18

Global objects and constants

L ocal knowledge is not always enough; components of a software system may need
access global information. It is easy to think of examples: a shared value, such as the si
of available memory; an error window, to which all the components of an interactive
system must be able to output messages; the gateway to a database or network.

In classical approaches, it is not difficult to provide for global objects; you just
declare them as global variables, owned by the main program. In the modular style c
design made possible by object-oriented techniques, there is neither a main program n
global variables. But even if our software texts do not include global variables our
software executions may still need to share objects.

Such global objects pose a challenge to the method. Object technology is all abo
decentralization, all about modularity, all about autonomy. It has developed from the
beginning of this presentation as a war of independence for the modules, each fighting f
its freedom from the excesses of central authority. In fact, there is no central authority ar
more. How then do we satisfy the need for common institutions? In other words, how d
we allow components to share data in a simple way, without jeopardizing their autonomy
flexibility and reusability?

It will not work, of course, to pass shared objects as arguments to the modules th
need them. This would soon become clumsy if too many components need them. Beside
argument passing assumes that one module owns the value and then passes it on to oth
in the case of a truly shared value no one module can claim ownership.

To find a better answer we will start from a well-known notion, which we need in
object-oriented software construction just as much as we did in more traditiona
approaches: constants. What is, after all, a constant stthfa®t a simple object shared
by many modules? Generalizing this notion to more complex objects will provide a first
step towards fully general constant and shared objects.

18.1 CONSTANTS OF BASIC TYPES

Let us start with a simple notation to denote constant values.

644 GLOBAL OBJECTS AND CONSTANTSE18.1

Using symbolic constants

A rule of software style, tt Symbolic Constant principle, states that when an algorithreyanitest and sym-

refers to a certain value — a number, a character, a....— it should almost never usolic constants”,

it directly. Instead, a declaration should associate a name with the value, so thPage 88.See also
. . Modular continu-

algorithm can use the name (known eymbolic constant) rather than the value (knovjy» nage 4z

as amanifes constant). Two reasons justify this principle:

« Readability: someone who reads your software may not understand what the value 50
is doing in a certain algorithm; if instead you use the symbolic corUS_states
coun everything is clear.

« Extendibility: in practice, with a few exceptions (such as the valmn, unlikely to
change soon), the only constant thing about constants is change. To update the value
of a constant it suffices, if you have been using symbolic constants, to change one
declaration. This is much nicer than having to chase throughout the software for all
the places that may have relied on the earlier value.

The principle permits using manifest constants (hence the word “almost” above) for
zero elements of various operations, as in a from i := L until i >n ... iterating over
the elements of an array whose numbering follows the default convention of starting at 1.
(But n should be symbolic, not manifest.)

Although few software developers apply the Symbolic Constant principle as
systematically as they should, the benefits of declaring a symbolic constant are well worth
the small extra effort. So we need a clear and simple way of defining symbolic constants
in an O-O framework.

Constant attributes

A symbolic constant, like everything else, will be defined in a class.We will simply treat
a constant value as an attribute which happens to have a fixed value, the same for all
instances of the class.

For the syntax, we can reuse the keywis which already serves to introduce
routines; only here it will be followed by a value of the appropriate type, rather than by an
algorithm. The following examples include one for each of the basic INTEGEF,
BOOLEAN REALandCHARACTELE

Zerc: INTEGERIis 0

Ok: BOOLEANIs True

Pi: REALIs 3.1415926524

Backslas: CHARACTEFis '\'

Backslastis of typeCHARACTEL, its value a single character. Constants of string type,

denoting character strings of arbitrary length, will be discussed below.

As these examples illustrate, the recommended style convention for names of
constant attributes is to start with a capital letter, with the rest in lower case.

A descendant may not redefine the value of a constant attribute.

§18.2 USE OF CONSTANTS 645

Like other attributes, constant attributes are either exported or secret; if they ¢
exported, clients of the class may access them through feature call<C is the class
containing the above declarations &, declared of typC, has a non-void value, then
x. Backslastdenotes the backslash character.

Unlike variable attributes, constant attributes do not occupy any spacetimeun
instances of the class. So there is no run-time penalty for adding as many cons
attributes as you need.

18.2 USE OF CONSTANTS

Here is an example showing how clients may use constant attributes defined in a clas
class FILE feature
error_code INTEGEF, -- Variable attribute
Ok: INTEGERIis 0
Open_erro: INTEGERIs 1

open(file_name STRINQ) is
-- Open file of namdile_name
-- and associate it with current file object

do
error_code:= Ok
if “Something went wronc then
error_code:= Open_error
end
end

... Other feature...
end

A client may calloper and compare the resulting error code to any of the constant
to test how the operation went:

f: FILE; ...

f.open

if f.error_code= f. Open_errorthen
“Appropriate action”

else

end

Often, however, a group of constants is needed without being attached to &
particular object. For example, a system performing physics computations may use sc
numerical constants; or a text editor may need character constants describing the char:

646 GLOBAL OBJECTS AND CONSTANTSE18.3

keys associated with various commands. In such a case, the constants will still be grouped
in a class (where else could they be?), but there will not be any instances of that class; it
is simply used as parent for the classes that need to access the constants, as in
class EDITOR_CONSTANTfeature
Insert: CHARACTEFis'i'
Delete CHARACTEFis'd’; -- etc.

end

class SOME_CLASS FOR_THE_EDIT(nherit

EDITOR_CONSTANTS

... Other possible paren...
feature ...

... Routines of the class have access to the constants

declared irEDITOR_CONSTANT...
end
A class such aEDITOR_CONSTANT is used only to host a group of relatesgeFaciLITY
constants, and its role as an “abstract data type implementation” (our working defiINHERITANCE",

of the notion of class) is less obvious than in earlier examples. But it definitely ser24-9. page 847
useful purpose. We will examine its theoretical justification in a later chapter.

The scheme shown would not work without multiple inheritance, sSSOME_
CLASS FOR_THE_EDITCmay need other parents, either for access to other constants
or for more standard uses of inheritance.

18.3 CONSTANTS OF CLASS TYPES

Symbolic constants, allowing you to use identifiers to denote certain constant values, are
not just useful for predefined types suctINTEGEF; the need also arises for types that
developers have defined, through classes. Here the solution is less obvious.

Manifest constants are inappropriate for class types

A typical example in which you may need to define a constant for a non-basic types is that
of a class describing complex numbers:
class COMPLEXcreation
make_cartesie) make_polar
feature
X, y: REAL
-- Real and imaginary parts

§18.3 CONSTANTS OF CLASS TYPES 647

make_cartesia(a, b: REAL) is
-- Initialize with real para, imaginary parb.
do
X=ay:=hb
end
... Other routinesx andy are the only attribute:...
end

You may want to define the complex numli, with real part 0 and imaginary part
1. The first idea that comes to mind is a manifest constant notation such as

i: COMPLEXis “Expression specifying the complex number (0, 1)”

How can you write the expression afis? For simple types, the manifest constants
were self-evident34% is a constant of type integé A" of type character. But no such
predefined notation is available for developer-defined class types.

One could imagine a notation based on the attributes of the class; something like

Not a retained nota- i: COMPLEXis COMPLEX(O0, 1)
tion. For purposes of
illustration only. But such an approach (although present in some O-O languages) is incompati

with the principles of modularity which serve as the basis for object technology. It wou
mean requiring clients COMPLEXto describe constants in terms of the implementation.
This breaks information hiding. You could not add an attribute, even a secret one, with:
invalidating client code; neither could you re-implement an attribute suxx as a
function (to switch internally to a polar representation).

Besides, how could you make sure that such manifest constants will satisfy the cl
invariant if there is one?

This last remark opens the way to a correct solution. An earlier chapter noted tha
is the responsibility of thcreation procedures to make sure that every object satisfies
the invariant immediately upon creation. Creating objects in any other way (apart from t
safe companion mechanisclone) would lead to error situations. So we should look for
a mechanism that, rather than manifest objects in the above style, will rely on the us
technique for object creation.

Once functions

We may view a constant object as a function. For exai could be defined within class
COMPLEXitself as
i: COMPLEXis
-- Complex number with real part 0 and imaginary part 1
do
Il Resultmake_cartesial(0, 1)
end

648 GLOBAL OBJECTS AND CONSTANTSE18.4

This almost does the job, since the function will always return a reference to an
object of the desired form. Since we rely on normal creation procedures, the invariant will
be satisfied, so we will only produce consistent objects.

The result, however, is not exactly what we need: each client ti in the client
produces a new object, identical to all the others. This is a waste of time and space:

To get the proper behavior, we need a special kind of function: one which executes
its body only the first time it is called. We can call thonce functior. A once function
is otherwise similar to a normal function; syntactically, it will be distinguished by the
keywordonce, replacing the usuido, to introduce the body:

i: COMPLEXis
-- Complex number with real part 0 and imaginary part 1
once--g (The only chang}

Il Resultmake_cartesial(0, 1)
end

The first time a once function is called during a system’s execution, it executes its
body. In the example this creates an object representing the desired complex number, and
returns a reference to that object. Every subsequent call executes no instruction at all, but
terminates immediately, returning the result computed the first time around.

Regarding efficiency: a call ti other than the first should take only marginally
longer than an attribute access.

The result computed by the first call to a once function is applicable to all instances
of a class, in the general sense of the word “instance” covering instances of descendants
as well, except of course for any descendant that redefines the function. As a consequence
you can freely redefine functions from once to non-once and conversely. Here if a
descendaniCOMPLEX1 of COMPLEX redefinesi, a call toi on an instance of
COMPLEX: will use the redefined version (whether once or non-once); a call on a direct
instance oCOMPLEX> or a descendant other thCOMPLE X will use the once function,
that is to say the value computed by the first such call.

18.4 APPLICATIONS OF ONCE ROUTINES

The notion of once routine extends beyond examples sLi to more general applications:
shared objects, global system parameters, initialization of common properties.

Shared objects

For reference types such COMPLE>, as you may have noted, the “once” mechanism
actually offers constarreference, not necessarily constaobjects. It guarantees that the
body of the function is executed only once, to compute a result, which later calls will also
return without further computation.

If the function returns a value of a reference type, its body will usually contain a
creation instruction, as in the examplei. All calls will return a reference to the object

§18.4 APPLICATIONS OF ONCE ROUTINES 649

created by the first. Although the creation will never be executed again, nothing preve
callers from modifying the object through the reference. Therefore the mechanis
providesshared objects rather than constant ones.

An example of a shared object, cited at the beginning of this chapter, is a windc
showing error messages in an interactive system. Assume we have decided that
component of the system that detects a user error may output a message to that win
through a call of the form

Message windowput_text("Appropriate error messade
Heremessage windois of typeWINDOW with classWINDOWdeclared as

classWINDOWcreation
make
feature
make(...) is
-- Create window at size and position indicated by arguments.
do ... end

text STRING
-- Text to be displayed in window
put_text(s: STRING is
-- Makesthe text to be displayed in window.
do
text:=s
end
... Other features..
end -- classWINDOW

Obviously Message windownust be the same for all components of the system
This is achieved by declaring the corresponding feature as a once function:

Message_ windowVNINDOWis
-- Window where error messages will be output
once

Il Resultmake("...Size and position arguments’)
end

In this case the message window object must be shared by all its users, but it is n
constant object: each call poit_textchanges the object by putting its own chosen text in
it. The best place to declarkessage windovs a class from which all system components
needing access to the message window will inherit.

In the case of a shared object that denotes a constant, sugbasay want to disallow
calls of the form. some_procedurthat might change the fields. To achieve this, simply
include clauses x = 0 andi.y = 1in the class invariant.

650 GLOBAL OBJECTS AND CONSTANTSE18.4

Once functions returning results of basic types

Another application of once functions is to represent global values — “system
parameters” — used by several classes in a system. Such values will usually be constant
over a given system execution; they are initially computed from user input, or from some
information obtained from the environment. For example:

e The components of a low-level system may need to know the available memory
space, obtained from the environment at initialization time.

« A terminal handler may start by querying the environment about the number of
terminal ports: once obtained, these data elements are then used by several modules
of the application.

Such global values are similar to shared objects suiMessage_windo; but in
general they are values of basic types rather than class instances. You may represent them
through once functions. The scheme is:

Const_valu: Tis
-- A system parameter computed only once

local
envir_paran: T' -- Any type (T or another)

once
“Get the value oenvir_param from the environment”
Result:= “Some value computed froenvir_paran”
end

Such once functions of basic types describe dynamically computed constants.

Assume the above declaration isin a cENVIF. A class needing to uConst_value see‘Modular
will get it simply by listing ENVIF among its parents. There is no need here fordecomposability”,
initialization routine as might be used in classical approaches to coiConst valu; Page 40
along with all other global parameters, at the beginning of system execution. As was seer
in an earlier chapter, such a routine would have to access the internal details of many other
modules, and hence would violate the criteria and principles of modularity:
decomposability, few intedfces, information hiding etc. In contrast, classes such as
ENVIRmay be designed as coherent modules, each describing a set of logically related
global values. The first component that requests the value of a global parameter such as
Cons_value at execution time will trigger its computation from the environment.

AlthoughConst_valu is a function, components that use it may treat it as if it were
a constant attribute.

The introduction to this chapter mentioned that none of the modules that use a shared
value has more claim to own it than any of the others. This is especially true in the cases
just seen: if, depending on the order of events in each execution of the system, any one
among a set of modules may trigger the computation of the value, it would be improper to
designate any single one among them as the owner. The modular structure reflects this.

§18.4 APPLICATIONS OF ONCE ROUTINES 651

Once procedures

The functionclose should only be called on. We recommend using a
global variable in your application to check thcloseis not called more
than oncu

(From the manual for a commercial C library.)
The “once” mechanism is interesting not just for functions but for procedures as well.

A once procedure is appropriate when some facility used on a system-wide ba
must be initialized, but it is not known in advance which system component will be tt
first to use the facility. It is like having a rule that whoever comes in first in the mornin
should turn on the heating.

A simple example is a graphics library providing a number of display routines
where the first display routine called in any system execution must set up the terminal.
library author could of course require every client to perform a setup call before the fi
display call. This is a nuisance for clients and does not really solve the problem anyw
to deal properly with errors, any routine should be able to detect that it has been cal
without proper setup; but if it is smart enough to detect this case, the routine might just
well do the setup and avoid bothering the client!

Once procedures provide a better solution:

check_setujis
-- Perform terminal setup if not done yet.
once
terminal_setu -- Actual setup action
end

Then every display routine in the library should begin with a cicheck setu. The
first call will do the setup; subsequent ones will do nothing. Notecheck setuidoes
not have to be exported; client authors do not need to know about it.

This is an important technique to improve the usability of any library or othe
software package. Any time you can remove a usage rule — such as “Always ¢
procedurexyzbefore the first operation” — and instead take care of the needed operatic
automatically and silently, you have made the software better.

Arguments

Like other routines, once routines — procedures and functions — can have argume
But because of the definition of the mechanism, these arguments are only useful in the
that gets executed first.

In the earlier analogy, imagine a thermostat dial which anyone coming into tt
building may turn to any marking, but such that only the first person to do so will set tl
temperature: subsequent attempts have no effect.

652 GLOBAL OBJECTS AND CONSTANTSE18.4

Once functions, anchoring and genericity

(This section addresses a specific technical point and may be skipped on first reading.)
Once functions of class types carry a potential incompatibility with anchored types
and genericity.
Let us start with genericity. In a generic clEXAMPLE[G] assume a once function
returning a value whose type is the formal generic parameter:

f: Gisonce... end Warning: not valic.

. . See below
and consider a possible use:

character_examp: EXAMPLE[CHARACTEI]

print (character_examplsf)
So far so good. But you also try to do something with another generic derivation:

integer_examp: EXAMPLE[INTEGEF]

print (integer_exampls + 1)

The last instruction adds two integer values. Unfortunately, the first of them, the
result of callingf, has already been computed sirf is a once function; and it is a
character, not an integer. The addition is not valid.

The problem is that we are sharing a value between different generic derivations
which expect the type of that value to depend on the actual generic parameter.

A similar issue arises with anchored types. Assume a B which adds an attribute
to the features of its pareA:

class B inherit Afeature
attribute_of E INTEGER
end

Assume thaA had a once functiof, returning a result of anchored type:

f: like Currentis once!! Result makeend Warning: not valic.
and that the first evaluation f is in See below

a2:=al.f

with al andaZ of typeA. The evaluation cf creates a direct instanceA, and attaches it
to entitya2, also of typeA. Fine. But assume now that a subsequent uf isof

b2:=bl.f

wherebl andb?2 are of typeB. If f were a non-once function, this would not cause any
problem, since the call would now produce and return a direct instaiB. Since here

we have a once function, the result has already been computed through the first call; and
that result is a direct instance A, notB. So an instruction such as

print (b2. attribute _of E)

§18.5 CONSTANTS OF STRING TYPE 653

will try to access a non-existent field in an object of tApe

The problem is that anchoring causes an implicit redefinition.f been explicitly
redefined, through a declaration appearinB under the form

f: Bisonce!! Result makeend

assuming that the original in claA similarly returned a result of typA (rather than
like Curreni), then we would not have any trouble: direct instanctA use theA version,
direct instances (B use theB version. Anchoring, of course, was introduced precisely to
rid us of such explicit redefinitions serving type needs only.

These two cases are evidence of incompatibilities between the semantics of ol
functions (procedures are fine) and the results of either anchored or formal generic tyy

One way out, suggested by the last observation on imvs. explicit redefinition,
would be to treat such cases as we would explicit redefinitions: to specify that the res
of a once function will be shared only within each generic derivation of a generic clas
and, if the result is anchored, only within the direct instances of the class. Tl
disadvantage of this solution, however, is that it goes against the expected semantic
once functions, which from a client’s viewpoint should be the conceptual equivalent of
shared attribute. To avoid confusion and possible errors it seems preferable to take an
draconian attitude by banning si cases altogether:

Once Function rule

The result type of a once function may not be anchored, and may not involve
any formal generic parameter.

18.5 CONSTANTS OF STRING TYPE

The beginning of this chapter introduced character constants, whose value is a sir
character. The example was

Backslas: CHARACTEFis'\'

Often, classes will also need symbolic constants representing multi-charac
strings.The notation for manifest string constants will use double quotes:

[S1]
Messag: STRINGIs "Syntax errg"

RecallthaSTRINCis a class of the library, not a simple type. So the value associate
at run time with an entity such Messag is an object (an instance STRINC). As you
may have guessed, the above declaration is a shorthand for the declaration of a ¢
function, here of the form:

654 GLOBAL OBJECTS AND CONSTANTSE18.6

Messag: STRINGis
-- String of length 12, with successive characters
-S,y,n, ta,x,,erro,r
once
I Resultmake(12)
Resultput('S, 1)
Resultput(y', 2)

I.R.’.esult put('r', 12)
end

The creation procedure for strings takes as argument the initial expected length of the
string; put (c, i) replaces thi-th character witlc.

Such string values are therefore not constants but references to shared objects. Any
class that has accessMessag may change the value of one or more of its characters.

You can also use string constants as expressions, for argument passing or
assignment:

Message_windovdisplay ("CLICK LEFT BUTTON TO CONFIRM EX")"
greeting:="Hello!"

18.6 UNIQUE VALUES

It is sometimes necessary to define an entity that has several possible values denoting
possible cases. For example a read operation may produce a status code whose possible
values are codes meaning “successful”, “error on opening” and “error on reading”.

A simple solution is to use a variable integer attribute
code: INTEGER

with a set of associated integer constants, such as

[U1]
Successfi: INTEGERIs 1

Open_erro: INTEGERIs 2
Read_erro: INTEGERIs 3

so that you can write conditional instructions of the form

(V2]
if code= Successfithen ...

or multi-branch instructions of the form See*Multi-branch”,
[U3] page 44')
inspect
code

when Successfuthen

Whenl
end

§18.6 UNIQUE VALUES 655

It is tedious, however, to have to come up with the individual constant values. Tl
following notation has the same practical effect as [U1]:

[U4]

Successfi, Open_erro, Read_erro: INTEGERIs unique

A unique value specification, coming in lieu of a manifest integer value in the
declaration of a constant integer attribute, indicates that the value is chosen by
compiler rather than the developer. So the conditional instruction [U2] and the mul
branch [U3] are still applicable.

All unique values within a class are guaranteed to be positive and different; if the
are declared together, as the three in [U4], they are also guaranteed to be consecutiv
if you want to express thcode will only receive one of their values, you can include the
invariant clause

code>= Successf; code<= Read_error

With this invariant, a descendant — which, as we know, may change the invariz
only by strengthening it — may constrain the possible valucode further, for example
to just two possibilities; it may not extend the set of possibilities.

You should only use Unique values to represent a fixed set of possible values.
soon as this set is open to variation, or the instructions in a structure such as [U3] are r
trivial, it is preferable to devise a set of classes which variously redefine some featur
and then to rely on dynamic binding, satisfying the Open-Closed principle. Mor
generally, do not use unique values for classification since the object-oriented method
better techniques. The preceding example is typical of good uses of the mechanism; ot
would be traffic light statesgreer, yellow, rec: INTEGERIs unique) or, as seen earlier,
notes on the scaledo, re, mi, ...: INTEGERIs unique). But a declaratiorsaving:,
checkin, money mark: INTEGERIs unique is probably a misuse if the various kinds
of account have different features or different implementations of a common feature; h
inheritance and redefinition will most likely provide a better solution.

These observations can be summed up as a methodological rule:

Discrimination principle

Use unique values to describe a fixed number of possible cases. For
classification of data abstractions with varying features, use inheritance.

0]

Although similar in some respects to the “enumerated types” of Pascal and Ac
unique declarations do not introduce new types, only integer values. The discuss
section will explore the difference further.

656 GLOBAL OBJECTS AND CONSTANTSg18.7

18.7 DISCUSSION

In this discussion, the term “global object” refers both to global constants of basic types and
to shared complex objects; their “initialization” includes object creation in the latter case.

Initializing globals and shared object: language approaches

The principal problem addressed by this chapter is an instance of a general software issue:
how to deal with global constant and shared objects, and particularly their initialization in
libraries of software components.

Since the initialization of a global object should be done just once, the more general
issue is how to enable a library component to determine whether it is the first to request a
certain service.

This boils down to an apparently simple question: how to share a boolean variable
and initialize it consistently. We can associate with a global olp, or any group of
global objects that need to be initialized at the same time, a boolean indicaiready,y
which has value true if and only if initialization has been performed. Then we may include
before any access p the instruction

if not readythen
“Create or computp”
ready:= True

end

The initialization problem still applies tready, itself a global object that must
somehow be initialized to false before the first attempt to access it.

This problem has not changed much since the dawn of programming languages, and
the early solutions are still with us. A common technique in block-structured languages
such as Algol or Pascal is to use ready a global variable, declared at the highest
syntactical level. The main program will do the initialization. But this does not work for a
library of autonomous modules which, by definition, is not connected to any main program.

In Fortran, a language designed to allow routines to be compiled separately (and hence
to enjoy a certain degree of autonomy), the solution is to include all global objects, and in
particularready indicators, in a shared data area called a common block, identified by its
name; every subroutine accessing a common block must include a directive of the form

COMMON/common_block_nar/ data_item_names
There are two problems with this approach:

« Two sets of routines may use a common block of the same name, triggering a conflict
if an application needs them both. Changing one of the names to remove the conflict
may cause trouble since common blocks, by nature, are shared by many routines.

« How do we initialize the entities of a common block, such asready indicators?
Because there is no default initialization rule, any data in a common block must be
initialized in a special module called a “block data” unit. Fortran 77 allows named
block data units, so that developers can combine global data from various contexts
— provided they do not forget to include all the relevant block data units. A serious
risk of accidental inconsistency exists.

§18.7 DISCUSSION 657

On theARRA' case
see"Efficiency con-
siderations”, page
297

The C solution is conceptually the same as in Fortran 77ready indicator should
be declared in C as an “external” variable, common to more than one “file” (the
compilation unit). Only one file may contain the declaration of the variable with its initia
value (false in our case); others will useextern declaration, corresponding to Fortran’s
COMMON directive, to state that they need the variable. The usual practice is to group st
definitions in special “header” files, with names conventionally ending wh; they
correspond to the block data units of Fortran. The same problems arise, partially allevia
by “Make” utilities which help programmers keep track of dependencies.

A solution would appear to be at hand with modular languages such as Ada
Modula 2 where routines may be gathered in a higher-level module, a “package” in A
terms: if all the routines using a group of related global objects are in the same packe
the associateready indicators may be declared as boolean variables in that packag
which will also contain the initialization. But this approach (also applicable in Fortran 7
and C using techniques described in che18) does not solve the problem of initialization
in autonomous library components. The more delicate question discussed in this chapt
what to do for global objects that must be shared between routirdifferent and
independent modules. Ada and Modula provide no simple answer in this case.

In contrast, the “once” mechanism preserves the independence of classes, but all
context-dependent initializations.

Manifest string constants

The notation allows string constants (or more properly, as we have seen, shared obje
to be declared in manifest form, using double quc'l...". A consequence of this policy

is that the language definition, and any compiler, must rely on the presence of cl:
STRINCin the library. This is a compromise between two extreme solutions:

« STRINC could have been a predefined basic type, as is the case in many languay
This, however, would have meant adding all string operations (concatenatio
substring extraction, comparison etc.) as language constructs, making the langu
considerably more complex, even though only few applications require all the:
operations; some do not even need strings at all. Among the advantage of usin
class is the ability to equip its operations with precise specifications throug
assertions, and to allow other classes to inherit from it.

e TreatingSTRINC as just any other class would preclude manifest constants of tt
"..." form [S1], requiring developers always to enter the characters individually &
in form [S2]. It might also prevent the compiler from applying optimizations for
time-sensitive operations such as charaateess.

SO0STRINC like its companiorARRA", leads a double life: predefined type when
you need manifest constants and optimization, class when you need flexibility a
generality. All this, of course, is part of the general effort to have a single, univers:
consistent type system entirely based on the notion of class.

Unique values and enumerated types

Pascal and derivatives allow declaring a variable as
code ERROR

658 GLOBAL OBJECTS AND CONSTANTSg18.7

whereERROF is declared as an “enumerated type”:
type ERROF= (Normal, Open_erro, Read_erroy

Being declared of typERROF, variablecode may only take the values of this type:
the three symbolic codes given.

We have seen how to obtain the equivalent effect in the O-O notation: define the
symbolic codes eunique integer constants, aicode as an integer attribute, possibly with
an invariant clause stating that its value must lie bettNorma andRead_erro. The
result at execution time is almost identical, since Pascal compilers typically implement
values of an enumerated type by integers. (A good compiler may take advantage of the
small number of possible values to represent entities sucode by short integers.)

Theunique technique involves no new type. It seems indeed hard to reconcile the
notion of enumerated type with object technology. All our types are based on classes, that
is to say abstractly characterized by the applicable operations and their properties. No such
characterization exists for enumerated types, which are mere sets of values. Enumerated
types actually raise problems even in non-O-O languages:

* The status of the symbolic names is not clear. Can two enumerated types share one

or more symbolic names (Orange both in typeFRUIT and in typeCOLOF)? Are
they exportable and subject to the same visibility rules as variables?

« It is difficult to pass values of an enumeration type to and from routines written in
other languages, such as C or Fortran, which do not support this notion. Since
unique values are plain integers they cause no such problem.

« Enumerated values may require special operators. For example you will expect a
next operator yielding the next value, but it will not be defined for the last
enumeration element. You will also need an operator to associate an integer with
every enumerated value (its index in the enumeration). To go the other way around
requires more operators since we must know the bounds of the enumeration to
restrict applicable integer values. The resulting syntactic and semantic complexity
seems out of proportion with the mechanism’s contribution to the language.

Uses of enumeration types in Pascal and Ada tend to be of the form
type FIGURE_SOR™= (Circle, Rectangl, Squari; ...)
to be used in connection with variant record types of the form
FIGURE=
record
perimete: INTEGEF,
... Other attributes common to figures of all ty}...s
castfs. FIGURE_SORof

Circle: (radius: REAL; cente: POINT);
Rectangl: ... Attributes specific to rectangl ...;

end
end

themselves used cas¢ discrimination instructions:

§18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 659

procedure rotate (f: FIGURE)
begin cas¢ f of
Circle: ... Appropriate actions to rotate a cirt...;
Rectangl: ...;

which we have learned to handle in a better way to preserve extendibility: by defining
different version of procedures suchrotate for each new variant, represented by a class.

When this most important application of enumerated types disappears, all tt
remains is the need, in some cases, to select integer codes having a fixed numbe
possible values. Defining them as integers avoids many of the semantic ambiguit
associated with enumerated types; for example there is nothing mysterious about
expressiorCircle + 1 if Circle is officially an integer. The only unpleasantness of integers
would be to have to assign the values yourunique values solve that problem.

18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

* A challenging problem in any approach to software construction is how to allow fc
global data: objects that must be shared by various modular components, &
initialized at run time by whatever component happens to need them first.

* A constant can bmanifes (expressed as a self-describing representation of it
value) orsymbolic (expressed by a name).

* You can declare manifest constants of basic types as constant attributes, occup
no space in objects.

» Except for strings, developer-defined types have no manifest constants, which wo
damage information hiding and extendibility.

< A once routine, which differs from a normal function by one keywonce instead
of do, is evaluated only once during a system’s execution: the first time an
component of the system calls it. For a function, subsequent calls return the sa
value as the first; for a procedure, subsequent calls have no effect.

e Shared objects may be implemented as once functions. You can use the invariar
specify that they are constant.

« Use once procedures for operations to be performed only once over the executiol
a system, such as initializations of global parameters.

* The type of a once function may not be anchored or generic.

e Constants of string types are treated internally as once functions, although they Ic
like manifest constants written in double quotes.

« Enumerated types a la Pascal do not go well with the object-oriented method, bu
represent codes with several possible values there is a need for “unique” attribut
symbolic constants of tyfINTEGEF, whose value is chosen by the compiler rather
than by the software writer.

660 GLOBAL OBJECTS AND CONSTANTSE18.9

18.9 BIBLIOGRAPHICAL NOTES

[Welsh 1977 anc [Moffat 1981 study he difficulties raised by enumerated types.

Some of the techniques of this chapter were introduc[M 1988b].

EXERCISES

E18.1 Emulating enumerated types with once functions

Show that in the absence of Unique types a Pascal enumerated type of the form
type ERROF= (Normal, Open_erro, Read_erroy
could be represented by a class with a once function for each value of the type.

E18.2 Emulating unique values with once functions
Show that in a language that does not support the noticunique declaration it is
possible to obtain the effect of
value: INTEGERIs unique
by a declaration of the form
value: INTEGERIs once... end

where you are requested to fill in the body of the once function and anything else that may
be needed.

E18.3 Once functions in geeric classes

Give an example of a once function whose result involves a generic parameter andseeonce functions,
corrected, would yield a run-time error. anchoring and
genericity”, page 652

E18.4 Once attribute:?

Examine the usefulness of a notion of “once attribute”, patterned after once routines. A
once attribute would be common to all instances of the class. Issues to be considered
include: how does a once attribute get initialized? Is the facility redundant with once
functions without arguments and, if not, can you explain clearly under what conditions
each facility is appropriate? Can you think of a good syntax for declaring once attributes?

	18 18 Global objects and constants
	18.1 CONSTANTS OF BASIC TYPES
	Using symbolic constants
	Constant attributes

	18.2 USE OF CONSTANTS
	18.3 CONSTANTS OF CLASS TYPES
	Manifest constants are inappropriate for class typ...
	Once functions

	18.4 APPLICATIONS OF ONCE ROUTINES
	Shared objects
	Once functions returning results of basic types
	Once procedures
	Arguments
	Once functions, anchoring and genericity
	Once Function rule

	18.5 CONSTANTS OF STRING TYPE
	18.6 UNIQUE VALUES
	Discrimination principle

	18.7 DISCUSSION
	Initializing globals and shared objects: language ...
	Manifest string constants
	Unique values and enumerated types

	18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	18.9 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E18.1 Emulating enumerated types with once functio...
	E18.2 Emulating unique values with once functions
	E18.3 Once functions in generic classes
	E18.4 Once attributes?

