
models of dumb terminals, and so are frequently named after those terminals. Examples include
VT−100 and VT−220. In many cases, mgetty can determine the type of terminal that's connected. In
other cases, you may need to do this manually by setting the TERM environment variable. For
instance, if you're using a VT−100 terminal, you could type the following after logging in:

$ export TERM=vt100

If you find that your display does strange things, type echo $TERM to see what the system thinks
the terminal type is, and adjust it as appropriate. Some dumb terminals emulate others, and most
terminal programs emulate one or more popular dumb terminals.

Administrator's Logbook: Enabling Serial Port Logins

277



System: E12345678

Action: Added support for logins from /dev/ttyS0 via mgetty. Used 57,600bps port speed and mgetty
package.

File modified: /etc/inittab

Using a Serial−Port Console

Terminals can be very convenient for accessing a Linux system in certain circumstances, but they
do have a major limitation: they're useful only after the system has completely booted. There are
situations in which you may want to run a computer without a monitor, as when you place a server
in some out−of−the−way location. If you do this, you won't be able to see the computer's boot−time
messages or interact with the system when console maintenance is required (as when fsck
encounters a problem when rebooting after a crash). Moving a monitor to such an isolated computer
and squatting in front of it to perform maintenance can be a pain (sometimes literally!), so Linux
provides a solution: a serial−port console. In this arrangement, Linux uses the serial port for all
console operations. You can then run a null modem cable to some other computer and use a
terminal program on that computer whenever you need to perform console operations on the
isolated system.

In order to use a serial−port console, you must do three things:

Select the Support for Console on Serial Port option in the Character Devices Linux kernel
configuration menu (see Figure 11.2).

Note To select this option, you must compile Linux's standard serial support into the kernel
by selecting Y for Standard/Generic (8250/16550 and Compatible UARTs) Serial
Support. If you compile the standard serial support as a module, you will not be able to
add serial−port console support.

1. 

Recompile the Linux kernel with this new option enabled.2. 
Start Linux while passing it the parameter console=ttyS0 (making an appropriate substitution
for the serial port you use). For example, on a system that uses LILO, the usual way to do
this is to add a line to your /etc/lilo.conf entry for a kernel and type lilo to reinstall LILO. The
line reads:

append="console=ttyS0"

3. 

Assuming the new kernel and /etc/lilo.conf entries are the default, Linux uses the specified serial
port as its console. You can therefore put the system into single−user mode or recover after a
system crash or power outage from a dumb terminal or another computer running a terminal
program—even another Linux system. This access does not, however, extend as far as letting you
select the OS to boot using LILO or modifying your computer's CMOS BIOS settings; these settings
rely upon the BIOS, not Linux, for input, and so cannot be redirected by Linux. Doing so requires
special hardware, such as PC Weasel (http://www.realweasel.com/), which works like a video card
from the computer's point of view but converts video data into serial output.

Warning Some Linux distributions, including Red Hat, use specially formatted text to
display startup messages in color. Some terminal programs may misinterpret
these codes in various unhelpful ways, as in a request to begin a file transfer.

278



For this reason, you're best off using a very minimal terminal program, or
disabling terminal program features like server−requested file transfers.

Configuring Modems

One of the most common RS−232 serial devices is the telephone modem. This word is an acronym
for modulator−demodulator, because a modem functions as a way to convert digital data to analog
form (that is, modulate it) and reverse the process (demodulate the data).

Most telephone modems are RS−232 devices, but there are two major exceptions to this rule:

Internal software modems—These devices, mentioned earlier, have no serial port circuitry. A
few have Linux drivers available (check http://www.linmodems.org/ for details), but many
don't. It's usually best to avoid software modems for use in Linux.

• 

USB modems—Modems that interface through the USB port are becoming popular. If a USB
modem uses the Communication Device Class Abstract Control Model (CDC−ACM)
protocol, it should work with the standard USB support. Some inexpensive USB modems
don't use the CDC−ACM protocol, though. Drivers for some of these are rumored to be in
development.

• 

Note Internet access provided by digital subscriber line (DSL) and cable TV
systems is also often referred to as modem−based. Although these devices
do modulate and demodulate data, their use is very different from what's
described in this section. Cable and DSL modems are more akin to Ethernet
routers and bridges, so Chapter 12, "TCP/IP Linux Networking," is relevant
to configuring these devices. Some DSL and cable modems interface via the
USB port. These devices require special Linux drivers, which are mostly
nonexistent. Consult the Linux USB Web site, http://www.linux−usb.org/, for
the latest information.

Some internal modems—particularly older models—use a serial port in conjunction with
conventional modem circuitry. These devices function just like ordinary external modems, which
plug into an RS−232 port. No matter what interface the device uses, you can configure a modem in
many ways. The configuration details differ depending upon who initiates a connection, your
computer or a remote computer. When one of your users initiates a connection, you must configure
the system to perform dial−out access. In order to support remote users calling your system, you
must configure your system to accept dial−in access of one form or another.

Dial−out Modem Uses

Small Linux systems, such as desktop workstations, often require dial−out access. The user of such
a system may need to contact another via a modem to check e−mail or perform other simple
text−based tasks. Moving up in complexity, the modem can be used to initiate a Point−to−Point
Protocol (PPP) connection in order to allow Web browsing, FTP transfers, and so on. Finally, it's
possible to send faxes from a Linux computer using a modem. These features are generally most
desirable for single−user workstations, but sometimes they're helpful even on multiuser systems.
This is particularly true of sending faxes; you can configure a shared printer queue (see Chapters
10 and 12) to use a fax modem rather than a printer, thus providing outgoing fax services to an
entire network of computers.

279



Calling a Remote Text−Mode System

One of the simplest types of outgoing modem connection is a text−based link to another computer.
The idea behind such a link is similar to that of using a serial port along with a dumb terminal or a
computer running a terminal program. The difference is that a pair of modems and the telephone
network sit between the two computers. In such a setup, the dial−out computer ordinarily functions
as the terminal; the dial−in system runs a getty program and receives the call, as described shortly,
in "Accepting Text−Mode Logins."

Using modems in text mode is now much less common than it was before the rise of the Internet
and PPP connections. It can still be a good way to handle simple access needs, however. Further,
some companies still operate bulletin−board systems (BBSes), which provide product information,
file downloads, and discussion forums for those without Internet access.

To call a remote text−based system, you must use a terminal program. Two popular terminal
programs on Linux are the text−based minicom and the X−based Seyon (shown in Figure 11.4).
Details of how to use these programs differ, but the basic principles are the same:

Figure 11.4: The Seyon terminal emulator lets you use Linux as if it were a dumb terminal.

Before you run a program, you may need to create a symbolic link so that /dev/modem
points to the device file on which your modem resides (such as /dev/ttyS0). Alternatively,

• 

280



you can configure the program to use the desired device file directly—for instance, by
clicking Set in the Seyon Command Center window, clicking Port, and entering the desired
device filename.

Note The user who makes a connection must have permission to both read and
write the modem's device file. Typically, these files belong to a special group
and have 664 or 660 permissions, so all members of that group can access
the modem. You can add any users who should have modem access to the
group. Use the ls −l command on the modem device for your system to find
out how it's configured, and make any necessary changes to the device's
permissions or your group configuration.

When you run the program, you may need to adjust the serial port's parameters—most
importantly, the port speed. In Seyon, you can do this by clicking Set, then Baud, and then
the button corresponding to your desired speed. When using a modern 56Kbps modem, a
port speed of 115Kbps is appropriate.

• 

To dial a number, type ATDT followed by the number, such as ATDT555−1234 to dial
555−1234. AT is the standard modem code for attention, and signals the modem that you're
about to give a command. D stands for dial, and T refers to touch−tone dialing. (If your
phone system doesn't support touch−tone dialing, use ATDP to dial using rotary pulses.)

• 

If you dial a number on a regular basis, you can add it to a dialing directory. In Seyon, you
can see preconfigured numbers by clicking the Dial button. You can edit these entries by
clicking Edit in the Dialing Directory window, which produces a simple text editor showing
the configuration file. You can dial a number by selecting it in the Dialing Directory window
and clicking Go. This action sends the appropriate AT commands to dial the number.

• 

When you're done using the program, hang up the modem by logging out of the remote
system, turning off the modem, or picking an appropriate option in the program, such as the
Hangup button in Seyon's Command Center window.

• 

Seyon stores configuration information in the ~/.seyon directory, so every user may have
customized settings. minicom requires that root run it with the −s parameter to create a
configuration file called /etc/minirc.dfl, after which a user can create a custom configuration called
~/.minirc.dfl by changing defaults established by root.

Once you've connected to a remote system using a terminal program, you can use that system
according to whatever rules it uses. These rules vary substantially from one system to another. For
instance, if you connect to a Linux computer, you can typically use Linux text−mode commands and
utilities; but BBSes often use custom menu−based environments in which you type letters or digits
to move around the system.

Making a PPP Connection

Today, establishing a PPP link is the most common use for a dial−out modem. PPP allows you to tie
a system to the Internet using full TCP/IP networking features. A PPP−linked system can browse
the Web, transfer files via FTP, send and receive e−mail, and so on. Because PPP links are usually
transitory and modem links are slow by modern Internet standards, it's uncommon to find servers
running on PPP−connected computers. Some Internet service providers (ISPs) do offer accounts
that can be used constantly; however, it's usually less expensive to acquire faster service through a
cable modem or DSL for always−on connections.

You can initiate a PPP connection using either text−mode dialing scripts or a GUI configuration tool.
GUI tools are popular and easy to use, but in some cases a dialing script is more appropriate. For
instance, you can call a script as part of an automated routine to check your e−mail every hour.

281



Whichever method you use, you must first test that your modem and modem device file work
correctly.

Testing Basic Connectivity

The first step in linking a computer to the Internet via PPP is to acquire an account from an ISP. (If
you want to link two computers that you control, such as an Internet−connected server at work and
a home system, check "Accepting PPP Connections" later in this chapter for information on setting
up a system to function as a PPP server.) Fortunately, ISPs are extremely common. You can find
listings for them in your local telephone directory, probably under "Internet Services" or some
variant of that. If you have Internet access through some other means, such as a work connection
or even public access at a library or the like, you can consult http://www.thelist.com/ for pointers to
ISPs.

Before you go further in configuring PPP access, follow the instructions in "Calling a Remote
Text−Mode System" to check that the modem and device files work correctly. You can call your
ISP's dial−in number with Seyon or minicom to check basic modem functionality. Depending upon
how your ISP's system is configured, you may see a login: prompt or gibberish when you connect.
The main test is that you can get your own modem to dial; if this works, then you can be sure you
have no problems relating to your own modem or modem device file permissions.

Connecting via PPP Scripts

Most ISPs today use the PAP or CHAP authentication protocols. These protocols allow you to
identify yourself to the ISP in an automated fashion. In Linux, you must configure a file, called
/etc/ppp/pap−secrets or /etc/ppp/chap−secrets, to support these authentication methods. Both files
use the same format. Each line contains information for one account and takes this form:

client   server   secret   IP_address

Tip If you're not sure which system your ISP uses, you can create one file and use a hard or
symbo l i c  l i nk  to  make  i t  access ib le  under  bo th  names .  For  i ns tance ,  c rea te
/etc/ppp/pap−secrets and then type ln −s /etc/ppp/pap−secrets /etc/ppp/chap−secrets.

The meanings of each element are:

client  The username on the ISP's system.

server  The name of the ISP's server. This value is normally *, which means Linux
accepts any server (because the ISP may change its server's name without notice).

secret  The password to the ISP's system.

IP_address  The numeric IP address or addresses that Linux will accept. This value
is normally blank, meaning that the system accepts any IP address.

As an example, the following file can be used to log on to an ISP using the username agb and the
password comehere:

agb  *  comehere

Warning The PPP secrets file, no matter what its name, is extremely sensitive, because it contains
your ISP username and password in an unencrypted form. You should ensure that it's
readable only by root. You should also use a different password on your ISP than you use

282



on any other system, so that if this file is compromised, it can't be used to gain access to
other systems.

To initiate a PPP connection using command−line tools, you must have appropriate PPP scripts.
Sample scripts are available with the PPP package for most distributions. In Red Hat 7.3, these
scripts are in the /usr/share/doc/ppp−2.4.1/scripts directory. Their names are ppp−on,
ppp−on−dialer, and ppp−off. The first two are responsible for initiating a PPP connection, and the
third breaks a PPP link. You should copy all three scripts to /etc/ppp or to a location on your path,
such as /usr/local/bin. You must then modify the ppp−on and ppp−on−dialer scripts to suit your
configuration. In particular:

In ppp−on, locate the lines that begin TELEPHONE=, ACCOUNT=, and PASSWORD=, and
modify them so that they're appropriate for your ISP and account. (The PASSWORD
variable may not be required if you use PAP or CHAP, but should contain a dummy variable
in that case.)

• 

Check that the DIALER_SCRIPT variable in ppp−on points to the correct location of
ppp−on−dialer. The default location is /etc/ppp.

• 

Check the call to pppd in the last lines of ppp−on. (pppd is the tool that handles the PPP
negotiations; the scripts merely provide it with the information it needs to do its job.) Most of
the parameters to this call are quite cryptic, but you should at least be able to confirm that it's
using the correct modem device filename and speed (115200 is appropriate in most cases,
but the default is 38400).

• 

Check the ppp−on−dialer script. This script includes a "chat" sequence—a series of strings
the program expects to see from the modem or remote system in one column, and a series
of responses in another column. You may need to log on using Seyon or minicom and
capture to disk the prompts your ISP uses to ask for your username and password, and
modify the last two lines of the script in order to make it work. Alternatively, you may need to
comment out the last two lines by preceding them with pound signs (#) and remove the
backslash (\) from the CONNECT line if your ISP uses PAP or CHAP.

• 

Note The chat program expects a single line; its input is only formatted in columns in
ppp−on−dialer for the convenience of humans. The backslashes ending most lines
signify line continuations, so that chat interprets multiple input lines as a single line.
Only the final line should lack a backslash.

When you're done making these changes, type ppp−on (preceding it with a complete path, if
necessary) as root to test the connection. If all goes well, your system should dial the modem, link
up, and give you Internet access. If this fails to occur, check the last few lines of /var/log/messages
with a command such as tail −n 20 /var/log/messages. There should be some sort of error
messages, which may help you to diagnose the problem.

WarningDebugging text−mode PPP connections sometimes bears an uncanny resemblance to
voodoo. The problem is that there are many minor variant implementations of PPP, both
on the ISP side and on the Linux side. Some combinations are incompatible or require
unusual pppd parameters. You can read the pppd man pages and try pppd parameters in
the ppp−on script if you have problems. You may also be able to find help on your ISP's
Web site, if you have some alternate means of accessing it.

Many ISPs send domain name system (DNS) server information to clients during PPP
authentication. If yours doesn't, you'll need to enter this information into your /etc/resolv.conf file.
This file should contain one to three lines listing DNS server addresses, as provided by your ISP.
For instance:

nameserver 192.168.1.1

283



If your PPP configuration doesn't set this information automatically and you don't set it manually,
you'll be able to access sites on the Internet by numeric IP address (such as 216.224.70.176), but
not by names (such as http://www.sybex.com/). You only need to configure DNS information once,
not once per connection.

Administrator's Logbook: PPP Dial−out Scripts

System: E12345678

Action: Added PPP dial−out functionality to Bob & Sally's Family ISP.

Files Added/Modified: ppp−on, ppp−on−dialer, ppp−off, and pap−secrets, all in/etc/ppp.

Connecting Using a GUI Utility

Because of the difficulties associated with establishing a PPP connection using scripts, many users
prefer to use a GUI front−end. These tools use the same underlying pppd program as do
conventional scripts, but their point−and−click interface makes it easier to enter information on your
ISP and account. It's generally possible to dispense with chat scripts when using GUI utilities, which
further lessens the possibility of error.

All systems that use KDE ship with a GUI utility called KPPP (shown in Figure 11.5). You can use
KPPP even if you don't use KDE. Alternatively, you can use a GUI dialer that's not associated with a
specific environment, such as X−ISP (http://xisp.hellug.gr/). Most GUI dialers function in basically
the same way, although some details differ. To use KPPP, follow these steps:

Figure 11.5: KPPP allows you to enter PPP account information and connect to an ISP using a GUI
interface.

Launch KPPP by typing kppp in a terminal window or by launching it from KDE's K menu, if
you're running KDE. The first time you launch the program, it will have no ISP entries in the

1. 

284



Connect To field (Figure 11.5 shows KPPP configured to use an ISP).
Click Setup to enter an ISP's information. The result is the KPPP Configuration dialog box
shown in Figure 11.6, but with no accounts defined.

Figure 11.6: You can adjust KPPP's settings from the Configuration dialog box.

2. 

Click New to create a new account. KPPP asks if you want to use a wizard or do a
dialog−based configuration. The former is quicker, but your country must be listed in the
program. The United States has no entry, so this procedure assumes you choose a
dialog−based configuration. KPPP then displays the New Account dialog box shown in
Figure 11.7.

3. 

285



Figure 11.7: The New Account dialog box allows you to enter critical information provided by
your ISP.
Enter a name in the Connection Name field. You can use any name you like; this entry is
used to help you identify an account if you have several.

4. 

Click Add to add a telephone number. KPPP displays a small dialog box in which you enter
a telephone number.

5. 

In the New Account dialog box, select the authentication method your ISP uses. In most
cases, you can leave this set to its default of PAP.

6. 

Click through the remaining tabs on the New Account dialog box and enter any information
provided by your ISP. The information that's most likely to need setting is the DNS server
information. Select the Manual option, enter an IP address in the DNS IP Address field, and
click Add. Repeat this process if your ISP provides two DNS server addresses. In some
cases, you may need to create a login script, similar to the one described for script−based
PPP dialups. It's often not necessary to configure a DNS address, because this information
may be transferred as part of the PPP negotiation.

7. 

Click OK in the New Account dialog box.8. 
In the Configuration window, click the Device tab. Check that the Modem Device is set
appropriately, and set the Connection Speed to 115,200. (You may want to use a lower
speed if your modem is particularly slow. In general, you should use a connect speed of at
least twice the modem's official speed, because modems support compression technologies
that increase their effective speed when handling uncompressed data.)

9. 

286



Check the remaining tabs in the Configuration window. You may want to adjust a setting
such as the modem's volume. Many additional settings are useful if you encounter problems
making a connection or if you're familiar with the program, your modem, or PPP connections
generally and want to enable an advanced option.

10. 

Click OK in the Configuration dialog box.11. 
In the main KPPP window (Figure 11.5), enter your ISP username in the Login ID field and
your password in the Password field. Note that these are your username and password on
the ISP, not on the local system.

12. 

The first time you connect or if you encounter problems, it's often helpful to check the Show
Log Window item. This results in a window that displays what KPPP sends to the modem
and receives back in response; it can be very helpful in diagnosing connection problems.

13. 

Click Connect to initiate a connection. If all goes well, KPPP displays a Connecting To
window that shows the connection status. When a connection is made, another window
appears showing the time the system's been connected. You can click the Details button to
see assorted statistics on the connection or the Disconnect button to end a connection.

14. 

Just as with script−based PPP connections, it's not uncommon to run into problems with a
GUI−based PPP tool. A particular ISP may require an unusual set of PPP options, or it may use an
odd PPP implementation that cannot be made to work well with Linux. If you encounter problems,
your best bet is to use the KPPP menus to experiment with alternate settings. You should also try
using a terminal program to log on to the ISP, in order to see if the ISP uses any peculiar login
prompts, which might best be handled through KPPP's scripting features (step 7).

Sending Faxes

All modern modems can be used as fax machines. Sending a fax from a computer results in an
exceptionally clear fax at the receiving end because the output was generated digitally, rather than
scanned from an original (unless of course you use a scanner to create a digital image to be faxed).
The re  a re  seve ra l  f ax  packages  ava i l ab le  f o r  L i nux ,  i nc lud ing  mge t t y+send fax
(http://alpha.greenie.net/mgetty/) and HylaFAX (http://www.hylafax.org/). The mgetty+sendfax
package is a variant of mgetty, described earlier. This program comes with most Linux distributions.
On Red Hat 7.3, the appropriate RPM package is called mgetty−sendfax−1.1.28−3.i386.rpm, and is
on the second CD−ROM. You should install it and the regular mgetty package, upon which
mgetty+sendfax depends.

In order to use mgetty+sendfax, you must configure it as follows:

Locate and install mgetty+sendfax. It's usually called mgetty+sendfax, mgetty−sendfax, or
mgetty, depending upon your distribution.

1. 

Configure mgetty+sendfax. Most distributions place mgetty+sendfax's configuration files in
/etc/mgetty+sendfax. You should adjust at least four files:

fax.allow This file contains a list of users who are allowed to send faxes. Place one
username per line in this file.

faxheader This file contains the header information for outgoing faxes. You should adjust it
to list your fax number.

sendfax.config This file contains miscellaneous fax configuration information. Most of the
items in this file are well−commented. Change the fax−id item to your fax number. The
fax−devices item is also critically important. It should list your fax device filename (without
the leading /dev/), as in ttyS1 or modem.

2. 

287



faxrunq.config This file contains additional miscellaneous fax configuration information. At
a minimum, you should set the fax−devices item to point to your fax device filename, the
same as you did on the same line in sendfax.config.
Launch faxrunqd. This is a daemon that watches for faxes to appear in the fax queue
directory. Installing the mgetty+sendfax package normally creates this directory, usually at
/var/spool/fax. To use your system to send faxes on a regular basis, you should configure it
to run faxrunqd at system startup, say by adding it to /etc/rc.d/rc.local or a similar startup file.
When you do, be sure to include an ampersand (&) on the startup line, because faxrunqd
does not normally start up in the background.

3. 

When you've finished configuring mgetty+sendfax, you can send a fax with the faxspool command.
The syntax of this command is:

faxspool [options] phone−number file [file...]

Options include −n (to set normal resolution, as opposed to the default of fine), −C program (to call
the specified program to generate a cover page), and −t hh:mm (to send the fax at the specified
hour and minute). The phone number is the number to which the fax is to be sent. faxspool
recognizes several file types, including .ps (PostScript), .t (ASCII text), .dvi (TeX DVI output), and
.g3 (preformatted fax G3 files). The program uses the filename extension to identify the file type, so
it's imperative that the filename extension match what faxspool expects for the file type.

It's possible, but somewhat tricky, to implement a print queue that sends output via a fax modem.
One package that can help in this respect is GFax (http://www.gnome.org/gnome−office/gfax.shtml).
This program sets up a print queue that, when used, displays an X−based dialog box in which you
can enter the destination fax number. One utility that allows Windows computers to send faxes via a
Linux server that runs Samba is Respond (http://www.boerde.de/~horstf/). This program works
much like GFax, but on Windows clients. Both programs rely upon an underlying fax−sending
mechanism, such as mgetty+sendfax.

Dial−in Modem Uses

In a dial−in configuration, you set up your modem to accept incoming calls. Typically, the modem
either reports to the computer that it's detected a ring and the computer then commands the modem
to answer the call, or the modem answers the call automatically and then reports to the computer
that it's received a call. In either case, you must configure Linux to accept the call, and perhaps to
process the incoming data in different ways depending upon what type of call it is.

Accepting Text−Mode Logins

One of the simplest cases is that of a text−mode login. Suppose you want to set up a system so that
employees can call the computer from home to check their e−mail using text−mode programs like
pine or mutt. The configuration for such a system can be very similar to that for a terminal,
described earlier. In that configuration, it was necessary to add a line to /etc/inittab to link a serial
port to a getty program, so that the getty program could process input from a dumb terminal. The
only conceptual difference between that situation and a dial−in modem is that the modem (a pair of
them, actually, but the Linux system deals directly with only one) sits between the terminal and the
Linux computer. You should follow the steps outlined in "Configuring a getty Program" to set up a
modem for dial−in text−mode access. The only difference is the modification to /etc/inittab in step 2
of that procedure:

S0:2345:respawn:/sbin/mgetty −s 57600 /dev/ttyS0

288



This line differs from the one presented earlier only in the absence of the −r parameter. The mgetty
program was designed for use with modems (hence the m in mgetty), so the −r parameter disables
some normal mgetty functionality. Specifically, mgetty normally sends command codes to the
modem to prepare it to receive calls, and mgetty responds to a modem's connect messages by
running the Linux login program on the serial port. Removing the −r parameter from the /etc/inittab
line re−enables the use of modem configuration commands.

Administrator's Logbook: Accepting Remote Logins

System: E12345678

Action: Configured system to accept remote logins via /dev/ttyS1, using 57,600bps port speed and
mgetty.

File modified: /etc/inittab

Accepting PPP Connections

It's sometimes desirable to configure a Linux system to accept PPP logins. So configured, an
Internet−enabled Linux computer can function as a gateway between a remote computer running
any of several operating systems and the Internet. This setup can be convenient if you have a
system at work with always−on Internet access and a modem, and you want to provide yourself or
your employees with Internet access at home or when you or they are on the road. Many ISPs use
Linux systems running PPP servers to handle dozens, hundreds, or more users.

Note56Kbps modems operate with a speed asymmetry—upload speeds are slower than are
download speeds. This state of affairs exists because the high upload speeds require that one
system (the ISP's computer in a normal configuration) have a special connection to the
telephone network. Unless you acquire such a connection, your dial−in PPP system will be
limited to 33.6Kbps speeds, even if both sides use 56Kbps modems.

There are many ways to accept PPP connections. The method described here is comparatively
simple to set up, but it requires that the calling system use a connection script or manually enter
authentication information. No matter how you do it, there are several configuration features you
must set. In essence, a PPP link requires that the Linux computer function as a router between the
dial−in systems and the rest of the network. Therefore, these systems require router support in the
Linux kernel (which is standard in most Linux distributions, including Red Hat 7.3). You must also be
able to assign an IP address to the dial−in systems. Normally, this is done on a static basis
according to the serial port, as you'll shortly see.

To configure a Linux system as a PPP server, follow these steps:

Configure the computer to accept a remote login via a getty program, as described in the
previous section.

1. 

Modify the /etc/ppp/options file so that it contains the following entries (you may need to
modify the netmask to conform to your network; this value should be the same as the
netmask of the PPP server):

asyncmap 0
netmask 255.255.255.0
proxyarp

2. 

289



lock
crtscts
modem
login

Create a file called /etc/ppp/options.port, where port is the port file, such as ttyS0 for the first
serial port. This file contains the IP address or hostname of the PPP server followed by a
colon (:) and the IP address or hostname of the PPP client. You should be sure that the PPP
client hostname is available for use on the network. For instance:

192.168.1.3:192.168.1.200

3. 

Create an /etc/ppp/pap−secrets file entry for any users who should be able to use the PPP
link. This entry is similar to the one for dial−out PPP access, but it lists a local username and
password. For instance, the following allows the user abell to connect to a PPP server using
the password watson:

abell  *  watson

4. 

Check the permissions on the pppd file. You should set it UID root by typing chmod u+s
/usr/sbin/pppd, if necessary. When you've done this, typing ls −l /usr/sbin/pppd should
reveal the following permissions:

−rwsr−xr−x   1 root   root    140656 Mar   7 10:25 /usr/sbin/pppd

5. 

To run pppd, users dialing in must normally type a slightly cumbersome command—it's not
very complex by Linux system administration standards, but it's a bit of an annoyance. You
can reduce the annoyance factor by setting up a global alias to run this command. Once set
up, a user need only type ppp to launch pppd on Linux. You can set this up by entering the
following line in /etc/bashrc (assuming your user's account is configured to use Bash as the
default shell):

6. 

alias ppp="exec /usr/sbin/pppd −detach"

With these steps followed, a user should be able to use PPP to connect to the computer and any
network to which it's attached. The PPP server requires manual login via a standard Linux login:
prompt, after which the client must type ppp to start pppd on the Linux system. This can all be
handled in a login script or by a manual procedure from some PPP dialers, such as the one that
comes with Microsoft Windows.

Receiving Faxes

If you've configured your system to accept dial−up text−mode logins using mgetty, as described in
"Accepting Text−Mode Logins," your system is automatically configured to receive faxes. When a
call comes in on the line to which the modem is attached, the modem determines whether the call is
a data call or a fax call. If it's a data call, mgetty passes control of the serial line over to appropriate
programs to handle data transmission. If the modem detects an incoming fax, mgetty initiates fax
reception and places incoming faxes in the /var/spool/fax/incoming directory.

Incoming fax files use the standard G3 fax file format. You can view these files with several
programs, such as KDE's KFax (shown in Figure 11.8). Such programs are typically quite simple;
they allow you to view or print the file, but not much else.

290



Figure 11.8: KFax includes options to zoom in and out, change to a new page in a fax, or print a fax.
Tip mgetty includes options to send configuration strings to the modem so that it functions as only

a data modem or as only a fax modem. These options are −D and −F, respectively. They can
be added to the appropriate lines in /etc/inittab.

Configuring Serial Printers

Most printers connected to Linux computers use the parallel or USB interface, as discussed in
Chapter 10. These interfaces offer one great advantage over the RS−232 interface: speed. Modern
parallel ports are theoretically capable of transferring 16Mbps, and USB is capable of 12Mbps,
compared to the 115Kbps of an RS−232 serial port. This hundred−fold speed difference is important
for printers—especially modern color printers, which often take massive bitmaps as input.

Despite the advantages of parallel and USB ports, some printers use RS−232 serial ports. This
interface is least problematic when the printer understands PostScript, because most Linux
programs that can print can create PostScript output, which is more compact than the bitmap output
that Ghostscript creates. (See Chapter 10 for a discussion of Ghostscript and how to use it in a
Linux printer queue.)

291



Special Considerations for Serial Printers

For an RS−232 serial printer, the configuration details that differ from a parallel−port configuration
are in the /etc/printcap file. Specifically:

You must specify an appropriate serial port, such as /dev/ttyS1, on the lp= line.• 
You must set the speed of the port using the br# line. (The pound symbol is used in place of
an equal sign with this option.) For best results, you should set the speed as high as your
serial port and printer allow—ideally 115,200bps (br#115200).

• 

To use a USB printer, you must specify the appropriate USB printer device file on the lp=
line—probably /dev/usb/lp0 or something similar, as described in Table 11.1. You do not set the port
speed for USB printers as you do for RS−232 serial printers.

In the case of both RS−232 and USB printers, you must have appropriate support in the Linux
kernel for the port in question. All major Linux distributions include this support. A few USB printers
(especially multifunction units that also work as scanners) aren't correctly detected as printers. You
should consult the Linux USB Web site (http://www.linux−usb.org/) for information on supported
USB printers.

When to Use a Serial Printer

If you have a choice, use a parallel or USB printer in Linux, or one that uses an Ethernet interface if
you have a network. These interfaces provide the best speed, particularly when printing
graphics—and Ghostscript converts text into graphics when printing to non−PostScript printers, so
unless the printer supports PostScript, most Linux printing is graphics printing.

The RS−232 interface is decidedly sluggish, so it should not be used for a printer if you can avoid it.
Modern printers that include RS−232 support also invariably support parallel or USB interfaces, so
there should be no trouble using these printers via more capable interfaces, at least from the
printer's side of things. There are two situations in which you might be forced to use an RS−232
port:

Port depletion on the computer Most x86 computers have just one parallel port. If
you're using it for one printer, you may need to use an RS−232 port for a second
printer. You can buy add−on parallel−port cards and USB−to−parallel adapters for
such situations, however, so unless you want to connect many printers to one
computer or cannot add a card for some reason, you can usually work around a lack
of parallel ports.

Old serial−only printers A few printers don't include parallel, USB, or Ethernet
ports. Fortunately, such printers are usually PostScript models, so they're not as
badly impacted by RS−232's speed problems as are non−PostScript models.

In Sum

The RS−232 serial port is a low−speed but very flexible means of interfacing computing equipment.
It can be used to link two computers together (directly or through a modem), to connect dumb
terminals to a computer, or to interface a printer to a computer. Linux's support for these functions is
quite good, but it relies on a large number of additional software packages, such as pppd for PPP

292



links, getty for login access, and the printing system for printers. Understanding these tools is vital
for using RS−232 serial ports under Linux.

USB is a recent serial port standard that surpasses the old RS−232 standard in many ways,
including speed and flexibility. Many devices are available in USB interfaces, ranging from mice to
scanners to disk drives. Linux's support for USB is good but still incomplete. USB's design requires
that the kernel include support for general classes of USB devices, and sometimes for specific
models, so it's not always possible to use the latest USB devices. USB can be a good interface for
the better supported USB hardware, though.

293



Chapter 12: TCP/IP Linux Networking

Overview

Perhaps more than any other computer technology, networking has changed our lives. Today it's
possible to shop, read newspapers, obtain music and software, do research, correspond with
colleagues, and even earn a living entirely online. Although there are costs associated with this new
use for computers, society as a whole is rapidly embracing the Internet.

Today's networking protocols began life on Unix systems. At the core of the Internet (and of most
local networks) lies a protocol known as the Transmission Control Protocol/Internet Protocol
(TCP/IP). TCP/IP was first developed on what are by today's standards primitive versions of Unix.
As a clone of Unix, Linux has a tightly knit set of TCP/IP networking tools. Indeed, many of Linux's
networking tools are the same as those used on "traditional" Unix systems.

This chapter introduces TCP/IP networking in Linux. It begins with an overview of the design of
TCP/IP and then launches into the details of TCP/IP configuration in Linux. One very common use
of TCP/IP networking is to provide file and printer sharing on a small network, so that users of one
system can directly use files and printers on another. This chapter therefore describes this use,
although only in broad strokes. TCP/IP is also used for providing many Internet services, such as
Web and FTP servers, so these topics are touched upon. Two other chapters in this book (13 and
14) cover additional TCP/IP topics: The X Window System and mail servers.

Understanding TCP/IP Networking

Chances are you're familiar with how network tools function, at least from the user's point of view.
As with so many aspects of our world, however, there's considerable complexity hidden beneath the
surface of common network tools like e−mail and remote printing. Understanding the basic design of
TCP/IP networking can be invaluable when you're configuring a system to use these features—and
particularly when troubleshooting TCP/IP problems. This section therefore presents an overview of
critical design features of TCP/IP and of computer networking in general. If you are already familiar
with these concepts, feel free to begin with the "TCP/IP Configuration" section instead.

Network Stacks

The basic goal of networking, from the point of view of high−level software, is to transfer information
from a specific program running on one computer to a specific program running on another
computer. For instance, when you run a Web browser such as Netscape, the goal is to transmit a
request for specific documents from Netscape Navigator to a Web server program (such as
Apache) on a remote computer. Apache responds by returning one or more documents to
Navigator. This process of exchanges may repeat many times.

NoteThe term server has two meanings. First, it can refer to a program that runs on a computer.
Apache is a Web server, for example. Second, it can mean the computer that runs a server
program. Likewise, client can refer to either a program that requests information of a server
program or a computer that requests information of a server computer. When these terms are
applied to entire computers, confusion can quickly result in some environments because a
single computer can function as both client and server simultaneously.

294



One of the problems encountered in achieving the goal of data exchange between programs is in
controlling access to the network. If programs like Netscape were allowed to control the network
hardware directly, chaos would soon ensue, as programs would interfere with one another. At the
core of the solution to this problem lies the concept of a network stack. This is a set of small
software modules, functioning in series, each of which interfaces with two others (or with one other
and the network hardware or a human). Network applications—both clients and servers—lie at the
top of the network stack. These applications communicate with the layer below them, and so on
until the bottom layer is reached, at which point the data leave the computer and traverse the
network to the destination system. At that point, the process is reversed, and data travel up the
stack to the destination application. This application can then send a reply via the same method.
Figure 12.1 illustrates this process.

Figure 12.1: Information travels "down" and "up" network stacks, being checked and packed or
unpacked at each step of the way.
At each stage in their journey down a network stack, data are checked or encapsulated in additional
information. These "wrappings" function much like an envelope around a letter sent via the U.S.

295



Postal Service; they help the data reach their ultimate destination. Unlike a physical letter, though,
data sent via TCP/IP may be split up into multiple packets. Rather than send a 2MB file in one
chunk, TCP/IP breaks it down into many packets of about 1.5KB each. Part of the encapsulation
process ensures that the recipient computer is able to reassemble the original file from its many
individual packets. TCP/IP was designed to be fault−tolerant, so it's possible for the receiving
system to request that a specific packet be re−sent if it doesn't arrive. Individual packets may travel
different routes from source to destination and the system still functions.

In principle, each layer of a network stack may be swapped out and replaced with an equivalent
component without affecting higher or lower layers. For example, Figure 12.1's Physical layer
corresponds to network hardware, such as Ethernet cards. The Data Link layer consists of drivers
for the network hardware. In principle (and sometimes in practice), you can swap out one network
card for another, or change one driver for another, without having to adjust any other components of
the network stack. In practice, however, you may need to adjust the driver if you change the
network card. At the Application layer, you can change applications without adjusting the network
hardware or any of the "invisible" software that lies between the two—you can use Lynx rather than
Mozilla for Web browsing, for instance.

Figure 12.1 presents an idealized view of a network stack, known as the Open Systems
Interconnection (OSI) model. In practice, TCP/IP is often described in terms of its own model, which
contains fewer layers. TCP/IP's model considers hardware separately, so it doesn't extend to the
Physical layer; and TCP/IP merges the Session and Transport layers into one and the Application
and Presentation layers into one. These differences are unimportant for our discussion, however;
the critical points are that data are packed and unpacked as they traverse the network stack, and
that the stack helps control network access, including data addressing.

TCP/IP is not the only network stack in existence. Others, such as AppleTalk and NetBEUI, can
also be used. These alternate network stacks can be described by the same OSI model depicted in
Figure 12.1, but each has its own idiosyncrasies, so it's not normally possible to swap a layer from
one stack for a layer from another stack. (The Physical and to some extent Data Link and
Application layers are shared between stacks, however.) TCP/IP is the basis for the Internet, and so
is the most common network stack. Linux also includes support for several less−common network
stacks, such as AppleTalk and Novell's IPX.

Network Addresses

One critically important component of any network protocol is addressing. If you're at one computer
and want to use resources located on a server, you must have some method of telling your
computer how to reach the server. To a human, the network address most frequently takes the form
of  a  hos tname ,  computer  name ,  o r  fu l l y  qua l i f ied  domain  name (FQDN) ,  such as
http://www.sybex.com/. This hostname is sometimes preceded by a code indicating what type of
server you want to use on the remote system, such as http:// for a Web server (Web servers use the
Hypertext Transfer Protocol, or HTTP). When so used, the hostname is referred to as a Uniform
Resource Locator (URL).

Hostnames are hierarchical in nature, with each portion of the hierarchy separated by a period (.).
The leftmost component of the hostname (such as www in http://www.sybex.com/) is sometimes
called the machine name. This component identifies a single specific computer. The remainder of
the hostname (such as sybex.com) is the domain name. It refers to a collection of computers.
Domain names are themselves hierarchically arranged. Top−level domains (TLDs), such as .com,
.org, and .us, contain domains such as sybex.com and linux.org, which can be broken down into
their own subdomains or have computers assigned directly to them. Thus, the number of levels in

296



t h e  h i e r a r c h y  i s  v a r i a b l e .  O n e  d o m a i n  m i g h t  h a v e  m a n y  l e v e l s  ( s u c h  a s
a.very.deep.domain.structure.in.the.uk), whereas another can be quite shallow (such as
oneroomco.com, which could conceivably point directly to a single computer).

Unfortunately, although hostnames of this form are reasonably easy for people to understand,
computers work better with numbers. Therefore, although the Internet includes provisions for using
hostnames, at its core it relies upon a different addressing scheme: IP addresses. IP addresses are
32−bit numbers that are generally expressed as four decimal numbers separated by dots (.), as in
192.168.204.98. IP addresses are broken into two components: a network address and a machine
address. This division simplifies the job of routers, which are devices that send traffic between
networks, because it means the router can be programmed in terms of networks rather than
individual computers. A network mask (netmask for short) marks the network address portion of an
IP address with binary 1's. For instance, 255.255.255.0 places a binary 1 in each bit of the first three
bytes of an address, indicating that those first three bytes are the network address, and that the final
byte is the machine address. An IP or network address can be combined with a network mask using
a shorthand form in which the number of leading binary 1's in the netmask follows the IP address,
as in 192.168.204.0/24. This is the same as the 192.168.204.0 network with a netmask of
255.255.255.0 (twenty−four 1's, expressed in binary).

Note In a hostname, the most significant portion (the machine name) is in the leftmost
position of the address. In an IP address, the most significant portion (the machine
address) is in the rightmost position of the address.

Traditionally, the available range of IP addresses is broken up into networks of various classes, as
indicated in Table 12.1. As indicated by the classes' netmasks, these classes differ in size—each
Class A network can contain over 16 million computers; Class B networks can host 65,534
computers, and Class C networks can each have only 254 computers. More recently, however,
networks have been merged or split up in nontraditional ways in order to make more efficient use of
the dwindling supply of IP addresses. Each of the three major classes of IP addresses supports a
range of private IP addresses (shown in Table 12.1), which routers do not route. These IP
addresses can be used internally for private networks without acquiring "official" IP addresses.
There are also Class D and E networks, which have special meaning and are reserved for future
use.

Table 12.1: IP Address Classes and Private Address Ranges

Class Name Range Netmask Private Addresses
Class A 1.0.0.0–127.255.255.255 255.0.0.0 10.0.0.0–10.255.255.255
Class B 128.0.0.0–191.255.255.255 255.255.0.0 172.16.0.0–172.31.255.255
Class C 192.0.0.0–223.255.255.255 255.255.255.0 192.168.0.0–192.168.255.255

NoteThe Internet is fast running out of IP addresses. Although a 32−bit address provides a
theoretical limit of about 4 billion addresses, the actual limits are somewhat lower, and the
number of Internet−connected computers is growing at a staggering rate. For this and other
reasons, work is underway on IPv6, a new means of addressing for TCP/IP networks. IPv6
uses a 128−bit address, which permits roughly 3.4 × 1038 addresses—that's 2.2 × 1018

addresses per square millimeter of land surface on the Earth, which ought to last us a while.

As a practical matter, it's necessary to link IP addresses to hostnames and vice versa. This task is
accomplished through the Domain Name System (DNS), which uses a highly distributed system of
DNS servers. Each DNS server is responsible for its own domain or subdomain. These servers are
arranged in a hierarchical manner mirroring the domain name structure. At the top of this hierarchy

297



are the root servers, which know the addresses of the servers that handle the TLDs. Each TLD
server knows the addresses of servers that handle each of its domains, and so on. Eventually, a
server in this hierarchy is authoritative for a domain, meaning that it can say with authority whether
a given hostname exists, and if it does, what its IP address is. A similar hierarchy allows reverse
DNS lookups, so that a name can be found, given an IP address.

Typically, an organization's DNS server performs two tasks:

It fields name queries from computers inside its domain. It queries an appropriate root server
and follows the chain of referrals from that server to locate an authoritative server for the
requested domain. It then passes the result of this query (typically an IP address or a code
saying that the name is invalid) back to the requesting client.

• 

It accepts queries from outside sources regarding the names and IP addresses of systems
within its domain.

• 

When you configure a Linux system for networking, chances are you need only know the IP
addresses of from one to three DNS servers. You can then point your Linux system at those DNS
servers to let them do the dirty work of traversing the tree of servers to resolve domain names into
IP addresses. Linux can function as a DNS server, but configuring Linux in this way is well beyond
the scope of this book. For that information, consult a book such as Craig Hunt's Linux DNS Server
Administration (Sybex, 2000).

A final address type is the network card's hardware address. The card uses this to tell when packets
are addressed to it. Part of the job of the network stack is to find a hardware address matched to
any given IP address. The stack does this by broadcasting a query to all the computers on the local
network. (For more distant systems, the computer need only send the packet to a local router, which
can then forward the data appropriately.) In most cases, you need not concern yourself with the
hardware address, although one exception is noted later in this chapter.

Ports

Once a packet has been routed to a destination system, the target computer needs to know what to
do with it. This information is conveyed, in part, through the use of multiple ports. Each TCP/IP
packet is addressed to one of 65,536 ports, which you can think of as being similar to extensions on
a business telephone system. By convention, specific server packages listen for traffic on specific
ports. For instance, Web servers listen on port 80 and mail servers listen on port 25. The file
/etc/services lists the port assignments used by common servers. As a user, you don't normally
need to be concerned with port use, because client programs know which ports to call. As a system
administrator, you must occasionally deal with port assignments. For instance, you may need to add
an entry to /etc/services if an appropriate entry isn't present.

Note TCP/IP ports are distinct from hardware ports, which are used to link devices like
printers and modems to the computer. An Ethernet card usually has one Ethernet
port, but that one Ethernet port supports thousands of TCP/IP ports.

Client programs also use ports to call out of a system. Linux assigns outgoing ports to programs on
an as−needed basis, so you don't need to be concerned with this detail. When a server replies to a
client, it does so using the port that the client used, so Linux knows to which program it should
deliver the return packet. Both client and server programs keep track of the IP addresses with which
they're exchanging data, so they can keep packets from different sessions separate.

298



TCP/IP Configuration

With the theory of TCP/IP out of the way, it's time to move on to practical Linux TCP/IP
configuration. Most distributions, including Red Hat 7.3, allow you to configure TCP/IP at system
installation; but this isn't always practical, because you may need to install hardware or locate new
drivers before you can proceed. Even if you use installation−time configuration options or a
separate GUI interface, it's helpful to understand the underlying text−mode tools. This chapter
therefore emphasizes text−based TCP/IP configuration tools and utilities.

Configuring Network Hardware

The first step in TCP/IP configuration is to set up the hardware. A working network includes a wide
variety of network hardware, such as hubs or switches, routers, servers, and so on. The possibilities
are so broad, in fact, that it's impossible to cover them all here. Therefore, this chapter focuses upon
configuring a single Linux system in a network. In this context, hardware configuration consists of
locating and installing an appropriate network interface card (NIC) and ensuring that your system
contains appropriate drivers for that card.

Note Many isolated Linux systems use the Point−to−Point Protocol (PPP) to link the
system to the Internet via a telephone modem. Chapter 11 describes PPP; this
chapter is more concerned with networking via dedicated networking hardware.

Linux supports a wide variety of networking hardware. The most common type of network today is
Ethernet, which comes in several varieties, including 10Base2 (also known as thin coax), 10Base5
(a.k.a. thick coax), 10BaseT, 100BaseT, 1000BaseT, and fiber−optic. The varieties whose names
end in T are the most common in 2002, and use unshielded twisted−pair (UTP) wiring, which
resembles telephone wires but with wider heads. Older varieties operate at speeds of up to
10Mbps, but 100BaseT supports 100Mbps speeds, and both 1000BaseT and fiber−optic support
1000Mbps (1Gbps) speeds. The Linux kernel supports most modern Ethernet adapters. To discover
what devices your Linux distribution supports, check the kernel configuration options under Network
Device Support → Ethernet (10 or 100Mbit) for 10Mbps and 100Mbps varieties, or Network Device
Support → Ethernet (1000Mbit) for 1Gbps varieties. You can also check with a device's
manufacturer to see which Linux drivers to use. Some manufacturers provide Linux drivers for their
boards, but these are usually just the drivers from the Linux kernel.

Some networks don't use Ethernet, but instead use other types of networking hardware, such as
Token Ring. Although Linux's support for these more exotic types of hardware isn't as complete as
for Ethernet, you can usually find drivers for at least some NICs for most network types. As with
Ethernet, you should consult the kernel's configuration options and boards' manufacturers to
discover what's supported.

If you compile a driver directly into your kernel, it will automatically load and detect your network
card. If your driver is compiled as a module (which is typical of freshly installed Linux systems),
however,  you may need to add an entry or two to the /etc/modules.conf f i le (cal led
/etc/conf.modules on some older distributions). Specifically, you may need to set up an alias
between eth0 and the name of your NIC's driver. If you have multiple NICs, you may need to add
multiple lines to make these associations, as in:

alias eth0 tulip
alias eth1 via−rhine

299



These lines tell Linux to use the tulip driver for eth0 (the first Ethernet device) and the via−rhine
driver for eth1 (the second Ethernet device). Of course, to set up these lines, you will need to have
located the appropriate driver for your board, as described earlier. You can see what drivers are
present on your system by typing ls /lib/modules/x.y.z/net, where x.y.z is your kernel version.

Tip One of the best reasons to configure networking when you install Linux, especially if you're less
than intimately familiar with your networking hardware, is that most Linux installation utilities
include tools that detect the type of network hardware you have installed, so you don't need to
figure out this detail.

Once you've configured the hardware and rebooted, Linux should auto−detect the hardware at boot
time. When it does, it displays a brief message to this effect, such as the following:

eth0: Macronix 98715 PMAC rev 32 at 0xda00, 00:80:C6:F9:3B:BA, IRQ 9.
eth1: VIA VT3043 Rhine at 0xdc00, 00:80:c8:fa:3b:0a, IRQ 10.
eth1: MII PHY found at address 8, status 0x782d advertising 05e1 Link 0000.

These lines indicate that Linux has detected two Ethernet cards: eth0 uses a Macronix 98715 (a
chip that uses the tulip driver), and eth1 uses a VIA VT3043 Rhine chip (which uses the via−rhine
driver). These messages also include the Ethernet devices' hardware addresses—the six−byte
hexadecimal values, such as 00:80:C6:F9:3B:BA. These values can be important on some
networks, as described later in this chapter. If you don't see such lines at boot time, you should
re−examine your configuration to be sure you haven't mistyped a device driver name, and that
you've correctly identified the NIC's hardware.

Tip Boot messages scroll by so quickly that you're likely to miss them. After you've booted, you can
type dmesg to see these messages replayed. Further, you can pipe the results through grep,
as in dmesg | grep eth, to isolate just the Ethernet−related messages.

One peculiarity of network hardware under Linux is that these devices don't have the usual device
file entries in the /dev directory. Nonetheless, networking devices are named (as in eth0 or eth1).
Networking tools communicate these names to the Linux kernel directly, not by accessing device
files.

Using DHCP for Configuration

The easiest way to configure most computers for networking is to use the Dynamic Host
Configuration Protocol (DHCP). This is a networking protocol that allows one system (the DHCP
server) to maintain information about a network's important characteristics and to feed this
information to other systems (the DHCP clients). A network administrator maintains the information
on the DHCP server, and all other systems need only be told to use a DHCP client program. For
information on configuring a DHCP server, see Linux Network Servers, by Craig Hunt (Sybex,
2002)—this section covers the DHCP client program. The client program, when started, sends out a
broadcast asking for help from a DHCP server, which then responds with all the important network
information.

Note Some DHCP servers respond only to registered clients. The server uses the NIC's hardware
address to identify clients. You may need to provide this information to your network
administrator or ISP. For Ethernet devices, the code in question is a six−byte hexadecimal
value. Linux Ethernet drivers display this value on the screen at boot time, as described
earlier.

300



There are three DHCP clients in common use on Linux systems: dhclient, dhcpcd, and pump. (Red
Hat 7.3 uses dhcpcd or pump, whichever is installed.) In most cases, you need only install the
appropriate package on the system. When the computer starts, it uses an appropriate startup script
to call the DHCP client. In Red Hat 7.3, the /etc/sysconfig/network−scripts/ifup script contains the
call to the DHCP client; but some other distributions place DHCP client scripts somewhere in the
/etc/rc.d directory. If you install a DHCP client and don't want to reboot before using your network,
you can call the client program directly; for instance, by typing /sbin/dhcpcd or /sbin/pump on a
Red Hat 7.3 system.

Some Linux distributions that rely upon GUI configuration tools may require you to set an option in
this tool to call the DHCP client automatically at boot time. You can usually bypass this requirement
by placing a call in a boot script such as /etc/rc.d/rc.local, but it may be simpler to check the
appropriate configuration option. In Webmin, it can be found in the Hardware → Network
Configuration → Network Interfaces → eth0 module, shown in Figure 12.2. The final option is the
one located in the Interfaces Activated at Boot Time section of the page, and it is something else if
you're configuring something other than the first Ethernet interface. Click the From DHCP option for
the IP Address, and leave other options blank.

Figure 12.2: In GUI configuration tools, you can set many networking options from a single
interface.

Note Although Webmin is a Web−based tool, it should still function on a system without a
working network interface, but you'll need to access it using the localhost address
from the computer you're trying to administer.

Unfortunately, although DHCP is supposed to simplify network configuration, it doesn't always work
quite the way it should. One particular class of problems relates to servers that use multiple network
interfaces, particularly when only one of these should be configured via DHCP. Most DHCP clients
allow you to specify an interface to configure. For instance, you could use pump −i eth1 to tell
pump to configure your eth1 interface. You may be able to modify your startup scripts to force your
DHCP client to work on only the desired interfaces.

301



Sometimes problems with a DHCP client can be quite intractable. Fortunately, the fact that there are
three DHCP clients for Linux provides you with a way out: You can try another client. Before you
remove the original client, though, you should locate and back up its configuration file. You may
need to restore and modify this file to start a new client, particularly if you use a DHCP client from
another distribution, because different distributions use slightly different startup script formats.

DHCP is capable of setting most aspects of a Linux system's network configuration. DHCP cannot,
however, install the network drivers. Some DHCP configurations also omit some information—most
commonly the hostname—so you may need to do a few manual adjustments even if your system
uses DHCP. (The next section describes manual TCP/IP configuration.)

NoteSome digital subscriber line (DSL) installations use an automatic configuration protocol called
PPPoE. This protocol uses the PPP tools that are normally used over telephone modems, but
instead applies them to Ethernet connections. There are several Linux PPPoE clients
available. Most distributions ship with a PPPoE implementation, usually the popular Roaring
Penguin (http://www.roaringpenguin.com/pppoe/). If your DSL installation uses PPPoE, DHCP
will not work on that system.

Manually Configuring TCP/IP

If your network doesn't use DHCP, you must configure your TCP/IP settings manually. This
configuration is most easily handled at installation time or using a GUI configuration tool like
Webmin (Figure 12.2). If you choose to use such a tool, you should have little trouble locating the
appropriate options, given the descriptions that follow.

Setting the Hostname

The hostname is most important to computers that want to contact yours as a server. The DNS
administrator stores the hostname on a DNS server, which is used by remote systems that want to
contact yours. You set the name that your computer uses for itself. This can be important because
some protocols, such as mail, embed the sender's address in outgoing messages. If your hostname
is set incorrectly locally, recipient systems may become quite confused or even refuse connections.

You can set your system's hostname using the hostname command. Entered without any
parameters, this command reports the system's current name. You can pass a name to the
command, however, to set the hostname. For instance, the following command sets the hostname
to gingko.oneroomco.com:

# hostname gingko.oneroomco.com

Note The commands described here for manual TCP/IP configuration can be added to a startup
script, such as /etc/rc.d/rc.local, if you want to automate the process. It's usually better to use
the distribution's standard network startup scripts for this purpose, though.

Unfortunately, setting the hostname one time with this command does not set it permanently; after
you reboot, Linux sets its hostname using values stored in configuration files. Details vary from one
distribution to another, but you should pay particular attention to the /etc/HOSTNAME,
/etc/hostname, /etc/sysconfig/network, and /etc/hosts files. The first three are common locations for
storing the name that Linux sets using the hostname command when it boots. The /etc/hosts file is a
bit different, because it lists mappings of hostnames to IP addresses—it can be used in place of
DNS on a small network, and it can augment DNS even on a large network. If you see your IP
address in /etc/hosts, be sure it's mapped to your full correct hostname.

302



Tip If you can't find your system's hostname reference, try typing grep −r hostname /etc/*. This
command should return a list of files in the /etc directory tree that contain the word hostname.
One of these is almost certainly the file that sets your hostname. Sometimes this file uses a
definition from another file to set the hostname, so you can modify the source file or bypass the
definition in another file by modifying the name−setting file directly.

Activating an Interface

To use a network, you must activate an interface. To do this, use the ifconfig command, which tells
Linux to begin using a device and to associate it with a specific IP address. The basic syntax for this
command is:

ifconfig interface [options] [address]

The meaning of each parameter is:

interface  This is the network interface, such as eth0.

options  You can specify several different options to ifconfig. The most important are
up and down, which force the system to activate or deactivate an interface,
respectively. (up is the default, so you can omit it when activating an interface.) You
can also use the netmask mask option to set the netmask—by default, ifconfig uses
a netmask based upon the class of network to which the address belongs, as shown
in Table 12.1. You can read about more options in the ifconfig man pages.

address  This is the IP address to which the computer will respond on this interface,
such as 192.168.203.7. If you omit the address, ifconfig reports on the status of an
interface, rather than configuring the interface to use an address.

In its simplest form, an ifconfig command can be quite short:

# ifconfig eth0 192.168.203.7

You may need to add more options. In particular, if your IP address uses a nonstandard netmask,
you may need to specify one, as in:

# ifconfig eth0 netmask 255.255.255.128 192.168.203.7

It's a good idea to check on a configuration after setting it up. You can also use ifconfig to gather
useful debugging information even long after an interface has been activated. For example:

# ifconfig eth0
eth0      Link encap:Ethernet  HWaddr 00:A0:CC:24:BA:02
          inet addr:192.168.203.7  Bcast:192.168.203.255  
Mask:255.255.255.0

          UP BROADCAST RUNNING  MTU:1500  Metric:1
          RX packets:7173469 errors:6 dropped:0 overruns:0 frame:6
          TX packets:6294646 errors:0 dropped:0 overruns:0 carrier:0
          collisions:66163

This output shows that eth0 is up and running, using the hardware address 00:A0:CC:24:BA:02 and
the TCP/IP address 192.168.203.7. Further statistics include the Maximum Transfer Unit (MTU) size
of 1500, received (RX) and transmitted (TX) packets (including errors), and collisions. This
information can be invaluable when debugging a connection. A huge number of errors or collisions

303



can signal that your network is overburdened or that your hardware is faulty, for example.

Note Some errors and collisions are normal. The preceding example shows a total of
66,163 collisions and 13,468,115 packets sent or received, for a collision rate of about
0.5%. The error rate (6 of 7,173,469 received packets, and no transmit errors) is also
quite low. It's difficult to specify a threshold above which errors or collisions indicate
problems, because these values can vary from one network to another. Collisions
occur inevitably on Ethernet networks when two systems try to transmit at the same
time. Collision rates therefore go up with total network traffic. Using switches rather
than hubs can reduce the number of collisions on an Ethernet network.

Configuring the Routing Table

It's important that a computer know to which network interface it should send data. When there is
just one NIC, this may seem a trivial task, but it's not quite so trivial in Linux, because all Linux
systems support a loopback (or localhost) interface, which directs the network traffic back to the
Linux system. This interface is very useful in troubleshooting and for some basic Linux features,
such as X. It's normally assigned an address of 127.0.0.1 and is configured automatically by default
startup scripts. You therefore need not concern yourself about the loopback interface, but you must
tell your system how to route all other network data.

This task is accomplished with the route command, which has the following syntax:

route [add | del] [target] [gw gateway]

Each parameter has a specific meaning:

add | del  Specify add if you want to add an entry to the routing table, or del if you
want to remove one. When starting up an interface, use the add parameter.

target  The target is the IP address or network address to which the route applies. A
network address looks just like an IP address, but it uses trailing 0's in the machine
portion of the IP address, as in 192.168.203.0. One special target is the default route,
which is 0.0.0.0. You can use the keyword default in place of 0.0.0.0, if you like. The
default route is the route taken by all traffic that's not matched by more specific rules.
You normally specify a gateway system with the default route; traffic to most sites
that aren't on your local network then travels through the gateway system.

gw gateway  A gateway is a system that knows how to send packets to another
network. The terms gateway and router carry very similar meanings, and are often
used interchangeably. Your ISP or network administrator can provide you with the IP
address of an appropriate gateway.

Note There's normally no need to explicitly specify the NIC or even the IP address with which a
route is associated, because the route command can discern this information based on the
target or gateway address. If your network is unusually complex, you can force the route to be
associated with a device by using the dev device parameter.

Typically, you specify two routes for traffic passing out of a Linux computer: one for traffic destined
for the local network and one for a default route, which passes through a gateway. You can
accomplish this task by issuing two commands, such as:

# route add 192.168.203.0
# route add 0.0.0.0 gw 192.168.203.1

304



The first of these commands adds a route for local traffic—anything addressed to the 192.168.203.0
network goes out over the appropriate NIC. This command is usually not required because the
ifconfig command usually does this job. The low−level TCP/IP protocols include routines that allow a
computer to locate any other computer that's connected to its local network segment. The second
command takes over when packets are destined for an address other than the 192.168.203.0
network (or any other network defined by an explicit route). In this case, the system directs the
packets to 192.168.203.1, which should be a router capable of passing the packets on to the
appropriate destination. (In fact, it may pass them on to another router, and so on for quite a few
hops on the network.)

Note If you're configuring systems on a local network that will not be connected to the Internet,
there's no need to specify a gateway route.

You can examine your routing table by issuing the route command without any options (or with the
−n option, if you want to see IP addresses rather than machine names). For instance:

# route −n
Kernel IP routing table
Destination    Gateway        Genmask       Flags Metric Ref  Use Iface
192.168.203.0  0.0.0.0        255.255.255.0 U     0      0      0 eth0
127.0.0.0      0.0.0.0        255.0.0.0     U     0      0      0 lo
0.0.0.0        192.168.203.1  0.0.0.0       UG    0      0      0 eth0

This output reveals three routes: one for the 192.168.203.0 network, one for the localhost interface
(which is actually configured as an entire network), and one for the default route. Most desktop and
even server systems will have routing tables that resemble this one. If a computer has multiple
NICs, or if its network is unusually complex in any of several ways, the routing table may have
additional entries.

Most Linux systems include calls to route in startup scripts. In Red Hat 7.3, /etc/rc.d/init.d/network is
responsible for starting networking, including setting the route, but it calls several others to do the
work. You can therefore modify this file, use Webmin to do the job, or add calls to route to some
other startup script, such as /etc/rc.d/rc.local.

Specifying DNS Servers

In order to resolve hostnames into IP addresses for arbitrary systems on the Internet, Linux must
know the IP address of at least one DNS server. Linux stores this information in the /etc/resolv.conf
file, along with information on its own default domain name. A typical /etc/resolv.conf file looks like
this:

domain room1.threeroomco.com
search room2.threeroomco.com room3.threeroomco.com
nameserver 192.168.203.1
nameserver 192.168.203.20

There are three important keywords used in this file:

domain  This specifies the domain to which the system belongs. Linux tries to
resolve names using the specified domain first. For example, if you use the machine
name gingko and the above /etc/resolv.conf file, Linux first searches for a computer
called gingko.room1.threeroomco.com. This feature allows you to omit the domain
name portion of a machine name when a target computer is in the same domain as
the source machine.

305



search  The search option works much like the domain option, but you can specify
several domains to be searched using this parameter, separated by spaces or tabs.

nameserver  Each nameserver line specifies the IP address of a single DNS server.
This must be an IP address, not a machine name—after all, it's name resolution that
the DNS server is supposed to do. You can specify as many DNS servers as you
like, one per line, but Linux only uses the first three. Normally, only the first is used;
but if the first DNS server is inaccessible, Linux goes on to the next.

Warning Configuring a system to search too many domains or subdomains can increase the time it
takes to resolve a domain name. It could also cause you to contact one machine when
you meant another, if they bear the same machine names but exist in different domains.

You don't need to do anything special after entering information in /etc/resolv.conf in order to use
these DNS servers. Also, Linux remembers these settings (unlike some other network configuration
options) when you reboot, so you don't need to adjust any startup scripts.

Administrator's Logbook: Basic TCP/IP Configuration

System: E12345678

Actions: Configured computer to use DHCP for network assignment on eth0, and to set eth1 to use
a fixed configuration.

eth1 configuration:

IP address: 192.168.203.7

Netmask: 255.255.255.0 (default)

Gateway: none (use DHCP−assigned gateway on eth0)

DNS: none (use DHCP−assigned DNS servers)

Testing the Setup

With any luck, you now have a working network configuration. You should perform some tests to be
sure it's working. If you're impatient, skip ahead to test 6; but if you have problems, try the following
tests in order:

Check the basic Linux TCP/IP stack by pinging the localhost address. Type ping 127.0.0.1.
You should see a series of output lines similar to the following, indicating that the localhost
address is responding:

64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=0.3 ms

Press Ctrl+C to stop this sequence. If this test doesn't work, your configuration is very badly
damaged. Every Linux system should pass this test, even immediately after installation.

1. 

Ping your NIC's external address (as in ping 192.168.203.7). This tests the association of
the address to a NIC via ifconfig, as well as basic network driver functions.

2. 

Ping a machine on your local network by IP address. A good system to ping is usually your3. 

306



router/gateway. If this test works, you can be sure that your network hardware and drivers
are functioning. If it fails, double−check your ifconfig setup and investigate the possibility of
using a more up−to−date driver for your network card.

Note It's possible to configure a computer to ignore pings. Computers can also be offline, or
the route to a remote computer can be broken in various ways. It's therefore possible
that a ping test will fail despite a flawless configuration of your own system. If this
happens, try another system before declaring the test failed.

Ping a machine beyond your local network by IP address, as in ping 198.182.196.56 (this
pings http://www.linux.org/, but this address may change in the future; it's best to locate an
address using nslookup). If this test works, your gateway configuration is correct. If previous
tests succeeded but this one fails, check your routing table, paying particular attention to the
gateway.

4. 

Ping local and remote machines by machine name rather than IP address, as in ping
http://www.linux.org/. If this test works, your DNS configuration is correct.

5. 

Use more sophisticated network tools, such as a Web browser or Telnet client. It's extremely
unlikely that these will fail when pings work, but it's best to be complete.

6. 

If the preceding tests all pass, then your network settings are at least minimally correct. Of course,
it's possible you'll run into more subtle problems, such as slow network performance or an inability
to reach specific systems. Some such problems can be caused by local configuration problems,
such as an incorrect routing table. Network debugging can be a complex task. If you have peculiar
problems, you may want to post a message to the comp.os.linux.networking newsgroup.

File Sharing

One of the most common uses for networking on small networks is to implement file sharing. The
idea behind this technology is to allow the users of one computer (the client) to access the files on
another computer (the server) as if the server's files were stored on a disk local to the client. The
benefits of this arrangement include:

Saving on total disk space by storing files needed by many clients on just one system.• 
Enabling individuals to work from any computer while accessing the same files.• 
Making collaboration simpler than it would otherwise be, because there's no need to move
files around on floppy disks.

• 

Like many networking applications, file sharing requires the use of both client and server software.
There are several file−sharing packages available on many OSes. This chapter restricts discussion
to just two: the Network File System (NFS), which is used by Linux and Unix systems; and Samba,
which is the Linux implementation of the Server Message Block (SMB; a.k.a. Common Internet
Filesystem, or CIFS) protocol used by DOS, Windows, and OS/2.

Note Both NFS and SMB/CIFS are built at the top level of the OSI network model. Some
file−sharing protocols, including SMB/CIFS, can optionally use a variety of protocol
stacks, but in Linux both of these use TCP/IP.

Sharing with Unix or Linux: NFS

NFS is tightly woven into Linux and Unix systems, and it supports the filesystem features (such as
ownership and file permissions) upon which Linux and Unix systems depend. It's therefore the
file−sharing solution of choice on networks dominated by Linux or Unix computers.

307



Note For a complete guide to NFS administration in Linux, see Linux NFS and Automounter
Administration, by Erez Zadok (Sybex, 2001).

Configuring an NFS Server

To configure a Linux system as an NFS server, follow these steps:

Install an NFS server package. In Red Hat 7.3, this package is called nfs−utils−0.3.3−5.1. 
Edit the /etc/exports file to share specific directories, as described shortly.2. 
Start the NFS server. On Red Hat systems, you can do this by typing /etc/rc.d/init.d/nfs
start. (If the NFS daemon is already running, you should use restart rather than start in this
command. You can discover if this server is running by typing ps ax | grep nfsd. If it's
running, you'll see one or more entries for processes called nfsd.)

3. 

To ensure that the NFS server starts at boot time, check the /etc/rc.d/rc3.d and /etc/rc.d/rc5.d
directories for a file called S??nfs, where ?? is a number. These files, if present, should be links to
/etc/rc.d/init.d/nfs (or an NFS startup script in some other directory on some distributions). If these
files don't exist, you must create them. The following command should accomplish this goal on Red
Hat systems, but you may need to adjust the linked−to file on some distributions:

# ln −s /etc/rc.d/init.d/nfs /etc/rc[35].d/S60nfs

The most critical configuration file for an NFS server is /etc/exports. This file determines which
computers may mount an exported directory, as well as various limitations placed on these mounts.
Each line in /etc/exports defines one export, or directory that's shared. The line begins with the path
to the directory and continues with a list of systems that are authorized to use the export, including
any client−specific options enclosed in parentheses. Listing 12.1 shows a sample /etc/exports file.

Listing 12.1: An /etc/exports File Showing Some Common Options

/home larch(rw) birch(rw) gingko.threeroomco.com(ro)
/home/fred 192.168.34.23(noaccess)
/mnt *.threeroomco.com(rw)
/opt 192.168.34.0/24(ro)

You can list hostnames in several different ways in /etc/exports, as illustrated by Listing 12.1. These
methods include:

Individual hostnames You can list the hostnames individually, as in all the systems
on the /home export in Listing 12.1. If the clients are part of the same domain as the
server, you can omit the domain name, as was done with larch and birch in the
example. Alternatively, you can keep the entire hostname.

Individual IP addresses Instead of using a hostname, you can export a share to a
system by specifying its IP address. Using an IP address slightly enhances security.
This is the approach used by the /home/fred export in the example.

Domains  You can specify a domain by using a wildcard character, as in
*. threeroomco.com, which exports the directory to any computer in the
threeroomco.com domain. This approach can be convenient, but it also increases the
potential for abuse should a DNS server be compromised.

308



IP address blocks You can export a directory to a block of IP addresses by
specify ing a network address and netmask in abbreviated format,  as in
192.168.34.0/24.

Warning You can export a share to any computer by omitting the hostname entirely. This may be
convenient on a small private network, but it is also quite dangerous, particularly if your
computer is accessible to the Internet as a whole.

You should specify one or more options for most exports and clients. You'll do this by specifying the
options in parentheses after the client name. Listing 12.1 makes heavy use of the rw and ro options,
which provide read/write and read−only access to a share, respectively. (Some NFS servers default
to read−only access, while others default to read/write access, so it's best to be explicit on this
matter to avoid confusion.) The noaccess option blocks all access to a directory. Listing 12.1 uses
this option to prevent the computer at 192.168.34.23 from accessing the /home/fred directory, even
if the /home directory is exported to that computer.

Various other options exist on some or all NFS servers and may be of interest to advanced
administrators. Type man exports to learn more about this file and its options.

One thing to keep in mind about NFS is that it operates on a trusted host security model. That is, if
you list a computer in /etc/exports, you turn over some of your security to that system. NFS exports
Linux's user ID and permission information to the client, but if the remote system's security has
been compromised in any way, it's possible that a user of the client might be able to damage files
on the server. For this reason, it's generally unwise to export sensitive directories, such as /etc,
especially with read/write permissions.

Over the years, there have been several Linux NFS servers. The latest version on most distributions
uses special features in the Linux kernel to accelerate the server. You must therefore include NFS
server support in your Linux kernel if you recompile your kernel. (All major distributions include this
feature in their default kernels.) Unfortunately, this means that an NFS server may break if you
upgrade your kernel, particularly from 2.2.x to 2.4.x kernels. You may therefore need to look for an
updated NFS server (or an older one that doesn't use the kernel acceleration) if you upgrade your
kernel.

Administrator's Logbook: Exporting Directories via NFS

System: E12345678

Action: Configured NFS exports: /home and /opt to local network computers (see /etc/exports for
details).

Mounting Remote NFS Exports

Linux includes NFS client support in its kernel, and all major distributions compile this support in
their standard kernels or as modules. You should therefore have little trouble mounting NFS
exports, as long as the server recognizes your system as a valid client. Linux uses its regular mount
command for mounting NFS exports. The syntax is as follows:

mount [−t nfs] server:/path mountpoint

In most cases, the −t nfs parameter isn't required; Linux can figure out that it's an NFS export you're

309



specifying. server is, of course, the name of the server, and /path is the path to the exported
directory on that server. mountpoint is the local mount point. For instance, the following command
mounts the /home share from birch on the client, at /shared/homes:

# mount birch:/home /shared/homes

You must normally be root to issue the mount command in this way, but you can add an entry to
/etc/fstab to automate this process or allow other users to mount NFS exports. The entries to do this
look just like those to mount a local filesystem, as described in Chapter 6, except that they include
the NFS−style server:/path specification rather than a local device file. They also must specify a
filesystem type of nfs.

However it's done, once an NFS export is mounted, you can use it much as you do a local
filesystem. Assuming your users have appropriate permissions on the remote system, they may
read from and write to remote files. Of course, a network filesystem is not likely to be as fast as a
purely local one.

Sharing with Windows: Samba

Ordinarily, NFS is the best choice to share files with other Linux or Unix systems. Windows and
related operating systems, however, don't include NFS client packages by default, although they are
available as add−ons. Instead, these OSes use SMB/CIFS networking protocols to achieve the
same goals. Although NFS and SMB/CIFS serve the same purpose, they differ in many important
details. SMB/CIFS was designed with DOS and Windows in mind, so it is the best protocol for file
sharing with these systems. Fortunately, all modern Linux distributions include a server for
SMB/CIFS: Samba.

Samba is a very complex package—it contains many more options and features than do any of
Linux's NFS packages. This is largely because Samba must make a Linux computer look like a
Windows system, which complicates the file−sharing task. Windows treats filenames and file
attributes differently than does Linux, so it's necessary to include workarounds in Samba. Windows
networks also include a variety of features that partly replicate functions of normal TCP/IP
networking, such as an alternative naming system. These topics go far beyond the scope of a single
chapter, so if you need to set up more than a minimal Samba file server, you should consult a book
devoted to the topic, such as Roderick W. Smith's Linux Samba Server Administration (Sybex,
2001).

In Red Hat 7.3, Samba comes as three packages: samba−common−2.2.3a−6, samba−2.2.3a−6,
and samba−client−2.2.3a−6. The first of these includes core Samba files, the second contains
Samba server files, and the third contains Samba client files.

Note If any of your systems run Windows 2000 or Windows Me, you may want to be
sure you're running Samba 2.0.7 or later. Although earlier versions sometimes
work with these clients, they can produce subtle problems. This is particularly
true when using Samba as a client to Window servers. Versions of Samba
prior to 2.0.5a don't work at all with the latest versions of Windows. You can
find updated packages at http://www.samba.org/.

Samba Configuration Options

The most common use of Samba is as a server. Samba's server functions are controlled through a
single configuration file: smb.conf. This file contains several sections, each beginning with an

310



identifying name in square brackets, such as [global] or [some−share]. Most of these sections
identify shares—directories that Samba makes available, similar to NFS exports. The [global]
definition, however, assigns default values and important global features. Within each definition, you
can control Samba's features by assigning a value to a parameter, thus:

parameter = value

Samba is unconcerned with the case of parameters and most values (although a few values, such
as Linux pathnames, are case−sensitive). Samba treats any characters that follow a semicolon (;) or
pound sign (#) as a comment; these characters are ignored.

On most Linux systems, the smb.conf file resides in the /etc, /etc/samba, or /etc/samba.d directory.
(Red Hat 7.3 uses /etc/samba.) If you compile Samba yourself, you can specify where the smb.conf
file will go; the default value is /usr/local/samba/lib.

In addition to or instead of configuring Samba by editing its configuration file directly, you can use
any of several GUI tools. Webmin, for example, includes Samba configuration options, as shown in
Figure 12.3. Samba also includes a utility called the Samba Web Administration Tool, which works
much like Webmin, but it's a Samba−specific tool. To use it, enter http://servername:901 as the
URL, where servername is the server's name or IP address. (You must first enable SWAT,
however, which is usually done by adding an entry to /etc/inetd.conf or /etc/xinetd.conf, both of
which are briefly described later in this chapter.)

Figure 12.3: GUI configuration tools let you manage Samba using a point−and−click interface.
Samba is usually run from startup scripts in the /etc/rc.d directory tree. If they're not already present,
you should create appropriate links in the /etc/rc.d/rc3.d and /etc/rc.d/rc5.d directories. On a Red
Hat system, the following command should work, but you may need to adjust these pathnames and
filenames on other distributions:

# ln −s /etc/rc.d/init.d/smb /etc/rc.d/rc[35].d/S91smb

311



You'll need to start Samba manually if you've just set it up this way, or restart it after you make
changes to i ts configurat ion. You can do this by typing  /etc/rc.d/init.d/smb start  or
/etc/rc.d/init.d/smb restart, respectively.

Setting Global Options

Samba includes many global options (those that appear in the [global] section of smb.conf). Some
of the most important of these are shown here:

[global]
        workgroup = ARBORETUM
        netbios name = GINGKO
        server string = Big Server
        encrypt passwords = Yes
        os level = 1
        preferred master = No
        domain master = No
        hosts allow = 192.168.34. elm

These options mean the following:

workgroup  Windows networks are organized into workgroups, which are collections
of computers sharing the same workgroup name. This name is specified by the
workgroup parameter. If you don't set this parameter to match your network's
workgroup, you may not be able to access the Samba server. (Many Windows
networks use domains rather than workgroups. Domains also have names that you
set using the workgroup parameter.)

netbios name  A computer's NetBIOS name is the name by which other computers
know it, and the netbios name parameter sets this feature. If this parameter is not
set, Samba takes the default value from the computer's machine name; for instance,
gingko.threeroomco.com becomes GINGKO.

server string  This parameter sets a comment that's visible when you browse a
workgroup using the Windows Network Neighborhood tool. It's purely a cosmetic
feature of Windows networking.

encrypt passwords  This parameter is critically important, and it causes a great deal
of trouble for new Samba administrators. By default, Samba accepts only cleartext
passwords, which are transmitted without encryption. This characteristic can be a
security risk, however; it's better to transmit passwords in an encrypted form, which
makes it difficult or impossible to decipher an intercepted password. Using encrypted
passwords on Samba, however, requires maintaining a separate Samba−only
password list. (Samba checks cleartext passwords against Linux's normal password
database.) Early versions of Windows 95 and Windows NT 4.0 used cleartext
passwords, but Windows 95 OSR 2, Windows NT 4.0 SP 3, and all later versions of
Windows use encrypted passwords. The section "Setting Password Options"
describes Samba's encrypted password handling in more detail.

os level  The os level parameter controls how Samba announces itself for master
browser elections. These elections determine which computer maintains a list of local
computers for the convenience of other systems. You should set this value low (say,
to 1) unless you're an experienced Samba administrator and understand the
consequences of taking on master browser duties.

312



preferred master, domain master  These two parameters also affect whether
Samba takes on master browser duties. If set to Yes, preferred master causes
Samba to attempt to take on this role, which can be quite detrimental if the server
isn't configured to win elections. Therefore, we recommend setting this value to No
unless you understand the election process. Likewise, domain master determines
whether Samba tries to become the domain master browser (as opposed to the local
master browser, which is slightly different).

hosts allow  This parameter is an important security feature. If used, it blocks
Samba access to all but the specified computers. You can list computers by
hostname (not the NetBIOS name, if they differ) or by IP address. If a hostname
begins with a period, or if an IP address with fewer than four elements ends with a
period, that signifies an entire network of computers. In the preceding example, for
instance, all computers on the 192.168.34.0/24 network are allowed access.
Although this parameter isn't necessary, it's a good idea to use it, particularly if the
server is connected to the Internet at large.

The most critical of these parameters are workgroup and encrypt passwords. When you first install
Samba, it's not likely to be configured to function on your workgroup, so chances are you must set
the workgroup parameter to use the server. Likewise, unless you're using fairly old clients, you must
normally either configure Samba to use encrypted passwords or reconfigure your clients to use
cleartext passwords.

Setting Password Options

If you set encrypt passwords = Yes, you must set up an encrypted password file on Linux. To do
this, you can use the smbpasswd program, which adds a username and password to the encrypted
password file (/etc/samba/smbpasswd on Red Hat 7.3 systems) or edits that information. For each
user on your system, you should issue the command smbpasswd −a. The program will ask you to
enter the password twice. The first time you run this program, it may notify you that it can't find the
smbpasswd file, and so is creating it.

If you prefer to use cleartext passwords and the normal Linux password database, you can do so by
changing any recent Windows clients to send cleartext passwords. On Red Hat 7.3 systems, the
directory /usr/share/doc/samba−2.2.3a/docs/Registry contains several .reg files that can be used to
make the appropriate changes to Windows systems. Copy the file named after the version of the
OS you're running (such as Win98_PlainPassword.reg for Windows 98) to a floppy disk, move that
disk to the target Windows system, and double−click the file to adjust the client's configuration.
You'll need to reboot Windows before the changes will take effect.

Configuring File Shares

File shares make up the bulk of most smb.conf files, particularly on servers that have many shares.
This share demonstrates the most common file−sharing options:

[bigshare]
        comment = Shared Program Directory
        path = /home/samba/bigshare
        read only = No
        browseable = Yes
        create mask = 0666
        directory mask = 0777

The meanings of this share's parameters are as follows:

313



comment  The comment parameter works much like the server string parameter,
except that comment sets a comment that's associated with a specific share.

path  The path parameter sets the directory that's to be shared. This can be any
directory on the computer, although of course it's unwise to share some directories,
such as /etc, for security reasons.

read only  By default, Samba doesn't grant write access to directories it shares. You
can allow users to write to Samba shares by including the read only = No parameter.
writeable and writable are antonyms of read only, so writeable = Yes is synonymous
with read only = No.

browseable  This parameter, if set to Yes, causes a share to appear in Network
Neighborhood browse lists under Windows. It's generally best to set this parameter
to Yes.

create mask and directory mask  These parameters set the maximum permissions
on files and directories that users create via Samba. In the example, these are set to
high values, so that all users can read and write each other's files. Of course, you
may want to restrict permissions rather than expand them. The default values are
0744 and 0755, respectively.

There is a special share name that deserves explicit mention: [homes]. If you use this share, you
should omit the path parameter, and Samba provides a share that corresponds to the user's home
directory. For instance, if jennie logs onto the server, the share appears on the client as JENNIE
and shows the user's home directory files. This share is extremely useful and popular on servers
used for storing individual users' files (as opposed to shared program files).

In addition to file sharing, Samba supports printer sharing, as discussed in Chapter 10. The easiest
way to enable printer sharing is to create a [printers] share, which should have the print ok = Yes
parameter set. This causes Samba to share each of the printer queues defined in /etc/printcap.
Because these Linux printer queues are normally defined as PostScript printers, you should treat
them as PostScript printers from the Windows clients.

Tip Apple LaserWriter drivers tend to work well with printers that use Ghostscript on Linux for
printing.

Using Samba as a Client

Samba includes two client programs: smbclient and smbmount. The first of these allows you to
perform file transfers in a manner similar to a text−mode FTP client program. By contrast,
smbmount allows you to mount a share on the Linux directory tree, much as you can mount an NFS
share using the Linux mount command. (In fact, since Samba 2.0.6, you can use mount instead of
smbmount.) There are also assorted GUI front−ends to these packages, so that you can browse an
SMB/CIFS network from Linux much as you can from Windows.

All of the Samba client programs rely upon settings in the [global] section of smb.conf to control
aspects of their operation, such as the claimed NetBIOS and workgroup names of the computer.
You should therefore be sure these features are set correctly before using Samba as a client.

To use smbclient, you start it and pass the name of the server and the share you want to access,
thus:

314



$ smbclient //server/share

After you type this command, smbclient prompts you for a password, which should match the
password associated with your username on the server. (If your username on the server is not the
same as on the client, you can use the −U username parameter to specify your username on the
server.) The commands available in smbclient are similar to those in the text−mode ftp program, or
from a Linux shell—ls to see the available files; put and get to transfer files to and from the share,
respectively; cd to move to a new directory; and so on. You can type ? or help to see a summary of
commands.

Although smbclient can be a good way to quickly transfer a few files, smbmount is more flexible if
you want to be able to directly modify files on the server. You might use this tool to use a Linux
program to edit a file that's stored on a server, for instance. To use smbmount, issue the command
in the following form:

$ smbmount //server/share mountpoint

Note If you don't issue the smbmount command as root, two programs must be set user ID (suid)
root for this to work: smbmnt (a helper program to smbmount) and smbumount (used to
unmount SMB/CIFS shares). You can issue the command chmod a+s /usr/bin/smbmnt
/usr/bin/smbumount to accomplish this task.

Like smbclient, smbmount asks you for a password before it mounts the share. Once a share is
mounted, you can access the files on it as if they were on a local disk, with certain caveats. Some
filesystems may be shared read−only, so you may not be able to write files to these shares.
SMB/CIFS doesn't support Linux−style ownership and permissions, so by default, all files are
owned by the individual who issues the smbmount command. When you're done with a share, you
can unmount it with the smbumount command; enter it as

$ smbumount mountpoint

As mentioned earlier, you can use mount instead of smbmount with Samba 2.0.6 and later. To do
so, you call mount with a filesystem type of smbfs, thus:

# mount −t smbfs //server/share mountpoint

This procedure works best when the caller is root, unless you create an /etc/fstab entry that allows
ordinary users to issue the mount command, as described in Chapter 6. When this is the case, you
should omit the filesystem type, server, and share names when issuing the mount command (as in
mount mountpoint).

Several GUI front−ends to smbmount are available. Details of operation differ from one program to
another, but as a general rule, these utilities present a GUI view of the local network, as
demonstrated by LinNeighborhood (http://www.bnro.de/~schmidjo/), shown in Figure 12.4. When
you double−click a share to open it, a dialog box asks for your username and password, and the
program then opens a window on the share using the file manager you specify when you configure
the program. GUI front−ends don't really add fundamentally new functionality to Linux's SMB/CIFS
capabilities, but they do make these networks more accessible to those who aren't familiar with
Samba's text−mode tools. You may therefore want to install LinNeighborhood, or a similar package,
s u c h  a s  K r u i s e r  ( h t t p : / / d e v e l − h o m e . k d e . o r g / ~ k r u i s e r / )  o r  x S M B r o w s e r
(http://www.public.iastate.edu/~chadspen/).

315



Figure 12.4: LinNeighborhood and other GUI SMB/CIFS browsers provide a user interface similar to
that of Network Neighborhood in Windows.

Internet Servers

If you want to be able to use a computer when you're away from it, you must install some variety of
server on that computer. Likewise, if you want others to be able to use a computer, a server is
necessary. The appropriate server depends upon your precise needs, however. There are some
commonalities to configuring servers, but every one involves at least some unique aspects, so you
should consult the appropriate documentation.

Available Servers

Linux supports a wide variety of Internet server packages. Although these can be used on a local
network alone, they're more often used to provide services to a wide variety of computers on the
Internet at large. A few of these servers are discussed to a greater or lesser extent elsewhere in this
book. Many are complex enough that entire books are written about them. You can usually find
more information in documentation files that come with the servers or on Web pages devoted to the
servers. A complete listing of servers available for Linux would be too long to reproduce here; but

316



some of the most important server types include:

FTP servers The File Transfer Protocol (FTP) is one of the Internet's most important
protocols, although it's one of the least flashy. FTP allows individuals to transfer files
to or from an FTP server. Links on Web pages to program files are often FTP links.
Several FTP servers are available for Linux, such as Washington University FTP
(WU−FTP; http://www.wu−ftpd.org/) and ProFTP (http://www.proftpd.net/). Red Hat
ships with WU−FTP, but you can install any other FTP server for Linux, if you prefer.

Mail servers If you want your computer to receive mail addressed directly to it, you
must run a mail server—a.k.a. a Mail Transport Agent (MTA). (If your ISP collects
and holds mail for you, you may not need an MTA; instead, you can use a mail
program that retrieves mail using a protocol such as the Post Office Protocol [POP].)
All major Linux distributions come with an MTA, which is usually configured by
default in a reasonable way for a standalone workstation. Red Hat ships with
sendmail (http://www.sendmail.org/), but various alternatives are available and are
used by some other distributions. Chapter 14 covers sendmail, but if your system is
to be used exclusively as a mail server, you should consider purchasing a book
devoted to the topic, such as Craig Hunt's Linux Sendmail Administration (Sybex,
2000).

News servers The Network News Transport Protocol (NNTP) controls the transfer of
Usenet news—a global discussion forum in which users post queries, solutions, and
other discussions of topics as diverse as vegetarian cooking, Linux, and the
International Space Station. News servers typically exist at ISPs and large
organizations, such as universities. They exchange articles with each other, resulting
in the global span of Usenet news. You can run a news server yourself, either if
you're in charge of the news server for a large organization or if you want to run a
small news server for internal use or to maintain local copies of the newsgroups in
which you're interested. Red Hat comes with Internet News (INN), one of the more
popular news server packages. For a small news server that maintains just a few
groups, Leafnode (http://www.leafnode.org/) may be more appropriate. Note that you
don't need a news server if you just want to read Usenet news. For that, you need a
n e w s  r e a d e r ,  s u c h  a s  t i n  ( h t t p : / / w w w . t i n . o r g / ) ,  K n e w s
(http://www.matematik.su.se/~kjj/), or Netscape's news reader component. You also
need access to a news server, such as one maintained by your ISP.

Remote login servers If you want to run programs remotely, you must run some
variety of remote login server. This is a program that accepts logins from remote
locations. A getty program (discussed in Chapter 11) is a login server for dial−up
connections. The most familiar login server for most people is Telnet, which accepts
logins from the Internet at large. (This server comes with all major Linux
distributions.) Unfortunately, Telnet sends all information, including passwords, in
cleartext, so it's not good from a security point of view. A better alternative in this
respect is the Secure Shell (SSH), which encrypts all data. One implementation of
SSH is OpenSSH (http://www.openssh.com/), which became a standard part of Red
Hat with version 7.0 of the distribution.

Web servers One of the most visible types of Internet server is the Web server,
which implements the Hypertext Transfer Protocol (HTTP). On Linux, Apache
(http://www.apache.org/) is by far the most popular Web server. Apache is complex
enough that to do more than basic configuration, you should read a book on the

317



topic, such as Charles Aulds' Linux Apache Server Administration (Sybex, 2001).

X servers An X server is a program that displays the windows created by X−based
programs. On an isolated workstation installation of Linux, the X server (typically
XFree86) runs on the same computer as the X programs that are being run. You can,
however, connect to a remote computer (using a login protocol like Telnet or SSH)
and run X programs from that remote system using your local X server. Note that,
unlike most servers, the X server runs on the computer that's nearest you; the
remote system runs the client programs. This makes sense when you think of it from
the program's point of view; to the program, the server—and you—are at the distant
location, and the server provides remote services (a display and input devices).
Chapter 13 covers XFree86 (http://www.xfree86.org/), the X server that ships with all
major Linux distributions.

WarningAll servers are security risks. Bugs in servers, misconfigured servers, and flaws in local
security (such as poor password selections by your users) make it possible for
undesirables to break into your computer. In addition, some servers provide other
possibilities for abuse. For instance, it's easy to misconfigure a mail server so that it can
be used to relay mail from anywhere to anywhere. Those who send unsolicited bulk
e−mail ("spam") frequently look for open relays to obscure their true locations. Because of
the great potential for abuse, you should run as few servers as possible on your Linux
computer. Many Linux distributions install many servers by default, so you should check
through your inetd.conf or xinetd.conf file (described shortly) and disable anything you're
not using.

Using a Super Server

One problem with servers is that when they're running, they consume system resources—primarily
memory, but also some CPU time. These resources might be better used by other processes,
particularly when the servers are used only occasionally. Systems that host many seldom−used
servers therefore turn to a super server to control the servers. A super server is a program that
looks for incoming packets addressed to several other servers. When the super server detects such
packets, it launches the appropriate server program. When the individual servers aren't needed,
they don't run. This approach can save a great deal of memory when you want to run several
servers, most of which aren't in use at any given moment.

Another benefit to using a super server is that it's usually possible to implement additional security
features with such a server. One approach to this is to use an intermediary package, such as TCP
Wrappers (described in greater detail in Chapter 15), to filter connection requests. TCP Wrappers
can examine the IP address of the calling system and allow or deny access based on this address.
This can be extremely useful if some servers, such as a Telnet or SSH server, should only be
accessible from certain computers.

Using xinetd

Modern versions of Red Hat and Mandrake Linux use the xinetd (pronounced "zi−net−dee") super
server. Even administrators of other distributions frequently replace their standard inetd with xinetd
in order to obtain the benefits of xinetd's improved security features, which are described in greater
detail in Chapter 15. This program's greatest advantage is that it combines many of the features of
TCP Wrappers in the super server proper. It's particularly useful on systems that have multiple
network cards, because it can block access to particular servers based on the network card. If your
distribution doesn't ship with xinetd, you can obtain it from http://www.xinetd.org/.

318



The xinetd configuration file is /etc/xinetd.conf. In a standard Red Hat or Mandrake installation,
though, this file just sets a few default values and loads the files in the /etc/xinetd.d directory, each
of which contains the configuration for one server. This configuration allows packages to easily add
and remove xinetd configuration files. Listing 12.2 shows a sample xinetd service entry.

Listing 12.2: A Sample xinetd Service Entry

service ftp
{
        disable         = no
        socket_type     = stream
        protocol        = tcp
        wait            = no
        user            = root
        server          = /usr/sbin/in.ftpd
        server_args     = −l −a
        interface       = 192.168.203.7
}

The meanings of the entries shown in Listing 12.2 are as follows:

service  The definition begins with the service keyword, which identifies the server
that this entry controls. You'll find service names in the /etc/services file, along with
the port number associated with the service. xinetd "listens" on the port number
associated with the service, and when it detects traffic directed at that port, xinetd
launches the server. Following the service line is an opening curly brace, which
marks the beginning of a block of configuration lines for this service. This block ends
with the closing curly brace.

disable xinetd enables you to easily disable individual servers with this line; set the
value to yes to do so. This example's entry is not disabled, but some servers install
with their xinetd configurations disabled as a security precaution; you must actively
enable the server to use it, so that accidentally installing the server won't open the
system to its security vulnerabilities.

TipOne easy first step to securing a Linux server is to disable all unnecessary
servers from xinetd.d. In fact, none of the servers configured in this directory is
necessary for Linux to boot. Some servers may sound like they're critically
important, but they aren't. The rlogin server, for example, is a very low−security
remote login server; it is not required for ordinary text−mode logins or even for
remote logins via Telnet or SSH.

socket_type  Every service is associated with a socket type. Common values are
stream and dgram.

protocol  This is the type of TCP/IP connection—tcp or udp. Most network servers
use TCP, which establishes a lasting two−way connection; but some use UDP, which
is less robust but requires less overhead because it doesn't establish a full two−way
connection.

wait  Datagram−based services (those that specify a dgram socket type) either
remain connected to the caller and specify yes here, or are multithreaded and split
off a separate thread to handle the connection. This latter type specifies no. This

319



entry isn't meaningful for streaming connections, but by convention they specify no.

user  xinetd launches every server using a particular username. Many servers must
be launched as root, but some may be launched under some other username to
improve security.

server  This item specifies the server that's to be launched when traffic directed at
the service's port is detected. Normally, xinetd requires a complete path to the
program.

server_args  This option provides arguments that should be passed to the server.
Some require special arguments when run from a super server, or you might simply
want to launch them with arguments to have them behave in some nonstandard way
(such as increase their debugging output).

interface  The final entry in this example is the IP address associated with the
network interface on which xinetd is to listen for connections. This entry is often
omitted from xinetd configuration entries, but it's very useful on systems with multiple
network interfaces. On such systems, xinetd doesn't respond to access attempts on
interfaces that aren't explicitly enabled, which can be a very effective security tool.

xinetd is an extremely powerful package, so you should consult its documentation for information on
more advanced options. Chapter 15 also covers some of xinetd's security−related features.

After you've made changes to your xinetd configuration, you must restart it. You can do this using its
SysV startup script, as follows:

# /etc/rc.d/init.d/xinetd restart

Using inetd

Although xinetd has been gaining in popularity in recent years, the most common super server in
most Linux distributions remains inetd. This server is controlled through the /etc/inetd.conf file. Each
line in this file corresponds to a single server. An example that uses TCP Wrappers is as follows:

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd −l −a

The meaning of each element of this entry is similar to the meanings presented earlier, in "Using
xinetd," with respect to xinetd configuration. Where xinetd relies upon named entries on separate
lines, though, inetd relies upon a fixed order of entries on a single line. Specifically, using the xinetd
names outlined earlier, the order is:

service socket_type protocol wait user server server_args

Most of these elements take the same values as their equivalents in xinetd. The wait field, though,
takes values of wait and nowait, rather than yes and no. The server field frequently points to tcpd,
the TCP Wrappers binary. The name of the server is passed to TCP Wrappers as the first argument
in the server_args field.

In the default inetd.conf file, you'll find entries for most common servers. Most of these entries are
commented out with pound signs (#), however. You can therefore uncomment the appropriate
entries when you add a server of a particular type. Conversely, if you remove a server or want to
disable it, you can comment out the appropriate line if it's active. You can use this feature rather

320



than xinetd's disable field. As with xinetd, you should disable unnecessary inetd−driven servers.

After you've made changes to /etc/inetd.conf, you must send the server a SIGHUP signal to tell it to
reload its configuration file. You can do this as follows:

# ps ax | grep inetd
  468 ?        S      0:00 inetd
# kill −SIGHUP 468

The process ID number (468 in the preceding example) may be different on your system. If
possible, you should immediately test that your changes took effect. If you added or removed a
server, make this test by trying to connect to the server.

General Super Server Considerations

Because a super server doesn't keep the real servers loaded at all times, you do not normally need
to restart the super server if you update the underlying server. You can upgrade your Telnet server,
for instance, and the super server will immediately begin using the new version. The exception to
this rule is if the updated server needs to be called in a new way—if its name or location has
changed, for instance.

The drawback to using a super server is that it necessarily takes some time to launch its "child"
servers. The result is that the server computer won't respond immediately to requests; it may take
anywhere from a fraction of a second to several seconds for the system to respond to a request.
This can be a major drawback for some servers, such as Web servers. You'll have to judge for
yourself whether the delay is worth the improvement in memory use and (perhaps) security of using
a super server.

Some servers don't work very well, if at all, from a super server. Most installations don't run Samba
or sendmail through inetd or xinetd, for instance; although it's possible to run these servers through
a super server, the performance penalty is too great. You should therefore not think that you've shut
down all unnecessary servers once you've cleared out superfluous servers from /etc/inetd.conf,
/etc/xinetd.conf, or /etc/xinetd.d. You may need to clean more from the /etc/init.d directory tree or
from other system startup files.

In Sum

TCP/IP networking is the most popular type of networking today. It's the protocol that's used on the
Internet, and many local networking tasks use TCP/IP as well. Configuring Linux for TCP/IP
networking involves using a handful of different tools to activate a network interface, tell Linux how
to route packets, and so on. Most distributions allow you to configure these options when you install
the OS, or you can do it after−the−fact through either a GUI configuration utility or by editing
configuration files in a text editor.

File sharing is one of the most popular networking tasks on small networks. This task builds on
basic TCP/IP networking features, allowing you to store files on a single computer for use by many
systems. This can be a great boon in many work environments, boosting productivity by allowing
individuals to work at any computer and to exchange files among themselves easily.

Linux supports a wide variety of TCP/IP−based Internet servers, which can provide private and
public services to remote systems. Many of these servers are the topics of entire books. Chapters

321



13 and 14 introduce two of these services, the X Window System and mail servers.

322



Chapter 13: The X Window System

Overview

Graphical user interfaces (GUIs) are practical necessities for many computer uses today. Although
it's possible to accomplish a lot with text−mode tools, many users are more comfortable in a GUI
environment than with text−mode programs. GUIs are also extremely useful for certain classes of
programs, such as graphics editors. Some OSes, such as MacOS, integrate their GUIs extremely
tightly into the OS as a whole. Linux uses a looser arrangement, however. In Linux, the GUI is
entirely separate from the core of the OS. In fact, several different GUIs are available for Linux, but
the most common by far is known as the X Window System, or X for short.

Most modern Linux distributions, including Red Hat, make every effort to configure X properly at
installation, and to set up defaults that make for an appealing and easy−to−use GUI environment.
Such configurations may lead a new Linux user to believe that Linux is more like Windows or
MacOS than it is. In fact, X is very different from these operating systems in many ways, leading to
distinct advantages and disadvantages to X as compared to the GUIs in other OSes.

This chapter begins with a look at basic X concepts, such as X as a network protocol. The chapter
then proceeds to an overview of X configuration—although, with any luck, this will be handled
automatically at system installation time. Then, a discussion is provided of each of three important
components of a working X environment: the window manager, widget sets, and the desktop
environment. This chapter concludes with a look at some of the issues involved in running X−based
applications on a Linux system.

X Concepts

You're probably already familiar with GUI environments, be it from using Windows, MacOS, or some
other OS; or from using X on Linux or Unix as a user (as opposed to as a system administrator).
Much of your knowledge from these experiences can be useful in using and administering X. You
should be aware of several unique aspects of X, however. Many of these characteristics make X
much more flexible than are most other GUIs, but some can be limiting or create confusion on the
part of new X users.

X as a Network Protocol

Compared to most other GUI environments, X's most unusual characteristic is that it's a very
network−oriented tool. The basic idea behind X is this: When an X−based program is launched, the
program attempts to connect to an X server. The X server provides a screen on which the program
can display its output, and a keyboard and mouse to provide for input.

When you set up a Linux computer as a workstation, it defaults to using a local X server for these
functions. This X server uses the computer's standard keyboard, mouse, and monitor. Therefore, no
actual network accesses are involved. A Linux program can easily direct its X requests to an X
server running on another computer, however. When this happens, the result is that you can use
one computer (on which an X server is running) to run software that's located on another computer
(the client). Typically, you use a remote login client (such as Telnet; see Chapter 12) and an X
server on the local system, with a login server and X client (the program) on a remote system. After
logging in to the remote system, you issue appropriate commands to make its X programs use your
local display, and launch an X server locally. The remote system need not even have a display or X

323



server. This arrangement is illustrated in Figure 13.1.

Figure 13.1: The X server runs on the computer at which a user sits; the X client may be located
miles away from the user.
The terminology of the client/server relationship is confusing to most Linux newcomers, because
most people think of servers as running on powerful computers that are located remotely. In most
cases, it's the client that runs on the computer at which the user sits. This relationship is reversed in
the case of X. To understand and remember this, it's helpful to think about it from the application's
point of view. To the X program, the X server provides network services, just like a file server or
Web server. The fact that there's a human seated in front of the X server is irrelevant to the
program.

NoteO n e  n e t w o r k  p r o d u c t ,  t h e  V i r t u a l  N e t w o r k  C o m p u t i n g  ( V N C )  s e r v e r
(http://www.uk.research.att.com/vnc/), can be used to provide remote access to a Linux
computer much as can be done through X. In VNC's network model, however, the server runs
on the same computer as do the X programs; the user runs a small client program that
communicates with the VNC X server. Effectively, VNC adds an extra layer to the line of
communications, in the process reversing the usual X client/server relationship so that it's
more intuitive to most users.

Even if you use X only locally, on a single computer, the network−centric design of X has important
consequences. These include:

X can be configured to use a font server (described shortly) to handle font rendering. Some
distributions, including Red Hat 7.3, use a font server by default. You can, however, use a
single font server for all the computers on your network, which can simplify font
administration.

• 

Like all network servers, X uses assorted security measures. On some distributions (but not
Red Hat), you may find that you can't run X−based programs if you use su to acquire root
privileges. If your X security is lax, users of other computers may be able to snoop on your
display or display their own programs on your screen.

• 

X programs rely upon certain environment variables to tell them what display to use. These
variables are normally set correctly in default Linux installations, but these settings may
become damaged. You must also change them if you want to use a remote display.

• 

X is typically slower than other GUI environments. The need to process display data through
network protocols, even when the display is local, causes some slowdown. This effect is
likely to be quite modest on modern hardware, but you might notice it with some applications
or on older hardware.

• 

324



On the whole, X's network−centric nature makes for a great deal of flexibility in a network
environment. You can run the same programs from many computers, while running these programs
on just one computer. The complexity and speed hit of X can be a drawback on an isolated
workstation, however.

X Security

If you're using X only locally, chances are your distribution has configured X in a reasonable way.
On some distributions, however, you may need to loosen security a bit if you want to use X
programs after you've used su to acquire root privileges. If you want to run X programs remotely,
too, you'll need to make a couple of adjustments.

Setting X Client Security Options

To use an X server, the client computer has to know which X server to use. This is done through the
DISPLAY environment variable, which you can set using the following command (assuming you're
using the bash shell):

$ export DISPLAY=hostname:displaynum

In this command, hostname is the name of the computer on which the server runs (that is, the
computer at which you're sitting), and displaynum is the number of the display. displaynum is
normally 0 or 0.0 for the primary X display, but it may be a higher number if the computer runs
multiple X servers, as described shortly in "X Virtual Consoles." It's important to realize that you
issue this command on the computer that hosts the X programs you intend to run, not on your local
computer.

Using xhost on the X Server

Most X servers are configured by default to refuse connections except from the local system. Some
distributions also refuse connections except from the user who's logged on locally. When this
happens, you won't be able to use X programs after you use su to acquire root privileges. There are
various ways to tell X to be more lenient in the connections it accepts. The simplest is to use the
xhost command, which uses the following syntax:

xhost [+|−][hostname]

To add a client to the list of allowed hosts, use +hostname; to remove a client, use −hostname. If
you omit the hostname, the X server accepts or refuses all connections, no matter what the client.
This can be a potentially major security problem when adding permissions. Unlike the DISPLAY
environment variable, this command must be issued on the X server computer—the one at which
you sit.

Tip If you regularly run programs on a variety of computers from a single Linux computer,
you can add appropriate xhost commands to your .xsession or other startup file
(described later in this chapter) to allow these connections by default. You can use
localhost as the hostname to ensure that all local users (including root) can use your
display, so you can use su and then run X programs as the alternative user.

As an example, consider the following: You're sitting at the computer dino.pangaea.edu, and you
want to run a program that's located at larch.threeroomco.com. Assuming both computers are Linux
or Unix boxes, you would follow these steps:

325



Log in to dino.pangaea.edu.1. 
If dino isn't already running X, start it by typing startx.2. 
Issue the command xhost +larch.threeroomco.com.3. 
Use Te lnet  o r  Secure  She l l  (SSH)  to  log  in  to  la rch . th reeroomco.com f rom
dino.pangaea.edu.

4. 

Type export DISPLAY=dino.pangaea.edu:0 on your larch login.5. 
Run whatever programs you want to run using your larch login.6. 
When you're done, type xhost −larch.threeroomco.com on dino to remove larch from
dino's accepted host list.

7. 

X servers are available for a wide variety of computers, not just Linux and Unix boxes (see the
sidebar "Alternatives to XFree86" later in this chapter). You can therefore follow a similar procedure
if dino runs some other OS. Most X servers for Windows and other OSes, however, are fairly lax on
security, so you don't need to use the xhost commands; these X servers accept connections from
just about anywhere to begin with.

If your computer (dino) sits behind a firewall, especially one that uses IP masquerading, you may
not be able to follow these steps, because the outside client won't be able to breach the firewall to
connect to your X server. There are two common workarounds to this problem:

Use VNC VNC, mentioned earlier, reverses the client/server configuration, so the
server falls outside the firewall. Assuming your firewall doesn't block outgoing VNC
connections, you can use a local VNC client and run the VNC X server on the remote
system. Consult the VNC documentation for details of its use.

Use SSH SSH can be configured to tunnel X connections through its own
connection. When this happens, the SSH server looks for X connection attempts
from local programs and passes them back to the system on which the SSH client
(and X server) runs. When properly configured, this works automatically, so you can
skip steps 3, 5, and 7 from the above procedure. If this doesn't work initially, check
the file /etc/ssh/ssh_config on the client; its ForwardX11 line should read yes. The
server's /etc/ssh/sshd_config file should include a line that reads X11Forwarding yes.

Using xauth Security

One problem with using xhost to enable remote computers to access an X server is that this
program gives all users of the remote computer access to your screen. If the remote system has
many users, and if one of them is up to no good, that person could display programs on your
screen, capture your keystrokes, and so on. Fortunately, X provides a more secure method of
authentication: xauth. To use xauth, follow these steps:

Log into the X server system (such as dino.pangaea.edu).1. 
Type startx to start X on the X server computer, if it isn't running already.2. 
Type the following command on the X server system (dino) to give your programs on
larch.threeroomco.com access to your local X server:

# xauth list | grep "dino:0" | sed −e 's/^/add /' | ssh
larch.threeroomco.com −x xauth

3. 

Use your preferred remote login protocol to log into the X client system (larch).4. 
Run whatever programs you want to run.5. 

326



This procedure is not without its drawbacks, unfortunately. Step 3 relies upon the presence of an
SSH client on the X server and an SSH server on the X client. You could modify this command to
use rsh rather than ssh, but rsh isn't a very secure protocol, so such a modification is inadvisable.
This step extracts an authentication key that the X server uses to determine who may access it, and
transfers that key to the X client system. It's possible to perform the task accomplished in step 3 by
using the xauth utility in interactive mode and transferring the key manually, but doing so is a
tedious process.

If you use SSH in step 4, SSH may attempt to tunnel X connections. In fact, as described earlier, in
"Using xhost on the X Server," doing this obviates the need to perform the procedure described
here, so this isn't really a drawback of the use of xauth. If SSH is installed on both computers, it's
generally preferable to use SSH's X tunneling capabilities, because this provides encryption.
Without such encryption, all data passed as part of an X session are vulnerable to capture by
miscreants.

Some X tools use xauth "behind the scenes." For instance, XDM and similar tools (described in the
upcoming section, "Starting X Automatically") use xuath to grant users access to the X server. SSH
does the same when it tunnels connections, although in this case X uses xauth locally and stands in
for an X server on the X client system, and for the X client on the X server system.

X Virtual Consoles

Chapter 6 described the use of virtual consoles for text−mode logins. If you use a text−mode login,
you can hit Alt+F1 through Alt+F6 to switch between different screens, each of which can display a
different login session. You can therefore use one to log in with your normal username, another to
log in as root, and so on; or log in multiple times as one user and switch easily between different
programs. If you're running X, you can switch to a virtual text−mode console by pressing
Ctrl+Alt+Fn, where n is the console number.

Virtual consoles are not restricted to text−mode logins, however. When X runs, by default, it takes
over an unused virtual console (typically console 7). You can therefore switch back to X from a
text−mode console by pressing Alt+F7 (if X is running). Of potentially greater interest, it's possible to
run multiple X sessions, each in its own virtual console. You can then switch between them by
pressing Ctrl+Alt+Fn, where n is a number from 7 up. To launch a second X session, follow these
steps:

If you're already running in X, press Ctrl+Alt+F1 to get to a text−mode login: prompt. Log in.1. 
Type startx −− :1 vt8 to start X on virtual terminal 8. You should see X start up.2. 
Press Ctrl+Alt+F7 to switch back to your original X session or Ctrl+Alt+F8 to switch to the
new one.

3. 

Why would you want to start a new X session? After all, most window managers support multiple
workspaces, so you can easily keep lots of windows open on different screens. You can even use
su within an xterm to launch programs as different users. Using multiple X sessions does have
certain advantages, however:

You can run different window managers in different sessions. This isn't ordinarily a
compelling reason to run multiple sessions, but it can be useful if you want to evaluate a
window manager or if you need to use one for some programs but prefer another for other
programs.

• 

You can start X in different resolutions. Your normal startup might be in 1280×1024
resolution, but if you need to test software at 800×600, you can run a separate 800×600

• 

327



session. You can use the −bpp (for XFree86 3.x) or −depth (for XFree86 4.x) parameter to
startx, along with an appropriate XF86Config setting (as described shortly), to force X to
start at a given resolution when you start at a given bit depth. For example, the following
command starts XFree86 4.x at 32−bit color depth, which you can associate with a specific
resolution:

$ startx −− :1 −depth 32 vt8
You can start multiple X sessions as different users, complete with a different desktop
environment and assorted X customizations. This can be useful when testing different
environments or when debugging a particular user's configuration.

• 

Configuring an X Server

Configuring X entails making adjustments to one primary file: XF86Config. This file resides in the
/etc/X11 directory on Red Hat systems, but some distributions place the file in /etc. You can
configure X by directly editing its XF86Config file or by using an X configuration tool. In most cases,
X is configured reasonably during system installation, but sometimes the installation routines bungle
the job. You might also need to adjust the configuration to change configuration details or if you
change your video hardware.

Most Linux distributions released in 2002, including Red Hat 7.3, ship with two versions of XFree86:
3.3.x and a 4.x version. XFree86 4.x represents a major change in XFree86, and particularly in its
video driver model. Some of the older 3.3.x drivers were not immediately available for 4.x, and
some had bugs or performance problems, particularly in the 4.0.x series. Thus, although XFree86
4.x provides additional features, 3.3.x remains popular in 2002. For the average user, it's best to
leave the X configuration as whatever your distribution selected. In some cases, though, you may
want to upgrade to XFree86 4.x (or downgrade to 3.3.x). Consult the main XFree86 Web site
(http://www.xfree86.org/) to learn more about the differences between these two versions of
XFree86.

To determine what version of XFree86 your system is running, type X −version. This command
should return information on the version number of the X server that's linked to the X command. In
some unusual situations, this might not be the server that's run when you start. This is sometimes
determined by a link in /etc/X11, usually called X, so you can check that link, as well. If it points to a
file called XFree86, the system runs XFree86 4.x; if it points to a file called XF86_Server, where
Server is a server name such as SVGA or S3, then the system starts XFree86 3.3.x.

Note Some distributions, such as Red Hat 7.3, install components of both versions of
XFree86. Typically, the font and support files from version 4.x are installed, along
with a server file for version 3.3.x. This setup may seem strange, but it works. Use
the 3.x configuration instructions when adjusting such a system. Because 4.x is
more common today, we describe it first.

XFree86 4.x

XFree86 4.x ships with all new Linux distributions in 2002, and in most cases is the default X server.
In some cases, the older XFree86 3.3.x works better because of more mature drivers. If your
system uses XFree86 3.3.x, consult the upcoming section, "XFree86 3.3.x." Using the older version
of XFree86 will lose you several features, including support for multihead displays (which use
multiple monitors to create one larger virtual desktop), support for Data Display Channel (DDC),
which enables XFree86 to automatically determine the resolutions a monitor supports, and support

328



for the popular TrueType font format.

Officially, XFree86 4.x is controlled through a file called XF86Config, which is stored in /etc or
/etc/X11. Many Linux distributions in 2002, however, ship with support for both XFree86 4.x and
XFree86 3.3.x, and the latter version uses a configuration file of the same name, but the format of
the configuration file is somewhat different. Thus, the XFree86 4.x configuration file is often called
XF86Config−4 to differentiate it from its earlier cousin file.

The XFree86 4.x configuration file is broken into a series of sections, which resemble the following:

Section "ServerLayout"
        Identifier     "Anaconda Configured"
        Screen      0  "Screen0" 0 0
        InputDevice    "Mouse0" "CorePointer"
        InputDevice    "Keyboard0" "CoreKeyboard"
EndSection

Each section is identified by a name (in quotes following the keyword Section), consists of a series
of keywords and one or more values associated with those keywords, and ends with the keyword
EndSection. The preceding example is typical of the ServerLayout section, which configures a
single X server by binding together a display, keyboard, and mouse. Other sections set various
details, such as the device file used to access the mouse and the locations of fonts. The sections in
which various options are set are as follows:

ServerLayout This section defines some overarching features of the server.
Specifically, this section binds together input and output devices. Chances are you
won't need to adjust this section from its default.

Files The Files section includes paths to directories that contain important files. The
most important of these are the FontPath lines, which point X to its font files and font
servers, as described shortly.

Module This section specifies server modules you want loaded. Modules can
provide functionality such as TrueType support and DRI support. You probably won't
have to adjust this section of the file.

InputDevice Typically, there are two InputDevice sections—one for the keyboard
and one for the mouse. Aside from the keyboard repeat rate, which you may want to
adjust via the AutoRepeat line, the keyboard settings are mostly things that you won't
need to adjust. Your mouse's settings are more likely to need adjustment. The Option
"Protocol" line specifies the type of mouse you're using—PS/2 for most modern
PS/2−interfaced mice, Microsoft for Microsoft serial mice, and so on. (The
XF86Config man page includes information on the allowable values for this option.)
You specify the device file to which the mouse is attached using the Option "Device"
line. Mistakes on these two lines are common sources of X difficulties. If set
incorrectly, X won't start, will start without any pointer showing, or will start, but you
won't be able to move the mouse pointer.

Monitor This section defines the characteristics of your monitor. Of most interest are
the HorizSync and VertRefresh lines, which define the horizontal and vertical refresh
rates of which your monitor is capable. You should find this information in your
monitor's manual. This section may also contain Modeline parameters, which you
should not adjust unless you understand how video hardware works. (It's not

329



uncommon for XFree86 4.x's XF86Config file to lack Modeline lines, instead relying
upon DDC to obtain this information.)

Device The XF86Config file contains one or more Device sections, which provide
information on your video card. With most modern video cards, this section is quite
short. You should not adjust these settings unless you add RAM to your video card
or replace the board entirely (in which case, you may want to run an X configuration
utility to do the dirty work). The Driver option specifies the driver that XFree86 uses,
so you may need to change this option if you upgrade your video card.

Screen A Screen section references the Monitor and Device sections by name. You
may want to adjust the Screen section for your monitor/video card combination to
configure it for your preferred screen resolution and bit depth. There are two
important options in the Screen section:

DefaultDepth This option sets the color depth that X uses when it
starts. The default is 8, which results in a mere 256−color display. The
value 16 is usually a better choice on modern hardware. Values of 24
and 32 work well on some systems, but occasionally produce
problems.

Subsect ion "Display"  A  D isp lay  subsec t ion  de f ines  the
characteristics of a given color depth. The Depth line identifies the
color depth for which the subsection is written, and the Modes line
identifies the resolutions at which X will work in this color depth. You
can use this feature to define different resolutions to be associated
with different color depths. Your video card may be incapable of
producing 32−bit color at your highest resolution, so you can specify a
lower maximum resolution for the 32−bit display. You can then start
multiple X servers, as described earlier, using the color depth as a cue
to use a different resolution. XFree86 4.x sometimes relies upon DDC
to compute this information dynamically.

DRI If you're lucky enough to have a video card with 3−D acceleration features
supported by XFree86, you can define who may access these features in this
section. A simple line allows all users to access DRI functions:

Mode 0666

Tip XFree86 4.x uses DDC by default, but it sometimes yields less−than−optimal
results. For example, one author uses an Iiyama VisionMaster Pro 450 monitor,
which is able to display 1280×1024 at 100Hz, but DDC produces only an 85Hz
display at this resolution. This problem can be overcome by copying the
appropriate Modeline lines for a 100Hz 1280×1024 display from a 3.3.x
XF86Config file to the 4.x XF86Config file. (These lines are clearly marked in the
default 3.3.x XF86Config file.)

XFree86 3.3.x

XFree86 3.3.x configuration is similar to that of XFree86 4.x, but the earlier versions lack several
configuration file features. The most important of these are the ServerLayout, Module, and DRI
sections. XFree86 3.3.x uses sections called Keyboard and Pointer for setting keyboard and mouse
options, rather than InputDevice sections. The DefaultDepth option is called DefaultColorDepth in

330



XFree86 3.3.x. The 3.3.x configuration file also includes a section called ServerFlags, which sets
flags for your video card (chances are you won't need to touch this section).

The most important difference between XFree86 3.3.x and XFree86 4.x is that the latter uses a
common X server program (XFree86) and driver modules for particular cards, whereas the former
uses separate X server programs for each video card. Thus, if you replace a video card, you may
need to install a new X server package and replace your existing /etc/X11/X link to point to the new
X server. (This is also how you switch from using XFree86 4.x to using XFree86 3.3.x, or vice versa,
if you have problems with the default for your installation.)

Using an X Configuration Tool

As a general rule, it's easiest to create an XF86Config file using an X configuration tool.
Hand−editing XF86Config may be useful when you change hardware, but creating a configuration
file from scratch is a daunting task, even for X gurus. All major Linux distributions include X
configuration tools that run during system installation. These tools are usually available after
installation, as well. Examples include:

XFree86  The XFree86 4.x executable program, XFree86, can generate a starter
con f i gu ra t i on  f i l e .  Type  XFree86  −conf igure  t o  c rea te  a  f i l e  ca l l ed
/root/XF86Config.new, which should be at least minimally functional. You can then
modify it via xf86cfg (described next) or manual editing, should you need to tweak it.

xf8cfg  This program is the standard GUI X configuration tool for XFree86 4.x. It's
shown in Figure 13.2. To configure X with this utility, you can right−click the icon for a
component in the main section of the window and select Configure from the resulting
pop−up menu.

Figure 13.2: xf86cfg lets you configure XFree86 4.x in a point−and−click fashion.

331



Warning S o m e  v e r s i o n s  o f  x f 8 6 c f g  a s s u m e  t h e y  s h o u l d  w o r k  o n
/etc/X11/XF86Config, not /etc/X11/XF86Config−4. You might therefore
need to temporarily rename the file, or create a link, to use this utility. This
was true in Red Hat 7.0, for instance, but not in Red Hat 7.3.

xf86config This is the crudest of the common XFree86 3.3.x configuration tools. It
runs entirely in text mode, and asks you a series of questions about your hardware
and desired configuration. There's no possibility to go back and correct an error, so
you must kill the program and start again if you make a mistake. Because of its crude
user interface, xf86config can be used before X is running or if X is seriously
misconfigured. This program also provides more control over the contents of
XF86Config than do most configuration tools, which is helpful with some unusual
hardware.

Xconfigurator This program is another text−mode XFree86 3.3.x configuration tool.
Unlike xf86config, though, Xconfigurator uses color text and text−mode dialogs rather
than simple streams of text. This makes Xconfigurator easier to use.

XF86Setup This is an X−based configuration tool for XFree86 3.3.x. You can
therefore use this utility to reconfigure an X server that's working nonoptimally, but
you can't use it to get X working at the outset.

Note Most distributions include GUI X configuration tools that run during
system instal lat ion. These tools typical ly start the system in a
lowest−common−denominator VGA resolution in order to collect
information. Chapter 2 includes information on X configuration during
system installation, but details vary substantially from one distribution to
another.

You should have several pieces of information handy before you begin configuring your X server.
Although some configuration utilities can probe for some of this information, you'll need to know
some of it yourself. These critical features are as follows:

Mouse type Most modern computers use a PS/2 mouse, but there are several other
options, such as Logitech and Microsoft mouse protocols.

Mouse device Most distributions create a link so that you can access a mouse as
/dev/mouse. You may need to do the same, or specify the mouse device directly.
/dev/psaux is the usual device file for PS/2 mice. Serial mice can usually be
addressed as /dev/ttyS0 or /dev/ttyS1.

Video card information Some X configuration utilities let you select a card from a
long list of model names. Others require you to know the chipset used on the card.
For very old cards, you may need to know what RAMDAC and clock chips the boards
use. Knowing how much RAM the card boasts may be necessary for some cards.

Monitor capabilities You should know the maximum horizontal and vertical refresh
rates of your monitor. You can obtain this information from the monitor's manual. If
your system uses XFree86 4.x and the monitor was built in the late 1990s or later,
XFree86 can obtain this information via DDC.

Desired resolutions You'll be asked to specify what resolutions you want to use, as
well as what color depths.

332



TipLaptop computers and desktop LCD monitors can be particularly tricky to configure for X,
because these displays are unusually finicky about acceptable resolutions and display refresh
rates. Check http://www.linux−laptop.net/ for a collection of links to Linux users' experiences
with various laptops. Most of these include ready−made XF86Config files you can use instead
of building one yourself.

Alternatives to XFree86

XFree86 is the most common X server in Linux, but it's not the only one available for Linux, nor is it
the most common outside of the Linux world. Two commercial X servers are available for Linux: Xi
G r a p h i c s '  A c c e l e r a t e d  X  ( h t t p : / / w w w . x i g . c o m / )  a n d  M e t r o L i n k ' s  M e t r o − X
(http://www.metrolink.com/). Both servers offer an assortment of features that are useful in certain
specific situations, such as multiscreen and touch−screen support. These servers also sport
somewhat different lists of supported hardware than does XFree86, so you may want to use a
commercial server with some video hardware. Commercial X servers for Linux use a configuration
file similar to XF86Config, but their details differ. Consult the software's documentation to learn how
to configure it.

Non−Linux systems frequently use X servers other than XFree86. Commercial Unixes often ship
with their own X servers. X servers are also available for non−Unix systems, such as Windows and
MacOS. Examples include Hummingbird's eXceed (http://www.hcl.com/products/nc/exceed/),
Starnet's X−Win32 (http://www.starnet.com/), NetSarang's Xmanager (http://www.netsarang.com/),
Tenon's  Xtools  (ht tp : / /www.tenon.com/products/x tools / ) ,  and PowerLAN's eXodus
(http://www.powerlan−usa.com/exodus.html). These programs typically use GUI configuration
utilities. Those that run inside the host OS's GUI (such as all the Windows and Macintosh products)
typically don't require special mouse or video configuration. They usually do require font
configuration, however, and often offer features that are meaningless in Linux, such as the ability to
run an X session within a single host OS window.

If you run a network and want to provide X−based access to multiple users, an X terminal is another
X option you may want to investigate. An X terminal is a computer that's specialized to run X. Such
a computer has little memory, no hard disk, and an anemic CPU. X servers typically include large
color displays. The "NCD X−Terminal Mini−HOWTO" document covers many details of X terminal
configuration.

Starting X Automatically

When you installed Linux, you may have been asked whether you wanted to start the OS in text
mode or graphics mode. If you selected the former option, you see a text−based login prompt and
can launch X only after logging in. If you selected the latter option, and if the system's X
configuration is correct, you should be greeted by an X−based login program whenever you start the
system. On older versions of Linux, this X−based login was handled by a program known as the X
Display Manager (XDM). More recent versions of Linux typically use similar utilities that are
associated with the KDE or GNOME projects (described shortly). These updated packages are
known as the KDE Display Manager (KDM) or the GNOME Display Manager (GDM). All three
programs serve a similar function, however: They let you log on to the computer. For simplicity's
sake, the rest of this chapter refers to all these programs as XDM.

Whether the computer boots into text or graphics mode is handled by the /etc/inittab startup script.
Near the start of this script, you should find a line that resembles the following:

333



id:5:initdefault:

The critical component of this line is the digit—5 in this example. This digit indicates the default run
level for the computer, as described in Chapter 3. Run level 1 is a single−user mode that's often
used for emergency maintenance; run level 6 forces the computer to reboot; and the intervening run
levels are defined by the distribution. On most distributions, including Red Hat 7.3, run level 3 is
used for text−mode startup, and 5 indicates full GUI startup via XDM. (These numbers are arbitrary;
for instance, Slackware Linux uses 3 and 4 instead of 3 and 5.)

Although Linux starts at a run level specified in /etc/inittab, you can change the run level of a
running system using the telinit command, as in telinit 3 to change to run level 3.

TipIf you plan to change your X configuration, it's best to switch out of full GUI login mode first. Use
telinit 3 to switch to a text−mode login. You can then change your X configuration and type
startx to launch X. If there's a problem with the configuration, you'll be dropped back to a
working text−mode session. You can then examine the .xsession−errors file in your home
directory for clues to what went wrong. You can then correct the problem and, when X is
working, use telinit 5 to return to a full GUI configuration. If you change your X configuration
without testing it in this way, you run the risk of creating a system that can't start X, but that
keeps trying to do so, thus blocking your use of the console.

Configuring a Font Server

A font server is a network server that delivers font bitmaps to computers that request them. The font
server may work from font bitmaps or fonts in scalable outline formats, such as PostScript Type 1 or
TrueType fonts. When the server uses the latter, it rasterizes the font—that is, the server converts
the font into a bitmap of the size the client requests. The principle benefit to using a font server is
that you can configure a font server on a single computer with all the fonts you want, and you need
not install those fonts on other computers on the network. Instead, you tell those computers to
access the font server that's been configured in the way you desire. Some distributions use font
servers because XFree86 3.3.x does not by default understand TrueType fonts (although XFree86
4.x does). It's easier to add TrueType support to a separate font server program than to the
XFree86 3.3.x font handler, so using a local font server is a good way to provide TrueType font
support in Linux.

Warning Check the license terms of any font before adding it to a font server. In the United States,
outline fonts are considered computer programs, and therefore may be copyrighted and
subject to terms of use similar to those of other programs. These terms may forbid the
use of a font on a font server or require a per−client payment.

Adding Fonts to a Font Server

Some Linux distributions don't use font servers by default, although they're perfectly capable of
doing so. Other distributions, including Red Hat, use font servers as a matter of course, although
they're usually configured to be accessible only to the local computer. You can check your system's
configuration by examining the XF86Config or XF86Config−4 file (located in /etc/X11 in Red Hat,
but in /etc on some other distributions). Early in this file, there should be one or more lines that
begin with FontPath:

FontPath   "/usr/X11R6/lib/X11/fonts/Type1"
FontPath   "unix/:7100"

334



FontPath   "tcp/dino:7101"

Each of these lines specifies a location where fonts may be found. The first line of this example
indicates a directory on the X server computer's hard disk, but the next two specify font servers. The
unix/:7100 server is the default Red Hat 7.3 server, which is private to the local computer. The
tcp/dino:7101 server is a network−accessible font server running on port 7101 of the computer
called dino. (See Chapter 12 for a discussion of ports and hostnames.) This line has been added to
the default configuration; it is not a standard part of any distribution's configuration.

The default Red Hat 7.3 font server is controlled from the file /etc/X11/fs/config. This file includes
several settings, the most important of which are the following:

catalogue This setting is a comma−delimited list of directories that contain fonts. The
list may span multiple lines and ends when a directory is not followed by a comma.

default−point−size You can set the default size of fonts, in 10ths of a point (a
common measure of font size), for when a program doesn't specify a font size. Red
Hat sets this value to 120, which corresponds to 12 points.

default−resolutions Point sizes relate to physical size, but computer displays vary in
the number of pixels displayed on any given size of screen. Because computer
graphics (including font displays) work on pixels, point size can vary depending upon
the size of your monitor and the resolution at which you run it. Most displays use a
resolution of between 72 and 100 dots per inch (dpi). The resolution may vary both
horizontally and vertically. Your screen might be 75×80 dpi, for instance. You can set
the default resolution using the default−resolutions setting, which lists both horizontal
and vertical resolutions, separated by commas. You can specify a second default
resolution after the first, separated from the first by commas.

If you want to add fonts to your system, you must specify the path to those fonts, either directly in
XF86Config or by including the path in /etc/X11/fs/config. You must also create an appropriate
configuration file within the font directory to tell the system about the fonts you've added. It's best to
separate fonts of different types in different directories; for instance, TrueType fonts in one directory
and Type 1 fonts in another. To create X font information files for a directory, follow these steps:

Use a text−mode login or open an xterm window.1. 
Change to the target font directory.2. 
If the directory contains TrueType fonts, issue the command ttmkfdir . >fonts.scale. This
action creates the fonts.scale file, which contains font names associated with each font file
and other critical information.

Note Older versions of xfs and XFree86 don't support TrueType fonts. Most
modern Linux distributions ship with this support, however.

3. 

If the directory contains PostScript Type 1 fonts, do the following:

Ob ta in  and  i ns ta l l  t he  t ype1 ins t  package .  ( I t  may  be  ob ta ined  f rom
http://rpmfind.net/linux/RPM/TByName.html, among other places.)

A. 

Type type1inst to create a fonts.scale file for the Type 1 fonts in a directory.B. 

4. 

Issue the command mkfontdir −e /usr/X11R6/lib/X11/fonts/encodings. This creates a
fonts.dir file from the fonts.scale file or from font information in bitmapped fonts in the
directory.

5. 

Check the fonts.dir file. It should begin with a number (indicating the number of fonts defined
in the file). Each subsequent line should then begin with a font filename and conclude with

6. 

335



an X font specification, which includes the font name and assorted other information.

At this point, your configuration files point to the new font directory, which should contain a fonts.dir
file that correctly identifies the new fonts. You can either shut down X and restart it or issue the
following commands to begin using the newly defined fonts:

# killall −USR1 xfs
# xset fp rehash

Warning If there's an error in your new font configuration, X may behave very strangely or
fail to start. This can be particularly troublesome if your system is configured to
boot directly into X, because Linux may lock itself into a cycle of trying to start X,
failing, and trying again, making the system inaccessible from the console. You
should therefore ensure that you have access to the system through some other
means, such as a dumb terminal (Chapter 6) or a Telnet login. Alternatively, if
you encounter problems, you can modify the configuration from an emergency
boot floppy.

To check that your changes have taken effect, you can use the xfontsel program, shown in Figure
13.3. This program allows you to display all the fonts that are available on the X server from which
it's run.

Figure 13.3: Choose the font by clicking fmly, and set point size and other characteristics, if you like.
Note Like most X programs, xfontsel takes its fonts from the X server, not the computer on

which the program runs. Therefore, the same program run from the same computer
might have different fonts available to it when run via X servers on different
computers.

Configuring a New Font Server

If you want to use the networking capabilities of a font server, you can set up one system to serve
fonts to others on your network, thus simplifying your administrative tasks. To do this, follow these
steps:

Create a new font server configuration file. You can base it on the /etc/X11/fs/config file, but
should place it somewhere else, such as /etc/xfsconfig.

1. 

Create font directories that contain the font files you want to share, as well as the fonts.scale
and fonts.dir configuration files, as described earlier.

2. 

Modify your new font server configuration file so that it serves fonts from the directories you
created in step 2 or from existing font directories.

3. 

Add a line to a convenient startup script (such as /etc/rc.d/rc.local) to launch xfs using this
new configuration file, serving fonts using port 7101 (which is more or less standard for this
purpose). This line should resemble the following:

4. 

336



/usr/X11R6/bin/xfs −port 7101 −config /etc/xfsconfig &

Type the command you entered in the startup script in step 4 to launch the font server.5. 
Configure each X server that should use the font server. This can be done by editing the X
server's XF86Config file, as described earlier. The entry should resemble the following:

FontPath   "tcp/fontserv:7101"

6. 

Restart the X servers on the systems that should use the new font server. Alternatively, type
the following commands:

# xset fp+ tcp/fontserv:7101
# xset fp rehash

7. 

Warning As with changing a local font server configuration, these steps can cause
serious problems, including an inability to start X. You should therefore use
caution, especially on the first system you reconfigure. Also, this configuration
can cause X servers to fail if the font server crashes or if network problems
make the font server inaccessible.

The best use of a network font server is on a network that contains several X servers and on which
you want to use fonts that don't come standard with the X servers. Many X servers for Windows,
MacOS, and other OSes use standard X fonts or X font servers rather than the underlying OS's font
mechanisms. Font servers can therefore provide a consistent set of fonts to these X servers, as well
as to Linux or Unix systems. Consult the X server's documentation to learn how to point the X
server to a network font server.

Unusual Font Servers

A few applications use their own font servers or include features that resemble those of font servers.
This practice is particularly common on word processors, because X's font handling doesn't include
some features that are required for good printed output. There are two common approaches to this
problem:

Include a unique font server in the program package. This server often runs on port 7102
and provides the features of an ordinary X font server plus the features required for word
processors. ApplixWare and WordPerfect Office 2000 both take this approach, and in fact
both use the FontTastic font server from Bitstream. It's possible to use this font server from
other applications, but you must modify your Linux startup scripts to start the server
automatically when the system boots. (Ordinarily, the application starts the font server when
a user launches the application.)

• 

Implement font−rendering code in the application proper. This approach is used by
WordPerfect 8 and earlier; TeX; and most viewers of Portable Document Format (PDF) files,
such as Acrobat Reader. This method is simpler in some respects than adding a new font
server, but it's less useful to other programs, which typically can't take advantage of the first
program's font handling.

• 

The nonstandard font handling used by these programs can be a source of frustration to both users
and administrators, because you may find it necessary to install the same fonts several times to use
them in key programs. You may also discover that the same font looks very different in different
programs because of different font−rendering capabilities. Unfortunately, there is no easy fix to
these problems. For details on specific programs, check the "Font HOWTO" document, which
comes with most distributions or can be found at http://www.linuxdoc.org/.

337



Building a User Interface atop X

X consists of several different layers. At the lowest level, there is the X server itself, which is mainly
a video driver and set of programming interfaces for that driver. These interfaces allow the
programmer to display windows, but the windows are incomplete. Additional layers of X provide
certain critical features. Specifically, the window manager provides borders, resizing functions, and
usually additional features; widget sets provide programmers with features that are useful inside
windows, such as scroll bars and menus; and desktop environments combine many programs
together into a coherent set. The following sections describe each of these X components in turn.

Window Managers

The window manager determines much of the overall look and feel of an X environment. The
window manager is responsible for handling the decorations that surround windows, the window
placement, and the launching of some types of programs. It's usually not too difficult to switch to a
new window manager, but different distributions use different methods to determine which window
manager to use.

The Role of Window Managers

Functions that may be provided by the window manager include:

Window borders Window borders serve a decorative purpose and make it clear
where the window ends. On many window managers, they also provide
window−sizing features.

Drag bar The drag bar is the component at the top of most windows that you can
click to drag the window about. Some window managers allow you to double−click
the drag bar to expand the size of the window.

Window widgets Window widgets are the small icons visible on most windows' drag
bars or elsewhere. These icons allow you to close a window, maximize it, minimize it,
or perform other tasks.

Window placement and sizing features The window manager determines where
on the screen a window appears. (Programs can request particular placements, but
the window manager determines a default placement strategy.) The window
manager also allows you to move windows around, usually by dragging a drag bar.
You can also adjust the sizes of windows by using widgets or borders.

Window−fronting actions Certain actions bring windows to the front of a stack or
allow you to use a window. Most window managers today use a click anywhere in the
window to perform either action; but some use other actions, such as a click only in
the drag bar. Some allow you to type text into a window without it being at the front of
a stack. Most provide several options to handle window−fronting actions.

Desktop background Most window managers include a provision to modify the
desktop's background color or use a bitmap as a background image.

Program launch facilities Window managers invariably provide some means of
running programs. Typically, a window manager can be configured by editing a text
file. This file contains a list of programs that the window manager can launch. You

338



can then select the programs by clicking the desktop background or by selecting the
program from a menu provided at the top or bottom of the screen.

Virtual desktops Most window managers include some means of controlling multiple
virtual desktops. Typically, you can click small icons to select one of several
desktops, each of which has its own set of windows. You can therefore devote one
desktop to one set of related applications and another to another set, reducing the
clutter on your screen.

Some of these window manager features—particularly the last few—may be duplicated or
supplanted by desktop environments. If you don't want to use a full desktop environment, though,
the availability of these features in window managers can be very helpful.

Most window managers provide similar functionality, but details differ. Some, such as Enlightenment
(http://www.enlightenment.org/), are designed to provide maximal "eye candy"—they include
e x t e n s i v e  f e a t u r e s  t o  a l t e r  t h e  a p p e a r a n c e  o f  w i n d o w s .  O t h e r s ,  s u c h  a s  w m 2
(http://www.all−day−breakfast.com/wm2/), are visually and even functionally Spartan. Figures 13.4
and 13.5 illustrate how radically different two window managers can appear. Figure 13.4 shows a
text editor window running in Sawfish, the default window manager for GNOME. (Most of the
illustrations in this book show Sawfish windows.) Figure 13.5 shows the same text editor running in
wm2.

Figure 13.4: Most modern window managers, such as Sawfish, roughly mimic the default look of
windows in Microsoft Windows.

339



Figure 13.5: Some window managers have their own unique looks and provide unusual feature
sets.
Setting the Window Manager

Window manager preference is a very personal matter. If you want to experiment, you can try
several different window managers to see which you prefer. Linux distributions use a configuration
script in the user's home directory to run programs the user wants to run at login time. If this file is
absent, the system uses a default script. The name of this script varies with your login preferences,
but it's usually located in the /etc/X11 directory tree, often in /etc/X11/xinit. On Red Hat 7.3, the
user−customizable configuration script is called .xsession, and it must have execute permissions.
Other distributions may call this script other things, such as .Xlogin. When launching X from a
text−mode login via startx, yet another script is commonly used: .xinitrc. To replace the default set of
login actions with something else, follow these steps:

Load the .xsession or other X configuration file from your home directory into a text editor
(on a fresh account, this file won't exist, so you may need to tell your editor to create it).

1. 

Type the names of any programs you want to run automatically when you log in, including
your window manager. If you want a program to run and stay running while other programs
run, be sure to follow its startup line with an ampersand (&), or the script will stop running
until you've closed that program. In most cases, the final program launched from .xinitrc
should be your window manager, and it should not include an ampersand. This way, when
you exit from the window manager, you'll log off the account. As an example, the following
file launches an xterm window and the wm2 window manager:

xterm &
wm2

2. 

Save the .xsession file and exit from the text editor.3. 
Type chmod 755 ~/.xsession to give the file execute permissions. (You can use more
restrictive permissions, such as 0700, if you don't want others to see which programs you
run automatically.)

4. 

Thereafter, when you log on, Linux will launch whichever programs (including the window manager)
you set in the .xsession file when you log on again in X. You may, however, have to select a
particular login option in your XDM program. If you use KDM, for example, you should choose
Default from the drop−down list of Session Types. If you don't know where to begin in your
exploration of window managers, an excellent starting point is the window managers Web site at
http://www.plig.org/xwinman/. This site features descriptions of the most common window managers

340



and desktop environments for Linux, including links to the projects' Web sites.

Widget Sets

The widget set provides tools to programmers to produce menus, buttons, dialog boxes, and other
components that fit inside a window or that use windows to perform a simple task. (Look back at
Figures 13.4 and 13.5, which show the same program run in different window managers. Note that
the scroll bars and menus look exactly the same, although the drag bars and window manager
widgets are quite different.) You as a user have little control over which widget sets you use. This is
because the widget set is chosen by the programmer, not by the user. (Of course, you can choose a
program because of the widget set it uses.) There are roughly half a dozen widget sets in common
use today, including the GNOME Toolkit (GTK), Qt, Motif, and Athena. Many other widget sets are
available, but few are used on more than a handful of programs.

The wide array of widget sets available is part of the reason for the inconsistent user interfaces
found on Linux programs. Each widget set has its own unique look, so programs built with different
widget sets have menus, dialog boxes, and so on that vary widely. Since 1998 or so, however, new
programs have increasingly been built upon GTK or Qt. As widget sets go, these two are fairly
similar in appearance, so Linux programs today are less variable than they were in the mid−1990s.

Desktop Environments

A desktop environment is a collection of programs and tools designed to provide a user−friendly
experience to a Linux user. A desktop environment uses the same widget set in all its component
applications and may include additional features to help integrate its tools, such as an address book
shared across multiple applications.

Note Newcomers to Linux often confuse the window manager with the desktop environment.
Although a window manager is one component of a desktop environment, the latter is a much
more comprehensive package. Comparing the two is like comparing a slice of bread to a
four−course meal.

The Role of Desktop Environments

Why should you run a desktop environment? In some cases, you shouldn't. Desktop environments
consume a great deal of memory and disk space. If you're running a server or low−memory system,
you're better off using a standalone window manager and, perhaps, a few small utilities. (You can
run individual components of desktop environments even when you don't run the whole thing, as
described shortly in "Mixing Desktop Environment Components.") In fact, if the system is a server,
you might prefer to not run X at all, to save memory for the server processes.

If you intend to use a computer as a desktop workstation, however, a desktop environment can
provide many useful features. Most important, the desktop environment gives you a set of
consistent tools to interface with many of Linux's system settings. You can adjust features such as
your mouse's tracking rate, default fonts used by a variety of applications, and the appearance of
your window manager, all using a single control program. This can be a great boon to Linux users,
and especially to those who are unfamiliar with Linux's many configuration files.

Note Although there's some overlap between a desktop environment's settings and those
adjusted through GUI configuration tools such as Webmin, for the most part the two
are independent. The desktop environment sets features that individual users may
want to customize, whereas Webmin and similar utilities adjust systemwide features

341



that affect all users.

In addition to providing an interface for setting system features, a desktop environment includes a
selection of mini−applications—programs such as calculators, image viewers, audio CD players,
and addictive card games. Perhaps most important, a desktop environment provides a file manager,
which displays files in a window, allowing you to open, copy, move, and delete files using a mouse.
KDE and GNOME are both embarked upon producing office suites similar to Microsoft Office, but
these products are not yet as sophisticated as the competition.

Available Desktop Environments

The two most common desktop environments available on Linux are the GNU Network Object
Model Environment (GNOME) and the K Desktop Environment (KDE). There are also several less
used desktop environments available. Brief descriptions of these environments follow:

GNOME GNOME is built atop the GTK widget set, which was originally developed for
the GNU Image Manipulation Program (GIMP) graphics utility. Since version 1.2,
GNOME has used Sawfish as the default window manager (GNOME 1.4.0.6 is
current at the time of writing). In any version, you can easily reconfigure GNOME to
work with other window managers, although some integrate better with GNOME than
do others. GNOME features an ever−increasing number of mini−applications and
configuration modules. It's currently the favored desktop environment on Red Hat
and Debian systems. You can learn more at http://www.gnome.org/.

KDE Unlike GNOME, KDE is tightly tied to its own window manager, kwm. KDE is
somewhat more advanced than is GNOME. KDE 3.0 was released in April of 2002.
KDE includes a large number of mini−applications and configuration utilities. Most
Linux distributions today favor KDE as their default desktop environments. The KDE
project's home page is at http://www.kde.org/.

XFce XFce is a lightweight desktop environment compared to GNOME or KDE. Like
GNOME, it's built around GTK. Like KDE, it uses its own window manager (XFwm).
XFce includes a modest selection of mini−applications and configuration utilities. It's
m o d e l e d  p a r t l y  a f t e r  t h e  c o m m e r c i a l  C D E .  Y o u  c a n  l e a r n  m o r e  a t
http://www.xfce.org/.

CDE The Common Desktop Environment (CDE) is the only commercial desktop
environment available for Linux. Although popular on many commercial versions of
Unix, CDE is fairly uncommon on Linux. CDE uses the Motif widget set, which has
historically been the widget set of choice for commercial Unix and Linux applications.
CDE for Linux can be obtained from Xi Graphics (http://www.xig.com/), under the
name DeXtop.

Roll your own It's possible to assemble your own desktop environment. To do this,
start with the window manager of your choice and add configuration utilities,
mini−applications, a file manager, and so on. Typically, you configure the window
manager to launch important utilities from its built−in menus, and configure your
system to start the window manager, file manager, and any other tools you want
open at all times when you log in. The result is typically a much less integrated
environment than what you get with a conventional desktop environment, but it may
be more to your liking. Chances are this approach will consume less memory than
will a conventional desktop environment, too.

342



Even if you use a distribution that favors one desktop environment, you can use another. With most
distributions, doing so is merely a matter of installing the environment from the distribution's
CD−ROM and selecting it from a menu on the XDM login screen. In the event that the XDM doesn't
provide this feature (as the original XDM doesn't), you can start the environment by placing an
appropriate command in the ~/.xsession or equivalent file. For instance, to start KDE, the command
is startkde; for GNOME, it's gnome−session. It's possible for one user of a system to use one
desktop environment and for somebody else to use another.

Mixing Desktop Environment Components

Although most desktop environments come with a wide array of utilities that integrate with one
another to a greater or lesser extent, it's usually not necessary to run these tools within their parent
environments. You can run KDE's kscd CD−ROM player from within GNOME, for instance—or
when you're not running any desktop environment at all. You can use this fact to your advantage,
picking the best parts of each environment. The drawback is that mixing components in this way
reduces their interoperability. Programs from two environments might not share a common
address−book file, for example, whereas two matched programs could share this file.

One further drawback to mixing components in this way, or to keeping two or more environments
installed for the convenience of your users, is that the disk−space requirements can be substantial.
Each environment is likely to consume hundreds of megabytes of disk space, although you might be
able to get by with less for a very minimal installation. If you want to use just a handful of
components, you may be able to install them in just a few megabytes.

X Applications

X applications use X to display information and to accept input from the user. They rely on the
window manager that the user selects and the widget set that the programmer selects. In some
cases, applications share settings or can interact with desktop environments. Usually, though, X
applications don't rely on desktop environments.

NoteOccasionally, you'll see a program referred to as "a KDE program" or "a GNOME program."
With the exception of a few utilities that are integral to these environments, this does not
mean that the program relies upon the specified desktop environment to run. It does most
likely mean that the program uses the underlying widget set of the desktop environment, and
it may mean that the program can use settings from and interact with other programs in the
desktop environment. If you see an appealing "KDE program" but run GNOME, go ahead and
try the program. Chances are it will work, although you may need to install libraries or desktop
environment components to use the program.

On rare occasions, you may find that an X application doesn't function well with a particular window
manager or with some other component you have installed, such as a specific X server. If an
application's windows don't move around or stack in the way you expect, you might want to try
another window manager, at least for diagnostic purposes. If the problem goes away, you may
consider switching window managers permanently; or you can look for an update to the program or
window manager; or you can contact the authors of the program and window manager to report a
bug.

A few programs (particularly those based on the Motif widget set) can't display graphics properly at
24−bit color depth with some video boards when using XFree86 3.3.x. A handful of these programs
also have problems at 32−bit color depth. If you have such problems, you may be able to correct
them by dropping down to 16−bit color depth. An upgrade to your X server may also help;

343



Accelerated−X and XFree86 4.x both correct these problems.

In Sum

X is the GUI environment that's most often used in Linux. Unlike the GUIs in Windows or MacOS, X
is built up of multiple components, which can be swapped in and out as the user (or programmer)
desires. X is also a network−oriented GUI, allowing users to run programs on one computer but use
another computer as the screen, keyboard, and mouse. You can add a networked font server to
simplify your font configuration tasks on a network of systems that employ X servers. These facts
make X an extremely flexible GUI environment, but they also produce drawbacks: X is slower than
most other GUI environments, and the extent of choice offered by X makes for less consistency
across applications and systems.

344



Chapter 14: Setting Up Your Mail Server

Overview

For many organizations, the most important network service is e−mail. Although Web servers and
fi le servers transfer a huge quantity of data, e−mail is crit ical ly important for outside
communications. Your users may correspond with colleagues, clients, and vendors through e−mail,
and even exchange important data files as attachments to e−mail messages. It's therefore important
that your organization host at least one reliable e−mail server. Fortunately, Linux is well−suited to
this task, and in fact a wide variety of mail server packages is available for Linux.

This chapter begins with a discussion of the core e−mail protocols, including the difference between
push and pull protocols. Next, we describe how to configure sendmail, the most popular push mail
program on the Internet. If your users read mail from systems other than the mail server, you'll need
to configure a pull mail protocol such as POP or IMAP, which are discussed next. The chapter
concludes with a discussion of the bane of all e−mail administrators, unsolicited bulk e−mail (spam).

Note Configuring a large mail server is a major undertaking. This chapter can help get
you started and is adequate for learning how to configure a mail server for a
workstation or small network. If your needs are larger, though, you would do well to
consult additional documentation, such as Craig Hunt's Linux Sendmail
Administration (Sybex, 2001).

Understanding E−Mail Protocols

To configure a system as a mail server, it's necessary to understand something about how e−mail is
delivered. The most important thing to understand is the difference between push and pull e−mail
protocols. It's also important to know something about the capabilities of each of today's three most
common e−mail protocols: SMTP, POP, and IMAP.

Note This section presents an overview of the e−mail protocols themselves. Configuring
the servers for these protocols is covered in subsequent sections of this chapter.

Push and Pull Protocols

Broadly speaking, e−mail can be delivered in one of two ways:

The sender can initiate a transfer, usually as soon as the e−mail is ready to be sent. This
method uses a push protocol. It requires that the recipient run a mail server at all times. The
sender can use a client program to communicate with the server, or one server can
communicate with another. (In the latter case, one server takes on the role of the client, but
it may work as a client while simultaneously functioning as a server for other connections.)

• 

The recipient can initiate a transfer, usually when the user wants to read e−mail. This model
is known as a pull protocol. The mail server in this case holds mail it has received (typically
via a push protocol). The recipient's system does not need to be available at all times, but
the sending system must be constantly available—or at least, available at predictable times.

• 

The most common push protocol on the Internet today is the Simple Mail Transfer Protocol (SMTP).
This protocol is quite old by Internet standards, but it has served well and is likely to remain in
common use into the indefinite future. A server that implements SMTP is often referred to as a Mail

345



Transfer Agent (MTA).

Two pull protocols are in common use: the Post Office Protocol (POP) and the Internet Message
Access Protocol (IMAP). POP is much simpler and is somewhat more common in 2002, but IMAP
offers several additional features (described shortly) and is gaining slowly in popularity. All these
protocols are available in various versions.

Individuals use e−mail client packages known as Mail User Agents (MUAs). These programs can
typically initiate SMTP sessions, and usually POP or IMAP sessions as well. Those programs that
run on Linux can usually read mail directly from a local Linux mail queue maintained by the MTA.

The simplest e−mail exchange between computers involves just two computers and a single
protocol (probably SMTP). In this scenario, one user composes an e−mail message and issues a
command that causes the e−mail software to connect to the destination system and transmit the
message. The recipient computer then holds the message in a local mail queue, and the addressee
reads the message using a mail program on the recipient computer.

Most mail transfers on the Internet today are more complex, however. They typically involve several
transfers, which are illustrated in Figure 14.1. These steps are as follows:

Figure 14.1: E−mail frequently passes through several computers between its source and its
destination.

The sender composes a message using an MUA on one computer ( let 's cal l  i t
franklin.example.com). Depending upon the MUA, the mail may be sent immediately or
queued locally. A recipient address (let's say susan@express.gov) is included in the
message.

1. 

At  some point ,  f rank l in  connects  to  a mai l  server  for  i ts  domain ( le t 's  ca l l  i t
osgood.example.com) and sends the e−mail. In this transfer, franklin uses SMTP and
functions as a client to osgood's server.

2. 

Unless the mail's recipient is local, osgood uses the Domain Name System (DNS) to look up
the computer that functions as the mail server for the recipient domain (express.gov). This
may be a computer that goes by the same name, or it may be a different computer (such as
pony.express.gov).

3. 

Once osgood has the address of the recipient system, osgood connects to that system using
SMTP and transfers the e−mail. In this transfer, unlike in step 2, osgood is the client;
pony.express.gov is the server.

4. 

pony may queue the mail for local delivery, or it may pass the mail to another system,
depending upon its configuration and the recipient's name (susan). For the purposes of this
discussion, let's say that pony is a temporary way station, and it passes mail to
railroad.express.gov. This transfer is also likely to use SMTP, with pony as the client and
railroad as the server.

5. 

The message goes into a queue on railroad, associated with the recipient (susan). Sooner or
later, susan uses yet another computer (say, air.express.gov) to connect to railroad and
retrieve mail. This transfer is likely to use POP or IMAP. Here, railroad is the server, while air
is the client.

6. 

346



susan reads her e−mail on air, using an MUA. If she wants to reply, she can do so, initiating
a series of actions similar to those outlined here. The e−mail might or might not pass through
the same computers, though; an organization can configure different systems to function as
incoming and outgoing mail servers.

7. 

The details of an e−mail transfer may range from a simple one−computer situation up to the full set
of steps described above, or potentially even more. Precisely what operations are involved varies
substantially from one transfer to another. One very important point, however, is that most of the
MTAs first receive the mail as a server and then retransmit the mail as a client. This operation is
known as relaying mail, and the server that performs this task is a mail relay. As described later in
this chapter, configuring a mail server to relay only authorized mail is a critically important aspect of
MTA configuration.

The next−to−last computer in the delivery chain (railroad.express.gov in the preceding example)
often functions as a server for both SMTP and POP or IMAP. This does not need to be the case,
however; if susan logs on to railroad and reads her mail with a local MUA, there will be no pull
transfer involved.

In configuring an individual computer to function as a mail server, you don't need to be concerned
with all the possible variations on mail delivery. What's important is the role that your computer
plays with respect to those computers that communicate directly with it. If you were configuring
railroad.express.gov, for example, you would need to configure both SMTP and POP or IMAP
servers, but no special configuration of the SMTP server would be required to allow it to accept mail
that's already been relayed from other systems.

SMTP

SMTP is the most prevalent push protocol for e−mail today. An SMTP server usually listens on port
25 (see Chapter 12 for a discussion of port numbers). The transfer of an e−mail message actually
involves a series of text−mode commands. In fact, you can redirect telnet to use port 25 and send
e−mail without involving an MTA or MUA on the sending side, as illustrated in Listing 14.1.

Listing 14.1: An Example SMTP Exchange Using telnet

$ telnet nessus.rodsbooks.com 25
Trying 192.168.1.3...
Connected to nessus.rodsbooks.com.
Escape character is '^]'.
220 nessus.rodsbooks.com ESMTP Sendmail 8.11.6/8.11.6; Wed, 18 Sep 2002 
20:33:22 −0400
MAIL FROM:<rodsmith@speaker.rodsbooks.com>
250 2.1.0 <rodsmith@speaker.rodsbooks.com>... Sender ok
RCPT TO:<rodsmith@nessus.rodsbooks.com>
250 2.1.5 <rodsmith@nessus.rodsbooks.com>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
This is a demonstration message. It contains no useful
information.
.
250 2.0.0 g3UJBQW12951 Message accepted for delivery
QUIT
221 nessus.rodsbooks.com closing connection
Connection closed by foreign host.

347



This exchange used only four SMTP commands: MAIL FROM, RCPT TO, DATA, and QUIT. There
are additional SMTP commands, some of which may be necessary when communicating with
certain hosts—for instance, many hosts require that the client identify itself using the HELO
command. Listing 14.1, though, illustrates the simplicity of the core SMTP protocol.

Note The details of the replies from the SMTP server vary. The key information resides in
the numbers that begin lines, such as 250 and 354. The English text that follows
many of these lines is intended for human consumption and varies from one MTA to
another. Therefore, if you try a test similar to that shown in Listing 14.1, you may see
somewhat different replies if your system doesn't use sendmail as the MTA. All
SMTP MTAs respond to the same commands, however, and return the same
numeric replies.

In Listing 14.1, the message is addressed to a user on the MTA's system. Therefore, the message
is ultimately queued for local delivery—the MTA does not need to forward it to another system. In
the procedure outlined in "Push and Pull Protocols," however, the ultimate recipient of the message
does not have an account on most of the MTAs through which the message passes. In these cases,
the MTA accepts the message for relay. Once the MTA receives the message, it turns around and
transmits the message to another system. Although this may seem inefficient, it can be quite
beneficial, because it allows a reliable system to hold mail for dial−up users in case of a network
disruption, and it allows an organization to assign one computer to relay mail to several distributed
mail servers, in order to off−load the work of storing the mail and functioning as pull servers.

MUAs typically function as SMTP clients, so the MUAs can send mail through an SMTP server.
Linux MUAs have a choice in the SMTP server they use: They can use the server that runs on the
local computer or they can connect to an outside SMTP server. The first option is how Unix
systems, and hence Linux computers, have traditionally been configured. Small Linux workstations,
however, may do at least as well if the MUA is configured to connect to an outside SMTP server.
This can eliminate the need to configure the MTA to deliver outgoing mail.

POP

POP is the simpler of the two common pull e−mail protocols. In fact, there are two variants of POP:
POP−2 uses port 109, and POP−3 uses port 110. Most POP mail servers support both protocols,
but it's possible to configure a computer to respond to just one or the other, as described later, in
"Configuring POP and IMAP."

As with SMTP, it's possible to initiate a call to a POP server using telnet (redirecting the call to port
109 or 110). Listing 14.2 illustrates such an exchange.

Listing 14.2: A POP E−Mail Retrieval Session

$ telnet nessus.rodsbooks.com 110
Trying 192.168.1.3...
Connected to nessus.rodsbooks.com.
Escape character is '^]'.
+OK POP3 nessus.rodsbooks.com v2000.78rh server ready
USER rodsmith
+OK User name accepted, password please
PASS password
+OK Mailbox open, 1 messages
RETR 1
+OK 619 octets
Return−Path: <rodsmith@speaker.rodsbooks.com>

348



Received: from speaker.rodsbooks.com (rodsmith@speaker.rodsbooks.com 
[192.168.1.1])
        by nessus.rodsbooks.com (8.11.6/8.11.6) with SMTP id g3UJBQW12951
        for <rodsmith@nessus>; Wed, 18 Sep 2002 20:33:36 −0400
Date: Wed, 18 Sep 2002 20:33:36 −0400
From: rodsmith@speaker.rodsbooks.com
Message−Id: <200029190033.g3UJBQW12951@nessus.rodsbooks.com>
X−Authentication−Warning: nessus.rodsbooks.com: rodsmith@speaker.rodsbooks.com 
[192.168.1.1] didn't use HELO protocol
Content−Length: 68
Lines: 2
Status: RO

This is a demonstration message. It contains no useful
information.
.
DELE 1
+OK Message deleted
QUIT
+OK Sayonara
Connection closed by foreign host.

The POP protocol uses about a dozen commands, five of which are shown in Listing 14.2: USER,
PASS, RETR, DELE, and QUIT. Unless specially configured, SMTP doesn't require the use of a
username or password, because it's designed to deliver information to a user. POP, by contrast,
does require authentication, because it can be used to retrieve and delete potentially sensitive
e−mail messages. A POP session therefore begins with the USER and PASS commands, which
convey this information.

WarningPOP transmits passwords in cleartext, meaning that they're not encrypted. If the networks
used aren't secure, a troublemaker could intercept the password and use it to retrieve or
delete your e−mail. If you use the same password on other computers, the troublemaker
could do worse. You should therefore use your POP password only on the system that
contains your POP account and change the password frequently.

The RETR command retrieves a numbered message; this command is the opposite of the SMTP
DATA command. The retrieved message includes message headers, however, which show the path
the message has taken to reach its destination. A POP client may optionally issue the DELE
command to delete a message. If this command isn't issued, the message remains behind on the
server.

POP offers little in the way of message management tools; the intention is that the user maintain a
local collection of e−mail messages, organized into folders by the user's local MUA. POP simply
provides a single e−mail queue for each user. (In fact, it's the MTA that maintains the mail queue;
the POP server merely accesses this queue, much as an MUA running on the mail server does.)

IMAP

At first glance, IMAP serves the same function as does POP: It allows for remote pull retrieval of
e−mail from a mail server. IMAP is a more sophisticated protocol than is POP, however. Rather
than POP's dozen commands, IMAP sports two dozen. These commands include mail manipulation
tools, so that the user can arrange mail into folders on the mail server, rather than maintaining them
on the client. This has two principal advantages:

349



It's easier to examine and manipulate mail without reading it. This fact may be critically
important if you're using a mail server over a slow dial−up PPP link and you receive an
e−mail with a huge attachment. You can delete the e−mail, leave it, or move it into a folder
without tying up your slow PPP connection handling the mail. Later, when you have more
time or are using a faster connection, you can read the mail and its attachment.

• 

You can use any number of clients to seamlessly access the same mail messages. This can
be extraordinarily useful if you use multiple computers or OSes, because it eliminates the
need to archive messages outside of your mail programs or arrange to retrieve the same
message multiple times, once into each mail program.

• 

Like POP, IMAP is available in several variants, the most common of which is IMAP−4, which uses
port 143. IMAP's command set is much more complex than is POP's. Although it's possible to use
IMAP from a Telnet connection to port 143, the operation details tend to be tedious, as shown by
Listing 14.3. The client must precede each command with an identifying code beginning with the
letter A, as in A2 or A0014. Because IMAP stores mail in local mailboxes, it's necessary to pick one
with the SELECT command before performing other operations. IMAP allows the client to read
messages with the FETCH command, but that command takes various parameters to fetch different
parts of a message, such as the text or specific classes of header. The client can also copy
messages into specific folders (as in the A4 COPY 1 demos command, which copies message 1
into the demos folder), as well as create, delete, and otherwise modify the folders themselves.

Listing 14.3: IMAP Uses More Commands, and More Complex Commands, Than POP.

$ telnet nessus 143
Trying 192.168.1.3...
Connected to nessus.rodsbooks.com.
Escape character is '^]'.
* OK nessus.rodsbooks.com IMAP4rev1 v12.264 server ready
A1 LOGIN rodsmith password
A1 OK LOGIN completed
A2 SELECT mbox
* 1 EXISTS
* NO Trying to get mailbox lock from process 1557
* 0 RECENT
* OK [UIDVALIDITY 969392188] UID validity status
* OK [UIDNEXT 4] Predicted next UID
* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
* OK [PERMANENTFLAGS (\* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
A2 OK [READ−WRITE] SELECT completed
A3 FETCH 1 body[text]
* 1 FETCH (BODY[TEXT] {89}
This is a demonstration message. It contains no useful
information.
)
A3 OK FETCH completed
A4 COPY 1 demos
A4 OK COPY completed
A5 LOGOUT
* BYE nessus.rodsbooks.com IMAP4rev1 server terminating connection
A5 OK LOGOUT completed
Connection closed by foreign host.

Fortunately, users do not need to be very concerned with the details of IMAP's operation, because
IMAP client programs—which include most modern MUAs—handle the details. Users can use an
MUA's feature set to interface to the IMAP server, hiding the details.

350



In the end, the principal advantage—and disadvantage—of IMAP is that it allows users to store
e−mail messages on the mail server. This is very useful when users need to access mail from
several different computers, but it increases the need for disk space on the mail server.

Configuring Sendmail

MTA configuration is critically important to most mail servers, because the MTA is usually the most
important part of the server. The most common MTA today is sendmail. This MTA ships with Red
Hat and many other Linux distributions. Fortunately, most Linux distributions use reasonable
sendmail configurations by default, so if you're lucky, you may not need to touch your system's
sendmail configuration. Unfortunately, sendmail can be a tricky package to configure, so if you do
need to change your system's configuration, you may need to spend some time learning about
sendmail.

Alternatives to Sendmail

Sendmail is the most popular MTA in use today, but it's far from the only one available. Indeed,
some Linux distributions don't even use sendmail by default; they install other MTAs. Linux
Mandrake favors Postfix (http://www.postfix.org/), and Debian and its derivatives use Exim
(http://www.exim.org/). Another popular MTA is qmail (http://www.qmail.org/), although it's not the
default choice of any distribution in 2002.

When should you consider using an MTA other than sendmail? One good reason to use an
alternative MTA is if your distribution ships with one. Replacing Postfix or Exim with sendmail is
possible, but it takes some effort and may cause problems for MUAs or other utilities that make
assumptions about the mail configuration on a computer. Another reason to use an alternative MTA
is if you dislike sendmail's configuration options. As described shortly, sendmail configuration is a bit
tedious, and some people simply dislike it. Finally, sendmail is a fairly old program, loaded with
inefficiencies. Alternative mail servers may be able to run more quickly or handle a heavier load
than can sendmail—but handling e−mail doesn't tax most servers, even when running sendmail.

If you want to try another MTA, which should you use? If your distribution of choice comes with a
specific MTA, that one's a good candidate. Postfix and qmail are both designed in a modular
manner, which improves speed and (in theory) reduces the potential for security problems. Of these
two, Postfix is more compatible with sendmail's command options, and so is typically an easier
replacement MTA for a system that ships with sendmail by default.

If you choose to use an alternative MTA, you'll need to locate documentation other than the
"Configuring Sendmail" section of this chapter, because other MTAs use different configuration files
and procedures. Your best bet is to read the documentation for your MTA of choice on its Web
page.

Configuring Domains

Every computer on the Internet has a name, such as the fictitious pony.express.gov. If a computer
r u n s  a n  M T A ,  i t ' s  p o s s i b l e  t o  a d d r e s s  m a i l  t o  u s e r s  o f  t h a t  s y s t e m ,  s u c h  a s
susan@pony.express.gov. Frequently, however, a business or other organization prefers to use a
shorter e−mail address. Rather than using pony.express.gov, the desire is to use express.gov. This
shortened address is easier for individuals to remember, and it doesn't tie the mail down to a

351



specific mail server. The trouble is that there probably is no machine associated with the
express.gov name; that's a domain name to which machine names are attached. To overcome this
problem, the Domain Name System (DNS) offers a feature known as the mail exchanger (MX)
record.

An MX record is associated with a domain and points to a specific computer within the domain or in
some other domain. MTAs attempt to deliver mail to the computer associated with an address's MX
record, if one exists. If there is no MX record for an address, the MTA tries to find a regular
computer associated with the address. For instance, consider the express.gov domain. This domain
contains, among others, the mail server pony. The DNS configuration for express.gov includes an
MX record  tha t  po in ts  to  pony .  There fo re ,  when an  ind iv idua l  addresses  ma i l  to
susan@express.gov, the sending MTA looks up the MX record for express.gov and contacts
pony.express.gov's MTA to transmit the mail. If the mail's sender had specified the address as
susan@pony.express.gov, the sending MTA would find no MX record, but would find a regular
address record for pony.express.gov and so would contact that computer. Either way, the mail is
delivered to susan.

Unless your mail server computer doubles as your domain's DNS server, you can't configure an MX
record from the mail server. If you're setting up a mail server for a domain, you should coordinate
that aspect of configuration with the domain's DNS administrator. If you need to do this yourself, the
task can be handled by adding a line to the master record for the domain, which is controlled from a
file somewhere on your DNS server, probably in the /var/named directory (the exact name of this file
is highly system−specific, but is probably named after the domain). The relevant line looks
something like this:

@      IN   MX    5    pony.express.gov.

The leading at sign (@) is a code that means the record applies to the default domain name. IN
stands for Internet; it's present on all records for most domains. MX is the mail exchange record
indicator, naturally. The 5 is a preference code; remote MTAs attempt delivery first to the mail
server with the lowest priority code. (A domain may have multiple mail servers, so that if one
crashes, mail can still be delivered.) The final component of this line is the name of the mail
exchanger computer itself. It's important that this name end in a period (.), or else DNS will try to
add the domain name to it, resulting in a doubling of the domain name portion of the name and a
broken MX record.

For more information on DNS configuration, consult a book on the subject, such as Craig Hunt's
Linux DNS Server Administration (Sybex, 2000).

Note If you want to configure a system to accept mail but don't want the system to accept mail for
the entire domain, you can omit DNS configuration or create an MX record that points back to
the computer in question. (Some administrators prefer the latter approach.) You might do this
if you want a system to accept mail addressed directly to it, bypassing the normal
organizational mail server.

Sendmail Configuration Files and Procedures

Sendmail is controlled through the sendmail.cf configuration file, which normally resides in the /etc
or /etc/sendmail directory. On a default Red Hat 7.3 installation, this file is 1496 lines long (including
comment lines). Some of these lines are reasonably understandable to a novice, but others are
quite obscure. Although you can adjust this file directly if you're an expert, most users are far better
off editing an m4 source file instead, and using the m4 utility to convert this into a sendmail.cf file.

352



On Red Hat 7.3, the m4 source f i le from which sendmail .cf  was generated is cal led
/etc/mail/sendmail.mc, and it's a mere 63 lines long, including comments. Most of its options are far
more intelligible than the sendmail.cf options it produces. Other distributions call their m4 source
files something else; for instance, in SuSE 7.3, the file is /etc/mail/linux.mc, and it's 221 lines
long—but most of its lines are comments.

The following sections describe some of the most commonly changed sendmail configuration
options. After you make a change to the m4 source file, you can compile it into a sendmail.cf file. To
do this, you must first install the sendmail−cf−8.11.6−15 package (on Red Hat 7.3; on other
distributions, it may be called something else, or it may be integrated into the main sendmail
package). Once you've installed this package, you can issue a command like the following:

# m4 /etc/mail/sendmail.mc > /etc/sendmail.cf

Warning Before you issue this command, back up the existing sendmail.cf file by copying or
renaming it. Backing up sendmail.mc is also a good idea. This will ensure that you have
something that's at least partly functional in case you make changes that render the file
useless.

Once you've created a new sendmail.cf file, you should restart sendmail using the following
command (which you may need to adjust on distributions other than Red Hat):

# /etc/rc.d/init.d/sendmail restart

You should then check that your changes have had the desired effect by attempting to send or
receive mail, as appropriate. If the changes don't have the desired effect, restore the original
sendmail.cf and sendmail.mc files, and try again.

Address Masquerading

One of the most common changes to an e−mail configuration is enabling address masquerading. In
this configuration, a mail server claims to have a name other than the computer's true hostname.
This is most commonly done for one of two reasons:

To give outgoing e−mail the MX record's address rather than the mail server's true
hostname. For instance, you might want pony.express.gov to masquerade as express.gov.
This practice can help ensure that replies to outgoing messages are addressed to
user@express.gov, which may be desirable if your domain has multiple mail servers or if the
domain's active mail server occasionally changes.

• 

To make the mail appear to come from a valid host rather than from a dial−up account or a
computer that's hidden behind an IP masquerading router. Consider a workstation that
connects to the Internet through a PPP dial−up link. Chances are this computer doesn't have
a valid hostname configured; or if it does, the computer is not always accessible. Therefore,
you want to give outgoing mail a legitimate address, such as that of your ISP's mail server.

• 

Note When using a dial−up ISP, it's generally best to configure sendmail to use the ISP's mail
server as a relay. This configuration is covered in the next section, "Configuring Relays."

Address masquerading may appear to be a bit dishonest, and in some sense it is. Indeed, those
who send spam frequently use this technique in an effort to hide their true identities. If used
appropriately, though, address masquerading is a legitimate practice. If you're in doubt, consult your
network's or ISP's mail administrator.

To perform address masquerading, add or change the following two lines in the sendmail.mc file:

353



MASQUERADE_AS(desired−address.com)
FEATURE(masquerade_envelope)

You should change desired−address.com to the address you want to use as the return address, of
course. The first line causes the From: header to change. This header is the one that most MUAs
u s e  t o  d e t e r m i n e  t h e  s e n d e r  a n d  t h e  a d d r e s s  t o  w h i c h  r e p l i e s  a r e  s e n t .  T h e
FEATURE(masquerade_envelope) line causes sendmail to make additional header substitutions,
which can be useful if an MUA uses a nonstandard header to determine the sender's address.
These options do not change the Received: headers, which are the most diagnostic for tracing mail
back to its true source.

Note Some MUAs can change the From: header. Changing your sendmail configuration
may therefore be overkill. If you set a From: address using an MUA, that setting
overrides anything set using sendmail's masquerading features.

Configuring Relays

As described earlier, in "Push and Pull Protocols," it's common for an e−mail message to be relayed
several times between its source and its destination. There's a good chance you must cope with this
situation in one way or another. In some cases, you may want or need to use an outgoing relay, in
which your computer passes its mail to another system, which delivers the mail to its destination. In
other cases, you may need to configure a computer so that it functions as an outgoing relay; other
computers (such as mail clients on your own domain) connect to your Linux box to send their mail.
Each configuration requires its own options.

Using an Outgoing Relay

All other things being equal, sendmail is capable of delivering mail to any other MTA to which the
sendmail program can connect. In most cases, this means that sendmail can deliver mail to any
system on the Internet that runs its own SMTP server. It's often desirable to configure a Linux
computer to deliver mail directly, because this makes efficient use of network resources and
bypasses a potentially unreliable mail relay. The Linux computer might be the official mail server, as
well. There are, however, possible problems and limitations associated with sending mail directly.
These include:

Unreachable destinations If the destination mail server is unavailable because it's
crashed or because of network problems, sendmail must hold the mail locally until
the problem clears up. It must also periodically reattempt delivery. These actions
consume CPU time, disk space, and network resources, although in all probability,
very little of each. Of potentially greater importance, if the system that's sending the
mail has an intermittent Internet connection (such as a PPP link), subsequent send
attempts may fail because that connection is down, thus resulting in a failure to
deliver the mail at all, rather than a short delay.

Dial−up anti−spam configurations The Dial−up User List (DUL) is a list of IP
addresses assoc ia ted wi th  d ia l−up ( typ ica l ly  PPP) connect ions.  (See
http://www.mail−abuse.org/dul/ for more information on the DUL.) Many mail servers
use the DUL, or similar lists maintained by others, to block mail from these
connections, because spammers sometimes abuse dial−up lines to send spam. If
your ISP has placed your dial−up number on the DUL, some recipients will reject
your direct mail on this basis. Relaying your mail through the ISP's official server will
work around this problem; the DUL affects only e−mail that's sent directly from a
listed address.

354



ISP blocks of port 25 Also in an effort to fight spam, some ISPs block outgoing
connections from their dial−up addresses when directed at port 25 (the SMTP port)
on remote systems. If your ISP does this, you won't be able to send mail directly at
all; you must relay mail through your ISP's mail server.

Remote anti−spam measures Some mail servers take fairly extreme anti−spam
measures, some of which may block your access attempts even if you're not hit by a
DUL entry or an ISP that blocks your port−25 access attempts. For instance, a
remote site might block your e−mail if your claimed hostname doesn't match the
hostname associated with your IP address, as would most likely be the case when
you use a PPP account.

For all these reasons, it's generally a good idea to configure a dial−up Linux computer to relay mail
through your ISP's mail server. On the other hand, some ISPs' mail servers are themselves
notoriously unreliable, so you may prefer to brave the risks of sending mail directly. By contrast, if
your computer is connected to the Internet in a more permanent fashion, relaying mail offers fewer
advantages—but then, it also typically offers few or no disadvantages if your ISP or organization
provides a mail server for this purpose. You may want to consult with your ISP or network
administrator to learn more about the advantages and disadvantages on your particular network. Of
course, you can also add your own personal experiences—if you know that your organization's mail
server is unreliable, then sending mail directly can be quite desirable.

The default Red Hat configuration (and the default configurations for other distributions) sends mail
directly. To change this configuration detail, you must add the following line to your sendmail.mc or
equivalent m4 configuration file:

FEATURE(`nullclient', `mail.example.net')

NoteOptions passed through the FEATURE command in sendmail.mc are often enclosed in single
quotes. Unlike most configuration tools, though, m4 requires different opening and closing
quotes. The opening quote is the back quote character, which is usually available on the key
to the left of the 1 key on a keyboard. The closing quote is the usual single quote character,
which is on the key to the right of the semicolon (;) key on most keyboards.

You should, of course, change mail.example.net to your organization's or ISP's mail relay system.
When you've rebuilt sendmail.cf and restarted sendmail, the result should be that all mail sent
through your local copy of sendmail is relayed through the mail relay system you specify.

TipOne objection that's frequently voiced to using an ISP's mail relay comes from users who use
multiple ISPs. Because most ISPs reject mail relay attempts from outside their domains, a
configuration like this will work from only one ISP. One way around this problem is to create two
sendmail.cf files, one for each ISP. Name each one something appropriate, such as
sendmail.cf.isp1 and sendmail.cf.isp2. You can then modify your PPP dial−up scripts (described
in Chapter 11) to copy the customized files over the regular sendmail.cf and restart sendmail.
The result is that sendmail will relay through whichever ISP's mail server is appropriate.

Configuring Sendmail to Relay for a Domain

Configuring sendmail to use another mail server as a relay is convenient on small Linux systems
that function as workstations. Linux is often used as the mail server that relays for others, however.
This configuration works best when the Linux server has a dedicated connection to the Internet that
is always up. By default, all modern Linux distributions are configured so that they don't relay mail
from other systems. This is an anti−spam measure, but it gets in the way of the use of a Linux
server as a relay for your own computers. The trick is to loosen, but not remove, the anti−relay

355



restrictions.

Note To have sendmail function as a relay, it must also be configured to receive mail. You may
need to tweak your configuration to allow this, as described in the section "Receiving Mail."

To allow sendmail to relay mail from certain classes of computers, you must add a FEATURE line to
sendmail.mc or its equivalent file. This FEATURE line includes one of the following options:

promiscuous_relay This extremely dangerous option tells sendmail to relay any
mail that comes its way. Don't use this option, because it virtually guarantees that
spammers will, sooner or later, abuse your system.

relay_based_on_MX This option configures sendmail to accept relays from other
computers, so long as those computers' domains are configured to show your
system as the MX. This option is fairly lax on security, because it essentially lets
somebody else (whomever controls the DNS server for the remote system)
determine whether your system will function as a relay.

relay_entire_domain If you set this option, sendmail accepts mail from any host
within the domain to which it belongs. This can be a convenient way to quickly
configure a Linux system as a limited mail relay.

relay_local_from This option tells sendmail to accept relays if the sender uses the
server's address as its own. This can be convenient in some cases, but it's also
easily abused.

relay_hosts_only This option works with an access database (described shortly) to
allow you to list individual hosts as acceptable or unacceptable for relaying.

access_db This feature allows you to use an access database (described shortly) to
list domains for which sendmail will relay.

As an example, the default sendmail.mc file for Red Hat includes the following line:

FEATURE(`access_db',`hash −o /etc/mail/access.db')dnl

You can modify this line to use some other relay option, if one is appropriate for your network.
Alternatively, you can adjust the access database file. This file is called /etc/mail/access on Red Hat
7.3, but it may appear elsewhere on some distributions. The file consists of lines, each containing a
single domain name, machine name, or IP address followed by a tag that indicates how sendmail
will treat messages received from the sender. (Lines beginning with pound signs [#] are comments
and are ignored.) The default Red Hat 7.3 configuration looks like this:

# by default we allow relaying from localhost...
localhost.localdomain           RELAY
localhost                       RELAY
127.0.0.1                       RELAY

Valid tags are as follows:

OK Forces sendmail to accept the mail, even if other rules would reject it.

RELAY Accepts for relay mail that comes from or goes to the specified domain. The

356



default configuration accepts local mail for relaying; technically, when a local
program sends mail through sendmail, it's functioning as a mail relay, so this
configuration is required if you want to send mail.

REJECT Refuses mail that comes from or goes to the specified domain. Sendmail
generates a bounce message to let the sender know the attempt failed.

DISCARD Works just like REJECT, except that sendmail does not generate a
bounce message.

nnn text Works like REJECT, but returns an error code nnn to the sender, along with
text as a message.

You can specify domains either by domain name (as in badspammer.net) or by a partial IP address
(as in 192.168.98, which matches all computers with IP addresses in the 192.168.98.0/24 network).
The safest way to configure sendmail to relay is to specify a network by IP address, because this is
harder to forge than is a domain name.

Suppose you want to configure sendmail to relay mail from the 192.168.98.0/24 network. You could
add the following entry to /etc/mail/access:

192.168.98                      RELAY

Before you can use this entry, however, you must convert the text−mode /etc/mail/access file into a
binary format that's stored in /etc/mail/access.db. You do this by entering the following command:

# makemap hash /etc/mail/access.db < /etc/mail/access

Tip On Red Hat, you don't need to issue the makemap command, because the sendmail startup
scripts do this automatically. You can type this command to activate the changes without
restarting sendmail, if you like.

Once you've entered the command, you can restart sendmail, and it will be configured to relay mail
from the 192.168.98.0/24 network. It's best to test your setup by configuring an MUA on another
computer to use the system you've adjusted as the outgoing mail server. You should also check that
you've not made the system too lax by doing the same from a computer that should not be able to
use the system as a mail relay.

Receiving Mail

Linux can receive mail sent via SMTP, as well as send it. To do so, sendmail must be run in
daemon mode—that is, it must always be running, watching for connections on port 25. Sendmail
must also be configured to listen for connections on its network interfaces. To run sendmail in
daemon mode, it must be started with the −bd switch, as in sendmail −bd. This is the default
configuration for sendmail in Red Hat 7.3. You can check to see whether sendmail is running this
way by using the ps command:

$ ps ax | grep sendmail
 2536 ?        S      0:00 sendmail: accepting connections

The statement that sendmail is "accepting connections" indicates that sendmail is indeed running in
daemon mode. What if it's not, though? In that case, you must either start sendmail manually or
modify your startup scripts. In Red Hat 7.3, the relevant script is /etc/rc.d/init.d/sendmail, but the
appropriate script may be called something else on other distributions. You should locate the call to

357



sendmail in the startup script and ensure that it includes the −bd parameter. In the case of Red Hat
7.3, the startup script sets this parameter based on the contents of the DAEMON variable set in the
/etc/sysconfig/sendmail file, which is loaded early in the sendmail startup script.

Some sendmail configurations, such as the one that's the default with Red Hat 7.3, ignore access
attempts to port 25 except from the localhost address (127.0.0.1). This configuration effectively
blocks receipt of incoming mail. Red Hat creates this restriction by using the following line in its
/etc/mail/sendmail.mc file:

DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')

To enable the server to receive mail from other computers, locate this line and comment it out by
adding dnl to the start of the line. You can then create a new sendmail.cf file and restart the server.
If you want sendmail to relay mail, you may need to make more changes, as described in the
previous section, "Configuring Sendmail to Relay for a Domain."

Another requirement for sendmail to receive mail is that the program be configured to accept mail
for the machine names by which it's known. For instance, consider the fictitious mail server
pony.express.gov. If the DNS records for express.gov include an MX record pointing to
pony.express.gov, that machine must accept mail addressed to express.gov as local, despite the
fact that the machine name is not express.gov. Fortunately, this task is easily accomplished: You
need only add the computer's aliases to /etc/mail/local−host−names and restart sendmail (this file is
c a l l e d  / e t c / s e n d m a i l . c w  o n  s o m e  d i s t r i b u t i o n s ) .  F o r  i n s t a n c e ,  t h e  f o l l o w i n g
/etc/mail/local−host−names file tells the system to accept mail addressed to express.gov and
postit.gov, in addition to whatever name the computer uses as its hostname:

express.gov
postit.gov

One question you should ask yourself is whether you want your system to receive SMTP mail. The
average workstation doesn't need this capability, because another computer functions as a mail
server for the workstation's users; the workstation uses a pull mail protocol to retrieve mail from the
server. If your system refuses incoming mail, you'll still be able to send mail from local programs,
but you'll need to use a pull mail protocol to receive mail. If a system doesn't need to receive SMTP
mail, it's a good idea to configure it in this way. Doing so eliminates the possibility that a miscreant
might gain entry to the system through a bug in sendmail, and it also eliminates the possibility of a
spammer abusing a misconfigured system to relay spam.

Configuring POP and IMAP

Fortunately, setting up the POP and IMAP protocols is not very difficult. Compared to sendmail,
many POP and IMAP servers require very little in the way of configuration. If you're building a
departmental mail server, though, you may need to configure user accounts, and this may require
some thought. It's also possible to use a Linux system as a POP or IMAP client. In many cases, you
do this via MUAs; however, the fetchmail program lets you grab POP or IMAP mail and serve it
through a regular Linux mail queue.

Running POP and IMAP Daemons

The first step to running POP or IMAP is to install the appropriate server package. In Red Hat 7.3,
it's called imap−2001a−10, and it includes servers for both POP and IMAP. Other distributions ship

358



with similar packages.

NoteJust as sendmail isn't the only SMTP server, the POP and IMAP servers included in the
imap−2001a−10 package aren't the only POP and IMAP servers. You'll most likely need to
look for an alternative package if you use qmail as your MTA, because qmail stores e−mail in
different locations than do most other MTAs, which confuses most POP and IMAP servers.
The qmail Web site includes links to alternative POP and IMAP servers that work with qmail.
Exim and Postfix are compatible with the standard imap package, however.

The POP and IMAP daemons are normally run from a super server, as described in Chapter 12.
Red Hat 7.3 and Mandrake 8.2 use the xinetd super server, but most other distributions in 2002 use
inetd. The configuration of these programs differs.

If your distribution uses xinetd, the /etc/xinetd.d directory probably contains files named for the POP
and IMAP servers, such as imap, ipop2, and ipop3. (These files are installed with the imap package,
so you won't see them until you install imap.) Secure variants use files whose names end in s.
Chapter 12 includes a discussion of the format of files in /etc/xinetd.d. By default, these files include
lines like the following:

disable = yes

This line deactivates the server in question. If you want to run a POP or IMAP server, you must do
two things to activate it if you're using xinetd:

Change the disable = yes line to read disable = no, or delete the line entirely, and save the
changes. You can do this for just one server (POP−3, for instance), or for several.

1. 

Restart xinetd by typing /etc/rc.d/init.d/xinetd restart.2. 

If your distribution uses inetd rather than xinetd, the procedure is somewhat different. You must edit
the /etc/inetd.conf file to enable POP or IMAP servers run from inetd. To do so, follow these steps:

Open the /etc/inetd.conf file in a text editor and locate the line corresponding to the protocol
you want to enable. It probably begins with a pound sign and the protocol name, as follows:

# pop−3  stream  tcp  nowait  root  /usr/sbin/tcpd  ipop3d

1. 

Remove the pound sign and save the result. You can do this for multiple protocols, if you
wish.

2. 

Restart inetd by typing /etc/rc.d/init.d/inet restart.3. 

Once you've done this, your system should be configured as a server for whichever pull mail
protocols you've selected. You can test the server by using an appropriate MUA on another
computer or by using a Telnet program to test the server manually, as shown in Listings 14.2 and
14.3.

Setting Up Mail−Only Accounts

Ordinarily, Linux accepts mail only for recipients who have an account on the server. For example, if
mail is addressed to nemo@pony.express.gov, and if pony.express.gov has no user called nemo,
the server bounces the mail—the sender receives back a message that includes an error message
stating that nemo isn't a valid recipient. Therefore, you must normally create user accounts for all
e−mail recipients, even if the computer is used only as a mail server.

Note

359



There are exceptions to this rule. For instance, it's possible to configure mail
aliases, where one e−mail address corresponds to a different username. Most
systems come preconfigured with certain aliases for critical accounts such as
postmaster, which is the user responsible for mail server configuration.

If a computer is to function as a mail server from which users access their mail only using a pull mail
protocol, and if you don't want to grant users access to the system using normal command shells,
you should adjust users' /etc/passwd entries so that the shells point to something useless. A normal
user's /etc/passwd entry looks something like this:

george:x:502:100:George Washington:/home/george:/bin/bash

The final component of this line—/bin/bash in this example—tells Linux what program to run when
the user logs on through Telnet or SSH, or at the console. You can change this entry to something
that won't grant any useful access, such as /dev/null or /bin/false. The account then becomes
useless for shell access, but it can still be used for pull mail retrieval.

Tip Instead of specifying a completely useless program as a shell, you may want to specify
the passwd program. Doing so allows users to change their passwords by using a
Telnet or SSH program to log on to the server. Once the password has changed, the
user is immediately logged off.

If you use a utility such as useradd to create accounts, you can create them using such "dummy"
shells to begin with. With useradd, you use the −s parameter to specify the shell, so you can add −s
/bin/false to create an account that uses /bin/false for its shell from the start. If you prefer to use GUI
configuration tools, you may be able to accomplish the same goal.

Using Fetchmail to Acquire Mail from an ISP

Imagine this scenario: You're configuring a mail server for a small company. This company uses a
low−end digital subscriber line (DSL) connection for Internet access, and the ISP doesn't allow the
company to run its own mail server. Instead, the company contracts with another ISP to provide
e−mail accounts under its desired domain name (let's call it oneroomco.com). E−mail from this ISP
can be retrieved via IMAP, and the DSL ISP's e−mail is accessible via POP. Outgoing e−mail is
sent directly via SMTP. Your task is to provide a single unified e−mail structure, so that internal
e−mail remains local, without cluttering the DSL connection, and so that e−mail to either the DSL
ISP's POP account or the mail ISP's IMAP account is pushed into a local mail queue. This
arrangement is illustrated in Figure 14.2.

360



Figure 14.2: Small businesses frequently want to provide internal mail services, but must use pull
mail protocols to retrieve their own e−mail.
This chapter has already described many features required of the mail.oneroomco.com server in
Figure 14.2. Mail relaying and the local POP server, for instance, were covered in previous sections.
(Figure 14.2 shows outgoing mail being sent directly, but it could as easily be relayed through either

361



ISP's server.) The main missing piece is the retrieval of mail via POP and IMAP from the ISPs.

A tool that's extremely helpful in configuring remote mail retrieval via POP or IMAP is fetchmail. This
tool is a dedicated pull mail client program. It connects to a remote POP or IMAP server, retrieves
the mail from that server, and injects the mail into the local system's mail queue. When fetchmail is
used in conjunction with a conventional SMTP server, the result can be a mail system that works
almost as if it received directly from senders. The main difference users might notice is that,
because fetchmail must initiate mail connections, incoming mail may be delayed by some period of
time—a few minutes or hours, typically, depending upon the frequency with which you configure
fetchmail to check for new mail.

Note You can use fetchmail on even smaller systems than a small business's mail server.
Many individuals use fetchmail to grab their mail, which can then be read using any
Linux MUA. This can greatly simplify your life if you use multiple mail ISPs or if you
want to use an advanced mail−filtering tool to sort your mail or weed out the spam.

Configuring Fetchmail

The fetchmail program supports a large number of configuration options, so this chapter can cover
only its basics. Consult the fetchmail man pages or Web site (http://www.tuxedo.org/~esr/fetchmail/)
for more details. At its core, fetchmail is controlled by a configuration file called .fetchmailrc, located
in the calling user's home directory. A typical .fetchmailrc file looks like this:

set postmaster "george"
set bouncemail
set properties ""
set daemon 1800
poll mail.a−dsl−isp.net with proto POP3
          user "oneroomco" there with password "password"
          is sally here options fetchall forcecr
poll mail.mailisp.com with proto IMAP
          user "georgew" there with password "password"
          is george here user "sallys" there with
          password "sallyp" is sally here

The configuration file format is designed to be reasonably easy to interpret, but some features
deserve comment:

set postmaster This option lets you specify a local user who is to receive mail that
appears to be misaddressed, as well as error messages.

set bouncemail This option directs fetchmail to generate bounce messages and
mail them to the sender in case of an error.

set properties fetchmail itself doesn't use this configuration line, but it passes
whatever appears inside the quotes to any scripts that it calls.

set daemon You can configure fetchmail to run in the background and retrieve mail
every specified number of seconds. The instruction set daemon 1800 tells fetchmail
to check for new mail every half hour. Alternatively, you can omit this line and call
fetchmail from a cron job.

poll Each poll entry tells fetchmail about a single remote mail server. You must
specify the server name, the protocol to be used, the remote username, the remote

362



password, the local user to receive the mail, and any additional options you want to
specify. You can include multiple user accounts on one poll entry.

Tip Rather than directly editing the .fetchmailrc fi le, you may want to try using
fetchmailconf. This utility, which is installed separately from fetchmail in Red Hat 7.3,
is a GUI configuration tool for fetchmail. Using this tool can help ensure that you
generate a usable .fetchmailrc file.

Warning Because the .fetchmailrc file contains passwords, it's critically important that this
file be protected from unauthorized access. In fact, fetchmail refuses to run if
.fetchmailrc can be read by anybody but the owner.

Using Fetchmail

Once you've configured fetchmail, you should test it. You can do so with the following command:

$ fetchmail −d0 −k

The −d0 option ensures that fetchmail does not enter daemon mode; this invocation will be a
one−time call, even if .fetchmailrc specifies daemon mode. Likewise, −k tells fetchmail to leave any
retrieved messages on the mail server. This ensures that you won't lose your mail if there's a
problem that causes the mail to be lost between retrieval and injection into your local mail queue.

Once you've tested your fetchmail configuration and worked out any kinks, you can set it up for
regular use. There are several possible ways to do this:

You can use fetchmail's daemon mode to have it stay active and check for mail at regular
intervals. If you want fetchmail to start automatically when the computer boots, you'll need to
add an appropriate entry to a startup file, such as /etc/rc.d/rc.local. Unfortunately, some
people find that fetchmail occasionally crashes, so this mode may not be the best choice if
you need the best reliability.

• 

You can run fetchmail from a cron job. For instance, to have fetchmail retrieve mail every
hour, you can create a simple script (see Chapter 17) to do this and place that script in
/etc/cron.hourly. If you use this approach, be sure not to specify daemon mode in your
.fetchmailrc file.

• 

You can run fetchmail as part of a network startup script. This approach is particularly useful
for those who use PPP dial−up accounts, because you can configure the system to start
fetchmail when the Internet connection initializes and to shut it down when the connection
ends.

• 

You can run fetchmail manually, by typing fetchmail whenever you want to check for new
mail.

• 

Most of the automated methods run fetchmail as root by default, so the .fetchmailrc file must be
placed in the /root directory. You can create a cron job that runs as an ordinary user, but this
requires somewhat more effort to configure than dropping a script in a subdirectory of /etc. Consult
the cron man pages for more information on this topic. Normally, it doesn't matter whether fetchmail
runs as root or as an ordinary user; either way, the program calls sendmail to deliver the mail
locally. Depending upon who should know the passwords contained in .fetchmailrc, though, you
might want to be cautious about the user under whose name fetchmail runs.

363



Anti−Spam Measures

In computer circles, spam refers to junk e−mail—ads for dubious hair−loss remedies, illegal pyramid
schemes, mysterious messages in languages you don't understand, and so on. Sadly, spam is a
major problem for e−mail administrators. There are two aspects to this problem: preventing your
system from being used as a source of spam, and blocking incoming spam that might annoy your
users and consume system resources. A few steps can help prevent your system from becoming a
source of spam. Blocking incoming spam is a tougher problem, but there are still some actions you
can take to at least reduce the volume of spam your site sees.

The Problem of Spam

To individual users, spam is typically an annoyance. A user who receives half a dozen or a dozen
spams a day must typically spend a few seconds determining that a message is spam and deleting
it. (This can easily work out to several hours a year wasted just deleting spam!) On occasion, a
spam may be offensive, as when it advertises an X−rated Web site or contains racist slurs. If the
user has a slow network link, the spam may take some time to transmit—we've seen spams 150KB
in size, and this is certainly not the world record for spam size.

To a mail administrator, spam is a more serious problem. In addition to being an annoyance to
users, spam consumes disk space and network bandwidth. These may not be major factors to a
small site, but large ISPs may need to increase hard−disk sizes or buy more network bandwidth to
cope with spam. What's worse, spam generates complaints. This is particularly true if your own
server becomes a source of spam. If somebody uses your system to send out thousands of ads for
an aphrodisiac floor wax, chances are you'll get complaints in return—perhaps enough to seriously
disrupt your life for a day or more. It's therefore critically important that your mail server not become
a spam source.

Warning Even if all your users are well−behaved and would never dream of sending
spam, your mail server may become a source of spam if it's configured as a
relay or if the mail server is broken into.

To learn more about spam prevention than can be covered in this space, check the Mail Abuse
Prevention System (MAPS) Web site, http://www.mail−abuse.org/.

Preventing Outgoing Spam

Your first spam concern should be to ensure that your server doesn't become a spam source. There
are two ways your system can send spam: One of your users can decide to send spam, or
somebody who's not a legitimate user of your system can hijack it to send spam. Each potential
problem requires different solutions, although there are some commonalities.

Policing Your Own Users

If you operate a small mail server for a limited number of people, you can probably control outgoing
spam by speaking to the users of your system. In an office of half a dozen people, for instance, you
can simply tell everybody not to spam. Perhaps the most difficult aspect of doing this is conveying to
your users precisely what spam is. Spam has many features. Most importantly, it is the following:

Unsolicited E−mail readers don't ask for spam. Typically, spammers collect e−mail
addresses from postings to Usenet newsgroups or by setting address−collecting
"robots" loose on the Web. Some spam comes when users willingly leave their

364



e−mail addresses on spammers' Web sites. Some companies seem to think that
such an action makes it okay to send ads to individuals, but unless careful
precautions are observed, this isn't so. If you want to set up an advertising list, be
sure your recipients want to be on that list. The MAPS Web site includes many
pointers to help you avoid inadvertently spamming. This said, not all unsolicited
e−mail is spam. A journalist may legitimately e−mail somebody to ask for an
interview, for instance. If e−mail is unsolicited, though, it deserves careful scrutiny to
determine whether it's legitimate or spam.

Bulk Spam is invariably sent in large quantities—to hundreds or thousands of
recipients. There are legitimate uses for bulk e−mail (such as mailing lists to which
readers subscribe), but if you send e−mail in bulk, you should ensure that the
recipients want to be on the mailing list. Some spammers have taken to trying to hide
the bulk nature of their spams by creating individualized message subjects or
otherwise tweaking the messages. These changes don't alter the fact that the
message, as a whole, is sent to quite a few recipients.

Often commercial Spam is usually commercial in nature. This isn't a requirement of
spam, however. An unsolicited bulk e−mail warning of a new computer virus may not
be commercial, but it is nonetheless spam. (In practice, such messages are often
hoaxes, too.) Commercial e−mail does not need to be spam, but if your message is
commercial in nature, you should be sure your recipients want to receive it.

On a small site, once you've informed your users about what spam is and why they shouldn't send
it, the biggest risk is that somebody might mistakenly believe that the rules don't apply to a particular
message, such as a warning about a new virus or a plea to find a lost child. Although such
messages may seem important or even heart−wrenching, sending them in bulk is still spamming.
These messages are often hoaxes, too. Even when they're not, there are appropriate means of
disseminating such information.

If you're dealing with a larger domain, you may have a larger problem. The worst such situation for
you as an administrator is if you're in charge of an ISP's mail server. ISPs are frequently abused by
spammers. The spammer opens a throwaway account, sends tens or hundreds of thousands of
messages, and vanishes. The ISP is left with the task of fielding the complaints and generally
cleaning up the mess.

If you're in charge of a large domain's e−mail server, this chapter cannot provide enough
information for you—either for spam control or even for basic mail configuration. You should read
one or more books on e−mail, all the documentation for your mail server, and then some.
Depending upon the size of your domain, you may need to hire an administrator just to handle the
e−mail.

Blocking Unwanted Relays

Even a small site can fall victim to relay abuse. Spammers routinely scan the Internet for open
relays—SMTP mail servers configured to relay mail from outside domains. Spammers use relays for
several reasons:

Offloading the work In an SMTP session (see Listing 14.1), it's possible to send the
text of a message just once, listing multiple recipients. The SMTP server then
contacts each of the recipient MTAs to deliver the message. A spammer can
therefore use a slow dial−up link to send one copy of a message to many recipients,

365



thus reducing the spammer's own online time.

Obscuring the origin Using a mail relay obscures the origin of the spam. Each
server through which a message passes adds a header that identifies the server and
the system from which the server received the message. If a spammer uses a relay,
the ultimate recipient may believe that the relay sent the message, thus deflecting
blame. This strategy can be particularly effective if the spammer adds fake headers
that indicate a bogus point of origin.

Avoiding detection by the ISP The spammer's own ISP may have the means to
detect spam as it moves through its own system. Using another computer as a relay,
thus bypassing the ISP's legi t imate relay,  can help the spammer avoid
detection—probably not for long, but for long enough to make the minimal effort
worthwhile.

It's safest to configure a Linux system to not relay mail at all. Sendmail can be configured to work in
precisely this way, as it is by default in Red Hat 7.3. "Configuring Sendmail to Relay for a Domain,"
earlier in this chapter, described several means of allowing sendmail to relay legitimate e−mail.
Some of these methods are extremely dangerous and should not be used. promiscuous_relay is the
worst of these, followed by relay_local_from and relay_based_on_MX. The best way to configure
sendmail as a safe relay is to specify IP addresses in the /etc/mail/access file, as described in
"Configuring Sendmail to Relay for a Domain." If  this is impractical for some reason,
relay_entire_domain is probably not too unsafe.

If you make any extensive changes to your sendmail configuration, it's best to test your system to
be sure it's not an open relay. To do this, initiate a Telnet connection to mail−abuse.org from the
system you want to test:

$ telnet mail−abuse.org

You should see in response the output of the MAPS system's attempts to use your system as a
relay. The response should be a series of "relaying denied" messages, followed by a statement that
the system blocked all relay attempts. If not, review your configuration to be sure you've not
included any unwanted relaying options. You may also want to check for an updated version of
sendmail from your distribution's provider, particularly if you're using an old version of
sendmail—prior to version 8.9.0, sendmail's default configuration was to relay all mail.

Stopping Incoming Spam

Blocking relays and outgoing spam is part of what it takes to be a good Internet citizen. Taking
these steps will not, however, stop your users from being flooded with spam. To alleviate this
problem, you must take additional steps. Two broad classes of spam filters are available: blackhole
lists, which block spam based on a list of IP addresses you may want to refuse for one reason or
another, and filters based upon header contents, such as message subject lines, or even message
bodies.

Warning No system of spam detection is perfect; all spam filters produce occasional
errors. These errors fall into two categories: false alarms, in which nonspam
messages are mistakenly blocked, and misses, in which spam gets past the
filter. Reducing the number of misses usually raises the number of false alarms
and vice versa. You must decide how many legitimate e−mails you want to
sacrifice when blocking spam and set your spam filters appropriately.

366



Blackhole Lists

Blackhole lists are implemented using DNS servers, but the DNS servers are configured in a
peculiar way: They return legitimate lookups for IP addresses that the service maintainer has
decided are known or potential spam sources. In the simplest configuration, you can tell sendmail to
refuse to take delivery of any message from such a site. Table 14.1 summarizes the most common
blackhole lists.

Table 14.1: Popular Blackhole Lists

List Name Service Address URL
MAPS RBL blackholes.mail−abuse.org http://www.mail−abuse.org/rbl/
Description  The MAPS Realtime Blackhole List (RBL) is perhaps the most conservative service.
To be listed in the RBL, a site must have engaged in any number of spamming or spam−supporting
activities, and shown little or no evidence of ceasing such activities. This means that the RBL
produces few false alarms, but also lets quite a bit of spam through.
MAPS RSS relays.mail−abuse.org http://work−rss.mail−abuse.org/rss/
Description  The MAPS Relay Spam Stopper (RSS) lists sites that are known to be open relays
that have been used at least once by spammers. Open relays that have not been used by
spammers are not on the RSS list. Unfortunately, a large number of legitimate sites are poorly
configured, and some of these find themselves on the RSS. Fortunately, most such sites quickly
clean up their servers and are removed from the RSS. The RSS therefore produces occasional
false alarms.
MAPS DUL dialups.mail−abuse.org http://www.mail−abuse.org/dul/
Description  The MAPS Dial−up User List (DUL) is a list of IP addresses associated with dial−up
accounts—mostly IP blocks associated with PPP lines. Spammers frequently use direct
connections from throwaway dial−up accounts to send spam, so blocking these addresses impedes
one potential avenue for spam. Unfortunately, it also blocks at least some legitimate e−mail, from
users who use these ISPs and prefer not to use the ISP's own mail servers. The DUL therefore
produces a rather high false alarm rate, although it also catches a lot of spam.
OsiruSoft relays.osirusoft.com http://relays.osirusoft.com/
Description  This service's core mission is similar to that of the MAPS RSS. The OsiruSoft system
also operates some deliberate traps for "spiders" that collect e−mail addresses from Web pages.
RFC Ignorant ipwhois.rfc−ignorant.org http://www.rfc−ignorant.org/
Description  This list uses an unusual entry criterion: Demonstrated ignorance of or disregard for
various Internet standards, as specified in appropriate Request for Comments (RFC) documents.
For instance, if a network lacks proper contact information, it's listed. RFC Ignorant actually
operates several lists, but most of them work from hostnames rather than IP addresses, as
described in this chapter.

The blackhole lists operated by MAPS are operated by subscription only; you must pay a fee to use
them. Most other blackhole lists are free for anybody who wishes to use them.

Sendmail 8.9.3 can use only the MAPS RBL without modification. If you want to use another
blackhole list and you have an old version of sendmail, upgrade to sendmail 8.10 or later, which
includes support for using arbitrary blackhole lists. If you use sendmail 8.10 or later, the
sendmail.mc line to use the MAPS RBL looks like this:

FEATURE(dnsbl, `blackholes.mail−abuse.org', `Rejected − see http://www.mail−
abuse.org/rbl/')

367



Red Hat 7.3 ships with sendmail 8.11.6, so it can use any blackhole list in this manner. In addition to
using the dnsbl code, which identifies this as a call to use a blackhole list, this command includes
the name of the site that hosts the list and an error code that's to be returned with each bounce. The
first is critically important for basic functionality of the anti−spam measure. You can find the
blackhole server addresses listed above. The latter isn't required for basic operation, but you should
include some descriptive text and a Web site address so that somebody whose e−mail bounces in
error can take steps to correct the problem. The descriptions above also include the main Web site
address for each blackhole list, so you can include the address in the error message for bounced
e−mail.

Mail Header Tests

A second broad class of spam rejection technique is that of using the contents of the e−mail's
headers to reject spam. You can have your mail server reject mail with specific subject lines ("Get
rich quick!"), from specific senders (ads@badspammer.net), or by any other criterion you choose.
Some of these tests at least potentially overlap what blackhole lists do—ideally, one or more
blackhole lists should block "spam haven" sites, so sender tests should not, in theory, be necessary.
You may find it's helpful to add your own header−based sender blocks, however. These tests can
be more specific than blackhole tests, because header−based sender blocks can include the
username of the sender. Rather than block all senders of a large site, therefore, you can block the
spammers—if you can find some way to identify them. (Spammers tend to change accounts
frequently, so this task is remarkably akin to the torture of Sisyphus, who forever toils to roll a
boulder uphill, only to have it roll back down again.) You might also choose to use your own tests to
add a few sites without subscribing to a blackhole list that produces a lot of false alarms to eliminate
those sites.

One way to implement a mail header test is to add the test to the /etc/mail/access file, as described
earlier in this chapter, in "Configuring Sendmail to Relay for a Domain." Instead of using the RELAY
key to enable relaying, though, you would use the REJECT or nnn text keys to reject mail. For
example, you might use the following file to block a few problem sites:

localhost.localdomain           RELAY
localhost                       RELAY
127.0.0.1                       RELAY
badspammer.net                  550 Spam not accepted
spamguy@somebigisp.net          REJECT

The 550 Spam not accepted line causes sendmail to reject mail from badspammer.net with a 550
error code and the error message "Spam not accepted." All other things being equal, you should try
to include an informative rejection message for these entries. The REJECT code causes sendmail
to reject all mail that originates from spamguy@somebigisp.net (but not from other users of
somebigisp.net).

Mail header tests based on the e−mail's subject, the program used to send the mail, and even the
contents of the message can also be performed, but they're usually done by add−on programs.
Specifically, procmail is a mail−filtering tool that can be used as an anti−spam tool, as well as for
other tasks, such as sorting your mail so that mailing list e−mail is separated from personal e−mail.
One par t icu lar ly  popular  ant i−spam too l  that 's  bu i l t  on procmai l  is  Spam Bouncer
(http://www.spambouncer.org). You can install procmail from your Linux CD−ROM (if it's not already
installed) and then install Spam Bouncer from its Web site, which contains complete instructions for
doing this. Once this is done, suspected spam will be shunted into separate mail folders or, if you so
choose, deleted outright.

368



Warning In our experience, Spam Bouncer has a particularly high false alarm rate. We strongly
suggest that, if you try this tool, you first configure it to retain suspected spam for your
review, so that you can see what types of messages it mistakenly categorizes as spam.

A  r e l a t i v e l y  n e w  a n t i − s p a m  t o o l  b a s e d  o n  m e s s a g e  c o n t e n t s  i s  V i p u l ' s  R a z o r
(http://razor.sourceforge.net/). The idea behind this tool is that a server holds a catalog of SHA
digests (a sort of short "fingerprint" of a message) of spams. Your mail server can compute the SHA
digest for every message it receives, contact this server, and reject the mail as spam if the SHA
digests match.

In Sum

E−mail is an extremely important feature of modern networking. Linux can function quite well as a
small or even a large e−mail server, providing both push and pull e−mail protocols. By default, Red
Hat provides an e−mail configuration that will work with many networks, but you may need to adjust
the default settings to handle limited relaying, multiple domain names, or domain name
masquerading. If you want to provide pull e−mail servers, you'll need to install them, but
configuration is straightforward compared to sendmail configuration. If you run any push e−mail
server, you should be concerned about spam and ensure that your server isn't configured in such a
way that a spammer can take advantage of it. Rejecting incoming junk e−mail may seem more
critical in the short term, but it's more difficult to configure correctly than it is to block outgoing spam.

369



Part IV: System Optimization and Improvement

Chapter List

Chapter 15: Security
Chapter 16: Performance Tuning
Chapter 17: Making Your Job Easier with Scripts
Chapter 18: Troubleshooting Your Linux System

Featuring

Common types of attacks on network security• 
Authorization and authentication techniques• 
Firewalls and other security techniques• 
Benchmarks and elements of performance• 
Performance tuning and eliminating bottlenecks• 
Bash shell scripting• 
Administrative scripting in other languages• 
General troubleshooting techniques• 
Troubleshooting specific problems• 

370



Chapter 15: Security

Overview

Monitor any Linux mailing list for a week or two, and you will see posts from someone whose
system has been broken into or taken down by an unauthorized entry. You can tell from the tone of
the messages that this is a frustrating experience. As a result, seasoned system administrators are
always on the watch for holes in their security plan. They know that, as system administrators, they
must constantly look for ways to improve security because there are always people outside looking
to crack their security; if the system's security stays as it is for too long, different cracking
techniques can be tried until one eventually succeeds. If your security motif changes over time,
would−be intruders will need to spend most of their time trying to get back to the point they last
reached, and the system will remain secure.

With all of the news stories of crackers being indicted, most people know that breaking into a
computer system is illegal. Still there are many people who access the Internet with this goal in
mind. Some are malicious, and others are just curious. What most of the world calls "hackers" can
be divided into three categories: crackers, hackers, and script−kiddies.

Crackers are highly skilled computer users who intentionally break security on computer systems in
order to cause damage and demonstrate superior ability. (The term was coined around 1985 by
hackers to make a distinction between themselves and the destructive crackers.) A cracker is
malicious, breaking into a system solely to cause damage and show superior ability. Crackers tend
to steal information, use your identity to distribute spam, deny you access to your own system, and
generally wreak havoc on your system. For many crackers, it is a game; others recognize that they
can gain financially from their theft. To crackers, destruction is of no consequence. Their intrusion
may not be obvious because they plan to be back or to use the system to relay mail, thereby
disguising their identities. Crackers are the reason you need to check your system's logs on a daily
basis and to watch for the telltale signs we'll discuss later in this chapter.

A hacker is a particularly skilled programmer who loves to hack around on computers. This person
enjoys looking to learn new things and generally gets a rush out of even the smallest computer
discovery. There are a great many of us out there. A hacker may fall into the cracker category, but
not all hackers are crackers. In fact, the crackers probably make up a very small percentage. Most
hackers do not crack systems—not because they can't, but because they are not malicious.
Hackers don't break into systems to cause damage, but they may break in to learn how it is done or
to test security for a colleague or client. We know some hackers who have broken into systems to
learn how to protect them from intrusion. After breaking in, they leave the system undamaged and
pass on information about the security flaw or create a patch to fix it.

There are numerous sites on the Internet that detail how to exploit known security flaws and provide
scripts designed to do just that. Script−kiddie is the term commonly used to describe those who do
not possess the skills required to break into a system on their own but instead download a script to
perform the task. Often these break−ins are characterized by minor damage, since script−kiddies
don't usually know the system well enough to know what would cause damage. They do try to make
themselves known to the target system's administrator by leaving a calling card in the form of a file
with a name that will be noticed or by changing the banner printed above the login (/etc/issue) to
something offensive. Script−kiddies generally strive to make their intrusion known since they have
no real skills to do further damage at a later date.

371



Types of Attacks

There are so many types of security attacks that it is impossible to list all the variations. We explain
some of the most common here, with the emphasis on clarifying how the attack is made and what
vulnerability it attempts to exploit. It is important to say that there is no such thing as absolute
security from these attacks. Even if there were, some enterprising cracker would soon find
something else to exploit. This is true not only of Linux but of every operating system out there: all
Unix versions, all Microsoft Windows versions, VMS, and any other operating system you can think
of.

The goal is to maintain the highest possible level of security on your system by keeping up with new
attacks as they hit. Watch your distribution's home site for updates that fix security exploits, and
install them immediately. Each major distribution of Linux has a security−announce list where users
and staff post news of new security exploits and other security−related news. Be sure to subscribe
to the appropriate security list to stay ahead of would−be intruders.

Trojan Horse

You probably remember the story of the Trojan horse from Homer's Iliad. The Greeks sent a giant
wooden horse as a present to end their ten−year war with Troy. When it was within the gates of
Troy, Greek soldiers emerged from inside and defeated the unsuspecting Trojans.

In security, then, a Trojan horse is a program or a script that is hidden inside an authorized
program. This code, when executed, causes an undesirable effect. Many of these are aimed at
Microsoft machines, targeting their mailers. For example, you may remember the "Love Bug" Trojan
horse from May of 2000. It appeared to be an e−mailed love letter but, when opened, it would cause
problems, such as sending itself to everybody on your e−mail address book, erasing your files, and
downloading another Trojan horse program that would steal your passwords. This particular Trojan
horse affected only Microsoft Windows machines; while Trojan horses are rare on Linux machines,
they are not unheard of. In January of 1999, a Trojan horse was found in the util−linux−2.9g.tar.gz
on some Web sites. This type of attack is difficult to protect against. As a result, Red Hat and many
other distributions have begun adding checksums or Pretty Good Privacy (PGP) signatures to the
packages they make available for download. Make use of these verification techniques if they are
available to you.

Pretty Good Privacy (PGP)

Pretty Good Privacy is a software package that provides both asymmetric data encryption, which is
usually used for e−mail, symmetric encryption for other files, and secret key management. PGP is
generally used to ensure that the e−mail you receive is as its author intended. Mail sent through the
Internet can easily be intercepted, changed, or created as if it were from someone else entirely.
With PGP, you can digitally sign your e−mail, generating a mathematical value based on your
e−mail's content as encrypted using your private key. If the recipient of e−mail has your public key,
the PGP software makes the same calculation, thereby determining that the message has not been
altered. Since only you have the private key that encrypted the hash value that was successfully
decrypted with your public key, only you could have digitally signed the e−mail. Packages made
available for download may be signed the same way.

The difficulty comes with obtaining the public key in such a way as to be sure that the person who
claims the key actually is the one who generated it. The most secure way is to meet face to face
with the person, exchanging identification and public keys at the same time. Retrieving a signed
software package from a Web site is not as secure. Typically you obtain the developer's key from a

372



Web site or possibly via e−mail. Still, this is a step in the right direction. For more information on
PGP, see its international home page at http://www.pgpi.org/.

There is a GNU version of PGP available that is gaining popularity in the Linux world. GNUpg, also
referred to as GPG, is compatible with the existing PGP. For more information on GNUpg or to
download a copy to try, go to http://www.gnupg.org/.

Checksum

A checksum is another type of file signature that is usually used for validation when files are
transferred by means that are considered unreliable, for instance from disk to tape. It is valuable as
a security check as well. The checksum is computed from the binary bytes of the file, creating a
"fingerprint" of sorts. When the file is transferred, a new checksum is computed and compared with
the saved fingerprint. This method is not foolproof. A knowledgeable cracker will simply pad the file
to obtain the appropriate checksum value. Like other methods, however, it is better than nothing.
For more information about creating a checksum, see the chksum man or info page.

Back Door

A back door is code added to a program to allow unauthorized access to the host system. Take, for
example, a program that has been altered to e−mail information about the person running the
program to some mail account whenever the program is run. Very few users look at the size of
binary files to see whether the program has been changed. Fewer still check beyond that if the sizes
match. Even worse is that some programmers−for−hire include back doors in the programs they
write as a matter of course. Once there is any negative interaction between the programmer and the
client, the programmer exploits the back door and gets revenge. In this case, the only way to find
the offensive code is to wade through the source code. Typically, if the code works, it isn't looked at
until it requires some updating, so the programmer has plenty of time to play spy.

There is little if any defense against a back door if it is inserted by someone doing software
development for your company. If you believe that a coder has inserted a back door in a product,
you can have another programmer look at the code, but beyond that, you have to depend upon your
normal security watches to catch his or her entry onto the system. With a system that uses a
package manager like the Red Hat Package Manager (RPM) or Debian's Package Management
System, you can run a command to verify that a package as a whole has not been changed and
output codes indicating any changes to individual files. Using this information, you can determine
whether files on your system and their attributes have been changed and how.

Trusted Host

One of the most talked−about vulnerabilities in Linux involves the trusted host files. Trusted host
files allow users to log in without a password, because their logins and host machine names are
included in the appropriate files: /etc/hosts.equiv and .rhosts in the user's home directory. The
commands that rely on these files are referred to as the r−commands and include rlogin, rsh, rcp,
and rexec. Most Linux system administrators simply disable these commands and replace them
with Secure Shell (SSH).

SSH is a client/server package that encrypts all outgoing data from either direction, thus creating an
encrypted tunnel. The client side sends a request to the server (sshd), and the server sends back a
public host key and a public server key. The client attempts to verify the public host key by locating
it in either /etc/ssh_known_hosts or the .ssh/known_hosts file in the user's home directory on the
client. If the client is able to verify the public host key, it generates a 256−bit random number,

373



encrypts it with the two keys from the server, and sends it to the server. This generated number is
then used by both the server and the client to derive the session key, which is used to encrypt any
further communication between the two during this session. If the process fails to generate a
session key, access by the client is denied. This is a somewhat simplified description, but it
i l l us t ra tes  the  bas ic  p rocess .  Fo r  more  in fo rmat ion ,  s ta r t  w i th  the  SSH−FAQ a t
http://www.tigerlair.com/ssh/faq/ssh−faq.html.

Red Hat 7.3 includes a free version of SSH that was developed by the OpenBSD Project. Called
OpenSSH, the package includes the following: the ssh program, to be used in place of Telnet, rsh,
and rlogin; sftp and scp, to be used in place of rcp and ftp; and the server−side sshd program and
its supporting utilities.

Buffer Overflow

A buffer overflow occurs when a program written to read data is not properly restricted to the
intended area of memory. This is similar to when your cellular phone picks up someone else's
conversation. You don't really know whose conversation you are hearing, but you might hear
something that the speaker didn't intend to reveal to anyone outside the target audience. A buffer
overflow causes a program to read data that was not intended for it. It is quite difficult for even
skilled programmers to take advantage of this, but there are programs available on the Internet that
were written explicitly for this purpose. Typically, programs prone to overflow buffers are reported on
the main security lists for your distribution.

Scanning or Sniffing

Network scanning involves the probing of an IP address or some of its ports to determine which
services are available on that system. Sniffing is the process by which data packets are intercepted
as they are sent over the network. Specifically, crackers look for passwords and the like. There are
packages available that help you to detect whether your system is being attacked in this way and
even to fool the sniffer. Some of these packages are detailed in the "Applications for Detecting
Intrusion" section later in this chapter.

Spoofing

Spoofing is the process of masquerading as a known user. This can be in the form of e−mail that
appears to the receiving system to have come from a known user or data packets that look like they
came from a trusted machine. The details of how this is accomplished are beyond the scope of this
book, but there is a way to minimize or possibly even stop it completely.

The Linux kernel can be configured to perform Source Address Verification. If your system has the
file /proc/sys/net/ipv4/conf/all/rp_filter, you only need to add a little code, shown in Listing 15.1, to
one of the startup scripts at some point before any network interfaces are configured. What this
script does is turn on rp−filtering for each individual interface listed in the /proc/sys/net/ipv4/conf
directory.

Listing 15.1: rp_filter Code

# Turn on spoof protection for all interfaces.
if [ −e /proc/sys/net/ipv4/conf/all/rp_filter ]; then
  echo −n "Setting up IP spoof protection... "
  for interface in /proc/sys/net/ipv4/conf/*/rp_filter; do
    echo 1 > $interface
    done

374



    echo "done."
else
  echo "THERE WERE PROBLEMS. You will be dropped to a shell to"
  echo "troubleshoot. You may use CONTROL−D to exit the shell and"
  echo " continue system startup. "
  echo
  # Start a single user shell on the console
  /sbin/sulogin $CONSOLE
fi

Denial of Service

In a denial−of−service attack, the attacker tries to make some resource too busy to answer
legitimate requests for services. In recent years, several large companies, including Amazon.com,
Yahoo!, and CNN.com, have had service interruptions due to denial−of−service attacks.

Here's an example. Bad Guy and his buddy have two computers on the Internet. Each uses
scanning techniques to find computers on the Internet that they can spoof through. Each finds
several vulnerable computers they can crack. At a pre−agreed upon time, Bad Guy and his friend
cause all the compromised computers to ping the target site, thereby increasing the load and hiding
his and his buddy's identities. The target site can't handle all of the false traffic and its regular load
too, so everything grinds to a halt. This is especially effective with the HTTP daemon, which
attempts to confirm the address of any system that makes a request upon it. The HTTP daemon
thus waits until its request to the spoofed IP times out before being "convinced" that it is a bad
address. In this case, Bad Guy and his friend send so many data packets with spoofed IP
addresses that the server is too busy trying to confirm IP addresses to be able to do any Web
servicing.

Detecting and preventing denial−of−service attacks is difficult since the attacks come from several
sources at once. To minimize the effects of the attacks, thoroughly screen incoming network
packets and deny packets using firewall or routing software. You can write firewall rules that will
limit the number of packets of a given type from a specific address at a time. This might not
completely prevent delays in service, but it will reduce the load that the attack creates on your
system, preventing all but the most intense attacks from crippling your system.

Accurate logging at the Web or mail server can assist law enforcement in catching the cracker;
however, this is complicated in many cases by the fact that crackers rarely launch this type of attack
from their own machines. Instead, the cracker launches the attack via other compromised machines
on the Internet, thereby implicating only the owners of the exploited machines.

Password Cracking

Password cracking is the acquisition by whatever means of a valid user password. This is a real
threat to any system but particularly to systems whose administrators don't teach their users the
importance of selecting a hard−to−guess password or don't force users to change their passwords
fairly often. We'll discuss the actual authentication process in the upcoming "Securing the
Authentication Process" section.

For now let's talk about how to select a secure password. Passwords should not be standard
dictionary words like misery or supersecret. Passwords should have a mixture of numbers, letters,
and symbols like #@$%&. Use capital letters and lowercase letters. A good password might be
R#t34%Ka. Linux uses a tool called cracklib to evaluate the security of a password. Regular users
cannot change their passwords to anything based on a word in the cracklib dictionary, although the

375



superuser may do so. This restriction is accomplished by using Pluggable Authentication Modules,
which we'll discuss in a later section.

Social Attacks

Social attacks are performed by an insider or by the manipulation of an insider. These attacks are
as simple as walking up behind a user who is logging in and watching to see the password as it is
keyed in. In another form of social attack, an individual pretends to be a system administrator and
obtains information—such as a user's password—that provides unauthorized access. These types
of attacks are best dealt with by making your users security−conscious. Teach them to be alert for
such situations, and make sure to introduce new members of your system administration staff to as
many users as possible. Instruct them never to give their password over the phone or in e−mail.
Also impress upon your users the importance of not using family member names or other easily
guessed words as passwords.

Physical Attacks

If an intruder gains physical access to your system, he may try to hack it, interfere with or intercept
network traffic, or even physically destroy it. Linux in particular has one physical security
vulnerability that you need to avoid. Anyone with a boot disk can boot the average system into
single−user mode and have root access to it! Obviously this is not something you want to have
happen. The vulnerability is with respect to the boot loader, which we discussed in Chapter 2. You
must change the default configuration to safeguard the system.

The first step is to assign a password that must be typed in when the system is rebooted into
single−user mode. Without the password, the machine doesn't initialize, so no breach is possible.

Under GRUB

To do so on a system using GRUB, you must run the password command from within the
/etc/grub.conf file by adding the following line:

password −−md5 ENCRYPTEDPASSWD

After having created PASSWORD by using the md5crypt command, at the grub prompt:

grub> md5crypt
PASSWORD: ***********
Encrypted: ENCRYPTEDPASSWD

Under LILO

To do so on a system using LILO, add the restricted and password lines to /etc/lilo.conf as indicated
in Listing 15.2.

Listing 15.2: Securing the lilo.conf File

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
message=/boot/message
linear
default=linux

376



append="aha152x=0x140,12,7,0,0"
restricted
password=#94hd*1@

image=/boot/vmlinuz−2.2.16−22
        label=linux
        read−only
        root=/dev/hda1

The password line is self−explanatory. The restricted line prevents the password from being
required at every boot, which enables automatic reboots while still requiring the password before
kernel parameters, such as single, are accepted from the console. This is just what you want: You
want your system running the default kernel and you don't want intruders to change that.
Remember, if you include the prompt line to accept console input, add a timeout value so the
system automatically reboots after a crash. Omitting the timeout option removes the ability to boot
the machine unattended.

If you are using LILO or GRUB without the −−md5 flag to establish a boot loader password, you
need to secure the configuration file to prevent an intruder from viewing the password, which is in
cleartext. First use the chmod command to set the file so that only the root user has read/write
privileges.

# chmod 600 /etc/lilo.conf

or

# chmod 600 /etc/grub.conf

Next use the chattr command to change the file attributes so that the immutable bit is set on the file.
This prevents the file from being modified, linked to, removed, or renamed except by the superuser.

# chattr +i /etc/lilo.conf

or

# chattr +i /etc/grub.conf

Finally, you'll need to ensure that the machine's BIOS is set to prevent booting by floppy or
CD−ROM, since there are bootable images that would allow the intruder to circumvent the boot
loader hurdle. Finally, password−protect your BIOS settings. Now you are secure against someone
sitting down and rebooting the system unless they know the password to either the BIOS or the boot
loader. An intruder who can open the computer's case can still steal the hard disk or reset the BIOS
to gain entry to the computer, though. The best protection against this is to keep the computer in a
physically secure area.

Types of Security

Security is tricky business—especially since several crackers can gang up on a computer system or
network. Typically a site will have only a few people trying to set up security to block them. Of
course, a computer's security needs are relative to the importance of the data it contains. Home
computers that are used primarily for learning, data processing, and sending e−mail need much less
security than do bank systems, which are heavily targeted by crackers. Your system's security

377



needs will probably fall somewhere in between. While a home user might not want the intrusive
measures higher security requires, a data communications firm would probably be willing to jump
through those hoops. Security requires a lot of extra effort by users as well as the system
administrator, so determining just how much security you need is important. The job of securing
your system, called risk assessment, has two parts: assessing vulnerability and assessing threat.

Assessing vulnerability means assessing the loss that the company would suffer if your security
were breached. Ask yourself where your systems are vulnerable. Which information might be
profitable to a thief? Which information might generate a profit if taken by disgruntled employees? Is
the mission−critical data available to naive users who might inadvertently damage or delete it? Is
the mission−critical data available to all employees or only to those who need it? How much would
downtime spent fixing a hacked system cost the company in man−hours, lost profit, etc.? These are
the questions to ask before developing the security plan.

Assessing threat means assessing how many people out there are really going to attempt to break
in. Remember that just because you're paranoid doesn't mean that no one is out to get you, or in
this case, the data you're protecting. Be too cautious. If you are on the Internet, the threat of a
cracker on the hunt is a real issue. Also ask yourself whether you have competitors or other groups
who might seek to damage your company's reputation by stealing data or taking the system down.
Try to determine the threat. Of course, you must never completely discount any of the above
possibilities, but the answers to these questions can help you to focus your efforts where the threat
is greatest.

Once the security system is in place, an auditing plan should be written to ensure that the security
that you've set up remains effective. It is better to use a formal auditing checklist than to "shoot from
the hip" since repetitive tasks like security evaluation are all too easy to rush through. A checklist
forces you to be thorough. We'll discuss how to audit your security later in this chapter.

Although no system is ever completely safe from intrusion, there are ways to minimize the
possibility of a break−in or other security breach. For this discussion, we'll divide security into the
areas that are under the system administrator's direct control:

User−based security basically answers two questions: "Is this user who he or she claims to
be?" and "What resources should be available to this user at this time?" Linux uses
Pluggable Authentication Modules (PAM) to secure the system from intrusion by
unauthorized users.

• 

Port security is designed to protect network ports from unauthorized hosts and networks.
This type of security is handled largely by the kernel but is also affected by IP firewall
administration, commonly referred to as IP chains or IP tables. Port security is important
since any open port is an invitation to a cracker. Port security also helps to control outgoing
information from the users on your systems.

• 

You must also restrict network access to system resources and services based on the
requesting host. Quite often you know that the users on www.gooddomain.com should have
access to a given resource while users on www.baddomain.com should not. This is the job
of host−based security. Under Linux, host−based security is handled in any of several ways,
including TCP Wrappers, xinetd, and individual daemon security options.

• 

You should restrict physical access to your systems to prevent tampering. Also use the boot
loader securing measures that we mentioned in the "Physical Attacks" section.

• 

A last type of security is the assignment of permissions to exclude certain users from having
access to specific files or devices. This is the most commonly discussed method of securing
your system and the best understood. Unfortunately, by itself it is insufficient to defend your
system adequately.

• 

378



Securing the Authentication Process

The authentication process is a mystery to most of your users. Generally users don't worry about
how they are authenticated as long as they gain access to their files. They type their login and
password combinations and wait while the magic happens. If they are authenticated, they are
content; if the authentication fails, they call you for help. As a system administrator, you need to
know how this process works.

First, Linux uses two different systems for authenticating user passwords: DES (the Data Encryption
Standard) and MD5 (message digest algorithm, version 5). The DES algorithm can deal with MD5
passwords, but the MD5 algorithm can't understand DES passwords. DES passwords are encoded
using the Federal Data Encryption Standard algorithm. MD5 uses the RSA Data Security, Inc.'s
MD5 message digest algorithm. By default on most Linux systems, MD5 is used now. Passwords
encrypted with the MD5 hash are longer than those encrypted with the DES hash and also begin
with the characters $1$. A shorter password that does not begin with a $ is typically a DES
password. In heterogeneous environments, all systems normally use the same method, usually
DES, for compatibility.

Hashing Passwords

On a Linux system the passwords, which are often referred to as encrypted, are actually encoded or
hashed. This means that they are encoded in such a way that they generally cannot be decrypted.
Figure 15.1 illustrates the process.

Figure 15.1: How Linux passwords are hashed
When users change their passwords, the variable−length password that they enter and a
two−character salt that the system generates are run through a modified DES algorithm or MD5

379



algorithm to generate a hash. Although the hash is often referred to as an encrypted password, it
actually is encoded instead. As described in Chapter 5, the salt is a sort of monkey wrench that
changes the hash in any one of 4096 ways. Under Linux, the DES result is a 13−character one−way
hash, a string of characters that is almost impossible to regenerate into its cleartext form. The first
two characters represent the salt, and the remaining 11 represent the hashed password. For MD5,
the password is 32 characters long and begins with $1$. The characters between the second and
third $ represent the salt, while the rest is the hashed password.

Linux systems do not "decrypt" the stored passwords at all during authentication. Instead, the
password that a user supplies to a DES system at login and the two−character salt hash taken from
the /etc/passwd file are run through the same DES algorithm, generating a one−way hash. In the
case of MD5 passwords, as with the DES passwords, the salt is removed and passed with the login
password into the appropriate algorithm. The result is compared to the hash stored in /etc/passwd.
If they are the same, it is assumed the proper password was supplied. In old−school Unix, the user
was considered to be authenticated if this encrypted password was identical to the second field of
the user's entry in the /etc/passwd file. The potential for intruders masquerading as authenticated
users was simply ignored. An /etc/passwd file has the following format:

username:passwd:UID:GID:full_name:directory:shell

An example of a password file that uses the DES algorithm is shown as Listing 15.3. A sample
password file that uses the MD5 algorithm is illustrated in Listing 15.4.

Listing 15.3: Example DES /etc/passwd File

root:AB2dfzgfkgjfl:0:0:root,,,:/root:/bin/bash
bin:9pskwjeioxjar:1:1:bin:/bin:
daemon:f7lsdjenjfkejdl:2:2:daemon:/sbin:
adm:DIBU7epiSd4xs:3:4:adm:/var/adm:
lp:5fg63fhD3d5gh:4:7:lp:/var/spool/lpd:
sync:dsjLkwRi4d1rt:5:0:sync:/sbin:/bin/sync
shutdown:5fg63fhD3d,M.z:9406:6:0:shutdown:/sbin:/sbin/shutdown
halt:10gw4c34GeKSJ:7:0:halt:/sbin:/sbin/halt
user:G2sdqwpk75jzx:500:500:Unknown User:/home/user:/bin/bash

Listing 15.4: Example MD5 /etc/passwd File
root:$1$7t6j9J2k$2jOqc7RxD3E86Dx7.bYfI.:0:0:root,,,:/root:/bin/bash
bin:$1$45NwV/np$8DwIrkbNaFc/oeKREY/eC/:1:1:bin:/bin:
daemon:$1$Om3cvkqJ$K8ZfrewZPdv3gcX7OSYaN.:2:2:daemon:/sbin:
adm:$1$s.6l4WUD$79JSpeUvOmN1/IKof8mn51:3:4:adm:/var/adm:
lp:$1$K9QSOPt7$R1OOcFpwLJ3t5MKvOffH1/:4:7:lp:/var/spool/lp:
sync:$1$zjkRCMgA$TLiDMTFeTU9Io8QkylstZ1:5:0:sync:/sbin:/bin/sync
shutdown:$1$LPWwN8S2$xiNnTCB..cNhgUfMaOn980:9406:6:0:shutdown:/sbin:/sb
in/shutdown

halt:$1$I9ffuBg2$4BgcZGnqK78pbhohoAfvI0:7:0:halt:/sbin:/sbin/halt
user:$1$S8td6y.8$IYPKlILLM8TNTUNZ7pVBk/:500:500:Unknown 
User:/home/user:/bin/bash

The /etc/passwd file on a Linux system must be world readable for the other user information that is
stored in this file to be available to the programs that need it. Unfortunately, this makes the hashes
available as well. While you cannot decrypt a hash, it is possible to compare a list of generated
hashes with the ones stored in /etc/passwd to find a match, which can be exploited. Crackers simply
encode a dictionary of words and common passwords using all possible 4096 salt values. They then
compare the hashed passwords in your /etc/passwd file with those in their list. Once they have

380



found a match, they have the password for an account on your system. This is referred to as a
dictionary attack and is one of the most common methods for gaining unauthorized access to a
system. The attack is significantly easier if intruders can obtain a copy of your /etc/passwd file since
they then only have to encode their dictionaries with the salts that exist in the /etc/passwd file. To
reduce this vulnerability, Linux adopted the practice of shadowing the passwords.

Shadow Passwords

Shadowing removes the hash strings from the /etc/passwd file and places them in /etc/shadow,
which is not world readable. Only the superuser has read and write permissions for the /etc/shadow
file. This hinders the dictionary attack by making the hashes unavailable to anyone except the
superuser. Additionally, the Shadow Suite gives you the ability to perform certain functions based
upon a password's age. It allows you to require that users change their passwords at intervals set
up in the /etc/shadow file, to restrict users from changing their passwords for the specified intervals,
render the account inactive after a specified interval, or expire the account after a set interval. This
information for a specific user may be retrieved or changed via the chage (change password aging
information) command. The chage command with the −l option prints the relevant data for the user
in question.

# chage −l user
Minimum:             0
Maximum              99999
Warning:             7
Inactive             −1
Last Change:         Jun 06, 2000
Password Expires:    Never
Password Inactive:   Never
Account Expires:     Dec 31, 2000

You can change this information interactively by not including any parameters between the
command and username. This gives you a prompt for each individual item to be changed. Here is
the first prompt you'll see:

# chage someuser
Changing the aging information for someuser
Enter the new value, or press return for the default

        Minimum Password Age [0]:

If you'd rather change each item individually, use the following syntax:

chage [−m mindays] [−M maxdays] [−d lastday] [−I inactive] 
[−E expiredate] [−W warndays] username

To change the number of days warning that someuser will get before a password change is forced,
use the following command:

# chage −W 10 someuser

By default, shadow passwords are enabled at installation. You can use the authconfig command to
go between shadowed and unshadowed mode after installation. authconfig is a text−based utility
that allows you to enable or disable shadow passwords and MD5.

If you use authconfig to disable shadow passwords, any entries in the /etc/shadow file that do not
have corresponding /etc/passwd entries will be removed and the corresponding entries will transfer

381



their password hashes to the /etc/passwd file. Keep in mind that the password aging information
stored in /etc/shadow will be lost in this transaction.

If you enable shadow passwords using authconfig, it will transfer the hashes from the /etc/passwd
file to the /etc/shadow file, replacing each hash in /etc/passwd with an X. This can be accomplished
outside of authconfig by the pwconv command, which converts to shadow passwords by moving the
hashes from /etc/passwd file to /etc/shadow. Use pwunconv to go the other direction.

For any additional information, read the Shadow−Password−HOWTO available at the Linux
Documentation Project: http://www.tldp.org/HOWTO/Shadow−Password−HOWTO.html.

Pluggable Authentication Modules (PAM)

At first, most privileges were granted based on password authentication or membership in a specific
group. That was not a bad beginning. It soon became obvious, however, that it was insufficient to
assume that a user's identity is known simply because the login password is correct and rely on that
authentication as the sole means of determining what access should be granted. New programs
began including their own authentication methods instead of assuming that the login authentication
was sufficient. Each authentication method required the login, FTP, and other programs to be
rewritten to support it.

Now authentication is more flexible and is handled under Linux by Pluggable Authentication
Modules (PAM). The different major distributions began including PAM in the following versions:
Red Hat Linux 5.0, Debian Linux 2.1, Caldera Linux 1.3, and SuSE Linux 6.2.

PAM is a flexible set of library modules that allow a system administrator to configure each
individual application with its own authentication mechanism—a defined subset of the available
library modules. Although some operating systems look for their PAM loadable object files in
/usr/lib/security, Red Hat chose to follow the Linux Filesystem Standard by locating them in
/lib/security. A listing of this directory includes a number of files with names like pam_access.so,
pam_console.so, pam_cracklib.so, and so on. These files are the shared libraries that support the
various capabilities of PAM.

Any program that uses PAM modules instead of some internal security method is called a PAM
client. PAM uses four basic modules to authenticate users, manage user accounts, manage
passwords, and manage actual login sessions. The authentication module is responsible for both
verifying the user's credentials and giving the okay to proceed. The account management module
provides the capability to determine if the current user's account is valid. This module checks for
password or account expiration and verifies that the login meets any restrictions like access hours
or maximum number of users. The password module provides functionality to change a user's
authentication token or password. A session management module provides functionality to set up
and terminate login sessions and performs any setup tasks such as mounting required directories.
These modules are referenced in the configuration file, which we'll look at below.

In order to work with PAM, applications are developed to be independent of any particular
authentication scheme. This means that the program is no longer concerned with which
authentication scheme it will use. Instead, it will have "authentication modules" attached to it at
runtime in order to work. The Linux administrator can change the authentication scheme for a
PAM−aware application at any time, without rewriting the application code, by editing a PAM
configuration file, which may be application−specific or used system−wide. The modules referenced
within the configuration file implement the authentication scheme; so to change schemes, you edit
the file to include different modules. If no existing modules meet your security needs, you may write

382



new modules and include them instead. New pluggable modules are being developed all the time,
so it pays to watch the PAM Modules site: http://www.kernel.org/pub/linux/libs/pam/modules.html to
see what is already out there.

Suppose there is an application that requires user authentication prior to performing some service
for the user. In the old days, the application would have to request and read in a password and then
validate that password or to use some other authentication scheme that was built into the
application. Now, instead of using its own integrated authentication scheme, the PAM−aware
application uses PAM to do the authentication portion.

To accomplish this, the application calls PAM, naming a configuration file, which usually shares the
name of the application. If each application is free to have its own scheme as indicated by the
existence of the /etc/pam.d directory, PAM looks there for a configuration file with the specified
name. For example, the login program that is commonly used in Linux has a configuration file
named /etc/pam.d/login. If PAM has been configured to apply the same authentication scheme to all
applications, the scheme is determined by the /etc/pam.conf file.

The modules are pass−fail. By default, a failed authentication process proceeds past the failed
module to prevent the user from knowing where the failure occurred and using this information to
break the authentication. You can change this behavior by changing required to requisite in the
configuration file; if any requisite module returns failure, PAM fails immediately without calling any
other modules.

The /etc/pam.conf file contains a listing of services, each paired with a service module. When a
service is requested, its associated module is invoked. Each entry has the following format:

service_name module_type control_flag module_path [options]

Each module referenced in the module_path for that service is then processed in the order in which
it appears in the configuration file. The control_flag determines the persistence and importance of
the modules and may be set to one of the following values: requisite, required, optional, or
sufficient. If all requisite and required modules succeed, then a successful status is returned, and
any errors in optional or sufficient modules are ignored. If any requisite or required modules fail, the
error value from the first one that failed is returned. If no service modules are designated as
requisite or required, at least one optional or sufficient module must succeed before a successful
status is returned. If all fail, the error value from the first failed service module is returned. If two or
more lines have the same service_name and module_type pair, that service is said to be stacked.
This allows you to perform incremental checks with different parameters and set these checks to
different levels of importance.

Recently a new syntax has been added to give PAM even more flexibility. Originally, PAM modules
were strictly pass−fail. While this is still technically true since one failed module is a failure for the
entire module, there is now room to allow for more in−depth control over individual return codes.
The new syntax looks like this:

[value1=action1 value2=action2 …]

Acceptable value tokens are listed below:

success cred_expired
open_err cred_err
symbol_err no_module_data

383



service_err conv_err
system_err authtok_err
buf_err authtok_recover_err
perm_denied authtok_lock_busy
auth_err authtok_disable_aging
cred_insufficient try_again;
authinfo_unavai ignore
user_unknown abort
maxtries authtok_expired
new_authtok_reqd module_unknown
acct_expired bad_item
session_err default
cred_unavail
There are six action tokens: ignore, ok, done, bad, die, reset, or some positive integer. The integer
value represents how many occurrences of value to skip before taking an action. The action ignore
indicates that the value is not to be passed back to the application; for example, a failure that might
normally cause a user to be denied access might be masked by the PAM module, thereby having
no effect. The action ok indicates that the return code is important enough to affect the entire PAM
stack. As before, if the PAM stack's return code is PAM_SUCCESS before this value−action pair,
this return code will affect the stack; however, if the PAM stack already showed failure, a successful
return code will not override the previous stack state, since one failure is enough for the stack to fail
completely. The action done is the same as ok except that PAM does not continue further through
the stack but terminates and returns to the application. The action bad indicates failure for the entire
PAM stack but PAM continues through the rest of the stack. The action die is similar to bad except
that the processing of the PAM stack is terminated and control is returned to the application. The
reset action clears the memory of the PAM stack's state and continues to the next stacked module.

Originally, if any entry in /etc/pam.conf was incorrect, or if a module could not be opened, all PAM
services would fail, and users were not permitted access to the system. Using the newer
value−action pairs, it is possible to allow for different behavior. For instance, you might allow for six
bad item return codes before actually failing the module. Likewise if the system is missing the
appropriate file in /etc/pam.d, or if the /etc/pam.conf file has been deleted, no one will be able to log
into the system since login is the first of the applications that rely on PAM. To fix this, the system
administrator must use single−user mode to correct the errant file or to reinstall PAM completely.

If your system is set up to use different authentication schemes for each application, each will have
its own configuration file located in /etc/pam.d. The general syntax of an /etc/pam.d configuration file
is as follows:

module_type control_flag module_path [arguments]

On Red Hat 7.3, the /etc/pam.d/login configuration file looks like Listing 15.5. Let's walk through it to
see how it works.

Listing 15.5: The /etc/pam.d/login Configuration File for Red Hat

#%PAM−1.0
auth        required    /lib/security/pam_securetty.so
auth        required    /lib/security/pam_stack.so service=system−auth
auth        required    /lib/security/pam_nologin.so
account     required    /lib/security/pam_stack.so service=system−auth

384



password    required    /lib/security/pam_stack.so service=system−auth

session     required    /lib/security/pam_stack.so service=system−auth
session     optional    /lib/security/pam_console.so

In this example, the first library referenced for the auth service is pam_securetty.so. This library is
used to prevent the root user from logging in over the network. If a user is attempting to authenticate
as root, the module determines which terminal the attempt is coming from and then checks the
/etc/securetty configuration file to see if that terminal is listed. The /etc/securetty file, by default, lists
only those terminals that are physically connected to that machine. This is a required module, so a
failure here fails the entire authentication scheme for this application.

The next library in the auth sequence is actually a stack of library checks, a reference to the
system−auth file in the /etc/pam.d directory. This directory was introduced in Red Hat 7.0. Before
this, each library had its own line in the login file. So the pam_stack.so line actually runs the
functions in the auth section of the system−auth file shown in Listing 15.6.

Listing 15.6: The system−auth File

#%PAM−1.0
# This file is auto−generated.
# User changes will be destroyed the next time authconfig is run.
auth        required      /lib/security/pam_env.so
auth        sufficient    /lib/security/pam_unix.so likeauth nullok
auth        sufficient    /lib/security/pam_smb_auth.so use_first_pass 
nolocal

auth        required      /lib/security/pam_deny.so

account     required      /lib/security/pam_unix.so

password    required      /lib/security/pam_cracklib.so retry=3 type=
password    sufficient    /lib/security/pam_unix.so nullok use_authtok 
md5 shadow

password    required      /lib/security/pam_deny.so

session     required      /lib/security/pam_limits.so
session     required      /lib/security/pam_unix.so

As a result, the first module that the auth service calls is the pam_env.so; as you might guess, this
module sets the necessary environment variables. Examining the next module that the auth service
uses is pam_unix.so, the main authentication module. The parameters are likeauth and nullok. The
likeauth argument makes the module return the same value when called as a credential−setting
module and an authentication module. By default, it will reject a NULL password, but the nullok
parameter overrides this. We prefer to remove the nullok parameter to prevent the system from
accepting NULL passwords. Upon completion of this stack of library checks, control returns to
/etc/pam.d/login where the last step in the auth service, pam_nologin.so executes to check whether
or not the file /etc/nologin requires that the login be denied.

Note The /etc/nologin file is used to prevent any users from logging in from the console. This step
is needed during shutdown so that new users cannot log in as the system is shutting down.

The libraries for PAM are located in /lib/security/. If you are having problems with the login process,
it would be wise to check the /etc/pam.d/login file to determine which PAM libraries are needed and
make sure they exist in the /lib/security directory. Further, you should take some time to understand

385



the commonly used PAM files. The better you know them, the better you'll be able to troubleshoot
problems.

The beauty of PAM is in its configurability. PAM's modular design makes it easy to use and easy to
change. Any application that is developed to be PAM−aware makes users' lives easier by not
requiring them to learn separate passwords for each application. To learn more about implementing
P A M  i n  L i n u x ,  s e e  T h e  S y s t e m  A d m i n i s t r a t o r ' s  G u i d e ,  a t
http://www.us.kernel.org/pub/linux/libs/pam/Linux−PAM−html/pam.html.

File Permissions

We talked about file permissions in Chapters 5 and 7, but this topic is worth revisiting in the context
of security. As you remember from our discussion of the chmod command in Chapter 4, each file is
assigned a permission string. This string determines the type of access granted to the file's owner,
to members of the file's group, and to others in the outside world. The types of access that can be
granted are read (r), write (w), and execute (x). Here is a sample permission string:

−rwxr−xr−x    1    owner    group    240    May 1 11:00  file

Under Linux, each file is assigned an owner and a group. In this example, the owner is called
owner, and the group is called group. Ownership is completely separate from group membership,
which is to say that the file's owner does not have to belong to the file's group. Permission strings
specify permission in the following order: owner, group, and others. Looking at the permission
string, we see that the owner of file has read, write, and execute permissions for it. Members of the
group group have read and execute permissions. All others have read and execute permission as
well.

Under Red Hat, when a user is created, a group of the same name is created with only the named
user as a member. Red Hat calls these user private groups. Chapter 5 describes this practice.

To set appropriate access levels for a file or directory, you need to consider the use(s) that will be
made of it. For example, if you plan to execute the ls command on a directory, you need to assign
that directory read permission. Obviously, a file that is to be viewed requires read access. Likewise,
a file that is to be changed requires write access. A file that is to be run as an executable will, of
course, need executable permission. When the file is a directory, however, these requirements
might not be so obvious. Generally, any directory that you want to search or whose contents you
want to list will need read access. Any directory whose contents are to be changed requires write
access. If you wish to change your present directory to the target directory, the directory will have to
allow you execute privileges. Table 15.1 lists some commands and the required file/directory
permissions.

Table 15.1: Permission Requirements for Common Commands

Command File Permission Directory Permission
ls /home/user None required Read
ls −l /home/user None required Read and Execute
cd /home/user None required Execute
rm /home/user/file None required Execute and Write
cat /home/user/file Read Execute
binary Execute Execute

386



script Read and Execute Execute
rm −r /home/user/testdir N/A Read, Write, and Execute
binary > file Note: Only for pre−existing files. Write Execute

You can see that if you want someone to be able to perform an ls command in a specific directory,
you must set up the permissions string so that either that user or their group has read permission in
that directory. If you want a user to be able to view a file, it must have read permission set for the
user or the user's group and the directory must allow access permissions on either the user or
group level as well. The same principle should be applied to other situations where you are
attempting to give access to only a select group. In this case, create a group with a name like
project1. (See Chapter 7 for instructions on how to do this.) Make each individual who should have
access a member of the group project1. (Again, see Chapter 7.) Now set the permissions on the
directory where the files to be accessed are going to be stored to something like drwxrwx−−−,
thereby allowing the owner of the directory and the members of the group project1 read, write, and
execute permissions. Each file that is created in this directory must also allow members of project1
permission to read, write, and execute.

File permissions are an important security measure, but you really don't want would−be intruders to
get that far. Some measures must be taken to prevent any unauthorized person from getting onto
the system at all.

Protecting against Network Intrusion

One of the biggest tasks with regard to security is to protect the network against intrusion. Any time
you have a network, especially one that's connected to the Internet, there is potential for intrusion. A
number of things can be done to minimize the danger, but no method is foolproof. Usually several
methods are used in combination to maximize the chance of catching or stopping an intruder.
Among these are firewalls, TCP Wrappers, and post−break−in analysis to enhance prevention
(learning from your mistakes).

Firewalls

The purpose of a firewall is twofold. Firewalls keep would−be intruders out and keep local system
users in. If a company wants to protect proprietary information, it can block access to the system
from any IP address not within the company. This is usually more desirable than taking the machine
off the Internet entirely, since it allows remote users within the company to retain access. If that
same company wanted to prevent its users from having access to certain outside Web sites, it could
set up a firewall, which would restrict certain IP addresses from being able to send packets through
the firewall to the specified sites on the Internet. The packet itself has two parts: header and data.
The header contains the IP address of the sender, the intended recipient, the packet size, and other
relevant information. As a result, the firewall need not waste time on the data portion of the packet
but instead inspects the header to determine what to do with the packet.

The first firewalls were simply non−routing computers with two network cards, one connected to the
Internet and the other to the local area network. If you needed Internet access, you logged on to the
firewall server and performed functions from there, exporting the display to your local machine.
Anything that you ran on the firewall machine had access to both networks. That type of firewall
implementation is seldom used today, at least in this simple form; this configuration requires
everyone who is to have Internet access to have an account on the firewall. You definitely don't
want to do this if you are not sure that all users who gain such access are trustworthy.

387



Instead, two implementations are commonly considered when it is determined that a firewall is
needed. The first is a true firewall, called a filtering firewall or a packet−filtering firewall. The filtering
firewall handles packets at the network level before they get to the application layer. The second
method actually uses a proxy server but is often referred to as a firewall. A proxy is basically a
machine that makes network connections for the user instead of the user having a direct
connection. Quite often the two methods are used in tandem.

The Packet−Filtering Firewall

A packet−filtering firewall is basically a router; its job is to examine data packets and forward them
appropriately. Figure 15.2 shows one firewall configuration.

Figure 15.2: A simple NATed firewall configuration
As you can see, the firewall interfaces with both the Internet and the local area network and has two
IP addresses as a result. Any of the machines on the LAN can send data packets to the firewall
destined for some site outside. Conversely, data packets can come over the network to the firewall
intended for a local user. Either way, the firewall determines whether the packet is to be permitted to
proceed.

The firewall uses specific header information from the data packet to determine whether the packet
should be allowed to pass through; this information includes the packet type, the source address
and port number, the destination address and port number, the protocol, and any flags or options to
TCP or IP. Data packets must follow certain "rules" to gain passage through the firewall. In Linux,
you configure these rules using the IP Chains or IP Tables packages, which we'll examine next.

388



Your firewall can be as restrictive or open as you wish. Perhaps you simply want to prevent people
outside your firewall from being able to Telnet into your system. You may do this by having the
firewall reject incoming packets that are required to set up such connections. In an alternate
scenario, you might want to filter packets from inside your local area network to prevent anyone
from reaching a given IP address. How restrictive your firewall is depends upon the rules you set in
IP chains or IP tables.

The functionality for a packet−filtering firewall is built into the Linux kernel, although you must
recompile with certain network kernel options turned on. This is outlined in the Firewall−HOWTO,
maintained by Mark Grennan. Basically, in selecting options, you need to include routing,
defragmentation, IP masquerading, and multicast routing (if you intend to do multicasting). Older
kernels in the 1.x.x era used a package called ipfwadm, which is no longer supported. Kernels since
2.2.13 use IP chains instead; we'll talk about that in the "IP Chains" section below. The 2.4 kernels
use a new firewall utility, known as iptables.

Read the Firewall and Proxy Server HOWTO if you are building a firewall! It will probably be helpful
to read the Linux Networking HOWTO and the Linux IPCHAINS HOWTO as well. Most HOWTOs
can be found on Red Hat's site at http://www.redhat.com/mirrors/LDP/HOWTO/. For information on
IP tables, look for information under the heading of NetFilter on http://netfilter.samba.org/.

A filtering firewall does not require high−end computer power. If you have an old 486DX66 or better
with at least 16MB of memory, 300–500MB of hard drive space, and network connections, you will
do fine. In reality, more often the system is at least a Pentium or a Pentium II with 32−64MB of
memory and a 20GB hard drive; the point is that you don't have to max out the specifications if the
system is only to be used as a filtering firewall since the work of filtering packets doesn't heavily tax
a system. More memory will be beneficial if the system requires extremely large IP tables rulesets
or if a great deal of state information will be kept.

IP Chains

The IP Chains package makes managing the kernel's inherent firewall capabilities simpler. An IP
chain is a set of rules to be considered when a data packet is attempting to pass through the
firewall. The default IP Chains configuration includes three permanent chains: input, output, and
forward. The input chain governs incoming packets, the forward chain manages packets destined
for another host, and outgoing packets are subjected to the rules of the output chain. You may add
and edit other chains as needed. The IP Chains process is fairly simple and is illustrated in Figure
15.3.

389



Figure 15.3: The IP Chains process
In an alternate scenario when the loopback interface is used for debugging, a packet that is sent
from a local process and destined for a local process passes through the output chain right into the
input chain.

Rules and Rulesets

An IP Chains rule can specify the packet source with the −s option, the protocol with the −p option,
the destination with the −d option, the chain to which packets are to be sent if the rule matches with
the −j (jump) option, and the port. There are two types of rules: those that affect an entire chain and
those that affect the rules within a chain.

These options affect an entire chain:

−N Create a new chain.
−X Delete an empty chain.
−P Change the policy for a built−in chain.
−L List the rules in a chain.
−F Flush the rules out of a chain.
−Z Zero the packet and byte counters on all rules within a chain.
These options affect rules within a chain:

390



−A Append a new rule to a chain.
−I Insert a new rule at some position within a chain.
−R Replace a rule at some position within a chain.
−D Delete a rule at some position within a chain if passed a numeric value or delete the

first rule that matches if passed a rule to match.
Now let's look at a few sample rules. This rule denies all packets from 192.168.0.11:

ipchains −A input −s 192.168.0.11  −j DENY

This rule denies all packets that are not from 192.168.0.11:

ipchains −A input −s !192.168.0.11 −j DENY

This displays a list of all rules for the input chain:

ipchains −L input

Both of the following rules delete the seventh rule in the input chain, the first by matching the rule
number and the second by matching the rule itself:

ipchains −D input 7
ipchains −D input −s 192.168.1.11 −j DENY

Finally, this rule flushes the input chain:

ipchains  input −F

Now perhaps we want to deny FTP to the outside world but allow it on our internal network. We do
this by adding a rule to the input chain that rejects FTP requests that come in on eth0 but accepts
those coming in on eth1. To do this, we must run two separate ipchains commands:

ipchains −A input −p tcp −i eth0 −−dport ftp −j REJECT
ipchains −A input −p tcp −i eth1 −−dport ftp −j ACCEPT

Once your ipchains file is properly set up, you will need to make it run at each bootup. Red Hat
offers the ipchains−save and ipchains−restore binaries for this purpose. Run ipchains−save
redirecting its output to /etc/ipchains.conf in order to save your rules to the ipchains.conf file:

ipchains−save > /etc/ipchains.conf

Next add the ipchains−restore command to /etc/rc.d/rc.local so that it will run automatically at
bootup. You could just as easily add the ipchains commands that we stored in /etc/ipchains.conf to
/etc/rc.d/rc.local, but if you expect to make a lot of changes to the ipchains configuration, the first
method is more versatile.

Listing 15.7 contains an example ipchains file. This file is set up to do IP masquerading for the
192.168.1 internal network.

Listing 15.7: A Sample ipchains File

#!/bin/bash
/bin/echo −n "Setting up IP Chains: ipchains"
/bin/echo "."

391



#
#       New ipchains commands for somedomain.com
#
# Define some variables
# Any system anywhere
export ANY="0.0.0.0/0"
# The Internet connection
export INET="−W eth0"
# The local network port
export LETH="−V 192.168.1.1 −W eth1"
# The local network
export LNET="192.168.1.1/255.255.255.0"
# The firewall (this system on the local network)
export FWALL="192.168.1.1/32"
# The firewall's Internet address (if known or determinable)
export INET_IP="225.126.21.1"
# Some ipfwadm flags for the TCP protocol
export OpenNewConn="−y"
export ConnEstablished="−k"

# Flush Old Rules
/sbin/ipchains input −F
/sbin/ipchains output −F

# Load masquerade support modules
/sbin/modprobe ip_masq_ftp
/sbin/modprobe ip_masq_irc
/sbin/modprobe ip_masq_raudio

# Create forwarding chain and set reject as default
/sbin/ipchains −N forward
/sbin/ipchains −A forward −j reject −S #LNET −d $LNET
/sbin/ipchains −A forward −j reject −S #LNET −d 10.0.0.0/8
/sbin/ipchains −A forward −j reject −S #LNET −d 172.16.0.0/12
/sbin/ipchains −A forward −j reject −S #LNET −d 192.168.0.0/16

# Masquerade these ip's w/ default as all
/sbin/ipchains −A forward −j MASQ −s 192.168.1.1/32 −i eth0 −d $ANY
/sbin/ipchains −A forward −j MASQ −s 192.168.1.2/32 −i eth0 −d $ANY
/sbin/ipchains −A forward −j MASQ −s 192.168.1.3/32 −i eth0 −d $ANY
/sbin/ipchains −A forward −j MASQ −s 192.168.1.4/32 −i eth0 −d $ANY
/sbin/ipchains −A forward −j MASQ −s 192.168.1.5/32 −i eth0 −d $ANY
/sbin/ipchains −A forward −j MASQ −s 192.168.1.6/32 −i eth0 −d $ANY
/sbin/ipchains −A forward −j MASQ −s 192.168.200.206/32 −i eth0 −d $ANY

# Sets telnet and ftp to be instant, and ftp−data to have fast
# throughput
/sbin/ipchains −A output −p tcp −d 0.0.0.0/0 telnet −t 0x01 0x10
/sbin/ipchains −A output −p tcp −d 0.0.0.0/0 ftp −t 0x01 0x10
/sbin/ipchains −A output −p tcp −s 0.0.0.0/0 ftp−data −t 0x01 0x08

# Default policy: allow all traffic unless explicitly blocked
#/sbin/ipchains −N input
#/sbin/ipchains −A input −P accept
#/sbin/ipchains −N ouput
#/sbin/ipchains −A output −P accept

# Tell the kernel to allow ip forwarding
/bin/echo "1" > /proc/sys/net/ipv4/ip_forward

Administrator's Logbook: IP Chains

392



System: E12345678

Added the following rule to prevent message traffic from 192.168.1.23 from being passed on:

ipchains −A input −s 192.168.1.23  −j DENY

Added the following rules to deny ftp requests coming in from the outside world (eth0) but accept
internal network (eth1) FTP requests:

ipchains −A input −p tcp −i eth0 −−dport ftp −j REJECT
ipchains −A input −p tcp −i eth1 −−dport ftp −j ACCEPT

IP Tables

The IP Tables package, more often called Netfilter, is a bit more sophisticated than IP Chains. IP
Chains establish a stateless firewall that doesn't concern itself with the ordering of packets received.
There is no mechanism for noticing that a packet arrived out of order or that a packet that was
expected wasn't received. The IP Tables package is a stateful firewall, which adds tracking of open
connections in a state table. There are three default tables: filter, nat, and mangle. We will discuss
the filter and nat tables here. The default filter table includes these permanent chains: INPUT,
OUTPUT, and FORWARD. Building on our IP Chains explanation, the use of these chains is rather
intuitive except for a couple of differences: whereas all incoming datagrams are sent to the IP
Chains input chain, only datagrams destined for the localhost are sent to the Netfilter INPUT chain;
datagrams destined for other hosts are sent to the FORWARD chain. Another key difference is that
the IP Chains output chain sees all outgoing packets regardless of where they originated. Netfilter's
OUTPUT chain only looks at packets originating in the localhost destination, ignoring those
datagrams being routed from a different host.

For masquerading, you'll need to use the nat table. This table has two chains: PREROUTING and
POSTROUTING. Use −t nat to specify that you want to affect the nat table.

You may still add and edit other chains as needed. The IP Tables process is illustrated in Figure
15.4.

393



Figure 15.4: The IP Tables process
Walking through the process, we see that a packet enters the system and is checked by checksum
to see if it is corrupted. If it is, it is denied; otherwise it is passed on to the sanity check, which
checks to see whether the packet is properly formatted. If it isn't, it is denied. If the packet passes
this test, it is evaluated as either a local packet or an external packet. Local packets are sent on to
the INPUT chain, which evaluates it against the INPUT chain ruleset, which drops, rejects, or sends
it through that process to the OUTPUT chain. External packets, those bound for external hosts, are
sent to the FORWARD chain. Once sent on to the FORWARD chain, the packet is checked against
that chain's ruleset and dropped, rejected, or sent on to the OUTPUT chain. The Netfilter method is
quite streamlined when compared to the IP Chains method that we discussed above. In order to use
IP Tables, you need to build the kernel with Netfilter support (must be kernel 2.3.15 or later) or
include it as a module.

Rules and Rulesets

Rules for IP Tables look a little different than IP Chains rules. First let's examine the syntax: A
Netfilter rule can specify the packet source with the −s option, the protocol with the −p option, the
destination with the −d option, the chain to which packets are to be sent if the rule matches with the
−j (jump) option, and the port. There are three types of rules now: those that affect an entire table,
those that affect an entire chain, and those that affect the rules within a chain. Use −t to specify a
table name. The default table is the filter table, but you'll use the nat table to affect masquerading.

394



The nat table has two chains: PREROUTING for incoming interfaces and POSTROUTING for
outgoing interfaces.

This option affects an entire table:

−t Names a specific table to act upon.
These options affect an entire chain:

−N Create a new chain.
−X Delete an empty chain.
−E Rename a chain.
−P Change the policy for a built−in chain.
−L List the rules in a chain.
−F Flush the rules out of a chain.
−Z Zero the packet and byte counters on all rules within a chain.
These options affect rules within a chain:

−A Append a new rule to a chain.
−I Insert a new rule at some position within a chain.
−R Replace a rule at some position within a chain.
−D Delete a rule at some position within a chain if passed a numeric value or delete the

first rule that matches if passed a rule to match.
Now let's look at the sample rules we used with IP Chains above, rewritten in IP Tables syntax.

This rule drops all packets from 192.168.0.11:

iptables −A INPUT −s 192.168.0.11  −j DROP

This rule drops all packets that are not from 192.168.0.11:

iptables −A INPUT −s !192.168.0.11 −j DROP

This displays a list of all rules for the input chain:

iptables −L INPUT

To list the rules in the nat table, add the −t flag instead of a chain name.

iptables −L −t nat

Both of the following rules delete the seventh rule in the input chain, the first by matching the rule
number and the second by matching the rule itself:

iptables −D INPUT 7
iptables −D INPUT −s 192.168.1.11 −j DROP

Finally, this rule flushes the input chain:

iptables  INPUT −F

To flush the rules of the nat table only:

395



iptables −F −t nat

Now perhaps we want to deny FTP to the outside world but allow it on our internal network.
Assuming that we have two network cards, eth0 and eth1, and that eth0 is the one that connects to
the Internet, we do this by adding a rule to the input chain that rejects FTP requests that come in on
eth0 but accepts those coming in on eth1. To do this, we must run two separate iptables
commands:

iptables −A INPUT −p tcp −i eth0 −−source−port ftp −j REJECT
iptables −A INPUT −p tcp −i eth1 −−source−port ftp −j ACCEPT

Once your Netfilter file is properly set up, you will need to make it run at each bootup. Red Hat
offers the iptables−save and iptables−restore binaries for this purpose. Run iptables−save
redirecting its output to /etc/iptables.conf in order to save your rules to the iptables.conf file:

iptables−save > /etc/iptables.conf

To restore from /etc/iptables.conf, run iptables−restore with redirection from /etc/iptables.conf:

iptables−restore < /etc/iptables.conf

Next add the ipchains−restore command to /etc/rc.d/rc.local so that it will run automatically at
bootup. You could just as easily add the Netfilter commands that we stored in /etc/iptables.conf to
/etc/rc.d/rc.local, but if you expect to make a lot of changes to the configuration, the first method is
more versatile. Still better is adding an IP Tables script to /etc/init.d or wherever your distribution
puts its startup scripts. Red Hat 7.3 does this by default with the script shown in Listing 15.8:

Listing 15.8: A Sample Netfilter Startup File

#!/bin/sh
#
# Startup script to implement /etc/sysconfig/iptables pre−defined rules.
#
# chkconfig: 2345 08 92
#
# description: Automates a packet filtering firewall with iptables.
#
# by bero@redhat.com, based on the ipchains script:
# Script Author: Joshua Jensen <joshua@redhat.com>
#   −− hacked up by gafton with help from notting
# modified by Anton Altaparmakov <aia21@cam.ac.uk>:
# modified by Nils Philippsen <nils@redhat.de>
#
# config: /etc/sysconfig/iptables

# Source 'em up
. /etc/init.d/functions

IPTABLES_CONFIG=/etc/sysconfig/iptables

if [ ! −x /sbin/iptables ]; then
   exit 0
fi

KERNELMAJ=`uname −r | sed                   −e 's,\..*,,'`
KERNELMIN=`uname −r | sed −e 's,[^\.]*\.,,' −e 's,\..*,,'`

if [ "$KERNELMAJ" −lt 2 ] ; then

396



   exit 0
fi
if [ "$KERNELMAJ" −eq 2 −a "$KERNELMIN" −lt 3 ] ; then
   exit 0
fi

if  /sbin/lsmod 2>/dev/null |grep −q ipchains ; then
   # Don't do both
   exit 0
fi

iftable() {
   if fgrep −qsx $1 /proc/net/ip_tables_names; then
      iptables −t "$@"
   fi
}

start() {
   # don't do squat if we don't have the config file
   if [ −f $IPTABLES_CONFIG ]; then
       # If we don't clear these first, we might be adding to
       #  pre−existing rules.
       action $"Flushing all current rules and user defined chains:" 
iptables −F

       action $"Clearing all current rules and user defined chains:" 
iptables −X

       chains=`cat /proc/net/ip_tables_names 2>/dev/null`
            for i in $chains; do iptables −t $i −F; done && \
              success $"Flushing all current rules and user defined 
chains:" || \

              failure $"Flushing all current rules and user defined 
chains:"

            for i in $chains; do iptables −t $i −X; done && \
              success $"Clearing all current rules and user defined 
chains:" || \

              failure $"Clearing all current rules and user defined 
chains:"

            for i in $chains; do iptables −t $i −Z; done

       echo $"Applying iptables firewall rules: "
       grep −v "^[[:space:]]*#" $IPTABLES_CONFIG | grep −v 
'^[[:space:]]*$' | /sbin/iptables−restore −c && \

       success $"Applying iptables firewall rules" || \
          failure $"Applying iptables firewall rules"
       echo
       touch /var/lock/subsys/iptables
   fi
}

stop() {
   chains=`cat /proc/net/ip_tables_names 2>/dev/null`
        for i in $chains; do iptables −t $i −F; done && \
                success $"Flushing all chains:" || \
                failure $"Flushing all chains:"
        for i in $chains; do iptables −t $i −X; done && \
                success $"Removing user defined chains:" || \
                failure $"Removing user defined chains:"
        echo −n $"Resetting built−in chains to the default ACCEPT 
policy:"

   iftable filter −P INPUT ACCEPT && \

397



      iftable filter −P OUTPUT ACCEPT && \
      iftable filter −P FORWARD ACCEPT && \
      iftable nat −P PREROUTING ACCEPT && \
      iftable nat −P POSTROUTING ACCEPT && \
      iftable nat −P OUTPUT ACCEPT && \
           iftable mangle −P PREROUTING ACCEPT && \
           iftable mangle −P OUTPUT ACCEPT && \
      success $"Resetting built−in chains to the default ACCEPT policy" 
|| \

      failure $"Resetting built−in chains to the default ACCEPT policy"
   echo
   rm −f /var/lock/subsys/iptables
}

case "$1" in
  start)
   start
   ;;

  stop)
   stop
   ;;

  restart)
   # "restart" is really just "start" as this isn't a daemon,
   #  and "start" clears any pre−defined rules anyway.
   #  This is really only here to make those who expect it happy
   start
   ;;

  condrestart)
   [ −e /var/lock/subsys/iptables ] && start
   ;;

  status)
   tables=`cat /proc/net/ip_tables_names 2>/dev/null`
   for table in $tables; do
      echo $"Table: $table"
      iptables −t $table −−list
   done
   ;;

  panic)
   echo −n $"Changing target policies to DROP: "
   iftable filter −P INPUT DROP && \
       iftable filter −P FORWARD DROP && \
       iftable filter −P OUTPUT DROP && \
       iftable nat −P PREROUTING DROP && \
       iftable nat −P POSTROUTING DROP && \
       iftable nat −P OUTPUT DROP && \
       iftable mangle −P PREROUTING DROP && \
       iftable mangle −P OUTPUT DROP && \
       success $"Changing target policies to DROP" || \
       failure $"Changing target policies to DROP"
   echo
        iftable filter −F INPUT && \
                iftable filter −F FORWARD && \
                iftable filter −F OUTPUT && \
                iftable nat −F PREROUTING && \
                iftable nat −F POSTROUTING && \
                iftable nat −F OUTPUT && \
                iftable mangle −F PREROUTING && \
                iftable mangle −F OUTPUT && \

398



                success $"Flushing all chains:" || \
                failure $"Flushing all chains:"
        iftable filter −X INPUT && \
                iftable filter −X FORWARD && \
                iftable filter −X OUTPUT && \
                iftable nat −X PREROUTING && \
                iftable nat −X POSTROUTING && \
                iftable nat −X OUTPUT && \
                iftable mangle −X PREROUTING && \
                iftable mangle −X OUTPUT && \
                success $"Removing user defined chains:" || \
                failure $"Removing user defined chains:"
        ;;

  save)
   echo −n $"Saving current rules to $IPTABLES_CONFIG: "
   touch $IPTABLES_CONFIG
   chmod 600 $IPTABLES_CONFIG
   /sbin/iptables−save −c > $IPTABLES_CONFIG  2>/dev/null && \
     success $"Saving current rules to $IPTABLES_CONFIG" || \
     failure $"Saving current rules to $IPTABLES_CONFIG"
   echo
   ;;

  *)
   echo $"Usage: $0 {start|stop|restart|condrestart|status|panic|save}"
   exit 1
esac

exit 0

Listing 15.9 contains an example iptables.conf file. This file is set up to do IP masquerading for the
192.168.1 internal network and is generated with the iptables−save command. The syntax used in
this file is slightly different than if each command were typed at the command line.

Listing 15.9: A Sample iptables.conf File as Saved with iptables−save

*mangle
:PREROUTING ACCEPT [1508811:283630700]
:OUTPUT ACCEPT [492803:54921745]
COMMIT
# Completed on Sun Mar 24 08:35:38 2002
# Generated by iptables−save v1.2.4 on Sun Mar 24 08:35:38 2002
*nat
:PREROUTING ACCEPT [11027:587954]
:POSTROUTING ACCEPT [26364:1785343]
:OUTPUT ACCEPT [26284:1782075]
[0:0] −A POSTROUTING −s 192.168.1.3 −j MASQUERADE
[0:0] −A POSTROUTING −s 192.168.1.4 −j MASQUERADE
[2:113] −A POSTROUTING −s 192.168.1.5 −j MASQUERADE
[0:0] −A POSTROUTING −s 192.168.1.6 −j MASQUERADE
COMMIT
# Completed on Sun Mar 24 08:35:38 2002
# Generated by iptables−save v1.2.4 on Sun Mar 24 08:35:38 2002
*filter
:INPUT ACCEPT [387120:48095941]
:FORWARD ACCEPT [1041504:200933897]
:OUTPUT ACCEPT [492803:54921745]
[3:108] −A INPUT −p icmp −m icmp −−icmp−type 8 −m limit −−limit 1/sec −j 
ACCEPT

399



[0:0] −A INPUT −i eth0 −p tcp −m limit −−limit 3/hour −m tcp −−sport 22 −j 
ACCEPT

[0:0] −A INPUT −i eth0 −p tcp −m limit −−limit 3/hour −m tcp −−sport 901 −j ACCEPT
[0:0] −A INPUT −i eth0 −p udp −m udp −−sport 22 −j ACCEPT
[0:0] −A INPUT −i eth0 −p udp −m udp −−sport 901 −j ACCEPT
[12169:6468491] −A INPUT −i eth0 −p tcp −m tcp −−sport 80 −j ACCEPT
[0:0] −A INPUT −i eth1 −j ACCEPT
[0:0] −A INPUT −i eth0 −p tcp −m tcp −−sport 80 −j ACCEPT
[20928:2481411] −A INPUT −i eth0 −m state −−state RELATED,ESTABLISHED −j 
ACCEPT

COMMIT
# Completed on Sun Mar 24 08:35:40 2002

The Proxy Server

While a packet−filtering firewall handles filtering at the network level, a proxy server works at the
application level. The filtering firewall knows nothing of which application sent the packet—only the
IP address of the machine that sent it and the destination IP—but the proxy server receives data
directly from an application that is set up to talk to that specific proxy on that particular port. For
example, Netscape may be configured to send all requests to a proxy server that will get the
requested page and return it to the Netscape application. The proxy server may also maintain a
cache of the last pages visited and check each page against that cache before going onto the
Internet to retrieve the requested page.

The proxy server can reside on your firewall machine (the topology looks the same as in Figure 15.2
shown earlier), on a different machine inside the firewall (as in Figure 15.4), or connected to the
Internet and the local area network without the benefit of a firewall. It is usually preferable to have
as little outside the firewall as possible, so putting the proxy server on a different machine that is
protected by the firewall is a good idea. Sometimes the proxy is combined with the firewall, as
shown in Figure 15.5.

400



Figure 15.5: A combined proxy/firewall implementation
In this setup, the proxy server intercepts any Web requests coming from clients within the firewall
and checks them against an access control list, which details the sites for which access must be
denied. If the requested Web page is not on this list, the request is processed normally, going either
directly out on the Web or through a firewall for further processing. If the request successfully
passes through the ipchains or iptables filtering on the firewall, the retrieved Web page is sent back
to the requestor. If the requested Web page is on the control list, the requesting machine receives a
message indicating that the URL is not accessible or not valid. Many big companies set up a proxy
server to allow their users Internet access and also allow themselves to monitor the traffic.

A proxy server is much more resource−intensive than a filtering firewall, since it creates a new
process for each user who connects to it. If you have a lot of traffic, you'll need at least a Pentium II
with 64MB of memory, two network cards, and a 2GB or larger hard drive. This should handle
around 50 concurrent users. Understand again that this is the bare minimum system that should be
used. More common are Pentium III or Pentium IV proxy servers with 128–264MB of memory, two
network cards, and 20–30GB hard drives.

Proxy servers are useful, but their usefulness is limited to a small subset of the available network
services. Proxy servers are primarily used for HTTP. Linux systems can run a wide variety of
network services, and most Linux systems run several services by default. It is a good idea to turn
off any service that you don't intend to use; each service is a door that could potentially be opened

401



by a hacker scanning for open ports. If inetd (covered in Chapter 12) is used, you can add a pound
sign (#) to the start of each line in /etc/inetd.conf corresponding to the service you wish to disable
any services under inetd control, For services not under inetd control, use a tool like chkconfig.

chkconfig

In addition to services controlled through inetd or similar super servers, many services run directly,
linking up to ports without using a super server. You can usually shut these down by adjusting their
startup scripts, as described in Chapter 3. More commonly, however, is the use of chkconfig to shut
them down. The syntax of chkconfig is as follows:

chkconfig −−list [name]
chkconfig −−add [name]
chkconfig −−del [name]
chkconfig [−−level [levels]] [name] [on|off|reset]

The command chkconfig −−list without an argument will list all services and whether they are on or
off as appropriate. The service state will be listed by runlevel if not governed by xinetd or inetd. An
example is listed in Listing 15.10.

Listing 15.10: Sample chkconfig Output

syslog            0:off  1:off  2:on   3:on   4:on   5:on   6:off
crond             0:off  1:off  2:on   3:on   4:on   5:on   6:off
netfs             0:off  1:off  2:off  3:off  4:off  5:off  6:off
network           0:off  1:off  2:on   3:on   4:on   5:on   6:off
random            0:off  1:off  2:on   3:on   4:on   5:on   6:off
rawdevices        0:off  1:off  2:off  3:off  4:off  5:off  6:off
xfs               0:off  1:off  2:on   3:on   4:on   5:on   6:off
xinetd            0:off  1:off  2:off  3:on   4:on   5:on   6:off
reconfig          0:off  1:off  2:off  3:on   4:on   5:on   6:off
anacron           0:off  1:off  2:on   3:on   4:on   5:on   6:off
httpd             0:off  1:off  2:off  3:off  4:off  5:off  6:off
apmd              0:off  1:off  2:on   3:off  4:off  5:off  6:off
atd               0:off  1:off  2:off  3:off  4:off  5:off  6:off
named             0:off  1:off  2:off  3:off  4:off  5:off  6:off
keytable          0:off  1:off  2:on   3:on   4:on   5:on   6:off
gpm               0:off  1:off  2:on   3:on   4:on   5:on   6:off
ipchains          0:off  1:off  2:on   3:off  4:on   5:on   6:off
pcmcia            0:off  1:off  2:on   3:off  4:off  5:off  6:off
kdcrotate         0:off  1:off  2:off  3:off  4:off  5:off  6:off
kudzu             0:off  1:off  2:off  3:on   4:on   5:on   6:off
linuxconf         0:off  1:off  2:on   3:on   4:on   5:on   6:off
lpd               0:off  1:off  2:on   3:on   4:on   5:on   6:off
nfs               0:off  1:off  2:off  3:off  4:off  5:off  6:off
nfslock           0:off  1:off  2:off  3:off  4:off  5:off  6:off
sshd              0:off  1:off  2:on   3:on   4:on   5:on   6:off
identd            0:off  1:off  2:off  3:on   4:on   5:on   6:off
portmap           0:off  1:off  2:off  3:on   4:on   5:on   6:off
ypxfrd            0:off  1:off  2:off  3:off  4:off  5:off  6:off
rstatd            0:off  1:off  2:off  3:off  4:off  5:off  6:off
rusersd           0:off  1:off  2:off  3:off  4:off  5:off  6:off
rwalld            0:off  1:off  2:off  3:off  4:off  5:off  6:off
rwhod             0:off  1:off  2:off  3:off  4:off  5:off  6:off
smb               0:off  1:off  2:off  3:off  4:off  5:off  6:off
sendmail          0:off  1:off  2:on   3:on   4:on   5:on   6:off
rhnsd             0:off  1:off  2:off  3:on   4:on   5:on   6:off
ypbind            0:off  1:off  2:off  3:off  4:off  5:off  6:off
yppasswdd         0:off  1:off  2:off  3:off  4:off  5:off  6:off

402



ypserv            0:off  1:off  2:off  3:off  4:off  5:off  6:off
autofs            0:off  1:off  2:off  3:off  4:off  5:off  6:off
dhcpd             0:off  1:off  2:off  3:off  4:off  5:off  6:off
mysqld            0:off  1:off  2:off  3:on   4:on   5:on   6:off
nscd              0:off  1:off  2:off  3:off  4:off  5:off  6:off
ntpd              0:off  1:off  2:off  3:off  4:off  5:off  6:off
squid             0:off  1:off  2:off  3:off  4:off  5:off  6:off
vmware            0:off  1:off  2:off  3:on   4:off  5:off  6:off
apcupsd           0:off  1:off  2:off  3:on   4:off  5:off  6:off
mysqld−skip       0:off  1:off  2:off  3:off  4:off  5:off  6:off
postgresql        0:off  1:off  2:off  3:off  4:off  5:off  6:off
vmware.old.0      0:off  1:off  2:off  3:off  4:off  5:off  6:off
iptables          0:off  1:off  2:on   3:on   4:on   5:on   6:off
isdn              0:off  1:off  2:off  3:off  4:off  5:off  6:off
webmin            0:off  1:off  2:on   3:on   4:off  5:on   6:off
arkeia            0:off  1:off  2:off  3:off  4:off  5:off  6:off
xinetd based services:
   amanda:      off
   amidxtape:   off
   finger:      off
   linuxconf−web:   off
   rexec:       off
   rlogin:      off
   rsh:         off
   auth:        on
   telnet:      on
   tftp:        off
   wu−ftpd:     on
   talk:        off
   ntalk:       off
   pop−3:       on
   chargen:     off
   chargen−udp: off
   daytime:     off
   daytime−udp: off
   echo:        off
   echo−udp:    off
   time:        off
   time−udp:    off
   sgi_fam:     on
   amandaidx:   off

You can see from Listing 15.10 that there are many potential service vulnerabilities. As an example,
look at the Telnet service. This should definitely not be on. There are many more secure services
that accomplish the same mission; we use the secure shell (SSH). To turn off the Telnet service,
issue the following chkconfig command:

chkconfig telnet off

Any service that you do not absolutely need, should be turned off. If you only need a service rarely,
you might consider leaving it turned off until you need it and then turning it back off after use.

TCP Wrappers

TCP Wrappers is a host−based security layer that applies to daemons started by the inetd daemon.
The tcpd executable is a wrapper program that checks the /etc/hosts.allow and /etc/hosts.deny files
to determine whether or not the specified service should be run. When tcpd is started by inetd, it
reads the /etc/hosts.allow file and then /etc/hosts.deny. It grants or denies access based on the

403



rules in these two files.

Note Red Hat and Mandrake have both switched to xinetd as a replacement for both inetd and
TCP Wrappers. xinetd is discussed later in this chapter and in Chapter 12.

The /etc/hosts.allow file is a configuration file for the tcpd program. This file contains rules that
describe which hosts are allowed to access which services on the localhost. The format is as
follows:

service_list: host_list: [optional_command]

The service list is a comma−delimited list of service names to which this rule should be applied. The
ftpd, telnetd, and httpd services are examples. The keyword ALL or ALL EXCEPT may be used as
well. For instance, the following entry would allow all users to use all the local services except FTP:

ALL EXCEPT in.ftpd: ALL

The host list is a comma−delimited list of hostnames. The hostname may be represented as an IP
address, a specific hostname, or a hostname that uses wildcard characters to make the match. If
the hostname begins with a period, all hosts that share the string following that character will match
this rule. For example, the line below would match any attempt to Telnet in from a computer on the
somedomain.com network.

in.telnetd:.somedomain.com

If a numeric IP is used, it may be a full IP address for a specific machine or may consist of only the
partial address consisting of period−delimited numbers, causing any IP that starts with those
numbers to be matched. The host list may contain these keywords: ALL, LOCAL, PARANOID, and
EXCEPT. The ALL keyword would cause all hosts to match. The LOCAL keyword causes any local
login to match. The PARANOID keyword means that any host whose name is being spoofed will
match. The EXCEPT keyword is most often used in conjunction with ALL as in this example:

ALL EXCEPT hostname

This would match every host except the one that is listed. Another variation on this theme allows for
the rule to include an expression in the form:

12.34.56.0/255.255.254.0

This will be interpreted as a net/mask pair and will be matched if the net portion is equal to the
bitwise and of the address and the mask portion. Thus it would allow any address between
12.34.56.0 and 12.34.57.255 access to the system.

The optional_command argument identifies a command to be run every time the rule is matched.
For example, this might be used to send e−mail to the superuser when a certain host uses the
Telnet service. There are a number of expansions that may be used; they are covered in the
hosts.allow man page. Table 15.2 shows example entries from /etc/hosts.allow and what they
mean.

Table 15.2: Sample /etc/hosts.allow Entries

Line Meaning
in.ftpd:ALL EXCEPT 123.45.67.

404



FTP service is allowed to all except those on the
123.45.67.* domain.

ALL:ALL All services are allowed to all hosts.
ALL: 123.45.67.89 All services are allowed to the 123.45.67.89 host.
ipop3d:LOCAL The POP3 service is allowed to all local accounts.
in.talkd:host.somedomain.com,
host2.somedomain.com

The Talk service is allowed to both host and host2
in somedomain.com.

in.telnetd:.somedomain.com The Telnet service is allowed to any host on the
somedomain.com domain.

The /etc/hosts.deny file uses the same format as /etc/hosts.allow but serves the opposite purpose.
Lines in this file determine which hosts will be denied access to the specified service. The
/etc/hosts.allow and /etc/hosts.deny files work in conjunction. If the /etc/hosts.allow file listed the
rule ALL:ALL, allowing open access to all services, but the /etc/hosts.deny file included lines that
prohibited some hosts from using some services, /etc/hosts.deny would override the open access
for only the hosts and services specified. The deny file is the dominant file. An open system would
include the ALL:ALL entry in the /etc/hosts.allow file and nothing in the /etc/hosts.deny file, granting
access to everyone and denying it to no one. A completely closed system would have nothing in
/etc/hosts.allow and ALL:ALL in /etc/hosts.deny, thereby denying access to everyone.

The TCP Wrappers package includes two tools you can use to check your TCP security. There is
tcpdchk, which examines the /etc/inetd.conf, /etc/hosts.allow, and /etc/hosts.deny files for blatant
errors. To display a list of all access rules, use the following command:

# tcpdchk −v

The command will return a list of accesses explicitly permitted or denied, including the daemon to
which the access pertains, the client to whom the access pertains, and the actual access
determination. Here is an example:

>>> Rule /etc/hosts.allow line 18:
daemons:  in.telnetd
clients:  .ntrnet.net
access:   granted

The other tool is the tcpdmatch utility, which allows you to test for a specific daemon and client. The
command looks like this:

# tcpdmatch in.telnetd www.macroshaft.com

The command will return the following if access is granted:

client:   hostname www.macroshaft.com
client:   address  117.4.137.45
server:   process  in.telnetd
access:   granted

If the host is denied access, the response will look like this:

client:   hostname www.macroshaft.com
client:   address  117.4.137.45
server:   process  in.telnetd
matched:  /etc/hosts.deny line 10
access:   denied

405



Now that we know how to prevent access to the services available on your system, let's look at how
to handle them efficiently with xinetd.

xinetd

You will remember from Chapter 12 that the Internet Services Daemon (inetd) watches all ports
assigned to it and starts up the service associated with any port that has activity. This relieves each
process of the need to have a daemon running to check these ports. As of Red Hat 7.0, inetd is no
longer installed by default. Instead, the more secure extended Internet Service Daemon (xinetd) is
used. Most distributions are switching to xinetd as well. Both xinetd and inetd can be run
concurrently on a system. In fact, the author of the xinetd code suggests that an admin running an
RPC service do so from inetd. You can use your inetd.conf file to create a xinetd.conf file for the
non−RPC services.

The biggest reason that xinetd is more secure than inetd is due to its incorporation of something
similar to TCP Wrappers. In the xinetd.conf file as well as in the individual /etc/xinetd.d/ files, a
number of flags may be set that allow the administrator to determine who may run the service and
when they may do so. Listing 12.3 in Chapter 12 showed a sample xinetd service entry. You'll
remember that it included a user field to specify what username would be used to start the service.
Some services require that the root user control them, but others allow for a different user to control
them. If given a choice, always start the program with a non−root user so that any weaknesses in
the program behind the service do not render the entire system insecure. Although few services do
this by default, it is always good to use the interface flag to specify which interface to listen on for
that specific service. If attempts to exploit this service are made on interfaces that aren't explicitly
listed, xinetd ignores them instead of being exploited by them. You may use the log−specific flags to
alter what information is logged when xinetd runs the specified service. Two more flags important to
security are the no_access flag, which lists client machines not to be given access and the
only_from flag, which lists all clients authorized to access the service. The use of these flags can
help you establish a more secure system.

On a Red Hat 7.3 system, /usr/sbin/inetdconvert is a Python script that converts your inetd.conf file
to several files in a new /etc/xinetd.d directory. The command to use this tool to convert all services
that haven't already been converted is:

# inetdconvert −−convertremaining

A Perl script to convert the inetd.conf script into an xinetd.conf file is included with some other
versions of the xinetd package, located in the same directory as the binary. This script will be in
/usr/sbin if it exists on your system and may be run using the following command, assuming that the
executable is in /usr/sbin:

# /usr/sbin/xconv.pl < /etc/inetd.conf > /tmp/xinetd.conf

The transition creates several files within the /etc/xinetd.d directory. These files contain the
configuration options for each service managed by xinetd, so you'll need to edit these files to
configure xinetd to handle these services in the way you'd like.

Detecting Intrusion

Intruders usually, if not always, leave signs of intrusion. For some, being noticed is the game. Those
who don't want to be noticed need to stay on the system just long enough to adequately mask the
intrusion but still get off the system before someone notices that they are on. Crackers can alter the

406



logfiles in such a way as to make it almost impossible for someone to notice that they have been on
the system, but this takes a great deal of time. Many crackers simply delete the logfiles that would
identify them or cut out the portions that detail their activities. This leaves time gaps in the logs,
leaving a huge footprint. Still, you will usually only know that someone has been there and not know
who it was.

Sometimes intrusion is fairly easy to detect. Although crackers tend to try to disguise their intrusion,
there are always telltale signs. On a Red Hat system, the /var/log/secure file is very helpful. This file
logs all attempts to access services on the system along with information about whether the attempt
was successful or unsuccessful. Looking at this log, you can sometimes determine that someone is
trying to break in, because there are several failed attempts to access the system by a single IP or
hostname. Failed login attempts, by Telnet, FTP, or some other service, are easy to spot in the logs:

Jun 20 11:33:01 mydomain in.telnetd[1822]: refused connect
        from 121.137.226.29
Jun 23 01:23:22 mydomain in.ftpd[19650: refused connect from
         209.151.118.23

You can then use an nslookup on the IP to gain any information you can about where the attempted
logins are being instigated. Then add this IP to your /etc/hosts.deny file to make things a little
rougher. Most often, however, the IP is no longer valid, because the cracker was attempting to
access your system through a dial−up account. If the IP does resolve, don't immediately assume
that the would−be intruder actually has an account within that system; many times, crackers will
break into a system and use that system to try to access another system. Sometimes this continues
until the chain is quite long. In this case, the IP would belong to another of the cracker's victims and
not the cracker. Sometimes the cracker will delete the portions of the /var/log/secure and
/var/log/messages files that show the attempted breach, or the relevant logs may be deleted
entirely. These signs are all too often overlooked. System administrators must watch for blank spots
in the logs or missing logs as well as strange patterns in these same files.

In order to keep up with the evolving set of threats and vulnerabilities, system administrators must
take intrusion detection very seriously. As an old vulnerability is fixed, another one may be
introduced. The intruder may be a total stranger or the boss's son. It takes a concerted effort to stay
ahead. Intrusion detecting tools are one way to even the odds.

Applications for Detecting Intrusion

Intrusion detecting is a repetitive chore. It is difficult to keep up, since the break−in can happen at
any time—day or night. For this reason, it is better by far to run some intrusion−detecting
applications that will watch the system for you and notify you of suspicious activity or changes to
files. Several such applications are available. Here are just a few.

Tripwire

Tripwire for Linux, currently at version 2.4.2 for Windows and version 2.3.47 for Linux, produces a
baseline of your files and checks existing files against this baseline when requested to do so. Set it
up to run once a night. Look through it each morning, and after determining that all the changes
listed are valid, update the Tripwire database. You'll want to keep the baseline on a floppy or other
removable media to prevent an intruder from deleting or modifying it. The version for Linux is
available for free and is usually a few version numbers behind the Windows version as a result. To
download an open source version of Tripwire 2.3.47 for Linux or read about i t ,  go to
http://www.tripwire.org/. A fairly recent version of Tripwire is included with most major distributions
of Linux.

407



Scanlogd

Scanlogd detects port scans and writes one line per scan through the syslog mechanism. Since
denial−of−service attacks typically send multiple packets to different ports to cause the system to be
too overwhelmed to handle legitimate requests, if any outside IP address sends several packets to
different ports on the same machine in a short time, scanlogd logs it. You can download it or read
more about it on http://www.openwall.com/scanlogd/.

Deception Tool Kit

The Deception Tool Kit (DTK) is a very clever application that allows you to spy back at the
intruders who are spying on you. It fakes certain services, making it appear as if the system has
multiple vulnerabilities, and then captures information about any attempt to exploit them. For
instance, if the cracker tries to get the /etc/passwd file, DTK will send a fake one. The cracker then
wastes time trying to crack the passwords before realizing that it does not contain valid passwords
for the system. As a preventive measure, traffic on port 365 indicates that the target machine is
running DTK, thereby serving as a flag to the inquiring cracker and forcing reconsideration about
whether or not to pursue the attack on your system. Read more about it at http://www.all.net/dtk/.

LogSentry

LogSen t r y  i s  pa r t  o f  t he  Abacus  P ro j ec t  be i ng  conduc ted  by  Ps i on i c  So f twa re
(http://www.psionic.com/products/). It examines the logfiles for possible security problems or
violations. It then generates a list of what it considers to be suspicious and e−mails that list to the
s y s t e m  a d m i n i s t r a t o r .  I t  i s  f r e e  f o r  u s e  a t  a n y  s i t e .  D o w n l o a d  i t  a t
http://www.psionic.com/products/logsentry.html.

This list of intrusion−detecting applications is not comprehensive. It is generally a good idea to
search the Internet for security sites that recommend applications of this type, since new ones are
made available quite often. Running one or more of these or other applications empowers you in
your attempts to prevent would−be intruders from cracking your system.

In Sum

Security is such a big topic that there is always more to be said. We have included the specific tools
that we use or have had recommended to us. You should search the Internet and talk to other
system administrators to find the specific products that meet the needs of your situation. Test
everything. Be very thorough and always watch your distribution's homepage for security advisories
and updated packages.

Now we go on to the topic of performance tuning. Knowing more tricks about how to get the most
performance for the buck can really get the boss's attention. Chapter 16 will get you started.

408



Chapter 16: Performance Tuning

Overview

Performance tuning is truly an art form. Those who are particularly skilled at it can often take a
system that seems barely sufficient for its intended task and make it fly. When a computer starts to
react sluggishly, whether because of new software that is taxing its resources or some other factor,
many people immediately conclude that a purchase order is the next step. Certainly the purchase of
a new, high−end system could speed things up, but often there is a less expensive way.

This chapter provides some performance tuning tips that will allow you to maximize the performance
of the computers in your system without the purchase of additional hardware. Use these tips to
enhance the computers you administer, and you'll enjoy a boost in performance.

The Elements of Performance

Many elements are used to measure performance. Certainly it is valuable to compare the amount of
time used to perform a task to the time used to perform the same task by a different computer or the
same computer after being configured differently. Memory usage, including swap memory usage, is
another factor that can be used to gauge performance. Hardware performance is often measured in
terms of number of failures and comparisons based on other factors like speed, and available
software is compared in a like manner.

Regardless of what element of performance you are testing, it is critical to ensure that the test
isolates that element so that variations in other areas do not influence the final outcome. If you want
to test CPU speed on two different systems, for example, you would not want one to have
significantly more memory or any other feature that would make the playing field uneven from the
beginning.

Hardware Performance

The hardware in a computer system is critical to its performance, so it's essential for system
administrators, like yourself, to be able to determine when new hardware will actually provide a
measurable benefit to the system in question. Making this determination requires measuring the
performance of existing hardware and determining if it's creating a bottleneck, which is a component
or process that limits the overall system performance. (Bottlenecks are covered in more detail
shortly.) There are several different classes of hardware that are potential sources of bottlenecks.

CPU Performance

The Central Processing Unit (CPU) of the computer carries most or all of the system's
computational load. It's the CPU that performs spreadsheet calculations, compresses data for
archiving, determines where to place a word when formatting a document, and so on. The CPU is
therefore a major contributor to a system's performance—and a potential source of bottlenecks.

The importance of the CPU varies from one system to another. On a computer that's used for very
CPU−intensive tasks, such as creating 3D animations or performing many types of scientific
simulations, the CPU is extraordinarily important. Other tasks, such as serving files, are more
affected by other subsystems, such as the disk or memory.

409



If your computer has an inadequate CPU, the most obvious fix is to upgrade the CPU. Roughly
speaking, a CPU cycle is a single "tick" of the CPU "clock"—most tasks require a fixed number of
CPU cycles to perform. Therefore, a process will run faster on a similar CPU with a higher clock
rate. Simply put, a 2 GHz Pentium 4 can finish a given process faster than a 1 GHz Pentium 4.

There may be other options, however. One trick is to get the computer to perform a task in fewer
CPU cycles than it otherwise would. You can sometimes reduce the number of CPU cycles required
to run a program by recompiling the program with more efficient compiler options. Of most
importance, most x86 Linux distributions use 386 optimizations, but if the computer uses a Pentium
or faster CPU, 586 or even 686 optimizations may produce better performance.

Tip The Mandrake and Stampede Linux distributions use 586 optimizations on their packages, and
so can be marginally faster than other distributions. On the other hand, the 586 optimizations
mean that these distributions don't run on 386 or 486 computers.

Memory

Many programs are memory−intensive—they consume a great deal of memory. Examples include
high−resolution graphics packages, some databases, and some scientific simulations. If your
system makes heavy use of such memory−intensive programs, it's important that you have enough
of both memory and fast memory.

Memory is measured in megabytes (MB). You can find how much your system has, and roughly
how it's being used, with the free command, thus:

$ free
             total   used    free   shared  buffers   cached
Mem:         95772  86748    9024    54480     5796    36164
−/+ buffers/cache:  44788   50984
Swap:       136512   7000  129512

The total column on the Mem line shows the total amount of RAM that Linux is using, usually equal
to the amount of memory that the system has. The used column shows the amount of memory
that's used, but the Mem line isn't the best to read in conjunction with this column, because it
includes memory that Linux has dedicated to disk buffers. On most systems, the used column
should show a value very close to the total column. Instead, check the −/+ buffers/cache line under
the used column to see how much memory is in use. If your system has insufficient memory, it will
use a lot of swap memory (indicated by a high value in the used column on the Swap line). This is
disk space treated like memory. Because disk performance is slow compared to memory
performance, it's best to minimize use of swap space.

Short of replacing or adding memory, there's not much you can do to improve the performance of
the memory you've got; however, there are steps you can take to make Linux use its existing
memory more efficiently. These techniques are covered later in this chapter.

Disk Performance

The disk subsystem—and particularly the hard disk—is a potentially important determinant of
performance. Many processes, including file serving, databases, and software development,
depend upon fast disk access. In addition, swap space resides on the hard disk, so if your computer
has inadequate memory, disk performance becomes important in memory−intensive tasks, as well.

You can improve disk performance by replacing your hard disk or by supplementing it with another

410



one. A less expensive option is to optimize your disk performance in any of several ways, described
in more detail later in this chapter. Careful partition layout, Linux disk−tuning options, and so on can
improve performance substantially.

Input/Output

Besides disk access, a variety of other I/O processes are also quite important, but less universally
so. The video hardware is extremely important to some video−intensive tasks, such as displaying
and moving windows in X, and in game playing. Network card I/O is important to servers and other
network−intensive tasks. Even the lowly serial and parallel ports can be important to tasks such as
printing.

For the most part, I/O speed is directly related to the quality of the relevant hardware. Sometimes
the hardware quality interacts with the quality of drivers written for that hardware. For instance,
historically, the fastest video hardware has first been supported in Linux using drivers that don't fully
take advantage of the cards' features. The newest video cards therefore often perform poorly in
Linux, at least until the XFree86 developers can produce improved drivers—a process that can take
several months.

Occasionally, special driver parameters can improve the performance of an I/O device. Linux
usually sets the best parameters at boot time, but you may want or need to adjust these settings in
some circumstances. Chapter 11, "Serial Communications, Terminals, and Modems," covers
adjusting the speed of serial ports, and this chapter includes tips for some other I/O devices.

Software Performance

Tools to measure software performance are typically expensive and are not often a justifiable
expense given the infrequency of usage. Typically software performance is measured in terms of
speed and accuracy. Software speed is directly dependent upon the skill of the programmer who
wrote the software, but since you can't control that, you have only to look to the hardware and
operating system when software performance appears to have degraded. Often a specific program
that your users run frequently will be the clue to them that the system is running poorly.

Measuring Performance

There are so many ways to measure performance that it is difficult to make the measurement
meaningful. One of the simplest benchmarks for Linux systems is the time it takes to compile a
specific kernel from the command line without X running; this is certainly useful when comparing
two identical computers or a single computer before and after a reconfiguration. Because kernel
compilation under Linux exercises most functions that are exercised by normal benchmarks except
floating−point performance, this comparison yields very useful data, which has the added benefit of
being in an easily compared form. To make the comparison even better, you can shut down any
external access, preventing user load from tainting the data. Of course, you need to use the same
kernel source tree and the same .config file to ensure that you are comparing apples to apples. This
is sufficient if your intent is to test the "guts" of the system.

For instance, you might compile a kernel and discover that the process requires 15:03 to complete.
After setting several optimizations, you might find that the same process requires only 11:34—a
substantial improvement. In performing such a comparison, though, you must ensure that nothing
about the compilation itself has changed. You should compile the same source code from the same
source tree. Also, be sure to do a make clean before each test compile. This command removes the

411



intermediate object code files created from the source code files. If you don't do a make clean, the
subsequent make bzImage (see Chapter 8, "Software Administration") or similar command will
simply relink the kernel against the previously compiled object files, resulting in a huge speed
difference that doesn't reflect the results of your performance tuning.

To  measure  X  pe r fo rmance ,  use  the  xbench  too l .  As  desc r ibed  on  i t s  Web  s i t e
(http://charon.astro.nwu.edu/xbench), this tool uses a measurement called xStones, which is a
weighted average of several tests indexed to an old Sun station with a single−bit depth. A database
of test runs is available at its home site for your examination. xbench uses 13 low−level tests:

line Draws vertical and diagonal lines of different lengths.
dline Draws dashed lines.
wline Draws wide lines.
rects Draws rectangles.
fillrects Draws solid filled rectangles.
tiledrects Draws tiled rectangles.
stippledrects Draws stippled rectangles.
invrects Inverts rectangles on the screen.
arc Draws arcs of varying angles between 5 and 360 degrees.
filledarc Draws filled arcs of varying angles between 5 and 360 degrees.
filledpoly Draws a filled polygon with five points.
bilblt Test varies; see Web site for details.
imagestring Draws a string.
The simple tests listed above really only test the graphics engine. Additionally, xbench uses one
complex test to test the X server's overall performance. This test creates a window, clears an area,
draws some text, scrolls the window, and destroys the window. This is a very old tool. If there were
a newer tool that measured the same type of activity, we'd use it. As it is, though, xbench is the
usual benchmark for X performance.

Finding Bottlenecks

When you notice that one of your computers or an entire network is running slower than usual, it is
time to assume the detective role and track down the problem. Where is the bottleneck that is
preventing the data stream, whether on the network or on the backplane of an individual computer,
from flowing at its previous rate? What is causing the sluggishness? Is it hardware, software, the
network, or something in the operating system that is causing the problem? There are two tools we
use to determine the problem: top and traceroute. These tools can f ind most of  the
non−hardware−related bottlenecks in the average computer system. If you don't find a bottleneck,
chances are the problem is hardware that is beginning to fail or is wrongly configured. Such issues
are discussed later in this chapter.

Using top to Find the Bottleneck

We use the top utility frequently to see how heavily loaded a particular computer is. The system
information top displays includes uptime, the number of processes and the states of those
processes, the percentages of CPU cycles and memory each process is using, the amount of time
each process has taken, and a lot of other information. The information may be specific to the listed
process or cumulatively computed from the process and its dead children. This information is

412



invaluable in troubleshooting a system. The processes are listed in order from the most
resource−intensive to the least intensive, and the display updates itself about every 5 seconds. top
reads global configuration information from /etc/toprc and user configuration information from a
.toprc file in the user's home directory.

The normal top utility is text−mode, but graphical versions also exist. The graphical versions are
available with the GNOME and KDE interfaces. The GNOME version is gtop, or the System
Monitor, and the KDE version is ktop, or the Task Manager. As you've seen in previous chapters,
we usually don't go for the GUI version of a tool unless it lends itself particularly well to a visual
presentation. In the case of table of process information, you'll see that it does. Figure 16.1 shows
the standard command−line top utility.

Figure 16.1: The top utility
Looking at the sample output, you'll see that the system is running a process called vmware, which
is taking up 27.7% of the CPU cycles. It also is using 46.1% of the memory. That's normal; this
product is quite resource−intensive and slows down a system quite a bit. Sometimes, however,
programs go haywire and start dominating the CPU or the memory and need to be shut down. The
top utility will help you find such programs.

Note VMware is a tool for running multiple operating systems on a single
computer. An alternative to dual−booting, it provides a virtual machine on an
Intel−based computer. This virtual machine is a simulated computer in which
an alternative operating system can be installed and run as if it were running
on standard PC hardware while actually being isolated from the host's
hardware and operating system. For more information, go to the VMware,
Inc. site at http://www.vmware.com/.

Other information provided by top includes the process ID (PID), which can be used to kill an errant
program; the user who's running the program; the task priority (PRI) and nice value (NI), which
determine how Linux allots CPU time to the task; various measures of memory usage (SIZE, RSS,
and SHARE); the task's state (STAT)—R for running, S for sleeping, W for swapped out, and so on;
and the total CPU time consumed (TIME).

The top utility also has an interactive mode, which allows you to perform tasks like killing a process,
changing what information is displayed and how often it is updated, and renicing a process. (We'll
talk about nicing and renicing a process in the "Tuning the System" section of this chapter.) The

413



global /etc/toprc file can be used to restrict nonprivileged users to the secure mode of top, which
disables this interactive mode.

Figure 16.2 illustrates GNOME's gtop version of the utility. Gtop is far more impressive in color, but
you can get an idea of its value from the figure. The colored bars at the top clearly show the CPU
usage by user and system, the memory usage (MEM), the swap memory usage (SW), which in this
example is minimal, and the load average (LA), which is also minimal here. However, you must be
able to discern what portion of the load is caused by running the monitoring software itself, or the
data is useless. Comparing this display to Figure 16.1, you can see that gtop uses considerably
more CPU cycles and memory than top.

Figure 16.2: The gtop utility
Figure 16.3 shows the KDE graphical alternative, Process Manager. Not only can you clearly see
from the bar graphs at the top the amount of physical memory being used, you also see a graphical
representation of the amount of swap memory being used and the percent of the CPU being used.
The Process Manager also allows you to view socket information for a task by double−clicking it or
to pass a signal to a process by highlighting it and then selecting the signal to send from the
Process menu. This is more comfortable to many administrators than the interactive mode of the
non−graphical top. Again, in analyzing the results you have to realize that you're using additional
resources by running the graphical version.

414



Figure 16.3: The KDE Process Manager
Tip The amounts of physical memory used and free don't add up to the 128MB that the system

has, because some memory is used to contain the kernel and shadow the BIOS.
Linux Memory Usage

Many new system administrators misunderstand the high usage of memory on a Linux system and,
when they see statistics like those illustrated here, believe they need to add more physical memory.
In reality, Linux makes very good use of the physical memory and will consistently use nearly all of
it. Operating systems that don't do this simply waste the resource. To gauge your memory needs
with top, look at how much swap memory is being used. If, as in this case, only a very small amount
is being used, you don't need more memory. When the system does a lot of swapping and does so
often, you need to consider adding either more swap space or more physical memory. If your swap
is already around double the amount of your physical memory, add more physical memory. The free
utility, described earlier, shows memory usage information only.

traceroute

The traceroute utility will help you track down problems in your network or determine that a problem
is actually outside your network. The traceroute utility prints the route that packets take to a specific
network host and three measurements of the time in milliseconds for each hop. Listing 16.1 shows
the traceroute command in action. Using this information, you can determine whether there is a
delay at one of the network stops that your data makes between the sender and receiver, thereby
providing useful information when you are troubleshooting a network problem. Listing 16.1 shows a
slow increase in the times between the first hop and the final one, but there's a jump at the final hop,
suggesting that the destination is overloaded or on a slow link. In this case, you can't do anything to
improve network performance. If you'd seen a big jump within your network, though, it's possible
that reconfiguring your network or upgrading its hardware could improve performance.

Listing 16.1: Output of the traceroute Command

$ /usr/sbin/traceroute www.linux.org
traceroute to www.linux.org (198.182.196.56), 30 hops max, 40 byte 
packets

 1  dsl−254−070.dsl−isp.net (216.254.70.1)  30.599 ms  46.390 ms 
33.701 ms

 2  border9.fe4−0.speakeasy−6.nyc.pnap.net (209.191.175.196) 
25.710 ms  37.445  ms  26.314 ms

 3  core2.fe0−0−fenet1.nyc.pnap.net (209.191.128.66)  26.032 ms 

415



25.860 ms  25.5  97 ms
 4  POS3−3.GW12.NYC4.ALTER.NET (157.130.253.217)  26.243 ms 
38.132 ms  25.969 ms

 5  505.ATM2−0.XR1.NYC4.ALTER.NET (152.63.22.66)  26.275 ms  25.030 
ms  26.302 ms

 6  189.at−1−0−0.TR1.NYC8.ALTER.NET (152.63.21.90)  27.014 ms 
27.310 ms  26.042 ms

 7  124.at−6−0−0.TR1.DCA6.ALTER.NET (152.63.2.165)  35.369 ms 
35.692 ms  34.126 ms

 8  187.at−6−0−0.XR1.TCO1.ALTER.NET (152.63.34.17)  31.948 ms 
31.754 ms  34.152 ms

 9  193.ATM9−0−0.GW1.TCO1.ALTER.NET (146.188.160.41)  33.437 ms 
35.940 ms  33.455 ms

10  uu−peer−oc12.core.ai.net (205.134.160.2)  47.416 ms  48.639 ms 
44.509 ms

11  border−ai.invlogic.com (205.134.175.254)  42.543 ms  54.816 ms 
63.588 ms

12  router.invlogic.com (198.182.196.1)  58.183 ms  58.595 ms 
73.077 ms

13  www.linux.org (198.182.196.56)  117.648 ms  153.763 ms 
111.498 ms

Tuning the System

Most of the default settings in a typical operating system—Linux included—are set conservatively in
an effort to serve the widest variety of installations. This section examines some of the aspects of a
Linux computer system you can optimize beyond the default settings to give it better performance.
Some of these will bring only minimal gains, but the overall effect will be positive. Of course, we
cannot tell you generically which of these methods will bring the greatest benefit to your system, but
we've been careful to warn you of any potential risks. You might want to use a less critical system to
test these optimizations, although they are all safe if performed as listed.

nice and renice

Introduced in Chapter 4, "Tools of the Trade," these two commands allow you to assign priorities to
processes. The highest priority is −20, and the lowest priority is 19.

nice

The nice utility allows you to run a specified program with a modified scheduling priority. If you don't
specify a new priority with the nice utility, the command's priority will be increased by 10, thereby
making it give way to other processes; hence the name nice. Only privileged users can specify
negative priorities, making a process more urgent.

Tip Some CPU−intensive programs are low priority. For instance, the
SETI@home project (http://setiathome.ssl.berkeley.edu/) distributes
deep−space radio recordings to individual systems for processing in the
search for extraterrestrial intelligence (SETI). A Linux version of the
SETI@home software is available and can be run in the background.
Chances are your own computer use is more important to you than the
SETI@home software, so you can use nice to run the SETI@home
software at low priority. Doing so ensures that SETI@home won't rob
CPU time from more important processes, while still allowing you to
participate in the project. You can use the same technique with any

416



CPU−intensive but low−priority task.

renice

The renice utility is a little more versatile than nice. It may be used on users (the −u argument) to
alter the scheduling priority of all of the processes owned by that user. When it's used on a process
group (−g), the scheduling priority of all processes in the process group will be altered. When it's
used on a process (−p), the priority of that process is altered. If you combine more than one of these
types in a single command, you must specify −p for any individual processes that occur after a user
or process group name in the renice command. For example, the following command would
increase the scheduling priority of process 247, 123, and all processes owned by root by a factor of
10.

# renice +10 247 −u root −p 123

Virtual Memory Tuning

If they exist on your system, you can use the files in /proc/sys/vm to tune the virtual memory system
on your Linux computers. Use the cat command to see the current settings and then the echo
command to set new values. The relevant cat command looks like this:

# cat /proc/sys/vm/freepages
64      96      128

These three numbers are the current settings for the variables: min_free_pages, free_pages_low,
and free_pages_high. Free memory normally doesn't go below min_free_pages. If the number of
free pages falls to below the free_pages_high setting, background swapping is started. If it falls
below the free_pages_low setting, intensive swapping is started. A "page" is 4KB. The boot default
setting for min_free_pages on a system with 8MB or more memory is n × 2, where n is the number
of megabytes of memory. The free_pages_low setting for this machine would be n × 3, and the
free_pages_high would be n × 4. Machines with less than 8MB of memory use an n value of 8.

If "out of memory" errors occur or if the machine is primarily used for networking, it might be
beneficial to increase min_free_pages to 64 or more. In this case, free_pages_low should be set to
double the min_free_pages setting.

On a server with 128MB of memory and a fairly low user load, settings of "256 512 768" tend to
work well. If the system will be restricted to light server duty and fairly significant desktop usage,
these settings are probably adequate. If the server load becomes heavier and the system seems to
stall, you can experiment with increasing the settings using the guidelines noted above.

To adjust these sett ings, s imply echo the desired values and redirect  the output to
/proc/sys/vm/freepages as follows:

# echo "256 512 768" > /proc/sys/vm/freepages

Another tool is the /proc/sys/vm/overcommit−memory fi le, which you can use to allow
overcommitting of resources. It contains only a flag setting (0 for off, 1 for on) to turn this feature off
or on. Overcommitting allows you to do things with fewer resources than you would otherwise need.
We don't recommend this, because if programs try to use the resources they've been told are
available, the programs or system may crash. If you need more memory, add more physical
memory.

417



The /proc/sys/vm/bdflush file determines the behavior of the bdflush kernel daemon. This daemon
determines when existing "dirty" buffers should be written to disk. A "dirty" buffer is one that is
awaiting a disk write. When memory is short, you can set the maximum number of dirty buffers that
can exist in a buffer cache to a high value and/or the maximum number of dirty buffers that bdflush
can write to the disk at once. This causes Linux to perform less frequent but longer−lasting disk
writes. A low value makes disk writes more even in their frequency and duration. Other settings
control the allocation of free buffers, and these can be adjusted to meet the system's needs as well.
Read more about bdflush on the bdflush man page or info page.

The /proc/sys/vm/kswapd file contains settings that control kernel swapping. You can control how
many pages kswapd tries to free at one time and the number of pages kswapd writes in one turn (a
swap cluster). You'll want to set the swap cluster setting reasonably large so that kswapd does its
I/O in large chunks and the disk won't have to seek very often, but if you set it too high, the system
will be bogged down with very lengthy swaps. The setting used by default for Red Hat will work for a
server that is not heavily used, but you can experiment.

The file /proc/sys/vm/pagetable_cache contains two numbers, which represent the minimum and
maximum cache size for each processor. On a low−memory, single−CPU system, particularly with
less than 16MB of RAM, you should set these values to 0 so that you don't waste the memory. On
SMP systems, these settings are used to allow the system to do fast page−table allocations without
having to acquire the kernel memory lock. The default settings in Red Hat 7.3 are 25 and 50.

Serial Port Tuning

Serial ports in Linux default to pretty conservative values, so you can sometimes see great
performance improvements in modem throughput (and any other metric that grades the
performance of a serial device) by resetting these values with the setserial command. setserial is
designed to set and/or report the specified serial port's configuration information, including its I/O
port and IRQ setting. Chapter 11, "Serial Communications, Terminals, and Modems," discusses
setserial in more detail.

If you set your serial port's speed appropriately and it still seems slow, you might try to tune your
packet size as appropriate for your connection quality. If you have a particularly noisy phone line,
choose a small packet size. If the line is high quality and quiet, you might want to try a larger packet
size. You can set these options with the mru and mtu parameters to the pppd utility, which was
described in Chapter 11.

Filesystem Tuning

Filesystem settings are typically set quite conservatively to avoid putting the user's system at risk.
Many settings can be tweaked to optimize the filesystem. Since many distributions of Linux use the
ext3 filesystem, we'll be looking at ways to improve filesystem performance within an ext3
filesystem. Chapter 6, "Filesystems and Disk Management," is devoted entirely to the discussion of
Linux−supported filesystems. This section covers some utility programs you can use to improve a
standard ext3 filesystem's performance.

Partition Issues

Before tuning the filesystem, it's important to understand how the placement of a partition influences
its performance. Hard drives are made up of circular, thin platters that spin at very high speeds. As
with all spinning objects, the outer edge must move faster than the inner edge. This means that
tracks at the outer edges of a hard drive platter will be moving faster than those nearer the middle of

418



the platter. Given the same linear data density, this means that data is read from and written to the
drive faster from the outermost tracks. Hard drives write data to the disk from the outside in, so that
the fastest areas are filled with data first. When partitioning your drive, the first partition will be faster
than the last. The general consensus is that the swap and the /tmp partitions should be on the
fastest parts of the drive, so put them near the beginning. Of course, if your drive has more than
1024 cylinders, the /boot partition will need to be within the first 1024 if you intend to use versions of
LILO prior to 21.4.2. LILO prior to version 21.4.2 will not boot the system if the /boot partition falls
outside of this boundary.

tune2fs

Warning Never use tune2fs to change parameters on a filesystem that is currently mounted
read/write! Certain changes could destroy your data. Unmount the partition before making
any changes.

The tune2fs utility allows you to adjust some aspects of an ext3 filesystem. First, you can use the −c
max−mount−counts parameter to adjust the maximum number of times the filesystem may be
mounted before a filesystem check is automatically performed. Since Red Hat 7.3 uses a journaling
filesystem, the default is set to −1, meaning the filesystem will not ever be marked as dirty. To set it
to 20, use tune2fs like this:

# /sbin/tune2fs −c 20 /dev/hdb3

A related parameter is −i interval−between−checks, which determines the maximum length of time
between mandatory filesystem checks. The default on Red Hat 7.3 is 0 since no checks are
mandated, but distributions using a non−journaling filesystem might have a setting like 15,552,000
seconds (6 months). To set it to 9 months, use tune2fs like this:

# /sbin/tune2fs −i 23328000 /dev/hdb3

If filesystem checking is enabled, you might wish to increase these numbers on a filesystem that is
seldom written to or is mounted read−only. This will prevent you from having to wait while the
system performs an unnecessary filesystem check. We don't advise increasing them on a filesystem
that is heavily written to, because you want to catch any filesystem problems as early as possible to
avoid data loss.

The tune2fs utility can also be used to adjust the number of blocks on a filesystem that are reserved
for root use only, as well as the percentage of the filesystem that will be reserved for root use only.
The default under Red Hat 7.3 is 5%. To set the number of blocks, use the −r reserved_blocks
option with a specific number of blocks:

# /sbin/tune2fs −r 50000

To set the reserved blocks using a percentage, use the −m reserved_percentage option:

# /sbin/tune2fs −m 10

Keeping blocks reserved for root use only is a lifesaver if a user fills up the filesystem; it allows root
an opportunity to fix it. It also can be used to allow specific users and/or groups to use these
specially reserved blocks, but for the reason just mentioned, you'll want to use this sparingly.
Reserved blocks are most important on critical filesystems, such as / and, if they're on separate
partitions, /var and /etc. You may want to decrease the reserved block percentage on removable
disks like Iomega Zip disks or floppy disks, and perhaps also on a separate /home partition.

419



hdparm

The hdparm utility retrieves and optionally sets hard drive parameters. It works reliably with kernel
versions 1.2.13 and later. Some options are not supported in use with a kernel prior to 2.0.10.

Tip The hdparm utility is designed to be used on IDE hard disks; there's no need to use it
on SCSI hard disks. SCSI drives are handled by SCSI host adapters, the drivers for
which automatically use optimum settings. You can still use hdparm to test your SCSI
disk's performance, though, as described shortly.

On disks that experience a high I/O load, significant performance improvements have been reported
by setting the IDE drivers to use direct memory access (DMA) and 32−bit transfers. The default
kernel settings are quite conservative and have some room for tweaking.

The following command specifies 32−bit I/O over the PCI bus on the first IDE disk:

# /sbin/hdparm −c 1 /dev/hda

Some chipsets require a special sync sequence, which can be performed by replacing the −c 1 with
−c 3. The value 3 works with almost all 32−bit IDE chipsets but costs slightly more in overhead. To
disable 32−bit transfers, use −c 0.

To enable the use of DMA on device /dev/hda, use the following command:

# /sbin/hdparm −d 1 /dev/hda

DMA allows data to be transferred directly from the hard drive into memory, bypassing the CPU. In
order to enable DMA, support for your motherboard chipset must be compiled into your kernel. To
turn off DMA, use the −d 0 parameter instead. A few drives are known to have bad implementations
of DMA and can cause filesystem corruption. If you see a recurring problem, try disabling DMA.

You can test the results of your changes by running hdparm in performance test mode. This test
should be run two or three times to get a good measurement.

# /sbin/hdparm −t /dev/hda

Your result will look something like the following:

/dev/hda:
Timing buffered disk reads:  64 MB in 5.81 seconds =  12.36 MB/sec

Make adjustments and rerun the hdparm test command until you've found the optimal settings. If
you want to make these changes permanent, use the −k option with hdparm as shown:

# /sbin/hdparm −k 1 /dev/hda

Changing the number of sectors transferred on each interrupt by setting the −m option may buy you
a minor performance gain, but we haven't seen a real change when we've used it.

mke2fs

The mke2fs command creates an ext2 filesystem on a disk partition or other device. If your Linux
machine typically works with very large files, you may be able to obtain a noticeable filesystem

420



performance improvement by formatting your drives with larger block sizes. By default, the Linux
filesystem uses 1024−byte blocks. If you're going to manipulate files that are bigger than a gigabyte
in size, you might try setting the block size to 4K with the mke2fs command:

# mke2fs −b 4096 /dev/hda3

The mke2fs command creates a new filesystem on the partition specified. This operation destroys
any data that had been on that partition, so don't use it except on an empty partition.

This command is a carryover from the ext2 filesystem. Since the filesystems are essentially the
same with ext3 having an added journaling component, to create an ext3 filesystem, you need only
add a −j to tell mke2fs to add a journal.

#mke2fs −j −b 4096 /dev/hda3

defrag

When you write a file to disk, it can't always be written in consecutive blocks. A file that is not stored
in consecutive blocks is said to be fragmented. It takes longer to read a fragmented file because the
disk's read−write head is required to move more. You want to avoid disk fragmentation, even
though a good buffer cache with read−ahead ability makes it less of an issue. Luckily the ext2
filesystem is very careful in its block selection so as to minimize fragmentation.

The Debian distribution comes with a utility called defrag, which is released under the GNU GPL
a n d  i s  a v a i l a b l e  f o r  p u b l i c  c o n s u m p t i o n .  Y o u  c a n  d o w n l o a d  i t  f r o m
ftp://metalab.unc.edu/pub/Linux/system/filesystems.

chattr

Linux keeps track of the last time a file was modified and updates the timestamp appropriately. This
process involves the use of the find and fsck commands, and it can be resource−intensive for
systems that contain large amounts of constantly changing data, such as a newsfeed or mail server.
In order to save the time and resources involved, you might choose to turn off the last−access−time
modification as superuser with the chattr command:

# chattr +A filename

The chattr command may be used recursively. The command to skip the last−access−time
modification on the /var/spool/mail directory would look like this:

# chattr −R +A /var/spool/mail

We don't generally use this technique, because we find that knowing when a file was last accessed
is quite useful.

Bad Blocks

It's a good idea to check periodically for bad blocks on your hard drives. To locate and repair bad
blocks on a filesystem, we use a sequence of three commands: dumpe2fs, badblocks, and e2fsck.
First you must find out how many blocks are on the device you plan to check. To do this, you use
the dumpe2fs command, which is in the e2fsprogs package in Red Hat. The dumpe2fs command,
as the name implies, dumps filesystem information from the superblock and block groups on the
specified device. This information includes the basics like the OS type, inode count, block count,

421



last mount time, mount count, last checked data, check interval, first inode, inode count, and more.
The command to dump data on partition /dev/hda3 looks like this:

# /sbin/dumpe2fs /dev/hda3

Because we just want the number of blocks for use in locating bad blocks, however, we should pipe
this command into a grep command, as follows:

# /sbin/dumpe2fs /dev/hda3 | grep "Block count"
dumpe2fs 1.27 (8−Mar−2002)
Block count:              533736

Knowing the total number of blocks on the partition you wish to check for bad blocks, you can then
use the badblocks program. To check device /dev/hda3, which has a total of 533,736 blocks,
starting at block 1 and outputting the results to a file called badblocks.rpt, use the following
command:

# badblocks −o badblocks.rpt /dev/hda3 533736

Warning Never use the −w option with a filesystem containing real data, since this option tells
badblocks to perform write tests to every block on the device. This would, of course, write
over any existing data on the partition. The −n option performs a nondestructive
read/write test, which restores the original data after writing test data to each block.

Now that you've checked the disk itself for bad blocks, you should give the filesystem a chance to
repair them. You do this using /sbin/fsck.ext2 (or /sbin/e2fsck, which is the same program). When
passed the flag −l followed by the badblocks output file, e2fsck will attempt to move any data
contained in the questionable block to a healthy block. When run, e2fsck reports its five passes
through the filesystem, including any problems it encounters, thus:

# e2fsck −f −l badblocks.rpt /dev/hdb1
e2fsck 1.27 (8−Mar−2002)
/boot: recovering journal
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Setting filetype for entry 'pump.sock' in /var/run (30156) to 6.
Setting filetype for entry 'fs7100' in /tmp/.font−unix (37489) to 6.
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information

/boot: ***** FILE SYSTEM WAS MODIFIED *****
/boot: 40/20080 files (2.5% non−contiguous), 11602/80293 blocks

In the above example, e2fsck found minor problems with two files, /var/run and /tmp/.font−unix. The
utility corrected both problems automatically. On rare occasions, e2fsck may require your help in
fixing problems. If this happens, your best bet is to accept the default option for each problem,
unless you understand the ext2/ext3 filesystem intimately.

Eliminating Unnecessary Processes

Chapter 15, "Security," noted that unnecessary processes left running on a system pose a
significant security risk. That reason alone is enough to merit altering the system so that these
processes are not automatically started. If you need another reason, here it is: Any processes
running on your machine use memory and CPU cycles. In other words, they waste resources that
could be used by required processes.

422



So how do you determine which processes are unnecessary? You need to rely on a detailed
familiarity with a system's hardware and software configuration and its application requirements.
Some processes are obviously unnecessary. If you don't have a sound card, for example,
kwmaudio would be a superfluous process and should be killed. If your system isn't a name server,
named would be of no use. Use common sense, and eliminate processes you don't intend to use.
You can find out what processes are running by using the ps −x command, thus:

# ps −x
PID TTY      STAT   TIME COMMAND
    1 ?        S      0:26 init
    2 ?        SW     0:04 [kflushd]
    3 ?        SW     0:16 [kupdate]
    4 ?        SW     0:00 [kpiod]
    5 ?        SW     0:07 [kswapd]
  448 ?        S      0:02 syslogd
  451 ?        S      0:00 klogd
  460 ?        S      0:46 named
  464 ?        S      0:00 rpc.portmap
  483 ?        SL     0:01 xntpd −p /var/run/xntpd.pid
< output truncated >

This output is likely to continue for some time, so you should pipe it through the more or less pager
(as in ps −x | less), or redirect the output to a file so you can read it in a text editor. You can
examine the list of processes to find what's unnecessary. If something isn't needed but seems to be
started automatically at boot time, you'll have to locate the startup script and disable it, as discussed
in Chapter 3.

Compiling for Efficiency

Most compiled programs can be compiled with specific settings that make them run more efficiently
on your specific hardware/operating system combination. The kernel has a great many
optimizations that can be used. Application software may have some optimization possibilities as
well.

Optimizing the Kernel

Generally it is a bad idea to run any distribution's default kernel instead of recompiling a
system−specific kernel. The stock kernel contains an abundance of drivers, to facilitate installation
upon many different machines with different configurations. You probably won't need many of these
drivers. For example, most installations don't need the support that's included for capabilities like
Symmetric Multi−Processing (SMP) or Integrated Services Digital Network (ISDN). These "extras"
use up memory, impairing system performance. As soon as possible after installation, you should
recompile the kernel, leaving out drivers for hardware you don't have and eliminating functionality
you won't use.

Another reason for recompiling is the fact that recent kernels allow for optimization based on the
processor, but most distributions ship with kernels optimized for 386 systems. A kernel developed
for a 386 machine will run slower on a more capable machine than will code compiled for that
machine's processor. If the kernel must be portable among a variety of machines, you'll have to
compile to the lowest machine's processor type, but other than that, you should select the
appropriate processor type for the computer the kernel is to be run on.

The number of processor optimization options is growing. Back in kernel 2.2.5, there were five
optimization schemes from which to choose. Table 16.1 lists the optimization schemes available in

423



the 2.2.17 kernel, and Table 16.2 lists the 2.4.18−2 kernel's optimization options. (It's possible to
apply kernel patches to 2.2.x kernels to increase the number of optimizations they offer, but the
effort isn't normally worthwhile.)

Table 16.1: Optimization Schemes in the 2.2.17 Kernel

Optimization Scheme Processors
386 AMD/Cyrix/Intel 386DX/DXL/SL/SLC/SX, Cyrix/TI 486DLC/DLC2,

and UMC 486SX−S
486 AMD/Cyrix/IBM/Intel DX4 or 486DX/DX2/SL/SX/SX2, AMD/Cyrix

5x86, NexGen Nx586, and UMC U5D or U5S
586/K5/5x86/6x86 Generic Pentium−class CPUs, possibly lacking the TSC (time stamp

counter) register
Pentium/K6/TSC Intel Pentium/Pentium MMX, AMD K6 and K6−3D
Ppro Intel Pentium II/Pentium Pro, Cyrix/IBM/National Semiconductor

6x86MX, and MII

Table 16.2: Optimization Schemes in the 2.4.18−3 Kernel

Optimization Scheme Processors
386 All Intel, AMD, and Cyrix 386 CPUs, as well as the Cyrix

486DLC series and NexGen Nx586
486 All Intel, AMD, and Cyrix 486 CPUs, as well as the UMC U5D

and U5S
586/K5/5x86/6x86/6x86MX Generic Pentium−class CPUs, possibly lacking the TSC register
Pentium−Classic Original Intel Pentium
Pentium−MMX Intel Pentium MMX
Pentium−Pro/Celeron/Pentium−II Intel Pentium Pro, Celeron, and Pentium−II
Pentium−III Intel Pentium−III and Intel Coppermine Celerons
K6/K6−II/K6−III AMD K6, K6−2, and K6−III
Athlon/K7 AMD Athlon (K7), Duron, and Thunderbird
Elan AMD Elan SC400 and SC410
Crusoe Transmeta Crusoe series
Winchip−C6 Original IDT Winchip
Winchip−2 IDT Winchip 2
Winchip−2A/Winchip−3 IDT Winchip with 3DNow capability
Cyrix−III VIA Cyrix III or VIA C3

Additionally, the amount of memory is a factor when compiling a new kernel. Linux can now use up
to 64 Gigabytes of memory on x86−based systems. However, since the actual address space in
32−bit x86−based machines is only 4 Gigabytes, some mapping must be done if more is used. If
your system is blessed with more than a gigabyte of memory, you'll need to turn on High Memory
Support. You do this by accessing the High Memory questions and then selecting 4GB Maximum
Physical Memory when prompted. If you are especially blessed and have more than 4 Gigabytes of
physical memory, select 64GB Maximum Physical Memory to take advantage of Physical Address
Extension (PAE) mode, which uses three−level paging to access the high memory. If you have less
than 1 Gigabyte of memory, the default setting of off is fine.

424



There are many other kernel parameters that might give you a performance gain. Since these are
CPU−specific, we'll leave it to you to evaluate their potential benefit to your systems. Chapter 8
covers other kernel compilation options and procedures.

Optimizing Applications

Just as the kernel code can be recompiled to optimize a computer system's performance, so also
can the application code be optimized. If you download a tarball, read the documentation to see if
there are system−specific optimizations that you might use. Most Linux software comes with an
INSTALL file, which contains instructions for installation. Additionally, you'll likely find README files,
which will tell you specific things to do for your operating system and/or hardware.

Tuning the X Window System

The X Window System, the subject of Chapter 13, is a critical part of a desktop system, since it
provides the user a GUI environment in which to work. Users like graphical tools, and some Linux
administrative functions are so complicated that the ability to perform them without graphical tools is
all but forgotten. Network configuration, for example, is almost exclusively done via some graphical
tool like neat or kppp. It's certainly possible to configure a network by editing the scripts, but fewer
and fewer administrators do it that way anymore. As a result, most of the desktop systems you
administer and probably many of the servers will be configured to run X even though some
distributions don't install X on servers by default. X is quite resource−intensive, though. Anything
you can do to tune X is a good thing.

Window Managers and Integrated Desktop Environments

Window managers and integrated desktop environments (IDEs) can really chew up memory and
CPU cycles. First, since it seems to be a source of confusion even for seasoned system
administrators, you need to understand the difference between the two. A window manager is the
interface between X and the user. It is the mechanism by which the user can move, resize, and
otherwise manipulate the windows that X gives it. Some of these window managers have task bars,
virtual desktops, file managers, and theme association; others do not. An integrated desktop
environment brings some inter−application consistency and additional tools to this environment. It
provides things like a file browser and user desktop, along with assorted minor tools and utilities,
and it influences the overall look and feel of the environment. An IDE comes with a specific window
manager but may be used with a different window manager if that manager is IDE−aware. We
covered the specifics in Chapter 13 where we discussed X in more depth, but the essential point is
that an IDE runs atop a window manager. If you need to reduce overhead, you can get rid of the
IDE, which will free up a lot of resources.

If you do that and are still not getting the performance you need (but still need the X environment),
try changing window managers. If you're looking for performance instead of "pretty," try the Tab
window manager (twm). This environment provides title bars, icon management, point−and−click,
and other functions, but it does so with line art instead of using the high−overhead 3D effects or
shading. The switch to twm will buy you some performance improvement.

Removing Bad Modes from XF86Config

Another X performance issue involves the startup process, which although faster than Microsoft
Windows, is much slower than it should be. What could make it go faster? If you watch the output of
the startx command (press Shift+Alt+F1 to go back and look), you'll see many lines similar to this:

425



(−−) SVGA:  NM2160: Removing mode (640x400) that won't display properly on LCD

This line represents a video mode that was looked at and determined not to fall within the
capabilities of your video card/monitor combination. Each time X is started, the system reevaluates
these modes. One way to speed things up a bit is to remove any bad video modes from your
XF86Config file. The mode line will look like this:

Modeline  "640x400"  31.50  640  672  736  832  400  401  404  445  −
hsync  −vsync

Simply comment it out by placing a # symbol in front of the word Modeline. The next time X is
started, these modes won't be attempted, saving you a little time for each mode deleted. This will
not improve performance once X is running, however. If you are looking for performance instead of
quality graphics, remember that lower resolutions run faster.

Upgrading

"When should I upgrade my operating system?" is a question that plagues many system
administrators. Do you upgrade simply because a newer version has come out? Do you upgrade
individual packages whenever there is a bug fix? Do you reinstall from scratch or perform the
distribution's upgrade?

It's usually best to back up the system, reinstall, and then dump configuration files and user files
over the new system. This may cause you some trepidation at first, since you won't be sure that you
remembered to put all the configuration data back; you may think you will overlook something. If you
use the installation process's upgrade facility, you'll probably never have a problem with it. As you
became more confident, however, you'll probably decide that you don't like having residue from the
previous version mixed in with the new version, so you'll begin backing up the system, and doing a
full install.

You should not blindly upgrade or reinstall a working, configured system just because a new version
of the operating system has come out. The distribution's Web site will contain detailed information
about what prompted the new version and what has been upgraded. Read those notes and do a
cost−benefit analysis. Is the gain worth the time? Are there risks if you don't upgrade, and do these
risks apply in your setting? Perform an upgrade if the new version offers several significant security
fixes or a major change in overall kernel philosophy. If there are only a few security fixes, you can
upgrade those packages only, and leave the rest alone. You'll get more comfortable with what
requires an upgrade as you progress.

In Sum

A computer's performance can be influenced by many factors, both hardware and software. If your
system isn't performing to your liking, you might try upgrading your hardware, but devoting some
time to optimizing your computer may save you the cost of hardware upgrades. Indeed, some
hardware upgrades won't do much good unless accompanied by appropriate software tuning.
Enabling 32−bit DMA transfers on IDE hard disks is one such case. You can also tune your
computer's use of the hard disk, of memory, and of the CPU by appropriate configuration options.
Some optimizations (particularly for the CPU) require you to recompile software for your system, or
at least to locate software compiled with better−than−386 optimizations.

426



In Chapter 17, "Making Your Job Easier with Scripts," we'll try to save you some time each day by
exploring how to automate some of the more mundane tasks. Since you know how, you can spend
the extra time tweaking your systems to gain optimal performance.

427



Chapter 17: Making Your Job Easier with Scripts

Overview

A well−written script can be a system administrator's best friend at times when there is much to be
done and not enough hands to do it. Large, repetitive tasks are especially easy to script—and
especially tedious to perform if you don't. As you get accustomed to scripting, you'll discover many
more uses for it. You'll find yourself writing scripts even to perform the smaller tasks.

This chapter begins with and focuses most strongly upon the Bash shell scripting language, but
there are several other types of scripts, including Bourne shell scripts, Perl language scripts, Python
language scripts, awk scripts, and sed scripts. Even more variations are in use, but these seem to
be the most popular among Linux system administrators today. This chapter touches upon each of
these script types, and also covers system initialization scripts and scheduling scripts to run at times
of your choosing.

Determining which type of script to use is a tricky process. Since the role of a script is to perform
some lengthy task quickly and efficiently, system administrators often simply use what they know
best. Bash shell scripts are quite common. Bourne shell scripts are popular too since they are
compatible with the Bash shell and add the ability to use them with the Bourne shell as well. Perl
and Python are used frequently and are the favorites for CGI programming in support of Web site
development. These two are really not well suited to anything that requires real−time response or
multithreading, however. Of the two, Python scales better and is easier to read and understand. For
more information, look at http://www.perl.com/ and http://www.python.org/. Although still used and
maintained, scripts written in the awk text processing tool and the sed stream editor have very
specialized uses and seem to be falling out of favor as new scripting tools are developed. (Java and
Tcl/Tk scripts are not included in this discussion because neither seems to see significant use as a
system administration tool within the Linux world.)

Note Shell scripts are actually computer programs. They differ from most programs,
however, in that they're written in interpreted languages—that is, languages that
are interpreted directly from human−readable form rather than first being
converted into machine code by a compiler. This makes shell scripts slower to
execute than their compiled brethren, but the same fundamental principles apply
to all programming languages. Because of the complexity of any programming
language, this chapter cannot provide a complete description of even a single
scripting language, but it will provide a quick introduction to get you on your way to
writing your own scripts or modifying existing ones.

Common Scripting Features

No matter what the scripting language, there are certain common features you should understand.
Most of these features are common not just to scripting languages, but to compiled languages as
well. These features do take slightly different forms in different languages, however. For instance,
each language has its own rules for identifying variables, and equivalent commands can be
represented by different words in different languages, much as words with the same meaning are
different in different human languages. It's important before proceeding further that you understand
some of these fundamental features of programming languages.

428



Identifying a Script

One common feature of all executable files in Linux is that they must be identifiable as such. In part,
this is handled through the execute bit on the program file. Beyond this, though, the Linux kernel
must know how to execute the file. It would do no good to try to execute a Bash shell script as a
binary program file, for instance. Linux solves this small problem by looking at the first two
characters of the file, which constitute a code for the file's program type. Interpreted scripts are
identified by the code sequence #!, followed by a path to the program that's able to execute the
script. For instance, a Bash shell script begins with the following sequence:

#!/bin/bash

Because the # symbol identifies a comment (a line or part of a line that's ignored by the interpreter,
thus allowing you as a programmer to describe the intent of the code), this line is ignored by the
Bash interpreter itself. The Linux kernel, however, can use this information to launch /bin/bash and
pass it the shell script.

Note Other implementations of Unix use the same method of identifying scripts, which is one
reason that most scripting languages work on a wide variety of Unix−like platforms.

Sometimes you'll see references to shell scripts without reference to a specific language. These
scripts are written in a very general way and can be executed by Bash or other command−shell
scripting languages. These scripts frequently do not contain the #! line. Omitting the line identifying
the script type causes Linux to attempt to process the script using Bash. It's best to include this line,
however, for your own documentation purposes and to eliminate the possibility that whatever goes
on the first line may be misinterpreted by Linux, resulting in an inability to run the script.

Linux shell scripts might instead contain a line like #!/bin/sh, which indicates a script written for the
Bourne shell but compatible with Bash. On most Linux systems, /bin/sh is a symbolic link to
/bin/bash. It's possible to change that symbolic link, though, so it's best to explicitly identify a Bash
script as a Bash script. Perl scripts, Python scripts, and so on should also be identified by referring
to the appropriate binary file.

Variables

Programming languages are built on the idea of manipulating data. Scripts that you write as an
administrator are likely to process the contents of data files, filenames, and so on. In order to
manipulate such data, programming languages support variables—symbolic representations of the
data you wish to manipulate. In most computer languages, variables are collections of one or more
letters, such as x, balancedue, or filename. The rules for naming variables differ substantially from
one language to another—some have limits on filename length, others allow or disallow certain
non−alphabetic characters, some require certain characters, and so on. There are a few rules that
are almost always true. It is better to use a unique sequence of letters instead of a single letter for a
variable name since searching for the variable name within the code will be easier. It is better to use
descriptive names for variables to make your code more readable. Comment your code so that the
person who is tasked to maintain it will understand how it does what it does. These are just a few
tips; you'll pick up more as you go.

Shell scripts frequently manipulate filenames and similar alphabetical data in variables. For
instance, a variable called filename might contain (not surprisingly) a filename. Some operation
might then load a new filename into that variable. The code in the script can then pass these
filenames to subroutines or other programs, and you as a programmer need not know what the

429



filenames are. Many scripting languages contain specialized methods of assigning values to
filenames. Bash, for instance, lets you assign filenames to a variable and loop through all the
filenames in a directory to perform some operation on all of those files.

Control Statements

Because scripts (and programs generally) usually do repetitive work, it's necessary that languages
include some means of directing the flow of a program. For instance, if you write a script to search
every file in a directory for certain characteristics, you need some way to tell the program to repeat
the search over some set of files. Similarly, you may need to tell the program to jump to another part
of itself—say, to skip some instructions that aren't relevant to a particular file, because it doesn't
meet certain criteria. These tasks are handled by what are collectively known as control statements.
These statements control the flow of the program.

There are several types of control statements, although some are more important than others, and
some languages discourage the use of some statements. The major types are:

Conditionals A conditional expression tells the program to do one thing if a
particular condition is met, and to do another if that condition is not met. (There are
also conditionals that support more than two options.) For instance, you might use a
conditional if you want to copy all files whose names begin with a to another
directory. Your conditional statement would execute one set of operations if the
filename begins with a and another if it doesn't.

Loops A loop allows the program to perform the same task repeatedly, although
usually on different data. For instance, you might use a loop to examine all the files in
a directory. The loop would execute once for each file, and then terminate.

Subroutines A subroutine isn't a control statement per se, but it is an important
aspect of many programming languages. A subroutine isolates a segment of code to
perform a specific task. The main program can then execute the subroutine, often as
if it were a simpler command. For instance, you might write a subroutine to calculate
a circle's circumference given its diameter, and then call it when you need this
computation.

Jumps A jump sends execution of the program to another point. Jumps can be used
to implement loops and subroutines, but they're generally frowned upon by today's
programmers because they can produce a tangled mess of program code, in which
it's difficult to determine the sequence of execution (often referred to as spaghetti
code).

It's possible—and often necessary—to combine two or more of these types of control statements to
perform a task. For instance, a loop might contain one or more conditionals, in order to take
different actions depending upon the type of data stored in the variables the loop examines. Most
loops actually incorporate conditional−style logic to control termination. That is, the loop executes
until some condition is met, such as reaching the end of a set of inputs.

Commands

Commands perform concrete actions. Commands can perform numeric computations, open files,
move files, run programs, and so on. Languages vary substantially in how many commands they
support. Some support very minimal command sets; to do anything interesting, you must call

430



prepackaged subroutines or other programs. Others include massive command sets that can do just
about anything you might want. Sometimes it's difficult to tell the difference between a command
and a prepackaged subroutine or outside program.

Shell scripting languages focus their command sets on file manipulations. Other scripting languages
have other priorities. Perl, for instance, specializes in manipulating strings (collections of
alphanumeric characters).

The Bash Shell Scripting Language

Most Linux distributions make the Bash shell the default for all users. This shell provides the
command−line prompt that's familiar to most Linux users. The Bash shell also provides a scripting
language that allows users and administrators to automate repetitive tasks or even develop
programs. This scripting language is well suited to automating repetitive tasks that you might
ordinarily do at a command prompt. It can call other programs and utilities, so you can easily use
common Linux utilities, such as grep and find, within a Bash script.

Variables

Most variables in Bash scripts are strings—they hold alphanumeric sequences such as words or
filenames. These variables are assigned via the equal sign, as in the following example:

IPCHAINS="/sbin/ipchains"

In this example, the string /sbin/ipchains is assigned to the variable $IPCHAINS. This variable can
then be used to call the /sbin/ipchains program, to pass its name to other programs, or be
manipulated in various ways. Assigning a variable in this way is very useful if you intend to change
the variable's value. It's also sometimes used to make it easy to modify a script. For instance, if you
move the ipchains program to /usr/sbin, you can change the variable assignment rather than many
calls that use the $IPCHAINS variable.

To use a variable, you precede its name with a dollar sign ($). Thus, to call /sbin/ipchains, you could
place the string $IPCHAINS on a line by itself (or followed by appropriate parameters for this utility).
The only time you don't use the $ is when assigning a value to a variable. You can combine two or
more variables by assigning them to a third, thus:

IPCHAINS="/sbin/ipchains"
OPTIONS="−A input −d 255.255.255.255 −j ACCEPT"
COMMAND="$IPCHAINS $OPTIONS"

The result of these three lines is a variable, COMMAND, that contains a complete ipchains
command, including several options. You can use this ability to combine variables to provide greater
flexibility. By combining variables in different ways based on the script's input (using conditionals
and loops to guide the process), you can greatly expand the flexibility of a script.

Bash scripts can inherit certain variables from the user's work environment. These variables are
therefore referred to as environment variables. These variables may be set by Bash scripts that are
run automatically when a user logs in, and they typically contain information such as a list of
directories to be searched for executable programs (PATH), the user's home directory (HOME), and
many others, most of them used by specific programs. You can find out what environment variables
are available to you by typing env at a Bash command prompt—but be aware that these variables

431



can change from one user to another.

Another type of variable is that passed to a script from the calling program or command typed by the
user. These are identified by numbers—0,1, 2, 3, and so on. The fact that variables are preceded by
$ symbols distinguishes these variables from literal numbers. These variables are known as
parameters, and they allow the user to pass information to the script. The $0 always represents the
name of the program being run. As a very simple example, Listing 17.1 is a script that echoes the
first and third words typed after the script name.

Listing 17.1: A Simple Script Demonstrating Parameter Variables

#!/bin/bash
echo "$0 $1 $3"

If you type this script into a file called echo−part, type chmod a+x echo−part, and run it, the result
might look like this:

$ ./echo−part the cow jumped over the moon
./echo−part the jumped

The other words typed on the command line are assigned parameter variables, but because the
echo line only specifies echoing the first and third, those are the only ones that produce output.
When you run the script, you can tie together two or more words so that they appear in one variable
by enclosing those words in quotation marks. For instance, using the same program, you might do
this:

$ ./echo−part "the cow" jumped "over the moon"
./echo−part the cow over the moon

Conditional Expressions

Bash and other shells include functionality that allows evaluating a variable and using the results to
determine how to proceed. For instance, you might want to check the $USER variable, which holds
the current user's login name, to see if it is equal to vicki before starting the script vicki_script. If the
values are the same, the script starts; otherwise, it echoes an error message to the screen.

These tests and checks are accomplished with statements containing conditional expressions.
These conditional expressions may be used in conditional statements or loops.

Quite often a script will check whether a given file or variable exists before attempting to make use
of it. This checking is done with one of the conditional expressions listed in Table 17.1. The Bash
built−in test command is slightly different than the test used by other shells or the /usr/bin/test, so be
sure to check for compatibility before assuming that the code is portable.

Table 17.1: Conditional Expressions and Their Meanings

Conditional Expression Meaning
−a file True if file exists.
−b file True if file exists and is a block file.
−c file True if file exists and is a character file.
−d file True if file exists and is a directory.

432



−e file True if file exists.
−f file True if file exists and is a regular file.
−g file True if file exists and is set−group−id.
−h file True if file exists and is a symbolic link.
−k file True if file exists and its "sticky" bit is set.
−p file True if file exists and is a named pipe (FIFO).
−r file True if file exists and is readable.
−s file True if file exists and has a size greater than zero.
−t fd True if file descriptor fd is open and refers to a terminal.
−u file True if file exists and its set−user−id bit is set.
−w file True if file exists and is writable.
−x file True if file exists and is executable.
−O file True if file exists and is owned by the effective user ID.
−G file True if file exists and is owned by the effective group ID.
−L file True if file exists and is a symbolic link.
−S file True if file exists and is a socket.
−N file True if file exists and has been modified since it was last read.
file1 −nt file2 True if file1 is newer by modification date than file2.
file1 −ot file2 True if file1 is older by modification date than file2.
file1 −ef file2 True if file1 and file2 have the same device and inode numbers.
−o optname True if shell option optname is enabled.
−z string True if the length of string is zero.
−n string True if the length of string is not zero.
string1 = string2 True if the strings are equal.
string1 != string2 True if the strings are not equal.
string1 < string2 True if string1 sorts before string2 lexicographically.
string1 > string2 True if string1 sorts after string2 lexicographically.
arg1 −eq arg2 True if arg1 is equal to arg2. Both must be integers.
arg1 −ne arg2 True if arg1 is not equal to arg2.
arg1 −lt arg2 True if arg1 is less than arg2.
arg1 −le arg2 True if arg1 is less than or equal to arg2.
arg1 −gt arg2 True if arg1 is greater than arg2.
arg1 −ge arg2 True if arg1 is greater than or equal to arg2.

Conditional expressions are typically used in the formation of an if, for, or while loop. For example,
consider the −a option, which simply tests whether a file exists. If you want to determine whether the
user who is logged in has a .bash_profile and execute that profile if it exists, you can use the
following if statement:

if [ −a /home/$USER/.bash_profile ]
    then
    . /home/$USER/.bash_profile
fi

433



Loops

Perhaps you want to execute a program once for each of a certain number of files. For instance,
you need a simple script that will play all the .wav files existing in a given directory. The script would
use a for loop as in Listing 17.2.

Listing 17.2: A Simple Script to Play Audio Files

#!/bin/bash
for d in `ls *.wav`; do play $d; done

Warning The characters preceding ls and following *.wav in the preceding example are back
quotes, also called back ticks, which are usually located on the key above Tab on the
keyboard, along with the tilde ( ~ ) symbol. If you use regular single−quote characters
(located next to the Enter key), the above script will not function correctly.

The preceding example uses several features to accomplish its goal:

The ls *.wav command works just as it would when typed at a command prompt—it lists all
the files in the current directory that end in .wav. These are effectively expanded as input for
the script.

• 

The for d in part of the script uses the expansion of the ls *.wav to initiate a loop that
executes once per file. This loop structure is extremely important to many file−manipulation
tasks. The variable $d receives the name of each file in turn, then the rest of the loop
executes with that variable set. On the next go−through, the second filename is assigned to
d, and so on until all the files are exhausted. This is a very commonly used loop since it
lends itself very neatly to automating redundant tasks.

WarningThis loop syntax uses spaces to delineate files, so if a filename includes a space,
your script won't be able to parse the files correctly. For instance, if you have a file
called Londo Cats.wav, the script in Listing 17.2 will try to play the files Londo and
Cats.wav, but chances are neither exists, so the file won't be played. This is one of
the reasons experienced Linux users don't create files with spaces in their names.

• 

The semicolons (;) separate individual commands on one line. Each for statement affects
multiple commands.

• 

The do play $d command calls the Linux play utility and passes the name of a .wav file
(stored in the $d variable) to the play utility. This results in the desired effect, one file at a
time.

• 

The done command signals the end of the for loop.• 

Note The play command is a front−end to the Linux Sound Exchange (sox) package and plays any
sound file to the default sound device.

On the business end, let's say that anyone who works on the Help desk taking customer calls is
required to write a document each time, detailing the conversation and any work that was done in
support of that call. This policy has been in place for a year now and the directory containing these
files is fairly large. Because a lot of text is contained in these documents, you reason that they will
probably compress quite well. You want to add the extension .2001 to show the year in which the
files were created. You might create something like Listing 17.3 to perform these tasks.

Listing 17.3: A Script to Rename and Compress All the Files in a Directory

#!/bin/bash
for d in `ls /usr/local/calldocs/*`

434



do
mv $d $d.2001 ;
gzip $d.2001 ;
done

Sometimes you need to run through a file line by line, executing some command on each line that
matches a certain set of criteria. This is most easily done with a while loop. Suppose you're
providing mandatory network training for five users, weekly until all users have been trained. To
determine who is up for training, you maintain the /etc/training_list data file. A person's training is
categorized in segments from A through D, with D signifying a fully trained user. Network training is
C training (training for users at level C). Assume that /etc/training_list is as shown in Listing 17.4.

Listing 17.4: A Sample /etc/training_list Data File

sam|501|34|A
tom|502|23|B
terry|503|43|B
john|504|12|C
mike|505|67|D
sarah|506|45|C
leonard|507|78|B
meg|508|15|D
toml|509|33|B
larry|510|67|C
jeffrey|511|45|D
mark|512|23|C
chris|513|34|D
anne|514|24|A
ellen|515|16|B
jake|516|27|C
pat|517|45|C

You might create a script like Listing 17.5 to determine which employees remain to be trained. (This
script uses the cut command, discussed later in this chapter.)

Listing 17.5: A Script for Updating the Training File

#!/bin/bash
#remove the old tobetrained file if one exists
if [ −e /home/$USER/tobetrained ]; then
    rm /home/$USER/tobetrained
fi

cat /etc/training_list |
while read line
do
        training=`echo $line|cut −d"|" −f4`
        if [ $training = C ];
        then
          name=`echo $line|cut −d"|" −f1`
          echo $name >> /home/$USER/tobetrained
          echo "$name added to user list"
        fi
done

435



The training script in Listing 17.5 first declares its command interpreter to be the shell /bin/bash.
Next, the script removes the tobetrained file in the user's directory if one exists. This is necessary
since we are appending to the file rather than writing over it. Next, we read the /etc/training_list file
line by line looking at the fourth field. We compare the letter in the fourth field to determine if it's a C,
indicating whether the user is in the C training group. If the letter is a C, we get the name from that
line and write it out to the tobetrained file. In large companies, the training_list would probably be a
MySQL database instead of a flat file, but the basic idea would be the same.

Other Types of Scripts

Although Bash shell scripts are quite common and can accomplish a lot, there are other types of
scripting languages available for Linux. Each of these has its own advantages and disadvantages.
This section covers Perl, Python, awk, and sed scripts, although only enough to give you an idea of
what these tools can accomplish.

Perl Scripts

Teaching you the Perl scripting language is not, of course, our intent for this chapter. Rather, we
want to prepare you for working with Perl scripts you'll likely run across while performing your Linux
system administration duties. To this end, we'll take a brief look at Perl fundamentals to give you the
basic familiarity you'll need.

Perl doesn't have a lot of structural requirements. Comments must begin with a pound sign (#), and
all lines of code must end in a semicolon. White space is irrelevant, meaning that the entire program
could be written as one line if you wanted it that way. Obviously, reading and maintaining such a
program would not be easy, so it's a good idea to use indentation for indicating the script's logical
flow.

Perl variables are defined using a statement in this form:

$variable = value;

To check a variable's value, you use two consecutive equal signs: ==. This is most often done in an
if statement, a for loop, or a while loop. Perl uses if, for, and while statements much the same as
Bash shell scripts do:

An if statement compares the value to the variable once and then moves on. A simple if
statement looks like this:

if ($variable == 3){
    print ("The value is 3");
}

• 

A for loop cycles through a number of values comparing them to a variable or a constant.
When the list has been exhausted, the loop ends. A simple for loop looks like this:

#set the maximum length to 0
$maxlength= 0 ;
#cycle through each length and compare it to the maxlength
foreach (keys %in) {
    $maxlength= length if length > $maxlength ;
}
#increment the maxlength variable
$maxlength++ ;

• 

436



A while loop continues to cycle through performing whatever function is contained therein
until the while statement is no longer true. A simple while loop looks like this:

while ($variable <= 3){
    change_variable;
}

• 

There are several ways to initiate a Perl script. First, you may call the Perl interpreter with the script
name as an argument, like so:

$/usr/bin/perl scriptname

You may also cat the script into the Perl interpreter, like this:

$cat scriptname | perl

Unfortunately, both of these initiation methods require that you know that this particular command is
a Perl script and not a Python script, Bash shell script, or compiled executable. It is far easier, given
the number of commands available on a Linux system, to execute the Perl script by using the script
name as a program executable. Your shell facilitates this if you have set the permissions string to
make the script executable and have included an interpreter line in the following format as the first
line of the script:

#!/usr/bin/perl [optional arguments]

This causes the shell to execute the script as if you had typed the complete Perl line at the prompt,
as follows:

$/usr/bin/perl [optional arguments] scriptname

Note Using the optional argument −w causes the script to output warnings that are quite helpful
when troubleshooting.

Listing 17.6 is a very basic Perl script written to provide a text−based menu. This script prompts the
user for input, reads the input, and performs some task based on that input. It creates a text menu,
accepts input, and proceeds accordingly. We include it to illustrate some of the basic concepts of
the language.

Listing 17.6: An Example Perl Script to Create a Menu

#!/usr/bin/perl −w

while ($function != 3) {
    print ("Please select the function you'd like to perform:\n");
    print ("Enter 1 for a directory listing.\n");
    print ("Enter 2 for the free program.\n");
    print ("Enter 3 to exit.\n");
    $function = <STDIN>;
    if ($function == 1) {
        system (ls);
    } elsif ($function == 2) {
        system ("free 6");
    } else {
        $function = 3;
    }
}

437



Python Scripts

Python is a fairly intuitive scripting language that uses a more natural format than does Perl or shell
scripting. Lines don't have to end in semicolons, and there are fewer braces and parentheses.

An if statement in Python looks like this:

if variable = 3:
print "variable = 3."

• 

A for loop in Python looks like this:

for i in [1,2,3,4,5]:
    print "This is number", i

• 

A while loop in Python looks like this:

variable = 0
    while variable <= 3:
         print "variable = ",variable
         variable = variable+1

• 

The Python script in Listing 17.7 performs the same function as the Perl script in Listing 17.6.

Listing 17.7: An Example Python Script to Create a Menu

#!/usr/bin/python
import os
function = 0
while function != 3:
    print "Enter 1 for a directory listing."
    print "Enter 2 for the free program."
    print "Enter 3 to exit."
    function = input ("Please select the function you'd like to perform: ")

    if function == 1:
        os.system ("ls .")
    elif function == 2:
        os.system ("free 6")

awk and sed Scripts

Although awk and sed scripts are not used as frequently as they were a few years back, they
certainly still have value. So many new scripting tools have hit the market that the awkward
language of awk and sed scripts has been left behind. When your intent is to make changes to a file
line by line, Python is often the better choice. On the other hand, you're more likely to find awk or
sed than Perl or Python on non−Linux Unix platforms. This isn't to say that Perl and Python are rare,
but they're not as common as are sed and awk.

awk

awk is a text−processing tool you can use to easily make recurring changes or replacements in a
document. (The program was written by Alfred Aho, Peter Weinberger, and Brian Kernighan; and
the name awk is derived from the first initial of each surname.)

438



This tool uses C−like language to manipulate structured data one line at a time. awk command files
are scripts composed of one or many functional blocks enclosed in curly brackets. Each individual
block within the file may be associated with a conditional expression that is used to determine
whether that block should be executed upon the current line. As you might guess, when there is no
conditional expression, the block is executed on every line in the file.

The very straightforward example awk script shown in Listing 17.8 takes a file and numbers its lines
by a specified increment. Although simple, this operation is useful when you are debugging a script
or some C source code, because syntax−error messages usually include the line number. After the
BEGIN keyword, the variables are given values. The next block actually prints the number and the
line represented by $0. The next line increments the line counter by the specified increment. If there
were code that needed to be executed just before the file is closed, a block labeled END could be
added to the end of the script.

Listing 17.8: A Sample awk Script

BEGIN {
    line = 1;
    increment  = 1;
}

    {
    # Prints the number and echoes the line.
    printf("%5d %s\n", line, $0);
    line += increment;
    }

To execute this from a file, save the code to a file with the extension .awk and issue the following
command. (The .awk extension is not required, but including it clarifies which type of script you are
calling.)

$awk −f file.awk file > newfile

Each line matching the conditional expression is prefixed with a line number. If there are no lines
matching the conditional expression, each line of the file is echoed to the new file, and no line
numbers are added.

Here is another example, with the actual actions added to the command instead of in a file:

$ ls *.zip |awk '{print "mv "$0" "$0".vs"}'|/bin/bash

This command will list all files ending in the suffix .zip, inputting the list into the awk command. The
awk command will use the mv command to rename the files ending in .zip so that they now end in
.zip.vs. Sample listings are shown below:

Before After
/tmp/etc.zip /tmp/etc.zip.vs
/tmp/tmp.zip /tmp/tmp.zip.vs
/tmp/var.zip /tmp/var.zip.vs
This is useful if you set up your system to automatically remove all files ending in .zip from /tmp
once a week.

439



Several books are available that illustrate the use of awk. A popular one is Sed & Awk (Nutshell
Handbook), by Dale Dougherty and Arnold Robbins (O'Reilly, 1997). The awk utility, or the GNU
version called GAWK, is included with most Linux distributions and available for most flavors of
Unix.

sed

sed is a stream editor, hence the name. It allows for the search and replacement of regular
expressions and more—a valuable capability when the task at hand involves updating a file. You
can use sed to automate the update of a text file by searching for a string and changing it as
required. It is also quite useful when you need to change the output of a command before piping it
into another command. If you have ever issued a command such as :s/phrase/newphrase/ to
replace one phrase with another within an editor, then you know how to use sed commands. When
using sed, however, this change is automatically applied globally because sed works on each line in
the file.

sed can be executed with the actions as a command−line argument. It is sometimes beneficial to do
this if, for example, the output of a very long file needs slight alteration so that it can be printed to a
new file in the format requested by the boss. Here is a fairly simple example:

$cat /tmp/calendar |sed −e 's/Jan/&uary/' | sed −e 's/Feb/&ruary/' |
sed −e 's/Mar/&ch/' | sed −e 's/Apr/&il' | sed −e 's/Jun/&e/'|
sed −e 's/Jul/&y/' > newfile

In this example, a calendar file containing dates within the first seven months of the year needs to
be altered so that the abbreviated month name is replaced by the full name of that month. The
edited calendar is to be written out to newfile. First we cat the file into our sequence of sed
commands. The −e tells sed that the next thing is a sed command to be executed. This command's
placement within single tick marks distinguishes it from the rest of the line. The s means that we
wish to substitute the second phrase for the first. Thus this command line meets our file−alteration
needs, its length well justified when it saves many keystrokes in a file with say, 1000 lines.

Like awk, the sed command is included with most Linux distributions and available for most flavors
of Unix.

System Initialization Scripts

Often when you are using some recently developed utility, you need to start the utility at boot time
and aren't able to depend upon an existing script to do this. For these situations, you need to write
your own initialization script and add it to the initialization scripts that we discussed in Chapter 3,
"Startup and Shutdown." This is actually quite easy to do if you follow the example of an existing
script. These scripts are all Bash shell scripts and share a common format.

Writing an Initialization Script

Let's say that you have downloaded a tarball of mynewutility from an Internet site. Obviously, there
is no mynewutility script in the /etc/rc.d hierarchy, since the utility isn't part of the standard
distribution. When you have finished installing the utility and configuring it, you'll probably want to
make it start at boot time like the other daemons in the /etc/rc.d hierarchy. To accomplish this, you'll
need to write an initialization script to manage the new utility.

440



Let's look at the existing script for the printer daemon and adapt it for use to manage mynewutility.
Red Hat 7.3's printer startup script is /etc/rc.d/init.d/lpd, shown in Listing 17.9.

Listing 17.9: A Sample Initialization Script for lpd

#!/bin/sh
#
# lpd           This shell script takes care of starting and stopping \
#               lpd (printer daemon).
#
# chkconfig: 2345 60 60
# description: lpd is the print daemon required for lpr to work properly. \
#       It is basically a server that arbitrates print jobs to printer(s).
# processname: /usr/sbin/lpd
# config: /etc/printcap

# Source function library.
. /etc/rc.d/init.d/functions

# Source networking configuration and check that networking is up.
if [ −f /etc/sysconfig/network ] ; then
   . /etc/sysconfig/network
   [ ${NETWORKING} = "no" ] && exit 0
fi

[ −x /usr/sbin/lpd ] || exit 0

prog=lpd

RETVAL=0

start () {
    echo −n $"Starting $prog: "
    # Is this a printconf system?
    if [[ −x /usr/sbin/printconf−backend ]]; then
       # run printconf−backend to rebuild printcap and spools
       if ! /usr/sbin/printconf−backend ; then
      # If the backend fails, we dont start no printers defined
      echo −n $"No Printers Defined"
      echo_success
      echo
           return 0
       fi
    fi
    if ! [ −e /etc/printcap ] ; then
   echo_failure
   echo
   return 1
    fi
    # run checkpc to fix whatever lpd would complain about
    /usr/sbin/checkpc −f
    # start daemon
    daemon /usr/sbin/lpd
    RETVAL=$?
    echo
    [ $RETVAL = 0 ] && touch /var/lock/subsys/lpd
    return $RETVAL
}

stop () {
    # stop daemon
    echo −n $"Stopping $prog: "

441



    killproc /usr/sbin/lpd
    RETVAL=$?
    echo
    [ $RETVAL = 0 ] && rm −f /var/lock/subsys/lpd
    return $RETVAL
}

restart () {
    stop
    start
    RETVAL=$?
    return $RETVAL
}

# See how we were called.
case "$1" in
    start)
   start
   ;;
    stop)
   stop
   ;;
    status)
   status /usr/sbin/lpd
   RETVAL=$?
   ;;
    restart)
   restart
   ;;
    condrestart)
   # only restart if it is already running
   [ −f /var/lock/subsys/lpd ] && restart || :
   ;;
    reload)
   echo −n $"Reloading $prog: "
   killproc /usr/sbin/lpd −HUP
   RETVAL=$?
   echo
   ;;
    *)
        echo $"Usage: $0 {start|stop|restart|condrestart|reload|status}"
        RETVAL=1
esac

exit $RETVAL

The format of initialization scripts is fairly uniform. The standard SysV initialization scripts have
some features that we really like. At the beginning of the script is a chkconfig line that tells the
system which run levels the script is to be set up for and a comment detailing what the script is
intended to do.

Note It's also helpful to add comments that identify any specific system characteristics
the script requires to run successfully, although this is not done in most of the
existing scripts. This might be a comment such as "In order for the lpd script to run
successfully, the printers must have been configured, and a properly formatted
/etc/printcap must exist." This setup is not critical to the functioning of the script, but
it simplifies things for a new system administrator trying to gain a deeper awareness
of the computer system.

442



After the comments, the /etc/init.d/functions library script is run. This script sets up functions that are
used within initialization scripts. The library script contains functions that are useful to multiple
initialization scripts and otherwise have to be duplicated in each script.

Next, the script checks certain conditions that are required for the printer daemon to function
properly. First, the script checks whether the network is up. If the network variable in the network
script is set to no, the lpd script exits, because lpr and lpd communicate using the network facilities.
Next, the script verifies that lpd exists and is an executable file. It also verifies that an /etc/printcap
file exists.

The next section contains functions that are to be called later in the script. In the case of the lpd
script, these are start, stop, and restart.

The next part of the script contains the menu functionality that allows you to specify which one of
the script functions you'd like to perform. This is a case statement like those in C and other
languages, setting the following alternatives:

If the script was called with the start argument, then call the start function.• 
If the script was called with the stop argument, then call the stop function.• 
If the script was called with the status argument, then use the status function from the
/etc/rc.d/init.d/functions library to determine whether the line printer daemon is running.

• 

If lpd was called with the restart argument, then run the restart function.• 
Starting lpd with the condrestart argument causes the system to restart lpd only if it is
currently running.

• 

Running the lpd script with the reload argument tells the script to send a HUP signal to the
line printer daemon.

• 

The last line in the lpd script is the return of the $RETVAL variable, which has been generated by
the function that the script performed.

Now that you understand this existing script, creating your own initialization script for mynewutility
will be relatively easy. Let's assume that mynewutility requires networking to be active and that the
executable is located at /usr/sbin/mynewutilityd. We only need start, restart, stop, and status
functionality in this case. The new script will look something like Listing 17.10.

Listing 17.10: An Initialization Script for mynewutility

#!/bin/sh
#
# mynewutilityd  This shell script takes care of starting
#                and stopping mynewutilityd.
#
# chkconfig: 345 96 96
# description: mynewutilityd is a fictitious daemon used
#              to illustrate startup script functions.
# processname: /usr/sbin/mynewutilityd

# Source function library.
. /etc/init.d/functions

# Source networking configuration and check that networking is up.
if [ −f /etc/sysconfig/network ] ; then
        . /etc/sysconfig/network
        [ ${NETWORKING} = "no" ] && exit 0
fi

443



[ −x /usr/sbin/mynewutilityd ] || exit 0

RETVAL=0

start () {
    echo −n "Starting mynewutilityd: "
# start daemon
    daemon /usr/sbin/mynewutilityd
    RETVAL=$?
    echo
    [ $RETVAL = 0 ] && touch /var/lock/subsys/mynewutilityd
    return $RETVAL
}

stop () {
    # stop daemon
    echo −n "Stopping mynewutilityd: "
    killproc /usr/sbin/mynewutilityd
    RETVAL=$?
    echo
    [ $RETVAL = 0 ] && rm −f /var/lock/subsys/mynewutilityd
    return $RETVAL
}

restart () {
    stop
    start
RETVAL=$?
    return $RETVAL
}

# See how we were called.
case "$1" in
    start)
        start
        ;;
    stop)
        stop
        ;;
    status)
        status /usr/sbin/mynewutilityd
        RETVAL=$?
        ;;
    restart)
        restart
        ;;
*)
        echo "Usage: mynewutilityd {start|stop|restart
        RETVAL=1
esac

exit $RETVAL

Of course, this script will not run unless you use the chkconfig or ntsysv utility to add it to the scripts
for the run levels specified in the chkconfig line in the script's comments, thus:

#chkconfig mynewutilityd on

444



Tailoring the rc.local Script

The rc.local script is likely to need your editing, because it is the script where you place so−called
local changes—those that are specific to one computer and don't represent daemons that are
added as part of a package. In fact, it's common to start unusual daemons (like the fictitious
mynewutility discussed above) by adding them to rc.local.

Let's take a look at the default version of rc.local for Red Hat 7.3 (Listing 17.11).

Listing 17.11: The rc.local Script for Red Hat 7.3

#!/bin/sh
#
# This script will be executed *after* all the other init
# scripts.
# You can put your own initialization stuff in here if you
# don't want to do the full Sys V style init stuff.

if [ −f /etc/redhat−release ]; then
    R=$(cat /etc/redhat−release)

    arch=$(uname −m)
    a="a"
    case "_$arch" in
            _a*) a="an";;
            _i*) a="an";;
    esac

    NUMPROC=`egrep −c "^cpu[0−9]+" /proc/stat`
    if [ "$NUMPROC" −gt "1" ]; then
        SMP="$NUMPROC−processor "
        if [ "$NUMPROC" = "8" −o "$NUMPROC" = "11" ]; then
            a="an"
        else
            a="a"
     fi
    fi

    # This will overwrite /etc/issue at every boot.  So,
    # make any changes you want to make to /etc/issue here
    # or you will lose them when you reboot.
    echo "" > /etc/issue
    echo "$R" >> /etc/issue
    echo "Kernel $(uname −r) on $a $SMP$(uname −m)" >> /etc/issue

    cp −f /etc/issue /etc/issue.net
    echo >> /etc/issue
fi

The default rc.local file is simple. It only contains code to create the /etc/issue and /etc/issue.net
files. The /etc/issue file is used to write the text introduction to the login prompt. The result on an
x86 computer using Red Hat 7.3 looks like this:

Red Hat Linux release 7.3 (Valhalla)
Kernel 2.4.18−3 on an i686

The rc.local file first declares its interpreter, just like all the other scripts that we've looked at in this
chapter. Next, rc.local checks whether the file /etc/redhat−release exists and is a regular file. If the

445



file is both, the variable R is set to the content of the file.

The case statement that follows the redhat−release check exists to determine whether the correct
word in the upcoming string should grammatically be a or an; if the value of $arch has an initial
vowel, the script uses an; otherwise, it uses a.

Next, an if statement is used to determine whether there is more than one processor; and second, if
there is more than one processor, whether the word for the number of processors begins with a
vowel, as in 8 (eight) and 11 (eleven). This determination is only important if the system is using
multiple processors, in which case the /etc/issue will look something like this:

Red Hat Linux release 7.3 (Valhalla)
Kernel 2.4.18−3 on a 2−processor i686

The last few lines of the script simply write out the data to the /etc/issue file and copy it to
/etc/issue.net.

If you have not created the mynewutilityd script, you can start the mynewutility daemon in the
rc.local file by adding the following line at the end of the file:

daemon mynewutilityd

Administrator's Logbook: Changes to Red Hat 7.3 default /etc/rc.d/rc.local script

Added a line to start the daemon mynewutilityd, which is part of the mynewutility package
downloaded from www.mynewutility.org, to add basic newutility functionality to our network. VS 16
Jul 02

Cautions about Changing Existing Scripts

Many system administrators advise that it is not a good idea to revise and adapt existing scripts.
Actually changing an existing script on your system is sometimes necessary, although certainly you
should exercise caution when you change one. Should you decide to tailor an existing script to your
specific usage, it is a good practice to start by making a copy of the script with an extension like
.orig to identify it as the original version. You also need to add comments noting within the tailored
script what specifically was changed and why. It is advisable to keep a backup of the original script
in case of accidental overwrite.

Generally, anything that makes your system different from the default arrangement should also be
included in an administrative log entry. When you are troubleshooting a problem, this helps to clarify
differences between a machine that is working properly and one that isn't. Sometimes it is the
change that caused the malfunction, and other times it might be the lack of this change that is
problematic.

Consider the example discussed in this chapter, where you have added a check to the mynewutility
script. This check determines whether a process called necessary is running, and the script only
continues if the process is running. A log entry to accompany this might look like the one in the
Administrator 's Logbook example on this page, for "Changes to Red Hat 7.3 default
/etc/rc.d/init.d/mynewutilityd script."

Administrator's Logbook: Changes to Red Hat 7.3 default /etc/rc.d/init.d/mynewutilityd script

446



Edited /etc/rc.d/init.d/mynewutilityd adding a check to determine whether the necessary process
was currently running. If necessary is not running, the script attempts to run it. If it runs successfully,
proceed with the initialization of the mynewutility daemon. VS 14 Aug 02

#check for necessary process
if ! pgrep necessary
  then
     /usr/bin/necessary
     if ! pgrep necessary
        then
           exit
     fi
fi

Using the cron Facility

The cron daemon makes it very easy to set up a recurring event based on the need to run it at a
given time, day, or date. cron searches /var/spool/cron for crontab files, which are named after
existing user accounts; any crontabs that are found are loaded into memory. The daemon also
searches for /etc/crontab and the files in the /etc/cron.d/ directory.

The /etc/crontab file contains entries that run files in /etc/cron.hourly on an hourly basis, files in
/etc/cron.daily on a daily basis, files in /etc/cron.weekly once a week, and files in /etc/cron.monthly
once a month. Listing 17.12 shows the default /etc/crontab file for Red Hat 7.3.

Listing 17.12: The Default Red Hat 7.3 /etc/crontab

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

# run−parts
01 * * * * root run−parts /etc/cron.hourly
02 4 * * * root run−parts /etc/cron.daily
22 4 * * 0 root run−parts /etc/cron.weekly
42 4 1 * * root run−parts /etc/cron.monthly

0−59/5 * * * * root /usr/bin/mrtg /etc/mrtg/mrtg.cfg

In the first line, the shell is established as the Bash shell, and a path is set up. The MAILTO line sets
up who is to receive the output from these commands, including error messages and simple
notifications that the files were run. The home directory is set to /.

The first five fields of the run−parts lines establish the run times for the files contained in the listed
directory. The five fields used in /etc/crontab are as follows:

minute 0–59
hour 0–23 (24−hour format)
day of the month 1–31
month 1–12
day of week 0–7 (where both 0 and 7 are Sunday)

447



Asterisks represent any value. In the /etc/cron.hourly line, then, the string

01 * * * *

indicates that the files contained in the /etc/cron.hourly directory should be run at one minute after
each hour. The /etc/cron.daily line uses

02 4 * * *

which indicates that the files contained therein should be run at two minutes after the fourth hour of
each day. The /etc/cron.weekly line

22 4 * * 0

identifies that the files it contains are to be run at 4:22 on Sunday. The /etc/cron.monthly directory
contains files that are to be run at 4:42 on the first day of the month, based on the string:

42 4 1 * *

Values can be lists, ranges, or steps. Lists are comma−separated values as follows:

1,3,5,7,9

Ranges look like this:

1−5

You can combine the two like this:

1−5,7,9

Steps are ranges in which a certain set of numbers are skipped. The form is N/m, where N is
typically a range and m represents the numbers to skip. Thus the following in the hour field indicates
that the line should be run every other hour:

0−23/2

To indicate every other possible value for the field, you can use

*/2

The sixth field of the run−parts lines identifies the user in whose name the command should be run;
in this case, root. The seventh field is the command itself. You can simply create an executable
script and place it in the appropriate directory.

If the cron job only applies to one user, it should be added to that user's personal crontab file via the
crontab command. This command instal ls, uninstal ls, or l ists the user's crontab f i le,
/var/spool/cron/$USER, depending upon the argument you use. The two forms for the crontab
command are as follows:

crontab [−u username] file
crontab [−u username] [−l] [−r] [−e]

The first crontab syntax is used to replace the user's crontab file with another, so a filename with

448



which to replace the specified user's existing crontab must be given on the command line. If no user
is specified, the name of the user executing the command is used.

The second crontab syntax is the more common format. The −l option causes the crontab to be
displayed. The −r option removes the existing crontab, and the −e begins a session to edit the
crontab. The default editor (as specified by the VISUAL or EDITOR environment variable) is used.

The format for the user's crontab file excludes the username, since that file is intended to be used
only to start programs as the user who invoked the crontab command. The cron daemon wakes up
every minute and checks for changes in /etc/crontab, so there is no need to restart the daemon if
you change the default files.

Running a Script at a Specific Time

The at command is used to run a command once, at a given time.

Note The cron utility can do almost everything that the at command can do, so you may choose to
use cron exclusively. There is only one exception: You can set an at job during a cron run, but
you can't use cron to modify cron jobs. This feature isn't often required, though.

The at command allows a variety of time formats. It accepts times of the form HH:MM to run the job
at that specific hour and minute of the day. If the time is past, it assumes the next day. You can add
a suffix of AM or PM. To specify a specific day to run the job, give a date in the form month−name
day with an optional year, or by giving a date of the form MMDDYY, MM/DD/YY, or DD.MM.YY. The
at command will also accept times such as now +time−units, where the time−units can be
expressed as minutes, hours, days, or weeks. Once the time is accepted, an at> prompt will appear
where you are to type the command to be run at the given time.

Here are a few different at commands. The first one runs on the 23rd of October:

$ at 102302
at> who −u >who.log.102302

This one runs at noon today, or tomorrow if it's already past noon:

$ at 12:00
at> backup_script &

This one runs one hour from now:

$ at now + 1 hour
at> clean_up_script &

Commands Often Used in Shell Scripts

There are several fundamental commands that appear often in shell scripts. They include cat, cut,
echo, sort, and xargs. We'll discuss them in some depth here, giving you examples that illustrate
their usefulness in script writing. These examples are simple, but may be made more useful by
piping the output of one command as the input into another or simply by running a sequence of
commands. The examples here are purposefully simple to preserve the clarity of the definition.

449



cat

cat filename

Although the cat command has optional arguments, they are not typically used in scripts, so we
won't discuss them here. In scripts, cat is typically used to output a file's contents, most often for
use in a pipe sequence.

For example, the command cat /etc/issue produces the following output:

Red Hat Linux release 7.3 (Valhalla)
Kernel 2.4.18−3 on an i686

cut

cut [options] filename(s)

The cut command is often used in scripts or in a piped command, to cut specific fields or characters
from a file in a delimited format. The default delimiter is a tab, but you can change this with the −d
option, so that the fields in a comma or pipe−delimited file may be cut out, too.

Consider a file in this format:

12  34  54  23  12  34
32  67  85  18  62  10

The command to output fields 1 and 5 from each line of a tab−delimited file looks like this:

cut −f1,5 filename
12  12
32  62

Now let's assume a pipe−delimited file in the following format, perhaps listing the names of system
administrators responsible for backing up the system on each of the seven days of the week.

john|mary|terri|leonard|jacob|geoffrey|eric
tom|jeff|mike|larry|moe|curly|harpo

To cut out the name of the person responsible for the fourth day of weeks 1 and 2, you'd use this
command:

cut −d"|" −f4 filename
leonard
larry

The cut command has several options to provide for actions besides cutting by whole fields. You
can cut specific bytes, characters, or fields. You've seen that fields are specified by the −f
parameter. To designate the retrieval of bytes, use −b; and for characters, use −c. To indicate the
inclusion of all data between the nth byte, field, or character and the end of the line, add a hyphen
character ( − ) after the number, as shown in the following examples:

cut −d"|" −f4− filename
leonard|jacob|geoffrey|eric
larry|moe|curly|harpo

450



To indicate the inclusion of all data between the nth byte, field, or character and the mth byte, field,
or character, use N−M as shown here:

cut −d"|" −f4−6 filename
leonard|jacob|geoffrey
larry|moe|curly

Finally, to indicate all the data on a line up to and including the nth byte, field, or character, precede
the number with a hyphen ( − ) as shown here:

cut −d"|" −f−4 filename
john|mary|terri|leonard
tom|jeff|mike|larry|moe

Now that you have a basic idea of how to use the cut command, let's look at an example that's
particularly suited to Linux system administration. Say, for example, that you need to set a variable
to your IP address for use in a script. You could cut the value from the output of /sbin/ifconfig like
this:

ip_address = /sbin/ifconfig ppp0 | grep inet |cut −d":" −f2 |cut−d " " −f1

echo

echo [options] string

The echo command is equally useful in scripts and on the command line. Its purpose is to display
the string given as its argument. This is quite handy for showing the value of an environment
variable or sending output into a piped command sequence. Let's say that you need to find out the
value of the HISTSIZE variable. You can echo out its value like so:

echo $HISTSIZE
1000

The echo command was used to echo a blank separator line into a data file in the rc.local script that
we discussed earlier in this chapter, as follows:

echo >> /etc/issue

echo can also be used to echo a message to the user of the script, as shown here:

if [ ! −e /bin/executable ];
then
echo "The file /bin/executable does not exist."
fi

sort

sort [options] [file(s)]

The sort command sorts each of the files listed in the manner defined by the specified options, and
concatenates the sorted files to standard output (stdout). The options for sort include −b, which says
to ignore initial blanks in the sorted lines; −c, which checks to see if the file has already been sorted;
−d, which considers alpha and numeric characters; −f, which ignores case by evaluating everything
as if it were uppercase; −n, which sorts numerically; −o, which allows you to specify an alternate
output file; −r, which reverses the sort; and −u, which sorts the output and removes any duplicates

451



leaving a unique list.

Assume the following numbers must be sorted:

66, 567, 3, 38, 64, and 543

A standard sort will sort the numbers incorrectly:

3
38
543
567
64
66

A numeric sort (sort −n) will sort them correctly:

3
38
64
66
543
567

Now let's try sorting these names: Fred, Tom, Abe Lincoln, and Constable Bob. A standard sort will
return the following:

Abe Lincoln
Constable Bob
Fred
Tom

xargs

xargs [options]

The xargs command reads space−delimited arguments one line at a time from stdin and assembles
as many of them as will fit into one command line.

As an example, consider that a command using find to generate the input sometimes passes so
many arguments that Bash cannot handle the complete command and generates an error like this:

$ cat `/usr/bin/find .`
bash: /bin/cat: Argument list too long

Here, the find command has generated output that causes the expanded command to exceed the
maximum length. To get around this, use xargs to pass only the number of arguments allowed.
Instead of accepting the arguments on the command line, xargs accepts them through a pipe as
follows:

$ /usr/bin/find . | xargs cat

The second command will apply the cat command to every filename output from the find command,
giving the intended results.

452



Using Pipes

The sort, echo, and cut commands described in the preceding sections are especially useful in
scripts where you need to set a variable equal to some portion of the output of a command, or
where you need to change the order of data before passing it on to the next function that will use it.
Linux pipes can be useful in this respect because they allow you to send the output of one program
or command into another program or command. Pipes are often used on the command line, but
they can also be used in many scripting languages.

The script for updating the training file that we looked at earlier (Listing 17.5) uses both the echo
command and the cut command in the piped sequence:

name=`echo $line|cut −d"|" −f1`

And the following cat statement produces a sorted version of the /etc/training_list file.

$cat /etc/training_list | sort −d > sorted_list

In Sum

Linux's ability to handle many scripting languages can prove quite useful to your system
administration duties. One of the most−used scripting languages is Bash, which is tightly integrated
into the Bash shell you probably use to enter text−mode commands. This shell scripting language
lets you combine Bash commands, Linux programs, and variables using basic programming
concepts like loops and conditional statements, in order to automate what would otherwise be
tedious tasks. Other scripting languages include Perl, Python, sed, and awk.

You can use any scripting language in conjunction with Linux's mechanisms for running programs at
specific times, cron and at. These utilities can be very useful for scheduling tasks such as backups
that you want to perform at specific times, particularly when you might not be around to launch the
jobs manually.

Linux's startup scripts are written in Bash, so understanding the details of this scripting language
can help when you need to modify the standard startup scripts or create new ones.

You'll see many more examples of scripts in the /etc/init.d directory. We suggest you read through
these scripts to ensure your understanding. Additional scripts are located in the various binary
directories. Scripting is one of the most helpful capabilities that Linux offers. The versatility of scripts
in the Linux world is one of the strengths of Linux.

Next we'll move onto a discussion of troubleshooting. Even the best maintained systems have
difficulties now and then. Diagnosing the problem and finding a solution is to many the most
intriguing and enjoyable part of Linux system administration.

453



Chapter 18: Troubleshooting Your Linux System

Overview

Troubleshooting is an art, requiring both a natural analytical ability and an extensive knowledge of
the Linux system. It is also one of the most high−profile aspects of the Linux system administrator's
job. If something isn't working, you can bet there will be "shoulder surfers" around to watch while
you fix the problem. The more familiar you are with the Linux filesystem covered in Chapter 7, the
booting and initialization processes covered in Chapter 3, and the login process detailed in Chapter
5, the more smoothly your troubleshooting experience is likely to go. Most of the troubleshooting
that we've run into has involved an inability to boot the system, an inability to log into the system, or
the inability to initialize some service.

There are a number of sources for information about commonly encountered difficulties in Linux and
their solutions. These sources give you a place to start when you aren't sure what the problem is or
how to track it down. You can run searches on http://www.google.com/ to see if you can find a post
where someone else has had a similar problem. Often, if these don't give you the complete answer,
they at least get you pointed in the right direction. If you have an error message, enter the entire
thing (or at least the part that would be common to other systems) within parentheses and then the
word Linux. Often this brings up the answer to the problem; simply follow that example to fix it, and
you're done.

Also look on your distribution's Web site to see if a fix has already been posted. If the fix is a
software package, read the description to make sure that it is intended to fix your problem. (If is a
security fix, you should download and apply it anyway.)

General Troubleshooting Techniques

Our basic philosophy about troubleshooting is to dive in and swim around. While it is far better to
pare down the solution space to a problem if you can, new system administrators are sometimes
too timid about trying to fix a problem. If you don't know where to start, check the last few lines of
the /var/log/messages file to see if the problem is generating error messages. If not, run through the
boot process to see if the problem could logically be there. If you don't find something that seems
relevant, move on to the initialization process. Certainly it is better if you see something that points
you in what seems to be a logical direction, but for some people the most difficult part is getting
started. Once you're in under the hood, you will likely see something that just doesn't look right, and
you're off and running. From that point, approach the problem methodically.

Remember to contemplate what you expected as well as what you saw. What run level was the
system supposed to boot into? Could this be an X problem? Sometimes a problem with X will leave
you at a run level 3 login prompt, making the problem even more confusing. If you were supposed
to boot into run level 5 but the system stops at run level 3, see if you can log in at run level 3. If you
can, then try to start up the X server. If it doesn't start, there will most likely be error messages to
help you find the problem.

Here are some basic troubleshooting precepts:

Read, read, read! Always read the README or INSTALL text files included with packages
that you are installing from scratch. Always read the HOWTO (if one is available) for any
packages you are configuring. Look on the Linux Documentation Project site to see if there

• 

454



is information about what you're doing. LDP is available at http://www.tldp.org/.
Always look to the /var/log/messages file as well as any log files specifically used for the
application to determine whether a problem that you are attempting to correct is sending any
error messages there. This is one of the easiest ways to find the problem, but new system
administrators often go digging into configuration files without even looking at the error log.

• 

Someone, somewhere has almost certainly had the same problem before. Look to sites like
http://www.google.com/, which archive Linux distribution mailing lists, to see if you can find a
reference to it.

• 

Be patient and methodical. You're unlikely to find solutions in the last few hours of a 12−hour
troubleshooting session. You can probably no longer look at the problem methodically after
so long. Rest your brain and your eyes, and then try again. Don't forget to eat and sleep!

• 

If something worked yesterday but suddenly doesn't work today, it is probably not a
configuration problem. Again, look at /var/log/messages to see if there is a message that will
point to the problem. Check anything that has changed since the last time it worked to
determine whether something that was changed has caused the error. If you still don't find it
(and you know that no one has changed the configuration from the working one), don't
spend a lot of time reworking configuration files; consider hardware.

• 

Remember that many services have a debugging switch that allows you to pass in certain
parameters and/or increases the number of messages that the service logs to
/var/log/messages. Also use the verbose switch wherever it exists to ensure that you receive
the most information possible about what the service is doing. Also, some services have
syntax checkers (for example, tcpdchk for networking) to determine whether the
configuration files have errors. tcpd also has a great utility called tcpdmatch, which allows
you to see whether your system would accept connections from a hostname that you pass
as a parameter.

• 

Remember that many services depend upon the ability to look up an IP address from a
hostname with nslookup or even to look up a hostname in reverse with nslookup and the IP
address (reverse lookup).

• 

Login problems are often due to an error in the related PAM file:

login /etc/pam.d/login
rlogin /etc/pam.d/rlogin
KDM /etc/pam.d/kdm
GDM /etc/pam.d/gdm
XDM /etc/pam.d/xdm
SSH /etc/pam.d/sshd

• 

When specifying a library path, ensure that you've spelled everything correctly and that the
case is correct.

• 

The compiler never lies, although it can obfuscate. If you have an error message that you
don't understand, there is a problem in the code. The compiler may interpret the true source
of the problem as being okay, though, and report an error some lines later, when the
compiler's interpretation finally breaks down. Compiler messages are also sometimes just
plain cryptic. Look to determine what the error means. To confuse the issue a bit, bad
hardware does sometimes cause the compiler to give you an error that might send you down
the wrong path.

• 

Simply rebooting is not a good fix. If you don't know what caused the problem and rebooting
fixes it, you still won't know what caused it when it happens the next time. Find the problem
and fix it. You might need to restart a service or a daemon, but at least if that fixes it, it
guides you into the problem space, allowing you to find the solution. Don't forget to set up
and test the startup scripts; many hours have been lost searching for a problem when in
reality the problem was simply that the system was restarted and the application did not

• 

455



automatically start.
Join a Linux user group if there is one in your area. If there isn't one, start one. The exposure
that you get to different problems will help you avoid those problems on your systems.

• 

Remember to sync after you make changes in rescue mode before you exit. This writes any
residual information in the buffers to the hard drive. Not doing this may cause your "fix" to be
lost after a reboot.

• 

Don't be afraid of the system. Very few things that you do are going to break the computer
(except getting mad and throwing it on the floor). Experiment a bit. Log each step so that you
can undo what you did. Make sure you have a boot disk or a rescue disk or CD−ROM. Of
course, you don't want to delete files with reckless abandon, but it is okay to copy something
to another partition and then remove the suspect file to see if it fixes the problem. If you
mess up badly, boot into rescue mode and copy the files back to where they go and reboot.

• 

The rest of the chapter looks at common problems and their solutions. We focus on questions that
are asked frequently in the various Linux lists and newsgroups and that are pretty much
distribution−independent. There are many frequently asked questions (FAQ) documents available
that provide information about specific areas. Look for a FAQ whenever you are preparing to
configure something for the first time. If there is not a FAQ, rely instead on a HOWTO, if that is
available.

Boot Problems

The problems we discuss in this section prevent the system from booting up fully. Boot problems
are among the most frustrating, but they are also among the easiest to troubleshoot since the
problem space is relatively restricted. If you know the boot process inside and out, the symptoms of
the problem tend to point to the one or two possible solutions that produce exactly those symptoms.
At that point, troubleshooting the problem becomes easy. Find some indicator of which of the
possible problems you are dealing with, and fix it.

FDISK Doesn't Recognize GNU/Hurd Partition

In anticipation of the GNU Hurd filesystem, the developers of the FDISK utility have assigned the
partition code 0x63. This partition type is not currently used, so if you can't get FDISK to recognize
your Hurd−owned filesystem, use the standard 0x83 if the filesystem contains an ext2 or ext3
filesystem. Do not use the new 0x63 code.

Making a New Boot Floppy to Replace a Lost One

Sometime in your career as a system administrator, you will come upon a system that won't boot
from as usual and have to use a boot floppy to boot it. This might be that the boot record is
corrupted or that the boot floppy usually used is missing. Either way, if you don't have a boot floppy,
you'll have to make one.

LILO

There are two ways to replace a lost or destroyed boot floppy with a new one:

Insert an unused floppy into the first floppy drive and run (as root) lilo −b /dev/fd0. This will
make an exact copy of your hard drive boot sector on that floppy so that the next time
something kills your boot record, just insert that floppy and boot from it. If you're using a boot

• 

456



floppy because your boot record was overwritten inadvertently, when you get a login prompt
again, log in as root and type lilo to re−create a valid master boot record on the hard drive.
If you're on a Red Hat system, you can run a utility called mkbootdisk. Typing mkbootdisk
kernel_version will create a boot disk for the specified kernel. For example, mkbootdisk
2.4.7−10 will create a boot disk for a 2.4.7−10 system. This utility defaults to the floppy drive,
but it can be redirected to any device with the −device parameter.

• 

GRUB

Creating a GRUB boot floppy is fairly simple. Insert an unused floppy into the first floppy drive.
Change directory to /usr/share/grub/i386−pc. Write the stage1 image to the floppy with the following
command:

dd if=stage1 of=/dev/fd0 bs=512 count=1

Write the stage2 image to the floppy with this command:

dd if=stage2 of=/dev/fd0 bs=512 seek=1

GRUB Is Installed but Just Hangs

Usually this is a problem with the device map file located at /boot/grub/device.map. This file is often
quite simple and is usually generated by the anaconda program. Bring up the file in an editor to see
if there is an obvious problem. If there is, fix the problem and then run grub−install. If you don't see
the problem, you might choose to reinstall GRUB altogether using a boot floppy.

LILO Messages and Their Meanings

Chapter 3 briefly discussed the fact that on startup, LILO prints one letter of the LILO prompt for
each of the tasks it has to do. Therefore, if only one or two letters print out, the process aborted at
whatever task it was trying to accomplish. To begin troubleshooting, you only have to discern which
task that was. Let's take a closer look at the diagnostic meaning of LILO's startup display.

Display Diagnosis
(nothing) LILO hasn't been loaded. It may not be installed, or some pre−LILO

process has failed. For instance, the Linux partition might not be active
or might not have been selected by an earlier boot loader or might not
be recognized by the system BIOS.

L error−code The main part of LILO has loaded, but it's unable to locate the
second−stage boot loader, /boot/boot.b. The two−digit error−code can
help to further diagnose the problem, as detailed in the LILO
documentation.

LI The main part of LILO has loaded, and it can locate the second−stage
boot loader, /boot/boot.b; but this second−stage loader won't run. This
problem is most frequently caused by a mismatch between the BIOS's
disk geometry settings and those used by Linux. (See below for a
description of disk geometry settings.)

LI1010, etc. When LILO returns a string of LI101010… at bootup, the problem is
that LILO can't locate your kernel image. This is usually caused by
recompiling the kernel and copying the new one over the old without
running LILO again. Since LILO only reads /etc/lilo.conf and writes a

457



new boot sector onto your hard drive when you run lilo, not when the
system boots, it must be rerun to update that boot sector whenever
/etc/lilo.conf changes. If you forget to do this, the system will not boot.
To fix this, you can boot with the install/rescue floppy, mount the root
directory on /mnt and rerun LILO using the command lilo −r /mnt. An
alternative is to boot from an install/rescue floppy, mount the root
directory on /mnt, run the command chroot /mnt to make the system
treat /mnt as the root directory, and then run LILO normally.

LIL The second−stage boot loader runs but can't function properly. This
frequently indicates a geometry mismatch or a problem with the hard
disk.

LIL? LILO has loaded the second−stage boot loader into the wrong address.
This is usually caused by moving /boot/boot.b without re−running lilo.

LIL− LILO has detected a damaged descriptor table, /boot/map. This can be
caused by disk geometry mismatch or by moving the descriptor file
without re−running lilo.

LILO The program has loaded and run correctly. Subsequent problems are
likely related to the kernel or other Linux startup files.

Note Hard disks are composed of one or more platters, each of which has associated with
it one or two heads. These heads move across several different tracks, forming
virtual cylinders across the stacked platters. Each cylinder is broken up into multiple
sectors, each of which holds 512 bytes on most hard disks. Early hard disks could be
defined by the number of cylinders, heads, and sectors they used; hence the term
CHS geometry or disk geometry. The x86 BIOS and the standard x86 partitioning
table use this method of describing a disk. The trouble is that all modern hard disks
lie about their CHS geometries. Furthermore, the lies told by the disks sometimes
cause problems, so BIOSes and OSes frequently change these lies to other lies.
With so much fabrication occurring, the situation sometimes collapses in chaos when
two different software components believe different things about the disk's geometry.
This can be the source of some LILO problems, if LILO uses one CHS geometry
setting and another tool uses another setting.

Making the System Boot a New Kernel

Once you get a kernel that has everything that you need, you might want it to be booted by default.
After compiling and thoroughly testing a new kernel, edit the configuration file for the boot loader to
change the default.

LILO

To change the default boot kernel from linux to linux_new, edit the /etc/lilo.conf file to change the
default=linux line to default=linux_new. If you don't see a default line, simply add one. Not long ago,
LILO simply took the first listed kernel image as the default image, so older lilo.conf files won't have
the default parameter. Don't forget to rerun /sbin/lilo after you make any changes to the /etc/lilo.conf
file.

Here is a sample /etc/lilo.conf file:

boot=/dev/hda
map=/boot/map
root=/dev/hda1
install=/boot/boot.b
prompt

458



timeout=50
message=/boot/message
linear
default=linux
image=/boot/vmlinuz−2.4.7−10
        label=linux
        read−only
image=/boot/vmlinuz−2.4.7−10−new
        label=linux_new
        read−only

GRUB

GRUB uses a number from 0 to one less than the number of configured kernel images to denote
which image is to be the default. To change the default boot kernel from linux to linux_new using
GRUB, edit the /boot/grub/grub.conf file to change the default=0 to the appropriate number
(remember to start counting the stanzas at zero). Alternately, you can add any new stanzas above
the existing ones, the first stanza being the default.

Here is a sample /boot/grub/grub.conf file:

# NOTICE:  You have a /boot partition.  This means that
#          all kernel paths are relative to /boot/
default=0
timeout=30
splashimage=(hd0,0)/grub/splash.xpm.gz

title Red Hat Linux (2.4.7−3−jul2001)
        root (hd0,0)
        kernel /vmlinuz−2.4.7−3−jul2001 ro root=/dev/hda3
        initrd /initrd−2.4.7−3−jul2001.img

title Red Hat Linux (2.4.7−3)
        root (hd0,0)
        kernel /vmlinuz−2.4.7−3 ro root=/dev/hda3
        initrd /initrd−2.4.7−3.img

Hardware Not Detected at Boot

For a variety of reasons, hardware might not be detected at boot. Sometimes passing the
appropriate information as an option to the boot loader will fix the problem.

LILO

If hardware in your system isn't recognized at boot, it may be possible to get Linux to see it using an
append line in /etc/lilo.conf. Say you have more than one network interface card (NIC) in your
computer but Linux doesn't detect this on boot. Assuming that the problem is not that you are
running a modularized kernel and the correct module doesn't exist, you can try appending the
hardware data about the card. The append statement will look something like the following, except
that the parameters will be replaced by values reflecting your hardware:

append="aha152x=0x140,12,7,0,0 sb=240,5,1,5,300"

GRUB

GRUB handles things slightly differently. Instead of adding an append line, you actually append the
information to the end of the kernel line in the grub.conf file. For example:

459



title Red Hat Linux (2.4.7−3−jul2001)
        root (hd0,0)
        kernel /vmlinuz−2.4.7−3−jul2001 ro root=/dev/hda3
        initrd /initrd−2.4.7−3−jul2001.img

would become:

title Red Hat Linux (2.4.7−3−jul2001)
        root (hd0,0)
        kernel /vmlinuz−2.4.7−3−jul2001 ro root=/dev/hda3 
aha152x=0x140,12,7,0,0 sb=240,5,1,5,300

        initrd /initrd−2.4.7−3−jul2001.img

Notice that the kernel line is continued without a new line.

Dual−booting with Another OS Like Windows

It is very easy to set up a system to dual−boot Linux and another operating system using two
separate disks.

LILO

LILO is quite happy to boot multiple operating systems. Sometimes, because Windows likes to be
on the first disk, you should switch the disks around, making the Windows disk /dev/hda and the
Linux disk /dev/hdb. Remember to have a rescue disk or CD−ROM around when you're doing this,
since LILO won't know where things are anymore. Boot into rescue mode and mount the Linux disk.
Edit the /etc/lilo.conf file to include the Windows partition. Assuming that Windows is on the first disk
(/dev/hda), Linux is on the second disk (/dev/hdb), and the partition containing /boot is correctly
included below the 1024−cylinder mark of the disk it is on, your lilo.conf file should look like the
following.

boot = /dev/hda
map = /boot/map
install = /boot/boot.b
prompt
timeout = 50
default = linux

image = /boot/vmlinuz−2.4.18−3
    label = linux
    read−only
    root=/dev/hdb1
other = /dev/hda1
    label = msdos

Run lilo to write out LILO's new configuration, sync the disks since you are in rescue mode, and
reboot.

GRUB

Assuming the same setup as above, the grub.conf file would include the following stanzas:

title linux
   root (hd1,0)
   kernel /boot/vmlinuz−2.4.18−3 ro root=/dev/hdb3
   initrd /boot/initrd−2.4.18−3.img
title win2000

460



rootnoverify (hd0,0)
chainloader +1

Can't Remove Boot Loader from the Master Boot Record

It's possible that you'll install Linux on a computer and then discover that you need to recycle the
computer for use with Windows, DOS, or some other OS. Many new Linux administrators have
problems with this, though, because after they've removed Linux, the boot loader hangs on like an
albatross around the computer's neck. Fortunately, there are ways to deal with this problem. If your
system still has Linux installed using LILO and you want to remove LILO from the MBR, you log in
as root and use the LILO uninstall command as follows:

# lilo −u

If you use GRUB or have for some reason deleted Linux from your system and installed some
version of Microsoft Windows, you can use the Windows FDISK command to rewrite the Master
Boot Record and then reboot:

C:> FDISK /MBR

Kernel Won't Load or Loads Only Partially

There are two possibilities here. Either the kernel image has become corrupted in some way or
LILO is being passed an incorrect parameter. You see this if someone adds an incorrect append
line in /etc/lilo.conf.

Often this is an incorrect mem line. The mem option isn't usually needed but occasionally you'll run
across a system for which LILO doesn't recognize the correct amount of memory. If you need to
help LILO recognize a large amount of memory, such as 256MB, add the line mem=256M to the
/etc/lilo.conf file and then run lilo. If you incorrectly add mem=2256M or some other too−large
number, your kernel will not fully load. If you incorrectly add mem=256m using the lowercase m, that
will also inhibit the kernel's ability to fully load.

When LILO is run, it catches some of the errors in the /etc/lilo.conf file. If you specify a kernel image
that doesn't exist, the lilo program will generate an error message. If you've specified a boot device
that doesn't exist, you will see a message like this:

Fatal: open  /dev/hdb: Device not configured

Login Problems

Because gaining access to your systems is so important, you must be able to diagnose and repair
login problems. Knowing the login process step by step is the key to this ability. Once you've been
doing Linux system administration for a while, these problems will be easy for you to fix.

Lost Password

One of the most frustrating problems occurs when you have a system and no one seems to
remember the root password. With luck this won't happen often. Sometimes, though, the root
password is needed and not known and needs to be reset.

461



The Rescue Mode Method

If you've lost the root password to your system and need to gain root access, you can boot to
single−user mode and change root's password. First issue the following command at the boot
prompt, assuming that you want to boot a kernel with the label linux:

boot: linux single

If you don't know the name of the kernel image you want to boot, press the Tab key when you see
the boot prompt, and all of the kernel images LILO recognizes will be listed. When the system
finishes booting, you'll be in single−user mode. To change root's password, use the passwd
command:

# passwd root

Sync the disk to make sure all of your changes are written out to the disk.

# sync;sync;sync

Unless you have configured the system to require a password before entering single boot mode,
exiting will automatically reboot the system. If you have, of course you'll need to input the password
before the system will reboot.

# exit

The init Method

Another way to change root's password is to pass a different init parameter to LILO when the
system boots. You want to tell the system to mount the root filesystem in read/write mode so that
you can write your changes when you run the passwd command and also to prevent the
initialization scripts from running. At the boot prompt, enter the following (again assuming that you
want to boot a kernel with the label linux):

boot: linux init=/bin/sh rw

When the system finishes booting, use the passwd command and sync the disks just like before.
Now instead of rebooting, use the init command to change to run level 6, which is a reboot level:

# exec /sbin/init 6

Login Incorrect after Entering Username

If you enter the username at the login prompt and are not prompted for a password but instead are
given a "Login incorrect" error and returned to the login prompt, you have an error in the
/etc/pam.d/login file.

System Flashes Quick Message and Drops Back to login Prompt

If you try to log in to your system and see a message quickly flash before you are returned to the
login prompt, you probably have an error in /etc/pam.d/system−auth in one of the required session
lines. The message that is flashing is "Module is unknown"; it means there is a typing error in the
path or name of the PAM library to be accessed, so that the library cannot be found. If the message
looks more like "Login incorrect," the error is probably in the pam_unix.so line of the auth section of

462



/etc/pam.d/system−auth. If you see no message at all, look to the second line of the auth section.
We recommend logging in and making changes to /etc/pam.d/login to determine what changes
result. Remember to leave one virtual terminal logged in so you don't have to go into rescue mode
to fix the file you have tampered with.

If you find no problem with PAM, check to see that the user's shell is not invalid or missing.

Login incorrect Message Logging in as root

If you get this message when attempting to log in remotely as root to a Linux machine, the system is
functioning normally; the problem is what you're trying to do. You really don't want to be able to log
in remotely as root. That is a major security hazard. The more secure way is to log in as another
user and, once logged in, use the su command to assume superuser privileges. If you're still
convinced that you want to log in as root, you can enable your system to allow this. The
/etc/securetty lists the virtual consoles and ttys from which root is permitted to log in. Since logging
in remotely brings you in on a pseudoterminal, you need to add some pts/n l ines to the
/etc/securetty file. How many pseudoterminals you need to add depends upon the number of
remote connections. It's important to remember that doing this is a bad idea. Don't do this unless
you absolutely have to. If you have to do this to test something, add the pts lines, do the test, and
remove the pts lines immediately.

Network Problems

Troubleshooting an apparent network problem should be done in stages. Find out whether a local
machine can ping the remote host and whether the remote machine can ping it back. If the local
ping is successful but the remote machine's ping fails, look for problems in the configuration of the
remote machine. If you can't find the source of the problem, look for a remote machine that can ping
the local machine and compare the configuration of both remote machines. Most Ethernet cards
have link lights that indicate whether the card is able to send data packets. The best way to learn to
troubleshoot a network is to do it.

Following are a few networking problems related to Linux or software configuration. We cannot
address the much wider problem space presented by networking hardware, simply because there
are too many possible combinations and configurations to cover here.

Unknown Host Message

If you get this error when trying to Telnet or use various other networking tools, the hostname
cannot be resolved into an IP address. This could be the result of a name server problem, a network
problem, or a typing error. Try to ping the IP address instead of the hostname. If you can ping the
host by numeric IP, the problem is with the name server setup. Otherwise, verify that the name you
typed in is the correct one. If it is, try to ping another machine on the same network as the one
causing you problems. If you can, the problem is almost definitely with the setup of the problematic
host or possibly the cable that runs to it from the network.

Another possibility, especially on small local networks that don't use DNS internally, is a problem
with the /etc/hosts file. This file can be used as a substitute for DNS on local networks; it contains
the mapping of hostnames to IP addresses. An example resembles the following.

127.0.0.1 localhost
192.168.1.1 speaker.rodsbooks.com speaker

463



192.168.1.2 teela.rodsbooks.com teela luckyone

Each line begins with a single IP address and is followed by one or more hostnames. (Typically, a
full hostname is first, followed by one or more hostnames that lack the domain name, or synonyms.)
If your network uses /etc/hosts, be sure that the file is present and that its contents are reasonable.

You may also want to check the /etc/host.conf file. This file tells Linux in what order to try various
hostname resolution methods, among other things. It normally contains a line like the following:

order hosts,bind

This line specifies that Linux will use /etc/hosts followed by DNS (which sometimes goes by the
moniker BIND, for Berkeley Internet Name Daemon). This line may contain additional entries, or
entries in alternative orders. If it's missing either entry shown here, name resolution may be
impaired on your local network or on the Internet as a whole, respectively.

Network Unreachable Message

This message means that the local machine doesn't have a network route to the remote system.
Verify the address you used. Use the netstat −r command to determine whether there is a route to
the remote host's network.

Kernel Compilation

Compiling a kernel is not difficult if you know the process. Nevertheless, there are some common
errors that appear on mailing lists with some frequency.

make menuconfig Generates an Error about ncurses.h

You may type make menuconfig and get the following error:

make[1]: *** [lxdialog.o] Error 1
make[1]: Leaving directory `/usr/src/linux−2.2.16/scripts/lxdialog'
make: *** [menuconfig] Error 2

The problem is that you do not have the package installed that contains ncurses.h. This can be a
little confusing because you may have the ncurses RPM installed and still get this error. On systems
using the Red Hat Package Manager (RPM), you need to install the ncurses−devel RPM in order to
use make menuconfig.

Signal 11 Error

Sometimes when a user or a system administrator compiles a new kernel, gcc returns the following
error:

gcc: internal compiler error 11

Signal 11 is a segmentation violation, which generally means that the program is trying to write into
memory it doesn't own. The problem is usually caused by bad memory in your computer. If you
immediately try to run the make command again and it goes a bit further, the problem is almost
surely hardware. There is a great site that details signal 11 errors at http://www.bitwizard.nl/sig11/.

464



Do I Need to Reconfigure the Kernel with Every Upgrade?

It's possible to copy your kernel configuration settings from a kernel you've previously compiled
yourself to a new one. The commands to accomplish this task are:

# cd /usr/src/linux
# cp /usr/src/old−kernel/.config ./
# make oldconfig

When you configure your kernel, the system stores your configuration choices in a file called .config.
The preceding command sequence copies the .config file from your old kernel's source directory to
the new kernel's directory, then tells the system to use the old kernel's configuration file. The make
oldconfig command, in particular, forces the compilation scripts to go through the old configuration
file and update any entries that may need updating. You'll be prompted to decide whether to
compile any new drivers, for instance. The end result is that you'll have a fresh kernel configuration
much more quickly than you would have if you'd gone through the usual make xconfig or make
menuconfig procedure, as described in Chapter 8.

Warning It's probably best to avoid using this procedure if you're upgrading from a 2.2.x to
a 2.4.x kernel, or a similar major upgrade. These kernel upgrades include so many
changes that chances are good the make oldconfig procedure will fail.

ld: unrecognized option −qmagic

This message means that you should get a newer linker. The linker is in the binutils RPM or is
available as a tarball from http://sources.redhat.com/binutils.

Filesystem Problems or Questions

The filesystem is covered in great detail in Chapter 6. As a Linux system administrator, the more
you know about the ext3 filesystem the better. You should get familiar with the inode concept and
the filesystem layout especially, including the intended uses of the directories off /. Here are a few of
the most common filesystem−related questions. Remember that an ext3 filesystem is just an ext2
filesystem with journaling added.

Creating a Linux Filesystem on a Floppy Disk

To create an ext3 filesystem on a 3.5", high−density floppy, issue the following command:

# /sbin/mke2fs −j /dev/fd0

The system will reply:

mke2fs 1.27 (8−Mar 2002)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
184 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
1 block group
8192 blocks per group, 8192 fragments per group

465



184 inodes per group

Writing inode tables: done

Filesystem too small for journal
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 21 mounts or
180 days, whichever comes first. Use tune2fs −c or −I to override.

Creating a Windows Filesystem on a Floppy Disk

To format a 3.5", high−density floppy, you can use this command:

# /sbin/mkdosfs /dev/fd0

You get a lot less information from your system in this case. The output looks like this:

/sbin/dosfs 2.8 (28 Feb 2001)

An alternative utility included on many systems is mformat, which you can use as follows:

# mformat a:

This program doesn't return any output at all, unless it encounters a problem running the command.

/proc/kcore

Many new Linux system administrators see the size of the /proc/kcore file and want to delete it to
free up the space. The /proc filesystem, however, is a virtual replica of your system, designed to
give you information. It doesn't take up any hard disk space. /proc/kcore is a method of accessing
your system's RAM. You can read from this file to access memory—any memory. For this reason,
the file is owned by root and has r−−−−−−−− (0400) permissions, to keep unauthorized individuals
from accessing it. Any attempt to delete or change the permissions of this file is pointless. Like all
files in the /proc filesystem, it takes up no real disk space. The fact that its size is the same as the
amount of memory on your system is irrelevant since it is not taking up disk space.

Which Interrupts Are Available?

The /proc/interrupts file contains a list of interrupts and what they correspond to. When you are
adding hardware and need to set an interrupt for it, you can use this list to determine which
interrupts are available. For instance, here's a sample output from this file:

$ cat /proc/interrupts
           CPU0
  0:  387900164          XT−PIC  timer
  1:        232          XT−PIC  keyboard
  2:          0          XT−PIC  cascade
  7:      42467          XT−PIC  MAD16 WSS
  9:  124577099          XT−PIC  eth0
 10:    1438087          XT−PIC  eth1
 11:   24242763          XT−PIC  i91u
 13:          1          XT−PIC  fpu
NMI:          0

466



This shows that interrupts 0, 1, 2, 7, 9, 10, 11, and 13 are all in use. Many of these are used by
devices that you can't disable or change, such as the keyboard and the cascade device. (Interrupt 2
really just ties into interrupts 8–15; the x86 uses two interrupt controllers, each of which can handle
eight interrupts. They're linked together by having the second send an interrupt to the first whenever
the second receives an interrupt.) Other interrupts, such as 7, 9, and 10, may be configurable,
because they correspond to devices (a sound card and two Ethernet cards, respectively) that can
use any of several interrupts.

One caveat concerning /proc/interrupts is that this file turns up devices only after their drivers have
loaded. If you have some device for which the driver is a kernel module, but that module hasn't
been loaded, you'll see no entry in /proc/interrupts. For instance, the preceding listing doesn't
include interrupt 6, which is normally used by a floppy disk. If /proc/interrupts were examined after
mounting a floppy disk, the appropriate entry would appear.

If you suspect your system is suffering from an interrupt conflict between two or more devices, try
using them separately, and check the /proc/interrupts entries. If both devices turn out to be using
the same interrupt, this could be the trouble. On the other hand, some PCI devices are designed to
share interrupts, so this could also be normal. ISA cards should never share interrupts, though.

X Window System Problems

Problems with X can be tricky to diagnose. Sometimes a full /home or /tmp filesystem will prevent X
from starting. Errors in the /etc/X11/XF86Config file can also prevent X from starting. If you suspect
an X problem, create a backup copy of XF86Config and run Xconfigurator or some other X
configuration tool. Chapter 13 details the X Window System.

Booting into X, Login Prompt Disappears When Anything Is Entered

If you are attempting to boot to run level 5 and X won't start, you may get to a run level 3 login
screen, but typing anything will just cause that screen to go blank and then restart with an empty
login again. This can be a problem with the font path specified in the XF86Config file, or a problem
with the X Window System font server, xfs. Usually this is fixed by running Xconfigurator again.

Cannot Allocate Colormap Entry

If you see the following message when you attempt to start an application, you probably do not have
enough video memory for all of the colors that you are trying to use:

Warning: Cannot allocate colormap entry for color_code

You basically have two choices: get a card with more video RAM, or stop using so many colors.
Netscape is most often the application that is using too many colors from the colormap. Netscape,
and some other applications, can be forced to use its own colormap. To do this, start Netscape with
the following command:

$ netscape −install

Bypassing X

Sometimes an administrator will set up the system to boot directly into X (run level 5). If there is a
problem with the video card configuration, the system will hang at startup. (In actuality, the system

467



keeps trying to start X, but repeatedly fails, leading to an inability to use the console.) To bypass X
and boot into text mode so you can fix the X configuration, add a 3 after the label you type at the
boot prompt, thus:

boot: linux 3

This will cause the system to boot into run level 3. You can then run Xconfigurator again to fix the
video card configuration.

Another way around this problem is to log onto the system using Telnet, SSH, or a serial port. You
can then fix the X configuration problem and the XDM login screen will appear. Alternatively, you
can set the run level to 3 by editing /etc/inittab, as discussed in Chapter 13.

The System Runs Very Slowly When Running X or Making a Kernel

You probably have too little memory in the system. If you have less RAM than all the programs
you're running at once, Linux will swap to your hard disk, and swapping is slow. The solution is
either to run fewer programs at once or to buy more memory. You may be able to reclaim some
memory by recompiling your kernel and including fewer options.

Odds and Ends

Some solutions, tips, and techniques don't fit into any of the previous categories but are too
valuable not to include.

You've Deleted the Red Hat Package Manager and Can't Reinstall It

If you've deleted the RPM binary, you can't reinstall it without a package manager. You'll need to
copy one onto a floppy from another system, mount the floppy, and copy it back. It doesn't even
have to be the current version of RPM. After you have a working rpm binary, reinstall the correct
version from an .rpm file.

Shutting Down a System on the Network Remotely

Sometimes you may want a "quick and dirty" method of shutting down a computer from a network
login. You can do this as follows:

Create a user called shutdown.1. 
Change the default shell from Bash to /sbin/shutdown for that user.2. 
Make sure the account's password is set unless you want anyone to be able to shut down
the machine.

3. 

When you use a remote login utility like Telnet or Secure Shell (SSH) to "log on" as the shutdown
user, the computer will respond by shutting down.

Note Many distributions ship with the shutdown account predefined. The account is
typically disabled by using an asterisk (*) as the password field in /etc/shadow,
however. You can enable the account by typing passwd shutdown as root and
entering an appropriate password.

468



Permission Denied When Attempting NFS Mount

If you configure NFS according to the NFS HOWTO or Chapter 11 but see a "Permission Denied"
message when you try to connect, you might have forgotten to enable NFS on the machine you're
attempting access from. To test this, use chkconfig as follows:

$ chkconfig −−list nfs
nfs   0:off   1:off   2:off   3:off   4:off   5:off   6:off

Run levels 3 and 5 should be on. If not, use the chkconfig command to turn NFS on in those run
levels.

# chkconfig −−level 35 nfs on

After issuing this command, recheck using chkconfig:

$ chkconfig −−list nfs
nfs   0:off   1:off   2:off   3:on   4:off   5:on   6:off

Some people automatically turn services on in run levels 2, 4, and 5, so if your output indicates that
these levels are on, this is fine. These changes only start the daemon on reboot, so if you want to
test whether turning on the NFS daemon solves your problem, run the NFS initialization script like
this:

# /etc/rc.d/init.d/nfs start

If you still get the "Permission Denied" error, check the /etc/hosts.allow file on the mounting
machine. The three lines below should be included. Change the IP as appropriate. These lines let
any machine on the 192.168.1.0 subnet mount the export.

portmap: 192.168.1.0/255.255.255.0
rpc.mountd: 192.168.1.0/255.255.255.0
rpc.nfsd: 192.168.1.0/255.255.255.0

The free Command Reports Less Memory Than the Machine Has

There are two common problems of interpretation of the output of the free command. To understand
these, let's consider some sample output, created on a machine with 96MB of physical memory:

$ free
             total   used    free  shared  buffers  cached
Mem:         95772  87968    7804   51148     5572   28008
−/+ buffers/cache:  54388   41384
Swap:       136512  12308  124204

The total column lists both RAM (on the Mem line) and swap space (on the Swap line). As you can
see, 95,772KB is less than 96MB (98,304KB). Most of this discrepancy is caused by the Linux
kernel itself, which typically consumes about 2–4MB of RAM. (The kernel image stored in /boot is
usually compressed, and parts of it are discarded soon after being loaded, so its size isn't a good
gauge of how large the in−memory kernel is.) You also lose some RAM to shadowed ROMs, I/O
space, and other artifacts of your computer's architecture.

The second problem many people have is that the amount of memory used is very high (or,
alternatively, the amount free is very low), as reported by the used (or free) column's entry on the

469



Mem line. This is largely an illusion, however, because Linux dynamically assigns memory to disk
cache duty. This speeds up disk access by temporarily storing information from disk in RAM. If the
RAM becomes needed for other purposes, Linux ditches some of the disk cache. The −/+
buffers/cache line reports a truer estimate of the amount of memory used. As you can see, it shows
a much less extreme memory load than does the Mem line. You might also want to check the Swap
line, because if a great deal of swap space is in use, the system's performance will be degraded as
a result.

If you're still convinced that Linux isn't seeing all of your system's memory, the most likely
explanation is that the system has a BIOS that's not working well with Linux's memory probes.
Typically, such systems report just 64MB, or sometimes only 16MB, of RAM. The fix is to use a
mem= append line in /etc/lilo.conf, as described earlier in this chapter, under "Kernel Won't Load or
Loads Only Partially." As discussed there, however, the danger of getting this setting wrong is that
the system won't boot at all. It's therefore wise to create a duplicate of a normal /etc/lilo.conf entry
and include the mem= setting in only one. You'll then have a fallback position should your
modification prevent a normal system boot.

Determining Which Packages Are on the System

Using the Red Hat Package Manager, use the Query All option:

# rpm −qa

Using the Debian Package Manager, use the −l option:

# dpkg −l

You can also pipe the output into a grep command to find a particular package:

# rpm −qa |grep binutils
# dpkg −l |grep binutils

modprobe Can't Locate Module module−name

The problem is that modprobe, insmod, or rmmod is unable to find the specified module. To stop the
message, add the following to the /etc/modules.conf file. This often happens when you try to rebuild
your kernel, defining something as a module that wasn't a module before, but don't also remake the
modules. Enter this command to fix the problem:

alias module−name off

Be sure to use the name of the module exactly as listed in the error message.

The "You don't exist. Go away" Error Message

This is our favorite error message! It means that you are using some program that attempts to verify
the user by checking the UID/login in /etc/passwd. If /etc/passwd gets corrupted, you'll see this
message. You'll have to dump the passwd file from a backup or re−create it. Of course, you'll need
to do this from some form of emergency boot, as discussed earlier or in Chapter 9. Another
possibility is that utmp didn't properly register your session when you logged in. Log out and log
back in again.

470



The Screen Is Full of Gibberish

You probably sent a binary file to the console. Linux has a reset command that will reset your
screen:

$ reset
Erase is delete.
Kill is control−U (^U).
Interrupt is control−C (^C)

In Sum

Linux problems come in many forms, ranging from an inability to boot the computer to strange
behavior when you try to run programs or perform everyday tasks. The best way to learn how to
solve these problems is to encounter them and work through them. The hands−on experience doing
that is more valuable than any listing of problems you can obtain from a book. Nonetheless, this
chapter provides tips to point you in the right direction in solving several different types of problems.
You should also take to heart the general problem−solving strategies outlined at the start of the
chapter, because these will serve you well even with exotic problems we can't anticipate.

471



List of Figures
Chapter 1: The Basics of System Administration

Figure 1.1: The Webmin main screen

Chapter 2: Installing Linux

Figure 2.1: LVS cluster topology
Figure 2.2: The Kudzu utility recognizing a mouse
Figure 2.3: The Disk Druid Partitioning screen
Figure 2.4: If you enter TCP/IP networking information during installation, you won't have to
do so again after installation.
Figure 2.5: The Account Configuration screen
Figure 2.6: The Individual Package Selection screen appears only if you click Select
Individual Packages in the Selecting Package Groups screen.
Figure 2.7: The X Configuration screen

Chapter 3: Startup and Shutdown

Figure 3.1: A hard drive's partition layout
Figure 3.2: Use the ntsysv utility to control which services are automatically started at bootup
Figure 3.3: The tksysv utility
Figure 3.4: The ksysv utility

Chapter 5: Creating and Maintaining User Accounts

Figure 5.1: Webmin's Create User screen lets you specify the parameters for a new user.
Figure 5.2: Editing a user offers slightly different options than when adding a user.
Figure 5.3: You can specify user group information using the Create Group screen.
Figure 5.4: You can change user group information using the Edit Group screen.

Chapter 6: Filesystems and Disk Management

Figure 6.1: Filesystems marked as experimental appear only if you opt to make experimental
features available in the Code Maturity Level Options menu.
Figure 6.2: Each block group is largely independent of the others, which can aid recovery in
the event of data corruption.
Figure 6.3: Directory entries, inodes, and the locations of files on disk need not all come in
the same order.
Figure 6.4: GUI system configuration tools let you edit /etc/fstab via a point−and−click
interface.
Figure 6.5: Webmin uses mount option descriptions that are more verbose than the actual
options in /etc/fstab.

Chapter 7: Linux Files and Processes

Figure 7.1: Sample output of top command

Chapter 8: Software Administration

472



Figure 8.1: Gnome RPM is one of several GUI tools for manipulating packages installed on
an RPM−based Linux computer.
Figure 8.2: Kernel compilation options are arranged hierarchically, with each main−menu
option generating its own menu, which is displayed in a separate window when make
xconfig is used.

Chapter 9: Backup and Restore

Figure 9.1: Helical scan
Figure 9.2: Reading and writing linear tape
Figure 9.3: The digital linear tape (DLT) drive mechanism
Figure 9.4: The X−CD−Roast main screen
Figure 9.5: The Taper main screen
Figure 9.6: The BRU main screen

Chapter 10: Printers and the Spooling Subsystem

Figure 10.1: Laser printing
Figure 10.2: Red Hat's Printconf facility
Figure 10.3: You can elect to define a local printer or one of four different types of network
printers.
Figure 10.4: The Select Print Driver dialog box lets you select the model of the printer you
are installing.

Chapter 11: Serial Communications, Terminals, and Modems

Figure 11.1: Modern x86 motherboards include a wide variety of connectors in standardized
locations.
Figure 11.2: The Linux Character Devices kernel configuration menu includes the main
RS−232 serial devices option.
Figure 11.3: USB support requires selecting drivers for specific USB devices.
Figure 11.4: The Seyon terminal emulator lets you use Linux as if it were a dumb terminal.
Figure 11.5: KPPP allows you to enter PPP account information and connect to an ISP using
a GUI interface.
Figure 11.6: You can adjust KPPP's settings from the Configuration dialog box.
Figure 11.7: The New Account dialog box allows you to enter critical information provided by
your ISP.
Figure 11.8: KFax includes options to zoom in and out, change to a new page in a fax, or
print a fax.

Chapter 12: TCP/IP Linux Networking

Figure 12.1: Information travels "down" and "up" network stacks, being checked and packed
or unpacked at each step of the way.
Figure 12.2: In GUI configuration tools, you can set many networking options from a single
interface.
Figure 12.3: GUI configuration tools let you manage Samba using a point−and−click
interface.
Figure 12.4: LinNeighborhood and other GUI SMB/CIFS browsers provide a user interface
similar to that of Network Neighborhood in Windows.

Chapter 13: The X Window System

473



Figure 13.1: The X server runs on the computer at which a user sits; the X client may be
located miles away from the user.
Figure 13.2: xf86cfg lets you configure XFree86 4.x in a point−and−click fashion.
Figure 13.3: Choose the font by clicking fmly, and set point size and other characteristics, if
you like.
Figure 13.4: Most modern window managers, such as Sawfish, roughly mimic the default
look of windows in Microsoft Windows.
Figure 13.5: Some window managers have their own unique looks and provide unusual
feature sets.

Chapter 14: Setting Up Your Mail Server

Figure 14.1: E−mail frequently passes through several computers between its source and its
destination.
Figure 14.2: Small businesses frequently want to provide internal mail services, but must
use pull mail protocols to retrieve their own e−mail.

Chapter 15: Security

Figure 15.1: How Linux passwords are hashed
Figure 15.2: A simple NATed firewall configuration
Figure 15.3: The IP Chains process
Figure 15.4: The IP Tables process
Figure 15.5: A combined proxy/firewall implementation

Chapter 16: Performance Tuning

Figure 16.1: The top utility
Figure 16.2: The gtop utility
Figure 16.3: The KDE Process Manager

List of Tables

Chapter 4: Tools of the Trade

Table 4.1: Online Manual Sections Specified in the man Command

Chapter 5: Creating and Maintaining User Accounts

Table 5.1: Default Linux Groups

Chapter 6: Filesystems and Disk Management

Table 6.1: Important Filesystem Options for the mount Command
Table 6.2: Mount Options for CD−ROMs
Table 6.3: Important Linux fdisk Commands

Chapter 7: Linux Files and Processes

Table 7.1: File Types Recognized by ls

474



Chapter 8: Software Administration

Table 8.1: Common rpm Operations
Table 8.2: Common rpm Options
Table 8.3: dpkg Primary Actions
Table 8.4: Options to Fine−Tune dpkg Actions
Table 8.5: Linux 2.4.x Kernel Configuration Options
Table 8.6: URLs for Major Linux Distribution Updates

Chapter 9: Backup and Restore

Table 9.1: Backup Plan with Full and Incremental Backups
Table 9.2: Backup Plan with Full and Differential Backups
Table 9.3: Backup Plan with Full, Incremental, and Differential Backups
Table 9.4: Options for Blanking a CD−RW Disc with cdrecord
Table 9.5: tar Commands
Table 9.6: tar Qualifiers

Chapter 11: Serial Communications, Terminals, and Modems

Table 11.1: Methods of Accessing USB Devices in the 2.4.x Kernel

Chapter 12: TCP/IP Linux Networking

Table 12.1: IP Address Classes and Private Address Ranges

Chapter 14: Setting Up Your Mail Server

Table 14.1: Popular Blackhole Lists

Chapter 15: Security

Table 15.1: Permission Requirements for Common Commands
Table 15.2: Sample /etc/hosts.allow Entries

Chapter 16: Performance Tuning

Table 16.1: Optimization Schemes in the 2.2.17 Kernel
Table 16.2: Optimization Schemes in the 2.4.18−3 Kernel

Chapter 17: Making Your Job Easier with Scripts

Table 17.1: Conditional Expressions and Their Meanings

475



List of Listings
Chapter 2: Installing Linux

Listing 2.1: A Sample /etc/raidtab File

Chapter 3: Startup and Shutdown

Listing 3.1: A Sample grub.conf File
Listing 3.2: A Sample lilo.conf File
Listing 3.3: A Sample inittab File
Listing 3.4: The /etc/rc.d/rc3.d File Contains Links to the Scripts for Run Level 3.
Listing 3.5: Debian's inittab File
Listing 3.6: The Debian rcS File
Listing 3.7: Sample chkconfig Output

Chapter 4: Tools of the Trade

Listing 4.1: The Man Page Display for useradd
Listing 4.2: The Info Page Display for useradd
Listing 4.3: An Excerpt of an Info Page Using apropos (useradd)
Listing 4.4: The .bash_history File
Listing 4.5: Sample df Output
Listing 4.6: Sample Output of the fdisk −l Command
Listing 4.7: Sample Output from the ifconfig Command
Listing 4.8: Sample Output from the traceroute Command
Listing 4.9: Output of the free Command

Chapter 5: Creating and Maintaining User Accounts

Listing 5.1: An Example of an /etc/passwd File
Listing 5.2: A Portion of the /etc/group File

Chapter 6: Filesystems and Disk Management

Listing 6.1: A Sample /etc/fstab File

Chapter 7: Linux Files and Processes

Listing 7.1: The Output of the file Command Varies with the Type of File It Examines
Listing 7.2: The Output of the ls Command Entered without Arguments
Listing 7.3: The Output of the ls −l Command
Listing 7.4: Sample ps Output
Listing 7.5: Partial Output from the ps −aux Command
Listing 7.6: Output from the ps −e Command
Listing 7.7: Output from the ps −au Command
Listing 7.8: Output from the ps −aef Command

Chapter 8: Software Administration

Listing 8.1: RPM Query Output

476



Chapter 10: Printers and the Spooling Subsystem

Listing 10.1: An Example printcap File
Listing 10.2: A Sample smb.conf File Allowing Networked Windows Computers to Print to a
Linux Printer

Chapter 12: TCP/IP Linux Networking

Listing 12.1: An /etc/exports File Showing Some Common Options
Listing 12.2: A Sample xinetd Service Entry

Chapter 14: Setting Up Your Mail Server

Listing 14.1: An Example SMTP Exchange Using telnet
Listing 14.2: A POP E−Mail Retrieval Session
Listing 14.3: IMAP Uses More Commands, and More Complex Commands, Than POP.

Chapter 15: Security

Listing 15.1: rp_filter Code
Listing 15.2: Securing the lilo.conf File
Listing 15.3: Example DES /etc/passwd File
Listing 15.4: Example MD5 /etc/passwd File
Listing 15.5: The /etc/pam.d/login Configuration File for Red Hat
Listing 15.6: The system−auth File
Listing 15.7: A Sample ipchains File
Listing 15.8: A Sample Netfilter Startup File
Listing 15.9: A Sample iptables.conf File as Saved with iptables−save
Listing 15.10: Sample chkconfig Output

Chapter 16: Performance Tuning

Listing 16.1: Output of the traceroute Command

Chapter 17: Making Your Job Easier with Scripts

Listing 17.1: A Simple Script Demonstrating Parameter Variables
Listing 17.2: A Simple Script to Play Audio Files
Listing 17.3: A Script to Rename and Compress All the Files in a Directory
Listing 17.4: A Sample /etc/training_list Data File
Listing 17.5: A Script for Updating the Training File
Listing 17.6: An Example Perl Script to Create a Menu
Listing 17.7: An Example Python Script to Create a Menu
Listing 17.8: A Sample awk Script
Listing 17.9: A Sample Initialization Script for lpd
Listing 17.10: An Initialization Script for mynewutility
Listing 17.11: The rc.local Script for Red Hat 7.3
Listing 17.12: The Default Red Hat 7.3 /etc/crontab

477



List of Sidebars
Introduction

Sidebars
Administrator's Logbook

Chapter 1: The Basics of System Administration

Administrator's Logbook: Initial Entry
Administrator's Logbook: Operating System Installation

Chapter 2: Installing Linux

Administrator's Logbook: Initial Installation
Other Installation Media

Chapter 3: Startup and Shutdown

initrd Images

Chapter 5: Creating and Maintaining User Accounts

Administrator's Logbook: Password Conversion

Chapter 6: Filesystems and Disk Management

Administrator's Logbook: Kernel Patching
Disk Access without a Filesystem

Chapter 8: Software Administration

Administrator's Logbook: Binary Tarball Installation
Administrator's Logbook: RPM Source File Installation
Administrator's Logbook: Source Code Package Installation
Kernel Version Numbers
Administrator's Logbook: Replacing a Kernel
Administrator's Logbook: Updating Programs

Chapter 11: Serial Communications, Terminals, and Modems

Administrator's Logbook: Enabling Serial Port Logins
Administrator's Logbook: PPP Dial−out Scripts
Administrator's Logbook: Accepting Remote Logins

Chapter 12: TCP/IP Linux Networking

Administrator's Logbook: Basic TCP/IP Configuration
Administrator's Logbook: Exporting Directories via NFS

Chapter 13: The X Window System

478



Alternatives to XFree86

Chapter 14: Setting Up Your Mail Server

Alternatives to Sendmail

Chapter 15: Security

Administrator's Logbook: IP Chains

Chapter 16: Performance Tuning

Linux Memory Usage

Chapter 17: Making Your Job Easier with Scripts

Administrator's Logbook: Changes to Red Hat 7.3 default /etc/rc.d/rc.local script
Administrator's Logbook: Changes to Red Hat 7.3 default /etc/rc.d/init.d/mynewutilityd script

479


	Header
	Cover
	Table of Contents
	Linux System Administration, Second Edition
	Foreword
	Acknowledgments

	Introduction
	The Benefits of Linux
	Who Should Buy This Book
	About the Second Edition
	How This Book Is Organized
	Chapter 1: The Basics of System Administration
	Chapter 2: Installing Linux
	Chapter 3: Startup and Shutdown
	Chapter 4: Tools of the Trade
	Chapter 5: Creating and Maintaining User Accounts
	Chapter 6: Filesystems and Disk Management
	Chapter 7: Linux Files and Processes
	Chapter 8: Software Administration
	Chapter 9: Backup and Restore
	Chapter 10: Printers and the Spooling Subsystem
	Chapter 11: Serial Communications, Terminals, and Modems
	Chapter 12: TCP/IP Linux Networking
	Chapter 13: The X Window System
	Chapter 14: Setting Up Your Mail Server
	Chapter 15: Security
	Chapter 16: Performance Tuning
	Chapter 17: Making Your Job Easier with Scripts
	Chapter 18: Troubleshooting Your Linux System

	Conventions Used in This Book
	Help Us Help You

	Part I: The Basics
	Chapter List
	Featuring

	Chapter 1: The Basics of System Administration
	Overview
	Your Role as a System Administrator
	Tasks of a System Administrator
	Configuring Hardware
	Installing the Operating System
	Installing Application Software
	System Security
	Configuring the Kernel
	Creating Users and Groups
	Software Updates
	Performance Tuning
	Disaster Recovery
	Capacity Planning
	Network Administration
	"When You Have a Minute..."

	Tools of the Linux Administrator
	Commands
	System Logbook
	Communicating with Users

	Working on the System as Root
	Becoming the Root User

	In Sum

	Chapter 2: Installing Linux
	Overview
	Benchmarks
	Selecting Hardware
	Minimal Acceptable Hardware
	CPU Performance
	Random Access Memory
	Selecting Hardware by Intended Usage
	Specialized Hardware Performance Solutions
	Types of Hardware to Avoid

	Selecting a Linux Distribution
	Red Hat Linux
	Mandrake
	Caldera
	SuSE Linux
	Slackware Linux
	Debian
	The Choice Is Yours

	Installing Red Hat Linux
	Preparing for Installation
	Choosing a Partitioning Scheme
	Installing a Server
	Installing a Workstation
	Tying Up Loose Ends

	In Sum

	Chapter 3: Startup and Shutdown
	Overview
	The Linux Boot Process
	The Master Boot Record

	Boot Loaders
	GRUB: Definition and Configuration
	LILO: Definition and Configuration

	Creating a Boot Floppy
	Creating a LILO Boot Floppy
	Creating a Boot Floppy without a Boot Loader

	Using LOADLIN
	Single-User Mode
	Initialization and Startup Scripts
	The Red Hat Model
	The Debian Model

	User Initialization Files
	Modifying the Startup Procedure
	Startup Log Files

	Shutdown
	Warning Users
	Shutdown Log Files

	In Sum

	Chapter 4: Tools of the Trade
	Overview
	Locating Help Resources
	Man Pages
	Info Pages

	Technical Support
	Configuration Support
	Tailored Linux Development
	General Web Support

	Webmin
	Command-Line Tools
	The Bash Shell
	Basic Commands

	In Sum

	Part II: Managing Users, Processes, and Files
	Chapter List
	Featuring

	Chapter 5: Creating and Maintaining User Accounts
	Overview
	User Accounts
	The /etc/passwd File
	Shadowed Passwords
	Adding New Users
	Modifying User Accounts
	Disabling User Accounts
	Deleting User Accounts

	Groups
	The Function of Groups
	The /etc/group File
	Adding New Groups
	Modifying Groups
	Deleting Groups

	In Sum

	Chapter 6: Filesystems and Disk Management
	Overview
	Linux Filesystem Support
	Locating Filesystems
	Linux Native Filesystems
	Foreign Filesystems
	Network Filesystems

	Filesystem Design
	The Physical Structure
	Inodes and Directories

	Accessing Filesystems
	Mounting and Unmounting Filesystems
	Using Removable Media
	Using Swap Space

	Updating and Maintaining Filesystems
	Disk Partitioning
	Creating a Filesystem
	Adding a Disk
	Replacing a Disk
	Checking Filesystem Integrity

	In Sum

	Chapter 7: Linux Files and Processes
	Overview
	The Filesystem Hierarchy Standard
	Directory Layout

	File Characteristics
	Determining a Linux File's Type
	File Types Defined

	Processes
	The Concept of Multitasking
	Types of Processes
	Parent Processes and Their Children
	The init Process
	Managing Processes
	Terminating/Restarting with the kill Command
	Terminating/Restarting Processes Using Scripts

	In Sum

	Chapter 8: Software Administration
	Overview
	Installing Binary Packages
	Installing an RPM
	Installing a Debian Package
	Installing a Tarball

	Compiling Source Code
	Compiling from Packages
	Compiling Tarballs

	Kernel Compilation
	Why Compile Your Kernel?
	Obtaining a Kernel
	Kernel Configuration Options
	Compiling the Kernel
	Installing the Kernel and Modules
	Testing Your New Kernel

	Checking for OS Updates
	The Importance of OS Updates
	Locating Updates for Your Distribution
	Update Utilities

	In Sum

	Chapter 9: Backup and Restore
	Overview
	Backup Strategies
	Combining Full and Incremental Backups
	Including Differential Backups
	Data-Specific Backups

	Backup Media
	Tapes
	CD-R and CD-RW
	Other Alternatives
	Media Storage
	Backup Commands and Utilities
	CD-R and CD-RW Backup Tools

	Linux Backup and Restore Tools
	dump
	restore
	tar
	cpio
	afio
	Third-Party Tools
	Tips while Restoring

	Backing Up the Operating System
	Minimal Backups
	Complete Backups

	Disaster Recovery Techniques
	Single-User Mode
	Using a Boot Floppy
	Rescue Mode
	Third-Party Recovery Software

	In Sum

	Part III: Communications and Networking
	Chapter List
	Featuring

	Chapter 10: Printers and the Spooling Subsystem
	Overview
	Printer Basics
	Types of Printers
	Printer Interfaces

	The Linux Printing Process
	Tools of the Printing Trade
	The LPRng Print Spooler
	Alternative Printing Utilities

	Configuring Printers Using Red Hat's Printconf
	Configuring Printers in Webmin
	Printing with Other Distributions
	Debian
	SuSE
	Slackware

	Kernel Support
	Parallel-Port Printers
	RS-232 Serial Devices
	USB Devices
	Remote Printing

	In Sum

	Chapter 11: Serial Communications, Terminals, and Modems
	Overview
	Understanding Serial Devices
	Standard Serial Devices
	Unusual Serial Devices

	Configuring Terminals
	Understanding Terminals
	Configuring a getty Program
	Using a Serial-Port Console

	Configuring Modems
	Dial-out Modem Uses
	Dial-in Modem Uses

	Configuring Serial Printers
	Special Considerations for Serial Printers
	When to Use a Serial Printer

	In Sum

	Chapter 12: TCP/IP Linux Networking
	Overview
	Understanding TCP/IP Networking
	Network Stacks
	Network Addresses
	Ports

	TCP/IP Configuration
	Configuring Network Hardware
	Using DHCP for Configuration
	Manually Configuring TCP/IP
	Testing the Setup

	File Sharing
	Sharing with Unix or Linux: NFS
	Sharing with Windows: Samba

	Internet Servers
	Available Servers
	Using a Super Server

	In Sum

	Chapter 13: The X Window System
	Overview
	X Concepts
	X as a Network Protocol
	X Security
	X Virtual Consoles

	Configuring an X Server
	XFree86 4.x
	XFree86 3.3.x
	Using an X Configuration Tool
	Starting X Automatically

	Configuring a Font Server
	Adding Fonts to a Font Server
	Configuring a New Font Server
	Unusual Font Servers

	Building a User Interface atop X
	Window Managers
	Widget Sets
	Desktop Environments
	X Applications

	In Sum

	Chapter 14: Setting Up Your Mail Server
	Overview
	Understanding E-Mail Protocols
	Push and Pull Protocols
	SMTP
	POP
	IMAP

	Configuring Sendmail
	Configuring Domains
	Sendmail Configuration Files and Procedures
	Address Masquerading
	Configuring Relays
	Receiving Mail

	Configuring POP and IMAP
	Running POP and IMAP Daemons
	Setting Up Mail-Only Accounts
	Using Fetchmail to Acquire Mail from an ISP

	Anti-Spam Measures
	The Problem of Spam
	Preventing Outgoing Spam
	Stopping Incoming Spam

	In Sum

	Part IV: System Optimization and Improvement
	Chapter List
	Featuring

	Chapter 15: Security
	Overview
	Types of Attacks
	Trojan Horse
	Back Door
	Trusted Host
	Buffer Overflow
	Scanning or Sniffing
	Spoofing
	Denial of Service
	Password Cracking
	Social Attacks
	Physical Attacks

	Types of Security
	Securing the Authentication Process
	Hashing Passwords
	Shadow Passwords
	Pluggable Authentication Modules (PAM)

	File Permissions
	Protecting against Network Intrusion
	Firewalls
	TCP Wrappers
	xinetd
	Detecting Intrusion
	Applications for Detecting Intrusion

	In Sum

	Chapter 16: Performance Tuning
	Overview
	The Elements of Performance
	Hardware Performance
	Software Performance

	Measuring Performance
	Finding Bottlenecks
	Using top to Find the Bottleneck
	traceroute

	Tuning the System
	nice and renice
	Virtual Memory Tuning
	Serial Port Tuning
	Filesystem Tuning
	Eliminating Unnecessary Processes
	Compiling for Efficiency
	Tuning the X Window System

	Upgrading
	In Sum

	Chapter 17: Making Your Job Easier with Scripts
	Overview
	Common Scripting Features
	Identifying a Script
	Variables
	Control Statements
	Commands

	The Bash Shell Scripting Language
	Variables
	Conditional Expressions
	Loops

	Other Types of Scripts
	Perl Scripts
	Python Scripts
	awk and sed Scripts

	System Initialization Scripts
	Writing an Initialization Script
	Tailoring the rc.local Script

	Using the cron Facility
	Running a Script at a Specific Time
	Commands Often Used in Shell Scripts
	cat
	cut
	echo
	sort
	xargs
	Using Pipes

	In Sum

	Chapter 18: Troubleshooting Your Linux System
	Overview
	General Troubleshooting Techniques
	Boot Problems
	FDISK Doesn't Recognize GNU/Hurd Partition
	Making a New Boot Floppy to Replace a Lost One
	GRUB Is Installed but Just Hangs
	LILO Messages and Their Meanings
	Making the System Boot a New Kernel
	Hardware Not Detected at Boot
	Dual-booting with Another OS Like Windows
	Can't Remove Boot Loader from the Master Boot Record
	Kernel Won't Load or Loads Only Partially

	Login Problems
	Lost Password
	Login Incorrect after Entering Username
	System Flashes Quick Message and Drops Back to login Prompt
	Login incorrect Message Logging in as root

	Network Problems
	Unknown Host Message
	Network Unreachable Message

	Kernel Compilation
	make menuconfig Generates an Error about ncurses.h
	Signal 11 Error
	Do I Need to Reconfigure the Kernel with Every Upgrade?
	ld: unrecognized option -qmagic

	Filesystem Problems or Questions
	Creating a Linux Filesystem on a Floppy Disk
	Creating a Windows Filesystem on a Floppy Disk
	/proc/kcore
	Which Interrupts Are Available?

	X Window System Problems
	Booting into X, Login Prompt Disappears When Anything Is Entered
	Cannot Allocate Colormap Entry
	Bypassing X
	The System Runs Very Slowly When Running X or Making a Kernel

	Odds and Ends
	You've Deleted the Red Hat Package Manager and Can't Reinstall It
	Shutting Down a System on the Network Remotely
	Permission Denied When Attempting NFS Mount
	The free Command Reports Less Memory Than the Machine Has
	Determining Which Packages Are on the System
	modprobe Can't Locate Module module-name
	The "You don't exist. Go away" Error Message
	The Screen Is Full of Gibberish

	In Sum

	List of Figures
	List of Listings
	List of Sidebars



