1

Software gquality

Engineering seeks quality; software engineering is the production of quality software
This book introduces a set of techniques which hold the potential for remarkable
improvements in the quality of software products.

Before studying these techniques, we must clarify their goals. Software quality is
best described as a combination of several factors. This chapter analyzes some of the
factors, shows where improvements are most sorely needed, and points to the directio
where we shall be looking for solutions in the rest of our journey.

1.1 EXTERNAL AND INTERNAL FACTORS

We all want our software systems to be fast, reliable, easy to use, readable, modulz
structured and so on. But these adjectives describe two different sorts of qualities.

On one side, we are considering such qualities as speed or ease of use, whc
presence or absence in a software product may be detected by its users. These propel
may be calleé@xternal quality factors.

Under “users” we should include not only the people who actually interact with the final
products, like an airline agent using a flight reservation system, but also those who
purchase the software or contract out its development, like an airline executive in charge
of acquiring or commissioning flight reservation systems. So a property such as the ease
with which the software may be adapted to changes of specifications — defined later in
this discussion asxtendibility —falls into the category of external factors even though

it may not be of immediate interest to such “end users” as the reservations agent.

Other qualities applicable to a software product, such as being modular, or readabl
areinternal factors, perceptible only to computer professionals who have access to thi
actual software text.

In the end, only external factors matter. If | use a Web browser or live near &
computer-controlled nuclear plant, little do | care whether the source program is readabl
or modular if graphics take ages to load, or if a wrong input blows up the plant. But the
key to achieving these external factors is in the internal ones: for the users to enjoy tt
visible qualities, the designers and implementers must have applied internal technique
that will ensure the hidden qualities.

4 SOFTWARE QUALITY 81.2

The following chapters present of a set of modern techniques for obtaining internal
quality. We should not, however, lose track of the global picture; the internal techniques
are not an end in themselves, but a means to reach external software qualities. So we must
start by looking at external factors. The rest of this chapter examines them.

1.2 A REVIEW OF EXTERNAL FACTORS

Here are the most important external quality factors, whose pursuit is the central task of
object-oriented software construction.

Correctness

Definition: correctness

Correctness is the ability of software products to perform their exact tasks,
as defined by their specification.

Correctness is the prime quality. If a system does not do what it is supposed to do,
everything else about it — whether it is fast, has a nice user int...l— matters little.

But this is easier said than done. Even the first step to correctness is already difficult:
we must be able to specify the system requirements in a precise form, by itself quite a
challenging task.

Methods for ensuring correctness will usuallyconditional. A serious software
system, even a small one by today’s standards, touches on so many areas that it would be
impossible to guarantee its correctness by dealing with all components and properties on
a single level. Instead, a layered approach is necessary, each layer relying on lower ones:

Layers in
software

Compilel
C development

Operating System

In the conditional approach to correctness, we only worry about guaranteeing that
each layer is correwon the assumptiothat the lower levels are correct. This is the only
realistic technique, as it achieves separation of concerns and lets us concentrate at each
stage on a limited set of problems. You cannot usefully check that a program in a high-
level language X is correct unless you are able to assume that the compiler on hand
implements X correctly. This does not necessarily mean that you trust the compiler blindly,
simply that you separate the two components of the problem: compiler correctness, and
correctness of your program relative to the language’s semantics.

In the method described in this book, even more layers intervene: software
development will rely on libraries of reusable components, which may be used in many
different applications.

8§1.2 A REVIEW OF EXTERNAL FACTORS 5

Layersin a
development
process that
includes reuse

Robustness
Versus
correctness

[

Application library
" ... More libraries.... |

Base library
Kernel library

Compiler
Operating System

The conditional approach will also apply here: we should ensure that the libraries
correct and, separately, that the application is correct assuming the libraries are.

Many practitioners, when presented with the issue of software correctness, thi
about testing and debugging. We can be more ambitious: in later chapters we will expl
a number of techniques, in particular typing and assertions, meant to help build softw
that is correct from the start — rather than debugging it into correctness. Debugging @
testing remain indispensable, of course, as a means of double-checking the result.

It is possible to go further and take a completely formal approach to softwa
construction. This book falls short of such a goal, as suggested by the somewhat ti
terms “check”, “guarantee” and “ensure” used above in preference to the word “prove
Yet many of the techniques described in later chapters come directly from the work
mathematical techniques for formal program specification and verification, and go a lo
way towards ensuring the correctnideal.

Robustness

Definition: robustness

Robustness is the ability of software systems to react appropriately to
abnormal conditions.

Robustness complements correctness. Correctness addresses the behavior of a syst
cases covered by its specification; robustness characterizes what happens outsid
that specification.

SPECIFICATION
Correctness

Robustness

6 SOFTWARE QUALITY 81.2

As reflected by the wording of its definition, robustness is by nature a more fuzzy
notion than correctness. Since we are concerned here with cases not covered by the
specification, it is not possible to say, as with correctness, that the system should “perform
its tasks” in such a case; were these tasks known, the abnormal case would become part
of the specification and we would be back in the province of correctness.

This definition of “abnormal case” will be useful again when we study exception On exception
handling. Itimplies that the notions of normal and abnormal case are always relative to ahandling see
certain specification; an abnormal case is simply a case that is not covered by thechapterl2.
specification. If you widen the specification, cases that used to be abnormal become

normal — even if they correspond to events such as erroneous user input that you woulc

prefer not to happen. “Normal” in this sense does not mean “desirable”, but simply

“planned for in the design of the software”. Although it may seem paradoxical at first that

erroneous input should be called a normal case, any other approach would have to rely on

subjective criteria, and so would be useless.

There will always be cases that the specification does not explicitly address. The role
of the robustness requirement is to make sure that if such cases do arise, the system does
not cause catastrophic events; it should produce appropriate error messages, terminate its
execution cleanly, or enter a so-called “graceful degradation” mode.

Extendibility

Definition: extendibility

Extendibility is the ease of adapting software products to changes of
specification.

Software is supposed to Isofi, and indeed is in principle; nothing can be easier than to
change a program if you have access to its source code. Just use your favorite text editor.

The problem of extendibility is one of scale. For small programs change is usually
not a difficult issue; but as software grows bigger, it becomes harder and harder to adapt.
A large software system often looks to its maintainers as a giant house of cards in which
pulling out any one element might cause the whole edifice to collapse.

We need extendibility &cause at the basis of all software lies some human
phenomenon and hence fickleness. The obvious case of business software (“Management
Information Systems”), where passage of a law or a company’s acquisition may suddenly
invalidate the assumptions on which a system rested, is not special; even in scientific
computation, where we may expect the laws of physics to stay in place from one month to
the next, our way of understanding and modeling physical systems will change.

Traditional approaches to software engineering did not take enough account of
change, relying instead on an ideal view of the software lifecycle where an initial analysis
stage freezes the requirements, the rest of the process being devoted to designing and
building a solution. This is understandable: the first task in the progress of the discipline
was to develop sound techniques for stating and solving fixed problems, before we could
worry about what to do if the problem changes while someone is busy solving it. But now

8§1.2 A REVIEW OF EXTERNAL FACTORS 7

Chapter4.

with the basic software engineering techniques in place it has become essentia
recognize and address this central issue. Change is pervasive in software developn
change of requirements, of our understanding of the requirements, of algorithms, of d
representation, of implementation techniques. Support for change is a basic goal of ob
technology and a running theme through this book.

Although many of the techniques that improve extendibility may be introduced o
small examples or in introductory courses, their relevance only becomes clear for lar
projects. Two principles are essential for improving extendibility:

» Design simplicit: a simple architecture will always be easier to adapt to change
than a complex one.

e Decentralizatior. the more autonomous the modules, the higher the likelihood the
a simple change will affect just one module, or a small number of modules, ratt
than triggering off a chain reaction of changes over the whole system.

The object-oriented method is, before anything else, a system architecture mett
which helps designers produce systems whose structure remains both simple (ever
large systems) and decentralized. Simplicity and decentralizatibmewecurring themes
in the discussions leading to object-oriented principles in the following chapters.

Reusability

Definition: reusability

Reusability is the ability of software elements to serve for the construction
of many different applications.

The need for reusability comes from the observation that software systems often foll
similar patterns; it should be possible to exploit this commonality and avoid reinventir
solutions to problems that have been encountered before. By capturing such a patter
reusable software element will be applicable to many different developments.

Reusability has an influence on all other aspects of software quality, for solving tl
reusability problem essentially means that less software must be written, and hence
more effort may be devoted (for the same total cost) to improving the other factors, st
as correctness and robustness.

Here again is an issue that the traditional view of the software lifecycle had n
properly recognized, and for the same historical reason: you must find ways to solve ¢
problem before you worry about applying the solution to other problems. But with tt
growth of software and its attempts to become a true industry the need for reusability |
become a pressing concern.

Reusability will play a central role in the discussions of the following chapters, on
of which is in fact devoted entirely to an in-depth examination of this quality factor, it
concrete benefits, and the issues it raises.

8 SOFTWARE QUALITY 81.2

Compatibility

Definition: compatibility

Compatibility is the ease of combining software elements with others.

Compatibility is important because we do not develop software elements in a vacuum:

they need to interact with each other. But they too often have trouble interacting because
they make conflicting assumptions about the rest of the world. An example is the wide

variety of incompatible file formats supported by many operating systems. A program can

directly use another’s result as input only if the file formats are compatible.

Lack of compatibility can yield disaster. Here is an extreme case:

DALLAS — Last we, AMR, the parent company of American Airli,, Inc., said it fell San Jos(Calif.)
on its sword trying to develop a state-of-the, industry-wide system that could also Mercury New, July
handle car and hotel reservatic.ns 20,1992, Quoted in

AMR cut off development of its new Confirm reservation system only weeks after it Wasthe comp risks
Usenet newsgrot, 3

supposed to start taking care of transactions for partners Budget Rent, Hilton 13.67, July 199:
Hotels Cor}. and Marriott Cory. Suspension of the $125 mill, 4-year-old project Sli.ght,ly abridg(;i

translated into a $165 million pre-tax charge against AMR’s earnings and fractured the
company'’s reputation as a pacesetter in travel technc [...]

As far back as Janug, the leaders of Confirm discovered that the labors of more than
200 programmel, systems analysts and engineers had apparently been for . Theht
main pieces of the massive project — requirin,000 pages to describe — had been
developed separate, by different metho. When put togeth, they did not work with
each othe. When the developers attempted to plug the parts tog, they could nct
Different “modules” could not pull the information needed from the other side of the
bridge.

AMR Information Services fired eight senior project men, including the team leader.
[...] In late Jun, Budget and Hilton said they were dropping.out

The key to compatibility lies in homogeneity of design, and in agreeing on
standardized conventions for inter-program communication. Approaches include:

» Standardized file formats, as in the Unix system, where every text file is simply a
sequence of characters.

» Standardized data structures, as in Lisp systems, where all data, and programs as
well, are represented by binary trees (called lists in Lisp).

» Standardized user interfaces, as on various versions of Windows, OS/2 and MacOS,
where all tools rely on a single paradigm for communication with the user, based on
standard components such as windows, icons, menus etc.

More general solutions are obtained by defining standardized access protocolsOn abstract data
important entities manipulated by the software. This is the idea behind abstract datatypes see chapt®.

and the object-oriented approach, as well as so-cmiddlewareprotocols such as
CORBA and Microsoft's OLE-COM (ActiveX).

8§1.2 A REVIEW OF EXTERNAL FACTORS 9

Efficiency

Definition: efficiency

Efficiency is the ability of a software system to place as few demangds as
possible on hardware resources, such as processor time, space occupied in
internal and external memories, bandwidth used in communication devjces.

Almost synonymous with efficiency is the word “performance”. The software communit
shows two typical attitudes towards efficiency:

* Some developers have an obsession with performance issues, leading them to de
a lot of efforts to presumed optimizations.

e But a general tendency also exists to downplay efficiency concerns, as evidencec
such industry lore as “make it right before you make it fast” and “next year’
computer model is going to be 50% faster anyway”.

Itis not uncommon to see the same person displaying these two attitudes at differ
times, as in a software case of split personality (Dr. Abstract and Mr. Microsecond).

Where is the truth? Clearly, developers have often shown an exaggerated concerr
micro-optimization. As already noted, efficiency does not matter much if the software
not correct (suggesting a new dicturdo not worry how fast it is unless it is also ri",1t
close to the previous one but not quite the same). More generally, the concern
efficiency must be balanced with other goals such as extendibility and reusability; extre
optimizations may make the software so specialized as to be unfit for change and ret
Furthermore, the ever growing power of computer hardware does allow us to have am
relaxed attitude about gaining the last byte or microsecond.

All this, however, does not diminish the importance of efficiency. No one likes t
wait for the responses of an interactive system, or to have to purchase more memory to
a program. So offhand attitudes to performance include much posturing; if the final syst
is so slow or bulky as to impede usage, those who used to declare that “speed is not
important” will not be the last to complain.

This issue reflects what | believe to be a major characteristic of software engineeri
not likely to move away soon: software construction is difficult precisely because
requires taking into account many different requirements, some of which, such
correctness, are abstract and conceptual, whereas others, such as efficiency, are cor
and bound to the properties of computer hardware.

For some scientists, software development is a branch of mathematics; for so
engineers, it is a branch of applied technology. In reality, it is both. The software develoj
must reconcile the abstract concepts with their concrete implementations, the matheme
of correct computation with the time and space constraints deriving from physical la
and from limitations of current hardware technology. This need to please the angels
well as the beasts may be the central challenge of software engineering.

10 SOFTWARE QUALITY 81.2

The constant improvement in computer power, impressive as it is, is not an excuse
for overlooking efficiency, for at least three reasons:

* Someone who purchases a bigger and faster computer wants to see some actual
benefit from the extra power — to handle new problems, process previous problems
faster, or process bigger versions of the previous problems in the same amount of
time. Using the new computer to process the previous problems in the same amount
of time will not do!

« One of the most visible effects of advances in computer power is actuincrease
the lead of good algorithms over bad ones. Assume that a new machine is twice as
fastas the previous one. In be the size of the problem to solve, iN the maximum
n that can be handled by a certain algorithm in a given time. Then if the algorithm is
in O (n), that is to say, runs in a time proportionan, the new machine will enable
you to handle problem sizes of ab2 [N for largeN. For an algorithm in Or¢) the
new machine will only yield a 41% increaseN. An algorithm in O 2"), similar to
certain combinatorial, exhaustive-search algorithms, would just add (N — not
much of an improvement for your money.

* In some cases efficiency may affect correctness. A specification may state that the
computer response to a certain event must occur no later than a specified time; for
example, an in-flight computer must be prepared to detect and process a message
from the throttle sensor fast enough to take corrective action. This connection
between efficiency and correctness is not restricted to applications commonly
thought of as “real time”; few people are interested in a weather forecasting model
that takes twenty-four hours to predict the next day’s weather.

Another example, although perhaps less critical, has been of frequent annoyance to me:
a window management system that | used for a while was sometimes too slow to detect
that the mouse cursor had moved from a window to another, so that characters typed at
the keyboard, meant for a certain window, would occasionally end up in another.

In this case a performance limitation causes a violation of the specification, that is to say
of correctness, which even in seemingly innocuous everyday applications can cause nasty
consequences: think of what can happen if the two windows are used to send electronic
mail messages to two different correspondents. For less than this marriages have been
broken, even wars started.

Because this book is focused on the concepts of object-oriented software engineering,
not on implementation issues, only a few sections deal explicitly with the associated
performance costs. But the concern for efficiency will be there throughout. Whenever the
discussion presents an object-oriented solution to some problem, it will make sure that the
solution is not just elegant but also efficient; whenever it introduces some new O-O
mechanism, be it garbage collection (and other approaches to memory management for
object-oriented computation), dynamic binding, genericity or repeated inheritance, it will do
so based on the knowledge that the mechanism may be implemented at a reasonable cost in
time and in space; and whenever appropriate it will mention the performance consequences
of the techniques studied.

8§1.2 A REVIEW OF EXTERNAL FACTORS 11

Efficiency is only one of the factors of quality; we should not (like some in the
profession) let it rule our engineering lives. But it is a factor, and must be taken in
consideration, whether in the construction of a software system or in the design o
programming language. If you dismiss performance, performance will dismiss you.

Portability

Definition: portability

Portability is the ease of transferring software products to various hargdware
and software environments.

Portability addresses variations not just of the physical hardware but more generally of
hardware-software machine, the one that we really program, which includes the
operating system, the window system if applicable, and other fundamental tools. In 1
rest of this book the word “platform” will be used to denote a type of hardware-softwa
machine; an example of platform is “Intel X86 with Windows NT” (known as “Wintel”).

Many of the existing platform incompatibilities are unjustified, and to a naive
observer the only explanation sometimes seems to be a conspiracy to victimize huma
in general and programmers in particular. Whatever its causes, however, this diver:
makes portability a major concern for both developers and users of software.

Ease of use

Definition: ease of use

Ease of use is the ease with which people of various backgrounds and
gualifications can learn to use software products and apply them to|solve
problems. It also covers the ease of installation, operation and monitoring.

The definition insists on the various levels of expertise of potential users. This requirem
poses one of the major challenges to software designers preoccupied with ease of use:
to provide detailed guidance and explanations to novice users, without bothering exy
users who just want to get right down to business.

As with many of the other qualities discussed in this chapter, one of the keys to e:
of use is structural simplicity. A well-designed system, built according to a clear, we
thought-out structure, will tend to be easier to learn and use than a messy one.
condition is not sufficient, of course (what is simple and clear to the designer may
difficult and obscure to users, especially if explained in designer’s rather than use
terms), but it helps considerably.

This is one of the areas where the object-oriented method is particularly productiy
many O-O techniques, which appear at first to address design and implementation,
yield powerful new interface ideas that help the end users. Later chapters will introdu
several examples.

12 SOFTWARE QUALITY 81.2

Software designers preoccupied with ease of use will also be well-adviseSee Wilfred .|
consider with some mistrust the precept most frequently quoted in the user inteHanser, “User
literature, from an early article by Hans&know the use. The argument is that a gooxElgg'?grel':]’t‘grzcrm‘Z'
designer must make an effort to understand the system’s intended user com munitygystems' Proceed-
view ignores one of the features of successful systems: they always outgrow their ings of FICC 3;!
audience. (Two old and famous examples are Fortran, conceived as a tool to SOIAFIPS Pres,;
problem of the small community of engineers and scientists programming the 1BM Montvale(N.),
and Unix, meant for internal use at Bell Laboratories.) A system designed for a splgn’ PP 523-53.

group will rely on assumptions that simply do not hold for a larger audience.

Good user interface designers follow a more prudent policy. They make as limited
assumptions about their users as they can. When you design an interactive system, you
may expect that users are members of the human race and that they can read, move a
mouse, click a button, and type (slowly); not much more. If the software addresses a
specialized application area, you may perhaps assume that your users are familiar with its
basic concepts. But even that is risky. To reverse-paraphrase Hansen’s advice:

User Interface Design principle

Do not pretend you know the user; you don't.

Functionality

Definition: functionality
Functionality is the extent of possibilities provided by a system.

One of the most difficult problems facing a project leader is to know how much
functionality is enough. The pressure for more facilities, known in industry parlance as
featurism(often “creeping featurisi’), is constantly there. Its consequences are bad for
internal projects, where the pressure comes from users within the same company, and
worse for commercial products, as the most prominent part of a journalist’'s comparative
review is often the table listing side by side the features offered by competing products.

Featurism is actually the combination of two problems, one more difficult than the
other. The easier problem is the loss of consistency that may result from the addition of
new features, affecting its ease of use. Users are indeed known to complain that all the
“bells and whistles” of a product’s new version make it horrendously complex. Such
comments should be taken with a grain of salt, however, since the new features do not
come out of nowhere: most of the time they have been requested by uother users.

What to me looks like a superfluous trinket may be an indispensable facility to you.

The solution here is to work again and again on the consistency of the overall
product, trying to make everything fit into a general mold. A good software product is
based on a small number of powerful ideas; even if it has many specialized features, they
should all be explainable as consequences of these basic concepts. The “grand plan” must
be visible, and everything should have its place in it.

8§1.2 A REVIEW OF EXTERNAL FACTORS 13

Osmond’s
curves; afte
[Osmond 1995]

The more difficult problem is to avoid being so focused on features as to forget t
other qualities. Projects commonly make such a mistake, a situation vividly pictured |
Roger Osmond in the form of two possible pathsproject’s completion:

Other qualities

Desirable

\Debugging

N
Envisaged
early
releases

Functionality

The bottom curve (black) is all too common: in the hectic race to add more featur:
the development loses track of the overall quality. The final phase, intended to get thir
right at last, can be long and stressful. If, under users’ or competitors’ pressure, you
forced to release the product early — at stages marked by black squares in the figure
the outcome may be damaging to your reputation.

What Osmond suggests (the color curve) is, aided by the quality-enhancii
techniques of O-O development, to maintain the quality level constant throughout t
project for all aspects but functionality. You just do not compromise on reliability
extendibility and the like: you refuse to proceed with new features until you are happy wi
the features you have.

This method is tougher to enforce on a day-to-day basis because of the press
mentioned, but yields a more effective software process and often a better product in
end. Even if the final result is the same, as assumed in the figure, it should be reac
sooner (although the figure does not show time). Following the suggested path also me
that the decision to release an early version — at one of the points marked by colo
squares in the figure — becomes, if not easier, at least simpler: it will be based on y
assessment of whether what you have so far covers a large enough share of the full fe:
set to attract prospective customers rather than drive them away. The question “is it g
enough?” (as in “will it not crash?”) should not be a factor.

As any reader who has led a software project will know, it is easier to approve su
advice than to apply it. But every project should strive to follow the approach represent
by the better one of the two Osmond curves. It goes well witcluster modeintroduced
in a later chapter as the general scheme for disciplined object-oriented development.

14 SOFTWARE QUALITY 81.2

Timeliness

Definition: timeliness

Timeliness is the ability of a software system to be released when or before
its users want it.

Timeliness is one of the great frustrations of our industry. A great software product that
appears too late might miss its target altogether. This is true in other industries too, but few
evolve as quickly as software.

Timeliness is still, for large projects, an uncommon phenomenon. When Micr¢NT 4.0 Beats
announced that the latest release of its principal operating system, several yearsClock’, Computer-
making, would be delivered one month early, the event was newsworthy enough to\é\(’)ogj 3’&; 31%'920'
(at the top of an article recalling the lengthy delays that affected earlier projects) the '
page headline cComputerWorl.

Other qualities

Other qualities beside the ones discussed so far affect users of software systems and the
people who purchase these systems or commission their development. In particular:

* Verifiability is the ease of preparing acceptance procedures, especially test data, and
procedures for detecting failures and tracing them to errors during the validation and
operation phases.

* Integrity is the ability of software systems to protect their various components
(programs, data) against unauthorized access and modification.

* Repairability is the ability to facilitate the repair of defects.

» Economy, the companion of timeliness, is the ability of a system to be completed on
or below its assigned budget.

About documentation

In a list of software quality factors, one might expect to find the presence of good
documentation as one of the requirements. But this is not a separate quality factor; instead,
the need for documentation is a consequence of the other quality factors seen above. We
may distinguish between three kinds of documentation:

* The need foexternaldocumentation, which enables users to understand the power
of a system and use it conveniently, is a consequence of the definition of ease of use.

e The need forinternal documentation, which enables software developers to
understand the structure and implementation of a system, is a consequence of the
extendibility requirement.

* The need formodule interfacedocumentation, enabling software developers to
understand the functions provided by a module without having to understand its
implementation, is a consequence of the reusability requirement. It also follows from
extendibility, as module interface documentation makes it possible to determine
whether a certain change need affect a certain module.

8§1.2 A REVIEW OF EXTERNAL FACTORS 15

Rather than treating documentation as a product separate from the software pro
it is preferable to make the software as self-documenting as possible. This applies tc
three kinds of documentation:

* By including on-line “help” facilities and adhering to clear and consistent use
interface conventions, you alleviate the task of the authors of user manuals and of
forms of external documentation.

« A good implementation language will remove much of the need for interne
documentation if it favors clarity and structure. This will be one of the majol
requirements on the object-oriented notation developed throughout this book.

e The notation will support information hiding and other techniques (such a
assertions) for separating the interface of modules from their implementation. It
then possible to use tools to produce module interface documentation automatice
from module texts. This too is one of the topics studied in detail in later chapters.

All these techniques lessen the role of traditional documentation, although of cour
we cannot expect them to remove it completely.

Tradeoffs

In this review of external software quality factors, we have encountered requirements t
may conflict with one another.

How can one geintegrity without introducing protections of various kinds, which
will inevitably hamperease of us? Economyoften seems to fight witlfunctionality.
Optimalefficiency would require perfect adaptation to a particular hardware and softwal
environment, which is the oppositeportability, and perfect adaptation to a specification,
wherereusability pushes towards solving problems more general than the one initial
given. Timelinesspressures might tempt us to use “Rapid Application Development
techniques whose results may not enjoy mextendibility.

Although it is in many cases possible to find a solution that reconciles apparen
conflicting factors, you will sometimes need to make tradeoffs. Too often, develope
make these tradeoffs implicitly, without taking the time to examine the issues involve
and the various choices available; efficiency tends to be the dominating factor in st
silent decisions. A true software engineering approach implies an effort to state the crite
clearly and make the choices consciously.

Necessary as tradeoffs between quality factors may be, one factor stands out fi
the rest: correctness. There is never any justification for compromising correctness for
sake of other concerns such as efficiency. If the software does not perform its function,
rest is useless.

Key concerns

All the qualities discussed above are important. But in the current state of the softw:
industry, four stand out:

16 SOFTWARE QUALITY 81.2

« Correctnes androbustnes: it is still too difficult to produce software without defects
(bugs), and too hard to correct the defects once they are there. Techniques for
improving correctness and robustness are of the same general flavors: more systematic
approaches to software construction; more formal specifications; built-in checks
throughout the software construction process (not just after-the-fact testing and
debugging); better language mechanisms such as static typing, assertions, automatic
memory management and disciplined exception handling, enabling developers to state
correctness and robustness requirements, and enabling tools to detect inconsistencies
before they lead to defects. Because of this closeness of correctness and robustness
issues, it is convenient to use a more general freliability , to cover both factors.

» Extendibility and reusability: software should be easier to change; the software
elements we produce should be more generally applicable, and there should exist a
larger inventory of general-purpose components that we can reuse when developing
a new system. Here again, similar ideas are useful for improving both qualities: any
idea that helps produce more decentralized architectures, in which the components
are self-contained and only communicate through restricted and clearly defined
channels, will help. The termodularity will cover reusability and extendibility.

As studied in detail in subsequent chapters, the object-oriented method can
significantly improve these four quality factors — which is why it is so attractive. It also
has significant contributions to make on other aspects, in particular:

* Compatibility: the method promotes a common design style and standardized
module and system interfaces, which help produce systems that will work together.

» Portability: with its emphasis on abstraction and information hiding, object
technology encourages designers to distinguish between specification and
implementation properties, facilitating porting efforts. The techniques of
polymorphism and dynamic binding will even make it possible to write systems that
automatically adapt to various components of the hardware-software machine, for
example different window systems or different database management systems.

* Ease of us: the contribution of O-O tools to modern interactive systems and
especially their user interfaces is well known, to the point that it sometimes obscures
other aspects (ad copy writers are not the only people who call “object-oriented” any
system that uses icons, windows and mouse-driven input).

« Efficiency: as noted above, although the extra power or object-oriented technigues at
first appears to carry a price, relying on professional-quality reusable components
can often yield considerable performance improvements.

* Timelines, econom andfunctionality;: O-O techniques enable those who master
them to produce software faster and at less cost; they facilitate addition of functions,
and may even of themselves suggest new functions to add.

In spite of all these advances, we should keep in mind that the object-oriented method
is not a panacea, and that many of the habitual issues of software engineering remain.
Helping to address a problem is not the same as solvirproblem.

§1.3 ABOUT SOFTWARE MAINTENANCE 17

Breakdown of
maintenance
cost:. Source:
[Lientz 1980]

1.3 ABOUT SOFTWARE MAINTENANCE

The list of factors did not include a frequently quoted quality: maintainability. Tc
understand why, we must take a closer look at the underlying notion, maintenance.

Maintenance is what happens after a software product has been deliver
Discussions of software methodology tend to focus on the development phase; so
introductory programming courses. But it is widely estimated that 70% of the cost |
software is devoted to maintenance. No study of software quality can be satisfactory i
neglects this aspect.

What does “maintenance” mean for software? A minute’s reflection shows this ter
to be a misnomer: a software product does not wear out from repeated usage, and thus
not be “maintained” the way a car or a TV set does. In fact, the word is used by softw;
people to describe some noble and some not so noble activities. The noble par
modification: as the specifications of computer systems change, reflecting changes in
external world, so must the systems themselves. The less noble part is late debugc
removing errors that should never have been there in the first place.

— - ~

_—

The above chart, drawn from a milestone study by Lientz and Swanson, sheds sc
light on what the catch-all term of maintenance really covers. The study surveyed 4
installations developing software of all kinds; although it is a bit old, more recer
publications confirm the same general results. It shows the percentage of maintena
costs going into each of a number of maintenance activities identified by the authors.

More than two-fifths of the cost is devoted to user-requested extensions a
modifications. This is what was called above the noble part of maintenance, which is a
the inevitable part. The unanswered question is how much of the overall effort the indus
could spare if it built its software from the start with more concern for extendibility. We ma
legitimately expect object technology to help.

18 SOFTWARE QUALITY 81.3

The second item in decreasing order of percentage cost is particularly intereFor another
effect of changes in data formats. When the physical structure of files and other dataexampl, see*How
change, programs must be adapted. For example, when the US Postal Service, a fe!0nd is amiddie .
ago, introduced the “5+4” postal code for large companies (using nine digits instegf‘ﬂ? - page 12+
five), numerous programs that dealt with addresses and “knew” that a postal code was
exactly five digits long had to be rewritten, an effort which press accounts estimated in the

hundreds of millions of dollars.

Many readers will have received the beautiful brochures for a set of conferences — not a
single event, but a sequence of sessions in many cities — devoted to the “millennium
problem” how to go about upgrading the myriads of date-sensitive programs whose

authors never for a moment thought that a date could exist beyond the twentieth century.
The zip code adaptation effort pales in comparison. Jorge Luis Borges would have liked
the idea: since presumably few people care about what will happen on 1 January 3000,
this must be the tiniest topic to which a conference series, or for that matter a conference,
has been or will ever be devoted in the history of humaa single decimal dig.it

The issue is not that some part of the program knows the physical structure of data:
this is inevitable since the data must eventually be accessed for internal handling. But with
traditional design techniques this knowledge is spread out over too many parts of the
system, causing unjustifiably large program changes if some of the physical structure
changes — as it inevitably will. In other words, if postal codes go from five to nine digits,
or dates require one more digit, it is reasonable to expect that a program manipulating the
codes or the dates will need to be adapted; what is not acceptable is to have the knowledge
of the exact length of the data plastered all across the program, so that changing thatlength
will cause program changes of a magnitude out of proportion with the conceptual size of
the specification change.

The theory of abstract data types will provide the key to this problem, by allovChapter6 covers
programs to access data by external properties rather than physical im plementatiorébztff\c_‘t data types
In aetal.
Another significant item in the distribution of activities is the low percentage (5.5%)
of documentation costs. Remember that these are costs of tasks done at maintenance time.
The observation here — at least the speculation, in the absence of more specific data — is
that a project will either take care of its documentation as part of development or not do it
at all. We will learn to use a design style in which much of the documentation is actually
embedded in the software, with special tools available to extract it.

The next items in Lientz and Swanson’s list are also interesting, if less directly
relevant to the topics of this book. Emergency bug fixes (done in haste when a user reports
that the program is not producing the expected results or behaves in some catastrophic
way) cost more than routine, scheduled corrections. This is not only because they must be
performed under heavy pressure, but also because they disrupt the orderly process of
delivering new releases, and may introduce new errors. The last two activities account for
small percentages:

§1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 19

* One is efficiency improvements; this seems to suggest that once a system wol
project managers and programmers are often reluctant to disrupt it in the hope
performance improvements, and prefer to leave good enough alone. (Wh
considering the “first make it right, then make it fast” precept, many projects al
probably happy enough to stop at the first of these steps.)

» Also accounting for a small percentage is “transfer to new environments”. A possik
interpretation (again a conjecture in the absence of more detailed data) is that th
are two kinds of program with respect to portability, with little in-between: somge
programs are designed with portability in mind, and cost relatively little to port
others are so closely tied to their original platform, and would be so difficult to por
that developers do not even try.

1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

* The purpose of software engineering is to find ways of building quality software.

* Rather than a single factor, quality in software is best viewed as a tradeoff betwe
a set of different goals.

« External factors, perceptible to users and clients, should be distinguished frc
internal factors, perceptible to designers and implementors.

* What matters is the external factors, but they can only be achieved through 1
internal factors.

» A list of basic external quality factors was presented. Those for which currel
software is most badly in need of better methods, and which the object-orient
method directly addresses, are the safety-related factors correctness and robustt
together known as reliability, and the factors requiring more decentralized softwa
architectures: reusability and extendibility, together known as modularity.

« Software maintenance, which consumes a large portion of software costs,
penalized by the difficulty of implementing changes in software products, and by t
over-dependence of programs on the physical structure of the data they manipule

1.5 BIBLIOGRAPHICAL NOTES

Several authors have proposed definitions of software quality. Among the first articles
subject, two in particular remain valuable tod[Hoare 1972, a guest editorial, and
[Boehm 197§, the result of one of the first systematic studies, by a group at TRW.

The distinction between external and internal factors was introduced in a 19
General Electric study commissioned by the US Air F(McCall 1977. McCall uses
the terms “factors” and “criteria” for what this chapter has called external factors ar
internal factors. Many (although not all) of the factors introduced in this chapte
correspond to some of McCall’'s; one of his factors, maintainability, was droppe:
because, as explained, it is adequately covered by extendibility and verifiability. McCall
study discusses not only external factors but also a number of internal factors (“criteris

20 SOFTWARE QUALITY 81.5

as well asmetrics, or quantitative techniques for assessing satisfaction of the internal
factors. With object technology, however, many of that study’s internal factors and
metrics, too closely linked with older software practices, are obsolete. Carrying over this
part of McCall's work to the techniques developed in this book would be a useful project;
see the hibliography and exercises to cha3.ter

The argument about the relative effect of machine improvements depending on the
complexity of the algorithms is derived frc[Aho 1974.

On ease of use, a standard referencgShneiderman 198, expanding on
[Shneiderman 198, which was devoted to the broader topic of software psychology. The
Web page of Shneiderman’s labhttp://www.cs.umd.edu/projects/h: contains many
bibliographic references on these topics.

The Osmond curves come from a tutorial given by Roger Osmond at TOOLS USA
[Osmond 199E. Note that the form given in this chapter does not show time, enabling a
more direct view of the tradeoff between functionality and other qualities in the two
alternative curves, but not reflecting the black curve’s potential for delaying a project.
Osmond’s original curves are plotted against time rather than functionality.

The chart of maintenance costs is derived from a study by Lientz and Swanson,
based on a maintenance questionnaire sent to 487 organiz[Lientz 1980. See also
[Boehm 197¢. Although some of their input data may be considered too specialized and
by now obsolete (the study was based on batch-type MIS applications of an average size
of 23,000 instructions, large then but not by today’s standards), the results generally seem
still applicable. The Software Management Association performs a yearly survey of
maintenance; se[Dekleva 1992 for a report about one of these surveys.

The expressionprogramming-in-the-largeand programming-in-the-smalwere
introduced by[DeRemer 197¢.]

For a general discussion of software engineering issues, see the textbook by Ghezzi,
Jazayeri and Mandrio[Ghezzi 1991. A text on programming languages by some of the
same author{Ghezzi 1997, provides complementary background for some of the issues
discussed in the present book.

	1 1 Software quality
	1.1 EXTERNAL AND INTERNAL FACTORS
	1.2 A REVIEW OF EXTERNAL FACTORS
	Correctness
	Definition: correctness
	Layers in software development
	Layers in a development process that includes reus...

	Robustness
	Definition: robustness
	Robustness versus correctness

	Extendibility
	Definition: extendibility

	Reusability
	Definition: reusability

	Compatibility
	Definition: compatibility

	Efficiency
	Definition: efficiency

	Portability
	Definition: portability

	Ease of use
	Definition: ease of use
	User Interface Design principle

	Functionality
	Definition: functionality
	Osmond’s curves; after [Osmond 1995]

	Timeliness
	Definition: timeliness

	Other qualities
	About documentation
	Tradeoffs
	Key concerns

	1.3 ABOUT SOFTWARE MAINTENANCE
	Breakdown of maintenance costs. Source: [Lientz 19...

	1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	1.5 BIBLIOGRAPHICAL NOTES

