Linux
System
Administration

SECOND EDITION

Vicki Stanfield
Roderick W. Smith

Linux System Administration

Table of Contents

Linux System Administration, Second Edition.........ccccoociiiiicmmiincssiisccss s e 1
0] =T o o 3
ACKNOWIBAGMENTS ...t e e e e e e e e e e e e r e e e e e e e e e nnneeees 3

L oo LW 1 o o 4
The BeNEfits Of LINMUX.....ooiiieiieeiiee ettt e e e e e e e 4

Who Should Buy ThiS BOOK..........eeiiiiiiiiie e 5

About the SeCcoNd EdItiON. ..o 5

How This BOOK IS OrganiZed...........oeii it 6
Chapter 1: The Basics of System Administration.............ccooiiiiiiii e 6

Chapter 2: INSTAllING LINUX......oiiieiiee e enneee s 6

Chapter 3: Startup and ShUtAOWN..........coiii e 6

Chapter 4: TOOIS Of the Trade.........cooo i 7

Chapter 5: Creating and Maintaining User ACCOUNIS........coooiiiiiiiiiiiiie e 7

Chapter 6: Filesystems and Disk Management............occoeoiiiiii e 7

Chapter 7: Linux Files and PrOCESSES.....cccouuiiiiiiiiiiie ettt 7

Chapter 8: Software AdMINISIration............oo e 7

Chapter 9: Backup and ReSIOre.......coouuiiiiiieie e 7

Chapter 10: Printers and the Spooling Subsystem.............cooiiii e, 7

Chapter 11: Serial Communications, Terminals, and Modems..........ccccceeveiiciiiiieeeeeeennnns 7

Chapter 12: TCP/IP Linux NetWOrKing........oooueeiiiiiie et 8

Chapter 13: The X WINAOW SYSTEIML.......ciiiiiiiiii i 8

Chapter 14: Setting Up Your Mail Server..........ooo e 8

Chapter 15: SECUNTY.....eeii ettt e e e e e e anneee s 8

Chapter 16: Performance TUNING........cuuiii et 8

Chapter 17: Making Your Job Easier with SCrptS.........ccueiiiiiiiii e 8

Chapter 18: Troubleshooting Your LinUX SyStem..........ccueiiiiiiiiiiiiiiie e 8
Conventions Used in ThiS BOOK...........uuiiiiiiii ittt eane s 9

HEIP US HEIP YOU. ...ttt e e e e e e s e e e e e e e e aannnee 10

T O N I T = - = Lo 11
(O] 0 F=T o] (T gl I SRR 11
=T (0]] o PRSP PP PPRPPPRIO 11
Chapter 1: The Basics of System Administration.........cccccmriiiemmiinssssninscr e 12
(@Y= VT PP 12

Your Role as a System AdmINISTrator..........cuuiiieiiiiee e 12

Tasks of @ System AdMINISTFALOr........o.eiiii e 13
ConfiguriNg HarAWarE..........eeeiiiieiee e e 13

Installing the Operating SYStem.........coo e 14

Installing AppliCation SOftWAIE...........cii i 14

SYSEEM SECUIMEY....eee ittt et e e s e e e e e e e e neeas 14
Configuring the KEINEL.........eiiie e e 14

Creating USErs and GrOUPS.......ocuuiii e eeieee ettt e e s e s s e e e e e nae e e e e nneeas 15

SOfWANE UPAALES.t 15
Performance TUNING......ooi e e 15

DiISASIEr RECOVEIY....ceiiiiiiieee ettt e e e e e e e e e e e e e e e e e e eas 15

CapaCity PIanming..........ooo ittt nees 16

NETWOIK AQMUNISIIALION. ... eeeeee ettt ettt r et e e e et e e e e e eeaeenns 16

Table of Contents

Chapter 1: The Basics of System Administration

"When You Have a MINUEE...o e 16
Tools of the Linux AdmINISTrator.oooiiiiieeee e 16
(070109140 F= 1 Lo T SRRSO 17
SYSEEM LOGDOOK. ... et 18
Communicating With USEIS......coouuiiiiiieeee e e 20
Working on the System @s ROOL.......ooiuiiiiiiiii e 21
Becoming the ROOT USEr........ e 21

LTS T o PP RPTOUPRR 23
Chapter 2: INStalling LiNUX.....ccooueiiiiesiiiisesiismsssnscssss s ssssssss s s ssssss s ssms s s ssss s ssssamsssnssnmnn s 24
(@Y= VT PP 24
BENCRIMATIKS. ... e e e e e e e e 24
SelECHNG HAITAWATE.....co it e e e e e e e e e e e e neeas 25
Minimal Acceptable HardWare.............oo i 25
(O] o U T e (0 0 F= T o7 S SRRSO 25
RaNAOM ACCESS IMEIMOIY......uuiieiiiiiiiiie ettt e e e e e e e e e s 26
Selecting Hardware by Intended USage..........ccoeiiiiiiiiiiiiiieiieeee e 27
Specialized Hardware Performance SolUtioNS..........ccooiiiiiiiiiiie e 28
Types of Hardware 10 AVOId...........uuiiiiiiiiie e 33
Selecting a LinuX DiStrDULION.cooiiiii e 35
(R T=To [o F= U N 11 TSP PP PP PPPPP 35
= T o [= L= PSP PPPUPPPPPPPIN 37
LO7= Lo (= = VPR RRO 37
SUSE LINUX.ttttttteeee ettt e e e e ettt e e e e e e et e e e e e e e e e ssna e e e eaaeeeesansssenneeeeeeeaansnnnneeeaaeeaan 38
SIACKWAIE LINUX .. ettt ettt e e st e e e s e e e e e nae e e e e nneeas 38

D= o= o FO TSP PEPPP S PPPPP 39
The ChOICE IS YOUIS.. ...ttt e et e e s e nbe e e e e e nneeaeeaes 39
Installing Red Hat LINUX.......oooeeee e 40
Preparing for INStallation....... ... 40
Choosing a Partitioning SChem@........ouueii e 41
INSTAIING @ SEIVET ...ttt e e e nae e e e nes 42
INStalling @ WOrKSTAION.eeeiiieeiiee e 50
TYING UP LOOSE ENAS ...t e e e 51

LTS T o PP RRUUPRP 51
Chapter 3: Startup and ShUtdOWN........co s 52
(@Y= VTP 52
The LINUX BOOT PrOCESS ...ttt 52
The Master BoOt RECOIA.......cooiiiiiieieeii e 53
=T To g o F=To [T £ J PP ST PP PPPPPPRO 55
GRUB: Definition and Configuration..............ueeee i 55
LILO: Definition and Configuration............c..eeioiiiiie i 57

(O (=T L oo T= 1 =ToTo) 4 i [o] o] o) VPP 60
Creating @ LILO BOOt FIOPPY .« . cueeeeeeiiiieeeeeiteie ettt 60
Creating a Boot Floppy without @ Boot Loader............oooueiiiiiiiiiiiiieeeeee e 61
USING LOADLIN. ...ttt ettt e e ettt e e e et b e e e e sbe e e e e anne e e e e annneeeeas 61
SINGIE—USEI IMOTE. ..ottt e e et e e et e e e e nbe e e e e e nne e e e e anneeas 62
Initialization and Startup SCrPLS.....cei i 63
The Red Hat MOEL.........oeeiiieee e 63

Table of Contents
Chapter 3: Startup and Shutdown

The Debian MOEL..........oee e 67
User INItIalization FilES........coou e 70
Modifying the Startup ProCedure.......... .o 71
STAMUP LOG FIlES..c et e e e 75

R 1U (o [0 o PP 76
WAINING USEIS....ceiiiiiiiee ettt e e e e e e s e e e e e e e e e neeeeeeeean 76
ShUtdOWN LOG FlES. ... e 76

LTS T o PR RPTUUPRR 77
Chapter 4: ToOoIs Of the Trade.........ccciiiiiirier s 78
(@Y= VTP 78
Locating Help RESOUICEScccoiiiiiiii et e e e e e e e 78
= T I o= To =T PP PPPPUPPPPPPRIN 79
INTO PagES ... e e e 81
ICTe g 1oz U TU] o] o Yo o RO RRPPPPR 83
Configuration SUPPOIL......c. e e e e e e nees 83
Tailored LinuX DEVEIOPMENT..........eeee e 84
GeNEral WED SUPPOM. ..ottt st e e e e e e e neeas 84

L ATL=1 o0 01T o OO PPP T OPPR 85
(O70]0014aF=TaTe Bt I T oo - SRR 85
The Bash SNell.......oo et a e e 86
BasiC COMMEANGS.....eoiiiiiii et e e e e e e e b e e e e s enreeae s 91

TS T o PRSP 109
Part II: Managing Users, Processes, and Files...........ccccccvimmmmmiiiniiiiisessnnnssssss s nsnsssssnnens 110
(O] g F=T o] (T gl I SRR 110
(=21 (0]] o PP OPPPPPPPPPRR 110
Chapter 5: Creating and Maintaining User ACCOUNTS.........ccccucrimrminssmmsmnsssmss s sssssms s snsanns 111
(@Y= VTR PPPP 111
USEI ACCOUNTS ... eeeeeeeiiett ettt oottt e e ettt e e e e e e et e e e e e e e e e s e ne e e e e e e e e e anannnnneeeeeeeaaaanns 111
The /etC/PaSSWA File........eeeeeiiieee e 112
Shadowed PasSWOIAS.........uuiiiiiiiii ettt e e 113
AdAING NEW USEIS......eeeeieee ettt e e e e eeaeens 116
MOdifyiNg USEr ACCOUNTS.ttt e e e e e e e e e e e e e 118
Disabling USer ACCOUNTS.......uuiiiiiiiiiiiiiite et e e e e e e e e e e e e 121
Deleting USEr ACCOUNTS.ui it 122

(G T U o 1= TSP PP 123
The FUNCHON Of GrOUPS. ..o ittt et e e e 124
The /etC/GroUP File. ... e a e 124
AAdING NEW GIrOUPSeeeieeiiiiie ettt ettt e et e ettt e e et et e e e abb e e e e s annee e e e sanseeeeeanreeeaeans 126

1Y ToTe 1377 a e €T 1U] o PP PPPR 128
DElEtiNG GrOUPS. eeeeeeiteee ettt ettt e et e e e et e e s et e e e e e anbe e e e e enneeeeeanneeeens 129

TS T o PRSP 130
Chapter 6: Filesystems and Disk Management...........ccccoccmiiinsmnmnnssssnnnsssssssssse s sssanns 131
(@Y= VT PP PPPP 131
LinUuX FileSyStem SUPPOIT........eoiieiie e 131
Locating FileSYSIEMS. ... 131

Table of Contents

Chapter 6: Filesystems and Disk Management

Linux Native FIleSySIEMS.o i 133
FOreign FileSYStEMS ...t 137
NEtWOIK FIlESYSIEMS ..o e e e 140
FIlESYSIEM DESIGN. ...t e 141
The PhySiCal STTUCIUIE.....coo i 141
INOAES AN DIFECIONIES. ... 141
ACCESSING FIlESYSIEIMS ...t e e e e e e e 142
Mounting and Unmounting FileSyStems.........cooui e 142
Using Removable Media..........coooo e 149
USING SWAP SPACE....cei ittt ettt e e e e e e e e nneee s 153
Updating and Maintaining FileSyStEMS...........uuiiiiiiee e 154
DiSK Partitioning.......ceeeeieeieiiiieee et 154
Creating @ FIleSYSTEM.. .o e 158
AAAING @ DISK ...t 159
RePlacing @ DISKcceeiiiiiiieieeee e 160
Checking Filesystem INtegrity.........coo i 161

TS T o PSRRI 162
Chapter 7: Linux Files and ProCeSSes........cccumrmiummmimmmmissmssssmisssmsss s s s s ssssssssssssssssses 163
(@Y= VTP PPPP 163
The Filesystem Hierarchy Standard.............c.ooooiiiii e 163
DIreCIONY LaYOUL ..ot e e e e e e 165
Lo O] g P= = Tox (=T o= SRR 167
Determining @ LINUX FIle'S TYP@ ... 168
File TYPes DEfINEA.....coo i 170
PrOCESSES. ...ttt e e e e e e e e e e e e e e e e e e aaan 174
The Concept Of MURITASKING.....coi i 174
TYPES Of PrOCESSES.......oeiiiiiiiie e s 175
Parent Processes and Their Children.............oooueiiiiiiii e 178
THE INIT PrOCESS. ..ottt e e e e e e as 179
MaNagiNg PrOCESSES.uuiiiiiiiiieie et 180
Terminating/Restarting with the kill Command............cccoooiiiiiiiiii e 182
Terminating/Restarting Processes Using SCripts.......ccooiiiiiiiiiiiiiiiiieeee e 183

TS T o P SRR ROTRRR 184
Chapter 8: Software AdMINIStration........cccccciimmiiiemn e ————————— 185
(@Y= VT PP PPPP 185
Installing Binary PaCKageSccuuiiiiiiiiieieee e 185
INstalling an RPIML....... e 185
Installing a Debian Package.........oooueiiiiiiiiieee e 189
INStalling @ Tarball...........eeeeeeeee e 190
CompPiliNg SOUICE COE......ceiiiiiiiieeiitiie ettt et e et e e et e e e e enae e e e e nnees 191
Compiling from PaCKages......ccoi it 191
CompPiling TarballS........coi i 192
Kernel ComPIlAtiON.eeiie e e s e e e as 194
Why Compile YOUFr KErNEI?... ..ot 194
ODbtaiNING @ KEIMEL.... ..o e 195
Kernel Configuration OPHIONS.......c.oi it 195
Compiling the KEINEL......co e 199

Table of Contents

Chapter 8: Software Administration

Installing the Kernel and MOAUIES...........ooi e 200
Testing YOUr NEW KEIMNEL.....ooi e 201
ChecKing fOr OS UpPAates.......oueiiiieiiiiie ettt 202
The Importance of OS UPAates........coooiiiiiiiiiiiiieiee e 202
Locating Updates for Your Distribution............oocueei oo 203
UPAATE ULIITIES. ...t e e e e e e e e e 205

TS T o PRI 206
Chapter 9: Backup and ReStOre.........cccciiiimiiiiiimiinsisss s s s sssss s s s ssmss s ssms s snssnns 207
(@Y= VTSP PPRP 207
B F= e (N oIS =1 (=T | [NSRS 207
Combining Full and Incremental BaCKups.........coocuiiiiiiiiiiiiee e 207
Including Differential BaCKUPS.........uuiiiiiiie e 208
Data—SpecCific BACKUPS......ueiiiiiiie ettt 209
BaCKUP MEAIAL.....ceeiiee ettt e et e e e e e s r e e e e e e e e e e 209
LI 01 PP P PRSPPI 210
CD=R @nd CD—RW..... .ottt e e et e s e e 215
Other AREINATIVES. ... e et e e e 216

Y [=To E= S (o =T [TP 217
Backup Commands and ULIHES..........cooiiiii e 217
CD-R and CD—RW Backup TOOIS.........uuiiiiiiiee i 219
Linux Backup and Restore TOOIS.........cooiiiiiiiieeieeee e 224
(o (U001 o TSP PRSPPI 224
(1211 (0 £ PP 227

162 L PP PTRT 228

(07 o o J PP PPTRT 233
=T TR 234
TRIrd—Party TOOIS. ... e a e 236
TIPS WHile RESTONNGeeeeeeeeee et e eaeeas 238
Backing Up the Operating SYSteML..........uiiiiii e 239
MiINIMAI BACKUPS. ...ttt e aanan 239
ComMPlete BACKUPS.......eeiii ettt e e 240
Disaster ReCoVery TECNNIQUES.........uuiiiiiiiiiieee et e e e 240
SINGIE—USEI IMOE.......eeiiiiiiiie ettt e e e e e e s e e e e e nnes 241

OS] [aTo Jr= W = o To) B 0] o] o) OO PPPPPSPPPI 241
RESCUE MOTE.......eeeeeeeeee ettt e e e e e e e e e e e e e e 242
Third—Party Recovery SOftWare..........ooo i 244

LTS T o PRSPPSO 244
Part lll: Communications and Networking........ccccuccemeiinismrminssmsnnnsssss s s ssss s sssnses 246
(O] g F=T o] (T gl I SRR 246
(=21 (0]] o PSP PPPPPPPPPPR 246
Chapter 10: Printers and the Spooling Subsystem...........cccciiiiiiinncssr s 247
(@Y= VTSP 247
001 C=T g = 7= T o S PP PPPPPPPPPPPR 247
TYPES Of PrINTEIS .o a e 247
Printer INTErfaCeSo 250
The LinuX Printing ProCESS........uuiiiiiiieeee e 252

Table of Contents
Chapter 10: Printers and the Spooling Subsystem

Tools of the Printing Trad@.........ooeeiiieeee e 252
The LPRNG Print SPOOIET..... ..ot 254
Alternative Printing ULIHTES. ... 258
Configuring Printers Using Red Hat's PrintConf.............oooi i 259
Configuring Printers in Webmin............oo e 262
Printing with Other DistriDULIONS.cooiiiiee e 262
D= o= o F TSP PPPPP PP 262
SUS E ettt s e e e e e e nb e e e e 262

R F= T T LT 263

T EaT=T IS TU] o] oo SRR 263
Parallel—Port Printers... ... e 263
RS—232 Serial DEVICES......eeiiiiiiie ettt e e neeee s 265
USB DBVICES ... ettt ettt ettt e e ettt e e s e bt e e e e eane e e e e e nna e e e e anneeeas 265
REMOLE PriNtING. .. .eeeeeeeieee e 265

TS T o PR ROPRRR 268
Chapter 11: Serial Communications, Terminals, and Modems............cccccccmmmimnnnsssssnsesnnsnnssnnes 269
(@Y= VTSP RPN 269
Understanding Serial DEVICES........uuiii it 269
Standard Serial DEVICES.oui i 269
UNUSUAI SErial DEVICES.eiiiiiiiiie et e e 274
Configuring TerMINAIS.......ceiii e e e e e 275
Understanding TermMINAIS.........cooii i 275
Configuring @ getty Program..........ooo i 276
Using a Serial—Port CONSOIQ.......cooiiiiie e 278
(00T 0)ilo 0 g aTo 1Y, (o To [=T 4 o S ST PRP 279
Dial—0Ut MOAEM USES... ...t e e e e e e e 279
Dial—in MOdem USES.... .o 288
Configuring Serial Printers.........ue it 291
Special Considerations for Serial Printers. ... 292
When to Use a Serial Printer..........eeiiiiie e 292

TS T o 1R ROTRRR 292
Chapter 12: TCP/IP LinuX NetWOrKing........cccuuuceemrmiiismsrnissessssnssssssssssssss s sssssssssssmss s sssssssssnssanns 294
(@Y= VTSR PPRPR 294
Understanding TCP/IP NetWOIrKING.......c.ueiiiiiiiee e 294
NEIWOIK STACKS. ...t e e e na e e e e 294
NEIWOIK AQAIESSES ... ceeiiiiiiiie ettt e e e e e e e e e e e s e e e e e e e e aaaaes 296
o - TSP PPPPPSPPPI 298
TCP/IP CoNfIQUIALION....cciiitiiee ettt e nre e e e 299
Configuring Network HardWare...........c.eeio i 299
Using DHCP for Configuration.............eee et 300
Manually Configuring TCOP/IP........ee e 302
TeSHNG the SEIUPD....cei i 306
TSI = U] o H SRR 307
Sharing with Unix or LINuX: NFS......oo e 307
Sharing with Windows: Samba...........ocuiiiiiiii e 310
INTEINET SEIVEIS. ...ttt et e e e e rane e e e s aneeeeeeans 316
AVRIIADIE SEIVEIS....coi ettt ettt e et e e n e e e e nreee e 316

Table of Contents
Chapter 12: TCP/IP Linux Networking

USING @ SUPEI SEIVEE ...ttt e e nneee s 318

TS T o PRSP 321
Chapter 13: The X Window SyStem.......cccccciiiiiiimiiniimns s ssss s sssss s s ssssss s sssssss s snssanns 323
(@Y= VTP 323
D Q070 o= o] 1= PP SRPRPPPRR 323
X @s @ NetWOrk ProtOCOL......ccoiiiiiiieie e 323

DG 1= U 1 PRSP 325

X ViIrUGI CONSOIES. ...ttt ettt e st e e e e e e e enreeeeeans 327
CoNfIGUIING AN X SBIVEE....eeiiiiiiiii ettt et e e s e e e e nne e e e e nnees 328
XIFEEBB 4. X ..ttt ettt e e e e e e e e e e e e e e s 328

D (= T= TSI TR T0 PP PRSPPI 330
Using an X Configuration TOOL..........ueee e 331
Starting X AUtOMAtICAIlY........eeeeiiiie e 333
Configuring @ FONE SEIVEE..... e 334
Adding FONts t0 @ FONE SEIVEL........uiiiiieii e 334
Configuring @ NEeW FONt SEIVEE........cccviiiiiie e 336
UNUSUAI FONE SEIVEIS.... .ttt e 337
Building a User INterface atop X..... .. et e e 338
WINAOW MENAGETS. ...t e e e e e e e e e e e e n e e e e e s 338
WiAGELE SELS ...t 341
DesKIOP ENVIFONMENTS........eeiiiiiiie e 341

X APPHICALIONS. ... e e s s ar e e e e 343

TS T o P TR 344
Chapter 14: Setting Up Your Mail Server.........ccocmmiinimeriess s ssssssss s sssanns 345
(@Y= VTR PRP 345
Understanding E—Mail ProtOCOIS.oooiiiiieieeee e 345
Push and Pull ProtOCOIS.........ueiiiiiiiie e 345
S T P ettt oot e e e e e e e e e e nbe e e e e b et e e e e nae e e e e anees 347
O] PRSPPI 348
Y USROS 349
Configuring SENAMAL........cooiiiiiiee e 351
ConfiguriNng DOMAINS. ...t 351
Sendmail Configuration Files and ProCedUresS.........cooocviiiiiiieee e 352
AdAress MasQUETATING.eeeeeeiiiiiiiiie et e e e e e e e e e e e e s neeeaeeas 353
ConfigUIING REIAYS ... e e e 354
ReCeIVING MalL......oeiiie e 357
Configuring POP and IMAP..........oi et 358
Running POP and IMAP D@@MONS.........cciiiiiiiiiieiiee ettt 358
Setting Up Mail—Only ACCOUNTS.ccoiiiiiiieiiiiee e 359
Using Fetchmail to Acquire Mail from an ISP..........coooiiiiii e 360
ANti—SPaM MEASUIES......eeiiiieiie ettt e e e e e e rabs e e e e e rnnaee e e aneeeaeaans 364
The Problem Of SPam........oo e 364
Preventing OUtgOING SPamL........coo it 364
StopPING INCOMING SPAIML.....eiiiiiiiii e e e 366

TS T o P TR 369

Vii

Table of Contents

Part IV: System Optimization and Improvement..........cccoociiiiinmmminisms s e 370
(O] g F=T o] (T gl I SRR 370
(=21 (0]] o PP PPPPPPPPPPPR 370

(0 1T T o1 (=T g TS Lo o 37
(@Y= VTP PP 371
TYPES Of ATACKS. ...t e e e e e e e e e e e n s 372

THPOJAN HOISE....ceeeeeeee ettt e e e e e e e e e e e e e e nneeeaeens 372
= 7= (e G B o To | ST O TP PPPPPSPPP 373
TRUSTEA HOST. ... e e e e n e e e e e as 373
BUFfEr OVEITIOW. ... 374
SCanNiNG OF SNIffINGceeii e 374
ST oo o) {1 o PSR 374
Denial Of SEIVICE......eiiii it e e 375
= TS o] o [@7 = Tor U] o o NSRRI 375
R To Lo = LN 4= Tod & F PRSPPI 376
PRYSICAI ATACKS ...ttt e e 376
TYPES OF SECUNLY. ..ttt e e e e e e e e e e nnae e e e anreeeeeans 377
Securing the Authentication ProCESS........cuuiii i 379
HaSNING PaSSWOITS. ...t e e 379
ShadOW PaSSWOIAS.ccoiiiiiiieiiiiiie ettt e e s ne e e e e e nne e e e e ennes 381
Pluggable Authentication Modules (PAM).........ciiiii e 382
FIle PermMiSSIONS. ...t e et e e e e e e e e e e e e e e e e 386
Protecting against Network INtruSION.........oooeiiiiiiee e 387
FIFEWAIS ... e e e e e e e e e e e e 387
I O7 oA = o] o 1= = PRSPPSO 403
D11 (o PP P PRSPPI 406
DeteCting INTrUSION. ...ccoiiiie e e e e e e 406
Applications for Detecting INtrUSION.eiii i 407
LTS T o PRSPPI 408

Chapter 16: Performance TUNING.......cccrurrmmrriiissnnrrsssssssssssssssssssssssssssssss s sssssssssssssmsssssssnssssnsssnns 409
(@Y= VT PR PPRP 409
The Elements of PerfOrmancCe....... ..o 409

Hardware PerformancCe........oooueiii e 409
Software PerfOrmMancCe...........oui i 411
MeasUuriNg PerfOrManCE.........uuuiii ittt e e e e e 411
FINAING BOTHENECKS. ... e e e e e e 412
Using top to Find the Bottleneck.............oooo i 412
LU= T0T=T 011 | (PO PTRT 415
TUNING e SYSTEML....eeee et e nre e e 416
01 oT =Yg Lo I (=T 0o = PP OPPPPPPRPPPPN 416
Virtual MemOory TUNINGcooei e e e e e e e as 417
Serial POt TUNING. .o e e e e e e 418
FIlEeSYSIEM TUNING ...ceiii e e e e e e e e 418
Eliminating UNNecessary ProCESSES.......uiiii e 422
Compiling fOr EffiCI@NCY ... 423
Tuning the X WINdOW SYSTeML.........eiiiiiiiie e 425
(8T 7= o 1 0o TR PP PPPPPPPPPPPR 426
TS T o PRSPPI 426

Table of Contents

Chapter 17: Making Your Job Easier with SCrptS......ccccuiremiiirsssiinn s 428
(@Y= VTP PP 428
Common ScriptiNng FEATUIES........cii e 428

|AENtIfYING @ SCHPL...ce i 429
VATTADIES. ...ttt e e e e e e as 429
CoNtrol SEAEMENTES......eeii e 430
(070129100 F= 1o Lo < TR PP 430
The Bash Shell Scripting LanguUage.ccooouueeiiiiiiee et 431
VATTADIES. ...t e e e e e e e s 431
Conditional EXPreSSIONS.oii i 432
o o] oL TSP PPPPPSPPPI 434
(@)1 g =T gl Y o= T o) S Tor]) PP RP 436
=T IS T 1] £ PSPPSR 436
PYINON SCIIPES e 438
AWK AN SEA SCIIPIS ...eeeee it e e e e e e e 438
System INitialization SCHPLS........ueii e 440
Writing an Initialization SCrPL.......oeeeii e 440
Tailoring the rc.loCal SCrPL......cooi e e 445
USING the Cron FaCIlItY.......eeeeieeiee e e e e e 447
Running a Script at @ SPeCific TiME.......uiiii e 449
Commands Often Used in Shell SCrPLS.......ooi i 449
072 PP PTRT 450
o1 | PRSPPSO 450
=T o SO P PRSP PPPR 451
=] 0] PPN 451
D=L 1= OO PP 452
USING PIPES ... 453
TS T o PR 453

Chapter 18: Troubleshooting Your LINUX SyStem......ccccuccemiiinismsmnnnsns s ssssesessssssssssssnnns 454
(@Y= VT PP PPPP 454
General Troubleshooting TEChNIQUES.........eeii i 454
=TT g md (0] o] =T 1 o 1= PSP PPPPPPPPPPR 456

FDISK Doesn't Recognize GNU/HUrd Partition.............coooiiiiiiiiiieee e 456
Making a New Boot Floppy to Replace a Lost One..........coooiiiiiiiiiiiiiiiiecece e 456
GRUB Is Installed but JuSt HANGS........eeiiiiiiee e 457
LILO Messages and Their MeaningsS.........uuueeiiuiieiiiiiiiee et 457
Making the System Boot a New Kernel...........ooooiiiiiiiiii e 458
Hardware Not Detected at BOOL............uuiiiiiiii e 459
Dual-booting with Another OS Like WINAOWS.........cooueiiiiiiiiiie e 460
Can't Remove Boot Loader from the Master Boot Record.............ccoceiiiiiiiiniiiinennee 461
Kernel Won't Load or Loads Only Partially............cooieiiiiiiiiee e 461
LOGiN ProbIems.......coo s 461
LOST P@SSWOIQ. ...t e e e e e e 461
Login Incorrect after Entering Username............ceuviiiiiiiiiiiiiiieeeeee e 462
System Flashes Quick Message and Drops Back to login Prompt..........ccccoeiiiiennnne. 462
Login incorrect Message Logging in @S r00t...........ueeiiiiiiiiiiiiiiiieeee e 463
NEtWOIrK ProbIEMS ... e 463
UNKNOWN HOSE MESSAJE. ... eeeeeeiiiieieet ettt 463
Network Unreachable MESSage........cooiiuiiiiiiiiee e 464

Table of Contents

Chapter 18: Troubleshooting Your Linux System

Kernel ComPIlatioN.ueii et s e e e neeee s 464

make menuconfig Generates an Error about NCUrses.N...........cccooveeeiiiii e 464

1o o E= U = (o RO PR 464

Do | Need to Reconfigure the Kernel with Every Upgrade?.........ccccooviiiieiiiieneciieenn. 465

Id: unrecognized OPLION —QMAGIC.ceeiiiueerereeeeeeeeeeee eeaaes 465
Filesystem Problems or QUESTIONS..........uuiiiiiiiie e 465
Creating a Linux Filesystem on a FIoppy DisK.........ccooiiiiiiiiiie e 465

Creating a Windows Filesystem on a Floppy DisK........c..eoiiiiiiiiiiiiiiiiiiee e 466

0] (eTo7. (oo £ TP PUPPPP PP 466

Which Interrupts Are Available?..........ooei e 466

X WiIndow System ProbIEmMS.........ooiiiiiii et e e 467
Booting into X, Login Prompt Disappears When Anything Is Entered...............ccue. 467

Cannot Allocate Colormap ENtry.......o e 467

B PASSING X ettt e e e e et e e e e e 467

The System Runs Very Slowly When Running X or Making a Kernel...............cccco...... 468

(@ [0 3= T o =1 oo LSS0 PPPP 468
You've Deleted the Red Hat Package Manager and Can't Reinstall It.......................... 468

Shutting Down a System on the Network Remotely...........cooooiiiiiiii 468
Permission Denied When Attempting NFS Mount..........oooiie, 469

The free Command Reports Less Memory Than the Machine Has...........cccccooees 469
Determining Which Packages Are on the System..........ccoooiiiiie e, 470

modprobe Can't Locate Module module—name.............cccoeveeiiiiiiiiiiieee e 470

The "You don't exist. Go away" Error MeSSage..........cuviiiiiiiiiiiiiie e 470

The Screen Is Full of GIDDEriSh. ... 471

TS T o PRI 471

=3 o 1 o 11 472
=3 o 1 0L g o 476
LIS o) S o [T o T 478

Linux System Administration, Second Edition

Vicki Stanfield
Roderick W. Smith

Associate Publisher: Neil Edde

Acquisitions and Developmental Editor: Maureen Adams

Editor: Cheryl Hauser

Production Editor: Kelly Winquist

Technical Editor: Sean Schluntz

Book Designer: Bill Gibson

Graphic lllustrator: Jeff Wilson, Happenstance Type-O-Rama

Electronic Publishing Specialist: Jeff Wilson, Happenstance Type-O-Rama
Proofreaders: Emily Hsuan, Nancy Riddiough, Laurie O'Connell, Yariv Rabinovitch
Indexer: Nancy Guenther

Cover Designer: Ingalls & Associates

Cover lllustrator: Ingalls & Associates

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights
reserved. The author(s) created reusable code in this publication expressly for reuse by readers. No
part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic, or other record, without the prior
agreement and written permission of the publisher.

First edition copyright © 2001 SYBEX Inc.
Library of Congress Card Number: 2002106413
ISBN: 0-7821-4138-2

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the
United States and/or other countries.

Some of the screen reproductions were produced using Gnu Image Manipulation Program. GIMP is
a freely available public domain package included as part of Linux.

Some of the screen reproductions were produced using xv (copyright 1994 by John Bradley).

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks
from descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is
based upon final release software whenever possible. Portions of the manuscript may be based
upon pre—release versions supplied by software manufacturer(s). The author and the publisher
make no representation or warranties of any kind with regard to the completeness or accuracy of
the contents herein and accept no liability of any kind including but not limited to performance,
merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or
alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10987654321

To the memory of my father, who was infinitely supportive of all my endeavors.
—Rod Smith
To my sons, Geoffrey and Jake, for believing in me.

—Vicki Stanfield

Foreword

The Craig Hunt Linux Library is a series of highly technical books focused on specific Linux system
administration tasks. Individual books provide in—depth coverage of essential computer services.
The library includes books on DNS, Samba, sendmail, security, Apache, and NFS and Amd. An
experienced system administrator can pick up one of these books and have all of the information
necessary to master a given service. But all of these topical texts assume that the reader
understands basic Linux system administration. Where do you start if you need to master the
basics?

Start with Linux System Administration, Second Edition, by Vicki Stanfield and Roderick W. Smith.
This book covers the fundamental skills of system administration that must be mastered before
more advanced system administration tasks can be undertaken.

Daily system administration tasks are an essential part of running any Linux system. The
importance of good system administration cannot be exaggerated. The most vital part of a secure,
reliable computer system is a skilled system administrator. If you need help building that skill, a
system administration book is a good place to start. There is nothing intuitive or obvious about the
inner workings of any operating system, including Linux. A good book, like Linux System
Administration, Second Edition, helps you draw on the experience of others who have already faced
many of the challenges you will encounter.

The importance and appeal of the first edition of Linux System Administration was clearly
demonstrated when it was chosen as one of the winning books in the Most Indispensable Linux
Book category of the Readers' Choice Awards published in the November 2001 issue of the Linux
Journal. The second edition is even better, with expanded coverage and improved chapter
organization.

Use Linux System Administration, Second Edition, as the foundation volume of your own personal

Linux library. Start here and build your Linux bookshelf, adding books from the Craig Hunt Linux
Library that address the special topics you need to master.

—Craig Hunt
July 2002

Acknowledgments

The authors would like to thank everyone who supported the project, including Sybex associate
publisher Neil Edde, acquisitions and developmental editor Maureen Adams, editor Cheryl Hauser,
technical editor Sean J. Schluntz, and production editor Kelly Winquist. We are also grateful for the
expert teamwork of Jeff Wilson at Happenstance Type-O-Rama.

—Vicki Stanfield and Rod Smith

Thanks to Craig Hunt, for his insight. To Pat for all his help and support. To my family in
Indianapolis for their undying support.

—Vicki Stanfield

Introduction

Linux has made its mark in the commercial world as a server operating system. Figures from IDC in
2000 gave Linux a 24 percent share of the commercial server market, which is second only to the
38 percent market share held by Microsoft. In 2002, IDC projects Linux's total market share will be
41 percent by 2005. Additionally, the acceptance of Linux for commercial installation is accelerating
with the endorsement of companies like IBM, which optionally ship Linux preinstalled on its
hardware. The knowledge that a company such as IBM provides support for an operating system
comforts even the most timid IT manager.

Yet remote support, even from IBM, is insufficient for most servers. Servers are simply too
important. Critical corporate data is stored on servers. Desktop systems rely on servers for vital
services such as e-mail and file sharing. Organizations depend upon their servers, and servers
depend upon skilled on-site support from knowledgeable system administrators. This book focuses
on providing the necessary knowledge for you to become a skilled Linux system administrator.

If you're reading this introduction, you are already a Linux system administrator or are planning to
become one. Either way, you have made a good choice. Knowledge of Linux is an excellent skill for
now and for the future. As the current market share of Linux server systems continues to grow, so
does the demand for Linux system administrators.

Knowledge of Linux is an important "crossover" skill that can give you many more job opportunities.
If you come to Linux with a Unix background, you're well on your way to mastering Linux. Linux
uses the same command shells, file structure, and command-line tools as Unix does. A good book
may be all you need to turn Unix skills into Linux skills, even if your Unix experience was limited to
the Unix system you worked on in college.

A Windows NT/2000 administrator can use newly acquired Linux skills as a gateway to both Linux
and Unix jobs, which often pay more than do comparable jobs administering Windows systems.
Many organizations have mixed environments with both Unix and Windows systems. In those
organizations an employee with multiple skills is highly valued.

The Benefits of Linux

Linux didn't always get the recognition it now has as a serious server operating system. It began its
life as a computer enthusiast's dream—a free operating system available in source code that
actually encouraged enthusiasts to create their own operating system code. It originally entered the
corporate computer room through the back door. System administrators and programmers knew
that Linux could be used to address corporate computing problems. They just couldn't convince
management of that fact, and yet they brought Linux in anyway.

There are so many benefits to Linux it is easy to understand why system administrators were willing
to take this approach. These benefits are:

Open source code Linux is open source code. Nothing is hidden. The entire
operating system is available in source code that can be read by in—-house support
staff or third—party support personnel. Having the source code means that support
staff can really know how the system works. This knowledge gives Linux better
third—party and in—house support than is possible for a proprietary operating system.
With a proprietary system, the inner workings of the operating system are trade
secrets. Linux removes the veil of secrecy to let you know exactly how things work.

Reliability Linux is extremely reliable. It simply does not crash. The Linux kernel is
protected from misbehaving applications and the kernel itself is very stable.

Availability Routine maintenance does not require taking the system offline.
Software can be installed, configured, started, stopped, and removed without
rebooting the system.

Proven tools Although Linux has only been in widespread commercial use for a few
years, the software tools that run on a Linux system are well-proven. Many of the
tools come from Unix, which has a 30-year history. For example, a tool like
sendmail, which provides Internet e-mail service, has been in continuous production
use for decades. Tools such as BIND for domain name service and Apache for Web
service are the most widely used software packages of their types in the world. Linux
gives you access to the best-known, best-tested software tools in existence. The
reliability of Linux is matched by the proven reliability of the tools that it uses.

All of these reasons and more contributed to the increasing popularity of Linux as a server operating
system. As more companies include Linux in their operating system mix or switch to Linux as their
only operating system, administrators find themselves looking for a good reference on Linux as a
server. This book fills that role.

Who Should Buy This Book

This book is written for the administrator responsible for the planning, installation, and support of
Linux servers. It was not written for the Windows user migrating to Linux with no Linux experience.
There are a number of books available for the Linux beginner. This book is for the administrator who
understands operating systems and hardware and has some understanding of Linux or Unix.

The Unix professional will benefit from the crossover of Unix to Linux knowledge presented by this
book. If you have Linux experience, this book delves into those areas of system administration that
you may not have investigated to provide you with a guide to server operations. The emphasis is on
performance, reliability, and availability rather than desktop applications.

Some knowledge of Linux or Unix is assumed. If you are a system administrator migrating from
another operating system, such as Windows NT/2000, you may find the philosophy of system
administration the same, but the techniques are very different. Before jumping into this book, you
should read an introductory text such as Mastering Linux, Second Edition, by Arman Danesh and
Michael Jang (Sybex, 2001).

About the Second Edition

Since the publication of the first edition of Linux System Administration in 2001, the Linux world has
both changed and stayed the same. Thus, this second edition is both different from and the same
as the first edition. Many of the topics covered in this edition are fundamentally the same, although
some details are different. For instance, the sendmail mail server (described in Chapter 14) hasn't
changed much—as noted earlier, it's a very mature product, so radical changes in its structure or
function are unnecessary. Nonetheless, various details have changed, such as new spam-fighting
techniques. All of this book's chapters have been updated to reflect such changes, some of which
are more fundamental than others.

When we wrote the first edition, the 2.2.x kernel series was current, although the 2.4.x kernel was
very close to release. Today, all major distributions ship with 2.4.x kernels, which bring features
such as improved support for USB devices and additional filesystems. Likewise, major user—space
packages such as KDE and GNOME have seen active development. This edition covers the new
and improved features, when appropriate.

Because the major topics relevant to Linux system administration are the same as they were in
2001, this book includes the same number of chapters, with the same titles as the first edition.
We've rearranged these chapters to make more coherent sections, however, as described shortly.
This change should make for a smoother read for those who want to read the book cover-to—cover.

As in the previous edition, Linux System Administration, Second Editon, is intended to be helpful to
administrators of all Linux distributions. We tend to use Red Hat Linux as a model whenever specific
examples are required, though. In the first edition, this decision led us to refer occasionally to the
Linuxconf configuration tool, because that's the GUI tool Red Hat has traditionally used. Red Hat
has been moving away from Linuxconf, though, and now ships with proprietary GUI tools. Rather
than refer to such tools, we now describe the cross—platform Webmin GUI configuration tool, which
can be used with any Linux distribution. Of course, we continue to emphasize the
command-line-based administration methods and files that are common to all distributions, and
which are more flexible than any GUI configuration tool.

How This Book Is Organized

This book consists of eighteen chapters that illustrate different aspects of Linux system
administration. The chapters are grouped into four parts: The Basics; Managing Users, Processes,
and Files; Communications and Networking; and System Optimization and Improvement. If you're
new to system administration, read Part 1 first—it covers the basics. Beyond that, you can read
chapters in any order. Each chapter stands on its own. For example, if you are specifically
interested in performance tuning, you could jump directly to Chapter 16. Here's a
chapter-by—chapter summary.

Chapter 1: The Basics of System Administration

This chapter describes the goals of a system administrator and provides an introduction to the tools
and techniques that the administrator uses to reach these goals.

Chapter 2: Installing Linux

Hardware selection is crucial when setting up a server. This chapter covers issues to consider in
hardware selection and the actual installation of a Linux operating system. Some variations between
different Linux distributions are covered.

Chapter 3: Startup and Shutdown

During the startup and shutdown of an operating system, many housekeeping activities are
performed. This chapter takes a close look at the files that are used to control the events in startup
and shutdown. The files used to configure the startup are also discussed.

Chapter 4: Tools of the Trade

This chapter covers the basic command-line tools available on Linux systems and how to use these
tools to make the job of system administrator easier. Also covered are the concepts of the
command-line interface, including pipes and redirection of input and output. The chapter also
directs you to some additional sources of documentation on these tools.

Chapter 5: Creating and Maintaining User Accounts

Everyone with a desktop computer does some system administration. Managing multiple users is
one of the things that separate the professional system administrator from the part-time
administrator. This chapter covers the management of user accounts. The purpose and
maintenance of groups is also covered.

Chapter 6: Filesystems and Disk Management

The system administrator is responsible for managing the Linux filesystem. This chapter covers the
native, foreign, and networked filesystems used by Linux. You will learn how to add new disks,
replace disks, and transfer data. You'll also learn how to work with removable media.

Chapter 7: Linux Files and Processes

When Linux is installed and running, there are a number of important processes running on the
system and key files distributed throughout the filesystems. This chapter describes the structure and
layout of files on Linux. It also explains the operation of processes (running programs).

Chapter 8: Software Administration

The installation, maintenance, and removal of software are important parts of the administrator's
task. This chapter covers the details of software administration from locating and installing software
to keeping the operating system updated.

Chapter 9: Backup and Restore

Data backup and recovery are crucial elements of maintaining a reliable system. Things can and do
go wrong. When important data is lost, it is the administrator's job to recover it. Backup strategies,
disaster recovery techniques, and the Linux tools and media used to implement these plans are
covered. Third—party tools are also described in this chapter.

Chapter 10: Printers and the Spooling Subsystem

Printers and the print subsystem on any operating system often give administrators more than their
share of problems. This chapter explains printers, the print spooling system, printer installation, and
the kernel support for printers.

Chapter 11: Serial Communications, Terminals, and Modems

Modems, terminals, and some printers rely on serial communications. Modems can be particularly
complex because they often require custom scripting. This chapter covers the various serial
devices—both the older RS-232 and the newer USB varieties—and provides the knowledge
necessary to set up serial communications.

Chapter 12: TCP/IP Linux Networking

Linux networking is built upon the Internet's TCP/IP protocols. This chapter describes these
protocols and explains how they are configured on a Linux system. It covers file sharing across the
network, including both the NFS system used to share files with Unix computers and the Samba
system used to share files with Windows computers. You'll also learn how to run network
applications from inetd and xinetd.

Chapter 13: The X Window System

X'is the windowing system used by Linux, but X is more than a windowing system; it is also a
network protocol. This chapter describes the nature of X. You'll learn how to configure an XFree86
server and how to build a user desktop environment with X.

Chapter 14: Setting Up Your Mail Server

E-mail is still the most basic of all network services. Users expect it and they expect it to work. In
this chapter you'll learn about the protocols that underlie the e-mail system and you'll learn how to
properly configure them on a Linux server. Sendmail configuration is covered, as are techniques for
blocking unwanted spam.

Chapter 15: Security

Good security is good system administration. Every server must be secured. This chapter describes
security threats and the steps you must take to counter those threats. The tools used to secure your
system and monitor its security are discussed.

Chapter 16: Performance Tuning

Selecting the right hardware and properly installing the software get you only part of the way to
optimal performance. In this chapter you will learn how to tune your system to achieve maximum
performance. Everything from locating the bottlenecks to tuning the filesystem and the kernel is
addressed.

Chapter 17: Making Your Job Easier with Scripts

Automation of repetitive tasks makes the administrator's job much easier. Backups, report
generation, and disk cleanup are just a few areas where automation of tasks can provide relief. This
chapter covers shell scripts and Perl scripts. You will learn how to configure the cron utility to
schedule jobs for you. Additionally, you will learn how to use awk and sed to make better and
simpler scripts.

Chapter 18: Troubleshooting Your Linux System

Troubleshooting is one of the most important jobs of a system administrator. Many times a system
administrator is judged almost solely on this skill. This chapter describes general troubleshooting
techniques that can improve your skills as a troubleshooter. This chapter also covers some of the
most commonly encountered problems and provides solutions to those problems.

Conventions Used in This Book

This book uses certain typographic styles in order to help you quickly identify important information,
and to avoid confusion over the meaning of specific words. The conventions are listed below.

e /talicized text indicates technical terms that are introduced for the first time in a chapter.
(Italics are also used for emphasis.)

e A monospaced font is used to indicate the contents of configuration files, messages
displayed at a text-mode Linux shell prompt, flenames, and Internet URLs. This font is also
used for code listings, such as configuration files.

e [talicized monospaced text indicates a variable—information that differs from one system or
command run to another, such as the name of a client computer or a process ID number.

e Bold monospaced text is information that you're to type into the computer, usually at a
Linux shell prompt. This text can also be italicized to indicate that you should substitute an
appropriate value for your system.

Sometimes commands appear on lines by themselves. These lines use a monospaced font, just like
the font used for filenames or commands presented in the body of a paragraph. These lines begin
with a shell prompt character—a dollar sign ($) for commands that may reasonably be used by
ordinary users, or a pound sign (#) for commands that may only be used by the system
administrator. In such exchanges, information that the computer displays is in a normal
monospaced font and what you type is in a bold monospaced font, which makes it easy to
distinguish what you see from what you type.

In addition to these text conventions, which can apply to individual words or entire paragraphs, a
few conventions are used to highlight segments of text:

Note A Note indicates information that's useful or interesting, but that's somewhat
peripheral to the main discussion. A Note might be relevant to a small number of
networks, for instance, or refer to an outdated feature.

Tip A Tip provides information that can save you time or frustration, and that may not be entirely
obvious. A Tip might describe how to get around a limitation, or how to use a feature to perform
an unusual task.

Warning Warnings describe potential pitfalls or dangers. If you fail to heed a Warning, you may
end up spending a lot of time recovering from a bug, or even restoring your entire system
from scratch.

Sidebars

A Sidebar is like a Note, but is longer. Typically, a Note is one paragraph or less in length, but
Sidebars are longer than this. The information in a Sidebar is useful, but doesn't fit into the main
flow of the discussion.

Administrator's Logbook
Because the importance of logging all the configuration changes you make to a system is a major

theme of this book, throughout various chapters we have included "Administrator's Logbook"
sidebars illustrating the kinds of information you would record for the activity at hand.

9

Finally, note that Linux commands and output are often formatted for a screen display that is wider
than our printed page. To indicate where we have had to "wrap" part of a longer command onto a
separate line, we use the symbol ™ at the beginning of the continued portion. For example:

' /etc/printcap > ${TMP1} && cat ${TMP1l} > /etc/printcap
wss rm —-f ${TMP1}

To include this statement in an initialization script (as discussed in Chapter 14), you would type it as
a single line, omitting the line break and the ™ symbol. (In other words, don't look for a ™ key on
your keyboard!)

Help Us Help You

Things change. In the world of computers, things change rapidly. Facts described in this book will
become invalid over time. When they do, we need your help locating and correcting them.
Additionally, a 600—page book is bound to have typographical errors. Let us know when you spot
one. Send your suggested improvements, fixes, and other corrections to support@sybex.com. To
contact Craig Hunt for information about upcoming books and talks on Linux, go to
http://www.wrotethebook.com/. Rod Smith can be reached at rodsmith@rodsbooks.com, and
operates a Web page at http://www.rodsbooks.com/. Vicki Stanfield can be reached at
vicki@thepenguin.org.

10

Part I: The Basics

Chapter List

Chapter 1: The Basics of System Administration
Chapter 2: Installing Linux

Chapter 3: Startup and Shutdown

Chapter 4: Tools of the Trade

Featuring

e The role of a system administrator

e Linux tools for system administrators

e Selecting a Linux distribution

e Sample Red Hat Linux installation

e Finding help resources and technical support
e Working with the Bash command line

¢ LILO and the Linux boot process

e |nitialization and startup scripts

e Shutting down the system

11

Chapter 1: The Basics of System Administration

Overview

If you ask ten system administrators what their job entails, you'll get ten different answers. Linux
system administration is a job that defines itself over the time you hold it, and redefines itself over
and over thereafter. In simple terms, the system administrator is the person responsible for
maintaining a computer system at peak efficiency. The analysis required to maintain the system
makes the job both challenging and rewarding. Users are the wildcards that make system
administration much more unpredictable than simple system maintenance. Changing user needs,
changing security environments, and changing applications, all conspire to change the system
administrator's role over time. Despite its changing nature, certain tasks confront all system
administrators on all Linux systems.

This chapter introduces some of the tasks that you will be expected to perform as a Linux system
administrator, along with a collection of tools that you'll need to be familiar with to do those tasks
successfully. A logbook is a critical, job—saving activity, so this chapter discusses some of the
issues involved in keeping one. The section on communicating with users discusses different
methods of communication and offers some hints about keeping the confidence of your users.
Finally, you'll learn about the superuser privilege and related security issues.

Essentially, this chapter outlines what system administration is. In that sense it is a map to the
contents of the rest of this book. When we describe a task that you'll perform as a Linux system
administrator or a tool that you'll use, we will point you to the chapter where that topic is described in
more depth. This book is, in a sense, a "mentor in a box," allowing you to benefit from our
experiences, both positive and negative, as you begin your endeavors as a Linux system
administrator.

Your Role as a System Administrator

A system administrator aims to be as transparent to the user as possible. How much the users need
to contact you is a good indicator of how well you are doing your job. If you do your system
administration tasks well, users will seldom need to think of you at all, except to recruit you for the
company softball team or, of course, when they want additional services from the Linux system.

Your workload will vary dramatically. You'll learn to cherish the lull times when there is little external
pressure, because they will enable you to work on projects to improve service and because you'll
know from experience that just around the corner something will happen that requires working
through the night or even several consecutive nights. If you spend the lull times evaluating your
system for potential security problems or areas where performance could be improved, you'll find
that there will be more low—pressure times as a result. Use the information in Chapter 15,
"Security," when looking at security and in Chapter 16, "Performance Tuning," when examining how
to improve your system's performance. The dynamic nature of system administration is the norm
rather than the exception.

It is impossible to estimate when a critical piece of hardware might require replacement or when the
operating system might crash, requiring you to come in and restart or troubleshoot it. For example,
in a network one of the authors worked on, the backup scripts were set to run at night, when system
usage was at its lowest, and to send e—mail to her pager upon completion of the backup process.
When it didn't, she'd have to come in to find out what was wrong and get the backups going again.

12

This, too, is part of the job. When you run into problems, Chapter 18, "Troubleshooting Your Linux
System," contains many troubleshooting tips; some of these have been lifesavers and all have been
useful as we progressed both as system administrators and as Linux users.

But what exactly is system administration? The term is so broad that no definition will give the whole
picture. A simple definition might be "the installation and maintenance of a computer system."
However, because a computer system might be anything from one computer to a networked system
containing hundreds of computers, and because each employer expects something different, these
few words don't define system administration in any strict sense. The real definition must include the
system administrator's role as the mediator between machine and user, since you are the judge
who decides whether problems are computer- or user-induced and the jury who determines what
should be done about it. Certainly you must be a doctor, capable of performing healing rituals when
the equipment is sick, but you must also be the counselor who breaks the news to the family when
something has gone wrong. You are mother, father, baby-sitter, guru, mentor, mechanic,
technician, programmer, hero, and villain to the users of your network.

Tasks of a System Administrator

A better way to define system administration might be to develop a list of tasks performed by a
system administrator. This is not a comprehensive list, largely because every time we become
comfortable with our job descriptions, something else is added, but it is a fairly complete list of tasks
you can expect to perform as a Linux system administrator:

e Configuring hardware

e Installing the operating system
e Installing application software
¢ Implementing system security
e Configuring the kernel

e Creating users and groups

e Updating software

¢ Performance tuning

¢ Disaster recovery

e Capacity planning

¢ Network administration

Configuring Hardware

Any hardware configuration that is required to get the system up and running is the duty of the
system administrator. This includes determining which hardware will best meet the corporate goals;
selecting hardware in turn requires you to consider current capacity, expected capacity, cost,
compatibility, resource availability, and many other things that are job—specific. The installation and
configuration of that hardware also is your job. If the system does not come ready to run, you might
have to assembile it from its component parts. Even if the system arrives fully assembled, you'll find
that replacing components or disassembling a system that is being phased out will be your
responsibility. In the Linux world, you'll be far more likely to perform hardware configuration than in
the Microsoft or Unix world because Linux is a more hands—on system—or at least the general
public sees it that way. Don't worry, though; if you're like us, you'll love it!

13

Installing the Operating System

In the Unix and Microsoft Windows world, computers often come with the operating system
preinstalled, but in the Linux world the system administrator most often installs the operating
system. Although computers are now available with the Linux operating system preinstalled, most
companies prefer to avoid the additional cost and the restrictions imposed by the reseller's
preconceived notions about what a Linux system is, so they have their administrators install and
configure the computers. If you have multiple systems with similar configurations, you'll want to do
something like a "kickstart" installation, which allows you to script the installation and let it run while
you do one of the thousand other tasks you've been assigned. Sometimes you will inherit a working
system, thereby missing out on the experience of installing the operating system from scratch, but
eventually the system will require an upgrade or reinstallation, and that will be your responsibility.
Chapter 2, "Installing Linux," demonstrates the procedure for a typical Red Hat installation and
includes information on kickstart installations as well.

Installing Application Software

It is the system administrator's duty to install application programs and to make them available to
the appropriate users while restricting access by those who aren't intended to use these programs.
Typically this software exists on a networked machine and is available via either some type of
remote login or an NFS mount. These topics will be discussed in Chapter 12, "TCP/IP Linux
Networking." Protecting shared files also involves setting permissions, which we discuss in Chapter
15. You'll also be directly involved with supporting the installation of software on individual desktop
computers. This includes determining what the user is allowed to install without you or your staff
and providing assistance when needed. Additionally, you will probably be responsible for monitoring
software licensing, since strict financial penalties often befall those who are caught abusing a
software license. Fortunately, most of the software that you will use on a Linux machine will be
nonproprietary, so that will lessen your load.

System Security

Perhaps the most difficult duty of a system administrator is system security. This is the area that can
cause the most trouble for you. A corporate system is likely to have 24—-hour Internet access, which
makes it a prime target for crackers who consider it fun to break into the system and cause
unexpected behavior or even crash the entire system. As you can probably imagine, the
management is not likely to have much patience in this area. Maintaining system security is a
manageable task, however, if you are methodical and cautious. Usually you'll be responsible for
changing passwords when the existing ones have exceeded their expiration dates or when an
employee has left the company. This involves developing a hard-to—guess password, or several of
them, changing them on the systems, and distributing them to those who need them. The topic of
passwords is covered in Chapter 15. Check the system's security even when it appears that things
are fine and follow the guidelines in Chapter 15, and you'll be fine.

Configuring the Kernel

The heart of the Linux operating system is a component called a kernel. This component is basically
an interface between the system hardware and the system application software. As system
administrator, you will have to do any configuration of the kernel that is required. This includes
things like restricting the size or number of files that a user can create, activating or disabling its
inherent capabilities to meet the needs of the system by adding or removing support for the
necessary services, adding support for new hardware or filesystems, and configuring a variety of
kernel-controlled parameters. We'll talk about the kernel, and how to configure it, more in Chapters

14

4, "Tools of the Trade," and 8, "Software Administration." Many new system administrators find this
to be a daunting task, but after a few kernel compilations, you'll feel comfortable with it and wonder
why it seemed so intimidating.

Creating Users and Groups

Whenever new users are added to the system, accounts must be created and configured to allow
them to do their work without creating a security risk. It is often difficult for you to know what
resources, for example, a new accountant really needs access to; so you'll benefit from working
closely with company management to determine what's appropriate for each position. We prefer to
create scripts that allow us to create a user by assigning defaults for the department to which the
new user is being assigned. This allows us to easily create an account for a new person in the
accounting department by creating a prototypical accounting department user and tweaking the
accounts from there. We talk about that more in Chapter 5, "Creating and Maintaining User
Accounts." At a minimum, a mail spool must be established for each user, and you'll be responsible
for configuring access to the mail spool and to an adequate mail client. Chapter 14, "Setting Up
Your Mail Server," covers the configuration of a mail server.

Software Updates

Inevitably, a network and its client machines will need updates to the software they use, both
system and application. In system software, these updates may be security fixes that lessen a
cracker's opportunity to exploit a flaw in a particular software package that could have been used to
get superuser access to the system. These updates are usually published on the manufacturer's
Internet sites, and you must make it your habit to check those sites on a regular basis and apply the
updates as soon as possible. On the application side, the update may be requested by end users or
by management—simply to add functionality to a software package. The users will remind you of
these, probably more often than you'd like. Chapter 8, "Software Administration," discusses these
and other software administration tasks in more detail.

Performance Tuning

One of the administrative tasks most noticeable to users is how well the administrator has tuned the
system. Although a systems person might view efficiency in terms of memory usage, users
generally makes this judgment based on how long it takes to bring up a Web browser or how long it
takes to load a page. As discussed in Chapter 16, "Performance Tuning," you can often tweak the
system to optimize these factors. Of course, no amount of optimization will make a system that is
inadequate for its workload run well. Users also judge system administrators by how quickly they
can replace or repair components that break. If the user's mouse stops functioning, the correction of
this problem is the most important thing in that user's immediate future. If you do not give these
problems adequate attention, you will likely find yourself a frequent scapegoat when a task doesn't
get finished.

Disaster Recovery

The creation and preservation of copies of the system in different states of development is an
extremely important task. After all the configuration of a system is performed, the last thing you want
to do is reload the operating system and application programs from the original media. You might
choose to use a disaster recovery package or just decide to be fastidious about your backups.
Reconfiguring a system is frustrating at best. It is difficult to reproduce the exact configuration that
you had before, and that is exactly what the users expect. You can take some of the pain out of
backing up a system by selecting a backup medium that is reasonably easy to handle and by

15

obtaining or creating the software to run the backups unattended. Added features, like a script that
e-mails you when the backups have finished, also provide some peace of mind. When the system
crashes and there is data that is not contained in a backup, other methods of data recovery are
required. Your familiarity with these methods will help you get through troubled times with less
frustration. Backups and disaster recovery are covered in Chapter 9, "Backing Up and Restoring."

Capacity Planning

As a Linux system administrator, you'll need to be aware of the limitations imposed by the hardware
and software involved in your system. You'll need to watch the network traffic to determine when
high usage creates a need for new hardware/software to be added. You'll need to watch disk space
usage to determine when a system is about to outgrow its storage. You'll also want to ensure that
you have sufficient printing and backup resources for the number and type of users in the system.
We'll discuss each of these elements in Chapters 6, "Filesystems and Disk Management," 10,
"Printers and the Spooling Subsystem," and 12, "TCP/IP Linux Networking."

Network Administration

Most companies that you'll work for will have an internal network (intranet) and will want connection
to the Internet. The system administrator is the person who sets up, maintains, and troubleshoots
these networks. Chapter 12, "TCP/IP Linux Networking," deals with networking topic and Chapter
18, "Troubleshooting Your Linux System," contains tips for troubleshooting network problems.

"When You Have a Minute..."

There are so many tasks that are performed by a system administrator that it is impossible to
mention them all. Our duties have included building network cables, installing a network, configuring
routers, answering user questions, assembling tables upon which the system equipment will sit, and
almost anything else you can think of. A system administrator who appears to have free time is fair
game. Never mind that you are compiling a kernel on a remote machine while downloading
accidentally deleted files from a backup. Users, managers, salespeople—they all think they have
the right to interrupt you and start you off on a wholly unexpected task if you aren't obviously doing
something already—and sometimes even when you are. Life for a system administrator is never
boring.

Tools of the Linux Administrator

Many tools and techniques are available to make the job of system administration less maddening,
and seasoned administrators usually have a suite of them that have proven useful. Some of these
are commonly used Linux commands, while others are scripting tools or methods that allow you to
automate your tasks. Whichever they are, the items listed below are general categories of tools that
will prove invaluable to you, as a system administrator. There are a number of Internet sites that
allow you to download some of these software tools and try them yourself. A site that provides
access to a number of system tools specifically for Linux may be found at
http://www.linuxapps.com/.

Most Linux distributions contain some tools that the distributors have found to be both stable and
useful. Unfortunately, each distribution of Linux has its own set of "essential" tools, making it more
difficult to switch between distributions. Worse still is the fact that Red Hat and some other
distributions are in a state of flux, developing new system administration tools and deprecating

16

existing ones rather frequently. We escape this problem by using a tool called Webmin, which we'll
discuss later in this chapter. However you get them, you will find that they are essential to happy
system administration. Here is a brief list of tools that you shouldn't be without.

Commands

There are hundreds of commands you can use to perform your administrative work. These
commands may be compiled programs written in C or some other language, programs written in an
interpreted language such as Python or Perl, or shell scripts that use the shell's inherent capabilities
to perform some task. Whichever type the command represents, each command is executed by
entering the command and any applicable parameters on the Linux command line or by clicking an
icon which is mapped to that command. We'll discuss specific commands in Chapter 4.

Linuxconf

Practically every flavor of Unix has several individual tools that each performs a single
administrative task, but most also have a general tool that combines many of the individual
capabilities into a single interface. IBM has its smit utility; Solaris uses the admintool. Until recently
Red Hat Linux used Linuxconf as its primary system administration tool. A product of the GNOME
project, Linuxconf was designed to perform many administrative duties. Few tools handled so many
different types of configuration tasks as the Linuxconf utility, but unfortunately, Linuxconf never
reached the state of reliability needed by a do-it-all tool. We'll mention Linuxconf occasionally
throughout this book since it is still in use, but our feeling is that there is a better do-in-all tool
available.

Webmin

Webmin is a tool, owned by Caldera Corporation, which allows many system administration tasks to
be performed within any browser that supports tables, forms, and Java. Available from
http://www.webmin.com/, it is governed under the BSD license, which makes it freely obtainable and
modifiable for commercial and noncommercial use. We prefer Webmin's consistent and reliable
interface to manage user accounts, network and Domain Name Server configuration, PPP setup,
mail server and client configuration, Samba, NFS, Apache configuration, and filesystem setup. The
main screen of Webmin is shown in Figure 1.1.

17

7 Fle Edit View Search Go Bookmarks Tasks Help Debug QA ‘

:
Bik % Foiafd ¥ R:laoad smp [btosiyopus: 10000/miv ~| 2 Searen| ﬁz i ‘

me | 4§ Bookmarks EDownload B Customize..

[Action " [Start at boot?
anacron Yes [Run cron jobs that were left out due to downtime.
[2pcupsd Yes apcupsd monitors power and takes action if necessary
apmd No wnusedbrmmrhshtmymmdlomkvluyslng(s)‘ltconalsoheusedlorslmﬂngduwnlhnmchhewhmlhnbmyh
[arkeia Yes [Startup script for Knox Arkeia nlservd daemon ident “@(#)niservd 1.6 - (C) Knox Software 2000"
M No puns ds scheduled by the at d at the time sp ‘when at was run, and runs batch ds when the load average is low
autofs [No [Sutomounts filesystems on demand
(coldfusion [No
b o cron is a standard UNIX program that runs user-specifi vixie cron adds a number of features to the
blﬂcUND(mhchldnng:euWuﬂmmpﬂwaﬁﬂwnﬁmnﬂmopﬂm
[dhepd [No ‘dhcpd provide access to Dynamic Host Control Protocol.
~ [GPM adds mouse support to text-based Linux such the Midnight Commander. Is also allows mouse-based console cut-and-paste
operations, and includes support for pop-up menus on the console.
halt [No
haltold o
haltmpmsave [No
lhttpd |ﬁo |Apache is a World Wide Web server. Itis used to serve HTML files and CGI.
lvu Thewmxdsmmviduammstodmmiuﬂmidmﬂvotauuda TCP ction. Given a TCP port pair, it
[returns a character string which identifies the owner of that connection on the server's system.
}!m |Nn mmapmummmmm SuiptAuﬂmr Joshua Jensen <joshua@redhat.com> -- hacked up by gafton with help
| |_ \utomates a packet fltering firewall with iptables, by bero@redhat.com, based on the ipchains script: Script Author: Joshua Jensen =
B L ‘rootloggcduno\‘lebmml)?lonopus (Redhat Linux 7.2) ‘ -!D-E

Figure 1.1: The Webmin main screen

As the name implies, Webmin is a web—based system administration tool that can be configured to
be accessible from the localhost, from within the local area network (LAN), or from outside the LAN
as well. We'll demonstrate Webmin's many uses in various chapters throughout the book.

Special-Purpose Shell Scripts

Many repetitive day—-to—day functions, whether simple or complex, are accomplished by a specially
designed shell script. A shell script is a list of shell commands batched together in a file so that they
can be executed on demand. As Linux system administrators, we have written many, many shell
scripts, and you will as well. Chapter 17, "Making Your Job Easier with Scripts," is dedicated to this
topic.

System Logbook

To maintain some semblance of sanity, you need to keep your network—and your administrative
activities—organized. Many system administrators, at least the ones who have learned from prior
mistakes, keep a journal of the overall network configuration and the operating system and software
configurations for each computer. The lack of such preparation makes an unexpected reinstall a
painful experience. If you ever need to use your backup tapes to reinstall a system, time will be a
critical factor, since few users understand the time involved in such a procedure. You can minimize
the time required by knowing exactly what you had set up on that system. A journal of each change
you made to the system is invaluable at this point. You must keep the journal just as loyally as you
make your backups, because it is the combination of the two that will allow you to reinstall and
reconfigure quickly and efficiently.

We recommend that you buy several blank logbooks to be used exclusively for journal-keeping.
The hard-backed composition books used for college English classes are particularly good. These
are available in most grocery stores and in any office supply store. Buy one for each computer, or in
a really large network, for each class of computer. The books are cheap, and keeping one system's
journal separate from another system's journal makes it much easier to keep track. Think about
what separation makes sense in your system. If you can keep different categories of notes in

18

different colors, it makes it easier to find an entry that you need to reference. For instance, red might
denote major system problems, blue might be used for application installation and configuration,
etc. Keep all the logbooks in the same location, label them clearly, and use them without fail.

Start each journal by defining the system itself, specifically annotating each configuration detail. A
system's initial entry should include the computer's identification number as assigned for tracking
purposes and all the hardware information you can record. Include the CPU type and speed, the
type of motherboard and any configuration you performed, how much memory, the type and size of
hard drive(s), the type of video card and how much video memory it contains, what other drives the
system contains, what other cards the system contains and how they are configured, identification
numbers for each component, IRQ and DMA settings for any card, and any other information which
might be useful when installing or upgrading later. It's a lot of work to capture this data, but when
you need to assess whether a system will be able to run the newest virtual reality software package,
these are the details you'll need to know. Here's an example.

Administrator's Logbook: Initial Entry

System: E12345678 AMD K6-3 400MHz

MB: FIC503+ VIA Apollo MVP3 Chipset 1AGP,3PCI,3ISA,2DIMM
1MB Pipeline Burst SRAM

2 dual-channeled PCI Bus Mastering IDE

Baby AT
Memory: 2XCorsair PC-133 128MB sticks
Video: AGP Matrox Marvel G400
Sound: SB16
CD-Writer: Sony CRX140S/C

Next you'll want to create an entry for the operating system installation, to define just how the
installation progressed and detail any special configuration features. Certainly if there are any
glitches in the installation, this should be noted for future reference. Tracking down a hardware
failure is often a step-by-step process in which the diagnosis is made by looking at the system's
history of problems rather than a single failure. Include information about kernel configuration and
any changes to the default initialization process. You are, in effect, drawing a portrait of the system,
so you need to catch as many details as you can. The initial installation information is critical.

Administrator's Logbook: Operating System Installation
System: E12345678

Red Hat 7.3 stock KDE workstation installation

SWAP 64MB /dev/hda
/boot 16MB /dev/hda2
/ 8112MB /dev/hda3

Guest user account created.

If you add a user account, list the date, the command, the user—specific data, and anything else
you'd need to replicate the action. It will take a little while to make this second nature, but when you

19

encounter a system failure, you'll consider the journal-keeping time well spent.

Some new system administrators realize that they need a journal, but they attempt to keep one on
one of the computers under their control. This is fine for a while, but if that system develops a
problem, there may be no journal available for use. You might say that you'd never make that
mistake. If so, congratulations, but we've heard a number of horror stories in which a computer that
was used to maintain the journal was the one that failed.

Throughout the rest of this book, we will include examples of possible journal entries for the topic
being discussed, in order to enforce the importance of journal-keeping and to illustrate the
information that's relevant in that context.

Communicating with Users

We've alluded to the lack of understanding that users will have of your job and the time required in
doing it. This gap in understanding is often caused by a lack of communication between system
administrators and users. Sometimes, in a rush to explain a delay that was not immediately
communicated to the user, a system administrator will make claims that are simply untrue. "l got
called away to do something for the boss, so | was unable to setup your mail client. I'll get to it as
soon as | can." Sometimes this is true, of course, but many system administrators make these
claims so often that they aren't believed or taken seriously by the users they serve. This makes the
job of communicating with users all the more difficult.

We have each found that once we establish ourselves as credible, users are not irritated when we
have to tell them that their task has been assessed a lower priority than another. Yes, they want the
job done as soon as possible, but most people have more than one responsibility and understand
when you do. Earn the trust of your users by being responsible and responsive, and your job will be
significantly less taxing. When there is a delay in a promised repair or configuration, a quick phone
call or e-mail will usually allow you to keep the user's trust. Many system administrators think that
they'll just explain the delay when they actually do the work, but we find that it is preferable to follow
the maxim "do unto others as you would have them do unto you." Truthfully, if you show respect to
your users, you will have their respect as well, and your work environment will be all the better for it.
Of course, most of you learned this from your mothers, but the number of system administrators
who don't follow this advice is astonishing.

There are several ways to communicate with your users. Reluctant computer users may respond
better to a telephone call; the more computer—-savvy may prefer e-mail or an instant message.
E-mail is essential whenever you need to communicate something to more than one user or when
the communication is lengthy, but unless you use return receipts on your e—-mail, you won't know if
users have even checked their e-mail at all. Instant messages have the advantage of allowing you
to see whether or not the user is online, but since some users remain logged in for days at a time, it
is not perfect either. We mention this to suggest that you tailor your communication method to the
specific user as much as possible.

However you communicate, be sure to give an approximate completion time for the requested task,
if only to give users some way to better estimate when they'll get their own tasks done. If your
estimate is far off the mark or you are interrupted by a higher priority task, you will find that a
follow—up e—mail will decrease the users' frustration, and you won't be called or e-mailed every few
minutes to find out when you'll get to their tasks.

Whichever method of communication is appropriate to your purpose, communication is a critical
factor in maintaining a good working relationship with the users who rely on you.

20

Working on the System as Root

Root access is the power of the system administrator. There's a t—shirt that bears the message,
"Bow down before me for | am root," and that isn't far from the way many system administrators
view things. For a new system administrator, having access to the root password is a very cool
thing. Root access means you are unstoppable. The root user, also known as the superuser, has
the authority to do anything, anywhere on the entire system. This power may include any computers
that are networked to that machine as well. You can do very significant things, but inherent to your
new power is the potential to make very significant mistakes! Root access allows you to make huge
mistakes if you are careless. The general rule is "don't log in as root unless you need to." If you
need to log in as root, perform the task that requires root access and immediately reassume the
identity of your normal user. You can use the sudo utility, which is described shortly, to minimize the
number of commands that you or your staff have to log in as root to perform as well as to record
which of you performed which task.

You can also use the /etc/securetty file to restrict the set of terminals from which root can log in.
This file is a list of TTY numbers, from vc/1 through ve/11 and tty1 through tty11 by default, which
the login program reads when it is run. The default settings mean that root is allowed to log in from
any of the virtual terminals but not remotely. Adding pseudoterminals (ttypn) would allow root to log
in remotely. This method is not very secure and in most cases should not be done. To completely
disable root login, forcing the use of su instead, /etc/securetty should be an empty file. Do not delete
the /etc/securetty file, since doing so means that root can log in from anywhere. The default setup is
very good and should rarely be changed.

NotelIn Linux, terminal and TTY most commonly refer to a virtual terminal, which is simply an
alternative login session. There are also physical devices called terminals, which should not
be confused with workstations. These teletypewriter (TTY) devices, consisting of little more
than a keyboard and monitor, were the only means of connecting to Unix mainframe and
minicomputers through the 1980s and still have uses today. Chapter 11, "Serial
Communications, Terminals, and Modems," shows how to configure these terminals.

Train yourself and the other users who are allowed access to the root password to be very
deliberate when logged in as root and not to abuse the power it gives. A mistake you make while
logged in as root could delete files that are required for the system to run properly. We once heard
of a system administrator who deleted the /tmp directory, causing the whole system to become
unstable. Another system administrator deleted the password file. Still another deleted the entire
/home directory, taking all the users' files and functionality away until it could be dumped from a
backup tape and making his boss very unhappy. In truth, most of these mistakes are recoverable if
you perform regular backups, but they are embarrassing and time—-consuming.

Becoming the Root User

How does one become the root user? This section outlines the most commonly used techniques.
su [username]

If you logged in to the system under your own user account, you need to use the su command to
assume the privileges of root. The su command allows you to initiate a new shell in which your user
ID and group ID are temporarily replaced with the username you specify. It is important to note that
although you seem to "become" root, you are actually only using an effective user ID and group ID.

Your identity is still known to the system; your actions are still very traceable. The command to

21

change to the superuser is:
$ su

Using the su command without specifying a user name implies root. You will be prompted for the
root password and must properly authenticate to be granted root access. Failure to do so will send a
message to the root user about a failed su attempt.

If you successfully authenticate, you will retain the environment of your original user account but will
be allowed to change into directories owned by the root user, execute binaries that would not be
executable by your normal account, create files in directories that are restricted to root, and much
more. Your PATH will remain as it was with your normal user, so many of the more dangerous
commands will not be accessible unless you specify their full path.

su — [username]

Adding the — parameter starts a root login shell wherein the environment of the root user is
assumed as well. The command for this would be:

S su -

You will be prompted for the root password, and failure to authenticate will leave you as your own
user and send a message of the failed su to the root user. If you authenticate successfully,
however, your working directory will be changed to root's home directory. From this point on, you
are effectively root, although your identity is still known.

Starting an X Session as Root

If your network uses the X Window System GUI interface (discussed in Chapter 13, "The X Window
System"), you can run an entire X session as root by changing to the root user and then starting X.
Everything done in that session will be performed as if you had logged in as root from the original
login prompt, although again your true identity will be recorded. It is easy to forget that you have
assumed superuser privileges, so this session should be handled with special care. One method of
ensuring that you don't forget that you started an X session as root is to use a totally different X
environment for the root user than for the other users. You might make the background of the root
user's X session red or yellow to flag the session as initiated by the superuser.

Because of the potential for disaster that is associated with doing general work as the superuser, it's
better to use your normal user account to log in and to initiate the X session. Once you have the X
session up and running, you can then bring up a terminal and use the su command to "become"
root within that terminal and perform the required tasks. As soon as you've finished, exit from the
superuser identity and proceed as your normal user. This method is far less dangerous.

sudo

sudo (which stands for "superuser do") is a Linux command that system administrators commonly
use to grant "superuser" or root privileges to a user or group of users temporarily so that they can
perform specific operations they would not otherwise be allowed to do.

sudo logs its use, keeping track of who used it and what was done. It also sends e-mail to the
superuser if someone tries to invoke sudo who does not have the necessary access to do so. Once
authenticated, sudo grants the requested privilege for five minutes at a time (this default is
configurable), and each command issued gets its own five minutes. The command looks like this:

22

$ sudo shutdown -r now

sudo first validates the user's identity by querying for a password. It then consults the file
/etc/sudoers to determine whether that user has permission to execute a command as the specified
user or as root if no other user is specified. The /etc/sudoers file looks like this:

sudoers file.
This file MUST be edited with the 'visudo' command as root.

See the sudoers man page for the details on how to write a sudoers file.

+H H H H H

Host alias specification
User alias specification
Cmnd alias specification

User privilege specification
root ALL=(ALL) ALL
someuser ALL=(ALL) ALL

If the user is listed in /etc/sudoers, a password prompt is issued. If the user can authenticate with
the appropriate password, the referenced operation is performed and a five—minute timer will be set.
During that five minutes, the authenticated user can perform sudo commands without
re—authenticating.

sudo is a critical tool. Thanks to it, you can grant certain users and administrative staff access to
perform some high-level tasks without actually giving them the root password. (Of course, you'll do
this only when the benefits of letting the user handle the task outweighs the potential risks. The user
needs to be not only trustworthy but technically competent.) This tool is available on most standard
distributions of Linux and is available for most flavors of Unix. For more extensive descriptions of
sudo, visit its home page at http://www.courtesan.com/sudo/man/sudo.html, and see Ramon
Hontanon's Linux Security (Sybex, 2001).

In Sum

This chapter has discussed many aspects of Linux system administration, but since the entire book
is about administration, it has only scratched the surface. Use this chapter as a guide to future
chapters. Next we'll work through the installation process, using Red Hat Linux as a model.

23

Chapter 2: Installing Linux

Overview

Linux system administrators often find themselves at the transition point between some other
operating system and Linux. In the process, they are called on to make hardware
recommendations, install Linux on servers and workstations, and set these systems up for use.
These systems may be installed via a CD-ROM, from a hard disk, or even across a network (using
NFS, FTP, HTTP, or some other protocol). Sometimes they are installed individually and sometimes
in batch. Sometimes as an administrator you aren't transitioning but developing a plan for a
Linux—-based network of servers and workstations and implementing that plan. Whatever the case,
the information in this chapter will help you along your way. To achieve the perfect system, you
need to have both optimized operating system and application software and state—of-the-art
hardware. In this chapter, we'll look at hardware performance issues that affect your selection as
well as the installation and initial configuration of the very capable Linux operating system onto a
server and a workstation.

Benchmarks

Although many claims are made about what hardware works most efficiently, it is very difficult to
compare the performance of differently configured systems. There are many benchmarking tools
available for Linux; these provide ratings that are easier to compare, but even with these you must
ensure that you're comparing systems that differ only in the item being compared. This controlled
comparison is not always possible but is preferable if it can be obtained. If you read benchmark
results in a white paper or on a Web site, remember to consider the source for dependability and
impartiality.

Here's an example. Ziff-Davis Media Inc., one of the leading information authorities for assessing
technology and the Internet, in January of 1999 posted on their site a synopsis of benchmarks
comparing several distributions of Linux and Windows NT running on like hardware. The Linux
boxes were running Apache and Samba only and the Windows NT boxes were running Internet
Information Server 4.0 with service pack 4. No unneeded services were running on any of the
machines being compared. The benchmarking tool was Ziff-Davis Media Benchmarks, one of the
industry standards. This test gave all of the Linux flavors tested a clear win over the Windows NT
boxes. Read the results on the Ziff-Dauvis site at: http://techupdate.zdnet.com/techupdate/filters/sp/.

Now consider another example. In April of 1999, a company called Mindcraft developed a set of
benchmarks comparing a Microsoft NT 4 server with a Linux server wherein Windows NT came out
the clear and decisive winner. Mindcraft admitted that Microsoft had funded the benchmarks but
claimed that they were fair. Read the report and decide for yourself what to believe:
http://www.mindcraft.com/whitepapers/first—nts4rhlinux.html.

To give you the whole story, Mindcraft offered to run the tests again with some Linux personnel
involved this time. The results were in favor of Microsoft again, but there was a lot of room for doubt.
The story is available here: http://www.mindcraft.com/whitepapers/openbenchi.html.

This is not the only set of conflicting benchmarks between Linux and Windows—far from it. The
point is that benchmarks can be developed that will support any claim. Never take benchmarks at
face value unless you have carefully and methodically run them yourself. Don't immediately trust
your own benchmarks. Too many system administrators download benchmarking packages, run

24

them, and depend on the results. Evaluate the system load, configuration, and appropriateness of
the hardware/software combination for the task. Ensure that the systems are as equal as you can
make them, and then use the benchmarks for guidance.

Selecting Hardware

There are many factors that determine how well a computer system will perform. Certainly the
hardware plays a large part. Older or less capable hardware generally slows down a system.
Anyone who has upgraded from a low—end processor to a top-rated processor can tell you the
significance of the upgrade. Everything seems to go faster, even though only some functions have
actually sped up. Now try running poorly configured software on a state—of-the—art machine. It runs
better than on lesser hardware, but it is not the best that it can be. Reconfiguring will make a great
difference provided that the hardware can handle the system load. Optimized software on low-end
hardware is similarly disappointing. The trick is to optimize the software on the best hardware for the
intended task.

Just as a car's engine can determine how fast it will go, the hardware components in your Linux
system determine how it will perform. We'll look at the minimum acceptable hardware for a Linux
system and some example architectures for different types of Linux systems. We'll also discuss
some issues to consider in achieving optimal performance.

Minimal Acceptable Hardware

One of the best-known facts about Linux is that it can make use of old computer parts that you
have stored away somewhere. Many a high school student has salvaged an old 80386 machine and
turned it into a decent print server or mail server. Originally, Linux was designed to install on an
80386 with as little as 4MB of memory, but with the rapid changes in processor speed and memory
size, designing anything to work with only 4MB of memory became unnecessary. Red Hat requires
at least 32MB of memory (recommends a minimum of 64MB) and 350MB (recommends a minimum
of 650MB) of hard drive space (without X) for its 7.3 release. Other distributions have slightly
different recommended requirements, but these don't reflect differences in the needs of identically
configured systems; rather, they reflect differing default installations and usage assumptions.

Below is some basic information about selecting performance-oriented hardware for a Linux
system.

CPU Performance

One of the most important elements in determining a computer's performance is the Central
Processing Unit (CPU). A new CPU seems to hit the market almost weekly. In the Intel-compatible
x86 market, there are basically four players: Intel, Advanced Micro Devices, Inc. (AMD), VIA (which
bought Cyrix in 1999), and startup Transmeta. New faces are appearing in the microprocessor
technology market, but many target architectures other than the x86. Linux is known to run on all of
those listed here:

e Intel/AMD/Cyrix 386SX/DX/SL/DLC/SLC

¢ Intel/AMD/Cyrix 486SX/DX/SL/SX2/DX2/DX4
¢ IDT WinChip

¢ NexGen NX586

e Cyrix 6x86, 6x86MX, and M-II

25

e VIA Cyrix Il

e AMD K5, K6, K6-2, K61l

e AMD K7/Athlon (including the Duron series)
¢ Transmeta Crusoe

¢ Intel Pentium and Pentium MX

¢ Intel Pentium Pro

e Intel Pentium Il (including the Celeron series)
¢ Intel Pentium Il

¢ Intel Pentium IV

Note IDT and NexGen were bought out by VIA and AMD, respectively. Transmeta CPUs have yet
to become popular, but they're poised to make inroads in portable devices because of their
low power requirements. Many third parties resell CPUs under their own names, often with
adapter boards to make the CPUs work on a wider range of motherboards than originally
intended.

The current leaders of the market are the Intel Pentium IV and the many varieties of AMD K7 Athlon
processors including the Athlon, the Athlon MP, the Athlon XP, and the Athlon 4 for notebooks. For
information on Intel processors look to http://www.intel.com/; for AMD, the site is
http://www.amd.com/. Comparisons between the two are available on each site and independent
comparisons may be found using your favorite search engine. Historically, Intel has been the market
leader, with AMD playing catch-up, but in some specific applications like video rendering, AMD has
been benchmarked as faster. Because the competition between Intel and AMD is ongoing and
because each has its strengths and weaknesses, it is not possible to accurately determine an
overall winner between the two. It is better to look at the functions a computer will be asked to
perform and read all available comparisons between the processors you are considering before
choosing. Although Linux also supports VIA Cyrix chips, they are not really competitive with their

AMD and Intel counterparts. VIA Cyrix processors will give you no problems in Linux, but if it's

performance you're looking for, look to the Athlon or Intel processors.

Linux also runs on a wide variety of non—x86 CPUs. Of particular interest, the Linux ports to the
PowerPC (PPC), Alpha, and SPARC CPUs are all mature, and all these CPUs are supported by
several Linux distributions. But unless you need an unusual feature of one of these CPUs (such as
extraordinary floating—point power), you're probably better off going with an x86 CPU for Linux use,
because x86 hardware is inexpensive and Linux is still best supported on x86 systems. If you've got
an existing Macintosh or Alpha box, though, and want to run Linux on it, you can certainly do so.

Random Access Memory

There are two main categories of Random Access Memory (RAM): system and video. Although
video RAM is important in issues of rendering speed and graphic resolution, system RAM affects
the performance of all software, whether or not it is graphics—intensive. There are several types of
RAM on the market today. Of course, if you have a motherboard selected already, your RAM type
will be dictated by the type supported by that motherboard. If you haven't, however, you may find
yourself wading through the many subcategories of RAM available today. As of this writing,
synchronous dynamic RAM (SDRAM) and Rambus dynamic RAM (RDRAM), and Double Data Rate
(DDR) Ram are the most common types of system RAM, DDR being the fastest. Older systems
used ordinary dynamic RAM (DRAM) or variants of it.

Whenever possible, you should buy memory modules in the largest amounts that will support your
configuration. For instance, if there are four slots that will accept up to 256MB modules, it would be
better to buy two 256MB modules than four 128MB modules, since the former allows for system
growth without forcing you to replace existing modules. You can later add two more 256 MB

26

modules for a total of 1GB instead of having to pull out the four 128MB modules and add four
256MB modules. Plan the most efficient upgrade path when you purchase computer components.

We've just outlined the bare—minimum hardware required to run Linux. As a system administrator,
your job is to develop systems that are performance-oriented rather than just inexpensive, so you'll
probably want more than the minimum. The next section describes system hardware requirements
in terms of the tasks that a given system needs to perform.

Selecting Hardware by Intended Usage

Now that we've seen the minimum hardware required for any Linux system, we can look at three
different categories of computer—a low—end workstation, a high—end graphics workstation, and a
basic server—and the minimal requirements for serving those roles effectively. These are opinions
based on our own experience. As Linux users often say, your mileage may vary. Use our
experience as a guideline, keeping in mind that the minimum requirements may be insufficient if the
system load becomes unusually high. We have tried to allow for a high system load, but at some
point, a more capable CPU, more memory, and/or hard drive space might be required. Always
consider the work being done and which parts of the system are being stressed the most. Look to
Chapter 16 for more optimization techniques and ways to determine when the current system is
overly taxed, and upgrade components as needed.

Configuration A: A Basic Workstation

The first configuration we'll look at is pretty much the minimum for any system that you will
purchase. Configuration A is a workstation used primarily for word processing:

e Pentium Il or AMD K6 CPU

* 64MB of RAM

e CD-ROM drive

e Floppy drive

¢ 20GB hard drive (IDE or SCSI)

e SCSI disk controller (if appropriate)

e SVGA graphics card with at least 8MB of video RAM
e Ethernet card (10BaseT or as appropriate)

¢ 15-inch SVGA monitor

The hardware in this configuration is available for very little money overall. There is really no reason
to buy less than this. We consider 64MB of memory to be the minimum because most systems
come with this amount by default. Sometimes a system will come with only 32MB of memory, but
with a little extra effort you can usually find a system with 64MB from a different vendor for close to
the same cost. A system used for word processing is not very CPU-intensive. There generally are
not multiple tasks waiting to be serviced, so a high—-speed CPU is really unnecessary. Similarly,
such a system is not generally going to require more than 64MB of memory. Documents are usually
broken into small enough pieces as to be manageable on this system. The floppy drive and
CD-ROM drive are simply for software update purposes and other general tasks. The 20GB hard
drive is the smallest that's readily available today, and is more than adequate for a basic installation.
Certainly storage space should continually be monitored to determine if and when additional space
is warranted. You can use either SCSI or IDE hard drives since speed is not critical on such a
system. The SVGA graphics card and monitor are the minimum readily available since this system
is not geared toward graphic applications. Even a 4MB video card will do if you have one lying
around somewhere. The network card need only be suitable to connect this system to the local
network. Usually this will be 10BaseT, although 100BaseT is growing more common, and 100BaseT

27

cards cost little more than 10BaseT cards. You may want to add more components if you have
additional specific needs, such as a modem, scanner, or CD—ROM burner.

Configuration B: A High-End Graphics Workstation
Configuration B is a workstation used to develop graphics or do desktop publishing:

e Pentium Ill or AMD K6-2 or Athlon

¢ 512MB of RAM

e CD-ROM drive

e Floppy drive

¢ 40GB hard drive (IDE or SCSI)

e SCSI disk controller (if appropriate)

e SVGA graphics card with 32—-64 MB of video RAM
e Ethernet card (10BaseT or as appropriate)

e 17— or 21-inch SVGA monitor

Configuration B needs a more powerful processor since graphics production and desktop publishing
will each put a slightly higher load on the processor. The memory has been increased to 512MB to
allow the system to handle the large amounts of data involved in graphics or to load large
documents into memory. More hard drive space is needed since graphics files are generally quite
large, especially at higher resolutions. Similarly, a larger monitor is needed since the job of editing
graphics and other printed matter involved in the publishing process can cause eyestrain if
performed at too low a resolution.

Configuration C: A Basic Server
Configuration C is a server running basic services that the popular distributions turn on by default:

e Pentium Ill or AMD Athlon

¢ 128MB of RAM

e SCS|I CD-ROM drive

e Floppy drive

¢ 20GB SCSI hard drive

e SVGA graphics card with 4MB of video RAM
e Ethernet card (10BaseT or as appropriate)

¢ 15-inch SVGA monitor

In configuration C, we have selected a 128MB of memory even though a smaller amount would
probably be adequate if the Web serving or mail serving load were particularly light. You can use a
smaller hard drive than with the graphics workstation, since with POP3 mail that is retrieved from
the server to the user's workstation will no longer be stored on the server. Your specific needs may
dictate a larger hard disk if, for instance, you use IMAP instead of POP3. Restrictions to the size of
incoming mail also tempers the need for more storage. Certainly a system that has more than 50
users or is used in support of a Web site whose content is linked to a database would benefit from
additional space. The server's hard disk is SCSI because SCSI better handles heavy disk-access
loads, particularly in a multi—-device configuration.

Specialized Hardware Performance Solutions

Beyond the minimal systems for specific uses described in the preceding examples, there are other
items the administrator should consider in planning a high—performance system. These include

28

support for multiple processors and disk subsystems. These items can make for a huge
performance gain in specific situations and almost none in other situations.

Symmetric Multiprocessing

One way to add computing power to a computer is to add additional processors to a motherboard
that supports Symmetric Multiprocessing (SMP). SMP allows you to share the processor's workload
across up to 16 processors in a single computer. In practice, because of limitations of the x86
architecture, actual implementation has not exceeded eight processors. Still, that's enough to
significantly speed up programs written to support SMP or systems that run multiple CPU-intensive
programs. Only multithreaded programs will truly benefit from SMP. Multithreading, also simply
referred to as threading, is the process of cloning processes to split the workload within a program
into separate processes that can be routed to separate processors in an SMP system. Basically, the
rule is: processes and kernel threads are distributed among processors; user—space threads are
not. If you notice that your single processor is idle much of the time because of a slow disk drive,
the system probably won't benefit much from additional processing power. If your system has many
simultaneously executing processes, and CPU load is very high, then you are likely to see
increased system performance with SMP. Since SCSI disk drives process multiple commands
without tying up the CPU, you can see significant gain when using multiple processors. The Linux
make command, used to compile kernels and other software packages, has a —j parameter that
allows it to take advantage of SMP and significantly speed up the process of building a kernel. The
syntax is shown below:

make [modules|zImage|bzImages] MAKE="make -jX"

(X is the maximum number of processes.) The distribution of the workload is not, by definition,
symmetrical since some specific functions may be assigned to a specific processor rather than
spread across all processors within the system. Be that as it may, you can see extremely significant
performance gains when adding up to three additional processors; beyond four processors,
however, the performance gains diminish. Adding a second processor does not usually double the
speed of the process compared to a single processor. It allows for portions of that process or an
entirely separate process to be handled by the second processor, thereby giving a performance
gain. However, if the process has not been designed to spread the workload among multiple
processors, there may be no gain at all.

Linux Clusters

Clustering is the process of coordinating the workload for a given project among several
independent computer systems, an alternative to the sharing of processors within one computer that
we just discussed. One example of clustering is Linux Virtual Server (LVS) clustering, as supported
in the Linux kernel and implemented by, among other things, Red Hat's Piranha environment.
Figure 2.1 illustrates the basic idea behind an LVS cluster. Essentially, the LVS router (there are
two in Figure 2.1 to avoid a single point of failure) interfaces between the Internet and a group of
identically configured servers. For example, the real servers in Figure 2.1 could all be configured as
identical Web servers. Instead of running a heavy Web server off just one computer, then, LVS
spreads the work across several computers. Provided the LVS router has fast enough network
interfaces, the result is an improvement in speed and reliability.

29

Internet

Backup LVS

Primary LVS Router
Router |l

|l
|l

J=m J=m =
= — o ——— P
| E— | I— =
1 1 [E—]
Real Servers
Node 1 Node 2 Node 3

Figure 2.1: LVS cluster topology

LVS provides for floating server IP addresses. The LVS router has a fixed IP address for the outside
world. The IP address will be assigned to either the primary LVS router or its backup and will
automatically be transferred if the machine to which it is assigned goes down (a process known as
failover). In this instance, the IP address and the routing tables are synced from the downed
machine by the Ivs daemon, which handles communication between the two machines. The pulse
daemon runs on both LVS machines to allow the secondary node to determine whether the primary
node is active. The ipvsadm command is the command-line tool for administering the LVS
machines in the cluster.

The rest of the cluster consists of real server machines to which FTP or HTTP service requests are
routed via the LVS machines' second network card. The LVS router machines each run one
daemon for each FTP or HTTP server running on each real server machine. This LVS router
daemon will connect to the port of the real server to ensure that the system is still available to take
the FTP or HTTP requests. Load balancing between the real servers may be based simply on which
server's turn it is, or it can be sophisticated enough to qualify as true load balancing. For more
information about this type of cluster, refer to the http://www.linuxvirtualserver.org/ Web site.

30

Disk Subsystems

Disk I/O is another potential bottleneck for systems that require very high performance. Disk access
is measured in milliseconds, RAM in nanoseconds. The two basic techniques for making disk 1/0
more efficient are RAID (Redundant Arrays of Inexpensive Disks) and disk caching, both described
below. The method you choose depends entirely on your specific situation. A RAID array, which
requires a significant hardware investment, may or may not give you significant gain; maximizing
your disk cache is almost always a good thing.

RAID Arrays

There are several different levels of RAID, all of which use multiple hard disks connected to a single
computer to improve speed, reliability, or both. Levels 0-5, which are the most commonly used, are
primarily concerned with reliability (data redundancy) but do offer performance increases in read
operations. Redundancy allows for multiple copies of the same data on different drives so that if one
drive fails, the data is not lost. The different levels vary in performance as measured in read or write
times:

RAIDO This level is aimed specifically at increasing performance and provides no
redundancy. In RAIDO, data is striped across multiple disks. Striping is a procedure
whereby several drives appear to the computer system as a single drive. On these
drives, the data is distributed into small partitions, intermixed in such a way that the
virtual drive seen by the computer is composed of stripes from each drive. This
allows simultaneous reads from multiple drives, which can give a significant
performance boost.

RAID1 This level performs mirroring of data, meaning that the same data is stored on
all drives. Reads tend to be faster than with a single drive since data can be read
simultaneously from both drives. Read-balancing had some problems in Linux
kernels, although this has been ironed out in the 2.4 kernels. If you wish to take
advantage of this, you should probably consider a kernel upgrade. Writes tend to be
slower since two copies of the data must be written. RAID1 may mirror data between
two local drives or between drives on two different hosts.

RAID2 Not supported in Linux, RAID2 uses error correction codes to compensate for
drives that do not have built-in error detection. Since most drives include error
correction now, RAID2 is seldom used.

RAID3 Not supported in Linux, RAID3 stripes the data across all drives at the byte
level. Parity information is stored on one of the disks in the array to protect against
data loss in the event of a single disk failure.

RAID4 Similar to RAID3, except that the data is striped at the block level. Parity is
maintained on one disk as in RAID3. This causes the parity disk to be the bottleneck.

RAID5 Similar to RAID4, except that parity is now split between all the disks in the
array. A RAID5 array can withstand a single disk failure. Write performance is
significantly slowed since a single write operation requires old data and parity to be
read from each disk, the new parity to be calculated, and the new data and parity to
be written to each disk in the array. However, the improvement in reading speed from
striping across multiple spindles goes a long way toward offsetting the overhead of
performing the write parity calculations. It is not unusual for a well-configured RAID5
software array to perform as well as or better than the individual disks would.

31

RAID can be implemented in hardware or software. The hardware implementations are extremely
fast and extremely costly. The software implementations, on the other hand, are relatively
inexpensive. As of kernel 2.2.16-22, which was standard for Red Hat 7.0, RAIDO, RAID1, and
RAID4/RAIDS5 could be configured in the kernel. There was also an option to auto—detect RAID
partitions that worked by detecting any partitions created with a partition ID of Oxfd, as opposed to
the usual Linux partition type code of 0x83. (You can check or change a partition type code with the
Linux fdisk utility, as described in Chapter 6.)

To see what RAID support you already have installed, look at the /proc/mdstat file. If you are not
running any of the RAID modules that exist in /lib/modules/kernel_num/block, the file will not exist or
will contain the following:

Personalities : []
read_ahead not set
unused devices: <none>

If you have any RAID modules running, you'll see the RAID level(s) listed between the brackets
after Personalities.

Note Just because RAID support is present on your system doesn't necessarily mean that it's
being used. It's also possible to use RAID on some disks or partitions but not on others.

Let's assume a case where you want to stripe data (RAIDOQ) across two partitions that you marked
as RAID partitions when you created them with the fdisk utility. For most RAID levels, these
partitions must be the same size. We're using IDE here, but SCSI works also. Now you need to
configure the /etc/raidtab file for your particular configuration. On the standard Red Hat 7.3 system,
this file won't exist until you create it. There are several examples you can use as models; look at
the raidtab man page for one of them. Listing 2.1 is a sample /etc/raidtab file, tailored to our
scenario.

Listing 2.1: A Sample /etc/raidtab File

raiddev /dev/md0 /* RAID device name */
raid-level 0 /* RAID Level we use */
nr-raid-disks 2 /* # of RAID disks */
persistent-superblock 1 /* use the pers-sb */
chunk-size 8 /* stripe size bytes */
device /dev/hda9 /* partition */
raid-disk 0 /* index */
device /dev/hdb6 /* partition */
raid-disk 1 /* index */

The /etc/raidtab file uses C-style comments—anything between /* and */ is a comment and is
ignored by the system. Important elements of Listing 2.1 include:

raid-level The RAID level, as described above.
nr-raid-disks The number of disks in the RAID array.

persistent-superblock Writes a special superblock to the RAID disk so time is not
wasted reading the one on the filesystem disk.

32

chunk-size The number of bytes that go into each stripe.

device For each disk (up to the value specified for nr-raid—disks), you must specify a
Linux partition device file to be used in the disk array. These partitions don't need to
be in equivalent positions on the physical disks—for instance, in Listing 2.1, the array
uses /dev/hda9 and /dev/hdb6.

raid-disk For each RAID device, you must specify the position in the RAID
array—which device is the first in the striping sequence, which is second, and so on.
These values are numbered starting with 0.

Now we have our raidtab file set up, and we've created the partitions to be auto-detected.
Auto-detection is configured into the Red Hat 7.3 kernel by default. Now use the insmod command
to start RAID-0 as follows:

insmod raidO

Finally, you need to run the mkraid command to configure your RAID-0 array and format the
metadisk for use.

mkraid
mke2fs -j /dev/md0

Warning Issuing the mkraid command destroys any data that might have existed on the partitions
specified in the /etc/raidtab file. If you want to convert existing partitions to a RAID
configuration, you must first back them up, then do the conversion and restore data.

Note Using an mke2fs —j device command creates an ext3 filesystem on the device. This
device may then be used under ext2 where the journal file will be ignored or under

ext3 where a journal file is required.
Disk Caching

Disk caching uses system memory to cache disk I/0O. Caching data from the disk into RAM
improves performance significantly because RAM access is much faster than disk access. The disk
cache stores the most recently used data from the hard drive in a memory buffer that was allocated
when the system started. When a program makes a disk read request, the disk caching software
intercepts the call and checks the cache buffer to see if it contains the required data. If so, the data
is read from memory instead of the disk. Buying hard drives with lower access times and activating
disk caching in your BIOS settings will give you significant performance gains.

The effectiveness of a cache is pretty much determined by its size. If the cache is too small, the
data is often flushed before it is even reused, rendering the cache useless. A cache that is too large
uses up free memory and can cause the system to swap to disk, which is also slow. Linux uses all
free RAM as a buffer cache, but this cache is automatically reduced in size when additional memory
is required by an application. There is no configuration required.

Types of Hardware to Avoid
Just as there are types of hardware that can make your system more efficient or easier to use, there

are types that can make it less so. Some hardware devices will actually slow the system down,
while others simply will be hard to support.

33

Proprietary Hardware

Proprietary hardware is any device for which the manufacturer supplies its own driver directly to
buyers rather than making the necessary information available for operating—system developers to
create the driver. This approach may pose a problem since all too often companies create drivers
for Microsoft products but neglect to create drivers for other operating systems, like Linux. The
Linux community is sometimes able to reverse—engineer a driver, but this takes time. More and
more companies are creating Linux—compatible drivers for their products, but this is a new trend, so
proprietary hardware remains a gamble. Until a few years ago, the information required to create
drivers for some Diamond video cards was considered proprietary, so these cards were not
recommended. Now Diamond makes this information available, and Diamond cards are supported
Linux hardware.

Some types of proprietary hardware (particularly modems and printers) are commonly referred to as
"Windows-only" devices, because drivers are typically only available for Windows. This designation
is fluid, however; today's "Windows-only" device may have a Linux driver available tomorrow.
Nonetheless, you shouldn't assume that any given device will have a Linux driver available in the
future.

Some proprietary devices use stripped-down hardware that requires extra attention from the
computer's CPU. This is particularly common in inexpensive internal modems (often called
WinModems or software modems, although the former term is a trademark of 3Com, and so
technically only applies to certain 3Com products), low—end laser printers, and so—called AC-97
sound hardware. Linux drivers are appearing for some of these devices, but it's usually best to avoid
them even when drivers are available, because they chew up CPU time that might be better spent
elsewhere.

TipIf you're stuck with a software modem, check http://www.linmodems.org/ for information on
drivers for these devices. The Linux Printing Support Database
(http://www.linuxprinting.org/printer_list.cgi) hosts information on drivers for printers, including
the handful of proprietary—protocol printers for which Linux support exists, but may not ship with
Linux.

Hardware Compatibility

For other types of hardware, like CD—ROM drives, sound cards, and so on, Red Hat maintains a
compatibility list at http://www.redhat.com/apps/support. We have run across hardware that was not
supported, but most of it was supported in subsequent versions. SuSE lists its supported hardware
at http://www.suse.com/us/support/. Caldera posts its hardware compatibility information at
http://www.calderasystems.com/support/hardware/. Most other distributions rely on the
Linux-Hardware Compatibility HOWTO available at
http://www.ibiblio.org/mdw/HOWTO/Hardware—-HOWTO.html.

Despite the fact that various distributions have different hardware compatibility lists, hardware
compatibility actually varies very little between distributions. Most hardware support resides in the
kernel, which is the same from one distribution to another (give or take some minor tweaks).
Distributions may ship with slightly different kernel versions (2.2.16 versus 2.2.17, say), or one
distribution may incorporate experimental drivers into its kernel whereas another may forego that
uncertain benefit. If hardware works in one distribution, though, it's almost certain that you can make
it work in another by obtaining an updated kernel, possibly applying some patches, and recompiling
the kernel. (Chapter 8 discusses kernel compilation.) A few devices, such as video cards, printers,
and scanners, require support in non-kernel applications, but similar comments apply to these

34

devices.

Selecting a Linux Distribution

A Linux distribution is a package consisting of a selected kernel and supporting software that meets
the distributor's acceptable standards for hardware support and stability. The major Linux
distributions are generally considered to include Red Hat, Mandrake, Caldera, SuSE, Slackware,
Debian, and Corel. Each of these is available on CD—-ROM and also via FTP over the Internet in a
form designed to be written to a CD—ROM or even, in the case of Slackware, to floppies designed to
initiate a network installation. (One good clearinghouse site for distribution image files is
http://www.linuxiso.org/.)

If you mention which distribution you intend to use to a Linux advocate, be ready for an explanation
of why a different distribution is better. On any Linux mailing list, friendly arguments called distro
wars frequently occur: one user mentions his distribution by name, and other members of the list
feel compelled to compare that distribution with whatever they are currently using. The fact that
these are e-mail lists usually prevents bloodshed.

Because Linux kernel development is separate from the development of individual distributions,
there are several common elements among the different distributions. Some of the more basic
common truths about Linux installations are listed below:

e All distributions need to follow the Filesystem Hierarchy Standard (FHS) or its predecessor
the Linux File System Standard (FSSTND). Chapter 7 discusses the FHS in detail.

e All major distributions, with the exception of Slackware, have some sort of
package-management system to help keep track of what packages have been installed and
what files these packages contain. The Red Hat Package Manager (RPM) is the most
common Linux package manager. It is used with Red Hat, Mandrake, SuSE, and Caldera.
Debian and Corel can handle RPM packages, although these two work best with Debian
packages. Slackware uses tarballs natively—file compilations created with the Linux tar
utility. It's possible to create a tarball from an RPM or Debian package. Chapter 8 covers
installation of packages in RPM, Debian, and tarball formats.

e All major Linux distributions use the Linux kernel, which has grown from Linus Torvalds'
original code. A few, like Debian, intend to be kernel independent, meaning that the
distribution will run with kernels other than that used in other Linux distributions. In Debian's
case, the HURD project is working toward producing a kernel that can be used instead of the
Linux kernel—although the HURD kernel is available, it is not yet recommended for use.

The following sections discuss these distributions in sufficient depth to see the similarities, the
differences in the targeted user bases, and basic features of each.

Warning Don't try to compare version numbers across distributions. For instance, Red Hat Linux
7.3 is not necessarily more advanced than Debian Linux 2.2.

Red Hat Linux

Red Hat Linux is currently the most popular distribution in the United States and possibly worldwide.
It has a reputation for being easy to install and configure. Large improvements were made in the
install process as version 6 evolved. Now in version 7.3, Red Hat's installation is very smooth. Red
Hat's official Web site is located at http://www.redhat.com/.

35

Installation Features

Here are some of the most important installation features of Red Hat Linux. New features are added
all the time; check Red Hat's home page periodically for updated information.

Kudzu

The Red Hat distribution has made great progress in the area of hardware detection during the
install process with the introduction of the Kudzu utility. This utility, included beginning in version
6.1, looks for new hardware and allows the user to configure any new hardware that Kudzu
recognizes. In support of this, Kudzu maintains a file that defines the current hardware
configuration. For example, Figure 2.2 shows Kudzu's display for a system that was installed
without a mouse but now has a generic mouse attached.

Tre followirg hardvare Nas been aded Lo wour susten:
Coaneric Serlal Mouse

You can choose to3

1) Configae the device,
2) lgnore tre device, No configaration vill be added,

bt wou will not be prospted 1F the device 15 detected
on bsegart reboots,

3 Do rothirg, No configaration vill be added, and the
device vill show up a8 rev 1F 1t 15 detected on

pbiseguent retoots,

{Tab)/ Al — > {

Figure 2.2: The Kudzu utility recognizing a mouse

Kudzu runs automatically each time you boot the computer, or you can run it any time thereafter. It
probes for hardware and checks the current configuration to see if any hardware is new. If hardware
has been added or removed, it queries the user whether to add or remove the necessary drivers
now or wait until a later time. If the update is deferred, of course, Kudzu will present the same
question whenever it runs. Since any attempt by Kudzu to remove serial devices like consoles
would negatively impact the system, Kudzu does not check serial devices except when run from the
installation.

Kernel Modules

Versions of Red Hat Linux from 6.0 on have made more extensive use of kernel modules than did
previous versions. Kernel modules are drivers for hardware, filesystems, and so on, which are
compiled separately from the main kernel file. Under Linux, kernel modules can be loaded and
unloaded at any time after the main kernel has loaded, provided that the necessary hardware exists
(when unloading a module, the hardware must not be in use). As a result of the increased
modularization of recent versions of Red Hat, the system better adapts itself to your computer at
install time, loading more drivers you're likely to need and fewer drivers you don't need.

An example of this new kernel flexibility is the handling of Symmetric Multiprocessing (SMP)

support. Red Hat has included SMP support for some time now, but in order to take advantage of it,
you had to install the kernel source files, set up the appropriate configuration file, and compile the

36

new kernel. The monolithic kernel that remained on the system after an installation did not include
SMP support by default. Beginning in Red Hat 6.1, however, the install program probes to
determine how many processors the system contains. If there are more than one, the installed
kernel will include SMP support automatically. If there is only one processor, SMP support will not
be compiled into the kernel. Of course, if you add a processor later, you could recompile the kernel
to add SMP support.

Since Red Hat is a commercial company, they are able to offer support to their user community. We
discuss support options in Chapter 4, but for the purposes of comparison, Red Hat offers paid
support, Web-based support including the archives of the various Red Hat mailing lists, and 90
days of e-mail support with the boxed distribution.

Mandrake

Linux Mandrake (http://www.linux—-mandrake.com/en/), at version 8.2 at press time, is a derivative of
Red Hat Linux, and so shares some of Red Hat's features, including the RPM package format and
the basic system startup procedures (discussed in Chapter 3). As time passes, however, the
Mandrake apple is moving farther from the Red Hat tree. Mandrake distinguishes itself from its
progenitor distribution in several ways:

Server selection Mandrake includes a slightly different mix of servers than does
Red Hat. Most noticeably, Mandrake 8.2 uses the Postfix mail server, rather than
sendmail, which still is standard with Red Hat.

Package optimizations Mandrake compiles most of its packages with Pentium CPU
optimizations. This means that Mandrake runs slightly faster on Pentium—class CPUs
(including compatible models from AMD and VIA/Cyrix), but it won't run at all on 386
or 486 CPUs.

Installation details Although the earliest Mandrake packages used a system install
program that was virtually identical to Red Hat's, the latest versions differ somewhat.
Most noticeably, Mandrake includes a partitioning utility that allows the user to resize
existing Windows partitions.

Of the popular Linux distributions, Mandrake is the most similar to Red Hat—aside from Red Hat
itself, of course. This fact makes Mandrake very compatible with binary packages built for Red Hat,
and makes it easy to transition from Red Hat to Mandrake.

Caldera

Caldera System's OpenLinux is designed for corporate commercial use. It is available only for the
Intel architecture. Caldera is a proven player in the Linux world and thus is likely to continue to
improve its distribution over time. OpenLinux has an eServer version as well as an eDesktop
version, specially tailored to those individual purposes. Additionally, there is OpenLinux 64, which is
especially designed for the corporate world. Caldera's Linux site is http://www.caldera.com/. At
press time, the current version of Caldera is 3.1.

Installation Features
OpenLinux includes LIZARD (Linux Wizard), a graphical installation program that detects your basic

hardware: mouse, keyboard, video, sound card, CD—-ROM, hard drives, floppy drive, PCMCIA, and
Ethernet card. LIZARD then installs the Linux packages you've selected and does a basic

37

configuration for them. We successfully installed OpenLinux on an ACER laptop that wouldn't
accept a Red Hat installation without some tweaking.

On the other hand, Caldera's graphical startup screen is a little slow to appear, compared to other
distributions. LIZARD does not use the data that it probes during the installation to build a kernel
specific to your machine. The kernel it does leave is small but highly modularized. It does not
contain SMP support, but this can be added when you build a custom kernel. Caldera requires
32MB of RAM and a minimum of 300MB to install.

SuSE Linux

SuSE (pronounced "SUE-zuh") Linux, developed originally in Germany, is the leading distribution of
Linux in Europe. It is growing fast in the United States as well. SUSE is another favorite distribution
of ours for its ease of use and general feel. Its English Web page is located at
http://www.suse.com/index_us.html. At press time, SuSE 8.0 is the latest release of this distribution,
and it's available for x86, 1-64, PowerPC, and Sparc CPUs.

Installation Features

Readers of Linux Journal voted SuSE the easiest distribution to install in 1999, thanks largely to its
smooth graphical installation tool, YaST2, which provides extensive hardware detection and
configuration. YaST2 provides a basic configuration in support of networking, Internet access,
sound support, and printing. SUSE and Mandrake are the only major distributions installable by
DVD-ROM. Like most distributions, SUSE leaves the same kernel on each system to which it is
installed no matter what hardware was detected during a basic installation or upgrade; this kernel
contains all of the drivers for what SUSE considers common hardware.

Slackware Linux

Slackware, first released in April of 1992, was Walnut Creek Software's interpretation of the most
"Unix-like" Linux distribution available. Now an entity on its own, Slackware's Web site is available
at http://www.slackware.com/. The latest version of the software at press time is 8.0.

Installation Features

Many of us began with Slackware in the days when CD-ROM drives were uncommon and you had
to download the whole distribution onto about 50 floppy disks, which you could then use to install to
your hard drive. You can still install Slackware from downloaded floppies; it is the only major
distribution that still supports a floppy installation (although it is essentially a network installation
now). Most users prefer to install from a CD-ROM, an FTP site, or by NFS. Slackware provides
fewer GUI tools than do most major distributions, but this is by design; the philosophy is that the
user will better know the system if configuration files are set up manually rather than by a GUI setup
tool. This knowledge becomes especially critical when you are administering the system remotely
and are prevented by firewall constraints from bringing up an X session. Slackware and Debian are
the only major distributions whose installation programs don't provide at least a minimal X
configuration. Many users prefer to postpone this task until after the initial system has been
installed.

A minimal installation requires only 16MB of memory and 80MB of hard drive space.

38

Debian

Debian Linux is a rather unusual distribution in that it has been developed by a team of volunteers
rather than a company like Red Hat or Caldera. In the more formal distributions, decisions about the
installation process and which packages to include in the distribution are made by the board that
runs the company, in this case Red Hat, Inc. or Caldera Systems. Debian, however, quite willingly
accepts modifications from its user base. There is no single commercial backer for Debian. Given
that, there is no commercial support available, but there are mailing lists and IRC chats that provide
support from the user base. This apparent shortcoming is not seen as one by Debian users, who
take pride in the fact that Debian is developed by hackers for hackers. Security is tighter on the
default Debian system than any of the others that we've installed. Debian users tend to like having
more control over its development than with other distributions. Debian's Web site is located at
http://www.debian.org/.

Debian contains a package called apt, which automates the downloading and installation of
packages. Simply run apt—get install program and apt will download the program, download any
packages it requires, install them in the correct order, and query you for any data it requires. User
receptiveness to this concept varies widely. Many of us prefer to have a more direct involvement.
It's easy enough to download the updates from the distribution's Web site and install them
individually to watch the process and any errors it might generate. Debian is the fast-track Linux
distribution, by which we mean it is available for the widest variety of hardware platforms even
including some handhelds.

Installation Features

You may install Debian from floppies, CD—-ROM, a hard drive partition containing the installation
files, or by NFS. A minimal Debian 2.2 installation requires at least 12MB of memory and 65MB of
hard disk, although in order to install X and the most commonly used packages, you would require
just under 1GB and would benefit greatly from a memory increase to at least 16MB. (If you have an
unusually slim system, the older Debian 2.1 can install in just 4MB of RAM and 35MB of disk
space.) The Debian installation procedure does not try to anticipate your choices about even the
most basic decisions. It won't select which disks you wish to use nor which partitions on those disks
will be used as the root partition or even which will be used as swap. Debian installs a minimal
"base" system from its installation medium. It then reboots into this base system, which has just
enough functionality to install any other packages you choose. The base system only has to support
floppy drives and hard drives. From that point, you can choose which kernel modules to load during
this initial phase of the installation.

Debian installs a highly modularized kernel, which means that most modules are available with the
default kernel. This kernel includes SMP support, as of Debian 2.2, but it still works on single-CPU
systems.

The Choice Is Yours

The difficulty of the typical Linux installation is a controversial topic. Many Microsoft advocates say
that Linux is too difficult for the average person to install. Conversely, you may often hear Linux
advocates state that Linux installation is simple. In our experience, neither is the exact truth. In fact,
you can't really speak of Linux installation generically, because each major distribution uses a
different install program. The various Linux install programs have come a long way to simplify the
installation process in the past few years, and some are definitely more advanced than others. As
you've seen, different distributions have different goals for the installation; some work to be
user—friendly for the new Linux user, while others target a more Linux—knowledgeable audience.

39

For this reason, a distribution is often selected by this criterion alone.

No book can cover all of the different Linux installation programs. In the following section we
proceed step by step through a Red Hat installation. Despite the fact that the underlying functions of
an installation are always the same, the installation details vary from distribution to distribution.
Always rely on the documentation that comes with your distribution for information about installation.

Installing Red Hat Linux

Now that we've discussed some of the basics about the major Linux distributions, it's time to do a
walk-through of a real install. We will use Red Hat as an example since it is the most commonly
installed distribution in the United States. We will first try a basic server installation and then look at
what would be different for a workstation installation.

Preparing for Installation

Before beginning an installation, you should do a few things to prepare. First, you should obtain the
installation media that you will use for the installation. For this installation, we'll use a CD copy of
Red Hat version 7.3.

Next you should identify the components of your computer system. Write down the manufacturer,
model number, DMA channel, and interrupt (if applicable) of your video card, modem, network card,
CD-ROM, hard drive(s), SCSI card, and sound card. Also note the number of cylinders and heads
and total size of the hard drive(s). You may never need this information; but if you do, you won't
need to shut down your system and take it apart to find it. You should keep this information near the
computer after the system is installed since you might need to reference it later. Add an entry to the
Administrator's Logbook detailing the installation.

Administrator's Logbook: Initial Installation
System: E12345678
Action: Installed Red Hat Linux 7.3
Installation Options: Basic server—class installation
Modifications: Added jed and joe editor packages
Hardware:
Video: ATI Xpert 98 (Mach 64, 8MB RAM)
Modem: External USR Sportster 56K Voice
Network Card: Linksys LNE100TX (PNIC Tulip Clone Chipset)
CD-ROM Dirive: Pioneer DVD-113
Hard drives: Western Digital AC26400B 6.4GB & Maxtor 91000D8 9.1GB
SCSI Card: Generic Symbios 53c860-based host adapter

40

SCSI Device: External lomega Zip—100 drive

Sound card: Integrated motherboard VIA 82c686a sound chipset

If you've purchased a Red Hat Official boxed set, it will include the image to create a boot diskette
that supports a CD—ROM installation like the one we'll perform. If your computer supports booting
from a CD-ROM, you can boot directly from the Red Hat CD—ROM and will not need to create a
boot disk. If it does not, or if you are installing from a different medium, you might have to create
your own boot disk as described later in this chapter.

Choosing a Partitioning Scheme

Disk partitioning is the division of the hard drive into logical parts that contain specific components
of the operating system.

Although most people choose a more structured file system layout, Red Hat 7.3 requires only one
Linux partition. Assuming its size is sufficient, this partition can contain both the root partition and all
the other directories that fall beneath. An advantage of this simplistic approach is that you don't
have to guess how large each filesystem will eventually grow to be. A disadvantage is that you
cannot set quotas for individual directory structures and you cannot mount any of the directories
under the root partition as read-only, since that requires the directory to live on its own partition.
More important still is the fact that dynamic data as exists within the /home directory coexisting with
the root filesystem is generally a bad idea, since corruption can cause the entire system to become
unstable and possibly even unable to boot at all.

In a more structured approach, you might find that you've set aside too little space for a partition and
need to find more space. There are several options for adding space:

¢ Back up and reinstall, enlarging the partition in question.

e Add a new drive to the system and move some of the data from the bloated partition to the
new one.

e Move some of the data from the bloated partition to another existing partition.

e Create a symbolic link so that users will find the data where they expect it to be.

Note Just as there are "distro wars," there are also partitioning scheme wars. Linux users
have long argued about the optimum scheme, and there is no sign that they will stop.
One of the premier features of Linux, after all, is the freedom to disagree.
Red Hat has simplified the situation for new users by setting up installation classes. These classes
select a partitioning scheme and software packages appropriate to the chosen use. In each case,
you have the option of overriding that class's standard partitioning scheme and package selection.
There are four established installation classes: the Workstation-Class, the Server-Class, the
Laptop-Class, and the Custom-Class. In this case, we'll be performing a Server-Class installation.
The others are listed below for completeness.

Workstation-Class Installation

Use the workstation—class installation on an end-user desktop system. A system installed in this
way is not intended to act as a server, but it does set up the X Window System environment.

A workstation—class installation requires at least 850MB of free disk space. If your hard drive
already contains partitions of other types, like Windows, the workstation—class installation will

41

preserve those partitions and set up the Linux Loader (LILO) or GRUB to allow you to boot into
either operating system. The default partitioning for this class is a swap partition equal to twice the
amount of RAM or 32MB, whichever is larger, a 50MB /boot partition, and a root partition that uses
the hard drive's remaining space; a partition that is set to use the remaining space in a partition is
said to be growable. If you are unclear on what a root or a swap partition is, we'll study the actual
filesystem layout in Chapter 7 and discuss swapping and additional partitioning options in Chapter
6.

Server-Class Installation

The server—class installation by default installs a prepackaged Linux—-based server. Much of the
required configuration is included, although certainly there are things that Red Hat couldn't guess
about your system, and these you have to set up yourself. The server—class installation requires
between 1.3GB of free disk space minimum without graphics and 2.1GB for everything including
GNOME and KDE. It is important to note that any previously created partitions, regardless of type,
will be deleted during the server—class install. By default the disk is partitioned into a swap partition
twice your RAM, a 384MB / partition, a growable /usr partition, a growable /home partition, a 256 MB
/var partition, and a 50MB /boot partition.

Note The partition sizes described here are approximate. Because of the way the x86 BIOS
handles hard disks, partitions must fall on cylinder boundaries. Depending upon the disk size
and how the cylinders, heads, and sectors are arranged, a cylinder can easily be 5-10MB or
so in size. Therefore, Linux may not be able to create, say, a /boot partition that's exactly
50MB in size, and may instead create a 56MB /boot partition.

Laptop-Class Installation

The laptop-class installation is just like a workstation installation except that PCMCIA support is
added. The laptop-class requires 1.5GB minimum with either GNOME or KDE and only one
language supported and 1.8GB minimum if both GNOME and KDE are installed and only one
language is supported. By default, the disk is partitioned into a swap partition twice the size of the
amount of RAM in your system, a 50MB /boot partition, and a growable / partition.

Custom-Class Installation

The custom-class installation is the most flexible of the three. No decisions are made for you.
Although the partition layout begins as the laptop—class installation, you are free to change it. You
also must choose which packages will be installed, and whether or not to use a boot loader. Choose
this class of installation when you want to avoid writing over a partition that contains data that you
want to keep. This also allows you to pick and choose packages.

Installing a Server

Once you've determined which partitioning scheme to use, whether your own or one provided by
Red Hat, you'll need to boot the computer. In most modern computers, the motherboard's BIOS will
support booting from a CD—-ROM. This is the method we'll use here. Ensure that the BIOS has the
correct boot sequence selected, put the CD-ROM in the drive, and reboot. On older computers,
you'll need to use the boot disk that was included with the boxed set or that you made. Regardless
of the method you use, a minimal Red Hat system will be loaded into RAM, and the installation will
be run from this minimal system.

Other Installation Media

42

Although the basic procedure presented here assumes you are installing from a CD—-ROM (or from
a boot floppy with the CD—ROM in the CD drive), Red Hat Linux also allows you to install over a
network or from a hard drive. The standard procedure uses the boot.img file from the CD-ROM.
Other methods use different boot image files, which you must copy onto a floppy disk from the
CD-ROM's images directory. You can install from a network server via NFS, FTP, or HTTP using
the bootnet.img file. You can also install from a CD-ROM, NFS, FTP, HTTP, or hard drive accessed
via a PCMCIA device using the pcmcia.img file. And you can install from a hard drive using the
same boot.img image that you use for a local CD-ROM installation. The installation sequence is
much the same, with the exception of the boot disk. You'll need to create a boot disk if you wish to
install from a network server or a PCMCIA device. To write the boot images to a floppy, you may
use one of the methods listed below.

e On a Windows system, use the RAWRITE command that is located on the CD-ROM in the
dosutils directory by booting into Microsoft Windows and executing RAWRITE. When asked
which image to copy, specify the correct one from the images directory on that same
CD-ROM. The Microsoft COPY command will not make a workable boot floppy.

¢ Use the following command under Linux or Unix to create a boot floppy:

dd if=’/mnt/cdrom/images/boot.img of=/dev/fd0 bs=1440k
The dd utility is quite a useful tool. An explanation in short is that if stands for in file
and of stands for out file. You are thus writing the boot.img out to /dev/fd0 using a

block size (bs) of 1440KB. Usually this may be run without specifying a block size.

Under Linux or Unix, you can also cat the image to /dev/fd0. Although this is
generally not recommended, the command would be as follows:

cat /mnt/cdrom/images/boot.img > /dev/fd0

Essentially, the installations are all the same once you've located the medium that
contains the packages to be installed.

A few seconds after rebooting, you'll see a text—-based welcome screen that offers several options
for the installation process:

e Graphical mode

e Text mode

e Low Resolution mode
¢ No Framebuffer mode
* No Probe mode

e Media Check mode

* Rescue mode

Graphical installation is the default when you've booted from a CD-ROM. Text-based installation is
the default if you used the boot floppy image that came in the Red Hat package. It does essentially
the same things as a graphical installation, so you should be able to follow this procedure if you
choose that route. Low resolution mode starts the installer with a resolution of 640x480. To disable
the framebuffer, enter no fb at the prompt to go into No Framebuffer mode. If you need to test the
install media, enter linux mediacheck at the prompt. Choose rescue mode when you need a way
to boot a basic Linux system in order to recover an installation that's gone bad (say, because you've
edited the startup files in a way that prevents the system from booting). Last, if you need a driver

43

that is on a separate disk, enter linux dd.
Selecting an Installation Method

The first two screens ask you to select the language you speak and the type of keyboard you use.
Assuming you booted from an IDE CD-ROM as we did, the next screen you'll see is the Mouse
Configuration screen, discussed in the next section. If you have a non-IDE CD-ROM drive, you'll
be offered an additional choice between SCSI and Other. If you choose SCSI, you'll be prompted to
select your SCSI Adapter from a list. Choose the adapter that most closely resembles the one in
your system. If your adapter is not recognized, you may enter additional options for the driver.
These options are the same ones that would be specified at the boot prompt to give the boot loader
information about an unrecognized SCSI adapter. These options are discussed in Chapter 3.

If your CD—ROM drive is neither SCSI nor IDE, you must select the Other option. CD—-ROM drives
in this category are usually those run from a proprietary sound card. Such drives are extremely rare
in modern computers; you're only likely to find them in old 386 or 486 computers. You might have to
specify options for the driver that supports such a card.

If you've forgotten to put the CD—ROM into the drive, you'll be prompted to do so.
Configure the Mouse

The install next moves on to the Mouse Configuration screen, which offers a number of style
choices for PS/2, bus, and serial mice. Select the brand and style that matches your mouse. If none
look right, you may select the appropriate Generic choice, and it should work. Select the correct
device and port; if your system has been running Windows before, your selection should match the
port used there. If you have a two—button mouse, you'll want to select the Emulate 3 Buttons option
near the bottom of the screen. This will allow you to simulate the third button by pressing both
buttons at the same time. Three buttons are useful on a Linux system because X is built around a
three—button mouse. The middle button is often used to paste text selections in X applications.

Partition the Disk

The Install Options screen appears next. It requires that you choose the Install Type you've decided
to use to partition your disk.

The options you'll see on the Install Options screen are divided into Install options and the Upgrade
option. The Install options are the ones we discussed before: Workstation, Server System, Laptop,
and Custom System. These provide the partition schemes described earlier. There is only one
Upgrade option. It keeps the existing partition scheme and just upgrades the software. For this
example, we're using the Server System installation since, as a system administrator, you are likely
to be setting up server machines. You could also set up a server using a Custom installation to take
advantage of the greater flexibility in partitioning and package selection. In the end, the Server
System setup is easier and quicker to run through, but is likely to produce a Linux installation that's
bloated with packages you never use. A Custom System setup can produce a trimmer system, but
takes more up-front time and knowledge about what individual packages do. Because the server
installation will write over any existing installation, the subsequent Automatic Partitioning screen
warns you that it is about to erase any existing partitions on your hard drive and offers you the
alternative of creating your partitions manually with either Disk Druid or fdisk. You are also offered
the option of retracing your steps and performing a customized installation. To try out the
partitioning process for yourself, select the Manually Partition with Disk Druid option and press the
Next button. Figure 2.3 shows the Disk Druid Partitioning screen.

44

Red Hat Linux

Online Help- 5 - —— [Disk Setup-

Partitions

Choose where you would like Red

Drive fdev/hda (Geom: 969/128/63) (Model: WDC AC34000L
Hat Linux to be installed. ())

hda2
3622 MEB

If you do not know how to partition
your system, please read the
section on partitioning in the Red
Hat Linux Installation Guide.

If you used automatic partitioning,
you can either accept the current

i n : New | Edit I Delete | Reset | Make RAID I
partition settings {click Next), or = = = = =
modify the setup using Disk Druid, Device [star] End] size ovB)[Type [Mount Point [Format |
the manual partiioning tool. & 7devihda

/hoot Yes

If you just finished partitioning with
fdisk, youmust define moxns
points for your partiions. Use the
Edi¢ button, once you have chosen
a partition, to define its mount point.

}—fdevfhdaﬂ Rl l:3) 51 ext3

Yes

Yes

If you are manually partitioning
your system (using Disk Druid),
you will see your current hard
drive(s) and partiions displayed

[~
lolarss TTan Han saeHHanine fanl fa

? Release Notesl <J Back | B> Next I

Figure 2.3: The Disk Druid Partitioning screen

If the system previously had Red Hat installed, the existing partitions will show up in the Partitions
area. Otherwise, you will begin with the standard partitioning for the Server-Class Installation.
Figure 2.3 shows an altered version of this partitioning scheme. You can delete any existing
partition by highlighting it and then selecting Delete. The partition will be removed and the Drive
Summary at the bottom will show the available space.

2 Hide Help

Note If you have set any of the remaining partitions to "Fill to maximum allowable size," the Drive
Summary will still reflect that it is 99% used.

If there are existing partitions that you want to keep, highlight each partition in Disk Druid, click the
Edit button, and ensure that the mount point (described shortly) and partition type are correct.
Delete any partitions that you don't want, or click the Add button to add additional ones. Clicking the
Add button will bring up this dialog box:

45

kount Point:

Filesystem Type:

Allowable Drives: hda: WDC AC34000L - 35815

Size (MB): 1 B

Additional Size Options

(* Fixed size

C Fill all space up to (MB): 1

4

C Fill to maximum allowahle size

[~ Force to he a primary pattition

[T Check for bad blocks

The swap partition will not have a mount point. Once you select the swap Partition Type, the Mount
Point option will be grayed out. Each of the other partitions must be assigned a mount point. Some
examples of mount points include /usr and /var, if these directories are to be on their own separate,
individual partitions. Some directories must not be on a separate partition from the / partition,
because files in these directories must be accessible during the boot process, before separate
partitions will have been mounted. These directories are /etc, /lib, /bin, /sbin, and /dev.

Specify the size of the partition in megabytes. The default is TMB, which is fine if you mark the
partition as "Fill to maximum allowable size." You'll need to change it if you want to specify a size.
Also, if the system has more than one drive, you'll need to highlight the appropriate drive in the
Allowable Drives field.

If you have a Windows patrtition, it will show up on the Partition screen as well. You'll want to assign
it a mount point like /mnt/windows or /msdos. This will make it easy to access, since it will be
configured to be mounted at boot time.

You could more easily have chosen the Automatically Partition and Remove Data option in the
Automatic Partitioning screen and let the install process set up a typical server partition scheme as
described earlier. This is certainly the easier course of action, but doesn't give you the flexibility to
decide your own partition sizes or specify unusual partition layouts.

Configuring Networking

Following partition configuration, you'll see the Boot Loader Configuration screen. You must select
whether to install the GRUB boot loader, the Linux Boot Loader (LILO), or no boot loader. If you
select to install a boot loader, you must select whether to install it on the Master Boot Record or the
first sector of the disk's boot partition. This is discussed in the boot loader discussion in Chapter 3.
Next, enter any boot parameters that you need and select and name a boot image to load by
default. Selecting next takes you to the boot loader password screen if you selected to install a boot
loader or the Network Configuration screen if you did not.

46

Configuring Networking

If your system has a network card, Red Hat Linux asks you to specify your network configuration, as
shown in Figure 2.4. Enter the necessary information manually, or click the Configure Using DHCP
button if your network uses a DHCP server to dish out IP addresses. Chapter 12 describes the
TCP/IP networking options in more detail, if you need to set these options manually and don't know
what to enter. (In this case, you'll need to consult with your network administrator to learn what to
enter.)

= Red Hat Linux

Online Help Network Configuration

B eth0 |
Network [~ Configure using DHCP
. . [« Activate on boot
Configuration

Choose your network card and [beaddress: w
whether you would like to Netmask: 255.255.255.0
configure using DHCP. If you have Network: 192.168.0.254
multiple Ethernet devices, each Broadcast |192.168.01
device will have its own
configuration screen. You can
switch between device screens,
(for example eth0 end ethl); the Hostname: [sparky redhat com
information you give will be Gateway: [19216801

specific to each screen. If you % Broaos o s |

3 : 175421
select Activaze on boot, your (AT PR | 207.17542.153
network card will be started when | | Secondary DNS: ||

you boot, Ternary DNS:

If you do not have DHCP client
access or are unsure as to what
this information is, please contact
your Network Administrator.

Next enter, where applicable, the
IP Address, Netmask, Network,
and Broadcast addresses. If you
are 1sire ahant anw of these ﬂ

2 Hide Help ? Release Notes | <] Back | B> Next I

Figure 2.4: If you enter TCP/IP networking information during installation, you won't have to do so
again after installation.
Configuring the Firewall

Following the Network Configuration screen, you'll see the Firewall Configuration screen. Your
choices are High Security, Medium Security, and No Firewall. You may also customize the firewall
rules. The default settings of a High Security firewall set up a system that will only accept DHCP
connections, DNS replies, and connections that you have specifically defined. While this is the most
secure, it is not practical on a system that runs a lot of services like FTP or IRC since those services
would deny any connection from a site that has not been specifically allowed through. You may also
set up a Medium Security firewall that allows you to define type of connections to allow through. You
might also choose to trust any packets from a given interface. We'll discuss these concepts
thoroughly in Chapter 15, "Security."

Configuring the Time Zone

After a self-explanatory Language Support Selection screen, the installer starts the Time Zone
Selection screen. There are so many time zone options as to make this a bigger task than it sounds.
Select the appropriate zone for your location or the offset from Universal Coordinated Time (UTC).
In either case, you must specify whether your system clock uses UTC. If you use the offset method,
you must also specify whether or not Daylight Savings Time is needed.

47

NoteHistorically, Unix systems have set their clocks according to UTC, or the time in Greenwich,
England, and have adjusted local time settings based on the computer's location in the world.
x86 PCs, by contrast, have historically set their clocks to the local time. Linux therefore needs
to understand both methods. A dedicated Linux server is generally best off with its hardware
clock set to UTC, because this is less likely to result in problems for various Linux utilities
derived from Unix utilities or when Daylight Savings Time changes are required. However, the
log entries will also use UTC timestamps, and this can be confusing. A system that
dual-boots between Linux and Windows or some other OS that uses a hardware clock set to
local time is better off using local time, to keep time synchronized between the OSes.

Configuring User Accounts

You'll need to set up an account to access when the system is rebooted; you'll do that in the
Account Configuration dialog box shown in Figure 2.5. You are required to set up the root account.
This process consists of specifying and verifying root's password. You can then either click Next to
continue or add one or more normal user accounts. It's a good idea to set up at least one user
account, so that you are not forced to log in as root. To do so, input the account name (username),
the password for that account, the same password again for verification, and the full name of the
user. At this point, you may continue to add other users or continue to the next screen, Selecting
Package Groups. You have several options for creating new users after the system has been
installed. See Chapter 6 for more information about creating user accounts.

= Red Hat Linux

Online Help Account Configuration
[
@ Enter the passwaord for the root user (administrator) of this system.

Account Root Password: | ********
Configuration e [
Note: Setting up aroot account Root password accepted.
and password is one of the most Additional accounts can be created for other users of this system. Such
important steps during your P accounts could he for a personal login account, or for other
installation. Your root account - non-administrative users who need to use this system. Use the <Add>
enables you to install packages, hutton to enter additional user accounts.
upgrade RPMs and do most system Account Name|Full Name Add
maintenance. Logging in as root =

Angela Wehb

gives you complete control over

your system and is very powerful. Edit

di

Use the root account ezdy for Delete
administration. Create a non—root
account for your general use and
su - to gain root access when you
need to fix something quickly.
These basic rules will minimize the
chances of a typo or incorrect
command doing damage to your
system.

Enter a password for the root
account. The password must be at
least siv characters in lencth ﬂ

2 Hide Help

? Release Notes | <J Back B> Next

Figure 2.5: The Account Configuration screen
Selecting Package Groups

Finally, the moment you've waited for: the Selecting Package Groups screen allows you to select
which software packages will be installed on your system, selecting them in preset server groups or
individually. The only group that is selected by default for the server class installation is the Classic
X Window System group. Many system administrators do not install any X Window System
components on some of their servers, but the option is there. You can also choose to install a news

48

server, an NFS server, a Windows file server, an anonymous FTP server, an SQL database server,
a Web server, or a DNS name server. The total install size, listed in the bottom-right corner of the
screen above the Back and Next buttons, is updated upon each selection or de-selection. If you'd
rather have a direct hand in package selection, click the Select Individual Packages button near the
bottom of the screen. When you click the Next button, you'll be taken to the Individual Packages
screen, shown in Figure 2.6.

= Red Hat Linux

Individual Package Selection

@ Tree View C Flat View [Package [size (MB) [
~ &3 Amusements (= ahiword 1
(3 Games [apel 1
(3 Graphics emacs 24
v &3 Applications emacs-Xx11 7
(3 Archiving [emacs-el 24
(3 Communications [0 emacs-leim 4
(gDatabases emacs-nox 3
fim Editors gedit 1
(C3Emulators | 1|0 hexedit 1
(3 Engineering [jed 1
[C3File [jed-common 3
(3 Internet [jed-xjed 1
(I Multimedia O joe 1
(3 Productivity O nedit 1
(3 Publishing [nvi-m17n 4
(3 System O nvi-m17n-canna 1
CaText LI nvi-m17n-nocanna 1
P CaDevelopment psgml 1
(3 Documentation [J quanta 14
I C3System Environment |2 1T cami 1 =
Total install size: 1,021M Select all in group Unselect all in group
Emacs-x11 includes the Emacs text editor program for use with the X Window System (it provides support for the mouse and ather GUI
elements). Emacs-X11 will also run Emacs outside of X, but it has a larger memory footprint than the "non- X’ Emacs package
(emacs-nox).
Install emacs-X11 if you're going to use Emacs with the X Window System. You should also install emacs-X11 if you’re going to run
Emacs both with and without X {it will work fine hoth ways). Youw’ll also need to install the emacs package in order to run Emacs.
2 Show Help I ? Release Notes | <J Back | B> Next I

Figure 2.6: The Individual Package Selection screen appears only if you click Select Individual
Packages in the Selecting Package Groups screen.

Here you can double—click on a specific package to see what it contains. Folders and individual
packages represented by boxes will be displayed on the right. If you highlight a single package,
information about that package appears near the bottom of the screen. This information includes the
name, the size in kilobytes, and a description of the package's function. A red check mark will
appear on each package selected for installation. If you're unfamiliar with what individual packages
do, it's best to leave the defaults until you're more familiar with the packages. You can always install
or remove packages after installing the OS proper, as described in Chapter 8, "Software
Administration." When you have completed your selections, hit the Next button.

Although the term "package" implies a self-contained unit, some packages rely on others for
support, and in some cases, your selections will not include a software package that is required to
support one that you have selected. This situation is called an unresolved dependency. The
Unresolved Dependencies screen will list these. You must then either click the Install Packages To
Satisfy Dependencies button to allow the installation program to include everything it needs, or go
back and attempt to fix these dependencies yourself. When you are finished, click Next.

Now that you've finished most of the larger interactive tasks of the installation, sit back and watch as
the packages are installed. Or do as most of us do, and go get a Coke or something. The speed of
your computer and the number of packages you've targeted for installation will, of course, determine
how long a break you'll get.

49

Boot Disk Creation

You'll next see the Boot Disk Creation screen. Insert a floppy disk into the drive and click the Next
button. You are given the option of skipping this step by checking the Skip Boot Disk Creation box,
but it is generally a bad idea to skip this step, since a boot disk can save you if your computer
refuses to boot. Problems with the root filesystem cannot be solved this way, because the boot disk
does not contain a root filesystem but instead uses the one on the computer. Troubleshooting is
covered in Chapter 18.

Another use for the boot disk is to boot the system if the MBR is overwritten. Some versions of
Microsoft Windows will overwrite the MBR if it is installed after Linux. This makes it impossible to
boot into Linux using the normal methods. Booting from a boot disk, however, allows you to reinstall
LILO or GRUB.

When the boot disk is finished, your installation is complete. Pop out the boot disk, select Exit, and
watch the reboot. A great deal of information will scroll by. If you need to see it again, use the
dmesg command once the system has booted and you've logged in to page it to the screen. You
may also use an editor to view /var/log/dmesg.

Installing a Workstation

Since the ratio of workstations to servers is typically quite high, chances are you'll be installing a lot
more workstations than servers. This section describes the differences between the installation of a
server, as presented in the previous section, and the workstation installation. The initial steps are
the same as with a server—class installation.

Selecting Package Groups

Of course, when you get to the Selecting Package Groups screen, the server options that we saw
before are not there. Instead you get to choose between a GNOME workstation, a KDE workstation,
a Software Development workstation, or a Games and Entertainment workstation. GNOME (GNU
Network Object Model Environment) and KDE (K Desktop Environment) are desktop environments
that enhance your X experience by providing an easy-to—-use GUI "desktop," similar to those used
by Windows, MacOS, or other OSs. Chapter 13 covers X, including desktop environments and
X-based programs.

Despite the differences in precisely what package groups are available, workstation and server
installation are similar in that you can select package groups if you click the Select Individual
Packages option on the Selecting Package Groups screen. In principle, you could build nearly
identical systems starting from the server and workstation installation options by modifying the
individual package selections. In practice, of course, it's much faster to start with an appropriate
server or workstation installation option.

Configuring Your Video Card and Monitor for X

Next you'll encounter the X Configuration screen, shown in Figure 2.7. Configuring the X Window
System (Chapter 13) essentially means telling the installation program what video card and monitor
you'll use with that GUI. You will be asked to select your monitor from a list. Unless you're using an
unsupported video card, the Xconfigurator program will have detected it, and the information about
it will be displayed. The monitor information will be displayed also. Now you must choose what you
want to accomplish in the area of X configuration. You can customize X configuration, set up the
system to use a graphical login screen instead of the usual command-line one, or skip X

50

configuration entirely. For this example, select Test This Config. If you see a box asking whether or
not you can read it, click the OK button.

= Red Hat Linux

Online Help rGraphical Interface (X) Configuration

[| In most cases your video hardware can he probed to automatically
determine the hest settings for your display.

Video If the probed _settings do not match your hardware, select the correct
& . hardware settings below:
Conflglll'atlon 53 Savage (genedric) [a]
. . 53 Savage 2000 (generic)
Although, the installation program 53 Savage/MX
probes to determine the best video $3 SavagedD
card for your system, you can 53 Savaged
choose another video card if 53 Savaged (generic)
needed. 53 Savaged Pro+
53 Trio32 {generic)
Once you have selected your video 53 Trio3D
card, choose the amount of video 53 Trio3D/2X
RAM present on your card. 53 TrioB4 {generic)
53 TrioB4V+ (generic)
If you decide that the values you 53 TrioB4V2 (genetic)
have selected are incorrect, use 53 TrioB4v2/DX (generic)
the Restore original values 33 TrioB4V2/GX (generic)
button to return to the suggested 53 VIRGE (generic) J
probed settings. 53 VIRGE (old 53V server)
53 VIRGE/DX (genetic)
You can also choose to Skip X 53 VIRGE/GX (generic)
Configuration if you would rather 53 VIRGE/GXZ {generic)
configure X after the installation or 53 VIRGE/MX (generic) -l
zotatal — | Video card RAM: 2 MB = | Restore original valuesl
| [~ Skip X Configuration
2 Hide Help I ? Release Notes | <J Back | B> Next |

Figure 2.7: The X Configuration screen

Tying Up Loose Ends

Next you will be greeted with the message that your Red Hat installation is complete. Remove any
floppy or CD—ROM still in its drive and reboot the system. Remember that if you skipped the boot
loader installation, you must put your boot disk into the floppy drive. After your computer finishes
powering up, assuming you went with the GRUB boot loader, you'll see the graphical boot loader
menu. Select a boot label corresponding to the operating system that you wish to work in. The
default boot label for your Red Hat 7.3 system will be Red Hat Linux (2.4.28-3). If you specified any
other boot labels during the installation, you may boot them by scrolling to the one you want and
then pressing Enter. If you press the Enter key alone, the default boot entry will be booted. If you do
nothing, the boot loader will pause for the specified timeout period (30 seconds by default) and then
will boot the default boot entry. When your system is booted, you'll be greeted with a login prompt.
Enjoy.

In Sum

In this chapter we saw how to implement disk caching, RAID, and clustering using Linux. We took a
look at the most popular Linux distributions and the hallmark features of each. We discussed
hardware configuration and, if you were following along, you have now installed a Linux server and
a Linux workstation. In the next chapter we get into the internals of the Linux operating system,
familiarizing you with the startup and shutdown processes.

51

Chapter 3: Startup and Shutdown

Overview

The process of starting up Linux is multifaceted. So much happens during a system boot that it is
easy to lose touch with what procedures actually take place. Much of the wizardry of system
administration is simply familiarity with a process such as booting. Knowing this process well makes
it fairly easy to configure the system, to fix it when it breaks, and to explain it to your users. To
understand the Linux startup, we'll walk through it from start to finish in this chapter. Linux startup
and shutdown are further complicated by the fact that there are two different standards for how they
are done: the BSD-style startup method and the System V—style method. Understanding the
differences between the two is important since some Linux distributions—Debian and Slackware for
example—use BSD-style system initialization scripts, while other distributions, such as Red Hat
and Caldera, use System V—style startup scripts.

In this chapter we talk about the boot loaders (GRUB, LOADLIN, and LILO)—what they are and
how they work. We look at different boot methods, including booting into single-user mode and
booting from a floppy. We examine the Linux startup scripts in some detail, and the related user
startup files that run when a user logs in to the system. Finally we discuss the log files that help you
to troubleshoot when a system won't start up normally.

The system performs a similar sequence of tasks after you command it to shut down. There are
many active processes that must be shut down and devices and filesystems that must be
unmounted to avoid causing damage to your system. This process also occurs in stages. We'll also
walk through this process to gain a full understanding of how shutdown works and what it does. The
shutdown scripts and log files are discussed in order to make the whole process clear.

The Linux Boot Process

When you start up a Linux system, a series of events occurs after you power up and before you
receive a login prompt. This sequence is referred to as the boot process. Although this sequence
can vary based on configuration, the basic steps of the boot process can be summed up as follows:

1. The Basic Input/Output System (BIOS) starts and checks for hardware devices. Stored in
the computer's ROM (Read-Only Memory), the BIOS is described as firmware because it is
built into the hardware memory. The BIOS will automatically run when the power is applied
to the computer. The purpose of the BIOS is to find the hardware devices that will be needed
by the boot process, to load and initiate the boot program stored in the Master Boot Record
(MBR), and then to pass off control to that boot program. In the case of Linux, the BIOS
performs its checks and then looks to the MBR, which contains the first—stage boot loader,
such as GRUB or LILO. After finding the boot loader, the BIOS initiates it.

Note Sometimes, however, the MBR contains another boot loader, which in turn finds the
boot loader on the first sector of a Linux partition.

2. The BIOS hands over control to the first—stage boot loader, which then reads in the partition
table and looks for the second-stage boot loader on the partition configured as bootable.

3. The first—stage boot loader runs the second-stage boot loader, which then finds the kernel
image and runs it.

4. The kernel image contains a small, uncompressed program that decompresses the
compressed portion of the kernel and runs it. The kernel scans for system information,

52

including the CPU type and speed. lts drivers scan for other hardware and configure what
they find. The kernel then mounts the root filesystem in read-only mode to prevent
corruption during the boot process.

5. The kernel starts the init process by running /sbin/init.

6. As outlined in the later section "Initialization and Startup Scripts," the init process starts up
getty programs for the virtual consoles and serial terminals and initiates other processes as
configured and monitors them until shutdown.

This general boot process can be affected by various factors even within the same distribution. For
instance, the steps above assume the system has only one bootable kernel image. That's probably
the case when you first install, but you might also have a bootable sector installed with another
operating system, like Windows, or a different distribution of Linux. Later, if you install a different
version of the kernel and compile it, you'll have to configure your boot loader to see it. As you'll see
later in the chapter, there are a number of parameters that you can specify at the boot prompt, but
first let's take a closer look at the Master Boot Record.

The Master Boot Record

The Master Boot Record (MBR) plays a crucial role in the bootup process. Located on the first disk
drive, in the first sector of the first cylinder of track 0 and head 0 (this whole track is generally
reserved for boot programs), it is a special area on your hard drive that is automatically loaded by
your computer's BIOS. Since the BIOS is loaded on an electronically erasable programmable
read-only memory (EEPROM) chip, which is generally not reprogrammed at the user/administrator
level, the MBR is the earliest point at which a configured boot loader can take control of the boot
process. Figure 3.1 shows a hard drive with its MBR and five Linux partitions.

53

srssssnes

.

treerrnee,

CER R

sessrees

R SRR

R

.
.
-
.
.
-
s sessssesssssssssssssssssssssssssssNsssssssnsnns

D Y
.
.
.
.
.
.

ER

D R R R L

R R Y

sesssrsssrrsseed
AR R R R R R R RS

etreeesee

TR

LR Y

Figure 3.1: A hard drive's partition layout

Three of these (/dev/hdal through /dev/hda3) are primary partitions that are pointed to directly, and
two (/dev/hda5 and /dev/hda6) are logical partitions that reside within an extended partition
(/dev/hda4). This baroque arrangement is the result of early limitations on the number of partitions
in the PC's partition table and is further discussed in Chapter 6, "Filesystems and Disk
Management." Linux uses the Third Extended Filesystem (ext3fs), which is also detailed in Chapter
6. Basically, the filesystem is the structure imposed on each partition for the purpose of organizing

54

files. It is the underlying frame to which the data is added.

Boot Loaders

There are several boot loaders to choose from. Alternatives include System Commander, NTLDR,
Linux Loader (LILO), and the Grand Unified Bootloader (GRUB). System Commander is a boot
management utility that allows you to choose from up to 100 operating systems at boot time.
Information is available at http://www.v—com.com/. NTLDR is the boot manager for Windows NT.
More information about NTLDR is available at http://www.microsoft.com/. Most likely, the default
boot loader for your distribution will be either LILO or GRUB, but any of these boot loaders can be
installed after the initial operating system installation. Whichever you choose, this boot loader is the
first non-BIOS step in the boot process.

GRUB: Definition and Configuration

As of Red Hat 7.2, Red Hat began to use GRUB as the default boot loader. The main advantage of
GRUB over LILO is that GRUB is far more flexible. GRUB does not require you to run an install
program each time you make changes. If you make changes to LILO, say updating a kernel image
that is included in the LILO configuration, and forget to run the LILO installer program, you might
have to boot a rescue disk to get back into your system. With GRUB, you do not encounter this
problem. Additionally, you can view some information from your system using the GRUB boot
prompt, which is not possible with other boot loaders.

GRUB comes with several different pre—configured files to be used to boot its supported operating
systems: BSD FFS, DOS FAT16 and FAT32, Minix fs, Linux ext2fs and ext3fs, ReiserFS, and VSTa
fs. GRUB is much larger than other boot loaders, but the size is justified by the flexibility that the
extra features offer. GRUB's ability to access data on any device that is recognized by the BIOS is
one feature that we wouldn't want to do without. For example, you may view the /etc/fstab file before
the system is completely booted, by using the cat command at the GRUB prompt like this:

grub> cat /etc/fstab

Another nice feature is the ability to decompress files that were compressed using gzip; the
decompression is transparent to the user. GRUB also cares less about disk geometries than other
boot loaders. In fact, you can relocate the kernel image and GRUB will still find it. Other boot
loaders have to know the block location of the image.

The GRUB configuration files are intended to be human-readable. The grub.conf file is a little
strange to those used to LILO, but it takes very little time to get used to. See Listing 3.1. Each
section that defines a bootable kernel or non-Linux partition is known as a stanza.

Listing 3.1: A Sample grub.conf File

grub.conf generated by anaconda

#

Note that you do not have to rerun grub after making changes to this file
NOTICE: You do not have a /boot partition. This means that

all kernel and initrd paths are relative to /, eg.

root (hdo0,0)

kernel /boot/vmlinuz-version ro root=/dev/hdal

initrd /boot/initrd-version.img

#boot=/dev/hda

default=0

55

timeout=10
splashimage= (hd0, 0) /boot/grub/splash.xpm.gz
password —-md5 1AANFvAa6Q$6T7hhyN2k74F1izf29e0H70
title Red Hat Linux (2.4.7-10enterprise)

root (hd0,0)

kernel /boot/vmlinuz-2.4.7-10enterprise ro root=/dev/hdal

initrd /boot/initrd-2.4.7-10enterprise.img
title Red Hat Linux-up (2.4.7-10)

root (hd0,0)

kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hdal

initrd /boot/initrd-2.4.7-10.1img
title Red Hat Linux-up (2.4.7-10)

root (hdl,0)

kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hdal

initrd /boot/initrd-2.4.7-10.img

As you can see from Listing 3.1, GRUB's configuration file is very simple. First, GRUB counts hard
drives and floppy drives from 0 instead of 1, so the first hard drive is hd0. The default=0 line
specifies that the default boot image will be the first hard entry listed, "Red Hat Linux
(2.4.7-10enterprise)" in the example file.

The timeout line indicates that GRUB will wait 10 seconds for input from the user before continuing
to boot.

The splashimage, as you may have guessed, is the image displayed on the GRUB boot menu.

Since GRUB is so powerful, allowing significant changes to occur via its command line, the
password option is used to prevent any interaction with GRUB until a password is supplied with a —p
option. Without the ——md5 parameter, the password would be displayed in cleartext instead of in its
MD5 encrypted form. The next few stanzas deal with specific kernel images. The first boots the
enterprise kernel and initrd image using the first partition on the first hard drive as the root partition.
The second stanza boots the vmlinux-2.4.7-10 image and initrd image, using the same root
partition. The last stanza boots the same kernel image as stanza two, but finds its root partition on
the first partition of the second hard drive instead of the first.

initrd Images

Linux includes support for RAM disks, which are disk filesystems loaded from a floppy or hard disk
but stored in RAM during use. RAM disks can be useful during system installation or maintenance,
because they obviate the need for physical disk access. An initial RAM disk (initrd) image is a
kernel-specific image that allows some setup functions to occur before the root filesystem is
mounted. An initial RAM disk causes the system startup to occur in two stages: the kernel comes up
first with a minimal set of drivers, and then the RAM disk image loads additional modules as
needed. This two—stage process allows the boot process to take advantage of devices that require
modules that would not normally be available until the boot process is completed. This is especially
important if you wish to load a Linux system that is on a RAID array, since support for any RAID
other than RAID-0 is modular and not found in the default kernel. Until recently, initrd was used
during an installation from a PCMCIA or SCSI hard drive or CD—ROM. Now, however, the Red Hat
installation program allows you to find your SCSI- or PCMCIA-driven hard drives and CD-ROMs. If
you need to create an initrd image, use /sbin/mkinitrd. This command has the following format:

mkinitrd image-name kernel-version

56

So for the 2.4.7-10kernel (the kernel-version number must match the /lib/modules/ directory name),
the command would look like this:

/sbin/mkinitrd initrd.2.4.7-10.img 2.4.7-10

LILO: Definition and Configuration

Prior to Red Hat 7.2, Red Hat and the other popular Linux distributions launched LILO by default to
complete the Linux boot process. In most situations, LILO was copied to the MBR. In other
situations, LILO was installed in the first sector of the Linux boot partition. In this scenario, LILO is
known as the secondary boot loader and must be initiated by another boot loader. For our
purposes, we'll assume that LILO is loaded in the MBR.

As seen in Figure 3.1, the MBR contains program code (LILO), a 64-byte partition table identifying
four primary partitions, and a 2-byte magic number used to determine whether or not the sector is
really a boot sector. Since a sector is 512 bytes long and since LILO must share this space, LILO is
limited in size to 446 bytes. In order to accommodate this restriction, the boot loader has been split
into two phases. The first phase uses LILO in the MBR to locate the second-stage boot loader,
which is almost always located in /boot/boot.b on the drive that contains the root Linux filesystem or
the /boot partition if it is separate from the root partition. This second—stage boot loader then gets
copied into RAM over the first—stage boot loader to continue the boot process.

LILO is very versatile and allows you to boot multiple kernel images as well as the boot sector of
any other bootable partition on the system. This bootable partition might point to a Windows 95 or
98 partition, a Windows NT partition, or any of a number of other operating systems, allowing you to
boot any one of them. You must make LILO aware of the images and any other operating systems
that it is expected to boot. To do that, you'll add information about each kernel image or operating
system into the /etc/lilo.conf file, including a label by which to refer to each image. Then you'll run
the lilo program as described later in this section. LILO loads the selected kernel image and the
corresponding initrd image—if there is one—into memory and relinquishes control to that kernel.

LILO is configured using the /etc/lilo.conf file. The basics of LILO are very simple, but its power lies
in the many options that can be passed if needed. The lilo.conf file in Listing 3.2 demonstrates
options suitable for a computer that boots two different Linux distributions (installed on /dev/hdb1
and /dev/hdc1), both of which use the same kernel. The computer has an Adaptec 152x SCSI
adapter and a SoundBlaster sound card, both of which require certain kernel options (set via the
append line) to work correctly. The following sections describe the lilo.conf file's details.

Listing 3.2: A Sample lilo.conf File

#Global Section
boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt

timeout=50
message=/boot/message
linear

default=1linux
password=password
append="ahal52x=0x140,12,7,0,0 sb=240,5,1,5,300"

#Per-Image Section
image=/boot/vmlinuz-2.4.7-10-1

57

label=1linux
read-only
root=/dev/hdbl

image=/boot/vmlinuz-2. 4.7-10-1
label=debian
read-only
root=/dev/hdcl
initrd=/boot/initrd-2.4.7-10-1.img

image=/boot/vmlinuz-2.4.7-10
label=orig
read-only
root=/dev/hdbl

other=/dev/hdal
label=msdos

The Global Section

The first section of the /etc/lilo.conf file applies globally to any kernels that are to be booted from
LILO. The first line in the global section shows that LILO is to be installed in the MBR on the first
disk, /dev/hda. If LILO were to be the secondary boot loader, this reference would be to the Linux
boot partition, writing LILO there.

The system map in use is /boot/map. This file is a symbolic link to the system map for a kernel that
you have created. It is basically made up of debugging information for that kernel. Even Linux
system administrators don't usually use this file unless they are doing kernel development work.

The next line identifies the boot loader code proper. Typically this is /boot/boot.b. This file contains
both the code that will reside in LILO's space in the boot sector and the extra code LILO relies upon
to complete the boot process.

LILO's default behavior is to wait 4 seconds for you to press the Shift key and boot the default
kernel if you do not. The prompt instruction tells LILO to instead prompt the user for which image to
boot. This is what causes the lilo: prompt that you have probably seen.

The timeout parameter in the next line sets the time (in tenths of a second) to wait for keyboard
input. After this period, the default kernel is automatically booted. If you enter the timeout parameter
without a numeric value, the timeout period is infinite. If you are in text mode, pressing Tab during
the timeout period displays a listing of available kernel images. Many distributions use a graphical
boot screen now that allows you to scroll through the list of available images. In order to pass
parameters to the kernel on the LILO prompt, you need to hit Ctrl+X.

The next line identifies a file containing a message to display before the boot prompt. The message
file is limited to 65,535 bytes. Changing or removing the message file requires you to rebuild the
map file.

If the linear parameter is included, it forces the generation of linear sector addresses instead of the
sector/head/cylinder addresses that are used by default. This is necessary if you've configured your
BIOS to use any drives in Linear Block Addressing (LBA) mode.

The default parameter sets the default kernel image to be booted if no other image label has been
given. If no default parameter exists, LILO treats the first kernel specified as the default.

58

Adding a password=password line in the global options section of your lilo.conf (of course replacing
password with your password) allows you to protect your system from unauthorized rebooting.
Alternatively, you may add a password parameter in each individual stanza to protect certain boot
setups differently. For example, you might choose to password—protect the Debian setup but not the
Red Hat setup. Typically, the password option is global.

The append line is particularly important. Any parameters that the kernel needs in order to boot
correctly can be appended. Typically this line is used to specify parameters for hardware that isn't
automatically detected, as in this example. The append line in Listing 3.2 includes the information
for an Adaptec 1520B SCSI interface card and a SoundBlaster sound card. Notice that there is no
comma between the two append strings, since each one includes commas. Likewise, there are no
spaces in each individual append string since the list of strings is space—delimited. The format for
these items varies depending upon the item type. Information about hard drives is commonly
appended and is specified as follows:

append="hd=cccc, hhhh, ssss"
linear

where cccc indicates the number of cylinders that the drive has, hhhh indicates the number of
heads, and ssss indicates the number of sectors. You may also use an append line to let LILO know
about undetected memory or to test how the system would run with less memory, by indicating less
memory than you actually have. The amount of memory can be specified in kilobytes (with a suffix
of k) or in megabytes (using a suffix of M). To specify an amount of memory, use the following
append line:

append="mem=128M"
The Per-Image Section

The stanzas that follow the global section in Listing 3.2 define two specific Linux kernel images and
a bootable Windows partition. For each one, the image= line specifies the image or partition
location. The label= line identifies the name that will be used at the LILO prompt. If read-only is
included in the stanza, the root filesystem will be mounted as read-only originally (when it is subject
to a filesystem check); it is remounted read-write later in the boot process. The root= line tells
where the root directory for the specified kernel is located. Finally, if there is need for an initrd
image, its location is specified on a line that begins initrd=.

Now let's look at the specific stanzas to understand the differences. The first stanza, with the label
linux, boots a kernel image located at /boot/vmlinuz-2.4.7-10-1, initially as read-only. The root
partition to use is located at /dev/hdb1, the boot sector of the first partition of disk 2.

Now, looking at the second stanza, labeled debian, we see that it uses the same kernel image, also
booted as read-only, but it uses a different root directory and includes an initrd image, as was
described in the GRUB section above. The difference in the root partition is because this stanza
boots a different Linux installation—specifically, a Debian Linux setup instead of the Red Hat
distribution booted with the linux stanza. The root files for the Debian distribution are located on the
first partition of the third IDE disk, /dev/hdc1. Since we are using the same kernel in both places, we
use an initrd image to change the modular information as appropriate for the Debian distribution.

The fourth stanza points to a Windows 98 installation. This stanza is simpler than the previous
three. It doesn't need to contain anything beyond an other= line, to specify the path to that operating
system's boot sector, and a label line, which specifies the name to be input at the LILO prompt to
start up that operating system. The information needed to boot Windows is contained in the boot

59

sector of /dev/hdal because it is a secondary boot loader, run by the primary Linux Loader.
Running the LILO Program

After lilo.conf is configured as you want it, you must use the lilo program to install it to the Master
Boot Record. This is typically done with the following command:

/sbin/lilo

There are many options you can use on the command line here for unique situations, but they aren't
frequently needed. The one option that gets a lot of use is —r, which is used when you are in rescue
mode or some other situation where the drive containing the lilo.conf file is mounted and not part of
the active system. The —r option tells the system to chroot to the specified directory and run the
command from there. For instance, let's say that you are booted into rescue mode and have
mounted /dev/hdal as /mnt/tmp. You have repaired the incorrect lilo.conf, which is actually located
at /mnt/tmp/etc/lilo.conf at present. If you try to run /sbin/lilo, the system will look for /etc/lilo.conf
instead. You use the following command to tell it to pretend that /mnt/tmp is the / directory, thereby
forcing LILO to read /mnt/tmp/etc/lilo.conf as if it were /etc/lilo.conf. The command looks like this:

/sbin/lilo -r /mnt/tmp

There are so many options available with LILO that it is impractical to list them all in a general book
like this one. The BootPrompt—-HOWTO provides an exhaustive list and is available online at
http://www.linuxrx.com/HOWTO/sunsite—sources/BootPrompt-HOWTO.html.

Now let's look at different ways to boot your system.

Creating a Boot Floppy

What do you do to recover from disk or system failure like a lost boot sector or a disk head crash,
when the kernel you've created won't boot the system and you've forgotten to create a stanza for
your working kernel, or when you use LILO and you've copied a new kernel over an old one and
forgotten to rerun lilo? One method is to boot from a floppy. A boot floppy is a basic requirement for
every computer, whether workstation or server. This section shows how to create one.

There are two types of floppy boot disks. One uses a boot loader, while the other boots directly from
the kernel on the disk without the benefit of a loader such as GRUB or LILO. If you need to pass
parameters to the kernel during the boot, use a floppy with a boot loader.

Creating a LILO Boot Floppy

Let's assume that you want to boot from a floppy disk using LILO. You can change the boot line of
the /etc/lilo.conf file to tell it to write the LILO image to /dev/fd0 or whatever designation represents
your floppy drive. Running /sbin/lilo after that change will create a LILO boot floppy that contains the
information normally written to the MBR.

Most distributions give you an easier method, an executable called mkbootdisk, usually located in
/sbin. Any boot disk you create using /sbin/mkbootdisk will contain a kernel image, an initrd.img file,
a /boot directory containing the second-stage boot loader and a system map, a /dev directory
containing the floppy device and the root filesystem device, and an /etc directory containing lilo.conf.
When you boot from this disk, you will get a LILO prompt and a chance to enter any extra

60

information that LILO might need. The command looks like this:

/sbin/mkbootdisk 2.2.16-22
Creating a Boot Floppy without a Boot Loader

Alternately, you can copy the kernel to a floppy using the dd command, which produces a boot disk
that is independent of a boot loader. If your kernel is vmlinuz-2.4.7-10, do the following:

dd if=/boot/vmlinuz-2.4.7-10 of=/dev/£d0

Then tell the kernel on the floppy what your root partition is, using the rdev command. The rdev
command can be used to set the image root device, as in our next example, or less commonly, the
swap device, RAM disk size, or video mode. If no setting information is included, the current values
are displayed. The command to set the root partition to the first partition on the second IDE disk is
as follows (this example assumes that your root partition is located in the first partition of the second
drive):

rdev /dev/£fd0 /dev/hdbl

With or without a boot loader, the floppy boots much the same way as the system did before. The
difference is that the boot program uses the boot sector on the floppy instead of the MBR on the first
disk drive. Also, if you are using the floppy without a boot loader, and if your BIOS is set to try
booting from the floppy disk, your system will boot the kernel contained in the disk without offering a
boot prompt.

Using LOADLIN

LOADLIN (Load Linux) is a DOS executable that can initiate a Linux system boot. This program
comes with most Linux distributions. Red Hat places it in the dosutils directory of the first installation
CD-ROM. Copy the LOADLIN.EXE file to a DOS partition or DOS boot floppy. (You might want to
create a C:\LOADLIN directory.) You'll also need to copy a Linux kernel image file, probably located
in /boot on your Linux system, to the DOS partition or floppy. From this point, you can boot Linux
(which we will assume is located on the first partition on the second IDE drive) as follows:

C> LOADLIN C:\vmlinuz root=/dev/hdbl ro

To boot using a RAM disk image, use this form of the command:

C> LOADLIN C:\vmlinuz root=/dev/ram rw initrd=C:\rootdsk.gz

To boot from a root floppy in drive A, use this command:

C> LOADLIN C:\image root=/dev/£fd0 rw ramdisk=1440

LOADLIN is sometimes used if your Linux system won't boot because of a LILO configuration
problem and you need to get back into the system to fix the LILO boot information; it's also useful if
you are forced to restore from a backup and don't have a running system from which to start the

restore. This can also be done with a Linux boot floppy as we've already described, so it really
comes down to personal preference.

61

TipLOADLIN can be particularly handy if you have a piece of hardware that requires initialization in
DOS before it can be used in Linux. For example, some sound cards must be initialized into a
special SoundBlaster compatibility mode before they can be used in Linux, and the programs to
do this only run under DOS. You can create a DOS partition that runs the sound card
initialization program from CONFIG.SYS or AUTOEXEC.BAT and then launches LOADLIN. The
result is a Linux boot with the hardware in a condition that Linux can accept.

WarningAlthough LOADLIN works from the DOS prompt in Windows and from the DOS
compatibility mode of Windows 95 and 98, that mode has been effectively removed from
Windows Me/NT/2000/XP. Therefore, LOADLIN does not work from a full Windows
Me/NT/2000/XP boot without special handling, although it does work from a Windows Me
emergency floppy or Windows 95/98 boot floppy. See the HOWTO at
http://www.tldp.org/HOWTO/mini/Loadlin+Win95-98-ME.html for further instructions.

Single-User Mode

Single—user mode is a maintenance mode in which a root shell is started and no other users may
log in. The prompt will change to a pound sign (#) to indicate that this is a root shell. This mode may
be initiated using the command init 1 or by adding the word single or the number 1 after the image
label at the LILO prompt. If you are on the system doing work and decide you need to go into
single—user mode, type init 1. If you use LILO and have rebooted because of a kernel panic or the
like, simply add a 1 after your image label when the LILO prompt comes up, as in:

LILO: linux single

or

LILO: 1linux 1

If you are using GRUB and need to enter single-user mode, you must go to the graphical GRUB
screen, and select the Red Hat boot label. Then press E to edit it. Arrow down to the kernel line,
and press E to edit it. At the prompt, enter the word: single. When you are taken back to the GRUB
screen that contains the kernel information, press B to boot the system into single—user mode.

When your system is booted into single-user mode, the initialization tasks relating to the multiuser
environment are skipped, and if the init program is used to switch to single—user mode, all daemon
processes are stopped. The init process next starts a Bourne shell as the root user on /dev/console.
The root filesystem is mounted, and other filesystems are available to be checked or mounted. No
daemons are run automatically, and some resources may not be available because their home
filesystem is not mounted.

If, for instance, /usr is on a separate partition (that is, if it's a separate filesystem), any commands in
/usr/bin, /usr/sbin, or /usr/X11R6/bin won't be available unless you mount the /usr partition manually.
Typing exit at the prompt will log you out of the single—user shell, while Ctrl+D will boot the system
into its normal multiuser mode.

You might also reach a system-initiated single—user mode if there is a problem in the boot process.
In this case, you are dropped to a root shell, where you have root access and can make the
changes necessary to make the system bootable. This most often occurs when the fsck process run
during the boot fails and the system needs you to check and repair the filesystem manually.

62

One use for single—user mode is to change the root password when it is unknown, for example
when an employee leaves the company without providing the password. There is no way to retrieve
the old password, but single—-user mode gives you root access so you can use the passwd
command to enter a new root password. When you reboot into multiuser mode, the new password
will allow you root access as before.

This illustrates the security threat posed by allowing unrestricted access to the system console and
the danger of single—user mode. Obviously, you don't want just anyone to be able to boot your
system and change the root password. To secure single-user mode, you can make your boot
loader require a password as already described in both the specific GRUB and LILO sections.

For the best security, you should password—protect the BIOS and set it to not boot from a floppy.
These two actions configure the computer to be unbootable from a floppy disk unless the user has
the BIOS password. If you don't take these steps, an intruder with physical access to the computer
could simply insert a Linux boot floppy and modify the system on disk. Given more time, though, an
intruder with physical access could remove the hard disk or use recovery jumpers on the
motherboard to bypass these precautions. Short of encrypting all data on your disk, there's nothing
you can do to prevent tampering if an intruder can open the computer's case.

Initialization and Startup Scripts

Earlier in the chapter, we identified initialization as the final stage of the startup process. The
initialization process varies a bit between distributions. These differences range from the locations
and names of the scripts to what is actually run by default. We'll start by looking at the process,
discussing differences as we come across them. The initialization process begins when the kernel
starts the init program. This program parses the /etc/inittab file to determine the specifics of what
programs to run and what run level to leave the system in when it is finished. We'll look at an
example from Red Hat (which uses the System V—style script) and another from Debian (which
uses the BSD model). Slackware and SuSE's methods are very similar to that seen in the Debian
model. Slackware comes with an empty rc.local by default.

The Red Hat Model

All distributions customize their initialization scripts somewhat, but most inittab files are very similar.
Listing 3.3 shows an example inittab file from a Red Hat 7.3 system.

Listing 3.3: A Sample inittab File

#

inittab This file describes how the INIT process should set up
the system in a certain run-level.

#

Author: Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Marc Ewing and Donnie Barnes
#

Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode

2 — Multiuser, without NFS (The same as 3, if you do not have networking)
3 - Full multiuser mode

4 - unused

5 - X11

HH= H= H FH H H

63

6 — reboot (Do NOT set initdefault to this)
#
id:3:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

10:0:wait:/etc/rc.d/rc 0
1l:1:wait:/etc/rc.d/rc 1
12:2:wait:/etc/rc.d/rc 2
13:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
15:5:wait:/etc/rc.d/rc 5
16:6:wait:/etc/rc.d/rc 6

Things to run in every runlevel.
ud: :once:/sbin/update

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, assume we have a few minutes
of power left. Schedule a shutdown for 2 minutes from now.
The following lines were added on 9/17/01 for a CyberPower 700 AVR UPS

#UPS signals a power outage.
pf:12345:powerfail:/sbin/powstatd.fail

UPS signals power restored before the shutdown kicks in.
pr:12345:powerokwait:/sbin/powstatd.ok

UPS signals low battery power: emergency shutdown.
pn:12345:powerfailnow:/sbin/powstatd. low

Run gettys in standard runlevels
:2345:respawn:/sbin/mingetty ttyl
:2345:respawn:/sbin/mingetty tty2
:2345:respawn:/sbin/mingetty tty3
:2345:respawn:/sbin/mingetty tty4
:2345:respawn:/sbin/mingetty tty5
:2345:respawn:/sbin/mingetty ttyb6

o U b W N

Run xdm in runlevel 5

xdm is now a separate service

x:5:respawn: /etc/X11l/prefdm —-nodaemon
pptp:35:respawn: /usr/sbin/pptpd -f # pptpd-0.9.9-1

The file begins with a block of comments, including a summary of the run levels used in Red Hat;
let's take a moment to look at the six run levels and their uses:

0 Used to halt the system. To do this, the system performs an INIT 0 command and the
system is halted. as the comment says, you should not set initdefault to this.

1 Puts the system into single—user mode.

2 Puts the system into a multiuser mode but does not support networking.

3 Puts the system into the standard full multiuser mode but does not automatically start
X.

4 Unused

5 X11; puts the system into standard multiuser mode with a graphical (X-based) login.

64

6 Signals the system to reboot itself. Again, do not set INITDEFAULT to this.
Note The meaning of run levels between 2 and 5 is somewhat arbitrary. Although most
distributions use the conventions outlined here, not all do. For example, SUSE uses
run level 2 as a full multiuser mode with networking, and starts X with run level 3
rather than 5.
In the first uncommented line, the init program is told what run level to use after a reboot. The line
looks like this:

id:3:initdefault:

The first part of this line, id, simply represents the word initdefault. The number 3 indicates that the
system should start in run level 3 by default. For a system that uses the X Window System graphical
environment (discussed in Chapter 13), you would instead use this command:

id:5:initdefault:

Keep in mind that specifying an initial run level of 5 will cause an inability to log in if X has a problem
that prevents it from starting. Typically, you'll see one of two things happen: Either the screen will
repeatedly clear as the system tries to start X, fails, tries again, and so on; or the system will try to
start X once, fail, and drop back to run level 3.

Following the run level line, the next uncommented line in Red Hat's inittab file tells the init program
which script to start:

si::sysinit:/etc/rc.d/rc.sysinit

Here we've chosen to run the rc.sysinit script, which we'll look at in detail in a moment. Since the
second colon-delimited field, the run level field, is empty, this script will run at boot time for all run
levels. The rest of the line, /etc/rc.d/rc.sysinit, is the exact command to run.

The rc.sysinit script performs many functions. These include:

e Setting the path and the hostname, and checking whether networking is activated
e Mounting the /proc filesystem

e Setting the kernel parameters

e Setting the system clock

¢ Loading keymaps and fonts

e Starting swapping

e |nitializing the USB controller (if present) along with its attached devices
e Checking the root filesystem, if required

e Setting up PPP

e Remounting the root filesystem as read—-write

e Loading modules as appropriate

After the rc.sysinit file exits, the inittab starts the /etc/rc.d/rc script with the appropriate run level as
an argument. The rc script then executes all of the scripts pointed to by the symbolic links contained
in the directory for that run level. If the run level is 3, for example, the scripts pointed to by the links
in /etc/rc.d/rc3.d are run. Listing 3.4 shows this directory for a default Red Hat 7.3 installation.

Listing 3.4: The /etc/rc.d/rc3.d File Contains Links to the Scripts for Run Level 3.

KOlkdcrotate K20rwhod K74ypxfrd Sl3portmap S85gpm
K05atd K25squid K75netfs Sl7keytable S90crond

65

K10webmin K34yppasswdd K86nfslock S20apcupsd S90vmware

K15httpd K35dhcpd K92ipchains S20random S90xfs
Kl5mysgld-skip K35smb K96pcmcia S35identd S9lpowstatd
Kl5postgresgl Kdéd4rawdevices S05kudzu S55sshd S95anacron
K20nfs K45named SO06reconfig S56xinetd S97rhnsd
K20rstatd K72autofs S08iptables S601pd S991linuxconf
K20rusersd K74apmd Sl0network S78mysgld S991ocal
K20rwalld K74ypserv S1l2syslog S80sendmail S99%webmin

You'll notice that each file begins with an S or a K. The system first runs the scripts whose names
start with K to kill their associated processes, if running. Next, the system runs the scripts whose
names start with S to start the associated processes. Changing a K name to start with S (such as
renaming K20nfs to S20nfs) makes Linux start the process rather than kill it when entering the run
level, and changing an S name to K causes Linux to kill the process when entering the run level.
This is how Linux controls what processes to start in a given run level. Actually the files here are
only symbolic links to the actual scripts which exist in /etc/rc.d/init.d.

Note There are too many services running on this default install of Red Hat 7.3. See Chapter 15,
"Security," for information about the security implications of having a lot of unnecessary
processes running.

After the run level 3 processes are Killed or started, the /sbin/update command in the inittab file is
run. This command flushes the kernel buffers and writes their data to the hard drive. This is basic
housekeeping to improve kernel performance.

The next line sets the Ctrl+Alt+Delete key combination to indicate a reboot of the system.
Sometimes this is commented out on a system that is easily accessed to prevent allowing just
anyone from rebooting it. The —t option indicates that the init process is to wait 3 seconds before
telling its dependent processes to restart themselves. The shutdown occurs as if you had initiated
the following shutdown command:

/sbin/shutdown -t3 -r now

The pf line of the inittab file then sets the system up to run a different kind of shutdown if an
attached uninterrupted power supply (UPS) indicates that power has failed. This shutdown is
scheduled to occur 2 minutes after this notification. The following pr line, however, indicates that the
shutdown is to be cancelled if the init process receives a notification that the power was restored
before the shutdown was initiated. The pn line indicates still another type of shutdown for use when
the UPS indicates low power.

The next six uncommented lines, with identifiers 1—6, run mingetty programs for the virtual
terminals. These programs are essential since they initialize the ttys, provide the login and retrieve
the user—input data, and then start a login process for the user. Without these lines, no users could
log into the system.

The next to the last line, with the identifier of x, is set by the 5 in the second colon—delimited field to
run the X Display Manager (XDM) process for run level 5 only. An XDM allows you to log into run
level 5 directly. Red Hat 7.3 uses prefdm as its XDM program, but the program used varies from
one distribution to another. KDE and GNOME each have their own display managers if you choose
to use them; they are KDM and GDM respectively.

Finally, the last line respawns the Point-to—Point Tunneling Server daemon (pptpd), which allows
virtual private network connections to be made to the Linux host.

66

If /etc/inittab contained any additional lines that specified no run level (meaning to run at boot time
only) or run level 3, they would be run. You can add any such lines yourself, if you have something
that you need to start only in a certain run level. Usually the Red Hat default inittab is fine as it
comes.

You don't typically customize the rc.sysinit file or the run level scripts, since the rc.local file was
included for that purpose. It is run next. This is the file where you make your local changes to the
startup process. This file runs after all of the other initialization files and can therefore be used to
override any settings made during the earlier initialization steps. By default, this file creates the login
banners /etc/issue and /etc/issue.net. These files are used to set the display that will precede the
login prompt when a user logs in locally (/etc/issue) or remotely (/etc/issue.net). By default, the
/etc/issue file contains something like this:

Red Hat Linux release 7.3 (Valhalla)

Many system administrators think this is too much information to give to someone who may be
trying to crack your system. It might be better to change the /etc/issue banner to something more
generic like "Welcome to localdomain” or to give your users any information you believe they need
before entering your system. If you change the /etc/issue file directly, it will be overwritten when the
/etc/rc.d/rc.local file is run again. You must change this in /etc/rc.d/rc.local to make the change
permanent. Since this file is one big if clause, any commands that you wish to add should be added
before the last fi.

The Debian Model

Debian's inittab file is only slightly different from Red Hat's version. Listing 3.5 shows a sample
Debian inittab.

Listing 3.5: Debian's inittab File

/etc/inittab: init (8) configuration.
$Id: inittab,v 1.8 1998/05/10 10:37:50 miquels Exp $

The default runlevel.
id:2:initdefault:

Boot-time system configuration/initialization script.
This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

What to do in single-user mode.
~~:S:wait:/sbin/sulogin

/etc/init.d executes the S and K scripts upon change
of runlevel.

Runlevel 0 is halt.

Runlevel 1 is single-user.
Runlevels 2-5 are multi-user.
Runlevel 6 is reboot.

H H= FH FH H H

:wait:/etc/init.d/rc
:wait:/etc/init.d/rc
:wait:/etc/init.d/rc
:wait:/etc/init.d/rc
:wait:/etc/init.d/rc
:wait:/etc/init.d/rc

11:
12:
13:
14:
15:

g W N O
g W N O

67

16:6:wait:/etc/init.d/rc 6
Normally not reached, but fallthrough in case of emergency.
z6:6:respawn:/sbin/sulogin

What to do when CTRL-ALT-DEL is pressed.
ca:12345:ctrlaltdel:/sbin/shutdown -tl -a -r now

Action on special keypress (ALT-UpArrow).
kb: :kbrequest:/bin/echo "Keyboard Request--edit /etc/inittab to let this work."

What to do when the power fails/returns.
pf::powerwait:/etc/init.d/powerfail start

pn: :powerfailnow:/etc/init.d/powerfail now
po::powerokwait:/etc/init.d/powerfail stop

/sbin/getty invocations for the runlevels.

The "id" field MUST be the same as the last
characters of the device (after "tty").

Format:
<id>:<runlevels>:<action>:<process>

:2345:respawn:/sbin/getty 38400 ttyl
:23:respawn:/sbin/getty 38400 tty2
:23:respawn:/sbin/getty 38400 tty3
:23:respawn:/sbin/getty 38400 tty4
:23:respawn:/sbin/getty 38400 tty5
:23:respawn:/sbin/getty 38400 tty6

O U W N = S S

Example how to put a getty on a serial line (for a terminal)
#

#T0:23:respawn:/sbin/getty -L ttySO 9600 vtl100
#T1:23:respawn:/sbin/getty -L ttySl 9600 vtl100

Example how to put a getty on a modem line.

#
#T3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3

Under Debian, the first uncommented line in inittab sets the default run level to level 2. You'll
remember that this level is a multiuser mode that doesn't include networking.

The next line in inittab instructs the init process to run the /etc/init.d/rcS file, which we'll look at next.
Like its Red Hat counterpart, it executes the S and K scripts for the specified run level. It sets up
Ctrl+Alt+Del slightly differently than the Red Hat model, and adds an Alt+Up-Arrow shortcut to
define a keyboard request function. The rcS script then sets up UPS power functions similar to Red
Hat's, adding a function for immediate shutdown. The getty programs are set up, although Debian
only has the first tty respawning a getty when the system is at run level 5. The last part of Debian's
inittab gives examples of how to run getty programs on a serial line and a modem line. Listing 3.6
shows the Debian rcS file.

Listing 3.6: The Debian rcS File

#! /bin/sh

#

rcS Call all S??* scripts in /etc/rcS.d in
numerical/alphabetical order.

#

Version: @ (#)/etc/init.d/rcS 2.76 19-Apr-1999 miquels@cistron.nl
#

68

PATH=/sbin:/bin:/usr/sbin:/usr/bin
runlevel=S

prevlevel=N

umask 022

export PATH runlevel prevlevel

#
See if system needs to be set up. This is ONLY meant to
Dbe used for the initial setup after a fresh installation!
#
if [-x /sbin/unconfigured.sh]
then
/sbin/unconfigured.sh
fi
#
Source defaults.
#
/etc/default/rcs

export VERBOSE

#
Trap CTRL-C &c only in this shell so we can interrupt
subprocesses.
#
trap ":" INT QUIT TSTP
#
Call all parts in order.
#
for 1 in /etc/rcS.d/S??*
do
Ignore dangling symlinks for now.
[' =f "Si"] && continue
case "$i" in
*.sh)
Source shell script for speed.
(
trap - INT QUIT TSTP
set start
$i
)
I
*)
No sh extension, so fork subprocess.
Si start
I
esac
done
#
For compatibility, run the files in /etc/rc.boot too.
#
[-d /etc/rc.boot] && run-parts /etc/rc.boot
#
Finish setup if needed. The comment above about
/sbin/unconfigured.sh applies here as well!
#
if [-x /sbin/setup.sh]
then

69

/sbin/setup.sh
fi

The rcS file sets up some environmental variables, including the PATH variable. It then runs a
special configuration shell script if the system is running for the first time after installation. The rcS
script then runs other scripts, which do things like enable virtual memory, mount filesystems, clean
up certain log directories, initialize Plug—and-Play devices, load kernel modules, configure PCMCIA
devices, set up serial ports, and run System V init scripts. The rcS script will call certain scripts in
/etc/rc.d before it relinquishes control. These include:

rc.local Similar to the Red Hat rc.local, it serves the same purpose.

rc.modules Loads kernel modules: network card, PPP support, and other modules.
If this script finds rc.netdevice, it will call that script as well.

rc.pcmcia Probes for any PCMCIA devices that exist on the system and configures
them. This is most useful for laptop users, who probably have a PCMCIA modem or
network card.

rc.serial Configures the serial ports by running the appropriate setserial commands.

rc.sysvinit Looks for System V init scripts for the desired run level (symbolic links in
/etc/rc.d/) and runs them. Similar to the Red Hat version, this rc.sysvinit script runs
the scripts pointed to by the symbolic links in the appropriate subdirectory. In the
case of run level 3, all links in /etc/rc3.d/ will be run.

Again, once this work is finished, the init program initiates a getty process and the XDM process,
which displays a login prompt, and then waits for a login attempt or some other process that needs
attention.

Now that we have the system initialized, let's look at what happens when a user logs in. You will
need to know this process well so that you can troubleshoot user login problems.

User Initialization Files

A different type of initialization happens when a user logs in. This is not a system-wide initialization
like the boot process. It is another sequence for user-specific initialization. But just as with the
system initialization files, the system administrator is responsible for the user initialization files. The
example that follows shows the sequence for the Bash shell, which is the Linux default shell. If you
are using a different shell, the sequence will be similar.

When a user logs in, the system user configuration files are run first. These files are scripts and are
sourced in instead of being executed. A file is sourced via the "dot" command. To source the .login
file, for example, use the following command:

. /home/someuser/.login
Note Sourcing a file executes each command as if it were typed in at the command

prompt rather than as a separate program. The sourced file's environment becomes
part of the shell in which it is run. A file does not have to be executable to be

70

sourced.
The first to be sourced is /etc/profile. This file is intended to contain system-wide environmental
variable definitions and programs to be started by all users when they log in; for example, it can
include a calendar program that lists company events and other useful information. It also sources
in any files that exist in the /etc/profile.d directory. This directory exists because it is easier for an
RPM to add a script file there than to add lines to /etc/profile.

When the /etc/profile script is finished, the system looks in the user's home directory for a
.bash_profile, a .bash_login, or a .profile in that order. The first of these that it finds is sourced in.
Usually this is the .bash_profile file. The first thing this file does is to source in .bashrc if it exists in
the user's home directory. After that it sets some environmental variables. The .bashrc file contains
user—specific aliases and functions. The .bashrc file in turn sources the /etc/bashrc file, which
contains system-wide functions and aliases, including the prompt that the users of the system will
see.

When the user logs out of the Bash shell, the .bash_logout file will be sourced. It should contain any
commands necessary to clean up after the user. This may include deleting any files in a temporary
directory owned by that user.

Modifying the Startup Procedure

As a general rule, you should not have unused services running on your computers; you should turn
off any services that are automatically initiated at boot time but are not used. Conversely, any
services that you want to have started automatically but are not turned on at boot time by default
should be configured to start in the appropriate run levels. For example, some distributions run
PCMCIA by default; but most desktop computers do not use PCMCIA, so it should be disabled.
Similarly, any of the rcommand services (rsh, rlogin, rexec, and so on) for remote users should be
disabled if they are not being used. And if you are still using them, you should look at
http://www.openssh.com/ for a more secure alternative. The r commands are commonly targeted by
outsiders looking for security vulnerabilities to exploit. Leaving such services running provides a port
that expects input, and this port could potentially be used to access the system. To disable the
service, thereby closing the port, modify the set of services that are automatically started at bootup;
to do this, use the ntsysv utility, which is part of the standard Red Hat 7.3 distribution. This
console-based utility configures the current run level by default but may be passed a —level option
to configure another level. Figure 3.2 illustrates the ntsysv utility. The ntsysv utility is used at system
installation but may also be run from the command line. You may select or deselect the listed
services by selecting or deselecting the box in front of the service name; in this case, PCMCIA is
disabled for the current run level.

71

£ root@opus: /mntredhats.2/boot/grub
| File Edit Settngs Help
ntsysv 1.2.24 - (C) 2000-2001 Red Hat, Inc.

[EIEIET

{ Services |

What services should be automatically started?

Press <F1> for more information on a service,

Figure 3.2: Use the ntsysv utility to control which services are automatically started at bootup
Another tool for adding, deleting, or reordering services in run levels 2-5 is the tksysv utility, which
is available as part of the Red Hat distribution. This utility is X-based and is quite good. It presents
a display of each of the services that are started and stopped at the various run levels and allows
you to delete or add as needed. The principles of its use are basically the same as for ntsysv.
Figure 3.3 shows the tksysv utility.

= 5Y¥SV Runlevel Manager, v1.1 (EEE
File Help
Available: 2 3 4 3
anacron 2 ipchains 2 [kudzu 2 |kudzu 2 [kudzu 2
apcupsd iptables reconfig reconfig reconfig
apmd 2 isdn iptables ipchains ipchains
arkeia t |network isdn iptables iptables
atd a |syslog network isdn isdn
autofs r |[apmd syslog network network
coldfusion t /random portmap syslog syslog
crond pcmcia keytahle portmap portmap
dhcpd sshd apcupsd random random
gpm arkeia ; [random ; lidentd ; Intpd
halt
halt.old rhnsd X [kdcrotate |~ |ntpd 2 lwebmin |5
halt.rpmsav ntpd atd httpd httpd
httpd F, webmin webmin postgresql postgresql
= | S |nttpd httpd nfs nfs
t \mysqld mysqld-skip | |rstatd rstatd
Remove I o |postgresql postgresql rusersd rusersd
- p nfs nfs rwalld rwsalld
Edit | rstatd rstatd rwhod rwhod
BT I rusersd rusersd squid squid
rvsalld 7 [nwalld 7 lyppasswdd | . lyppasswdd |

Figure 3.3: The tksysv utility

72

The KDE environment has its own graphical manager for SysV scripts, ksysv. It is also quite nice
and features drag—and-drop capabilities. Since it is a KDE tool, it is X-based. In resolutions higher
than 640x480, you need to display it at full size since the smaller default size obscures the process
names. (The program does, however, provide help when you mouse over a process name.) Figure
3.4 illustrates the ksysv utility.

File Edit Tools Settings Help
& B K K?
Available Runlevel 0 Runlevel 1 Runlevel 2 Runlevel 3 Runlevg
Services Start Start Start Start Start
Name (4] | No. Name No. Name No. Name“| | No. Name/ 2| | No.
4% anacran a0 @ killall 00 @ single 0g @ ipchai a5 @ kudzu| | |05 @
425 apcupsd ot @ hatt oz (@ iptable— [06 [reconq | [os (]
425 apmd W 09 [isdn o2 () iptabid | [0z
45% arkeia 10 (@ netwo| | oo @ isdn oz
4% atd 12 (@ systog_| {10 () netwo| | [oo]
425 autofs 16 (@ apmd 2] (12 @ sysiod2] 10 (]
3'5;‘:’? coldfusion lﬂ'_mrﬁdﬂll 12 @ nosmd ¥ |10 =
£ crong 4 4 « 1 []el» 4]
42% dhepd Stop Stop Stop Stop Stop
42% functions No. Name“| | No. Name | | No. Name“| | No. Name | | No.
425 gpm 00 (@ tinuxc—{ {00 @ tinuxc[—] {03 () rhnsd|[| Jot () kderot | to]
2% halt | Jos @ rhnsa| | |03 @ rhnsa| | {10 @ ntpd 05 @atd [|[ts [
% hatold |4] o5 @ keytaf | [05 (@ keytay | |10 @) webm | [t0 @ webm{ | [15
2% halt ramsavl ¥ 10 @) arkeia] | [to @) arkeia] | 15 () hitpd 15 (& httpd 20 (3
S A 10 @ntpd [| [0 @ ntpd [| [t5 @ mysq | [t5 @ mysq | [20 (]
10 @ xs (2|0 @xs |2 |15 @ postgna (15 @) postgna| [20 (]
@ 15 @) o (2 115 B) onen ¥ oo @ nfe ¥ [on @ nfe | [on &
of U (ado] Jaf (i Tafo] Jaf iifTafo] Jaf (] Tafo] [of
4 I [4]»
|C?| Show Runlevels: [X 0X 1[X 2[X 3[X 4/X 5[X 6

Figure 3.4: The ksysv utility

Still another option is the command-line chkconfig utility, which gets bonus points for being easy to
use and independent of X. This is especially helpful since many distributions do not include X with
server installations. If you pass chkconfig a ——list switch, it will display a list of all SysV scripts and
whether each is turned on or off at each run level. Listing 3.7 shows the output. The ——add and
——del switches allow you to alter the processes in each run level.

Listing 3.7: Sample chkconfig Output

syslog O:0ff l:0ff 2:0n 3:on 4:0on 5:on 6:0ff
crond O:0ff l:0ff 2:0n 3:on 4:on 5:on 6:0ff
netfs O:0ff l:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
network O:0ff l:0ff 2:0n 3:on 4:0on 5:on 6:0ff
random O:0ff l:0ff 2:0n 3:on 4:0n 5:on 6:0ff
rawdevices O:o0ff l:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
xfs O:0ff l:0ff 2:0n 3:on 4:0n 5:on 6:0ff
xinetd O:0ff l:0ff 2:0ff 3:on 4:on 5:on 6:0ff
reconfig O:o0ff l:0ff 2:0ff 3:on 4:0on 5:on 6:0ff

73

anacron

httpd
apmd
atd
named

keytable

gpm

ipchains

pcmcia

kdcrotate

kudzu

linuxconf

lpd
nfs

nfslock

sshd
identd

portmap

ypxfrd
rstatd

rusersd

rwalld
rwhod
smb

sendmail

rhnsd
ypbind

yppasswdd

ypserv
autofs
dhcpd
mysqgld
nscd
ntpd
squid
vmware

apcupsd
mysgld-—
postgresqgl
iptables

isdn
webmin
arkeia

xinetd based services:

skip

eNeoNeoNoNoNoNoNoRoRooohohololololololhoNolo oo Neo e e e oo NeoNoNoNoNoNoNoNoNoNo o o)

0:

:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off

off

amanda: off

amidxtape:

finger: off

linuxconf-web:

rexec: off
rlogin: off
rsh: off
auth: on
telnet: on
tftp: off
wu—-ftpd:

talk: off
ntalk: off
pop-3: on
chargen:

chargen-udp:

daytime:

daytime-udp:
echo: off

:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off

PR PR RPRPRPRPRPRRERRRRRPRPRPRPRPRRERRRRPRPPRPRRERERRERRRRRRERRRRR R

off

off

off
off
off
off

DD DD NDNDNNDNDNNDNNDNNDNDNDNDNDNDNDNDNDDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDDNDDNDDNDDNDDNDDNDDND

:on
:off
:on
:off
:off
:on
:on
:on
:on
:off
:off
:on
:on
:off
:off
:on
:off
:off
:off
:off
:off
:off
:off
:off
:on
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:on
:on
:on
:on

W W WwWWww

:off
:off
:off
:off
:on

:on

:off
:off
:off
:on

:on
:off
:off
:on
:on
:on
:off
:off
:off
:off
:off
:off
:on
:on
:off
:off
:off
:off
:off
:on
:off
:on
:off
:on

:off
:off
:on
:on
:on
:on

74

SO D D D DD D D D D D D DD D DD D D D D DD DD D D D D DD D DD D DD DD

:off
:off
:off
:off
:on
:on
:on
:off
:off
:on

:on
:off
:off
:on
:on
:on
:off
:off
:off
:off
:off
:off
:on
:on
:off
:off
:off
:off
:off
:on
:off
:off
:off
:on
:off
:off
:off
:on
:on
:off
:on

(GG G NG G NG G G G G G G NG NG BN G BN G BEC, INC) BN, BN, BNC, BN C) BN BN BN B I B B G B C B G B G B G B G B B G G G NG B B G2 BN 2 BN)

:on
:off
:off
:off
:off
:on
:on
:on
:off
:off
:on
:on
:on
:off
:off
:on
:on
:on
:off
:off
:off
:off
:off
:off
:on
:on
:off
:off
:off
:off
:off
:on
:off
:on
:off
:on
:off
:off
:off
:on
:on
:on
:on

Oy O OY O)Y O)Y O)Y O)Y OY O)Y O)Y O)Y O)Y O) O) O)Y O) O) O) O)Y OY O)Y OY OY OY OY O)Y OY OY O O)Y O)Y O)Y O)Y O)Y Oy O)Y Oy O O O O O O

:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off
:off

echo-udp: off

time: off

time-udp: off
sgi_fam: on
amandaidx: off

You can also use Webmin to configure services to be run. Select the Bootup and Shutdown tab
from the System group. You'll see a list of services, an indication of whether or not each service will
be started at boot time, and a brief description of the service. Click a service name, and you'll be
able to perform the typical start, stop, and status functions. Webmin is a terrific tool, which is
distribution-independent and well worth the time it takes to learn it.

Startup Log Files

Sometimes it is helpful to see what the system did when booting up. The most common way to do
this is to view the /var/log/dmesg file, which is a record of the kernel ring buffer. This file gives
basically the same information that scrolls quickly down the screen at bootup. You may view this file
with an editor like vi or Emacs if you have root privileges or by running the /bin/dmesg binary, which
anyone on a system can execute:

/bin/dmesg

There is also useful information in /var/log/boot.log. This file logs successful and unsuccessful starts
and stops of the /etc/rc.d/init.d scripts. If the start or stop is unsuccessful, this log may indicate why.

Another useful log file is /var/log/messages. This file contains information written by klogd, the
logger for kernel messages. The syslogd daemon, which logs system messages from processes
that do not belong to the kernel, also writes to /var/log/messages. Administrators should examine
this file on a regular basis so that problems not immediately obvious to a user do not go unnoticed.

System logs like /var/log/maillog and /var/log/messages are rotated on a regular basis by the
logrotate script. This script is configured by the /etc/logrotate.conf file. This file allows you to specify
how to rotate the files, whether to store them in a compressed format, when to remove a file from
/var/log, and whether to mail the log to someone.

Finally, since /proc is a virtual filesystem that contains information pertaining to the kernel currently
being run, it provides a lot of helpful information. Following are some of the more helpful files and
directories in /proc:

File Contents

/proc/interrupts IRQ information

/proc/cpuinfo CPU information

/proc/dma DMA information

/proc/ioports I/O information

/proc/meminfo Available, free, swap, and cached memory information
/proc/lodamg System load average
/proc/uptime Time since last reboot
/proc/version Information about kernel version
/proc/scsil Information about SCSI devices
/proc/ide Information about IDE devices

75

/proc/net Network information
/proc/sys Kernel configuration parameters

Shutdown

Red Hat uses the BSD-style shutdown command. This command's syntax is:
shutdown [options] time [message]

When the system has been signaled to shut down, all logged-in users are notified that the system is
going down using either the standard message or the one specified as a parameter to the shutdown
command. All processes are then sent a SIGTERM signal to tell them that the computer is going
down. This gives these processes time to shut down cleanly. The shutdown command then signals
the init process to change the run level to 0 (halt) if the option —h was provided or 6 (reboot) if the —r
option was used instead.

The /etc/rc.d/rc script is run with an argument of 0 or 6 as appropriate. This changes the run level
and runs the scripts pointed to by the symbolic links in /etc/rc.d/rc0.d or /etc/rc.d/rc6.d as
determined by the argument passed to the /etc/rc.d/rc script.

If a user hits Ctrl+Alt+Del to initiate a shutdown, the shutdown command will check for an
/etc/shutdown.allow file. If this file exists, it is read in and used to determine whether the user who
initiated the shutdown has permission to shut down the system. The /etc/shutdown.allow file
contains pairs of hostnames and usernames. If the hostname of the system attempting to shutdown
is listed, and the username next to it is a user who is currently logged on, the shutdown will
proceed.

Most modern Linux distributions also provide a shutdown option on the XDM login screen. This
allows inexperienced users to shut down after logging out, in a manner reminiscent of Windows NT
or 2000.

Warning Users

The shutdown command sends the users on the system a message telling them that the system is
being shut down, whether it is a reboot or a halt, and when the shutdown will occur. You may add a
message of your own to tell why, when the system will be brought back up, or any other information
which you'd like your users to know. As the shutdown time approaches, the message will be
repeated. The frequency of the message increases as the shutdown time gets nearer.

It is best not to make the shutdown period so short that users cannot finish with their applications
and exit the system. Of course, there will be times when the shutdown must occur right away; this
can't be helped, but adding a message telling the users when they can expect access to the system
again may help soften the blow.

Shutdown Log Files

Some of the same log files used with the startup process are also used for logging shutdown. Any
problems with the kernel that occur during shutdown will be annotated in /var/log/messages. The
/var/log/boot.log will report any problems relating to the processes run by the init program from
/etc/rc.d/init.d. The distinction between these files is not clear-cut, however, and messages about
the same problem tend to show up in both. If, for instance, the ethO device wasn't detected, you'd
see something like the following in /var/log/boot.log:

76

May 21 13:03:46 somedomain ifup: Delaying ethO initialization.
May 21 13:03:46 somedomain network: Bringing up device ethO failed

While this won't tell you everything you need to solve the problem, it will point you in the right
direction. The messages in /var/log/messages tend to be more helpful. The message about the
same problem from /var/log/messages looks like this:

May 21 12:03:46 somedomain modprobe: modprobe: Can't locate module ethO
May 21 12:03:46 somedomain ifup: Delaying ethO initialization.
May 21 12:03:46 somedomain network: Bringing up device ethO failed

These more helpful messages tell you that the problem occurs when attempting to load the
modules, usually meaning that this module or one of its dependencies can't be found.

In Sum

Starting a Linux system involves the interaction of a wide range of software, from the computer's
BIOS to the Linux startup scripts. Critical components that you can configure include the installation
of a boot loader (LILO, GRUB, and LOADLIN are common for Linux) and the specification of what
services should be run. Most Linux systems use scripts in the /etc/rc.d directory tree to control these
services, and these configurations can be edited manually or by using tools such as ntsysv or
tksysv. Shutting a system down is also a process that involves running specialized system scripts.
At all steps along the way, information is logged to assorted files, which you can consult when
troubleshooting your system.

In the next chapter we'll look at the tools that a system administrator uses on a regular basis.
Familiarity with these tools will make being a Linux system administrator much less difficult.

77

Chapter 4: Tools of the Trade

Overview

Just as mechanics must be able to use their tools skillfully to keep a vehicle in working condition, so
also must a Linux system administrator be able to use the tools of the trade to maintain a workable
Linux system. In either case, what looks to the layman to be magical is in fact the implementation of
some skill learned via experience. Success comes from knowing what has to be done, having the
resources to do it, and implementing what you know. Remember that every task is a tool you might
need later. In view of this, system administrators must learn the basic elements of the job to the
point where they are second nature. Only then can these elements be used as building blocks to
accomplish tasks that are more challenging.

In this chapter, we identify several such building blocks. We discuss information tools like man
pages, info pages, and Web-based Linux support services before looking at some command-line
tools that will be useful in building a solid foundation of Linux systems administration experience.
We give you some basic commands to store in your Linux toolbox, explain how you can make
commands work together to solve bigger tasks with piping and redirection, talk about the different
ways of locating specific files on your system, and discuss the use of quoting, the history list, and
various Bash shell commands.

Locating Help Resources

One of the most important elements in establishing yourself as a system administrator is
demonstrating that you know where to find an answer you don't know offhand. Some really sharp
system administrators will advise you never to admit that you don't know something. We
wholeheartedly disagree with this approach. Yes, some people become angry when the answer isn't
one that you can give without verifying the information, but it should never change your policy of
being honest. More often than not, people are relieved to hear an honest reply as long as you come
back with the answer in a reasonable time. When asked something that you don't readily know,
always give the same basic answer: "l haven't seen that one in a while, but | know where to get the
information you need. I'll be back with you as soon as | get it."

If you can't recall the answer, take the honest approach and forget about the knowledgeable strut.
The knowledgeable strut puts you in a position of having to be (or at least appear to be) omniscient,
and none of us are that. We also have found that people who pretend to know all the answers tend
to come off as arrogant, and some clients love to prove an arrogant system administrator wrong.
You are less of a target if you are honest about your abilities—as long as one of those abilities is the
ability to find an answer.

To find answers when you need them, look at the numerous information resources that are
available. One of the features we like most about Linux is the availability of resources. On a
Microsoft Windows machine, you can't just bring up a page of useful information on a command.
There are documents and online help features in Windows, but those tools generally don't answer
questions unless they fit into a specific mold, or they get almost to the point where they're helpful
and then stop. They don't offer enough information to piece together the answers that exist between
the lines. In Linux and other Unix-like operating systems, the information is most often there if you
know what you're looking for.

78

Man Pages

Man (short for "manual") pages are online documents that describe the format and functioning of
commands and files as well as some other tools available on your Linux system. Man pages are not
meant to be comprehensive but rather to give general information about usage. Man pages aren't
meant to take the place of the source documentation, but instead to highlight how to use the
referenced resource. Unless the system was installed without them, man pages are readily
available from the command line. Simply type man man to get the man page on how to use man
pages. The basic format of the command is:

man [options] [section] topic

There is a configuration file for the man command located at /etc/man.config. This file allows you to
configure the environment variables that the man command uses if you don't wish to specify them
on the command line. The options include the path that should be searched for man pages, the
order in which the manual sections should be searched, and whether to store the man pages in a
compressed format.

Man pages are grouped into sections or categories as outlined in Table 4.1. A given command can
have man pages in different categories if appropriate; for example, the umount command has a
page in section 2 for the programmer's system call and a page in section 8 for its use as a system
administration tool. Some packages, like Tcl, separate their pages into a different section rather
than including them in the categories listed.

Table 4.1: Online Manual Sections Specified in the man Command

Section Category

User commands that may be started by anyone
System calls (kernel functions)

Library functions

Devices

File format descriptions

Games

Miscellaneous

System administration tools that only root can execute
More kernel routine documentation

New documentation that may be recategorized
Old documentation that may go away soon
Documentation referring to this specific system

— OIS |O|O (N[O ||~]|W|IND|—

If you don't remember the name of the command you want to know about, man has an option that
will look for a keyword in the Whatis database, a set of files containing short descriptions of system
commands. In this way, if you know that the purpose of the command you want is to add a user, you
can specify:

$ man -k user

The output, an excerpt of which is listed below, will be a list of man page topics that contain the
word user in the description, along with the section each page is in and a simple description of the
topic.

79

access (2) Check user's permissions for a file

chage (1) Change user password expiry information

useradd (8) Create a new user or update default new user
information

userdel (8) Delete a user account and related files

You can see from this that the command you want is useradd; running man on that command
produces the display shown in Listing 4.1.

Listing 4.1: The Man Page Display for useradd

USERADD (8) USERADD (8)
NAME
useradd - Create a new user or update default new user
information
SYNOPSIS
useradd [-c comment] [—-d home_dir]
[-e expire_date] [-f inactive_time]
[-g initial_ group] [-G groupl,...]]
[-m [-k skeleton_dir] | -M] [-p passwd]
[-s shell] [-u uid [-o]] [-n] [-r] login
useradd -D [—-g default_group] [-b default_home]
[-f default_inactive] [-e default_expire_date]

[-s default_shell]

DESCRIPTION
Creating New Users
When invoked without the -D option, the wuseradd command
creates a new user account using the values specified on
the command line and the default values from the system.
The new user account will be entered into the system files
as needed, the home directory will be created, and initial
files copied, depending on the command line options. The
version provided with Red Hat Linux will create a group
for each wuser added to the system, unless -n option is
given. The options which apply to the useradd command are

.The OPTIONS section has been omitted for space reasons...

NOTES
The system administrator 1is responsible for placing the
default user files in the /etc/skel directory.
This version of useradd was modified by Red Hat to suit
Red Hat user/group convention.
CAVEATS
You may not add a user to an NIS group. This must be per-
formed on the NIS server.
FILES
/etc/passwd — user account information
/etc/shadow — secure user account information
/etc/group - group information
/etc/default/useradd - default information
/etc/skel - directory containing default files
SEE ALSO

chfn (1), chsh (1), crypt (3), groupadd(8), groupdel (8),
groupmod (8), passwd(l), userdel(8), usermod(8)

80

AUTHOR
Julianne Frances Haugh (jfh@bga.com)

(END)

The useradd display is typical of a man page for a command. After the command's name, you see a
synopsis of the formal syntax, a description of its use, its possible arguments (omitted here for
space reasons), any caveats or restrictions on its use, any references to related commands, and the
author's name and e-mail address. Non—command man pages include similar sets of data as
appropriate.

Man pages, by default, use the less —is command to write the information to a file that you can view.
The less command is simply a filter that pages through a file, displaying each page on your screen.
(We'll talk more about it in a few pages.) Similar programs are cat and more, which you may have
used before. You may change the man command's default viewer by adding the —P option followed
by the name of the viewer program you wish to use. Or you can configure this change in
/etc/man.conf, or by resetting the PAGER environment variable.

If the man pages aren't installed, and there is room on the system, install them. To do this, use the
rpm command as described in Chapter 8. You'll find invaluable information in these pages. Many
times, we have needed to use some rarely used capability of a Linux command and found the
format for that command in the man page. An added benefit in Linux is that the man pages are
available in a number of languages—just in case you'd like to get an explanation of the Is command
in Indonesian.

Info Pages

Although man pages have been the standard source of information about Unix commands for many
years, the GNU Project has more recently introduced the concept of info pages, and the Linux
community is moving toward replacing man pages with info pages. Man pages for many commands
are no longer being updated and instead direct you to the corresponding info page for information.

From our point of view as users, info pages are very similar to man pages. They are grouped into
the same categories as man pages. The critical difference that drives the info page movement is the
advantage of using the Texinfo format.

Texinfo is a documentation system that uses a single file to create both online display and printed
output. That is, only one file must be maintained in support of printed documentation and the info
page. This is a tremendous time-saver for the program's developer who, under the man page
system, had to create both a user's manual for printing and a man page for on—screen viewing.

A Texinfo file is a plain ASCII text file that also contains @-commands (commands preceded by an
@), which tell the typesetting and formatting programs how the text is intended to be formatted. A
Texinfo file may be edited with the editor of your choice, but the GNU Emacs editor has a special
Texinfo mode that provides special Texinfo-related features. You can read Info files using the
standalone Info program or the Info reader built into the Emacs editor. There is not a great deal of
difference in the material whichever way you do it, although the deprecation of the man command
means that the info page is more likely to contain up—to—date information. The command to list the
info page for the useradd command is:

info useradd

81

The output looks like Listing 4.2.

Listing 4.2: The Info Page Display for useradd

File: *manpages*, Node: useradd, Up: (dir)
USERADD (8) USERADD (8)
NAME
useradd - Create a new user or update default new user
information
SYNOPSIS
useradd [-c comment] [-d home_dir]
[-e expire_date] [-f inactive_time]
[-g initial_group] [-G groupl[,...]]
[-m [-k skeleton_dir] | -M] [-p passwd]
[-s shell] [-u uid [-o]] [-n] [-r] login
useradd -D [-g default_group] [-b default_home]
[-f default_inactive] [-e default_expire_date]

[-s default_shell]

DESCRIPTION
————— Info: (*manpages*)useradd, 184 lines --Top-———————————————————————
Welcome to Info version 3.12h. "C-h" for help, "m" for menu item.

As you can see, the info page presents essentially the same information as the old man page
format. The info system has an equivalent to the keyword option mentioned in the man page
section. Use this format:

info —-—apropos user

The output looks a little different, but the information is essentially the same as generated by the
man page keyword search. See Listing 4.3 below.

Listing 4.3: An Excerpt of an Info Page Using apropos (useradd)

"(info-stnd) Invoking Info" -- remembering user keystrokes
"(texinfo) kbd" -- user input

"(texinfo)Variables Commands" —-- User options, marking
"(texinfo)Macros" —- User-defined Texinfo commands

" (bfd) howto manager" —-- BFD_RELOC_ALPHA_USER_GPDISP

" (bfd) howto manager" —-- BFD_RELOC_ALPHA_USER_GPRELHIGH

" (bfd)howto manager" -- BFD_RELOC_ALPHA_USER_GPRELLOW

" (bfd)howto manager" —-- BFD_RELOC_ALPHA_USER_LITERAL

" (bfd) howto manager" —-- BFD_RELOC_ALPHA_USER_LITUSE_BASE

Those of us who have used man pages for so long may find the info pages a little awkward at first,
but they're here to stay. For now, system administrators will benefit from getting to know them both.

82

Technical Support

Linux has a reputation as a do-it-yourself operating system, and for this reason many corporate
users have not taken it seriously. Mailing lists and online frequently asked questions lists have long
been available, but this informal support didn't really gain Linux acceptance in the business market.
Companies that would otherwise have used Linux shied away. Corporate customers hesitated to
buy something with such informal support. Fortunately, there are some enlightened corporate
executives who agree with us that getting technical support from a user community is actually better
than from a commercial vendor, and for a couple of reasons. First, you get the benefit of the
collected experience of your peers. Also, with commercial software you are dealing with "planned
obsolescence," and the answer for many questions turns out to be "you need to buy an upgrade to
do that."

In response to Linux's reputation as an unsupported operating system, several third—party
companies offer fee—based technical support plans for businesses and individuals. This has been
an area of substantial development in the last few years. Corporate users can now point to these
new support sources when pitching the use of Linux to their clients and to their management. Here's
a look at the most important online support sources, both commercial and from the user community.

Configuration Support

Users of early Red Hat found the support offered by the company to be disappointingly limited to
installation issues and often unresponsive. Red Hat's Web site contained a database of previously
answered questions, but problems with the search engine often rendered this database
unsearchable.

After the release of version 5.1 greatly increased their sales volume, Red Hat began revamping its
support program. They improved their installation support and reworked their online database.
Web-based support was offered as well as support through e-mail and telephone. As of Red Hat
7.3, this support is offered with the Personal Edition and the Professional Edition of Red Hat. The
Personal Edition offers 30 days of Web or e-mail installation support, while the Professional Edition
offers 60 days. Support contracts for post-installation problems and per—incident support are
available as well. Some other distributions have similar programs.

Most third—party companies that offer Linux support have searchable databases on their Web sites,
which they encourage you to use as the first level of support. Many of these same companies also
offer more formalized support in the form of 24/7 e-mail support, telephone support, and
Web-based support, each intended to have a very quick turnaround time. You may need to
exchange several e-mails with the support personnel before the matter is resolved, but this can all
take place in a matter of hours. Support Web sites often have Web-based forms to gather all the
necessary data and then channel it to a support engineer who responds via e-mail or telephone.
Call-in telephone support is not usually intended to be the primary channel for support.

Some third—party support sites, such as Enterprise Linux Support at http://e.linux—support.net/, offer
fee—based telephone and Web-based support at hourly or daily rates, depending upon how long it
takes to solve the particular problem. Web-based support is generally significantly cheaper than
telephone support. This same company offers support by volunteer engineers under the name Free
Linux Support at http://support.marko.net/. The success of the engineers is monitored, and the best
engineers are offered paid positions with Enterprise Linux Support.

Other third-party support sites, as well as companies like Red Hat
(http://www.redhat.com/apps/support/) and Caldera (http://www.caldera.com/support/), offer

83

pay-by-the-incident support, where the charge is a given rate per problem regardless of how
much—or how little—time the problem takes to solve. The charge per incident is widely variable.
Distributors generally offer installation support free for a given time after the purchase of a boxed
distribution.

Also available are traditional support contracts, which offer to support any problem within a given
period for a set amount of money. These contracts specify what the telephone support hours are
and what the expected response time is.

Tailored Linux Development

In 1998, LinuxCare (http://www.linuxcare.com/) began to offer distribution—neutral support programs
to businesses as well as individuals. LinuxCare's primary business is to develop customized Linux
software for business customers. They provide assistance in the areas of Linux kernel extension,
system optimization, device driver development, and application porting. They also offer consulting
services in the areas of Linux security, network management, and project management in general.

A number of small, Web-based companies, such as Linux Consulting
(http://www.linux—consulting.com/), offer fee—based support services in the form of customized
Linux server and client machines, Linux system administration tools and scripts, specialized Linux
software, and Linux maintenance. The number of consultant firms is growing rapidly. A simple
search of the Internet can find a consultant who will develop whatever Linux-related software you
need.

General Web Support

Nearly every distribution has at least one mailing list available to users of the distribution or others
who have distribution—specific questions. Messages are addressed to the appropriate list, and the
list handler mails them to the other members of that list as appropriate. It is a very effective way to
obtain support information. You simply e-mail your question to the list; others read your post and
e—-mail their responses to the list. Sometimes the list handler creates a digest version of the list,
meaning that instead of receiving each e-mail individually, you receive a composite post when the
waiting message queue reaches a given capacity. We highly recommend joining the digest version
of the list for you distribution!

Red Hat uses several mailing lists as shown at http://www.redhat.com/mailing-lists. The most
common are named redhat-announce-list, redhat-watch-list, and redhat-list. The announce list,
as the name implies, announces events that affect the Red Hat community. The watch list alerts its
members to security issues, and the redhat list is for general issues. redhat-list is available in digest
format. In addition to these lists, there are several other lists, for example the sound-list and the
pam-list, which deal with more specific problems; each is detailed on the above-mentioned site.

The Debian distribution has many lists as well, also including a debian-announce list for
announcing events and a debian-user list for general user questions. The debian-user list is
available in digest form. You can find information about them and how to subscribe at
http://www.debian.org/MailingLists/subscribe.

Slackware has two basic lists: slackware—announce and slackware—security. Each is available in
digest format as well. More information may be found at http://www.slackware.com/lists.

SuSE Linux also has several mailing lists, including suse—announce-e for announcements in
English, suse-linux—e for general discussions in English, suse-security, and

84

suse-security—announce. Other lists are specific to Motif, Oracle, IMAP, Applixware, and other
topics. More information on these lists is available at
http://www.suse.com/support/us/mailinglists/index.html.

A number of sites archive the various Linux-related lists. Very useful is Google.com's site, located
at http://www.google.com/. What you'll find there is a search engine that will perform various Web
searches to include a groups search that will respond to your query with a list of related posts from
the various lists that are archived there. Select the one that most closely resembles what you're
interested in, and you'll see the text from that post. It's especially useful to enter error messages as
the query, possibly followed by the word Linux. This works quite well for those errors that don't
seem to be documented anywhere else.

For example, you might enter the following in the search window:

"You don't exist; go away" Linux

This generates about 1720 hits; several of these detail the problem. (In case you're curious, the
error means there is no utmp entry for your shell or you don't own the tty/pty you're logged in on.)

Webmin

There are several administrative tools available. Many distributions create their own custom tools.
To avoid having to use a different tool on computers using different distributions, we recommend the
use of the Webmin tool for administrative tasks. Webmin performs most of the major system
administration tasks that you'll need. Webmin is used via a Web browser like Netscape. If you use
version 7.2 or newer, Webmin is Secure Socket Layer (SSL) enabled by default, so you will have to
use the secure version of the HTTP: HTTPS.

To install Webmin, download the latest rpm and move it to /usr/local/packages or wherever you
choose to store packages that you download and install.

Change the directory to /usr/local/packages and use the appropriate rpm command to install. For
example, webmin-0.92-1.i386.rpm would be installed using the following command:

rpm -uhv webmin-0.92-1.i386.rpm

Note Remember that if you use the u for update and the package doesn't already exist, it will be
installed. If it does already exist, it will be updated instead.

To test the installation, bring up your browser to port 10000 using SSL on the localhost. With

Netscape, the command would look like this:

netscape http://localhost 10000

Next log in as root with your regular root password.

Command-Line Tools
Linux provides a number of command-line tools to support you in your system administration

duties. This section first looks at the command-line techniques that help you use commands more
effectively, like pipes, redirection, wildcards, and tildes. As you'll see, all of these features are

85

provided by the shell, which by default for most distributions of Linux is the Bash shell. The
remainder of the chapter summarizes the basic command-line programs—commands—that you
use every day. All of these pieces fit together to help you accomplish the day-to-day tasks of a
Linux administrator.

The Bash Shell

The shell assigned to a particular user serves as the command interpreter for that user's session.
Commands are input and interpreted in a specific way by the shell; the same commands might be
interpreted differently by a different shell. That is to say that a command typed into a Bash shell
session might not work as intended under the C shell. A user has to understand the nuances of the
shell he or she uses to take full advantage of its functionality. The default shell in Linux is the
Bourne Again Shell, or Bash. The Bash shell includes features from the Bourne shell, the Korn
shell, and the C shell. Bash reads its configuration from the .bash_profile and .bashrc files, which
are discussed further in Chapter 3 in the context of user—specific startup scripts.

Bash, like other Unix shells, has certain special characteristics, which we will discuss here. The
Bash shell, like other shells, contains a set of built—-in commands for use within the shell
environment. Other special characteristics include Bash's usage of environment variables, piping
and redirection, wildcards, quoting, the tilde, command and pathname extensions, and the history
list.

Built-in Commands

The Bash shell's built-in commands add functionality that would be impossible or inconvenient to
obtain externally. For example, cd, break, continue, and 'exec' can't be implemented outside the
shell since their purpose is to directly manipulate the shell itself. Other commands, like the history,
kill, or pwd built—-in commands, could be implemented externally but are built in for convenience. A
complete list is available in the Bash man or info page.

Environment Variables

Environment variables are strings, set by the Bash shell or some other program, that make data
available to other programs. These strings are called "environment" variables because they are
globally accessible and are therefore part of the environment. The following variables are set in the
/etc/profile file under Red Hat:

PATH

USER

LOGNAME

MAIL

HOSTNAME
HISTSIZE
HISTFILESIZE
INPUTRC
MYSQL_UNIX_ PORT

The PATH variable is redefined on several levels, since different users need to have access to
different files and directories. Setting an environment variable in a Bash shell has two steps: setting
the value and then exporting it. Sometimes you will see this as two separate commands:

HISTSIZE=1000
export HISTSIZE

86

It may be more efficient to do only one step as follows:

export HISTSIZE=1000

To display the current value of an environment variable, use the echo command:

echo $HISTSIZE
You can access these variables from within a C program using the getenv function.
Piping and Redirection

Piping and redirection are such powerful tools that it's frustrating to find yourself on a system that
either doesn't handle pipes or handles them badly. Most Unix-like operating systems handle both
pipes and redirection similarly.

Piping

When you execute a command in Linux, it has three streams opened for it. The first is for input and
is called Standard In (stdin). The next is for output and is called Standard Out (stdout). The last is
the error stream and is called Standard Error (stderr).

Piping is the practice of passing the first program's stdout into the stdin of another program. You do
this by listing the first command followed by a pipe (|) and then the command where the first
command's output is being sent. For example, if your task is to back up certain files on your system,
you can funnel the file listing that is output from a find command into stdin of the cpio command,
prompting cpio to store only the listed files on your tape:

find /home/user | cpio —ocvB /dev/stO
The output of the find command would look something like this:

/home/user
/home/user/calendar
/home/user/linus.au
/home/user/.bash_logout
/home/user/.bash_profile
/home/user/ .bashrc

When this output is piped into the cpio command, each of these files is added to the archive and
written to the tape drive specified as /dev/st0 (the first SCSI tape drive).

If you want to exclude all sound files with the extension .au, you could pipe the find command
through a grep command and then into the cpio command. The command would then look
something like this:

find /home/user | grep -v ".au" | cpio —ocvB /dev/stO

In this case, the file list output by the find command would be filtered to exclude all of the files that
end in the extension .au, and only the remaining files would be added to the archive.

87

Redirection

Redirection is the practice of changing where the stream comes from or is written to. One common
use is to route the system log to a vacant console and update it as messages are added. You do
this by listing the tail command followed by an output redirection character (>) and then the device
where the output is to be sent. If you wanted the output of the command to go to the console device
designated by /dev/tty9 rather than to stdout, you would enter this:

tail -f /var/log/messages > /dev/tty9

When you execute this command, the output of the tail command will be redirected to console 9,
causing the system log (/var/log/messages) to be displayed there and, since the —f argument is
present, appending new output as it is written to the system log.

Sometimes you want to take input from somewhere other than stdin. This is also redirection, and
you can use the same principle illustrated above. Simply follow the command that requires input
with the input redirection character (<) and the file that contains the data to be input. Let's say that
a file contains a list of names to be sorted in a particular order. By changing the stdin for the sort
command, we can make it take the names from the file, reorder them, and write them to stdout. The
command would look like this:

sort < namelist

You can use the two redirection operators in the same command sequence when you need to take
stdin from one file and send stdout to another. A common use of this is to sort the lines in a file and
output the sorted lines into a new file. With redirection it would look like this:

sort < namelist > sortedlist

Another common use of redirection is to send both stdout and stderr to a file in order to save the
data for examination. This is a very useful tool for tracking down a problem. This can be done for
any two I/O streams and not just stdout and stderr. You need to know that standard input is
considered the first stream and numbered 0; standard output numbered 1, and standard error is
numbered 2, since the numeric representation is used in redirection. Using stdout and stderr, the
command would look like this:

backup > backup.log 2>&l1

Note The 2>&1 means to route stderr (2) wherever stdin (1) goes. The ampersand (&) often
relates to memory location or addresses.

Redirection as above causes backup.log to write over any file previously known as backup.log. If

you want to append the output from a command to backup.log instead of writing over it, you'd use

the >> symbol. This is especially good for log keeping. The command would look like this:

backup >> backup.log 2>&l

Wildcards

Bash, like most other Unix shells, allows the use of special characters called wildcards to reference
more than one file at a time. DOS and Windows, of course, also offer wildcards, but the difference is
that in Linux, these special characters are expanded by the Bash shell and not by the program itself.
That is, if you launch a program that has special characters in its argument string, the program does
not need to know how to handle them; they are translated by the Bash shell before being passed to

88

the application. Instead of the wildcard characters, for instance, the program would receive a
space-delimited list of all files matching the wildcard construct. The user may restrict this capability
if the wildcard characters are intended to be interpreted by the program rather than the shell. There
are three wildcard characters frequently used in Linux, each interpreted differently by the Bash
shell: the asterisk, the question mark, and the bracket pair.

The asterisk is often called the "splat"; the string b*.bmp might be pronounced as
"b-splat-dot-bmp." Its purpose is to replace a string of any number of characters in sequence.
Thus b*.bmp matches with any file whose name begins with b and has the .omp extension. The files
blue.bmp, barney.bmp, bermuda.bmp, and before_you_go_away.bmp would all match.

The string *.* matches all files that contain a period; be certain that you really mean to act on all files
in the directory when you use this string. The string .* matches any dot file.

Many a user has deleted important files by specifying an incorrect wildcard string as an argument to
the rm command. The "joke" that is often played is trying to get the new guy to run rm —rf * from the
root directory. This is a forced removal of all files and directories. It's ugly if you have no backup.

The question mark represents any one character. The string file_? would match all of the following:
file_1, file_2, file_A, or file_b. The string file.??? would match any file named file that has a
three—character extension.

The bracket pair is used to define a list or range of characters to be matched. The string file[0-9]
would match fileQ, file1, file9. The string [a-zA-Z] would match any single alphabetical character.
The string [a-zA-Z0-9] would match any alpha or numeric character.

Quoting

As you've seen, shell commands assign special meanings to ordinary alphanumeric characters, so
when these characters are used within strings literally, there needs to be some way to prevent the
shell from interpreting the characters. In the Bash shell, quoting is the basic technique for this.
There are three quoting mechanisms: the escape character, single quotes, and double quotes:

e The backslash (\) is the Bash escape character. It causes the next character to be taken
literally.

e Single quotes preserve the literal value of each character within the quotes. A single quote
may not occur between single quotes, since the enclosed quote would be interpreted as the
closing single quote.

¢ Double quotes protect the literal value of all characters contained within, except for the dollar
sign ($), the tick mark ('), the double quote ("), and the backslash (\). If a quoted string
contains an environment variable that is to be expanded, double quotes allow this. Single
quotes prevent the expansion.

The Tilde

The tilde can save you several keystrokes every day. If a pathname/file combination begins with a
tilde, everything preceding the first / is treated as a possible login name. In the case of
~user/some_files, the ~user would be replaced by the home directory of user. In most cases, this
would be expanded to /home/user/some_files. If the resulting login name is a null string, as in
~/myfiles, the tilde is replaced by the username of the user who executed the command.

If the tilde is followed by a plus sign, the ~+ is replaced by the present working directory. If the plus

89

sign is replaced by a dash, the previous working directory is used instead.
Command and Pathname Expansion

One of the most convenient features of the Bash shell is command-line completion. Using this
feature, you can type in the first few letters of a command until your string becomes unique, and hit
the Tab key to force the Bash shell to complete the command name for you. Here's an example. If
you enter the letters Ip and press Tab, nothing will happen since several commands begin with the
letters Ip. If you hit the Tab key again, Bash will list all of the commands in your PATH that meet that
description.

You can then simply enter the Iptest command, if that's what you're looking for. If you'd prefer,
however, you may type only enough letters to uniquely match that command—in this case, Ipt and
then hit the Tab key. This time, the Iptest command will be completed for you.

This works equally well for filenames. If you go to your home directory and type Is m and hit the Tab
key, nothing will happen—unless you have only one file or subdirectory beginning with the letter m.
Pressing Tab again, however, will yield a list of all files or subdirectories within your home directory
that begin with m. You can then type in the complete file or directory name or enough letters to
make it unique followed by the Tab key.

The History List
The history list allows you to retrieve previously entered commands for reuse instead of having to
remember and retype them. This feature is useful when the command is lengthy or frequently used.

The .bash_history file is a list of commands like those shown in Listing 4.4.

Listing 4.4: The .bash_history File

man lsattr

lsattr

lsattr |more

man find

man ls

pine myfriend@hometown.com
clear

pine

clear

exit

pine

su

pine otherfriend@nothome.com
clear

exit

pine myfriend@hometown.com
su

startx

exit

To create the history list, the shell stores all of the commands that were executed during a session
in a file called by default .bash_history. (You can rename this file by setting the environment
variable HISTFILE to the new name, and you can determine how many commands will be retained
by setting the HISTSIZE environment variable.)

90

The easiest way to retrieve a command from the history list is by using the arrow keys, especially if
the command was recently entered. The up arrow retrieves the previous command from the history
list, and the down arrow retrieves the next command. You may traverse the entire history list this
way if you wish, but if HISTSIZE is large, this can become tedious.

An alternate way to fetch a command from the history list is to enter on the command line an
exclamation point followed by enough letters to uniquely identify the command you wish to retrieve.
The most recent iteration of the command is then retrieved and executed. Entering Ipine at the
command line would retrieve the last pine command in the .bash_history file, pine
myfriend@hometown.com. If you knew that you had recently used the pine command to write to
otherfriend, you could type !pine o at the prompt and the pine otherfriend@nothome.com command
would be retrieved. Entering history at the command line will yield a list of the commands in your
current .bash_history file.

Basic Commands

Although there are exceptions, basic Linux commands generally take one of the following forms:

command [-option] target
command [-option] source destination

Linux command names, like filenames, are case-sensitive. Although most commands are
completely lowercase, some options are uppercase. The man pages discussed above are
invaluable when using unfamiliar commands. Even someone who has been administering a system
for 20 years can learn something new about the functionality of the basic commands. New options
are being added all the time, as are entirely new commands.

The Linux commands presented below are some of the most commonly used. These definitions are
not intended to be comprehensive but to give you a general idea of their use. Although we show the
general syntax of each command listed, this is not a formal command reference, defining every
option of each command. For a complete reference, see the appropriate man page. Later chapters
discuss many of these commands in more detail, in the context of their administrative uses.

User Account Commands

The commands in this section allow you to work with user accounts. They include the commands to
create a user, to delete a user, and to perform various other common user functions. More
information on user—specific tasks is available in Chapter 5, "Creating and Maintaining User
Accounts."

adduser

There is actually no adduser command under Red Hat; to accommodate users who have used this
command in other Unix varieties, it is symbolically linked to the useradd command, explained below.

finger
finger [options] [username] [@host]

The finger command is used to display information about the system's users. Since this command
can be used remotely by giving the target user's name as username@ host, it is usually disabled as
a security measure.

91

groups
groups [username]

The groups command prints a list of groups to which the specified user belongs. If no user is
specified, the groups are given for the user who issued the command.

newgrp
newgrp [group]

The newgrp command is used to change the user's group identity. The specified group must exist in
the /etc/groups file, and if the group has been assigned a password, the user is first prompted for
that password. Once the password is accepted, the user retains the current username but is given
the privileges belonging to the specified group.

last
last [-num] [options] [—-f file] [name] [ttyl]

The last command searches the /var/log/wtmp file and lists all the users who've logged in since the
file was created. The num option may be used to specify how many logins back from the last login
to include. The —f option allows you to specify a different file to search instead of the wtmp file. The
name and tty options will filter the output by user and/or tty.

mesg
mesg [yln]

The mesg command controls write access to a workstation. If write access is allowed, other users
may use the write command to send messages to the terminal. An argument of y turns on access,
and n turns off access. If no argument is provided, the current setting will be displayed.

passwd

passwd [options] [username]

The passwd command is used to change the password of the user executing the command. If you
are the superuser, you can specify a different username in order to change that user's password
instead. Password security is discussed in Chapter 15.

pwd
pwd

The pwd (print name of working directory) command is used to list the path of your current directory.
If you need the full path for a script and don't want to type it all in, you can issue the pwd command,
cut the output, and paste it into the editor being used to create the script.

su
su [options] [-] [user] [args]

The su command runs a shell with the effective user ID and group ID of user. This is typically used
to become the root user for a task requiring that level of privilege, but it is much safer if the system

92

is set up for the use of sudo.
sudo
sudo [options]

The sudo command is used to allow users to execute commands on their workstations that are
normally reserved for the superuser. It is discussed more thoroughly in Chapter 7.

useradd
useradd [options] login_name

The useradd command creates a new user on a Red Hat system. Different options allow you to
specify things like the password, the shell, and the user identification number. When invoked with
the —D option, the information is used to update the default new user information.

userdel
userdel [-r] login_name

The userdel command deletes the system account files for a user and removes the user's entry
from /etc/passwd. Unless the —r option is given, the userdel command leaves that user's home
directory and all the user's files in place.

usermod
usermod [options] login_name

The usermod command modifies the specified user's account information. The options allow you to
change several settings, including the home directory, login name, password, and shell.

File-Handling Commands

This section contains commands geared toward file creation and management. Most of these are
the basic commands you are likely to use almost daily.

cat
cat [options] filename (s)

The cat command dumps a file to stdout. Often stdout is then redirected into another command via
a pipe or to a different file. It is often used to concatenate two or more files, thereby creating a new
file. The command to do this is

cat filel file2 file3 >newfile
chmod

chmod [options] mode(s) filename(s)
chmod [options] octal_mode (s) filename (s)

The chmod command is used to change the access mode of files. Only the owner of the file or the
superuser may alter its access. There are two methods for expressing the mode you wish to assign.
The first is the symbolic method, wherein you specify letters representing the mode. This requires

93

that you specify the following information.

Who is affected:

User who owns the file

Group (only users in file's group)
Other users

All (default)

What operation:

QO (O |Q |

+ Add permission

— Remove permission

= Set permission, overwriting old permissions
What kind of permission:

Read

Write

Execute

User or group ID is temporarily replaced with that of the file
Set sticky bit: keep executable in memory after exit

For example, ug+x would add execute privileges for the user and members of the group, and o+rw
would allow other users not in the specified group to read and write the file.

=

=0 [< [=

Some administrators prefer the octal method, which uses a sequence of three numbers to represent
the permissions for the user, group, and others. The new permissions completely override the
previous assignment. Three digits are computed, representing the user, group, and others,
respectively. To compute them, you add up the integers corresponding to the permissions you wish
to grant at each level. The result is a three-digit number in which the first number represents the
User permissions, the second the Group permissions, and the third the Other permissions. The
values assigned to each permission are as follows:

1 Execute
2 Write
4 Read

Thus, read and write permissions would assign a 6 (2+4). Read, write, and execute would assign a
7 (1+2+4). Using this method, 755 would grant the user read, write, and execute privileges, and
both group members and all others would have read and execute. Four-digit numbers may be used
as well, with the first place denoting the special or sticky bit. See the info page on chmod for more
information.

chown

chown [options] newowner filename (s)
chown [options] newowner.newgroup filename(s)

The chown command changes the owner of the specified file or files to the owner listed as an
argument. This command can also be used to change both the owner and the group settings on the
specified file. To do this, append a period followed by the new group to the owner name.

94

chgrp

chgrp [options] newgroup filename

The chgrp command is used to change only the group setting for the file. You must own the file or
be the superuser to use this command. The new group may be specified by group name or ID.

cp

cp [options] source destination
cp [options] source directory

The cp (copy) command is used to copy the source file to destination. If the source and destination
are both filenames, the duplicate will be placed in the current directory. They can also be full paths,
meaning that either the source file or the destination file might not be in the current directory.
Alternately, the second argument may be a directory, in which case source will be copied into the
new directory, retaining its old name. You may specify the —r option to recursively copy the source
directory and its files and subdirectories to destination, duplicating the tree structure in the new
location.

dd
dd [options] if=infile of=outfile [bs=blocksize]

The dd command makes a copy of the input file specified as if=infile using the given blocksize if
included to standard output or to the output file specified as of=outfile. This command may be used
to write data to a raw device. This command is often used to write a bootable image to a floppy disk:

dd if=boot.img of=/dev/£d0
diff
diff [options] filel fileZ

The diff (difference) command displays the lines that differ between the two files listed as
arguments. This is useful when you need to see the exact changes made to a file. For example, if a
program source file won't compile after several additions have been made, and you'd like to back
out of the changes one at a time, you would diff the current version against the last compiled
version.

file
file [options] [-f namefile] [-m magicfiles] file

This command determines the file type of the named file using the information in the default magic
file or the one passed as a parameter. The file command is discussed in Chapter 7.

find
find [path] [expression]

The find command is discussed in detail later in this chapter. It is used to locate files that meet the
criterion specified by the expression.

95

grep

grep [options] string targetfile(s)

The grep (get regular-expression pattern) command searches for a specified string in the target file
or the stdin stream if no filenames are given. grep is used quite often in a piped command to filter
data before passing it on or in scripts. A list of characters enclosed in ([]) brackets as the string
argument matches any of the characters in the list. For example, the string [Hh]ello matches either
Hello or hello. The string [A—Za-z] matches any letter in either lowercase or capital form. The string
[0-9] represents any one-digit number. The carat » indicates the beginning of a line, and the dollar
sign $ indicates the end of a line. Thus the use of the string [A-Z] would match any line that began
with a capital letter. Options include —i to ignore differences in case between the string and the input
file line, —I to print the names of files containing matches, -r to attempt to match the string within all
subdirectories as well, and —v to return all nonmatching lines.

head
head [options] filename (s)

The head command prints by default the first ten lines of the specified file(s). The optional —n
argument allows you to define how many lines, starting with line 1, will be printed.

ispell
ispell filename

The ispell program checks the spelling of all words in the named file and prompts the user to accept
the present spelling, replace it with a suggested spelling, add it to the dictionary, look up a specified
string in the dictionary, change capital letters to lowercase, or quit the program. To learn about other
more sophisticated uses see the man page.

less

less [options] filename

The less command starts up a file viewer that allows up and down movement within the file being
viewed. The less command doesn't require the entire file to be read in before starting, so it tends to
start up faster than commands that do. This command is very frequently used on the command line
as well as from within another program.

In

ln [options] target linkname
1ln [options] target (s) directory

The In (link) command creates a link, named linkname, to target. If a directory is specified in place
of a link name, the link will be created in that directory and named the same as the target. This
concept is discussed in Chapter 7, "Linux Files and Processes."

more

more filename

The more command starts a very primitive but often used file viewer. It outputs a page of data to the
screen (or stdout) and scrolls to a new page when the user hits the spacebar. The more command

96

is often the last part of a pipe command, allowing the user to page through the output.
mv

mv filel fileZ2

The mv (move) command moves the file or directory from the location specified by file1 to that
specified as file2. In Linux, this command is also used to rename a file.

rm
rm [options] filename (s)

The rm command removes or unlinks the given file or files. This may take effect recursively if the —r
option is given or interactively if the —i option is given. By default, Red Hat aliases rm to rm —i in an
attempt to protect the user from accidentally removing files, by forcing acknowledgment before
actually unlinking the file(s).

tail
tail [options] filename (s)

The tail command prints by default the last 10 lines of the specified files. The optional —n argument
allows you to define how many lines starting backward from the last line will be printed.

Process-Oriented Commands

The commands in this section are used to control processes and are all pretty common. We will
look at processes in Chapter 7.

ps
ps [options]

The ps (print status) command gives the status of the current processes. The process list may be
filtered or the output format may be changed by specifying related options.

pstree
pstree [options] [pid/user]

The pstree command displays a tree of processes with the root at the specified PID or at init if no
PID is specified.

halt
halt [options]

The halt command annotates the /var/log/wtmp file that the system is being rebooted and then halts
it. If halt is called when the system is not in run level 0 or 6 (the run levels that cause the system to
reboot), the much gentler shutdown command will be issued instead. Any users who are logged in
will be notified that the system is going down, and no additional users will be allowed to log in. All
processes are notified as well, giving them time to exit gracefully. Run levels are discussed in more
detail in Chapter 3.

97

shutdown

shutdown [-t sec] [options] time [warning-message]

The shutdown command brings down the system in a safe way. The shutdown command issues a
warning to the users and to the currently running processes so that they can clean up before the
system goes down. The shutdown command then sends a run level change request to the init
process. If the shutdown is intended to halt the system (option —h), the requested run level is 0. If
the system is to be rebooted (option -r), the run level is 6. If the shutdown is intended to put the
machine in single—user mode (neither option —r nor -h), the run level is 1.

reboot

reboot [options]

The reboot command is identical to the halt command described above, except that the system is
returned to the default run level upon completion of the shutdown.

init
init [run level]

The init command initiates a change to the specified run level. The /etc/inittab then calls the
/etc/rc.d/rc script, passing it the specified run level. The rc script causes the appropriate processes
to be started for that run level. For example, to go to run level 3, the rc script runs the scripts pointed
to by the symbolic links contained in the /etc/rc.d/rc3.d directory. The /etc/rc.d directory only exists
in systems with SysV-style initialization scripts. The rc#.d directories are directly under /etc in Linux
distributions that use the BSD-style initialization scripts. SUSE Linux does it a little differently still,
putting the scripts that on a SysV system would be in /etc/rc.d/init.d directly in the /etc/rc.d directory.
The init process will be described in some detail in Chapter 7 and was covered in Chapter 3 as well.

kill

kill [-s signal] [-p] [-a] PID
kill -1 [signal]

The kill program sends the given signal to the process whose PID is listed. By default this is the
SIGTERM signal, which requests that the process terminate. Sometimes the process ignores the
SIGTERM signal and has to be given a different variation of the kill command, kill =9 PID. Either the
number or the signal name may be used. The number is preceded only by the hyphen, as in the Kkill
-9 example; the signal name, however must be preceded by -s:

The kill program with the —p option does not send a signal but only outputs the PID of the process
that would receive the signal if sent. To generate a list of signals, use the kill —I format, the output of
which is shown below:

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR

98

killall

killall [options] [-s signal] process_name

The killall command Kills processes by name rather than PID as kill does. It is a much newer
command than the kill command, so many of us forget about it. It is a more intuitive version, though,
and saves you the trouble of determining the PID.

top
top [options]

The top command yields a continuous real-time listing of active processes, listing the most
CPU-intensive first and also including memory usage and runtime information. This is very useful if
your system suddenly seems to be running slowly, and you're trying to track the cause. Simply run
the top command.

nice
nice [options] [command [arguments]]

The nice command runs the included command at an adjusted scheduling priority. It allows you to
be "nice" to other users by making a really resource—intensive job run at a lower priority. The priority
range is between 20 and -20. A priority of 0 is average; 20 holds the process until nothing else is
placing demands on the system; and -20 indicates the maximum priority. If no command is
specified, nice prints the current scheduling priority.

When you issue a command, you can precede it with the word nice to cause it to assume a lower
priority. For example, this command starts a backup process, setting its nice value to 19 so that it
won't dominate other processes. (Note that you must precede a priority by a dash, so a positive nice
value looks like a negative value, and a negative value would use two dashes.)

nice -19 backup
renice
renice priority [[-p] PID] [[-g] group] [[-u] user]

The renice command changes the priority of the running processes specified by PID, process group
name, or username to the given priority. The priority range is between 20 and -20. A priority of 0 is
average, 20 holds the process until nothing else is placing demands on the system, and -20
indicates the utmost urgency. Users may only renice their own processes, but the superuser can
renice any user's processes.

Since the renice command is used for processes that are already running, use the top command to
determine which of them are dominating the system's resources. To do so, simply type top at the
command prompt. The top output as shown below includes a %CPU column and a %MEM column,
which indicate what percentage of each of these resources the process is using. (We have omitted
the SIZE, RSS, SHARE, STAT, and LIB columns to make the data easier to interpret.)

PID USER PRI NI $CPU $MEM TIME COMMAND
3652 user 1 0 29.6 34.1 614:16 Dbackup
1452 root 1 0 1.9 11.1 14:30 X

99

You can see that the backup process is taking more than its fair share of the system's resources. If
you want to give it a lower priority, 19, simply issue the renice command like this:

renice 19 -p 3652
Filesystem Commands

In Chapter 7, we'll look at some general characteristics of Linux's ext3 filesystem. We stated in
Chapter 3 that a filesystem is the structure imposed on each partition for the purpose of organizing
files, and that simple definition will suffice for now. The commands in this section allow you to do
things like check, fix, and mount a filesystem. The ext2 filesystem, which preceded the current
default of ext3, required more maintenance than the journaling filesystems that are the standard
now. The tools in this section are frequently used on the ext2 filesystem.

df
df [options] filesystem

The df (disk filesystem usage) command reports the number of free disk blocks and inodes on the
specified device, mount point, directory, or remote resource. This information, if checked
periodically, can let you know when you are about to outgrow a filesystem. Likewise, it can show
when you have a runaway process generating errors in the /var/log/messages file, thereby filling up
the /var partition (or / if /var is not a separate partition). Looking at the sample df output shown in
Listing 4.5, you can see the number of blocks used and available and the percentage of the
filesystem that is currently being used.

Listing 4.5: Sample df Output

Filesystem lk-blocks Used Available Use% Mounted on
/dev/hdbl 2016016 467476 1446128 24% /
/dev/hdb6 7558368 4987292 2187128 70% /usr
/dev/hda8 6048320 2393976 3347104 42% /home

fdisk

fdisk [options] device
fdisk [-s] partition

The fdisk (fixed disk) command allows you to view and change partition table information for the
given device. Use the second form shown above to get the size of the specified partition. If you use
the first form, the session will become interactive, and a menu of commands will be available to you.
This command is useful when you want to reinstall or add a new disk to the system.

Another useful option is —I, which allows you to list the partitions on a specified device as shown in
Listing 4.6.

Listing 4.6: Sample Output of the fdisk - Command

fdisk -1 /dev/hda

Disk /dev/hda: 255 heads, 63 sectors, 2491 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System

100

/dev/hdal * 1 255 2048256 83 Linux

/dev/hda2 256 2491 17960670 5 Extended
/dev/hdab5 256 893 5124703+ 83 Linux
/dev/hdaé 894 1021 1028128+ 83 Linux
/dev/hda’7 1022 1054 265041 82 Linux swap
/dev/hda8 1055 1819 6144831 83 Linux

fsck

fsck [options] [-t fstype] filesystem

The fsck (filesystem check) command is used to check and repair a filesystem. This command is
run at bootup by the rc.sysinit process with the —a option, which tells it to check each filesystem
listed in /etc/fstab unless the sixth field for that filesystem in the /etc/fstab is zero. If it detects a
problem, it will report that there was an "unexpected inconsistency." You will have the option of
entering the root password to do maintenance or dropping to single—user mode, where you can run
fsck manually and fix the problem. When you run it manually, fsck will evaluate the problem and fix
it (although some data will most likely be lost), and make the system bootable again.

tune2fs

tune2fs [options] device

The tune2fs command is used to fine—tune the characteristics of a filesystem. You can change the
number of times the filesystem may be remounted before a filesystem check is forced, the
maximum time that can elapse before it must be checked, the error behavior of the filesystem, and
so on. Attempting to adjust parameters on a filesystem that is mounted as read/write will damage
the filesystem! More on the usage of tune2fs is found in Chapter 16.

mkdir
mkdir [options] director (ies)

The mkdir (make directory) command creates one or more directories with the names specified. If a
fully qualified path is given, the directories will be created there; otherwise, they will be created in
the current directory. We will discuss the mkdir command in Chapter 7. Here is an example of how it
would be used to create a directory under user's home directory:

mkdir /home/user/new_dir
mke2fs

mke2fs [options] device [blocks-count]

The mke2fs command is used to create a Linux filesystem on the specified device. The
blocks—count argument sets the number of blocks on the device, although it may be omitted to allow
mke2fs to set the filesystem size.

mount
mount [options] [mountpoint] [device_node] [-t filesystem type]

The mount command attaches the filesystem referenced as device _node to the mount point
specified as mountpoint. If the filesystem is listed in the /etc/fstab file, either the mountpoint or the

101

device _node may be supplied alone. If the filesystem type is different than specified in /etc/fstab or
if the filesystem is not listed there, a filesystem type should be specified (although it is sometimes
recognized automatically). The following example mounts the CD-ROM located at /dev/hdc on the
mount point /mnt/cdrom.

mount /dev/hdec /mnt/cdrom -t ext2
umount
umount [options] device|mount_point [-t vfstype]

The umount command detaches the listed filesystem or the filesystem mounted on the specified
mount point from the Linux tree. The filesystem cannot be unmounted when it contains open files,
has a user currently located somewhere in its directory tree, contains a swap file that is in use, or
has other filesystems mounted in its tree.

showmount

showmount [options] [host]

The showmount command queries the mount daemon on a remote machine about the status of its
NFS server. If no options are specified, the showmount command returns a list of all clients who are
mounting from that host.

ulimit

ulimit [options] [limit]

The ulimit command can be used to determine resource limits for a shell and the processes started
by it. The arguments to ulimit include —a to report all current limits, —c for maximum core size, —f for
maximum file size, —n for the number of open files, and —u for the number of processes available
per user. The ulimit may also be used to adjust these limits by specifying the correct argument
followed by the new numeric value. Preceding the options with an H sets hard limits, which cannot

be increased once set. A soft limit, preceded with an S, can be increased until it reaches the hard
limit. If neither H nor S is given, a soft limit is assumed.

To determine what the hard limit is on the maximum core size, use the ulimit command as listed
below. The return value shows that on a Red Hat system, there is no hard limit to the size of a core
file.

ulimit -Hc
unlimited

To set the maximum core size to 1024, issue the following command:
ulimit -c 1024

Now check your work by issuing the ulimit —c command without a value. The result should be the
value you specified.

mkswap

mkswap [options] device [size]

102

The mkswap command creates a swap area on the specified device or file. A swap area is used to
hold pages written out from memory, making it possible to read them back into memory more
quickly. In Linux, a swap space twice the size of the amount of memory in the system is usually
sufficient. Most often, the device that contains the swap space is a disk partition, but a file created
with a dd command can also be used, like this:

dd if=/dev/zero of=/dev/swapfile bs=1024 count=65536

The copy command will not work to create a swap file. When the device or file is created, the
swapon command must be used to activate the swap area.

A swap partition is typically created when the Linux system is first installed. Refer to Chapter 2 for
more information on how to create swap space as a separate patrtition.

swapoff

swapoff [-a]
swapoff specialfile(s)

The swapoff command disables swapping on the specified devices or files. If swapoff is called with
an —a option, all swap entries in /etc/fstab will be disabled.

swapon
swapon [-v] [-p priority] specialfile(s)
swapon [—a]

The swapon command enables swapping on the specified devices or files or on all devices listed in
/etc/fstab if the —a option is given. This is usually done by the system initialization script when the
run level is changed.

sync
sync [options]

The sync command flushes the filesystem buffers, thereby forcing any data waiting there to be
written to the disk. This command is necessary when you mount another filesystem and make
changes to it to ensure that everything that was to be written to the mounted filesystem actually
was.

fuser

fuser [options] filesystem

The fuser (file user) command determines which user is using a file from a given filesystem or is
currently in a directory belonging to the given filesystem. This is important if you try to unmount a
filesystem and are told that it is busy. The —m option is necessary if the filesystem is mounted.
Using the —u option gives both process and corresponding user information for the filesystem. The ¢
after several process IDs in the following example indicates that those processes are running from
the current directory.

fuser -mu /home
/home: 1456 (user) 4271c (user) 4301 4301c(user)
4456¢c (user) 5729 (user)

103

Network Commands

The commands in this section work with network connections and are used frequently. These
commands allow you to determine whether a network interface is operational and to check its
efficiency. Chapter 12 deals with TCP/IP connections and Chapter 15 deals with the security issues
related to such connections.

ifconfig

ifconfig [interface]
ifconfig interface [address_family_ type] [options] address

The ifconfig command displays the status of currently active network interfaces. If an interface is
listed as the only argument, ifconfig will return the status of that interface. The ifconfig command
may also be used to configure network interfaces, although it is seldom used that way except in
configuration scripts. Listing 4.7 shows the output from this command.

Listing 4.7: Sample Output from the ifconfig Command

ethO Link encap:Ethernet HWaddr 00:40:05:A0:52:33
inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:5861 errors:1 dropped:0 overruns:0 frame:1
TX packets:5051 errors:0 dropped:0 overruns:0 carrier:0
collisions:1l txgqueuelen:100
Interrupt:9 Base address:0xf600

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:4404 errors:0 dropped:0 overruns:0 frame:0
TX packets:4404 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

rrpro Link encap:Point-to-Point Protocol
inet addr:216.126.175.225 P-t-P:216.126.175.2
wMask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:2191 errors:0 dropped:0 overruns:0 frame:0
TX packets:2125 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10

netstat

netstat [options]

The netstat command displays network connections, routing tables, interface statistics, masquerade
connections, netlink messages, and multicast memberships. The —n option forces the output to use
numeric |IP addresses rather than hostnames.

ping
ping [options] host

The ping command is used to test network connections. It sends a signal to the indicated host, waits
to receive a reply packet, and reports the receipt or lack of response. The ping command is

104

primarily used for troubleshooting network connections. Examples are given in Chapter 18.

route
route
route [options] add [-net|-host] target [options]
route [options] del [-net]|-host] target [options]

The route command is used to display and manipulate the IP routing table. It is primarily used to set
up static routes to hosts or networks.

fip
ftp [options] host

The ftp command starts the interface to the Internet's File Transfer Protocol, allowing users to
transfer files to and from a remote site. It is typically run interactively, although this can be turned off
with the —i option.

telnet

telnet [options] [host]|port]

The telnet command uses the Telnet protocol to communicate with the specified host or in
command mode if no host is given. In command mode, telnet takes commands like OPEN (to open
a host site), CLOSE (to close a host site), QUIT (exits the telnet session completely), STATUS, and
a few others. Typically the telnet daemon is not run by default for security reasons.

ssh

ssh [-1 login_name] hostname | user@hostname [command]

The ssh command is a secure program for logging into a remote machine or executing a command
on a remote machine. ssh uses one of the two Secure Shell Protocols to authenticate the user
beyond the simple username/password checking performed by telnet.

traceroute

traceroute [options] destination_host

The traceroute command allows you to determine the path that packets take through the network to
the destination host. traceroute displays each router hop along the way. This is very helpful
information when a transmission to that host fails and a remote network outage or routing problem
is suspected. Each intermediate router is listed with the time (in milliseconds) that the hop took.
Listing 4.8 shows sample output.

Listing 4.8: Sample Output from the traceroute Command

traceroute to 216.15.152.66 (216.15.152.66), 30 hops max, 38 byte
wmpackets

1 1lvhunl.popsite.net (216.126.175.4) 107.606 ms 98.544 ms99.231 ms

2 bhml-corel.popsite.net (216.126.175.1) 106.141 ms 109.084 ms
=»109.090 ms

3 atl-corel-sl-3.popsite.net (216.126.168.221) 116.211 ms 108.875 ms
w109.361 ms

4 h4-0.atlantal-cr4.bbnplanet.net (4.0.138.245) 176.592 ms 238.687 ms

105

w209.170 ms

5 pl-l.atlantal-nbrl.bbnplanet.net (4.0.5.206) 113.971 ms 108.913 ms
w119.981 ms

6 pll-0-0.atlantal-brl.bbnplanet.net (4.0.5.121) 119.803 ms 114.610 ms
w114.952 ms

7 4.0.2.142 (4.0.2.142) 120.051 ms 2099.758 ms 2069.831 ms

8 104 .ATM3-0.XR1.ATL1.ALTER.NET (146.188.232.58) 169.836 ms 159.737 ms
w159.888 ms

9 195.at-2-0-0.TR1.ATL5.ALTER.NET (152.63.81.26) 169.878 ms 159.800 ms
w159.851 ms

10 129.at-6-0-0.TR1.STL3.ALTER.NET (152.63.0.190) 169.855 ms 169.727 ms
-229.888 ms

11 289.ATM7-0.XR1.STL1.ALTER.NET (152.63.89.157) 2049.869 ms 169.716 ms
w169.912 ms

12 193.ATM11-0-0.GW1.STL1.ALTER.NET (146.188.224.65) 179.874 ms
w169.756 ms 169.876 ms

13 cybercon-gw.customer.alter.net (157.130.124.126) 149.941 ms
w]149,.748 ms 149.872 ms

14 server.dialupnet.com (216.15.152.66) 159.815 ms 159.665 ms
w4049.903 ms

Printer Management Commands

The commands in this section deal with the printers on your network and how they schedule print
jobs. Chapter 10 gives more detail on managing printers.

Ipc
lpc [command [argument]]

The Ipc (line printer change) command allows you to control printing jobs that have been sent to a
printer on your network. You can disable or enable a printer or printer queue, thereby preventing or
allowing additional jobs to be sent to that printer. You can prioritize the waiting print jobs. You can
also check the status of a printer or printer queue or printer daemon. All of these are tasks you will
be asked to do on a fairly regular basis as a system administrator. Chapter 10 explains the specifics
of this command.

Ipq
lpg [-1] [-Pprinter] [job #] [user]

The Ipq (line printer queue) command looks at the print spool for the specified printer (or the default
printer) and reports the status of the specified job or all jobs for the specified user if no job number
is specified. This command is discussed more thoroughly in Chapter 10.

Ipr
lpr [-Pprinter] [-#num] [-C class] [-J job] [-T title] [-U user]
[-1 [numcols]] [-w pagewidth] [filetype options] [name]

The lpr (line printer) command spools named files for printing when resources become available.
Among its options, you can specify the printer device with —P, the number of copies to print, and the
page width. This command is discussed in Chapter 10.

106

Iprm
lprm [-Pprinter] [-] [job #] l[user]

The Iprm (line printer remove) command is used to remove print jobs from the queue of the
specified or default printer. If a job number is specified, only that job will be removed. If a username
is specified by the superuser, all jobs for that user will be removed. If only a dash is given, all jobs
owned by the user who issued the command will be removed. If the superuser gives this command
with the — (dash) option, the printer spool will be emptied.

Other Useful Commands

A few commonly used commands don't fit into any of the other categories.
date

date [options] [+FORMAT]
date [options] [MMDDhhmm[[CC]YY][.ss]]

The date command prints or sets the system's date and time. If no option is specified, the current
date and time will be printed to stdout in this format:

[DAY MON DD hh:mm:ss TIMEZONE YYYY]

You may change the format by adding + and a format string to the command. The format string can
take any form you like as long as you use a defined set of symbols, which you can find in the man

page.
Here are a couple of examples:

date +%m/%d/%y
9/1/00

When you specify date information as an argument in the form:
[MMDDhhmm[[CC]YY] [.ss]
the system's date will be changed to the given date and time:

date 0901182600.00
Fri Sep 1 18:26:00 CDT 2000

hdparm
hdparm [options] device

The hdparm (hard disk parameters) command retrieves or sets specified parameters of the
specified hard drive. This command was primarily developed for use with IDE hard drives, but some
parameters apply to SCSI drives, too.

dmesg

dmesg [-c] [-n message_level] [-s buffersize]

107

The dmesg (display messages) command displays the messages that scroll across the screen
during bootup. Assume that Sam User was working on one of your Linux systems today and began
complaining that the system's sound card didn't work anymore. You know that a friend of yours is
far better at troubleshooting sound problems, and she owes you a favor. Run the dmesg command,
redirecting the output to a file. Mail the resulting file to your friend and race her to the answer.

free
free [options]

The free command is used to show how memory is being used on the system, allowing you to
determine whether adding memory would be advantageous. It displays the amount of free and used
physical and swap memory. In Linux, memory is used very efficiently; any memory not being used
by a process is used for buffering to allow the system to react more quickly. As a result, the output
from the free command might be confusing. Listing 4.9 shows an example.

Listing 4.9: Output of the free Command

total used free shared buffers cached
Mem: 127808 124668 3140 105668 3264 65716
-/+ buffers/cache: 55688 72120
Swap: 265032 20504 244528

You see in the free output that there is a total of 127,808KB (128MB) of memory but that only
3140KB is listed as free. Some of the memory usage is normal but much of it is due to the Linux use
of chip memory for buffers and cache. The —/+ buffers/cache line shows the memory used and free
(respectively), not counting disk cache—in other words, it reflects memory used by the kernel,
programs, and data, but not memory used by buffers and disk cache. The best indicator of whether
you need more memory is the swap usage displayed. In this example, the system is using only
20,504KB of 265,032KB of the available swap space. Since so little swapping is being done, it is
clear that this system has sufficient memory—at least for the current level of operations.

umask

umask [-S] [mode]

The umask command sets the permission mode assigned to a file created by the initiating user. The
mode is interpreted as octal if it begins with a number and symbolic if it begins with a letter. To print
the current umask as octal, simply call umask with no arguments. The umask command may be run
with only a —S argument if you want the output in symbolic mode.

uname
uname [options]

The uname command prints out system information including the hardware type, the hostname, the
kernel's name, release, and version number, and the processor type.

uptime
uptime

The uptime command tells how long the system has been running since its last reboot. It lists the

108

current time, how long the system has been up, how many users are logged in, and system load
averages.

In Sum

Now that we've discussed some of the basic tools that you'll use, you're ready to experiment with
the tools in this chapter; familiarity with them will make your system administration duties much
easier. We'll look at the one of the most common system administration tasks, maintaining user
accounts, in Chapter 5. Knowing the intricacies of this process will allow you to perform this task
efficiently, freeing you up for the fun stuff like troubleshooting and scriptwriting.

109

Part Il: Managing Users, Processes, and Files

Chapter List

Chapter 5: Creating and Maintaining User Accounts
Chapter 6: Filesystems and Disk Management
Chapter 7: Linux Files and Processes

Chapter 8: Software Administration

Chapter 9: Backup and Restore

Featuring

e Creating and maintaining user accounts

e Creating and working with groups

e Authorization and authentication techniques
e Linux support for filesystems

e Mounting and unmounting filesystems

¢ Updating and maintaining filesystems

e Installing binary packages

e Compiling source code

e Compiling the kernel

e Keeping your operating system updated

e Backup strategies and media

e Linux and third—party backup and restoration tools
¢ Disaster recovery techniques

110

Chapter 5: Creating and Maintaining User Accounts

Overview

Managing users and groups is a large part of your job as a system administrator. User accounts
provide users with access while limiting their access as appropriate. User accounts also identify
individual users so that you have the ability to track what your users are doing. Setting up user
accounts is one of the most visible jobs you'll have. Learning to do it efficiently will save you hours in
the long run, and the confidence you'll exude from knowing it well will put you in good standing with
your users.

Linux uses two or three files to maintain user and group information. The /etc/passwd file stores
information about user accounts, and /etc/group stores information about groups. Linux systems
also use a file called /etc/shadow to maintain passwords. Later in the chapter you'll see examples of
these files. You'll also see that all the basic administrative tasks of adding, removing, and modifying
user and group accounts can be done in any of three ways: by manually editing the account's entry
in /etc/passwd or /etc/group, by using Linux command-line utilities that pass the relevant
information to those files, or by using a GUI tool like Webmin to enter the same information.

User Accounts

Different types of users have different needs and may be assigned different types of accounts.
Selecting the right type of account will ensure that the user has the needed access without allowing
unnecessary access that compromises security. Common account types include:

e TCP/IP network access accounts to link PPP and SLIP users to the server (and perhaps
beyond) via TCP/IP networking protocols

e UUCP network accounts, which allow for networking using older protocols

e Normal login accounts (also called shell accounts)

¢ Mail accounts (POP, virtual POP, or IMAP) for mail retrieval only

e FTP-only accounts

The two special account types you'll encounter most frequently are Point-to—Point Protocol (PPP)
and Post Office Protocol (POP) accounts. Both of these account types obviate the need for a user's
home directory to exist. Both POP and PPP users never directly log into a user shell on the system,
so such users have no need for a home directory. When you create an account for someone who
doesn't need shell access, a POP user for example, set the login shell to /bin/false. This way, even
if the user attempted to log in at a console or through a protocol such as Telnet, the session would
immediately terminate with an error exit code of 1—in other words, the login attempt would fail, even
if the user presented a correct password.

The POP user's Mail User Agent (MUA) authenticates with the mailer system itself. The PPP user
does need a login shell of sorts, though. The login shell is effectively the PPP daemon itself, and
authentication is performed when the connection is created. Create a home directory for the PPP
user at /nome/loginname where loginname is the user's login and set the PPP user's login shell set
to /usr/lib/linuxconf/lib/ppplogin. This gives you a user as if created by Webmin. Alternatively you
can set the user's home directory to /bin/false since PPP users won't actually log into an account on
the PPP server system. Some systems locate ppplogin in an alternate location, so be sure to check
what is appropriate for your system.

111

The /etc/passwd File

Information about each user is contained in the /etc/passwd file. As a system administrator, it is
critical that you clearly understand this important file. In the excerpt shown in Listing 5.1, you'll
notice that root is listed first. The root user is always assigned the user ID (UID) 0 and group ID
(GID) 0. Other special users and accounts associated with services and daemons are listed after
root and always have UID and GID values below 100; Red Hat starts UIDs at 500 just to be safe.
Last, regular, and special accounts for individual users are listed.

Listing 5.1: An Example of an /etc/passwd File

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:1p:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:o0perator:/root:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher—-data:
ftp:x:14:50:FTP User:/home/ftp:
nobody:x:99:99:Nobody:/:

xfs:x:43:43:X Font Server:/etc/X11l/fs:/bin/false
named:x:25:25:Named: /var/named: /bin/false
marty:x:500:500:Not Feldman:/home/marty:/bin/bash
ernie:x:501:501:Earnest too:/home/ernie:/bin/csh
betty:x:502:502:Ready Betty:/home/betty:/bin/pop
donald:x:503:503:Unka Donald:/home/donald:/bin/bash

Looking at the last entry, Donald's record, you can see the following colon-delimited fields:

Username Donald's username is not capitalized. Typically, initial capitalization is not
used in order to avoid upper/lowercase confusion. There is no default value for the
username field.

Encrypted Password Technically, this field holds the password for users; however,
this particular Linux system is using shadow passwords, which are held in
/etc/shadow. Therefore the /etc/password file contains an x in the second field to
indicate to login that the actual password is held elsewhere. Shadow passwords are
discussed more fully later in this chapter.

User ID Throughout the system, any file owned or created by Donald will have this
number associated with it. It is actually this UID that will be associated with Donald's
files, and the human-friendly donald is what is displayed to us, for example by the Is
command. Also, every process executing on the system will be associated with a
UID. Typically it's the UID of the user who starts up the process.

Default GID This is Donald's login group. All files are owned by both a user and a
group. When Donald creates a new file, it will by default receive his GID value, which
will also be associated with the file. It is no coincidence that Donald has a GID equal

112

to his UID, as do all of the other users listed in the password file in Listing 5.1. This is
by design under Red Hat, an approach called user private groups. We will explore
this approach later. Other Linux distributions, for example SuSE, use the traditional
approach where all users are default members of one large collective group, typically
named users. One of your jobs as a system administrator is to decide whether to use
your distribution's default group assignment scheme or use another one.

User Description This field holds descriptive information about the user (Unka
Donald in this example). In some organizations, it contains phone numbers, mail
stops, or some other contact information. Its contents are included with the finger
utility's report.

User's Home Directory When the user is authenticated, the login program uses this
field to define the user's $HOME variable. By default, in all Linux distributions, the
user's home directory will be assumed to be /home/username. If the user's home
directory can't be accessed, the user will be defaulted to the root (/) directory.
"Landing" in the root directory when you log in is always an indication that something
is awry.

User's Login Shell When the user is authenticated, the login program also sets the
users $SHELL variable to this field. By default, in all Linux distributions, a new user's
login shell will be set to /bin/bash, the Bourne Again Shell. If no shell is specified in
/etc/password, the system defaults to the Bourne shell, /bin/sh. Special user
accounts sometimes require that the user's login shell be set to something other than
a shell path, as was discussed above in the example of creating a PPP user account.

Listing 5.1 reveals over a dozen system accounts (with UIDs of less than 100) in addition to the user
accounts (with UIDs of 500 or above in Red Hat). Some of these accounts, such as root, bin,
daemon, and halt, are more—or-less required on any Linux system. Others, such as mail, news,
games, gopher, and ftp, are associated with specific servers or program collections. Your Linux
system can get by without these accounts, but if you install certain programs, they may not work
correctly, because they'll assume that these accounts are present. Other accounts, such as nobody,
fall in between these two cases; they may be used by several different packages but aren't strictly
required for basic functionality.

Some programs add users to /etc/passwd during installation. The gmail mail server, for example,
adds several entries for its own use. If you install such a program but then remove its users, the
program may fail to operate correctly, or at all. You should, however, remove any such accounts if
you remove the software that required them.

Tiplt's a good idea to back up the /etc/passwd file (as well as the /etc/shadow file, which stores
passwords, and /etc/group, which stores group information) soon after system installation, as
well as after adding or deleting users. This can make it easier to recover the system if you ever
need to reinstall. It can also help you track down system break-ins, because crackers often
create their own accounts. These often have a UID of 0, giving them root privileges even if they
use another username on the account. Crackers also sometimes add passwords (revealed in
/etc/shadow on most systems) and login shells to normal system accounts, such as ftp.

Shadowed Passwords

When a user picks or is assigned a password, it is encoded with a randomly generated value
referred to as the salt. Using the salt, any password can be stored in 4096 different ways. The salt

113

value is stored with the encrypted password. When a user logs in and supplies a password, the salt
is first retrieved from the stored encrypted password. The supplied password is then encoded with
the salt value and compared with the stored password. If there is a match, the user is authenticated.

Because it is used to obtain user and group names from the system-held UIDs and GIDs, the
/etc/passwd file must be readable by anyone on the system, and this makes it vulnerable to attack.
Anyone can pull out a user's encrypted password string and compare it against a generated list of
dictionary words that have been encrypted using the same algorithm used to encode the password.
A cracker trying to break the password generates the list by encrypting simple dictionary words
using all 4096 salt values. If the password string matches one in the list, the person running the test
has that user's password. In order to combat this security risk, the concept of shadowing was
adopted.

Shadowing solves the problem by relocating the passwords to another file (/etc/shadow). Only root
can read and write to the /etc/shadow file. By default, most Linux distributions use shadow
passwords. Listing 5.1 shown earlier reflects this fact; all its password entries are x, which indicates
that the password is shadowed.

Refer back to the last line in Listing 5.1. The password field in the donald entry is replaced with an x.
A line in /etc/shadow contains the encrypted version of Donald's password as well as some other
information:

donald:HcX5zb8cpoxmY:11088:0:99999:7:0::
The fields in the /etc/shadow file are as follows:

Username This is Donald's login name, which matches the one we saw in the
/etc/passwd file.

Encrypted Password This is where the actual encrypted password is stored on a
system using password shadowing.

Last Password Change This is the date that the last password change took place
written as the number of days since January 1, 1970.

Days Until Change Allowed This defines the number of days that must elapse
between password changes. This is typically set to 0, allowing the user to change the
password as often as desired.

Days Before Change Required This sets the maximum number of days the user will
be allowed to keep the same password. After the specified time period, the user will
be forced to change the password. If password changes are not forced, this field is
set to 99999.

Days Warning Before Password Expires This field is used to set the number of
days prior to password expiration you want the user to be notified. Typically the user
is notified a week in advance, so this field is set to 7.

Days Between Expiration and Deactivation This sets the number of days that an

account may be expired before the account is disabled. If inactivation is not intended
to be automatic, the field is set to —1 or left empty.

114

Account Expires This field shows the date the account will be disabled, represented
as the number of days since January 1, 1970. This is particularly useful for students
with set graduation dates and temporary employees. If this type of automatic
deactivation is not to be used, the field is set to —1 or left empty.

Special Flag This field is reserved for future use. It typically remains empty.

Shadow passwords were first used in SCO Xenix, but the Shadow Suite was freely distributable.
Red Hat doesn't use the Shadow Suite, but instead uses the PAM modules to perform the same
function. The utilities involved in maintaining shadowed passwords include the following:

pwconv Uses the values of PASS_MIN_DAYS, PASS_MAX_DAYS, and
PASS_WARN_AGE from /etc/login.defs to add new entries to the /etc/shadow file
and removes any entries in /etc/shadow that don't have corresponding entries in

/etc/passwd.
Tip Since most Unix variations use the same format for their /etc/passwd

files, it is possible to migrate users directly from a Unix platform to
Linux. If the Unix system is using shadowed passwords, you must first
run the command to "unshadow"— pwunconv, listed next. Copy the
appropriate user lines from the passwd file of the other machine into
the /etc/passwd file on Linux and run pwconv to reapply shadowing.

pwunconv

Checks the /etc/passwd file against the /etc/shadow file, updating the /etc/passwd
entries with corresponding /etc/shadow entries by putting the /etc/shadow password
field into the corresponding line in /etc/passwd. The /etc/shadow file is removed upon
completion. Some password aging information is lost. This effectively disables
shadow passwords. You're only likely to need to do this if you must use some
outdated utility that insists on seeing passwords in /etc/passwd, or if you want to
manipulate accounts as one file, as when migrating users from another system.

grpconv

Performs the same function as the pwconv utility but on groups from the /etc/group
file instead. This is covered more thoroughly in the Groups section below.

grpunconv

Performs the same function as the pwunconv utility but on groups instead. This is
covered more thoroughly in the Groups section below.

Administrator's Logbook: Password Conversion
Date: 01/20/2002
System: E12345678

Action: Used pwunconv to convert from shadowed to nonshadowed passwords in order to integrate
usernames from System E12248271, which uses nonshadowed passwords.

115

Date: 01/22/2002
System: E12345678

Action: Used pwconv to re—enable shadowed passwords after successful integration of accounts
from System E12248271.

Adding New Users

To add a new user to the system, you must have root access, and you must follow a series of
general steps. The required steps are:

1. Create a record for the user in /etc/passwd.
2. Set the user's password.
3. Verify the login shell selection for the user.

There are also two optional steps. These help to configure a useful environment, but not all account
types require these steps. They are:

4. Create a home directory for the user, setting the permissions as appropriate.
5. Populate the user's home directory with various useful files. You might want to add a
company-specific README file, for instance, for the benefit of new users.

You can perform these as single discrete steps, but you can ease your administrative burden by
automating the process using either user—creation scripts, which have existed for years, or
graphical user interfaces, which have appeared more recently.

Adding a User from Webmin

For the simplest default accounts, many administrators find it best to work from the command line,
specifying switches to the useradd and passwd commands, as described in the next section. To
create accounts that include some nondefault elements, however, you may prefer to work with a
GUI, such as Webmin. In particular, creating any of the special accounts mentioned earlier in this
chapter from within a GUI takes care of the peculiarities of that account's specific authentication
sequence. Using a GUI tool helps to maintain consistency and provides excellent cues for the
optional fields.

In order to create a user account using Webmin, simply point your web browser to port 901 using
the following format:

http://hostname:901/

You will then be prompted to log in. See Chapter 4 for more information about installing and logging
into Webmin.

Once the Webmin screen comes up, you'll need to select Users and Groups. Below the Users

Listing, select the "Create a new user" link. Doing so will bring up the Create User window, as
shown in Figure 5.1. Set the appropriate values for the new user and click the Save button.

116

g [[]

[EEE]
¢ Fle Edit View Search Go Bookmarks Tasks Help Debug QA

o o E | —m— = e
L v Tr | nttps:/fopus: 10000/useradmin/edit_user.cgi | 2.search = T
;{.}Home | WfBookmarks £ Download 2 Customize...

Create User e

By

Username sara User ID 555
S use:

Real name Home directory dev/nul .

Shell Password ¢ No password required

Other. © Nologin allowed

& ¢ Normal password
¢ Pre-encrypted password

L
Password changed Never Expiry date [—,{ Jan A _]

Minimum days Maximum days 30

Create home directory? ¢ Yes & No
Copy files to home directory? ¢ Yes ¢ No
Create user in other modules? ¢ Yes ~ No

— | _H
8% \Z | rootlogged into Webmin 0.92 on opus (Redhat Linux7.2) |~
Figure 5.1: Webmin's Create User screen lets you specify the parameters for a new user.
The only information you truly must enter to add a user with Webmin is the username and the home
directory. It's also useful to enter something in the Full Name field, however. Currently, Webmin
requires you to enter a home directory even for a user with the shell set to /bin/false, but there is a
checkbox near the end with which you can specify whether or not to create a home directory if it
doesn't already exist, so Webmin functions correctly. If necessary, you can enter a nonstandard
home directory or group, or specify a particular user ID for the user. If you leave these fields blank,
Webmin will assign default values. As simple as it is to add a new user, you may be tempted to
utilize many of the options presented on the interface, but for the most part the system defaults are
adequate. Once you've entered the correct information, click Save to create the account. Webmin
creates the necessary entries in /etc/passwd and /etc/shadow; a password must be set separately.

As shown in Figure 5.1, there are four major categories of information you can add:
User Details Basic information provided in /etc/passwd and /etc/group.

Password Options Policy enforcement for password aging—the account's
expiration date, number of days between enforced password changes, and so on.

Group Membership Membership in a primary and secondary group.

Upon Creation Whether or not to create the home directory, copy files into the home
directory, or create the user in other modules.

If you want to change any of these characteristics, do so before you click Save to create the
account. Alternatively, you can alter an account's settings after it's been created by clicking the
User's name in the User Listing on the Users and Groups window. This brings up the information for
the selected user and provides similar options as the Create User screen discussed above.

117

Adding Users from the Command Line

Adding a user from the command line also requires the five steps listed earlier. You can use the
useradd command to accomplish all of the steps except assigning a password. The useradd
command accepts the information needed for the individual fields in the /etc/passwd file as
arguments, as follows:

useradd [-D] [-g default_group] [-b default_home] [-s default_shell] username

The useradd command creates a new user account using the values given on the command line
(supplying default values for any items not specified). useradd enters data into the appropriate
system files. It then creates the user's home directory at /nome/username by default or at the
location specified by the —b option. The useradd command copies sample configuration files from
/etc/skel. In Red Hat, a group with the same name as the user is created, and the user is added to
that group. (Other distributions handle groups differently, as explained further in the "The Function
of Groups" section later in this chapter, which also describes Red Hat's approach in more detail.)

Next give the user a password, using the passwd command:

passwd donald
New UNIX password:
Retype new UNIX password:

Tip It is possible to pass a password on the command line with the —p option, but you must
first encrypt the password using the crypt command. If you don't, the system assumes
that the string is encrypted and your login won't work.

The configuration files contained in /etc/skel are intended to be set up for the typical user in that
system. The files in this directory should include .Xdefaults, .bash_logout, .bash_profile, .bashrc,
.kderc, .kde/, and Desktop/. You may add any files that will routinely be contained in your users'
home directories.

Default values for certain user characteristics may be set in the /etc/login.defs file. The mail
directory, which typically is set to /var/spool/mail/username, is set via the MAIL_DIR variable in that
file. Password aging information is also stored in the login.defs file. The minimum and maximum
UID and GID values are stored there for automatic selection by the useradd command.

Modifying User Accounts

Most system administrators make changes to user accounts by editing the appropriate files. It is
often easier to use a text editor to edit the passwd file to change a simple configuration detail like
the user's shell than to bring up a GUI utility or use usermod at the command line. We'll show you
all three, and you can decide which you prefer.

Manually Modifying User Accounts

The most direct way to modify a user's account information is to edit the corresponding entry in
/etc/passwd. For example, suppose you wish to change our hypothetical user Donald's shell to the
C shell. Use your favorite editor to open the /etc/passwd file. Donald's line looks like this:

donald:x:503:503:Unka Donald:/home/donald:/bin/bash

Simply change the /bin/bash to /bin/csh, and save the file. The next time Donald logs in, he will be
using the C shell. Of course, other information, including the user's name string, Unka Donald, may

118

be changed as well. You can change the home directory, but you must create the new directory and
move any files from the old directory to make it usable. Do not change the UID or GID unless you
really know what you're doing. If you change these fields inadvertently, Donald will lose access to
his files, since the system sees the owner and group designation numerically and uses the
/etc/passwd file to convert them for output in human readable format to the user.

In principle, it's also possible to edit the contents of /etc/shadow in a similar manner. In practice,
though, most of its contents come in a form that's less easily handled by humans. The password is
encrypted, so you can't change it by hand unless you're simply copying a password from another
system (which is potentially risky). The time information is entered in units of days since 1970,
which is awkward to compute. All in all, it's best to leave /etc/shadow alone.

Modifying User Accounts with Webmin
To modify any user's account, take the following steps:

1. Start Webmin by setting your browser to:

http://hostname:901/

. Open Users and Groups.

. Select the account that you'd like to change by double—clicking the username.

. You will then be presented with the Create User information screen, which is similar to
Figure 5.1, with any existing values filled in. The biggest changes are in the Upon Save
section, where you are asked whether to move the home directory or change the
owner/group settings. In addition to the Save button, there are buttons to view any recorded
login information, read e-mail, and delete the user. Figure 5.2 displays these options.

A WON

B £dit User - Mozilla (Build ID: 2001122617)

| Fle Edit View Search Go Bookmarks Tasks Help Debug QA

v

¢ 2% Vi iceradiinladt esi Galiiinad .
ff B‘aéc-k o Foixd - R:%ad é%olp [& nttps:/ropus: 10000/useradminjedit_user.cgnum=4 ;?m v

% 4YHome | W Bookmarks 2 Download 2 Customize...

Move home directory if changed? ¢ Yes ¢ No
Change user [D on files? ¢ No ¢ Homedirectory ¢ Allfiles
Change group ID on files? ¢ No ¢ Homedirectory ¢ Allfiles
Modify userin othermodules? ¢ Yes (No

Save| Show Logins Read Email
<86 \Z |rootloggedinto Webmin0.92 on opus (Redhat Linux7.2) == &
Figure 5.2: Editing a user offers slightly different options than when adding a user.
5. Change the appropriate fields, and select Save to accept the modified user information.
6. Close the browser.

119

Modifying User Accounts with usermod

To use the usermod utility to alter a field in a user's password record from the command line, use
the following command:

usermod [-c comment] [-d home_dir [-m]] [-e expire date]
w[-f inactive _time] [-g initial_group] [-G groupl[,]]
w[-1 Jogin_name] [-p passwd]

w[-s shell] [-u uid] [-o] [-L|-U] login

The important usermod options and their meanings are:
—c comment The string that will replace the current comment.

—-d home_dir [-m] New home directory. If —-m is specified, move the contents of the
old home directory to the new home directory, which is created if it doesn't already
exist.

—e expire_date The date, in YYYY-MM-DD format, on which the user account will
be disabled.

—f inactive_time The number of days after password expiration until the account is
permanently disabled. Use -1 to turn off the automatic disabling feature and 0 to
disable the account immediately upon password expiration.

—q initial_group The user's new initial login group. The group must exist.

-G group Other groups to which the user should belong. The list is
comma-delimited, with no white space. The groups listed must already exist. If the
user is currently a member of a group that isn't listed, he or she will be removed from
that group.

-l login_name The name of the user will be changed to this login name. This will
cause the files owned by this user to show the new login name as owner since the
UID will be matched to the entry in the /etc/passwd file. You probably want to change
the home directory to use this new login_name as well. You may not change the
login_name of a user who is currently logged in.

—p password The user's new password as encrypted by the crypt command. If you
pass plain text, it will appear in /etc/passwd as plain text. If you then run pwconv, the
/etc/shadow file will contain the plain text password. If the user attempts to log in
using the same text string, access will be denied, because the system will attempt to
decrypt the text string taken from /etc/shadow before it matches it to the input
password string. To change a password, you normally use the passwd command,
not usermod.

-s shell This is the shell that the user will be assigned at login. Entering a blank for
this option causes the system to select the default shell, which in Linux is Bash.

—u uid The numeric value of the user's ID. This value must be unique unless you
also specify the —o option. System accounts will normally be assigned a UID
between 0 and 99. User accounts on most Linux systems begin with 500, leaving
100—499 for other uses. When the UID is updated using usermod, any files owned by

120

the user and existing in the user's home directory will be updated to the new UID so
that the /etc/passwd file will assign the correct owner to these files. Files outside the
user's home directory will retain the old UID number, meaning that an Is —I of these
files will show the numeric version of the old UID or a different user's name if a new
user has been assigned the old UID.

-L Places an exclamation mark in front of the user's password in the /etc/passwd file,
which disables the user's ability to log in.

-U Removes the exclamation mark from the user's entry in the /etc/passwd file,
re—enabling the user's password.

login The user's login name.

Disabling User Accounts

If you need to deactivate an account but believe that the account will be needed again in the future,
you'll want to disable it instead of deleting it. A deleted account and a disabled account look exactly
the same to a user attempting to log in using that account, but a disabled account does not remove
the user's home directory or any files owned by that user.

Manual Disabling

The simplest way to disable an account is to make sure that the user's password has expired. To do
this, you can modify the user's entry in /etc/shadow. As discussed earlier, dates in this file are
represented as the number of days since January 1, 1970. The third field in an entry is the date the
password was last modified, and the eighth field is the date the account will expire. So you first want
to change the user's password; the third field in the entry will then reflect today's date. Subtract one
from that number, insert the new number immediately before the last colon, and save the file.

donald:HcX5zb8cpoxmY:11088:0:99999:7:0::

Subtracting 1 from 11088 yields 11087, so you'd change the entry to this:

donald:HcX5zb8cpoxm¥Y:11088:0:99999:7:0:11087:
Disabling an Account with Webmin
To disable a user's account, follow these steps:

1. Start Webmin as previously described.

2. Open Users and Groups.

3. Select the account that you'd like to disable. You'll then be presented with the User
Information screen, which resembles Figure 5.2.

4. Change the Expiry Date in the Password Section to today's date.

5. Click Save.

6. Close the browser.

Disabling an Account with chage

There is no useradd/usermod equivalent that allows you to disable a user's account, but you can
use the chage (change aging) command to update the user's password expiration date to
yesterday. chage allows you to input this as the number of days since January 1, 1970, or in the

121

YYYY-MM-DD format as follows:

chage -E 2000-8-12 someuser

If the date is passed, the account will be disabled but can be enabled later using the same method.
When the user attempts to log in, he or she will see the following message:

Your account has expired; please contact your system administrator

Deleting User Accounts

If you are sure that you will not need a user's account again, you can delete it. Deleting an account
basically reverses the steps you took to create it. The steps to delete an account are:

1. Delete the record for the user in /etc/passwd.
2. Back up the user's files.

3. Delete the user's files.

4. Delete the user's home directory.

You'll also need to search the system for any other files owned by this user and either remove them
or reset their ownership. Removing a user's account may all be done by hand or via tools as before.

Manually Deleting an Account

First you'll want to remove the user's /etc/passwd entry. When pwconv is run again, the /etc/shadow
entry for that user will be automatically removed as well. Next, remove the home directory and all of
the files contained therein using an rm command like the following:

rm -r /home/donald

The rm command will remove the /home/donald directory and all the files and subdirectories it
contains. If you're confident enough and would rather not be prompted, you can add the —f option to
the above command (making it rm —rf /home/donald), which instructs Linux not to prompt you
about removing files. This is very dangerous, so you might want to just endure the prompts.

Tip It's a good idea to back up a deleted user's account before running the rm command. You can
do this by archiving the files using the tar backup utility (described in Chapter 9) and storing the
files on floppy disk, high—capacity removable disks like lomega Zip disks, CD-R discs, or tape.
Keeping a deleted user's files on hand in this way can be handy if you discover you've deleted
the wrong account or if you need to recover a particular file from the ex—user's account for
some reason.

Next you need to search the computer for other files owned by the deleted user and determine what
to do with these files. Use the find command for this as follows:

find / —-gid 503 -uid 503

Assuming Donald's user ID was 503 and his original group ID had never been changed, this
command would generate a list of files by full path that were owned by Donald or had his group ID.
You'll then need to look through the file list and determine what to do with each file. If you decide to
keep a file but change its ownership, you can use the chown command, as follows:

chown betty.users /opt/somefile

122

The above command changes the ownership of /opt/somefile to betty, and changes group
ownership to the users group. You can omit the period and group name if you don't want to change
the group, or add an —R parameter before the username to recursively change every file within a
directory. For instance, the following command changes the ownership of the
/home/samba/sharedfiles directory and all its files and subdirectories to betty, but doesn't change
the group associated with the files:

chown -R betty /home/samba/sharedfiles
Deleting an Account with Webmin
You can also delete a user using the Webmin utility. To do so, follow these steps:

1. Start Webmin as previously described.

2. Open Users and Groups.

3. Select the account that you'd like to disable. You'll then be presented with the User
Information screen, which resembles Figure 5.2.

4. Press the Delete button.

5. Click Delete User if you want to leave the user's home directory intact or Delete User and
Home Directory if you want to remove the user's home directory.

6. Wait for the confirmation screen.

7. Close the browser.

Deleting an Account with userdel

The userdel utility will remove a user's entry in the /etc/passwd file and optionally remove that user's
home directory and all the files and subdirectories it contains. Any files owned by that user outside
the home directory will remain on the system and will appear as owned by the user's ID when
displayed via an Is —-| command. The userdel command to delete our hypothetical Donald's passwd
entry and home directory looks like this:

userdel -r donald

You may also choose to delete Donald's /etc/passwd entry but leave all the files in his home
directory by omitting the -r.

Use the find command shown earlier to locate all files owned by Donald or in his group. Those files
must be handled manually.

Groups

You saw earlier in the chapter that each user has a default group identity, called a login group,
which is assumed upon logging in to the system. Once authenticated by /bin/login, the user
assumes the group identity specified in the /etc/passwd file. In Red Hat, a user's default group ID is
the same as the user ID; in some other Linux distributions, all users are by default put in a single
group, typically called users. Linux administrators can create new groups, associating users for
specific purposes such as projects that require certain users to have access to the same set of files.
The next sections show how to add and remove groups, and how users can become members of
different groups.

123

The Function of Groups

Groups are an integral part of Linux security. As described in Chapter 7, every file has an
associated permissions string. This string specifies the presence or absence of read, write, and
execute permission to each of three classes of users: the file's owner, the file's group, and all users
on the system (often called world permissions). By controlling the group setting for files and by
assigning users to particular groups, you can enhance the internal security of your Linux system.
For instance, if your system is being used by two different sets of employees, each of which is
working on one project, you can create two groups, one for each set of employees. By denying
world access to users' files, you can prevent employees in one group from reading files created by
members of the other group. If a few users belong to both groups, you can make those users
members of both groups, so they can read both groups' files.

Because every Linux installation is unique, it's impossible for a Linux distribution to come with a
default group setup that's appropriate for all environments. The packagers of Red Hat can't know
what groups you'll need, any more than they can know what users you'll need. Nonetheless, the
account creation tools make certain default assumptions about how you might group your accounts.
Different distributions do things in different ways.

In Red Hat, every time a new user is added, a group with the same user ID and numeric ID as that
user is created. Say the user is donald again. A user group called donald would be created, and the
user donald would be added to that user private group. The umask (see Chapter 4) is set to 002,
which means that any file created by donald will have read—write permission for him (the owner) and
for the donald group and read-only for world. This works well since we know that donald has
membership in the group by default. Since Donald is the only member of his user private group,
only he and the superuser can access files with the group set to donald. Anyone can be added to
the donald group and will then have group access to any files that Donald creates with this umask.

Other distributions don't always work this way. Some create a single group (generally called users),
and place all users in this group. Thus, both the donald and betty accounts by default belong to the
users group. Typically, the umask is 022, so users can read each other's files, but cannot write to
them. This is a shared-group approach.

On small workstations, both these approaches tend to work well, because workstations tend to have
just one or two users, and the implications of group membership have small consequences. At
worst, you may need to add one or two users to each other's groups in the user private group
approach, or create a couple of new groups and change default group membership in the shared
group approach. On larger systems, though, you're likely to need to create a more complex
configuration. In an academic environment, for instance, you may need to create groups for different
courses; and in a work environment, you may need to create groups for different working groups.
The tools to do this parallel the tools used to create user accounts in many respects.

The /etc/group File

Information about each group is contained in the /etc/group file. Just as with /etc/passwd, it is critical
that any system administrator clearly understand this important file. Its structure is fairly simple.
Listing 5.2 shows an excerpt from a typical /etc/group file.

Listing 5.2: A Portion of the /etc/group File

root:x:0:root
bin:x:1:root,bin, daemon
daemon:x:2:root,bin, daemon

124

...other entries ommitted...
slocate:x:21:
project2038:x:1000:ernie,betty
marty:x:500:

ernie:x:501:

betty:x:502:

donald:x:503:

Each entry declares a group name, password, a numeric group ID (called the GID), and a list of
group members. Often the list of group members will be empty, meaning that only the user with the
same name as the group is a member. Table 5.1 lists the default groups that Linux creates
automatically upon installation.

Table 5.1: Default Linux Groups

Group GID Members Description

Root 9 Root Superuser group

Bin 1 root,bin,daemon Running programs

daemon 2 root,bin,daemon Running programs

Sys 3 root,bin,dam System group

Adm 4 root,adm,daemon Administrative group

Tty 5 Access to terminals

Disk 6 root Access to disk device files

Lp 7 daemon, Ip Printing group

Mem 8 Kernel memory access

Kmem 9 Kernel memory access

wheel 10 root Users with near—root privileges

Mail 12 malil Used by mail utilities

News 13 news Used by Usenet news utilities

Uucp 14 uucp Used for UUCP networking

Man 15 Used for man page access

games 20 Group for storing game high scores

gopher 30 Used by the Gopher utility

Dip 40 Dialup IP group (PPP, SLIP)

ftp 50 Group for FTP daemon

nobody 99 Low-security group

users 100 Default user group on many systems

Utmp 22 Used for utmp utility

Xfs 43 Used by the X font server

apache 48 Used by the Apache daemon

named 25 Used by DNS

floppy 19 Group for access to low-level floppy disk
devices

pppusers 44 Users whose only access is PPP

popusers 45 Users whose only access is POP

slipusers 46 Users whose only access is SLIP

125

Adding New Groups

Just as users can be added manually, with a command-line utility, or using Webmin, groups can
also be created in any of these ways. The different methods are explained below so that you can
choose the method you prefer. (Once you've created a new group, you presumably want to add
users to that group. This process is described shortly, in "Changing Group Membership.")

Manually Adding a Group

Because the structure of the /etc/group file is fairly simple, administrators typically add groups by
directly editing the file. To create a group with an initial set of group members, simply add the
usernames of the users to the comma-delimited list at the end of the entry. For instance:

csl01l:x:101:donald,betty,ernie

To check your work, the id command reports all of the groups a user has membership in. The output
for the root user looks like this:

id
uid=0 (root) gid=0 (root)
wmgroups=0 (root),1(bin), 2 (daemon), 3 (sys), 4 (adm), 6 (disk), 10 (wheel

Note It's not normally necessary to add root to groups you create. root is a very special
account, which can read and write any file or directory on the computer, so it doesn't
need membership in ordinary user groups. root belongs to several system groups as
a matter of convenience for handling those groups.

The groups command may be used instead to give the same basic information:

groups
root bin daemon sys adm disk wheel

Adding a Group with groupadd

To add a new group, use the groupadd command, which uses the parameters passed on the
command line to create a new group, relying on system defaults for any parameters you don't
specify. The new group will be added to the system files as needed. The syntax for the groupadd
command is as follows:

groupadd [-g GID [-o]] [-r] [-f] group
The meanings of the various groupadd parameters are as follows:

—-g GID The numeric value of the group's ID. The GID must be unique unless the —o
option is given. The value must not be a negative number. Under Red Hat and some
other distributions, the default is to select the smallest remaining ID that is greater
than 500 and greater than the ID of any other group. Still other systems use a value
greater than 100 and greater than the ID of any other group. System accounts use
the values between 0 and 499 under Red Hat and between 0 and 99 on some other
systems.

—-r Designates that the added group will be a system group. Under many

distributions, the group will be assigned the first available GID under 499 unless the
—g option specifies a GID to be used instead. Other systems use a boundary of 99.

126

—f If a group of the specified name already exists, forces the groupadd command to
leave that group as it exists on the system and continue without returning an error
message. (Ordinarily, groupadd would complain about the attempt to reuse a group
name.) Also this option changes the way that —g behaves in Red Hat, so that if —g is
given without —-o, the group will be added using the smallest GID available as if
neither —g nor —o were specified.

group The name of the new group being created.
Adding a Group with Webmin
You can also use the Webmin utility to add new groups. To do so, follow these steps:

1. Select Users and Groups from Webmin page.

2. Scroll down to the Groups section.

3. Click the Create a new group button. You will then be presented with a User Groups screen
as shown in Figure 5.3.

Create Group - Mozilla (Build ID: 2001122617, g@@
7 Fle Edt View Search Go Bookmarks Tasks Help Debug QA

.= .3 8 Jfopusi10000/useradimi ;
Back Forca Reload Stop I& https:/fopus: 10000/useradmin/edit_group.cgi

ome ‘ 4 Bookmarks #2Download 4 Customize...

©.0.0.0. 0.0

\Webmini systemi Serversi Hordware s Cluster Othiersi

B Feedback ——rtZo—g C—);

8% \2 | rootloggedinto Webmin 092 on opus (Redhat Linwx7.2) | -0+ a|

Figure 5.3: You can specify user group information using the Create Group screen.
4. Specify the group's name, password, Group ID, and any alternate members.
5. Click Create.

Changing Group Membership

All actions performed by a user are performed under a specific user ID and group ID. Therefore,
although a user may belong to more than one group (by adding the username to multiple /etc/group
entries, as described earlier), a user may only act as a member of one group at a time. Ordinarily,
this is not terribly important, but it can be in some cases. For instance, a user might need to create
files that carry a certain group membership, so that other members of the appropriate group can
read those files. Every user has a primary group affiliation, specified in the user's /etc/passwd file
entry. Upon logging in, the user acts as a member of that group. The newgrp command provides a

127

means for users to temporarily change the group associated with their actions. (The command sg is
frequently a synonym for newgrp.) To use newgrp, type the command, a hyphen (which causes the
system to reinitialize the user's environment variables), and the new group name. For instance, to
become a member of the project1 group, type:

$ newgrp - projectl

If the user donald has used newgrp to join the group project1, when he creates a new file, such as a
project document, it will show up in a long listing (Is —I) with group ownership by the new group:

—rw-Yr——r—-— 1 donald projectl 10332 Aug 20 16:07 proj_doc

Note Although you need to use the newgrp command to create files with group ownership other
than your primary group (or use chown or chgrp to change ownership after the fact), this isn't
necessary to read files owned by a group to which you belong, but which isn't your primary
group. For instance, if Donald is normally a member of the donald group but is also a member
of the project1 group, he can read project1 files even without using newgrp, provided the files
have group read permissions.

By design, the administrator can configure newgrp to require authentication for group access, but

this doesn't seem to work correctly in the Red Hat distribution, so we advise you to avoid assigning

passwords to groups.

Modifying Groups

The modification of groups may be done manually, via the command-line groupmod tool, or via
Webmin. You can modify the group name, the group ID number, and group members. You might
need to change a group name or ID number on one system to bring two or more computers'
configurations in line with one another or to change your scheme for group layouts. Adding and
removing group members is an ordinary part of system administration.

Manually Modifying a Group

To manually modify group information, edit the /etc/group file. Here you can change the group
name, GID, and the members. If you wish to change other information, it is much easier to use the
useradd or the Webmin utility.

As an example, consider the following group definition:
projectl:x:503:donald,betty

Suppose you want to give the group a more descriptive name and add a new user, emily. You could
change the definition as follows:

moonshot:x:503:donald, betty,emily

Thereafter, the group ID will appear in program listings and the like as moonshot, not projecti.
(Even existing files will be changed.) When changing to this group, group members will need to
specify moonshot as the group name, and the user emily will be able to use the group's resources.

Warning Changing the GID, like changing the UID of a user, will "orphan” files owned by
the group. The recovery process is the same as described earlier for altering
existing files' UIDs. Unless you have a compelling reason to do so, it's best not to
change the GID of an existing group.

128

Modifying Group Information with groupmod

The characteristics of a group may be modified with the groupmod command. All appropriate
system files are updated. The syntax for groupmod is similar to that of groupadd:

groupmod [-g GID [-0]] [-n group_name] group

—g GID The numeric value of the group's ID. This value must be unique unless the
-0 parameter is specified. As with the groupadd command, group IDs must be
nonnegative and should not fall between 0 and 99 unless the group is a system

group.
—-n group-name The new name of the group.
group The old name of the group.
Modifying Group Information with Webmin
The Webmin utility may be used to modify a group. Simply navigate to the Users and Groups option
as before. When presented with the group list, highlight the one you wish to modify. You will then be

presented with the Edit Group screen as shown in Figure 5.4, with the existing values filled in. Make
changes as needed, and then click the Save button.

Edit View Search Go Bookmarks Tasks Help Debug QA

2> .3 @ +10000/useradiminy re— = S - ([
Tl R [& nttps://opus: 10000/useradminedit_group.cginum=43 +] 2Search| = m
Home | WpBookmarks 42 Download 42 Customize..

©.0.0.0.0.0

emiserversiHordware s Clusteriothersis

B Feedback’ "¢, ¢ Log Out

Chenge group [D onfiles? & No ¢ Home directories ¢ All flles

Save

6 \Z | rootlogged into Webmin 0.92 on opus (Redhat Linux7.2) | |-~ a|
Figure 5.4: You can change user group information using the Edit Group screen.
Deleting Groups

Groups may also be deleted using the same three methods as in other account management tasks:
manually editing the /etc/group file, using the command-line (the groupdel command), or using
Webmin.

129

Deleting a Group with groupdel

You can delete groups using the groupdel command; this command deletes any entries that refer to
the named group:

groupdel group

The groupdel command does not, however, search for files with that GID. That must be done
separately with the find command, as follows:

find / -gid group
Deleting a Group with Webmin

The Webmin utility can also be used to delete a group. Simply select the Users and Groups option
as before. When presented with the group list, highlight the one you wish to delete. You will then be
presented with the Edit Group screen as shown in Figure 5.4, with the existing values filled in. Click
the Delete button.

Manually Removing a Group

Although you can remove a group simply by editing the /etc/group file to delete the line that
corresponds to the group you wish to remove, that's not as efficient as the other methods. If you
remove the group's entry in /etc/group, you should probably remove the corresponding entry in the
/etc/gshadow file (in which shadowed group passwords are stored, if you have elected to use group
passwords). If you do not use passwords for your groups, this file will not be automatically updated.

In Sum

As a multiuser OS, Linux relies upon user accounts and groups to maintain security and keep the
system usable to all its users. Over the years, manual methods, text-based tools, and GUI tools
have been developed to manage these accounts and groups. However you do it, though, it's
important that you understand how Linux handles its accounts and groups—the relationship
between usernames and UIDs or group names and GIDs; where passwords are stored; and how
users are assigned to groups. Understanding these topics will allow you to effectively manage your
user base, whether it's just one or two people or thousands. These subjects are also critically
important for securing the files and processes your system uses. We discuss filesystems and disk
management in the next chapter.

130

Chapter 6: Filesystems and Disk Management

Overview

One of Linux's strengths as an operating system is its support for a wide variety of filesystems. Not
only does Linux support its own native filesystem, the Second Extended Filesystem (ext2fs or ext2),
but it also supports a wide array of filesystems used by other Unix-like OSs, Windows, MacOS, and
others. This support makes Linux a particularly effective OS in a multi-boot environment, and it can
also be quite useful for a Linux—only system. You can use Linux's extensive filesystem support to
read removable media and even hard disks from other computers.

Note The word filesystem has two meanings. As used in this chapter, filesystem
means a disk— or network-based data structure used for storing files. It also
refers to the hierarchy of directories and files on a disk. In this second sense, the
filesystem is a logical structure that you can view with a file manager or with
Linux commands such as Is. (Chapter 7 discusses filesystems in this second
sense.) By contrast, the low-level data structures that constitute a filesystem in
its first meaning are largely invisible to you as a user or system
administrator—but their effects are important nonetheless, as illustrated
throughout this chapter.

In order to access these filesystems, you must understand the tools that Linux uses to make this
access possible. Most critically, you must recognize how Linux mounts and unmounts
filesystems—that is, how the OS grafts a removable disk or hard disk partition onto its existing
directory structure. In addition, you should be familiar with the tools available to help you prepare a
filesystem for use and keep it working smoothly.

This chapter begins with an overview of Linux's filesystem capabilities, including the major
filesystems it supports. The discussion then moves to practical issues of filesystem handling—how
to mount and unmount both hard disk and removable—-media filesystems. It concludes with a look at
maintaining your filesystems and adding new ones.

Linux Filesystem Support

Linux filesystem support is excellent, but not perfect. Most distributions lack support for at least
some filesystems in their default installations. To use these filesystems, you must locate the
appropriate drivers and, in all probability, recompile your kernel. Other filesystems work, but their
features are limited. Most importantly, many filesystem drivers are available in read-only
forms—they can be used to read files from the foreign filesystem, but not write to the filesystem. Still
others work in full read/write mode, but their feature sets don't mesh perfectly with Linux's
assumptions and requirements. For all these reasons, you must understand the specific filesystems
you're using in order to be aware of the limitations and work around them where possible.

Locating Filesystems

Most Linux filesystems come with the Linux kernel, and Red Hat Linux includes most of these
filesystems in its default configuration. Many of these filesystems are available as kernel modules.
You can find out which filesystem modules are available by typing the following command:

$ 1s /lib/modules/x.y.z/kernel/fs

131

In this command, x.y.zis the kernel version number, such as 2.4.18-3. In response, you'll see a set
of filesystem driver directories, such as hfs, each of which contains one or more kernel modules,
such as hfs.o. These modules are usually named after the filesystems they implement. Some of
these driver files are support modules, however, and not independent filesystems. Also, be aware
that not all filesystems appear in this directory—some are built into the kernel file itself. Most
importantly, the filesystem from which Linux boots must be built into the kernel.

Preparing to Use a Standard Filesystem

If a filesystem you want isn't present on your computer, you can check the Linux kernel to see if it's
present in the kernel source tree but not compiled for your system. To do so, you must check the
filesystems available in the Linux kernel File Systems and Network Filesystems configuration
menus (Figure 6.1 shows the kernel File Systems menu). Chapter 8 discusses the kernel
configuration menus and kernel configuration options in greater detail.

| File systems
File systems |
’vva HQHH Quota support ‘ Help |K
{v ¥ Hv mH 4 n H Kemel automounter support ‘ Help |
’ 4y Hv mH v h H Kemel automounter version 4 support (also supports v3) ‘ Help |
[fiy Mv mH ~h H Reiserfs support ‘ Help |
’ vy H v H 4 n H Have reiserfs do extra intemal checking ‘ Help |
’v y”v m” 4 n H ADFS file system support ‘ Help |
Syl] v |
’v y Hv m| ¢ n H Amiga FFS file system support (EXPERIMENTAL) | Help |
v y|/® m||_ n|| apple Macintosh file system support (EXPERIMENTAL) | Help |
'~ ¥| /- m| ® n|| BFS file system support (EXPERIMENTAL) | Help |
’ Ny Hv mH 4 n H CMS file system support (EXPERIMENTAL) ‘ Help |
vy H ¢ m| . n|| Ext3joumaling file system support (EXPERIMENTAL) | Help |
’ vy H v H 4n H JBD (ext3) debugging support ‘ Help |
’v yH v |[®n H Buffer Head tracing (DEBUG) | Help |
’vYHv mH’ nH DOS FAT fs support ‘ Help | /
Main Menu | HNext l Prev I

Figure 6.1: Filesystems marked as experimental appear only if you opt to make experimental
features available in the Code Maturity Level Options menu.

When you've opened the appropriate kernel configuration menu, you can scroll through the list of
available filesystems to find the one you want. If you're unsure of what filesystem a given kernel
option implements, click the Help button for that filesystem to see a brief description. Once you've
selected your desired filesystems, you must recompile your kernel and kernel modules and then
configure your system to use the new kernel, as described in Chapter 8.

Locating Unusual Filesystems

A few filesystems don't ship with the regular Linux kernel. Most of these are development
filesystems—they're new enough that they have yet to be added to the kernel. The most interesting

132

of these filesystems are two new journaling filesystems, JFS and XFS, which are described shortly,
in "Journaling Filesystems." (That section includes pointers to these filesystems' homes on the
Internet.) Two other journaling filesystems, ext3fs and ReiserFS, have been included in kernels
since early in the 2.4.x kernel series.

If you're looking for a specific filesystem and can't find it in the kernel, try doing a search on Google
Groups (http://groups.google.com/), or with a Web search engine such as Yahoo!
(http://www.yahoo.com/) or Google (http://www.google.com/). There's a good chance you'll find a
lead.

Most nonstandard filesystems require that you patch your Linux kernel—that is, add files to the
kernel source tree. These patches usually come with instructions for accomplishing this task, so you
should follow those instructions. You can then select the kernel driver as just described in
"Preparing to Use a Standard Filesystem," and compile a kernel or kernel modules with the
necessary support.

Linux Native Filesystems

A native filesystem is one that can be used as the primary filesystem for an OS. Linux can run using
nothing but a single native filesystem; that is, it doesn't need a mix of two or more separate
filesystems. An OS's native filesystems are often designed for a specific OS, although in some
cases an OS "inherits" or "adopts" a native filesystem from a predecessor or related OS. Linux has
inherited and adopted filesystems and has had Linux—specific filesystems designed for it. This is in
contrast to foreign filesystems, which are designed for another OS. As a general rule, foreign
filesystems don't mesh as well with Linux as do native filesystems. In some cases, these definitions
become blurred, as you'll soon discover.

This discussion separates native filesystems into two camps: traditional and journaling. Other
categorizations could also be made, but for our purposes this one is quite useful. "Traditional" does
not mean insignificant or poorly performing. Linux's ext2 filesystem falls into the traditional category,
but remains a good performer in most respects, and is very important in 2002. Traditional
filesystems are, however, likely to fade away by mid—decade, if not earlier, in favor of one or more
journaling filesystems.

Traditional Filesystems

Traditional filesystems are derived from filesystem technologies that go back to the 1970s, if not
earlier. Some of these have been updated over the intervening years, and some were even created
in the 1980s and 1990s; but these filesystems share some important characteristics. Most notably,
these filesystems all suffer from the need to perform an extensive filesystem check if they're not
shut down properly.

In a traditional filesystem, when the computer writes data to disk, it does so in pieces. The computer
may perform some disk reads to locate available disk space, then modify on-disk pointers to
allocate space for a file, then write the data to the disk, and then update the on-disk pointers to
complete the operation. As a result, the filesystem as a whole may be in an inconsistent state at any
given moment—one disk structure may indicate that space is allocated to a file, while another
indicates that the same space is free.

Of course, once all operations are completed, the disk state is consistent. The problem comes when

a disk is not properly unmounted. If the power fails or the computer crashes, the disk may wind up
in an inconsistent state; and without the pending operations in memory, Linux cannot know what

133

disk structures may be affected. Linux must therefore perform a lengthy check of the disk's contents
to resolve inconsistencies. This is the reason for the long delay while Linux runs fsck on its disks
when starting after a crash. (Linux also runs fsck after several normal startups, to ensure that no
inconsistencies have crept onto the disk because of bugs or other problems.) Perhaps worse than
the length of the disk check procedure is the fact that it sometimes uncovers serious corruption. In a
worst-case scenario, you may lose all the data on a disk.

Traditional Linux native filesystems include the following:

Minix The Minix filesystem, which uses the type code minix at mount time, was
Linux's first filesystem. This filesystem originated with the Minix OS, hence its name.
By today's standards, the Minix filesystem is quite primitive; for instance, its
maximum size is 64MB. Some people continue to use it on floppy disks, however.

Extended The Extended Filesystem, more commonly known as ext or extfs and
called ext in a mount command, was a unique design that borrowed heavily from
other Unix filesystems. Extfs has been surpassed and was removed from the
standard Linux kernel with the 2.2.x kernel series.

Second Extended The Second Extended Filesystem, usually called ext2 or ext2fs,
uses a mount code of ext2. It was the standard filesystem for Linux systems until
2001, but in 2001 and 2002 many distributions have begun a shift towards journaling
filesystems. Ext2fs is based on extfs but has substantially expanded capabilities.
Ext2fs is the basis for development of one journaling filesystem, as described shortly.

Xia The Xia Filesystem, called xiafs at mount time, was an extension to the Minix
filesystem and competed with extfs and ext2fs. Ext2fs has come to surpass Xiafs in
all important measures. The Xiafs option was removed from the 2.2.x kernel.

ISO-9660 This filesystem is unusual in that its use is restricted to CD—ROM discs. In
some sense, it's not really a native filesystem; but as CD-ROMs intended for use in
Linux invariably use the ISO-9660 filesystem, it's included in this list. Plain ISO-9660
is very limited in filename length, and it lacks Linux's ownership and permissions.
The Rock Ridge extensions to ISO-9660 correct these shortcomings, allowing
CD-ROMs to contain these important features. Another filesystem, Joliet, is used in
conjunction with at least a minimal ISO-9660 filesystem and provides long filenames
for Windows systems. Linux can also read Joliet CD-ROMs, if appropriate support is
compiled into the kernel. All three variants use the is09660 filesystem type code.

In 2002, the most important traditional Linux filesystem is clearly ext2fs. You'll only find extfs and
Xiafs on museum pieces, and although the Minix filesystem continues to live in 2.4.x kernels, its
practical use is restricted to floppy disks. ISO-9660 and its extensions are important, but only for
CD-ROMs.

Although ext2fs is good by traditional filesystem standards, it has its limits. Most important at the
moment is the disk check's duration problem; however, ext2fs is also limited to a maximum
filesystem size of 16 terabytes (16,384GB). Although 16TB disks are still not available for desktop
computers at this writing, filesystems take sufficient development time that filesystem developers
need to start planning for these disks well before their introduction.

Note Linux relies upon a Virtual Filesystem (VFS) layer to implement features used by all
filesystems. In the 2.2.x kernels, the VFS imposed a partition—size limit of 4TB and a

134

file—size limit of 2GB. The kernel developers have rewritten most of the code
responsible for these limits for the 2.4.x and later kernels, and any remaining
stragglers will no doubt be dealt with by the time 4TB disks become available.

Journaling Filesystems

With small hard disks, the need to perform a disk check after a system crash or power outage is a
bearable nuisance. Such a disk check typically takes no more than a few minutes, and because
Linux seldom crashes, the check is not usually a major problem—unless it uncovers serious
corruption on the disk, in which case files may be lost. On larger disks, however, the disk check
takes a longer time. On big multigigabyte disks, which are extremely common today, a disk check
can take several minutes—or even hours! Such a delay is more than a minor nuisance, particularly
if it's imposed on a server that must be up at all times.

One solution to lengthy disk checks is to implement a journal, which is an on-disk list of pending
operations. As the OS calls for on—disk changes such as file writes, the filesystem driver writes
information concerning these changes to the journal. When the OS makes real changes to the disk
structures, it makes them in such a way that, when they're finished, the disk is in a consistent state;
then the OS clears the journal. The result is that, should a power outage or system crash occur, the
OS knows which files and disk structures may be affected by the problem, because all the pending
changes are recorded in the journal. The OS can therefore undo or redo operations indicated by the
journal, producing a consistent filesystem. This greatly reduces the post—crash startup time.

Some overhead is associated with maintaining a journal, but in practice, most journaling filesystems
use more advanced designs than do non-journaling filesystems. This means journaling filesystems
often (but not always) outperform traditional filesystems. These filesystems also typically support
much larger maximum filesystem sizes than does ext2fs.

Two of the four journaling filesystems described here are now included in 2.4.x kernels. These
filesystems aren't quite as well tested as Linux's tried—and-true ext2fs, but all are now useable for
at least some purposes. The four contenders for the next—generation Linux filesystem crown follow:

Third Extended The Third Extended Filesystem (ext3 or ext3fs) is an extension to
ext2fs. The basic idea is to take ext2fs and add a journal. One of this filesystem's
great advantages is that you can convert an ext2 filesystem into an ext3 filesystem
by running a single command; your data remain intact. It also uses standard ext2fs
utilities for creating, tuning, and otherwise manipulating filesystems. As you might
expect, ext3fs's type code is ext3. This filesystem is included in the 2.4.x kernels, and
is the default filesystem for some distributions, such as Red Hat 7.3.

ReiserFS This filesystem is a completely new design, which was added to the 2.4.1
Linux kernel. ReiserFS has earned a reputation for stability and efficient use of disk
space, particularly when a partition has many small files. Use the reiserfs type code
to access ReiserFS partitions. The main ReiserFS Web site is at
http://www.namesys.com/. ReiserFS is the preferred filesystem for some
distributions, such as SuSE.

XFS XFS is Silicon Graphics's (SGl's) journaling filesystem. It's been used on SGl
Unix workstations and servers (which run the IRIX OS), and the company has ported
it to Linux and released it under the GPL. This filesystem supports maximum
filesystem sizes of up to 16,384 petabytes (PB; 1PB is 1024TB), and maximum file
sizes of up to 8192PB. (Even with the 2.4.x kernel, though, Linux's VFS imposes

135

much lower limits.) XFS holds the lead in supporting advanced features like Access
Control Lists (ACLs), which provide an alternative method of file access control to the
standard Unix-style permissions. In 2002, few programs support ACLs, though. This
filesystem's type code is xfs. You can learn more at http://0ss.sgi.com/projects/xfs/.
XFS is not integrated into the Linux kernel, as of version 2.4.18.

JFS IBM's Journaled Filesystem (JFS) was originally developed for the AIX OS;
however, IBM has released its advanced filesystem under the GPL and is actively
supporting its porting to Linux. In addition to its journal, JFS supports a maximum
filesystem size of 32PB and a maximum file size of 4PB. Use the jfs filesystem type
code when mounting JFS partitions. More information is available at
http://oss.software.ibm.com/developerworks/opensource/jfs/. Like XFS, JFS isn't yet
included in the standard kernel, as of version 2.4.18.

All of these filesystems offer substantial improvement over ext2fs in that the journaling feature
reduces startup time after a system crash or power outage. Increased partition and file sizes in XFS
and JFS are also a great boon. All of these filesystems support dynamic partition resizing, although
the code to support it is not always entirely stable and complete at this writing. You should check on
the status of this feature if it's important to you.

In 2002, all of these filesystems are usable, but they differ in reliability. ReiserFS is generally
considered the most reliable, but ext3fs and XFS both have good reputations. JFS lags behind the
others somewhat, but in 2002 it's as good as ReiserFS was a year or two before. All of these
filesystems require their own utilities for checking filesystem integrity, creating filesystems, and so
on. All of these filesystems come with appropriate utilities to perform these tasks, but some include
more or more sophisticated tools. In 2002, XFS is unusually complete in this respect, while JFS lags
the others.

Some distributions ship with support for more than two of these filesystems. For instance, SUSE 7.3
includes ReiserFS, ext3fs, and JFS support. You can also patch your kernel to support any of these
filesystems. (Read the filesystem's documentation for detailed instructions.) With the exception of
ext3fs, converting an existing system to use a journaling filesystem requires backing up, creating
the new filesystem, and restoring your files. With ext3fs, you can convert an existing partition by
issuing a command like the following:

tune2fs -j /dev/hda3

This command adds an ext3fs journal to the /dev/hda3 partition. If the filesystem was mounted
when you issued this command, it creates a file called .journal that holds the journal. If the
filesystem was not mounted, the journal file is completely invisible. To use the journaling features,
you must change your mount options so that Linux mounts the filesystem with the ext3 type. If you
fail to make this change, you'll lose read/write access to the filesystem; the ext2fs drivers refuse to
mount an ext3fs partition for read/write access.

Administrator's Logbook: Kernel Patching
System: E12345678

Action: Patched 2.4.18 kernel with XFS 1.1 support.

136

Foreign Filesystems

In addition to its native filesystems, Linux supports a wide range of filesystems that are mostly used
with other OSs. This filesystem support is important in dual-boot configurations, when exchanging
removable media between OSs, and when using Linux to recover data from a hard disk that
originally resided in another computer. In most cases, you do not want to use a foreign filesystem to
store Linux's core files. These filesystems often lack features that are critical for Linux's use, such
as ownership and permissions. In a few cases, the filesystems support these features, but Linux's
implementation of the filesystem is weak in one way or another.

Microsoft Filesystems

When used in a dual-boot environment, Linux must often coexist with one version or another of
Windows. Also, removable media—floppy disks, Zip disks, LS-120 disks, and so on—are often
created on Windows systems. It's therefore important that Linux support Microsoft's filesystems.
Fortunately, Linux includes at least minimal support for all of the following filesystems in common
use on Windows and on related operating systems:

FAT The File Allocation Table (FAT) is a data structure after which Windows 9x/Me's
filesystem is named. Originally used on DOS computers, FAT has been extended in
two ways: the size of the FAT data structure, and the capacity to store long
filenames. These extensions are described shortly.

HPFS Microsoft developed the High-Performance Filesystem (HPFS) for use with
0S/2 1.2, when Microsoft and IBM were still partners. Today, IBM uses HPFS in its
OS/2 product line. Linux's HPFS support was read-only through the 2.2.x kernel
series, but a read/write HPFS driver ships with 2.4.x kernels. This driver is unusual in
that it stores Linux ownership, group, permissions, and other features using HPFS
extended attributes (EAs), which OS/2 uses to store icons and other ancillary file
data. The Linux filesystem type code for HPFS partitions is hpfs.

NTFS The New Technology Filesystem (NTFS) is the preferred filesystem for
Windows NT, 2000, and XP. NTFS is a fairly advanced journaling filesystem that
supports a system of ownership similar to Linux usernames. Unfortunately, Linux's
NTFS support is weak. Although read/write drivers have been available in the 2.2.x
and later kernels, the write support is marked as being "dangerous" in the kernel
compilation scripts. Also, these drivers don't support NTFS's security features. With
the release of Windows 2000, Microsoft made changes to NTFS (often referred to as
NTFS 5.0). Linux's NTFS drivers can cope with NTFS 5.0 partitions, but using the
read/write support on these partitions is inadvisable. Linux's type code for NTFS
partitions is ntfs. Red Hat does not include a compiled NTFS driver in its default
installation, so you must locate one or recompile your kernel if you want to access
NTFS partitions from Red Hat.

Note Because Linux's NTFS write support is so dangerous, it must be enabled separately from the
main NTFS support in the Linux kernel.
The most useful and stable Linux driver for Microsoft filesystems is the driver for FAT. This driver is
extremely stable—in contrast to some foreign filesystems, it's quite safe to write to FAT partitions.
FAT filesystems actually come in several varieties, differing along two dimensions:

e Bitness: The FAT data structure uses pointers that are 12, 16, or 32 bits in size. Increasing
FAT size equates to increasing maximum partition size. The 12-bit FATs are used mostly on

137

floppy disks; 16-bit FATs allow partitions of up to 2GB; and 32-bit FATs support partitions of
up to 2TB. Linux's FAT drivers auto—detect the FAT size, which is often indicated as a suffix
to the filesystem name, as in FAT-16 and FAT-32.

e Filename length: The original FAT filesystem, as used by DOS, supported only
eight-character filenames with an optional three—character extension (the so-called 8.3
filename limit). With Windows 95, Microsoft introduced an extension to FAT known as VFAT,
which supports long filenames. Linux supports its own FAT extension, known as UMSDOS,
which places Linux ownership and permissions information on FAT filesystems along with
long filenames. VFAT and UMSDQOS are incompatible extensions.

Because Linux auto—detects the FAT size, there's no need to use separate Linux filesystem types
for different FAT sizes. Linux uses three type codes for each of the filename length options,
however. If you mount a filesystem with the msdos type code, Linux restricts filenames to 8.3 limits.
If you use the vfat type code, Linux uses VFAT long filenames. If you use umsdos, Linux uses
UMSDOS long filenames. In most cases, vfat is the most appropriate type code with which to
access FAT partitions, because it allows for exchange of files with long filenames between Linux
and Windows systems.

Note A common misconception is that FAT-32 and VFAT are somehow linked. They aren't. You
can access a FAT-16 or even FAT-12 disk using VFAT long filenames; and you can mount a
FAT-32 partition with the Linux msdos driver to use only 8.3 filenames.

UMSDOS is unusual because it allows Linux to treat a FAT partition like a native filesystem. You
can run a Linux system entirely from a UMSDOS partition, and in fact some distributions support
installing Linux directly on a UMSDOS partition. This configuration tends to be slow, however,
because Linux's FAT support, although stable, isn't as fast as its support for ext2fs.

Apple Filesystems

If you run Linux on a Macintosh or need to exchange data with Macintosh users, you're likely to
need support for a Macintosh filesystem. In 2002, four such filesystems exist, although only three
are in common use and only two sport Linux drivers:

MFS The Macintosh Filesystem (MFS) was used by the earliest Macintoshes. It's
almost never used on anything but 400KB floppy disks, which are extremely rare
today. Linux does not include MFS support.

HFS The Hierarchical Filesystem (HFS) was the replacement for MFS. Used on
800KB and larger floppy disks and all Macintosh hard disks until 1998, HFS is quite
common in the Macintosh world. The Linux 2.2.x and later kernels include read/write
HFS support, using the filesystem type code hfs. The write support is considered
experimental, however, and occasionally damages hard disks. It's therefore best to
restrict use of this support to blank floppy disks. Macintosh CD—-ROMs often use HFS
rather than 1ISO-9660.

Note Although 800KB Macintosh floppies use HFS, Linux cannot read these disks,
even with an HFS-enabled kernel. These disks use an uncommon low-level
disk-recording technique, and standard x86 hardware cannot cope with it.
Apple switched to PC-style low-level recording technologies with its 1.44MB
floppies, so Linux can read Macintosh 1.44MB floppies, as well as other
removable media.

138

HFS+ The follow-on to HFS borrows many features from Unix—style filesystems, but
it stops short of adding a journal. New Macintoshes invariably ship with their disks
formatted for HFS+, but this filesystem is not used much on removable media. (The
MacOS X installation CD-ROM is an exception; it uses HFS+.) Linux support for
HFS+ is in the alpha stage and is not yet integrated into the kernel. The Linux HFS+
Web page is http://sourceforge.net/projects/linux—hfsplus/.

FFS MacOS X provides the option to use the Unix Fast Filesystem (FFS), which is
described in the next section. Many MacOS X systems continue to use HFS+,
though.

If you need to exchange removable media between Macintosh and Linux systems, you can do so.
HFS is the best choice for a filesystem; and if you use a floppy disk, it has to be a 1.44MB floppy or
a rare 720KB HFS floppy. Alternatively, you can use FAT, because modern Macintoshes support
FAT. In theory, you can use FFS for exchanges with a Macintosh running MacOS X, but this option
is tedious to implement.

If you run Linux on a Macintosh, you may want to create an HFS partition to be used for data
exchange between Linux and MacOS. Because Linux can't read HFS+ partitions, this
data—exchange partition is a practical necessity when you want to share files across OSs.

Miscellaneous Filesystems

In addition to Microsoft and Apple filesystems, Linux supports a wide variety of other foreign
filesystems. Most are of extremely limited utility and interest. Here are some highlights:

BeFS BeOS uses its own journaling filesystem, known as BeFS. A read-only Linux
driver for this filesystem is available from
http://hp.vector.co.jp/authors/VA008030/bfs/. The author claims to be working on
read/write support, but it does not yet exist. The driver also does not yet work with
2.4.x kernels, as of mid-2002. Although BeOS is a single—user OS, BeFS supports
file ownership and permissions similar to those used in Linux. In theory, BeFS could
become a contender for a native journaling filesystem, but the others have a
commanding lead in 2002. BeFS also lacks support for file access time-stamps,
which may hinder its abilities as a native Linux filesystem. BeFS's filesystem type
code is befs.

Note The 2.4.x kernels include support for another filesystem, known as
BFS, that is completely unrelated to BeFS. BFS is used for storing
critical system startup files on SCO's UnixWare OS.

FFS/UFS The Fast Filesystem (FFS; aka Unix Filesystem or UFS) was developed
early in the history of Unix. It's still used by many Unix and derivative systems,
including FreeBSD and Solaris. In principle, FFS/UFS could have been adopted as a
native Linux filesystem, but Linux's write support for this filesystem is still considered
dangerous, much as is Linux's support for writing to NTFS. FFS has been around
long enough to spawn several minor variants, but one Linux driver handles them all.
FFS's filesystem type code is ufs.

UDF The Universal Disk Format (UDF) is a filesystem designed for recordable CD,

DVD, and recordable DVD media. Linux includes UDF support in the 2.4.x kernel
series, but the write support is marked "dangerous" and is very limited in terms of

139

supported hardware. This filesystem's type code is udf.

You can browse the Linux kernel configuration menus to learn about other filesystems supported by
Linux. If you're looking for support of a specific filesystem and can't find it in the kernel menu, try a
Web search.

Network Filesystems

Some filesystems are designed for use over a network, as opposed to on a hard disk. You can
mount these filesystems in Linux much as you do disk-based filesystems, and then perform normal
file—access operations on the filesystem. Network filesystems supported by Linux include the
following:

NFS Sun's Network Filesystem (NFS) is the preferred method of file sharing for
networks of Unix or Linux computers. The Linux kernel includes both NFS client
support (so that Linux can mount another system's NFS exports) and core routines to
help a Linux NFS server, which is separate from the kernel. NFS's filesystem type
code is nfs.

Coda This is an advanced network filesystem that supports features omitted from
NFS. These features include better security (including encryption) and improved
caching. The Linux kernel includes Coda client support, and separate packages are
needed to run a Coda server. The main Coda homepage is at
http://www.coda.cs.cmu.edu/. Coda's filesystem type code is coda.

SMB/CIFS The Server Message Block (SMB) protocol, which has been renamed the
Core Internet Filesystem (CIFS), is the usual means of network file sharing among
Microsoft OSs. The Linux kernel includes SMB/CIFS client support, so you can
mount SMB/CIFS shares. You can configure your Linux computer as an SMB/CIFS
server using the Samba package (http://www.samba.org/). The filesystem type code
for SMB/CIFS shares is smbfs.

NCP The NetWare Core Protocol (NCP) is NetWare's file sharing protocol. As with
SMB/CIFS, Linux includes basic NCP client support in the kernel, and you can add
separate server packages to turn Linux into an NCP server. NCP's filesystem type
code is ncpfs.

It's important to recognize that the network filesystem is completely independent of the filesystems
used on both the server and client for disk access. Consider a Linux computer that's running
Samba, sharing files for a Windows system. The server makes files available using the SMB/CIFS
network filesystem. Locally, these files may be stored on any filesystem that Linux supports—ext2fs,
ISO-9660, ReiserFS, FAT, or anything else. These filesystems all look identical to the client, except
where the underlying filesystem has a limitation that obtrudes itself, such as 8.3 filename limits
when Linux uses its msdos driver to access FAT, or the read-only nature of ISO-9660 or BeFS.
Likewise, if Linux uses NFS to mount a remote filesystem, it's unimportant whether the server is
using ext2fs, FFS, HFS+, or anything else. This characteristic means that you can give a computer
access to filesystems it cannot natively understand, as when Linux accesses HFS+ from a
Macintosh running an NFS server, or when Windows XP accesses JFS through a Linux system
using SMB/CIFS.

Chapter 12, "TCP/IP Linux Networking," covers network filesystem configuration in more detail.

140

Filesystem Design

In order to understand what can be done with filesystems, it's helpful to understand some of the
data structures from which they're built. Because ext2fs is the most common Linux filesystem, this
section describes ext2fs and its data structures. Other Linux native filesystems use similar
structures, although some of the details differ. (Ext3fs is identical to ext2fs at this level of analysis.)
Non-Linux filesystems often differ in more details, but many of the basic principles still apply.

The Physical Structure

The ext2 filesystem is composed of block groups, which may or may not be sequential on the
physical disk. Figure 6.2 shows the physical structure of an ext2 filesystem.

Boot Block Block . Block
Block Group 0 Group 1 Groupn
/”’ \\\\
Super- Group Block Inode Inode Data Blocks

Block Descriptors Bitmap | Bitmap | Table

Figure 6.2: Each block group is largely independent of the others, which can aid recovery in the
event of data corruption.

Each block group contains filesystem control data: a superblock and filesystem descriptors. It also
contains filesystem data: a block bitmap, an inode bitmap, an inode table, and data blocks. Inodes
are explained in the next section. Normally about 5 percent of these blocks are set aside to allow
the superuser room to recover a filesystem that has reached its capacity and become unusable by
ordinary users.

Tip Ext2fs allows you to choose the logical block size when you create the filesystem, commonly
1024, 2048, or 4096 bytes. Larger block sizes can speed up /O since fewer disk head seeks
are needed when more data is read during each seek. Large blocks do, however, waste more
disk space since the last block is almost never full. Larger block sizes therefore leave a larger
amount of unused space than do smaller block sizes.

Inodes and Directories

All of the important information about a file, except for its name and location in the directory tree, is
stored in a data structure called an inode. The inode stores:

e Locking information

e The access mode

e The file type

e The number of links to the file

e The owner's user and group IDs

141

e The size of the file in bytes

¢ Access and modification times

¢ The inode's time of last modification

¢ The addresses of the file's blocks on disk

Each file is assigned a unique inode when it is created. The name of the file is stored separately in a
directory—name cache entry. The inode number of each entry in the directory—name cache can be
used to obtain the corresponding inode cache entry, which contains the specific information about
the file represented by that inode. Figure 6.3 illustrates this structure. (The howdy.wav and
sound.wav files are hard links—two directory entries that point to the same inode, and hence the
same file data. Hard links are described further in Chapter 7, "Linux Files and Processes.") In this
way, a command to obtain a directory listing is fast since it doesn't have to concern itself with the
actual data in a file but only that contained in the inode.

File: somefile.txt File: howdy.wav File: sound.wav Di

t
Inode: 3429 Inode: 3431 Inode: 3430 R

Y Y

Inode: 3429 Inode: 3430 Inode: 3431
Size: 10243 bytes Size: 343123 bytes Size: 101982 bytes Inodes
Location: 981239 Location: 1093 Location: 569239
etc. etc. etc.

Figure 6.3: Directory entries, inodes, and the locations of files on disk need not all come in the same
order.

When a file is opened, it locks its entry into the inode cache to indicate that it is in use. Inactive files
are kept in memory, with an inactive inode that may still contain data pages from its previously
associated file if the inode has not yet been reclaimed by the filesystem. When an inactive inode is
reused, its data pages are flushed to make room for the inode's new data.

Accessing Filesystems

The preceding discussion outlines the major filesystems available for the 2.4.x Linux kernels, and
how they structure data internally. Actually using these filesystems requires practical knowledge of
several Linux commands and configuration files. The most important of these in day-to-day
operations are the commands used to mount and unmount filesystems. Some additional
peculiarities arise when it comes to accessing removable media such as floppy disks, Zip disks, and
CD-ROM discs.

Mounting and Unmounting Filesystems

Linux provides two methods for mounting hard disk filesystems: manual mounting via the mount
command, and automatic mounting at boot time via entries in /etc/fstab. (It's also possible to
auto—mount removable media, as described later in "Using Removable Media.") To stop using a
filesystem, you must unmount it by using the umount command. (Yes, that's spelled correctly;
umount is missing the first n.)

142

Using the mount Command

Linux uses the mount command to make a filesystem available. Here is the basic format of this
command:

mount [-t fstype] [-o options] device dir

The fstype is the filesystem type, such as ext2, vfat, or jfs. You can often omit the —t parameter, and
Linux will correctly detect the filesystem type. The preceding discussion of filesystems for Linux
includes these type codes.

device is the Linux device file associated with the filesystem. For instance, /dev/sdb4 indicates the
fourth partition on the second SCSI disk, and /dev/fd0 indicates the first floppy disk.

dir is the mount point, which should be an empty directory. (You can use a nonempty directory, but
then you lose access to the files stored in that directory for as long as the filesystem is mounted.)

The options are special codes that give Linux instructions on how to treat filesystem features. Some
options apply to most or all filesystems, but others are filesystem-specific. Type man mount for a
discussion of the filesystem options that apply to most of the standard Linux filesystems, and
consult the filesystem's documentation for information on rarer filesystem options. Table 6.1
summarizes the most important filesystem options.

Table 6.1: Important Filesystem Options for the mount Command

Option Supported Filesystems Description

defaults All Uses the default options for this filesystem. It's
used primarily in the /etc/fstab file (described
shortly) to ensure that there's an options column
in the file.

loop All Uses the loopback device for this mount. Allows
you to mount a file as if it were a disk partition. For
instance, entering mount -t vfat —o loop
image.img /mnt/image mounts the file image.img
as if it were a disk.

auto or noauto All Mounts or does not mount the filesystem at boot
time, or when root issues the mount —a command.
Default is auto, but noauto is appropriate for
removable media. Used in /etc/fstab.

user or nouser All Allows or disallows ordinary users to mount the
filesystem. Default is nouser, but user is often
appropriate for removable media. Used in
/etc/fstab. When included in this file, user allows
users to type mount /mountpoint, where
/mountpoint is the assigned mount point, to mount
a disk.

owner All Similar to user, except that the user must own the
device file. Some distributions, such as Red Hat,
assign ownership of some device files (such as
/dev/fd0, for the floppy disk) to the console user,
so this can be a helpful option.

143

remount

All

Changes one or more mount options without
explicitly unmounting a partition. To use this
option, you issue a mount command on an
already—mounted filesystem, but with remount
along with any options you want to change. This
feature can be used to enable or disable write
access to a partition, for example.

ro

All

Specifies a read—only mount of the filesystem.
This is the default for filesystems that include no
write access, and for some with particularly
unreliable write support.

rw

All read/write filesystems

Specifies a read/write mount of the filesystem.
This is the default for most read/write filesystems.

uid=value

Most filesystems that don't
support Unix-style
permissions, such as vfat,
hpfs, ntfs, and hfs

Sets the owner of all files. For instance, uid=500
sets the owner to whoever has Linux user ID 500.
(Check Linux user IDs in the /etc/passwd file.)

Option

Supported Filesystems

Description

gid=value

Most filesystems that don't
support Unix-style
permissions, such as vfat,
hpfs, ntfs, and hfs

Works like uid=value, but sets the group of all files
on the filesystem. You can find group IDs in the
/etc/group file.

conv=code

Most filesystems used on
Microsoft and Apple OSs:
msdos, umsdos, vfat, hpfs,
ntfs, hfs

If code is b or binary, Linux doesn't modify the
file's contents. If code is t or text, Linux
auto—converts files between Linux-style and
DOS- or Macintosh-style end-of-line characters.
If code is a or auto, Linux applies the conversion
unless the file is a known binary file format. It's
usually best to leave this at its default value of
binary, because file conversions can cause
serious problems for some applications and file

types.

nonumtail

viat

Normally, Linux creates short filenames when
using VFAT in the same way as Windows; for
instance, longfilename.txt becomes
LONGFI~1.TXT. Using this parameter blocks the
creation of the numeric tail (~1) whenever
possible, so the file becomes LONGFILE.TXT.
This can improve legibility in DOS, but may cause
problems if you use Linux to back up and restore
a Windows system, because the short filenames
may be changed after a complete restore.

eas=code

hpfs

If code is no, Linux ignores OS/2's Extended
Attributes (EASs). If code is ro, Linux reads EAs
and tries to extract Linux ownership and
permissions information from them, but doesn't
create new EAs. If code is rw, Linux stores
ownership and permissions information in EAs,
overriding the settings provided by the uid, gid,
and umask options.

144

case=code hpfs, hfs When code is lower, Linux converts filenames to
all lowercase; when code is asis, Linux leaves
flenames as they are. The default for HFS and
HPFS in 2.4.x kernels is asis; for the read—-only
HPFS in the 2.2.x kernels, it's lower.

fork=code hfs Sets the HFS driver handling of Macintosh
resource forks. Options are cap, double, and
netatalk. These correspond to the methods used
by the Columbia AppleTalk Package (CAP),
AppleDouble, and Netatalk networking systems
for storing resource forks on Unix systems. If you
use one of these networking packages and want
to export Macintosh filesystems, you should use
the appropriate code.

afpd hfs Use this parameter if you want to export
filesystems using Netatalk. This option makes the
filesystem fully read/write compatible with
Netatalk, but causes problems with some
Linux—native commands.

norock 509660 Disables Rock Ridge extensions for ISO-9660
CD-ROMss.

nojoliet 509660 Disables Joliet extensions for ISO-9660
CD-ROMs.

With these mount options at hand, you should be able to mount filesystems with the characteristics
you desire. In most cases, Linux—native filesystems don't require any special filesystem options.
Foreign filesystems, however, often benefit from one or more options. Filesystems that don't support
Linux's permissions, in particular, usually benefit greatly from the uid, gid, and umask options. You
might want to use a command similar to the following to mount a VFAT partition, for instance:

mount -t vfat -o uid=500,gid=100,umask=002 /dev/hdc8 /dos/drive-e

This command gives ownership to all files on the VFAT partition to whoever has user ID 500
(usually the first user created on a Red Hat system), gives group ownership to group 100, and
removes write access to the world but leaves write access for the owner and group. The result is
that user 500 and anybody in group 100 can both read and write files on the partition, but users who
aren't in group 100 can only read files on the partition.

Creating /etc/fstab Entries

When Linux boots, it needs to know what filesystems to mount and at what locations in its directory
tree in order to produce a usable system. If you've created separate partitions for /usr, /home, and
/var, for instance, Linux must know to mount the appropriate partitions at these points—it will do you
no good to have Linux mount your user files (which should go at /home) at /usr, where program files
normally reside. Linux's solution to this problem is the /etc/fstab file, which contains default mount
assignments.

This file comprises a series of lines, one per filesystem. Lines preceded by a pound sign (#) are

ignored by Linux. Each line is a series of entries separated by whitespace, as illustrated in Listing
6.1.

145

Listing 6.1: A Sample /etc/fstab File

#device mountpoint fs options dump fsck
/dev/hda2 / ext?2 defaults 11
/dev/hdb7 /home jfs defaults 02
/dev/hda3 /dos msdos umask=0 00
server:/home /server/home nfs ro 00
/dev/cdrom /mnt /cdrom 1509660 noauto,user 0 O
/dev/£d0 /mnt/floppy auto noauto,user 0 0
/dev/hdb8 swap swap defaults 00

The /etc/fstab file's columns contain the following information:

device This column lists the device filename associated with the disk or partition.
One of the devices in Listing 6.1, server:/home, is an NFS share. For this device,
server is the name of the server, and /home is the directory it exports.

mountpoint This column indicates the mount point for the filesystem. The first entry
is usually /, the root filesystem. Linux normally reads the /etc/fstab file from the root
filesystem, but once it gets this file, it remounts the root filesystem using the options
specified in this file. A swap partition, which is used as an extension of RAM, uses a
mount point of swap or none.

fs You must specify the filesystem type code for most filesystems. If you use any
nonstandard filesystems, such as jfs for the /nome partition in Listing 6.1, you must
ensure that you've compiled your kernel with that support. It's also critically important
that the root partition's filesystem be compiled into the kernel (rather than as a
module), or else Linux won't be able to read its startup files. The /mnt/floppy mount
point in Listing 6.1 specifies a filesystem type code of auto. Linux can auto—detect
many filesystem types, and this configuration is particularly convenient for
removable—media devices such as floppy drives.

Warning Don't confuse the /etc/fstab filesystem type code of auto (which
tells Linux to auto—detect the filesystem type) with the auto mount
option (which tells Linux to mount the filesystem at boot time).

options You can specify options from Table 6.1, as well as any other options you
discover, for any filesystem. The noauto,user combination used for the floppy disk
and CD-ROM drive in Listing 6.1 is particularly useful for removable-media devices,
because it allows ordinary users to mount and unmount these devices. Be sure not to
put spaces between mount options, just commas.

dump This column contains a 1 or 0, indicating that the dump utility should or should
not back up the specified partition when it's run. This utility is filesystem-specific, and
JFS still lacks a dump program, which is why it's set to 0 for the JFS /home partition
in Listing 6.1.

fsck This column indicates the file system check order. When Linux boots, it checks
filesystems with non-0 values in this column for corruption, in the order specified by
this column's value. Normally, the root partition has a value of 1, while other Linux
native filesystems have higher values. XFS and ext3fs partitions should have values
of 0, because these filesystems handle this task automatically whenever they're
mounted. Most non—native filesystems lack fsck utilities, and so should have 0

146

values, as well.

When you install Linux, it creates an initial /etc/fstab file based on the information you gave the
installation programs about your partitions. You can modify this configuration to add partitions not
understood by the installation routines (such as BeFS partitions, if you have BeOS installed); to
fine—tune the configuration (such as adding extra parameters for FAT partitions); and to add
variants, particularly for removable media. It's a good idea to test your mount options by issuing
them directly with the mount command before adding them to /etc/fstab. (Of course, this doesn't
make much sense for some options, such as noauto and user.) Once you've modified /etc/fstab, you
can test its configuration by typing mount —a. This causes Linux to reread /etc/fstab and mount any
filesystems that are not mounted but that are listed without a noauto option in /etc/fstab.

You can also modify /etc/fstab using GUI configuration tools. In Webmin, for example, you can
select the Disk and Network File systems item in the System area, as shown in Figure 6.4. This
configuration page presents a summary of information on the computer's filesystems. By clicking a
mount point (in the Mounted As column), you can adjust the mount options, as shown in Figure 6.5.
You can also mount and unmount a filesystem from this page.

s - Mozilla {Build 1D: 2001030111} (=[]

File Edit ¥iew Search Go Bookmarks Tasks Help

e . ® .9 @ ; ; % f:iv
i Y e e o [& nttp:/Aocalhost10000/mount/ ~| 22 search e m

7| 4% Home | 4§ Bookmarks 2 Red Hat Network (4 Support (- Shop (4 Products (4 Training

wees DISK and Network File ==
systems

Mounted As ‘Tvpe ‘Location ’Hs]e? ’Permanent?

£ [New Linux Native Filesystern |Partition labelled / fres fres

lfboot [Linux Native Filesystem [Partition labelled /boot [ves fres

\/dev/pts |PTS Filesystem]none \Yes \Yes

lfproc [Kernel Filesystem [proc fes fres

l{dev/shm [RAM Disk [none fves fres

Virtual Mernory \irtual Memory 11th SIEHIES) PR Yes Yes)
[fmnt/cdrom [[s09660 CD-ROM [co-ROM drive [No fres
/mnt/zip100.0 Unknown Type iCSI device A partition No Yes

[/mnt/ﬂoppy [Unknown Type]Floppy disk 0 [No [Yes
[zgpeaker,fhome INetwork Filesystem]speaker:/home [No \Yes
l/oroc/bus/usb IUSB Devices lusbdevfs ies INo |
6 ~Z [E& | rootlogged into Webmin 0.92 on nessus.rodsbooks.com (Redhat Linux 7.2) ==

Figure 6.4: GUI system configuration tools let you edit /etc/fstab via a point-and—click interface.
Using the umount Command

When you're done using a filesystem, you can issue the umount command to unmount it. The basic
syntax for this command is as follows:

umount [-al][-f][-t fstype] mountpoint | device
The meanings of the options are as follows:

-a If this option is specified, umount tries to unmount all the partitions specified in
/etc/fstab. This is an option you should not issue in normal operation, although you
might in emergency recovery situations after restoring a system to health.

147

-f When you specify —f, umount forces the unmount operation. This option can be
useful if an ordinary umount command fails, which often occurs when an NFS server
goes down.

-t fstype If you use this parameter, umount unmounts filesystems of the specified
type.

mountpoint This is the mount point on which the device is mounted, such as
/mnt/floppy or /home.

device This is the device on which the filesystem resides, such as /dev/fd0 or
/dev/hdb8.

Normally, you use umount without most options and specify only the mount point or the device, not
both. For instance, you might type umount /mnt/floppy to unmount the floppy disk.

The umount command is most useful when applied to removable-media devices, because these
devices are typically mounted and unmounted on a regular basis while Linux is running. Most
installations leave hard disk partitions permanently mounted, so they need not be explicitly
unmounted. Linux automatically unmounts these partitions when it shuts down, however; and you
may need to temporarily unmount a normally mounted partition when performing certain types of
system maintenance, such as moving the contents of a partition to a new hard disk.

[=[B[x]

File Edit ¥iew Search Go Bookmarks Tasks Help

< . A &

i Back Forward Reload Stop

L& http://localhost:1I]EIUDfm0untfedit_mount.cgi?index:j &*_Search

-

7| 4% Home | 4§ Bookmarks 2 Red Hat Network (4 Support (4 Shop (4 Products (4 Training

Edit Mount

Linux Native Filesystem Mount Details

Webmin Index
Module Index

Mounted As [/boot [Size 31079 kB / Free 27512 kB
Save Mount? * Save and mount at boot © Save © Don't save
Mount now? & Mount ¢ Unmount

Check filesystem at boot? ¢ No ¢ Check First * Check Second
Linux Native Filesystem

' Disk l Floppy disk 0 :]
& partition labelled | oot (IDE device A partition5) =]
¢ Other device |

[Advanced Mount Options

Read-only? C
Allow device files? g

Yes * No Buffer writes to filesystem?
Yes ¢ No Allow execution of binaries?

“ Yes C No
“ ves C No

Disallow setuid Allow users to mount this
o 3 - «
programs? Yes € No filesystem? Yes No
Check mode Normal | Action on error Default ~ | =
6 ~Z [E& | rootlogged into Webmin 0.92 on nessus.rodsbooks.com (Redhat Linux 7.2) ==

Figure 6.5: Webmin uses mount option descriptions that are more verbose than the actual options in

/etc/fstab.

WarningLinux locks most removable devices, such as CD-ROM and Zip drives, so that you can't
eject the disk while it's mounted. When you unmount the disk, the eject button will work
again. Floppy disk drives on x86 computers, however, cannot be locked. It's therefore
possible to eject a floppy disk while it's still mounted. Because Linux caches writes to its
filesystems, this mistake can cause serious filesystem corruption. Be very careful to

148

unmount a floppy disk before ejecting it.
Using Removable Media

Linux's model of the disk world makes little distinction between hard disks and removable disks. You
use the same mount and umount commands to access both types of devices, and you can create
similar /etc/fstab entries for both types of media. Nonetheless, there are a few caveats and special
features that apply to removable media only.

Accessing Floppy Disks

The most important caveat concerning floppy disks is about accidentally ejecting them, as noted in
the preceding Warning. Beyond this, you can access floppy disks as if they were very small hard
disk partitions. The usual device file for accessing floppies is /dev/fd0. If your system has two floppy
drives, the second is accessible as /dev/fd1. There are also a number of specialized device access
files, such as /dev/fdOH1440, which provide forced access to a disk of a specific capacity, such as
1440KB for /dev/fdOH1440. (In normal operation, you can use /dev/fd0 to access disks of any
capacity.)

If you're presented with an unformatted floppy disk, you must format it. In DOS or Windows, this
procedure is handled with a single command, FORMAT. In Linux, by contrast, you perform two
actions. First, you do a low-level format using the fdformat command, as in fdformat /dev/fd0. (It's
here that the capacity—specific device files can be most useful, because they can force a format at a
specified capacity.) Second, you create a filesystem on the disk, as described in "Creating a
Filesystem" later in this chapter.

Most filesystems that you use on hard disks can be used on floppy disks, with a few exceptions.
Most notably, some journaling filesystems require journal files larger than floppies can hold. You
can use Linux's ext2fs on floppy disks, but ext2fs has enough overhead that it's not the best choice.
The Minix filesystem is popular on floppy disks because it includes support for Linux permissions
and ownership, and it consumes less overhead than ext2fs. FAT filesystems, too, are popular on
floppies, even for transfer between Linux systems. The drawback to FAT is that you lose Linux
ownership and permissions unless you also archive files into a tar or similar carrier file.

Disk Access without a Filesystem

It's possible to access a floppy disk without using a filesystem per se. This is commonly done by
writing a tar file directly to a floppy disk. Suppose you want to transfer a directory, somedir, between
systems. You can do so by issuing the following tar command on the source system:

S tar -cvf /dev/£fd0 somedir

This command copies the contents of somedir to a tar file on the floppy disk. You can reverse the
process on the target system by issuing this command:

$ tar -xvf /dev/£d0

Of course, you can also transfer tar files in a similar way by mounting a disk with a filesystem and
then using an appropriate tar file on the disk (such as /mnt/floppy/somedir.tar) rather than the device
file (/dev/fd0). Why use direct access, then? It's most useful when transferring files between
versions of Unix that don't share an appropriate common filesystem. You can be sure that a tar file
written without a filesystem can be read by any Unix-like OS, because tar is so widely available.
Support for any given filesystem is not so universal, although FAT filesystem support is extremely

149

common on modern Unixes.

One unusual shortcut used for access to floppy disks is the Mtools package. It's a set of programs
that allow access to FAT floppy disks (or, in principle, other removable media formatted with FAT)
without explicitly mounting them. Mtools includes a series of commands named after DOS
disk—access commands. These include mdir (to take a directory listing), mcopy (to copy a file), mdel
(to delete a file), and mformat (to create a FAT filesystem on a floppy). These commands use a
DOS-style drive letter in place of Linux's device identifier. For instance, to copy a file to a floppy,
you would type mcopy filename a:. Mtools can be a very useful method for copying a few files to or
from a FAT floppy, but if you want to give programs direct access to files on a floppy, you must
mount it normally. Mtools comes with most Linux distributions. You can read more about it at
http://mtools.linux.lu/.

A package similar to Mtools, called HFS Utilities (http://www.mars.org/home/rob/proj/hfs/), exists for
accessing Macintosh floppies. These utilities use an h prefix to the DOS-style commands, as in hdir
and hformat. The package also includes a GUI front-end.

Note As noted earlier, standard x86 PC hardware is incapable of reading the low-level data
recording methods used by Apple for its 400KB and 800KB floppy disks. The HFS Utilities
package doesn't provide a magical way around this limitation.

Accessing High-Capacity Removable Disks

High—capacity removable disks such as lomega Zip disks, Imation LS-120 disks, and Castlewood
Orb drives are becoming increasingly popular as typical file sizes increase. As a general rule, Linux
has no problem with these devices, but there are a few caveats.

The most important of these is to ensure that the device's interface (ATAPI, SCSI, parallel-port,
USB, or something else) is compatible with Linux. For the most part, this isn't a problem. Some of
the rarer parallel-port or USB devices sometimes pose problems, though, particularly with pre-2.4.x
kernels. Check with http://www.linux-usb.org/ for details on USB device support.

There are two ways to treat high—capacity removable devices: as big floppy disks or as removable
hard disks. In the first case, you use the main device file to access the drive, as in /dev/hdb for an
EIDE or ATAPI drive that's configured as the slave drive on the primary EIDE chain, or as in
/dev/sda for a SCSI drive that's got the lowest SCSI ID number of all SCSI disks. Treating
removable disks in this way is common for some media, such as magneto-optical drives. It has the
advantage that you don't need to worry about partitioning the disks.

More frequently, removable disks are handled as if they were hard disks. In this arrangement, the
disk is partitioned with fdisk (discussed shortly, in "Disk Partitioning") or a similar disk—partitioning
tool. You then access the partition when creating and mounting filesystems. For instance, you might
access /dev/hdb1 or /dev/sda4. One problem with this approach is that the partition number can
vary from one disk to another. lomega Zip disks commonly use the fourth partition, but some other
disk types and tools use the first partition. You may therefore need to create multiple /etc/fstab
entries to handle all the possibilities, particularly if you exchange disks with several people.

Note Macintosh Zip disks are partitioned using the Mac's partition table, which is different

from the partition table used on x86 PCs. Linux's HFS driver, however, includes
limited support for the Macintosh partition table, so you can mount Macintosh Zip

150

disks as if they were big floppies (using /dev/hdb, /dev/sda, or similar "numberless"
device files). Alternatively, you can compile Macintosh partition table support into
your Linux kernel and mount the fourth partition on the removable disk.

You can use any filesystem on a large removable disk that you can use on a hard disk. In particular,
ext2fs works well on removable disks. FAT and HFS are also popular choices, particularly when you
want to exchange data with Windows or Macintosh users, respectively. The journal files used by
journaling filesystems may consume a large percentage of a removable disk's capacity. For
instance, ReiserFS creates a journal file that's 32MB in size—roughly a third the capacity of a
100MB Zip disk.

Reading CD-ROM Discs

CD-ROM discs are not terribly unusual in terms of how they're mounted and accessed. There are
two factors to keep in mind:

e Read-only access. CD—ROM discs are by nature read-only. The rw option therefore has no
effect, and you cannot write to CD-ROM discs.

e Filesystem choices. Although Linux can mount a CD-ROM created using just about any
filesystem, ISO-9660 dominates the CD—-ROM filesystem landscape. Many discs created for
the Macintosh market, however, use HFS instead of or in addition to ISO-9660. Discs
created with Linux or Unix in mind usually include Rock Ridge extensions, while Joliet is a
common addition to discs created for the Windows market. It's possible to create a
CD-ROM with ISO-9660, Rock Ridge, Joliet, and HFS, pointing to some combination of the
same and different files.

Note For purposes of mounting a disc for read access, CD-R and CD-RW discs and
drives are just like CD-ROM discs and drives. To write to one of these discs, you
normally use special software such as the mkisofs and cdrecord combination
(discussed in Chapter 9), or a GUI front-end such as X-CD-Roast. Linux includes
experimental UDF support for more direct read/write access to CD—RW media, but
this support is limited in 2002.

You can use the mount command's —t parameter, along with —o and the norock and nojoliet options,
to specify how Linux will try to mount a CD-ROM. Table 6.2 summarizes the possibilities.

Table 6.2: Mount Options for CD-ROMs

Mount Options Linux's Action
-t hfs Mounts the CD—ROM using HFS, if possible.
-t is09660 Mounts the CD—-ROM using Rock Ridge, if present. If

Rock Ridge is not present but Joliet is, and if the
kernel includes Joliet support, Linux uses Joliet;
otherwise, it uses plain 1ISO-9660.

-t is09660 —o norock Mounts the filesystem using Joliet, if the CD-ROM
includes a Joliet filesystem and the kernel includes
Joliet support. Otherwise, plain ISO-9660 is used.

-t is09660 —0 nojoliet Mounts the CD-ROM using Rock Ridge, if present. If
Rock Ridge is not present, plain ISO-9660 is used.

-1 509660 —0 nojoliet,norock Mounts the CD—ROM using plain ISO-9660.

151

Automating Removable-Media Access

Microsoft's OSs treat removable disks differently than does Linux. In a Microsoft OS, each
removable disk has a drive letter, such as A: for the first floppy disk. There's no need to explicitly
mount a removable disk; you can simply specify a file on a removable disk by inserting the drive
letter in front of the file's name, as in AASOMEFILE.TXT. This approach is convenient for users but
has the drawback of possibly making it unsafe to cache disk writes, so performance suffers. Some
hardware notifies the OS when the user presses the eject button, allowing the OS to finish any
cached disk accesses before ejecting the disk. When using such a device, cached disk writes are
possible.

This discussion is relevant to Linux because many new Linux users are accustomed to the Windows
method of handling disks. These users expect to be able to read and write files on the disk without
explicitly mounting the disk, much less relying on the superuser to do the job. Linux provides several
workarounds for these users. Specifically:

e The user and owner mount options, which are normally used in /etc/fstab, allow users to
mount and unmount removable disks. Although these options don't provide truly automatic
access, they can be adequate for users with some Linux know—how. They're also a critical
first step to some other possibilities.

Window managers and file managers can be customized to run specific commands when a
user clicks on an icon or picks an item from a pop—up menu. Such a configuration can allow
users who are uncomfortable with a text—-based shell to issue mount and umount
commands. Configuration details vary substantially from one program to another, so consult
the appropriate package documentation for details.

The default configurations for the KDE and GNOME desktop environments include
automated access to CD-ROM and floppy disks similar to the access in Windows.
Double-click on the appropriate desktop icon, and the system mounts the disk and opens a
browser window on the disk's contents. You can later select an unmount option from the
appropriate icon's context menu to unmount the disk. These options rely on the presence of
user or owner options in /etc/fstab. Some configurations (including the default GNOME setup
in Red Hat 7.3) mount a removable disk automatically when it's inserted in a drive.

An automounter is a tool that monitors access attempts to specified directories and, when
one is detected, mounts a specified device at that location. Once all opened files are closed,
the automounter waits a specified time and then unmounts the device. This configuration
can be convenient for mounting, but may pose problems for certain media types because of
the delays when unmounting. Floppies can be particularly troublesome in this respect
because you won't know when it's safe to eject a floppy, except by issuing a command such
as df to see if the disk is still mounted.

Of these options, /etc/fstab configuration has already been described. GUI configurations (including
those for window managers and desktop environments) vary a lot from one package to another, so
you should check your package's documentation for details. The automounter requires the most
elaborate configuration. To use this tool, follow these steps:

1. Check that your kernel configuration includes both the Kernel Automounter support in the
Filesystems area and NFS Filesystem Support in the Network File Systems area. These
options are included in the standard Red Hat 7.3 kernel. (Kernel compilation is discussed in
Chapter 8.)

2.1f it's not already installed, install the autofs package. The exact filename is
autofs-3.1.7-28.i386.rpm in Red Hat 7.3, but it may be called something else in other
distributions.

152

3. Edit the automounter's configuration file, /etc/auto.master. It normally contains a single line
that lists the base automount point (/misc by default), the configuration file for that mount
point (/etc/auto.misc by default), and a timeout value (60 by default). Change any of these
parameters as needed. If this line is commented out, uncomment it to activate it.

4. Edit the /etc/auto.misc configuration file. This file should list specific subdirectories within the
base automount point (/misc), filesystem type codes, and device files for each device you
want auto-mounted. For example:

floppy -fstype=auto :/dev/£d0
maczip —-fstype=hfs :/dev/sda

This example sets the automounter to check /misc/floppy for floppy disk accesses using any
filesystem (type auto) and /misc/maczip for HFS filesystems mounted on a SCSI Zip drive
(/dev/sda).

5. Start the automounter by typing /etc/rc.d/init.d/autofs start. It should start up automatically
when you reboot the computer, as well. (If you're not using Red Hat, you may need to use
another startup script, or start the automounter manually by typing automount /misc file
/etc/auto.misc.

You do not create directories within the /misc directory for each mount point. Instead, the
automounter detects attempts to access nonexistent directories and dynamically creates them when
mounting the device. This fact can make the automounter ineffective if you use a file manager,
since these programs typically only let you access existing directories. The automounter is useful,
however, when you use command-line tools.

Note In addition to autofs, a second automounter implementation, the automounter daemon (amd),
is available for Linux. See "Linux NFS and Automounter Administration," by Erez Zadok, for
the most complete documentation of amd available.

Using Swap Space

One type of disk access is critically important to Linux but has not yet been mentioned in this
chapter: swap space. This is disk space that's set aside as auxiliary to system memory (RAM).
Suppose your computer has 256MB of RAM, but you want to run 380MB worth of programs on the
system. Swap space allows you to accomplish this, by treating disk space as if it were RAM. The
result is that you can run all 380MB worth of programs—albeit more slowly on this 256MB computer
than on a machine that has in excess of 380MB of RAM.

Linux typically assigns one or more disk partitions as swap space. These partitions use the type
code 0x82 (Linux swap), as described in "Disk Partitioning." It's also possible to use an ordinary disk
file as swap space. Normally, Linux sets up a swap partition during system installation, so this
feature is handled automatically. You may want to adjust this default configuration, however.

You can find out how much swap space your system currently has by typing free, which produces
output like the following:

total used free shared buffers cached
Mem: 127752 121416 6336 61108 26748 53316
-/+ buffers/cache: 41352 86400
Swap: 136512 4928 131584

Pay particular attention to the line labeled Swap. Under the Total column is the number of kilobytes
of swap space available to the system. The Used and Free columns list how much of that space is

153

in use and available, respectively. If the Used value begins to approach the Total value, you should
consider adding more swap space.

Tip It's difficult to anticipate how much swap space a system will need, because it depends on how
the computer is to be used. One rule of thumb is to create swap space equal to twice your
system's physical RAM. In fact, if you're using a 2.4.x kernel, you should always exceed this
value, because under rare conditions, the 2.4.x kernel may crash if it has less swap space than
this.

To add more swap space, follow these steps:
1. Set aside appropriate disk space. You can do this in either of two ways:

¢ Create a new disk partition for the swap space. This approach can be difficult
because it requires that you repartition your hard disk.

¢ Create an empty file of the appropriate size on a Linux—native filesystem. For
example, the command dd if=/dev/zero of=/swap bs=1024 count=n creates an
appropriate file (called /swap) that's n kilobytes in size.

2. Issue the mkswap command on the new swap space you've created. For a partition, you'll
type something like mkswap /dev/sdc5. For a file, the command will resemble mkswap
/swap. This command prepares the space to store swap information.

3. Use the swapon command to add the new swap space, as in swapon /dev/sdc5 or swapon
/swap. Enter another free command, and you'll see that the available swap space has
increased by the size of your new swap partition or file.

To make the use of swap space permanent, you should add an /etc/fstab file entry for the swap
space. This entry uses the mount point and the filesystem type code entries of swap, but otherwise
resembles other /etc/fstab entries. For instance, both of the following lines add swap space:

/dev/sdc5 swap swap defaults

00
/swap swap swap defaults 00

Once you've added these entries, Linux uses the specified swap space after a reboot.

If you want to stop using a specific swap partition or file, you can use the swapoff command, which
works much like the swapon command—for instance, swapoff /dev/sdc5.

Updating and Maintaining Filesystems

Before you can use a filesystem, you must prepare one. If you obtain a new disk, you must break it
into partitions and create filesystems on those partitions. Only then will you be able to mount the
filesystems. These steps are necessary when adding a disk and when replacing one, but the
precise details of these operations differ. There's also the issue of filesystem maintenance. In some
situations—particularly after a system crash or power failure—Linux must check its filesystems for
integrity. You may need to supervise this process, so it's important to understand what goes on
during such a check.

Disk Partitioning

If you've bought a new disk, your first task once you've connected it to your computer is to partition
the disk. This procedure carves the disk into smaller chunks so that you can share the disk across

154

multiple OSs, or subdivide the space used on a single OS to protect files on one partition should
another develop problems. Chapter 2 briefly discusses these issues, and it describes partitioning a
disk during a Red Hat Linux installation session. You can also use assorted partitioning tools after
installation, to change your configuration or to add a new disk.

Tip If you want to change an existing partition configuration, one of
the best tools available is PartitionMagic, from PowerQuest
(http://www.powerquest.com/). This commercial package allows
you to add, delete, move, resize, and copy FAT, HPFS, NTFS,
ext2fs, and Linux swap partitions, without damaging their
contents. The open source GNU Parted
(http://www.gnu.org/software/parted/parted.html) provides some
of PartitionMagic's functionality. ReiserFS, XFS, ext2fs, and
ext3fs all include their own partition-resizing utilities, but they
aren't as easy to use or as flexible as PartitionMagic.

Planning a Partition Layout

Before you begin working with partitioning software, it's important to design an appropriate partition
layout. Unfortunately, it's hard to give simple and complete rules for doing this, because every
system's needs are different. What's suitable for a high-level news server may be wholly
inappropriate for a desktop workstation. Here are some rules of thumb to keep in mind:

e Keep it simple. The simpler the configuration, the better. Complex configurations can be
difficult to maintain. Further, if a system has many partitions, it's more likely that one of them
will run out of room while another has plenty of free space.

e Keep related data together. Because the time required to access data varies with the
distance from one point to another on a disk, it's best to keep related data in one area. One
consequence of this rule is that in a multi-OS configuration, you should keep the partitions
for each OS contiguous.

e Put the most-used data in the center. Heavily accessed partitions should go in the middle of
a range of partitions. Swap partitions typically see a lot of use, so they should be positioned
in between nonswap partitions.

e Split OSs across disks. If you have two or more operating systems, you may be tempted to
put one OS entirely on one disk and another on a second disk. If you split both OSs across
both disks, however, you'll achieve slightly better performance because two sets of disk
heads are working in both OSs.

e /solate critical data. Consider putting particularly important or much-used data on partitions
separate from other files. This can reduce the risk of damage to those data should a disk
error in another part of the disk occur. Similarly, if a heavily used partition runs out of disk
space, the problems this causes can be isolated. Putting /home and, on some servers, /var
and /tmp, on their own partitions are typical examples of this rule of thumb.

e Put the Linux kernel under the disk's 1024-cylinder mark. Old BIOSes and versions of the
Linux Loader (LILO) couldn't boot the Linux kernel if it resided in an area past the 1024th
cylinder. One easy way around this limitation is to create a small (5—20MB) partition under
that point and mount it as /boot. Recent versions of LILO and GRUB don't suffer from this
problem, but if you've got old hardware, you may need to use this workaround.

Note The 1024-cylinder mark is the point where the 1024th cylinder of the disk, as
reported by an EIDE drive or SCSI host adapter, lies. On modern hard disks, this
point works out to just under 8GB.

You shouldn't take any of these rules as being absolute. Indeed, they sometimes contradict one

155

another. For instance, the data-isolation rule is at odds with the keep-it—simple rule. In the end,
you'll need to decide which rules best reflect your own personal preferences and needs for the
system, and create a partitioning scheme that reflects these factors. For new Linux administrators,
we typically recommend a root (/) partition, a /home partition, a swap partition, possibly a /boot
partition, and whatever partitions are necessary to support any other OSs that exist on the
computer. Creating more partitions can be difficult because it's hard to judge how large to make
them. Another administrator's experience is of limited use in making that judgment, because the
systems may be used in radically different ways. Once you've gained some experience, or if you
see a compelling reason to do so initially, you may want to separate out partitions for /var, /tmp,
/usr, /usr/local, /opt, and other directories.

Linux Disk-Partitioning Software

Linux's main partitioning tool is called fdisk (for fixed disk). It's named after the DOS FDISK utility
but works quite differently. To use fdisk, type its name followed by the device file you want to
modify, such as /dev/sda or /dev/hdb, thus:

fdisk /dev/hdb

Warning Every x86 OS has its own disk—partitioning software. Linux's fdisk is unusually flexible,
and so can produce partitions that other OSs don't like. As a general rule of thumb, you
should use each OS's partitioning tools to create its own partitions. Alternatively, you can
use a more OS-neutral tool, such as PartitionMagic, to do the job for all OSs.

On modern disks, you'll likely be told that the number of cylinders exceeds 1024. You can safely

ignore this warning. Once fdisk is running, you see only a prompt that reads Command (m for help):.

You type single-character commands at this prompt in order to accomplish various tasks. You can

type m or ? to see what these commands are. Table 6.3 summarizes the most important ones.

Table 6.3: Important Linux fdisk Commands

fdisk Command Meaning

d Deletes a partition

I Displays a list of known partition type codes

m or ? Displays a summary of commands

n Creates a new partition

p Displays the disk's current partition table

q Quits without saving changes

t Changes a patrtition's ID type code

v Verifies the partition table; checks that it's internally consistent and returns
basic information

W Saves (writes) changes and exits from the program

It's generally a good idea to start any fdisk session with a p command to display the current
contents of the disk. This allows you to verify that you're modifying the correct disk, and gives you
the partition numbers for partitions you might want to delete. You also need this information in
planning where to put new partitions.

Warning Don't make changes to any partitions that are currently mounted. Doing so can confuse

Linux and possibly cause a system crash. You can unmount a partition and then delete it,
if that's your intention. To change a partition's size, use a dynamic partition resizing tool;

156

or you can back the partition up, resize it, and restore the backup. Some ext2fs partition
resizers require that you separately resize a partition with fdisk and resize the filesystem
with the partition resizer. Follow those tools' instructions, if you use them.

Once you've seen what (if anything) already exists on the disk, you can proceed to delete, add, and
otherwise modify the partition table using fdisk's commands. Consider the following fdisk exchange:

Command (m for help): p

Disk /dev/hdb: 255 heads, 63 sectors, 1216 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hdbl 257 1216 7711200 5 Extended
/dev/hdb2 1 192 1542208+ fb Unknown
/dev/hdb3 193 256 514080 17 Hidden HPFS/NTFS
/dev/hdb5 257 516 2088418+ 6 FAT16
/dev/hdb6 517 717 1614501 7 HPFS/NTFS

Command (m for help): n
Command action
1 logical (5 or over)
P primary partition (1-4)
1
First cylinder (718-1216, default 718): 718
Last cylinder or +size or +sizeM or +sizeK (718-1216, default 1216): +400M

In this situation, the initial configuration included five partitions, and the n command added a new
one. fdisk gave the option of creating a logical or primary partition. The x86 partitioning scheme
originally provided for only four partitions per disk, which soon became inadequate. The workaround
was to use one of the original four primary partitions as a placeholder for a potentially large number
of logical partitions. The "placeholder" primary partition is then referred to as an extended partition.
In Linux, the primary partitions use numbers from 1 to 4; the logical partitions are numbered 5 and
up. Linux doesn't care whether its partitions are primary or logical, so we recommend using mostly
or exclusively logical partitions for Linux. This reserves primary partitions for OSs that do need
them, such as DOS, Windows, and FreeBSD.

Linux's fdisk lets you specify partition sizes either in terms of an ending cylinder number or in bytes,
kilobytes, or megabytes. The preceding example specified a 400MB partition starting at cylinder
718.

Tip For the final partition on a disk, enter the size by specifying an ending cylinder number that
corresponds to the maximum available. This practice minimizes the amount of unused disk
space.

By default, fdisk creates partitions that use the type code 0x83 (Linux native). Such partitions are
suitable for holding Linux's ext2fs or any of the journaling filesystems available for Linux. If you want
to create a Linux swap partition or a partition to be used in another OS, however, you must change
its type code. You do this with the t command, which prompts you for a hexadecimal code. If you
don't know the code, type L at this point for a list. (You can enter a code that's not on the list if you
like, but fdisk won't be able to identify the associated OS if you do so0.) You can use this feature to
convert a partition created with another tool for use by Linux.

Note Linux doesn't actually use the partition type codes except during installation. Instead, Linux
relies on the —t parameter to mount, or on Linux's auto—detection algorithms, to determine the
partition type. Many other OSs, however, rely upon the partition type codes to determine what

157

partitions they use.

When you're done editing the partition table, look it over with the p command; then verify that
everything's okay with the v command. Chances are that v will report your disk has some number of
unallocated sectors. This is normal and reflects sectors lost to the standard PC method of accessing
the disk. You should write down the partition numbers and your intended uses for them, so that you
don't forget these details. Once you're satisfied with your new partitioning scheme, type w to commit
the changes to disk and exit.

Tip Linux's fdisk does not alter any on—disk structures until you enter the w command. If you create
an unusable disk structure and want to start over again from scratch, you can type q to quit
without saving the changes. When you start fdisk again, you'll see the same starting conditions
you saw initially.

Creating a Filesystem

Filesystems aren't completely blank slates. To function, they rely upon the presence of certain key
components, even when they contain no actual files. These initial data structures include pointers to
the root directory and whatever data structures the filesystem uses to allocate space, boot sector
code, and perhaps some files or directories required by the OS or filesystem (such as the
lost+found directory that appears on every ext2 filesystem). The process of writing these core data
structures to disk is sometimes referred to formatting a disk. This term is common in the Microsoft
world, but it's ambiguous, because it can also refer to creating new magnetic marks the disk
mechanism uses to locate individual sectors on the disk. To avoid ambiguity, it's common in the
Linux world to refer to the process of writing sector marks as low-level formatting, and to laying out
initial filesystem data structures as high-level formatting or creating (or making) a filesystem.

For floppy disks, the DOS and Windows FORMAT command performs both low-level and
high-level formats, although it may skip the low-level format if that's already been done. In Linux,
the fdformat program (described earlier in "Accessing Floppy Disks") performs a low-level format on
floppy disks. Under any OS, special utilities are used to perform low-level formats on hard disks
and high-capacity removable disks. These utilities are sometimes integrated into the BIOS,
especially for SCSI disks. It's unlikely that you'll need to perform low-level formats on hard disks.

In Linux, each filesystem has its own utility to create a filesystem. These utilities are usually named
mkfs.fsname, where fsname is a code for the filesystem; for instance, mkfs.ext2 to create an ext2 or
ext3 filesystem. Often these utilities go by other names, too, such as mke2fs. The mkfs utility is a
front—end to all these specific filesystem—creation programs. Here is the syntax for this command:
mkfs [-t fsname] [options] device [size]
The options to this command are as follows:
-t fsname Specify the filesystem type with this option. Then mkfs calls mkfs.fsname.
options You can pass filesystem-specific options to the program that does the
actual filesystem creation. Precisely what options are available varies from one
filesystem to another; check the mkfs.fsname man page for details. Common options
include the following:

—c Checks the device for bad blocks.

158

-l filename Reads a list of known bad blocks from filename.
-v Displays extra information during the filesystem creation process.

device This is the only truly required parameter. Use it to tell the program on what
device to make the filesystem, such as /dev/sdb1 or /dev/fd0.

size You can tell the system to create a filesystem of a particular size, measured in
blocks that are typically 1024 bytes in size. If you omit this parameter, the program
creates a filesystem that fills the partition or device.

Red Hat Linux includes filesystem—creation utilities for ext2fs/ext3fs, ReiserFS, the Minix filesystem,
and FAT (the FAT tool is called mkfs.msdos; but as there are no differences at filesystem creation
time between ordinary FAT and long filename-enabled VFAT, you can use this utility to create
VFAT filesystems). In addition, the Mtools package includes another FAT filesystem creation
program, and the HFS Utils package includes a program to create Macintosh HFS filesystems. The
JFS and XFS projects include their own mkfs.fsname utilities. Aside from FAT, Linux utilities to
create most non-Linux filesystems are rare. As an example of filesystem creation, the following
commands both create a FAT filesystem on a floppy disk:

mkfs.msdos /dev/£d0

and

mformat a:

Tip If you want to use ext2fs on floppy disks or other removable media, use the —m 0 parameter to
mkfs.ext2. The —m parameter specifies the percentage of disk space that's reserved for use by
root. This percentage can be safely set to 0 for removable disks, but it's best to leave it at its
default value of 5 for most disk partitions, especially the root (/) partition.

Adding a Disk

As your system grows, it accumulates files. What's more, as time goes on, file sizes increase.
Real-time video files, for instance, can easily consume literally gigabytes of disk space, compared
to the kilobytes that were common for personal productivity applications of just a decade ago. To
cope, you may want to add a new hard disk to an existing computer that's been in service for a
while.

Most x86 computers sold today use EIDE disks. These disks are inexpensive and easy to find, but
they have a disadvantage: A typical computer can support just four EIDE devices. Because
common add-on devices, such as CD-ROM drives, tape backup drives, and high-capacity
removable-media drives, also use the EIDE interface, you may be limited to just one or two EIDE
hard disks. Beyond that, you'll have to either add another EIDE controller or add a SCSI adapter.
SCSI adapters can host either 7 or 15 devices, depending upon the SCSI variant, and SCSI hard
disks often outperform their EIDE cousins. Unfortunately, SCSI disks are generally more expensive
than equivalent EIDE devices. Check your current inventory of disk devices before buying a new
one to determine what type of device to buy.

When it comes to actually adding a disk, the partitioning and filesystem creation procedures outlined
earlier are the critical ones in terms of software configuration. Depending on the disk's intended role,
you may want to transfer some files to the new disk, as well. Overall, the steps involved in adding a
new disk are as follows:

159

1.
2.

3.
4.
5.

Check your hardware and decide on a disk type and model.

Add the disk hardware, paying attention to characteristics such as EIDE master/slave status
and SCSI termination and ID.

Partition the disk in a way that's suitable for your system.

Create filesystems on the new disk's partitions.

Mount the new disk's partitions.

If you want to transfer data, you can do so in between steps 4 and 5. The usual procedure is to
select a directory to move to the new disk. For instance, you might move /opt to a new disk. To do
so, follow these steps:

1

. Follow steps 1 through 4 just above.

2. Mount the new partition at a temporary location. This can be an existing mount point, such

A W

(o2)

as /mnt/floppy; or one you create specifically for this purpose. The remaining steps assume
that you're using /mnt/floppy as a temporary mount point.

. Change to the base of the directory you want to move, as in cd /opt.
. Type the following command to copy all files to the new filesystem:

tar clpf - . | (cd /mnt/floppy; tar xpvf -)

Note The -I parameter keeps tar from moving into filesystems mounted on the
source directory. If you want to transfer two current filesystems onto one
new one, you'll need to omit this parameter. It's included in step 4
because omitting it can sometimes cause problems. In particular, be
careful not to copy the /proc filesystem, which is a pseudo-filesystem that
contains system information. Copying it is wasteful and potentially
dangerous. Another potential pitfall lies in copying a filesystem on which
the destination filesystem is mounted, which results in an endless loop
unless the —I tar parameter is specified. Both problems are most likely to
occur if you attempt to move the root (/) filesystem.

. Check, as best you can, that the new patrtition contains the files that it should.
. Remove the files from their original location. For instance, type rm —r /opt/*.

Warning Step 6 is potentially very dangerous. If there's been an error in copying the
files, removing the originals will result in data loss. You might want to skip
this step for a while. If you do, you can mount the new partition over the
contents of the original directory. You'll then access the new partition
rather than the old directory. When you're satisfied that all is well,
temporarily unmount the new partition and come back to perform step 6.

7. Unmount the new partition from its temporary location.
8.
9. Edit /etc/fstab to reflect the new filesystem mount point.

Mount the new partition at the (now empty) directory that held the original files.

This procedure allows you to remove much of the load from one disk by spreading it across two.
You may encounter complications, however. Specifically, if you want to move a directory that's
normally in heavy use, such as /usr, you may have problems deleting the directory. In such cases,
you may need to resort to an emergency boot disk to perform steps 6 and 9, skipping the
intervening steps.

Replacing a Disk

Fundamentally, you can treat a disk transplant much as you do a disk addition; it's just that you're

160

moving everything from one disk to another. Here are some special caveats to keep in mind:

e |f you're replacing a disk because you can't add any more disks to your system, you'll need
to temporarily disconnect a device, such as a Zip or CD—ROM drive, in order to perform the
replacement. Alternatively, you can use a tape backup device as an intermediary storage
device, but this is likely to slow down the process.

Note You can use a network storage device, such as a server system, as an
intermediary storage device. If you do so, it's best to use tar to back up the
files to the network server. Copying the files directly may result in the loss of
important filesystem characteristics.

e Step 4 of the second procedure in "Adding a Disk" specifies use of the —I parameter to tar.
This parameter keeps the transfer restricted to one filesystem, which helps avoid problems
with /proc or endless loops that result when copying the root filesystem. When moving an
entire installation, it's best to do so one filesystem at a time.

e When you've finished copying all the files, edit /etc/fstab on the destination system to reflect
the partition assignments as they will exist after you've removed the original disk. For
instance, if the original disk is /dev/sda and the new one is /dev/sdb, removal of /dev/sda
changes all the /dev/sdb partitions to equivalently numbered /dev/sda partitions. The new
disk's /etc/fstab file should include references to itself as /dev/sda.

e Create a DOS boot floppy and put on it a copy of your Linux kernel and the LOADLIN.EXE
program from the Linux installation CD. You'll use this floppy to boot your copied system for
the first time. If you don't have a copy of DOS handy, FreeDOS (http://www.freedos.org/) can
serve this function quite well. Note the device identifier that the root filesystem will have
when the original hard disk is removed.

e When you've copied everything and removed the old disk, boot with the DOS boot floppy.
Type LOADLIN VMLINUZ root=/device ro, where VMLINUZ is your Linux kernel filename
and /device is the device ID of the root partition. This procedure should boot Linux. If
necessary, you can then edit /etc/lilo.conf and type lilo to install LILO on the new disk, or
edit /etc/grub.conf. Thereafter, the new disk should boot without the aid of a floppy, just as
did the original disk.

Warning Don't remove any partitions or overwrite any data on your old hard disk until you're sure
all your important data exist on the new disk. If you miss a partition or make an error in
copying the original disk's data, keeping the original around for a brief period can save
you a lot of aggravation when you discover the problem.

Checking Filesystem Integrity

At every boot, Linux checks that its filesystems were shut down correctly. If they weren't, Linux
initiates a filesystem check, which is performed by a utility called fsck.fsname, where fsname is the
filesystem name. (Like mkfs.fsname, these utilities often go by other names, such as e2fsck for
fsck.ext2. The fsck utility is a front—end that calls the appropriate filesystem—specific utility.) The
filesystem check process is most important for ext2fs, because an unclean shutdown can leave
ext2fs in an inconsistent state, resulting in lost or damaged files; a filesystem check prevents this.
One of the prime advantages of journaling filesystems, as explained earlier, is that they require only
very minimal filesystem checks after a system crash. JFS relies upon an fsck program to perform
this check, but the others can do the checks automatically at boot time. Linux lacks programs for
checking most foreign filesystems; you must normally use programs native to those OSs to perform
such checks. (FAT is an exception to this rule; there is a Linux fsck.msdos program.)

The operations of a filesystem check vary from one filesystem to another. For ext2fs, it involves five
separate passes through the filesystem, the first two of which take 90 percent or more of the

161

program's running time. Each pass detects and corrects a different class of filesystem errors. If all
goes well, this process completes automatically, without the need for human intervention; it just
takes some time—a time that can be measured in tens of minutes or even hours on multigigabyte
partitions.

Unfortunately, the filesystem check process sometimes does require human intervention. When this
happens, you're likely to see a message that the operation failed and that you must run fsck
manually. You must type the root password to gain limited access to the system, whereupon you
should issue the fsck command on the partition that caused the problem, as in fsck /dev/hda9. The
program is likely to ask you bewildering questions concerning whether it should duplicate specific
inodes or store lost files in the lost+found directory. Unless you know a great deal about the design
of the filesystem that's being checked, you should select the default for each of these questions.
When this is over, type shutdown now -r to reboot the computer and hope for the best.

Even when an ext2fs partition has been cleanly unmounted, Linux sometimes issues an fsck on the
filesystem at boot time. This is because ext2fs has a maximum mount count—a maximum number
of times that Linux will mount the partition before it requires a check, in order to ensure that errors
haven't crept onto the system. There's also a maximum time between checks, for similar reasons.
You can determine these values for any given ext2fs partition by using the dumpe2fs program. (This
program produces a lot of output, so you should pipe it through less, as in dumpe2fs /dev/hda9 |
less.) Look for lines labeled Maximum mount count and Check interval. Typical values are 20
mounts and 6 months, respectively.

You can alter these values (and several others) using the tune2fs program. Include the —c
parameter to adjust the maximum mount count, and the —i parameter to adjust the check interval.
For instance, type tune2fs /dev/hda9 —c 5 —i 1m to reduce the limits to 5 mounts or 1 month. (You
can also use d and w for units to the —i parameter, to indicate days and weeks, respectively.)

Naturally, filesystems other than ext2fs use different criteria for determining when to force a
filesystem check. Most include flags that let them spot a filesystem that was not cleanly unmounted,
but any given filesystem may or may not include equivalents to the forced checks by time or number
of mounts included in ext2fs. Equivalents to the dumpe2fs and tune2fs programs may exist for
specific filesystems, but not usually.

In Sum

Linux has unusually strong support for a wide variety of filesystems. In 2002, the transition from
Linux's traditional ext2 filesystem to journaling filesystems is underway, but it's unclear which of the
four journaling contenders will ultimately become the most popular. In terms of foreign filesystem
support, Linux is unsurpassed; it can at least read, and often write, filesystems from all major x86
OSs, and from many non-x86 OSs.

Using filesystems under Linux entails issuing a mount command and accessing files using normal
Linux programs and shell commands. You can add entries to /etc/fstab to have the computer
automatically mount filesystems at boot time, or to allow non-root users to do so.

Filesystem creation and maintenance involves several tools, including the fdisk tool for partition
creation, mkfs and its helper programs for filesystem creation, and fsck and its helper programs for
filesystem integrity checking. Understanding how to use these tools is critically important for
upgrading and maintaining your system.

162

Chapter 7: Linux Files and Processes

Overview

A Linux system is made up of files of various types; essentially, everything on the system is a file.
These files are organized hierarchically into directories, since having all files in one large directory
would be far too chaotic. As development in Linux is often done individually or in small groups, it
became obvious early on that the hierarchy needed some defined structure that all developers could
work within so that pieces developed by one group would fit with those developed by another. The
basic characteristics of the hierarchy were defined first in the File System Standard (FSSTND),
which was the consensus resulting from a lengthy discussion on a specially created Linux mailing
list. The Filesystem Hierarchy Standard (FHS), a subsequent version of the FSSTND, was intended
to standardize file systems between Linux and Unix for compatibility between different software
packages, distributions, and networked systems.

This chapter discusses the history of these two standards and what they brought to Linux. It
explains the file concept, including file types and file naming. It looks at the filesystem hierarchy as it
has evolved, and outlines the intended purpose for each of the top—level directories. The chapter
also discusses the different types of files that together form a Linux filesystem. Finally, you'll learn
about the processes that perform the actual work on a Linux system, how to track them, and how to
administer them. As a system administrator, you must know the filesystem that you are working on
and its restrictions and limitations in order to allocate system space efficiently and avoid pitfalls. Just
as with city ordinances, you can sometimes get by without knowing them intimately, but you might
find that your lack of knowledge gets you into trouble.

The Filesystem Hierarchy Standard

The history of the Filesystem Hierarchy Standard encapsulates the open-source development of
Linux as a whole. Even if you're not a history buff (or an open source "true believer"), understanding
the issues that the developer community set out to solve in defining the standard can help you
better understand the system you're working with today.

Linus Torvalds intended the Linux operating system to compensate for the problems he
encountered when trying to use the Minix operating system to connect him to a computer at Helsinki
University where the computer lab was overcrowded, making it hard for him to complete his class
assignments. In its very early days, Linux was developed in tandem with the Minix operating
system, allowing Linus to share disks between the Minix and Linux sides. At that point, the Linux
filesystem was in fact the Minix filesystem. Soon thereafter, a Virtual Filesystem (VFS) layer was
developed to handle the file—oriented system calls and pass the I/O functions to the physical
filesystem code, allowing Linux to support multiple filesystems. Developed for use as an
instructional tool, the Minix filesystem supported only 14—character filenames and limited its support
to filesystems smaller than 64 megabytes. In April 1992, after the integration of the VFS into the
kernel, a new filesystem, the Extended File System or extfs, was implemented and added to Linux
version 0.96c¢.

Although extfs was significantly more usable than the Minix filesystem, it still lacked some features
that Linus wanted. Additionally, its practice of tracking free blocks and inodes via a linked list did not
allow for optimum performance, because, as the filesystem was used, the list became unsorted and
the filesystem became fragmented. Released in alpha version in January of 1993, the Second
Extended File System (ext2fs) grew out of the desire to fix the problems of extfs and to ensure a

163

focus on excellent performance, robustness, and flexibility to allow users to use new features
without having to reformat their filesystems. ext2fs supports filenames as long as 255 characters
and filesystems as big as 4TB. As of kernel 2.4.15, a journaling file was added to prevent the user
from having to wait for filesystem checks at every reboot. At this point, ext2fs became ext3fs. Linux
is still using this filesystem, although as described in Chapter 6, several alternatives are available.

Note The term filesystem has two meanings. Chapter 6 discussed a filesystem in terms of
the low-level layout of data on the disk. In this chapter, the word filesystem refers to
the placement of files and directories within the directory structure on the disk.

Transition from extfs to ext2fs solved many technical problems, but procedural problems remained;
administrators did not always agree on how to use the filesystem. That is, administrators and
distribution maintainers didn't always put the same files in the same locations, leading to confusion.
In August 1993, a programmer named Olaf Kirsh posted a message to one of the most important
Linux discussion groups, discussing the possibility of designing a common standard for filesystem
layout. It turned out that many Linux users had something to say about this topic, and soon a new
mailing list was created specifically to house the discussion. The goal was to form a consensus
about creating a standard filesystem hierarchy that would support the needs of the Linux file and
directory structure.

A few of the problems that the Linux community sought to solve were:

e The need to define which binaries belonged in /bin and which belonged in /usr/bin

e The disorder caused by having both binaries and configuration files in /etc

e The need to separate site—wide configuration files from local configuration files to facilitate
the sharing of these files where appropriate

e The need to move changeable files out of /usr so that partition could be mounted as
read-only

The consensus for solving these and other problems was formalized into a filesystem hierarchy
standard specific to the Linux operating system, called FSSTND. The first official version of the
FSSTND was released in February 1994, and two subsequent revisions were released over the
next year. The FSSTND defined a standard filesystem structure for Linux systems, mapped where
specific types of files and directories belong, and clarified what was intended to be contained in
specific system files. Linux FSSTND 1.2 is the final version of this standard and is quite interesting
reading.

Since BSD supporters needed to solve these same problems, in 1995, the focus turned to Unix-like
systems in general and the Filesystem Hierarchy Standard (FHS) was born.

The FHS may be applied to any filesystem layout that:

e Conforms to a hierarchical structure
¢ Handles file data consistently
e Includes data—protection mechanisms

The FHS begins by defining shareable data and unshareable data. Shareable data can be used by
more than one host without alteration. Unshareable data is exclusive to one host and would require
tailoring for use by another host. For example, it might be beneficial to share a text document
across hosts, but sharing a configuration file that is tailored to the specific hardware on the host
machine would not be beneficial.

164

FHS ensures that shareable files are not interspersed with unshareable files, so that a partition
containing shareable data may be shared with another host without making an unshareable file
available to that host. In the old Unix standard, shareable files and unshareable files existed
together on the same partition. The /usr partition is a good example. It contained unshareable data
until the /var system was created. Now, unshareable /usr files are stored in /var and linked into the
/usr directory tree, leaving /usr perfectly shareable.

FHS further distinguished between static files and dynamic files. Static files are files that require
superuser permission to change. Program files are a perfect example. Dynamic files are those that
may be changed without the superuser's involvement, either by some process that runs
automatically on schedule or manually by a user without root privileges. Examples include user data
and log files.

Directory Layout

The Linux directory layout is largely determined by the FHS requirement to group similar data and
not blur the boundaries between the groups. The top-level directories are intended to contain
specific groups of like data. Furthermore, the subdirectories within each top-level directory contain
data that meets the constraints for the top-level directory as well as some further constraint. As a
result, each top-level directory is defined in terms of what it contains. Although there are still
variations among the different Unix-like systems, the differences are minor; the top-level directories
in a Red Hat system provide a model that can be used to describe any Linux system.

/ (mandatory) The root filesystem is the base of the directory hierarchy. Although the
root user's home directory on most Linux distributions is /root, if /root doesn't exist, /
is used instead. The / filesystem is intended to remain uncluttered, so as a rule, you
should avoid creating new directories or files there. Unfortunately, this rule often
goes unheeded by novice system administrators.

Warning Although / and /root are both pronounced "root," they're very
different directories. The former is the base of the Linux
filesystem, and the latter is the home directory for the superuser.

/bin (mandatory) The /bin directory contains binaries that are required in single—user
mode regardless of their assigned execution privilege. This directory is not intended
to have subdirectories. Commands intended to be run primarily by individual users
should be placed in /usr/bin instead.

/boot (mandatory) The /boot directory contains all the files needed to boot the
system except configuration files and the map installer. This directory stores data
that are used before the kernel begins the system initialization as defined by
/etc/inittab. (See Chapter 3 for a discussion of the system startup process.) The
Linux kernel may be stored in /boot or in /, but kernels stored in /boot should be given
filenames that include the complete version as well, such as /boot/vmlinuz-2.4.7-10,
since more than one kernel image is likely to be stored there.

/dev (mandatory) The /dev directory contains block and character device files as well
as sockets and named pipes. As you'll see later in this chapter, it is the directory
where all of your devices hang out. If a device that you need doesn't exist in /dev, it
may be created with the mknod command or the MAKEDEYV script.

/etc (mandatory) The /etc directory, usually pronounced "et-see," contains

165

configuration files for the host. Over the past few years, directories have been added
under /etc to better organize configuration files. For example, there has long been an
/etc/X11 directory, which contains the X configuration files. Recent additions include
/etc/ppp and /etc/httpd. This directory structure makes finding a file in /etc a little
easier.

/home (optional) The /home directory contains the individual users' home directories.
Some system administrators prefer not to use the /home directory concept but
instead place user directories in a /var/users directory or even a /usr/users directory.
Sometimes the /home directory is actually a symbolic link to /usr/home or some other
directory within the /usr hierarchy; this is probably a bad idea since the /usr directory
is intended to be mountable as read-only and home directories typically contain
dynamic data. Most Linux system administrators simply leave the user's home
directories in /home, and most Linux distributions follow this pattern as well.

/lib (mandatory) The /lib directory contains shared libraries needed at system bootup
or to run top-level commands (located in the /bin directory). Libraries in support of
the commands in /usr are stored in /ust/lib.

/mnt (optional) The /mnt directory contains temporary mount points for storage
devices like hard drives or floppy drives specific to the host. Each mount point is
actually a directory that will contain the device's filesystem once it is mounted. In the
case of a mounted CD-ROM containing an /etc directory and file1 and file2 in its
root, the files would be available as /mnt/cdrom/etc/, /mnt/cdrom/file1, and
/mnt/cdrom/file2. By the standard, this directory must contain mount points for the
CD-ROM and the floppy drive at a minimum, but each Linux distribution determines
which mount points to include and usually includes many more than this. Some
distributions, like SUSE, place mount points for CD—ROM and floppy drives in the /
directory, rather than in /mnt.

/opt (optional) The /opt directory is intended to contain all of the data required to
support software packages added to the original system. The /opt directory is a
feature borrowed from the AT&T SysV Unix filesystem hierarchy and commonly used
in the Solaris world. It is also commonly found in the SuSE distribution, but the Red
Hat distribution and most others avoid the use of /opt.

/proc (optional) The /proc directory contains a virtual filesystem—that is, one that
doesn't correspond to a physical disk device. This filesystem contains process and
kernel information specific to the kernel that is currently running. The information
stored in /proc is very useful when you are trying to track down problems with your
system. /proc contains a listing of interrupts, devices, 1/O ports, and a lot more. It also
contains a directory for each process currently running; the directory name is the
process number. This directory includes such things as the command line that
initiated the process and other environmental information pertaining to the process.
The last section of this chapter provides a detailed look at processes and their role in
the Linux filesystem.

/root (optional) The /root directory contains configuration files for the root user's
account. This directory was created to prevent cluttering up the / directory with the
root user's configuration files. Most distributions are set up so that if there is no /root
directory, the root user's account defaults to /.

166

/sbin (mandatory) The /sbin directory originally contained only static binaries but now
contains binaries that are administrative in nature and are restricted to superuser use
only. These binaries may also be used by the system during the boot process.
Binaries that do not require execution prior to the mounting of the /usr partition are
stored in /usr/sbin or, if host—specific, in /usr/local/sbin.

/tmp (mandatory) The /tmp directory is used whenever a program needs to write a
file that will be removed when the program is terminated. The /tmp directory is
typically flushed at reboot or at some interval defined by the administrator. If /var is
on its own partition, /tmp is often a link to /var/tmp; this frees up space on the root
partition. The Red Hat distribution uses the tmpwatch command to automatically
clean out any file in /tmp or /var/tmp that has not been recently accessed. In Red Hat
7.3, recently is defined as 10 days (240 hours) for /tmp and 30 days (720 hours) for
/var/tmp, but this is easily changed. tmpwatch is run from a script in the
/etc/cron.daily directory. See Chapter 17 for more information on the cron daemon
and scripting. The time period may be adjusted as appropriate for your system. The
actual commands included in the script are:

/usr/sbin/tmpwatch -f 240 /tmp
/usr/sbin/tmpwatch —-f 720 /var/tmp

/usr (mandatory) The /usr directory stores shareable read-only data. Because of
this, /usr, if made a separate partition, can be mounted as read-only. To facilitate
this, /usr should contain only static data, using links to changeable data in the /var
directory to preserve this characteristic.

/var (mandatory) The /var directory contains variable data files like logs, lock files,
and process-specific data files. The existence of a /var directory makes it possible to
mount /usr as read-only since files written during system operations are stored in
/var instead of in /usr. Since /var contains the system log, /var/log/messages, any
problem that sends frequent error messages could fill the /var directory. For this
reason, /var is often created on a separate partition from the rest of / to avoid filling
up the / partition and not being able to log in. It is important to note that not all
directories under /var are shareable; /var/log is an example of one that is not.

Of course, anyone with superuser privileges can create directories in the / directory. This is
generally to be avoided to prevent cluttering up the / directory. For more information on the
underlying directory structure, reference the FSSTND, which may be found at
http://www.pathname.com/fhs/.

File Characteristics

To the average user, a file is a sequence of information bytes, stored together and named as a
collective entity. A file can be an executable program, a document, a database, a shell script, or any
other collection of bytes that has a collective meaning. In fact, virtually everything in Linux is seen
by the system as a file, including the directories and devices.

Filenames in Linux (ext3 or reiser filesystem) can range up to 255 characters and may or may not
be terminated with an extension. Filenames are case—sensitive, like nearly everything else in Linux.
This means that the names File.txt, FILE.ixt, file.txt, and FiLe.txt would all refer to different files. The
case sensitivity of filenames, combined with their variable length, gives you great flexibility. Not only

167

are there more names available to you, but you can use specific capitalization patterns to indicate
certain types of files. For instance, you might start directory names with a capital letter.

NoteIn DOS, filenames are always one to eight characters, followed by a period, followed by a
zero to three—character extension. The VFAT filesystem used by Windows 9x and ME adds
long filenames still with the one to three—character extension, but keeps the short filenames
as well. You can see the short filenames by starting a DOS shell and using the DIR
command. Later versions of Windows display the full filename in the DOS shell as well.

Determining a Linux File's Type

Knowing a file's type tells you a great deal about the file itself. For example, each different graphic
file type has a different internal format; most include a header containing specific information about
that graphic's size and other attributes. If you write a translator to read in a graphic of a given type
and output that same graphic in a different file format, you need to know the file's format so you can
parse the file properly. Since Linux files aren't required to have a file extension, you sometimes
have to determine a file's type using another method. File types may be determined in a number of
ways. Certainly the file extension, if present, does the work for you, but when it doesn't, you can use
commands like Is and file to determine the type.

The file Command

The file command was created to allow a user to determine a file's type and is the best tool for this
purpose. The format for the file command is:

file [options] [-f namefile] [-m magicfiles] file

Whereas the Is command doesn't differentiate between the various "normal" file types (as discussed
in the next section), the file command does. The file command attempts to determine the file type of
the file identified by the file argument. Alternately, the —f option can be used to identify a file that
contains names of files whose type is to be determined. The file command is supported by a file
named magic (/usr/share/magic by default on most distributions) that contains information on all the
file types that the file command knows about. You can specify a different magic file with the —-m
option on the command line. The file command will use this magic file to determine, to the best of its
"knowledge," what type of file you've specified. The file command's output will usually include one of
the following key words: text, executable, or data. Listing 7.1 contains two examples of the data
produced by the file command.

Listing 7.1: The Output of the fle Command Varies with the Type of File It Examines

$ file openssh-2.5.1pl.tar.gz
openssh-2.5.1pl.tar.gz: gzip compressed data, deflated, last modified:
wMon Feb 19 04:54:46 2001, os Unix

$ file test_table.c
test_table.c: C program text

You'll notice that the first file was identified as compressed data created on a Unix system, and
modified Mon Feb 19 04:54:45 2001. If the file is a text file, the file command tries to determine its
computer language as in the second example, where some code written in the C language was
correctly identified.

168

The Is Command
The Is command is one of the most often used Linux commands. Is provides information about a

file, including its type. The name Is means listing because the command lists all of the files in a
directory. The syntax for Is is simple:

ls [options] [file or directory name]
The Is command without arguments produces output like that in Listing 7.2.

Listing 7.2: The Output of the Is Command Entered without Arguments

$ 1s
sshd sshd.old sshdl sshdl.old visudo

If no arguments are specified, you simply get a listing of filenames, which by default does not
include any filenames that begin with a dot. You can use arguments to further define what the listing
will include. The —I option (which stands for "long listing") allows you to examine the permission
string, the owner, the file size, the date it was last modified, and the filename as in Listing 7.3.

Listing 7.3: The Output of the Is —-| Command

$ 1ls -1

1rWXTrwXrwx 1 root root 5 May 3 18:24 sshd -> sshdl
lrTWXrwXrwx 1 root root 5 May 3 18:20 sshd.old -> sshdl
——IrWXIr—X-X 1 root root 649246 May 3 18:24 sshdl
—IrWX———X——X 1 root root 649246 May 3 18:20 sshdl.old
———X———X——X 1 root root 56712 Sep 2 11:00 wvisudo
brw-rw——-—-— 1 root disk 41, 0 Mar 23 2001 bcpcd
Crw——————— 1 root root 68, 0 Mar 23 2001 capi20
STWX—————— 1 root root 0 May 3 17:41 gpmctl
prw——————-— 1 root root 0 May 3 15:34 initctl
drwxr—-xr—-x 3 root root 4096 Sep 20 2001 state

You'll remember that directories, symbolic links, devices, and text files are all files under Linux. The
first character in the permission string located in column 1 of the Is —I output indicates the file type. It
only differentiates between regular files (-), directories (d), links (l), character special files (c), block
special files (b), pipes (p), and sockets (s). These file types are discussed further in the "File Types
Defined" section later in this chapter.

Tip Although the sample output in Listing 7.3 shows each of the file types that we've
mentioned, the character special files and block special files do not typically appear in
the same directory with other files. They are primarily found in the /dev directory and
are included in this example for illustration purposes.

The Is command has several other arguments. These are the most commonly used:
-a Lists the files whose names begin with a period (.) in addition to the normal Is
output. There's nothing special about these files, except that they're normally not

shown in Is output and other directory listings; the leading period is simply Linux's
way of hiding files, similar to the hidden bit on DOS or Windows computers.

169

—-—color[=WHEN] Indicates whether or not to use colors to distinguish file types.
WHEN may be never, always, or auto.

—-d or ——directory Lists the directory names instead of their contents.

-G or ——no-group Does not display group information.

-i or ——inode Prints index number of each file.

-n or ——numeric-uid-gid Lists numeric UIDs and GIDs instead of names.
-R or —-recursive Lists subdirectories recursively.

-s or ——size Prints the size of each file in blocks.

-S Sorts by file size.

—t Sorts by modification time.

File Types Defined

Although the file command generally recognizes text, executable, and data as distinct file types, and
extensions can help identify the application that produced a file, it is helpful to think in terms of the
strict file types used by the Is command. Table 7.1 lists the file types that Is recognizes. The Symbol
column shows the symbol that appears at the beginning of the permission string set for a file of that
type. We'll talk more about permission strings in Chapter 15. The last column contains an example
of the specified type of file.

Table 7.1: File Types Recognized by Is

Type Symbol Example

Normal file none chapteri.doc, myprogram.c
Directory d /usr

Links I /dev/mouse

Named pipe p /dev/initctl

Socket S /dev/printer

Block device file b /dev/fd0

Character device file C /dev/console

Normal Files

Normal files include binaries, text files, shell scripts, image files, and generally any file that does not
fall under one of the other categories. Most of the files on your system fall into this category. The
word normal is applied as a catchall to differentiate these files from the other, more specialized file
types discussed below. In general, it is best to categorize normal files as either binary or text files.

Text files contain minimally formatted or unformatted text, using only characters available in the
ASCII (and sometimes the ANSI) character set. A binary file is a file that may contain byte values
outside of the ASCII and ANSI character sets. Image files, executable files, compressed archive
files, and various other files are some examples. Some applications, such as word processors, may

170

produce a file that contains both text and binary data. These files could be considered either text or
binary, depending upon the details of the format and the exact criteria used in classifying the files. It
is safer and more common to consider such files as binary files, since file corruption could result if
the ASCII mode of FTP were used to transfer these files due to the restricted character set.

Directories

Directories are logical containers for files; they allow you to organize your files into a hierarchy
instead of storing all of them in the root directory. A directory may contain other directories as well
as individual files. A directory can be identified in Is —I output by the d prefixed to its permission
string.

In Linux, directories are created with the mkdir command, browsed with the Is command, and
removed with the rmdir command. We've discussed the Is command earlier in the chapter. The
mkdir command will create a directory if the supporting directory structure already exists and the
specified directory within this structure does not. The mkdir command syntax is very simple:

mkdir [options] [path] directory_name
The mkdir command has only three possible parameters:
-m, -—mode=MODE Sets the permission mode for the new directory (as in chmod).

-p, ——parents Creates parent directories as needed. Prevents generation of an error
if the directory exists.

-v ——verbose Prints a message for each created directory.

The rmdir command removes the specified directory if it is empty. If the directory is not empty, an
error is generated. The syntax for the rmdir command is similar to the mkdir command.

rmdir [options] [path] directory_name
The rmdir command has the following arguments:

——ignore-fail-on-non-empty By default, a directory must be empty before it can
be removed; this option tells Linux to ignore any failure message based solely on the
fact that the directory is not empty. The failure is ignored only to continue execution;
the non-empty directory is not removed.

-p, ——parents Removes any parent directories that become empty after the
specified directory is removed.

-v ——verbose Gives diagnostic data upon each successful removal of the directory.

The benefits of grouping related files into a hierarchical structure should be thoroughly familiar to
every system administrator (in fact, to every user). First, by grouping the data in a rational fashion,
you avoid the need to wade through every file on your system to find the one you want. Thus you
might have an Images directory, a Sound directory, etc.

Another benefit of separating your files into directories is that they are easier to back up. If you
place all variable files in a separate directory structure from the static files, you can then back up
just the files that might have changed since the previous backup, without having to continuously

171

back up all the files that never change. You might want to create a Document directory to contain all
of the documents created using StarOffice or some other word processing software. This makes it
easy for you to back up everything on your system once a week and to back up these document
files daily. We'll talk more about backup strategies in Chapter 9.

Links

A link is a way of allowing several filenames access to the same file. Links come in two varieties:
hard links and symbolic links, often called soft links. Hard links are simply files with different paths
that have separate directory entries, each pointing to the same inode. Referencing Chapter 6's
discussion of inodes, howdy.wav and sound.wav are hard links to the same file, because they share
the same inode.

Since an inode is device—specific, both files in a hard-linked pair must be contained on the same
disk partition. Deleting the link will not remove the original file and vice versa. If a file was linked to
another file and then either file is deleted, re—creating a new file with the same name as the old one
will not reestablish the link between the two files, since the new file will have a different inode. Hard
links cannot be used to link two directories, because the standard commands for removing
directories won't remove the link.

Hard links are created with the In command. The syntax for this command is as follows:

1ln [options] target [link_ name]
1ln [options] targets directory_name

The link command shown below creates a hard link to the /usr/local/netscape/netscape—navigator
file; this link is called netscape and is located in the /usr/local/bin directory.

1n /usr/local/netscape/netscape-navigator /usr/local/bin/netscape

The link is only created if the file and directory permissions allow the user to do so. If the last
argument is a link name, a link with that name will be created. If the last argument is an existing
directory's name, links named for each specified target will be created in that directory. It is
important to note that hard links do not have the | in the permissions string; to tell if a file has more
than one link, look at the link count in the Is —I output.

A symbolic link is basically a pointer to another file. In the case of symbolic links, the linked file is
assigned a completely different inode. To create a symbolic link to illustrate this, we again use the In
command, but we add the —s option. For example:

In -s /home/user/example_file /tmp/example

Now, by using the —i option to the Is command, we can see that the two inode numbers are
different.

$ 1ls -i example_file /tmp/example

176449 /tmp/example 719925 example_file

Most operations performed on a symbolic link are actually performed on its target file. If an editing
command uses a symbolic link as its argument, the edit will actually take place in the file referenced
by the symbolic link. Some commands, like rm (remove), act on the link itself, leaving the target file
intact. The permission string on a symbolic link is not used. It will always be Irwxrwxrwx. The actual
permissions are determined by the referenced file's permission string.

172

In contrast to hard links, a symbolic link can be used to link directories. If you move or delete the
linked-to file, the symbolic link will be left "dangling," pointing at nothing, unlike a hard link in which
the file contents would still exist and be accessible from the link. If you delete a symbolic link,
re—creating a new file of the link's name won't automatically restore the link; you must use the In
command again to re—create the link. If you have a symbolic link pointing to a file and you remove
the file and then re—create it in the same location, the symbolic link will reference the new file. It may
be helpful to think of a symbolic link as a card in a library's card catalog.

Pipes

A named pipe, also called a FIFO (first in, first out), is a special file type that allows independent
processes to communicate with each other. The first process opens a specified file—the pipe—for
writing. That process or another opens the same file for reading. The processes communicate via
that file. All communication between the process and the pipe is unidirectional. Each time the file is
opened, whether for reading or writing, the open function blocks other processes from opening the
same pipe for the same activity. That is, if the pipe is opened for read—only, the open function will
not return, thereby blocking any requests to open that same pipe for read—only; attempts to open
the pipe for writing will cause the open for read—only to terminate. If, on the other hand, the pipe is
opened for writing, all attempts to open the same pipe for writing will be blocked, but the first
attempt to open it for reading will be allowed. The rules for blocking are as follows:

e |f you open the pipe for both reading and writing, then the open function will not perform
blocking.

e |f you open the pipe for reading, the open function will not return until another process opens
the FIFO for writing, unless O_NONBLOCK is specified, in which case the open succeeds.

e |f you open for writing, the open function will not return until another process opens the FIFO
for reading, unless O_NONBLOCK is specified, in which case the open fails.

For example, suppose you want to display a daily fortune as your .signature file. You could use the
name of that file as a pipe from a fortune—generating program. Now every time any program tries to
read from your .signature file, the reading program will pause for your program to supply a fortune
as your .signature.

The specifics for reading and writing using named pipes require programming functions that are
beyond the scope of this book. The creation of a named pipe, however, is very much part of a
system administrator's job. There are two ways to create a named pipe: using the mkfifo command
or using the mknod command if mkfifo isn't available. These two commands each create a named
pipe called test_fifo:

S mkfifo test_ fifo
$ mknod test_fifo p

The Is command may be used to verify that the FIFO was created:

$ 1s -1 test_fifo
Prw—rw—r—-— 1 user user 0 Jan 29 14:50 test_fifo

Sockets

Sockets are virtual connections between two processes. Unlike named pipes, sockets may be
unidirectional or bidirectional. The standard input-output library contains a socket library function,
called socket(), which creates a communication endpoint and returns a file descriptor containing its
local host's network address and the port number to which the second process may attach in order

173

to communicate with the first. If you have ever used an Internet address in the format
http://12.34.56.78:10/, you were connecting to a specific socket.

Devices

Linux recognizes two kinds of devices, differing in the way they exchange data with the CPU. The
first type is the random-access block device, such as SCSI, floppy, or IDE disk drives. A block
device file is a buffered file. Data is added to the buffer until some predetermined event occurs,
typically a full buffer. At this point the buffer is flushed to the device, and the data—collection process
begins again. Your hard drives are prime examples of block devices. If data were saved to a hard
drive character by character, it would be exceedingly slow.

The second type of device is the character device, such as a tape drive, modem, or serial mouse.
Character device files are used for unbuffered reads and writes. This means that the data is sent
out as soon as it is received. The character device /dev/console is a great example. Of course, you
don't want your system buffering the keystrokes before sending them to the console. You want to
see them as they are being typed.

Devices of either type are represented in the filesystem as device files and are stored in the /dev
directory, which also includes sockets and pipes. When you read from or write to a device file, the
data comes from or goes to the device represented by that file.

Processes

The filesystem that we have examined is only one of the internals of Linux. This filesystem by itself
is static. The activity on a Linux system is represented as processes, which open and manipulate
files within the filesystem.

Each program that is run by a computer's CPU is called a process. A command may include many
processes. There are several processes running at any one time on a Linux system. As a system
administrator, you will be directly responsible for ensuring that the necessary system processes are
run and for maintaining the schedule by which they are run. You are further responsible for
managing the system so that the higher priority processes get the CPU's attention first. Last, you
must ensure that the memory space is adequate to house all the processes that must be run. To do
these things, you need to know the fundamental details about what a process is and how it works.

The Concept of Multitasking

The most precious resource in the system is the CPU. There is usually only one CPU, so its usage
must be optimized. Linux is a multiprocessing operating system, which means that one of its goals
is to dish out CPU time among various processes. If there are more processes than CPUs, the rest
of the processes must wait for the CPU to become available. Multiprocessing is conceptually
simple; processes execute until some situation forces them to stop. Typically this is because a
system resource that is needed is unavailable. In a multiprocessing system, several processes are
kept in memory at the same time so that when one process is forced to stop, the CPU can be used
by another process instead of sitting idle. The CPU is shared among multiple processes (tasks);
hence the name multitasking.

174

Types of Processes

There are three basic types of processes: interactive processes, batch processes, and daemon
processes. The kernel manages these processes and assigns each a unique process ID (PID) in
ascending order until the highest defined process number is reached; at this point it starts at the first
unused number again. The only process ever assigned a PID of 1 is the init process, which has a
parent PID of 0 to distinguish it from the other processes. We'll talk more about this important
process in a moment.

Processes are owned in much the same way that files are owned; the user ID of the user who starts
the process is assigned as the real user ID of the process. Likewise, the group ID of the user is
assigned as the real group ID of the process. But it is not the real user ID and group ID that
determine the process's access rights and who can start and stop it. Instead, entities called the
effective UID and GID are used. If the executable has its permission set suid, then the process will
be run as if the owner of that file had executed it and will allow access for anyone in the group it was
assigned. The UID and GID in effect during the execution of the suid executable are referred to as
the effective UID and GID. If the executable has not been set suid, the real UID and GID are also
the effective UID and GID.

Warning It's somewhat common to use a set suid binary to allow ordinary users to
perform tasks that would otherwise require superuser privileges. The mount
command, for example, has its suid bit set and is owned by root, so ordinary
users can mount partitions under certain circumstances. This practice is
potentially dangerous, however, because a bug in an suid root program can
give local users superuser access to the system. Programs that are routinely
installed in this way are therefore subjected to extraordinary security scrutiny.
You should not use this feature willy—nilly, because it can easily produce a
security breach.

Interactive Processes

Some processes are run interactively by users in a terminal session. If you log into a Linux system
and run a mail reader, the mail reader process is an interactive process. While you are interacting
with the mail reader, it is running in the foreground, actively attached to the terminal process. A
process running in the foreground has full control of the terminal until that process is terminated or
interrupted. A background process is suspended, returning terminal control to the parent of the
suspended process. The background process may be able to continue its work in the
background—if the continuation does not require interaction with the terminal. Interactive process
control, or job control as it is commonly called, allows a process to be moved between the
foreground and the background, restarted in the background if applicable, or restarted in the
foreground.

Let's assume that you are running a backup process in the foreground using the tar command, tar
zcf /dev/st0 /. You have observed the output and determined that the backup is properly running.
You might want to do something else on that terminal, necessitating that you move the tar process
to the background. Type Ctrl+Z. You will see a message on your terminal to indicate that the
process has been stopped:

[11+ Stopped tar zcf /dev/st0 /

The process will be stopped, waiting in the background. But what if you aren't sure that the process
is actually running? Use the jobs utility to list the background processes.

175

$ jobs
[11+ Stopped tar zcf /dev/st0 /

As you see, the stopped process is just out there waiting for you. To allow the backup process to
continue in the background, type bg at the command line. Running the jobs program again will
yield:

[11+ Running tar zcf /dev/st0 /

At this point, you may let it run on in the background until it terminates when the backup has
completed, or you may use the fg command to bring the process to the foreground again.

If you want to start a process in the background, simply append an ampersand to the command.
The tar command would then look like this:

$ tar zcf /dev/st0 / &
You will then be given a process ID, which looks like this:
[2] 4036

You can then bring the process to the foreground using the fg command as we did before or let it
run its course in the background.

Technically, interactive processes in X work the same as they do in text mode; however, most GUI
environments include default methods of launching programs that are effectively the same as
appending an ampersand on a command line. Running an X program in the background doesn't
make the X program inaccessible, though; it still opens a window and displays its output. Your
experience is therefore one in which programs appear to run side-by-side, and you use mouse
clicks, or perhaps merely mouse movements, to bring one process or another to the foreground. All
the visible programs are active and running, even if they are not doing much when you're not
interacting with them directly. If you launch an X program from an xterm or other terminal window,
however, the xterm will become unresponsive unless you include the ampersand in the command. If
you use Ctrl+Z to regain control of the xterm, the X program you launched from the xterm becomes
unresponsive unless you then type bg to allow both processes to run. It's easy to become confused
and think that an X program has crashed, when in fact it's just been stopped after having been
launched from an xterm.

Batch Processes

Batch processes are submitted from a queue and have no association with a terminal at all. Batch
processes are great for performing recurring processes at some time when the system usage is low.
To accomplish this on a Linux system, use the batch and at commands. The at command is really
pretty simple to use. Let's assume that you want to run the tar command that we just used in the
interactive process example at 2:00 in the morning tomorrow. You would use the at command as
shown below:

at 2:00
at> tar -zcf /dev/st0 /

After entering this command, you must press Ctrl+D. The system responds with a warning that the

command will be run using /bin/sh, since some shell scripts are written only for a specific shell, and
then gives a recap of what shell will be used to run the process:

176

warning: commands will be executed using (in order) a) S$SHELL b) login
wmshell c) /bin/sh

To schedule something to happen on a specific date, use at like this:

at 23:55 12/31/02
at> tar -zcf /dev/st0 /

Again, use Ctrl+D to terminate input to at. Now check your work with the atq command, which lists
all processes that you've scheduled with the at command. The output resembles the following:

1 2002-09-01 02:00 a
2 2002-12-31 23:55 a

Now let's assume that you decide it's too risky to run your backup with only 5 minutes left in the year
and decide to cancel that job. Use atrm like this:

atrm 2

Now check your work with the atq command:

atq
1 2002-09-01 02:00 a

If you want to restrict the usage of the at command, you can do so using the /etc/at.deny and
/etc/at.allow files. On most distributions, the default installation creates an empty /etc/at.deny and no
/etc/at.allow. This means that any user can use the at facility. If you wish to deny at privileges to the
user steve, simply add him to the /etc/at.deny file. If you wish to only allow root to use at, create an
/etc/at.allow file with only the word root in it. If the /etc/at.allow file exists, only the users listed
therein will be allowed to use at. If there is n