
8
The run-time structure: objects
e must
el of

ctural
pects.
mory
r. As
issues
 you
e to
ctures.

good
igher-
 O-O
ose,

 much
tion
bscure
haring
ns of

 have
nts is
els. A
y be

ficial.

f this
seful
In the previous chapter we saw that classes may have instances, called objects. W
now turn our attention to these objects and, more generally, to the run-time mod
object-oriented computation.

Where the previous chapters were mostly concerned with conceptual and stru
issues, the present one will, for the first time in this book, include implementation as
In particular it will describe how the execution of object-oriented software uses me
— a discussion continued by the study of garbage collection in the next chapte
already noted, one of the benefits of object technology is to restore implementation
to their full status; so even if your interest is mostly in analysis and design topics
should not be afraid of this excursion into implementation territory. It is impossibl
understand the method unless you have some idea of its influence on run-time stru

The study of object structures in this chapter indeed provides a particularly
example of how wrong it is to separate implementation aspects from supposedly h
level issues. Throughout the discussion, whenever we realize the need for a new
technique or mechanism, initially introduced for some implementation-related purp
the real reason will almost always turn out to be deeper: we need the facility just as
for purely descriptive, abstract purposes. A typical example will be the distinc
between references and expanded values, which might initially appear to be an o
programming technique, but in reality provides a general answer to the question of s
in whole-to-parts relations, an issue that figures prominently in many discussio
object-oriented analysis.

This contribution of implementation is sometimes hard to accept for people who
been influenced by the view, still prevalent in the software literature, that all that cou
analysis. But it should not be so surprising. To develop software is to develop mod
good implementation technique is often a good modeling technique as well; it ma
applicable, beyond software systems, to systems from various fields, natural and arti

More than implementation in the strict sense of the term, then, the theme o
chapter is modeling: how to use object structures to construct realistic and u
operational descriptions of systems of many kinds.

THE RUN-TIME STRUCTURE: OBJECTS§8.1218

er of
tions.

thing
r:

n
hapter)
fined

 a

ct”
ystem
gles,
les in a
direct
a class

 from
ethod,
ware
s, the

ys the
nt of
els of

t types
es) are

ays
 and
licate
od”,
s the

The definition
appeared on page
166. See also the
Object rule, page
171.

“Direct Mapping”,
page 47.
8.1 OBJECTS

At any time during its execution, an O-O system will have created a certain numb
objects. The run-time structure is the organization of these objects and of their rela
Let us explore its properties.

What is an object?

First we should recall what the word “object” means for this discussion. There is no
vague in this notion; a precise technical definition was given in the previous chapte

A software system that includes a class C may at various points of its executio
create (through creation and cloning operations, whose details appear later in this c
instances of C; such an instance is a data structure built according to the pattern de
by C; for example an instance of the class POINT introduced in the previous chapter is
data structure consisting of two fields, associated with the two attributes x and y declared
in the class. The instances of all possible classes constitute the set of objects.

The above definition is the official one for object-oriented software. But “obje
also has a more general meaning, coming from everyday language. Any software s
is related to some external system, which may contain “objects”: points, lines, an
surfaces and solids in a graphics system: employees, pay checks and salary sca
payroll system; and so on. Some of the objects created by the software will be in
correspondence with such external objects, as in a payroll system that includes
EMPLOYEE, whose run-time instances are computer models of employees.

This dual use of the word “object” has some good consequences, which follow
the power of the object-oriented method as a modeling tool. Better than any other m
object technology highlights and supports the modeling component of soft
development. This explains in part the impression of naturalness which it exude
attraction it exerts on so many people, and its early successes — still among the most
visible — in such areas as simulation and user interfaces. The method here enjo
direct mapping property which an earlier chapter described as a principal requireme
good modular design. With software systems considered to be direct or indirect mod
real systems, it is not surprising that some classes will be models of external objec
from the problem domain, so that the software objects (the instances of these class
themselves models of the corresponding external objects.

But we should not let ourselves get too carried away by the word “object”. As alw
in science and technology, it is a bit risky to borrow words from everyday language
give them technical meanings. (The only discipline which seems to succeed in this de
art is mathematics, which routinely hijacks such innocent words as “neighborho
“variety” or “barrel” and uses them with completely unexpected meanings — perhap

Definition: object

An object is a run-time instance of some class.

§8.1 OBJECTS 219

d with
hnical

nd to
 and
y are

 (and
ly be
iew of
ve
do

ther
When

.

tance

elow.

rely

:

nding
hough
s two

See chapter 20 about
the form-based sys
tem. About the
notion of command,
see chapter 21.

For the text of class
POINT see page
176.
reason why no one seems to have any trouble.) The term “object” is so overloade
everyday meanings that in spite of the benefits just mentioned its use in a tec
software sense has caused its share of confusion. In particular:

• As pointed out in the discussion of direct mapping, not all classes correspo
object types of the problem domain. The classes introduced for design
implementation have no immediate counterparts in the modeled system. The
often among the most important in practice, and the most difficult to find.

• Some concepts from the problem domain may yield classes in the software
objects in the software’s execution) even though they would not necessari
classified as objects in the usual sense of the term if we insist on a concrete v
objects. A class such as STATE in the discussion of the form-based interacti
system, or COMMAND (to be studied in a later chapter in connection with undo-re
mechanisms) fall in this category.

When the word “object” is used in this book, the context will clearly indicate whe
the usual meaning or (more commonly) the technical software meaning is intended.
there is a need to distinguish, one may talk about external objects and software objects.

Basic form

A software object is a rather simple animal once you know what class it comes from

Let O be an object. The definition on the previous page indicates that it is an ins
of some class. More precisely, it is a direct instance of just one class, say C.

Because of inheritance, O will then be an instance, direct or not, of other classes, the
ancestors of C; but that is a matter for a future chapter, and for the present discussion we
only need the notion of direct instance. The word “direct” will be dropped when there is
no possible confusion.

C is called the generating class, or just generator, of O. C is a software text; O is a
run-time data structure, produced by one of the object creation mechanisms studied b

Among its features, C has a certain number of attributes. These attributes enti
determine the form of the object: O is simply a collection of components, or fields, one
for each attribute.

Consider class POINT from the previous chapter. The class text was of the form

class POINT feature
x, y: REAL
… Routine declarations …

end

The routines have been omitted, and for good reason: the form of the correspo
objects (the direct instances of the class) is solely determined by the attributes, alt
the operations applicable to the objects depend on the routines. Here the class ha
attributes, x and y, both of type REAL, so a direct instance of POINT is an object with two
fields containing values of that type, for example:

-

THE RUN-TIME STRUCTURE: OBJECTS§8.1220

s
e

,

ed
.

e

pes”.
s from

 true

ble-

h we

ding

le

See “Graphical con-
ventions”, page 271.

“STRINGS”, 13.5,
page 456.
Notice the conventions used here and in the rest of this book for representing an object a
a set of fields, shown as adjacent rectangles containing the associated values. Below th
object the name of the generating class, here POINT, appears in parentheses and in italics;
next to each field, also in italics, there appears the name of the corresponding attribute
here x and y. Sometimes a name in roman (here P_OBJ) will appear above the object; it
has no counterpart in the software but identifies the object in the discussion.

In diagrams used to show the structure of an object-oriented system, or more commonly
of some part of such a system, classes appear as ellipses. This convention, already us
in the figures of the previous chapter, avoids any confusion between classes and objects

Simple fields

Both attributes of class POINT are of type REAL. As a consequence, each of th
corresponding fields of a direct instance of POINT contains a real value.

This is an example of a field corresponding to an attribute of one of the “basic ty
Although these types are formally defined as classes, their instances take their value
predefined sets implemented efficiently on computers. They include:

• BOOLEAN, which has exactly two instances, representing the boolean values
and false.

• CHARACTER, whose instances represent characters.

• INTEGER, whose instances represent integers.

• REAL and DOUBLE, whose instances represent single-precision and dou
precision floating-point numbers.

Another type which for the time being will be treated as a basic type, althoug
will later see that it is actually in a different category, is STRING, whose instances
represent finite sequences of characters.

For each of the basic types we will need the ability to denote the correspon
values in software texts and on figures. The conventions are straightforward:

• For BOOLEAN, the two instances are written True and False.

• To denote an instance of CHARACTER you will write a character enclosed in sing
quotes, such as 'A'.

3.4

–8.09

x

y

(POINT)

P_OBJ

§8.1 OBJECTS 221

es,

n

ll the
.

 types
 these

to the
 with

ange
hich

An object
representing a
book

Warning: not per-
mitted in the O-O
notation! For dis-
cussion only.
• To denote an instance of STRING, write a sequence of characters in double quot
as in "A STRING".

• To denote an instance of INTEGER, write a number in an ordinary decimal notatio
with an optional sign, as in 34, –675 and +4 .

• You can also write an instance of REAL or DOUBLE in ordinary notation, as in
3.5 or –0.05. Use the letter e to introduce a decimal exponent, as in –5.e–2
which denotes the same value as the preceding example.

A simple notion of book

Here is a class with attribute types taken from the preceding set:

class BOOK1 feature

title: STRING

date, page_count: INTEGER

end

A typical instance of class BOOK1 may appear as follows:

Since for the moment we are only interested in the structure of objects, a
features in this class and the next few examples are attributes — none are routines

This means that our objects are similar at this stage to the records or structure
of non-object-oriented languages such as Pascal and C. But unlike the situation in
languages there is little we can do with such a class in a good O-O language: because of
the information hiding mechanisms, a client class has no way of assigning values
fields of such objects. In Pascal, or in C with a slightly different syntax, a record type
a similar structure would allow a client to include the declaration and instruction

b1: BOOK1

…
b1●page_count := 355

which at run time will assign value 355 to the page_count field of the object attached to
b1. With classes, however, we should not provide any such facility: letting clients ch
object fields as they please would make a mockery of the rule of information hiding, w

"The Red and the Black"

1830

title

date

(BOOK1)

341page_count

THE RUN-TIME STRUCTURE: OBJECTS§8.1222

ts may
ntext;
this
ve

ts will
which
stem).

 with
ty that

[Arnold 1996],
page 40.

See also “If it is
baroque, fix it”,
page 670.

A “writer”
object
implies that the author of each class controls the precise set of operations that clien
execute on its instances. No such direct field assignment is possible in an O-O co
clients will perform field modifications through procedures of the class. Later in
chapter we will add to BOOK1 a procedure that gives clients the effect of the abo
assignment, if the author of the class indeed wishes to grant them such privileges.

We have already seen that C++ and Java actually permit assignments of the form
b1● page_count := 355. But this simply reflects the inherent limits of attempts to integrate
object technology in a C context.

As the designers of Java themselves write in their book about the language: “A
programmer could still mess up the object by setting [a public] field, because the field [is]
subject to change” through direct assignment instructions. Too many languages require
such “don’t do this” warnings. Rather than propose a language and then explain at length
how not to use it, it is desirable to define hand in hand the method and a notation that will
support it.

In proper O-O development, classes without routines, such as BOOK1, have little
practical use (except as ancestors in an inheritance hierarchy, where descendan
inherit the attributes and provide their own routines; or to represent external objects
the O-O part can access but not modify, for example sensor data in a real-time sy
But they will help us go through the basic concepts; then we will add routines.

Writers

Using the types mentioned above, we can also define a class WRITER describing a simple
notion of book author:

class WRITER feature
name, real_name: STRING
birth_ year, death_ year: INTEGER

end

References

Objects whose fields are all of basic types will not take us very far. We need objects
fields that represent other objects. For example we will want to represent the proper
a book has an author — denoted by an instance of class WRITER.

"Stendhal"

"Henri Beyle"

name

real_name

1783birth_year

1842death_year

(WRITER)

§8.1 OBJECTS 223

of a

, how

th the

s two

:

more

h one

eople

ress

jects

ion of

Two “book”
objects with
“writer”
subobjects
A possibility is to introduce a notion of subobject. For example we might think

book object, in a new version BOOK2 of the book class, as having a field author which is

itself an object, as informally suggested by the following picture:

Such a notion of subobject is indeed useful and we will see, later in this chapter

to write the corresponding classes.

But here it is not exactly what we need. The example represents two books wi

same author; we ended up duplicating the author information, which now appears a

subobjects, one in each instance of BOOK2. This duplication is probably not acceptable

• It wastes memory space. Other examples would make this waste even

unacceptable: imagine for example a set of objects representing people, eac

with a subobject representing the country of citizenship, where the number of p

represented is large but the number of countries is small.

• Even more importantly, this technique fails to account for the need to exp

sharing. Regardless of representation choices, the author fields of the two objects

refer to the same instance of WRITER; if you update the WRITER object (for example

to record an author’s death), you will want the change to affect all book ob

associated with the given author.

Here then is a better picture of the desired situation, assuming yet another vers

the book class, BOOK3:

"Life of Rossini"

1823

title

date

(BOOK2)

307page_

"Stendhal"

"Henri Beyle"

name

real_name

1783birth_ year

1842death_ year

(WRITER)

count

"The Red and the Black”

1830

title

date

(BOOK2)

341page_

"Stendhal"

"Henri Beyle"

name

real_name

1783birth_ year

1842death_ year

(WRITER)

count

THE RUN-TIME STRUCTURE: OBJECTS§8.1224

sed
re has
hical

Two “book”
objects with
references to
the same
“writer” object

An object with
a void
reference field

(“Candide” was
published anony-
mously.)
The author field of each instance of BOOK3 contains what is known as a reference
to a possible object of type WRITER. It is not difficult to define this notion precisely:

In the last figure, the author reference fields of the BOOK3 instances are both
attached to the WRITER instance, as shown by the arrows, which are conventionally u
on such diagrams to represent a reference attached to an object. The following figu
a void reference (perhaps to indicate an unknown author), showing the grap
representation of void references:

Definition: reference

A reference is a run-time value which is either void or attached.

If attached, a reference identifies a single object. (It is then said to be attached
to that particular object.)

"The Charterhouse of Parma"

1839

title

date

(BOOK3)

307
count

"The Red and the Black"

1830

title

date

(BOOK3)

341page_
count

(WRITER)

"Stendhal"

"Henri Beyle"

name

real_name

1783birth_ year

1842death_ year

author author

page_

"Candide, or Optimism"

1759

title

date

(BOOK3)

120page_
count

author

§8.1 OBJECTS 225

s. A

e that

ns. In
ming

ugh a
en when
tion.

 typed
low, a
ce may
tion in
social
 areas.

eated
ent of

 of a

same
lied to
new
ect”.

s“Object identity”,
page 1052.
The definition of references makes no mention of implementation propertie
reference, if not void, is a way to identify an object; an abstract name for the object. This
is similar to a social security number that uniquely identifies a person, or an area cod
identifies a phone area. Nothing implementation-specific or computer-specific here.

The reference concept of course has a counterpart in computer implementatio
machine-level programming it is possible to manipulate addresses; many program
languages offer a notion of pointer. The notion of reference is more abstract. Altho
reference may end up being represented as an address, it does not have to; and ev
the representation of a reference includes an address, it may include other informa

Another property sets references apart from addresses, although pointers in
languages such as Pascal and Ada (not C) also enjoy it: as will be explained be
reference in the approach described here is typed. This means that a given referen
only become attached to objects of a specific set of types, determined by a declara
the software text. This idea again has counterparts in the non-computer world: a
security number is only meant for persons, and area codes are only meant for phone
(They may look like normal integers, but you would not add two area codes.)

Object identity

The notion of reference brings about the concept of object identity. Every object cr
during the execution of an object-oriented system has a unique identity, independ
the object’s value as defined by its fields. In particular:

I1 • Two objects with different identities may have identical fields.

I2 • Conversely, the fields of a certain object may change during the execution
system; but this does not affect the object’s identity.

These observations indicate that a phrase such as “a denotes the same object as b”
may be ambiguous: are we talking about objects with different identities but the
contents (I1)? Or about the states of an object before and after some change is app
its fields (I2)? We will use the second interpretation: a given object may take on
values for its constituent fields during an execution, while remaining “the same obj
Whenever confusion is possible the discussion will be more explicit. For case I1 we may
talk of equal (but distinct) objects; equality will be defined more precisely below.

A point of terminology may have caught your attention. It is not a mistake to say (as in
the definition of I2) that the fields of an object may change. The term “field” as defined
above denotes one of the values that make up an object, not the corresponding field
identifier, which is the name of one of the attributes of the object’s generating class.

For each attribute of the class, for example date in class BOOK3, the object has a field,
for example 1832 in the object of the last figure. During execution the attributes will
never change, so each object’s division into fields will remain the same; but the fields
themselves may change. For example an instance of BOOK3 will always have four fields,
corresponding to attributes title, date, page_count, author; these fields — the four values
that make up a given object of type BOOK3 — may change.

The study of how to make objects persistent will lead us to explore further propertie
of object identity.

THE RUN-TIME STRUCTURE: OBJECTS§8.1226

c
 to
 only

s:
rm

 in the
ther

rence
d of
with
ct

See page 272.

Direct and
indirect self-
reference
Declaring references

Let us see how to extend the initial book class, BOOK1, which only had attributes of basi
types, to the new variant BOOK3 which has an attribute representing references
potential authors. Here is the class text, again just showing the attributes; the
difference is an extra attribute declaration at the end:

class BOOK3 feature
title: STRING
date, page_count: INTEGER
author: WRITER -- This is the new attribute.

end

The type used to declare author is simply the name of the corresponding clas
WRITER. This will be a general rule: whenever a class is declared in the standard fo

class C feature … end

then any entity declared of type C through a declaration of the form

x: C

denotes values that are references to potential objects of type C. The reason for this
convention is that using references provides more flexibility, and so are appropriate
vast majority of cases. You will find further examination of this rule (and of the o
possible conventions) in the discussion section of this chapter.

Self-reference

Nothing in the preceding discussion precludes an object O1 from containing a refe
field which (at some point of a system’s execution) is attached to O1 itself. This kin
self-reference can also be indirect. In the situation pictured below, the object
"Almaviva" in its name field is its own landlord (direct reference cycle); the obje
"Figaro" loves "Susanna" which loves "Figaro" (indirect reference cycle).

(PERSON1)

"Almaviva"name

landlord

loved_one

(PERSON1)

"Figaro"name

landlord

loved_one

(PERSON1)

"Susanna" name

landlord

loved_one

§8.1 OBJECTS 227

g the
e class

es not
lass

y the
would

iented

A possible run-
time object
structure
Such cycles in the dynamic structure can only exist if the client relation amon
corresponding classes also has direct or indirect cycles. In the above example, th
declaration is of the form

class PERSON1 feature
name: STRING

loved_one, landlord: PERSON1

end

showing a direct cycle (PERSON1 is a client of PERSON1).

The reverse property is not true: the presence of a cycle in the client relation do
imply that the run-time structure will have cycles. For example you may declare a c

class PERSON2 feature

mother, father: PERSON2

end

which is a client of itself; but if this models the relations between people suggested b
attributes’ names, there can be no reference cycle in the run-time structure, as it
imply that a certain person is his own parent or indirect ancestor.

A look at the run-time object structure

From what we have seen so far emerges a first picture of the structure of an object-or
system during its execution.

"Raphaël"

27

"Sarah"

3.5

– 62

"Caroline"

root

True

'Z'

(TYPE1)

(TYPE4)

(TYPE2)(TYPE1)

(TYPE3) 897

(TYPE5)

THE RUN-TIME STRUCTURE: OBJECTS§8.2228

 these

t is an
 figure.
will be
n

ith
cle

ion
 and

 mind.

are
ystem
ular
 how

led by
ts are
imple
 who

tems
any
t will

try to
sible.

ection
ns; a
any

 even

thod’s
rlds
ality.
The system is made of a certain number of objects, with various fields. Some of
fields are values of basic types (integer fields such as 27, character fields such as 'Z' and
so on); others are references, some void, others attached to objects. Each objec
instance of some type, always based on a class and indicated below the object in the
Some types may be represented by just one instance, but more commonly there
many instances of a given type; here TYPE1 has two instances, the others only one. A
object may have reference fields only; this is the case here with the TYPE4 instance, or
basic fields only, as with the TYPE5 instance. There may be self-references: direct, as w
the top field of the TYPE2 instance, or indirect, as with the clock-wise reference cy
starting from and coming back to the TYPE1 instance at the top.

This kind of structure may look unduly complicated at first — an impress
reinforced by the last figure, which is meant to show many of the available facilities
does not purport to model any real system. The expression “spaghetti bowl” comes to

But this impression is not justified. The concern for simplicity applies to the softw
text and not necessarily to the run-time object structure. The text of a software s
embodies certain relations (such as “is child of ”, “loves”, “has as landlord”); a partic
run-time object structure embodies what we may call an instance of these relations —
the relations hold between members of a certain set of objects. The relations mode
the software may be simple even if their instances for a particular set of objec
complex. Someone who considers the basic idea behind the relation “loves” fairly s
might find the instance of the relation for a particular group of people — the record of
loves whom — hopelessly entangled.

So it is often impossible to prevent the run-time object structures of our O-O sys
from becoming big (involving large numbers of objects) and complex (involving m
references with a convoluted structure). A good software development environmen
provide tools that help explore object structures for testing and debugging.

Such run-time complexity does not have to affect the static picture. We should
keep the software itself — the set of classes and their relations — as simple as pos

The observation that simple models can have complex instances is in part a refl
on the power of computers. A small software text can describe huge computatio
simple O-O system can at execution time yield millions of objects connected by m
references. A cardinal goal of software engineering is to keep the software simple
when its instances are not.

8.2 OBJECTS AS A MODELING TOOL

We can use the techniques introduced so far to improve our understanding of the me
modeling power. It is important in particular two clarify two aspects: the various wo
touched by software development; and the relationship of our software to external re

§8.2 OBJECTS AS A MODELING TOOL 229

ented

ftware

hich

bject-

made

gher
stract
ances,
apter’s
ns: we

ns of
iting
tional

Molds and
their instances
The four worlds of software development

From the preceding discussions it appears that when talking about object-ori
software development we should distinguish between four separate worlds:

• The modeled system, also known as the external system (as opposed to the so
system) and described through object types and their abstract relations.

• A particular instantiation of the external system, made of objects between w
relations may hold.

• The software system, made of classes connected by the relations of the o
oriented method (client and inheritance).

• An object structure, as may exist during the execution of the software system,
of software objects connected through references.

The following picture suggests the mappings that exist between these worlds.

On both the software level (lower part of the picture) and the external level (hi
part) it is important to distinguish between the general notions (classes and ab
relations, appearing on the left) and their specific instances (objects and relation inst
appearing on the right). This point has already been emphasized in the previous ch
discussion of the comparative role of classes and objects. It also applies to relatio
must distinguish between the abstract relation loved_one and the set of loved_one links
that exist between the elements of a certain set of objects.

This distinction is emphasized neither by the standard mathematical definitio
relations nor, in the software field, by the theory of relational databases. Lim
ourselves to binary relations, a relation is defined in both mathematics and rela
databases as a set of pairs, all of the form <x, y> where every x is a member a given set TX

MOLD INSTANCE

ABSTRACT

CONCRETE

Abstract
Data
Type

Model
Object

Class (Software)
Object

Implements

Is an instance of

THE RUN-TIME STRUCTURE: OBJECTS§8.2230

 are
n an
t for
ct
up of

g

topics)
ove in

tion
ooks
about

due
k his
rms
ory,

four-
h our
iece of
gative

e that
ake a

 Why
same
er: an
nts it

ers, it
 a pre-
e and
te the
ware”
o say,
y have

“The abstraction
function”, page 376.

See also “DISCUS-
SION”, 20.6, page
693 on the dangers
of staying too close
to reality.
and every y is a member of a given set TY. (In software terminology: all x are of type TX
and all y are of type TY.) Appropriate as such definitions may be mathematically, they
not satisfactory for system modeling, as they fail to make the distinction betwee
abstract relation and one of its particular instances. For system modeling, if no
mathematics and relational databases, the loves relation has its own general and abstra
properties, quite independent of the record of who loves whom in a particular gro
people at a particular time.

This discussion will be extended in a later chapter when we look at transformations on
both abstract and concrete objects and give a name to the vertical arrows of the precedin
figure: the abstraction function.

Reality: a cousin twice removed

You may have noted how the above discussion (and previous ones on neighboring
stayed clear of any reference to the “real world”. Instead, the expression used ab
reference to what the software represents is simply “the modeled system”.

This distinction is not commonly made. Many of the discussions in informa
modeling talk about “modeling the real world”, and similar expressions abound in b
about O-O analysis. So we should take a moment to reflect on this notion. Talking
the “reality” behind a software system is deceptive for at least four reasons.

First, reality is in the eyes of the beholder. Without being accused of un
chauvinism for his profession, a software engineer may with some justification as
customers why their systems are more real than his. Take a program that perfo
mathematical computations — proving the four-color conjecture in graph the
integrating some differential equations, or solving geometrical problems in a
dimensional Riemann surface. Are we, the software developers, to quarrel wit
mathematician friends (and customers) as to whose artefacts are more real: a p
software written in some programming language, or a complete subspace with ne
curvature?

Second, the notion of real world collapses in the not infrequent case of softwar
solves software problems — reflexive applications, as they are sometimes called. T
C compiler written in Pascal. The “real” objects that it processes are C programs.
should we consider these programs more real than the compiler itself? The
observation applies to other systems handling objects that only exist in a comput
editor, a CASE tool, even a document processing system (since the docume
manipulates are computer objects, the printed version being only their final form).

The third reason is a generalization of the second. In the early days of comput
may have been legitimate to think of software systems as being superimposed on
existing, independent reality. But today the computers and their software are mor
more a part of that reality. Like a quantum physicist finding himself unable to separa
measure from the measurement, we can seldom treat “the real world” and “the soft
as independent entities. The MIS field (Management Information Systems, that is t
business data processing) provides some of the most vivid evidence: although it ma

§8.3 MANIPULATING OBJECTS AND REFERENCES 231

anies
ating
dures
odern
 same

other
ls but
ut the
 real
t from
e new

el of
tient

one’s

the
art of
it is a
spects

helps
otion
y the

table:
formal
t you
ns and
ect the

oved.

e going

ighly
iented
rtran

create

See “BEYOND
SOFTWARE”, 6.6,
page 147.
been the case with the first MIS applications, a few decades ago, that comp
introduced computers and the associated software simply with the aim of autom
existing procedures, the situation today is radically different, as many existing proce
already involve computers and their software. To describe the operations of a m
bank is to describe mechanisms of which software is a fundamental component. The
is true of most other application areas; many of the activities of physicists and
natural scientists, for example, rely on computers and software not as auxiliary too
as a fundamental part of the operational process. One may reflect here abo
expression “virtual reality”, and its implication that what software produces is no less
than what comes from the outside world. In all such cases the software is not disjoin
the reality, as if we had a feedback loop in which operating the software injects som
and important inputs into the model.

The last reason is even more fundamental. A software system is not a mod
reality; it is at best a model of a model of some part of some reality. A hospital’s pa
monitoring system is not a model of the hospital, but the implementation of some
view of how certain aspects of the hospital management should be handled — a model of
a model of a subset of the hospital’s reality. An astronomy program is not a model of
universe; it is a software model of someone’s model of some properties of some p
the universe. A financial information system is not a model of the stock exchange;
software transposition of a model devised by a certain company to describe those a
of the stock exchange which are relevant to the company’s goals.

The general theme of the object-oriented method, abstract data types,
understand why we do not need to delude ourselves with the flattering but illusory n
that we deal with the real world. The first step to object orientation, as expressed b
ADT theory, is to toss out reality in favor of something less grandiose but more pala
a set of abstractions characterized by the operations available to clients, and their
properties. (This gave the ADT modeler’s motto — tell me not what you are but wha
have.) Never do we make any pretense that these are the only possible operatio
properties: we choose the ones that serve our purposes of the moment, and rej
others. To model is to discard.

To a software system, the reality that it addresses is, at best, a cousin twice rem

8.3 MANIPULATING OBJECTS AND REFERENCES

Let us come back to more mundane matters and see how our software systems ar
to deal with objects so as to create and use flexible data structures.

Dynamic creation and reattachment

What the description of the run-time object structure has not yet shown is the h
dynamic nature of a true object-oriented model. As opposed to static and stack-or
policies of object management, illustrated at the programming language level by Fo
and Pascal respectively, the policy in a proper O-O environment is to let systems

THE RUN-TIME STRUCTURE: OBJECTS§8.3232

redict

bject
ations
 to an

fferent
son for
 that
perties

ipulate

n and
which

on

mains
is can
objects as needed at run time, according to a pattern which is usually impossible to p
by a mere static examination of the software text.

From an initial state in which (as described in the previous chapter) only one o
has been created — the root object — a system will repetitively perform such oper
on the object structure as creating a new object, attach a previously void reference
object, make a reference void, or reattach a previously attached reference to a di
object. The dynamic and unpredictable nature of these operations is part of the rea
the flexibility of the approach, and its ability to support the dynamic data structures
are necessary if we are to use advanced algorithms and model the fast-changing pro
of many external systems.

The next sections explore the mechanisms needed to create objects and man
their fields, in particular references.

The creation instruction

Let us see how to create an instance of a class such as BOOK3. This can only be done by
a routine of a class which is a client of BOOK3, such as

class QUOTATION feature

source: BOOK3

page: INTEGER

make_book is

-- Create a BOOK3 object and attach source to it.

do

… See below …

end

end

which might serve to describe a quotation of a book, appearing in another publicatio
identified by two fields: a reference to the quoted book and the number of the page
quotes the book.

The (soon to be explained) mechanism that creates an instance of type QUOTATION
will also by default initialize all its fields. An important part of the default initializati
rule is that any reference field, such as the one associated with attribute source, will be
initialized to a void reference. In other words, creating an object of type QUOTATION
does not by itself create an object of type BOOK3.

The general rule is indeed that, unless you do something to it, a reference re
void. To change this, you may create a new object through a creation instruction. Th
be done by procedure make_book, which should then read as follows:

§8.3 MANIPULATING OBJECTS AND REFERENCES 233

osing

n”.
re is

re are

The “standard
default values”
mentioned in step
C2 appear in the
next box.
make_book is

-- Create a BOOK3 object and attach source to it.

do

!! source

end

This illustrates the simplest form of the creation instruction: !! x, where x is an
attribute of the enclosing class or (as will be seen later) a local entity of the encl
routine. We will see a few extensions to this basic notation later.

The symbol ! is usually read aloud as “bang”, so that !! is “bang bang”. The entity x
named in the instruction (source in the above example) is called the target of the creation
instruction.

This form of the creation instruction is known as a “basic creation instructio
(Another form, involving a call to a procedure of the class, will appear shortly.) He
the precise effect of a basic creation instruction:

Step C1 will create an instance of C. Step C2 will set the values of each field to a
predetermined value, which depends on the type of the corresponding attribute. He
these values:

Effect of a basic creation instruction

The effect of a creation instruction of the form !! x, where the type of the
target x is a reference type based on a class C, is to execute the following
three steps:

C1 • Create a new instance of C (made of a collection of fields, one for
each attribute of C). Let OC be the new instance.

C2 • Initialize each field of OC according to the standard default values.

C3 • Attach the value of x (a reference) to OC.

Default initialization values

For a reference, the default value is a void reference.

For a BOOLEAN, the default value is False.

For a CHARACTER, the default value is the null character.

For a number (of type INTEGER, REAL or DOUBLE), the default value is
zero (that is to say, the zero value of the appropriate type).

THE RUN-TIME STRUCTURE: OBJECTS§8.3234

d
ctical

tance

f will
to this
 a root
t of the
tance
 by the

l way,
 is the
cases
apter
rticular

A newly
created and
initialized
object

“STRINGS”, 13.5,
page 456.

See “PUTTING
EVERYTHING
TOGETHER”, 7.9,
page 194.
So for a target source of type BOOK3, where the above class declaration read

class BOOK3 feature
title: STRING
date, page_count: INTEGER
author: WRITER

end

the creation instruction !! source, executed as part of a call to procedure make_book of
class QUOTATION, will yield an object of the following form:

The integer fields have been initialized to zero. The reference field for author has
been initialized to a void reference. The field for title, a STRING, also shows a void
reference. This is because type STRING (of which the above initialization rules sai
nothing) is in fact a reference type too, although as noted we may for most pra
purposes treat it as a basic type.

The global picture

It is important not to lose track of the order in which things happen. For the above ins
of BOOK3 to be created, the following two events must occur:

B1 • An instance of QUOTATION gets created. Let Q_OBJ be that instance and let a be
an entity whose value is a reference attached to Q_OBJ.

B2 • Some time after step B1, a call of the form a● make_book executes procedure make_
book with Q_OBJ as its target.

It is legitimate of course to ask how we ever get to step B1 — how Q_OBJ itsel
be created. This only pushes the problem further. But by now you know the answer
question: it all comes back to the Big Bang. To execute a system, you must provide
class and the name of a procedure of that class, the creation procedure. At the star
execution, you are automatically provided with one object, the root object — an ins
of the root class. The root object is the only one that does not need to be created
software text itself; it comes from the outside, as an objectus ex machina. Starting with
that one providential object, the software can now create other objects in the norma
through routines that execute creation instructions. The first routine to be executed
creation procedure, automatically applied to the root object; in all but the most trivial
it will include at least one creation instruction so as to start what the previous ch
compared to a giant firework: the process of producing as many new objects as a pa
execution will need.

0

title

date

(BOOK3)

0page_count

author

§8.3 MANIPULATING OBJECTS AND REFERENCES 235

 some

e do

 and

rt
But

te

a long
!

ch as

on of
ing

elf-

: the
 were
s nor
deling

hed to

asons
w the

uld

See the figure on
page 226.
Why explicit creation?

Object creation is explicit. Declaring an entity such as

b: BOOK3

does not cause an object to be created at run time: creation will only occur when
element of the system executes an operation

!! b

You may have wondered why this was so. Should the declaration of b not be
sufficient if we need an object at run time? What good is it to declare an entity if w
not create an object?

A moment’s reflection, however, shows that the distinction between declaration
creation is actually the only reasonable solution.

The first argument is by reductio ad absurdum. Assume that somehow we sta
processing the declaration of b and immediately create the corresponding book object.
this object is an instance of class BOOK3, which has an attribute author, itself of a
reference type WRITER, so that the author field is a reference, for which we must crea
an object right away. Now this object has reference fields (remember that STRING is in
fact a reference type) and they will require the same treatment: we are starting on
path of recursive object creation before we have even begun any useful processing

This argument would be even more obvious with a self-referential class, su
PERSON1 seen above:

class PERSON1 feature
name: STRING
loved_one, landlord: PERSON1

end

Treating every declaration as yielding an object would mean that every creati
an instance of PERSON1 would cause creation of two more such objects (correspond
to loved_one and landlord), entering into an infinite loop. Yet we have seen that such s
referential definitions, either direct as here or indirect, are common and necessary.

Another argument simply follows from a theme that runs through this chapter
use of object technology as a powerful modeling technique. If every reference field
initialized to a newly created object, we would have room neither for void reference
for multiple references attached to a single object. Both are needed for realistic mo
of practical systems:

• In some cases the model may require that a certain reference be left not attac
any object. We used this technique when leaving the author field void to indicate that
a book is by an unknown author.

• In other cases two references should be attached, again for conceptual re
coming from the model, to the same object. In the self-reference example we sa
loved_one fields of two PERSON1 instances attached to the same object. It wo

THE RUN-TIME STRUCTURE: OBJECTS§8.4236

at you
ater in
rvation
(field

reates
),
will

s, you
vide

 need.

ation
clause
re

s

 the
lt.
d

“Polymorphic cre-
ation”, page 479.

“CHOOSING THE
RIGHT NAMES”,
26.2, page 879.
not make sense in that case to create an object for each field on creation; wh
need is, rather than a creation instruction, an assignment operation (studied l
this chapter) that attaches a reference to an already existing object. This obse
applies even more clearly to the self-referential field from the same example
landlord for the top object).

The object management mechanism never attaches a reference implicitly. It c
objects through creation instructions (or clone operations, seen below and explicit too
initializing their reference fields to void references; only through explicit instructions
these fields, in turn, become attached to objects.

In the discussion of inheritance we will see that a creation instruction may use the syntax
! T ! x to create an object whose type T is a descendant of the type declared for x.

8.4 CREATION PROCEDURES

All the creation instructions seen so far relied on default initializations. In some case
may be unhappy with the language-defined initializations, wanting instead to pro
specific information to initialize the created object. Creation procedures address this

Overriding the default initializations

To use an initialization other than the default, give the class one or more cre
procedures. A creation procedure is a procedure of the class, which is listed in a
starting with the keyword creation at the beginning of the class, before the first featu
clause. The scheme is this:

indexing
…

class C creation
p1, p2, …

feature
… Feature declarations, including declarations for procedures p1, p2, …

end

A style suggestion: the recommended name for creation procedures in simple cases i
make, for a class that has only one creation procedure; for a class that has two or more
creation procedures it is generally desirable to give them a name starting with make_ and
continuing with some qualifying word, as in the POINT example that follows.

The corresponding creation instruction is not just !! x any more, but of the form

!! x● p (…)

where p is one of the creation procedures listed in the creation clause, and (…) is a valid
actual argument list for p. The effect of such an instruction is to create the object using
default values as in the earlier form, and to apply p, with the given arguments, to the resu
The instruction is called a creation call; it is a combination of creation instruction an
procedure call.

§8.4 CREATION PROCEDURES 237

t. We

re the

Original version of
POINT in “The
class”, page 176.

The new step
We can for example add creation procedures to the class POINT to enable clients to
specify initial coordinates, either cartesian or polar, when they create a point objec
will have two creation procedures, make_cartesian and make_polar. Here is the scheme:

class POINT1 creation

make_cartesian, make_polar

feature

… The features studied in the preceding version of the class:

x, y, ro, theta, translate, scale, …
feature { NONE} -- See explanations below about this export status.

make_cartesian (a, b: REAL) is

-- Initialize point with cartesian coordinates a and b.

do

x := a; y := b

end

make_ polar (r, t: REAL) is

-- Initialize point with polar coordinates r and t.

do

x := r ∗ cos (t); y := r ∗ sin (t)

end

end -- class POINT1

With this class text, a client will create a point through such instructions as

!! my_ point● make_cartesian (0, 1)

!! my_ point● make_polar (1, Pi/2)

both having the same effect if Pi has the value suggested by its name.

Here is the rule defining the effect of such creation calls. The first three steps a
same as for the basic form seen earlier:

Effect of a creation call

The effect of a creation call of the form !! x● p (…), where the type of the
target x is a reference type based on a class C, p is a creation procedure of
class C, and (…) represents a valid list of actual arguments for this procedure
if necessary, is to execute the following four steps:

C1 • Create a new instance of C (made of a collection of fields, one for
each attribute of C). Let OC be the new instance.

C2 • Initialize each field of OC according to standard default values.

C3 • Attach the value of x (a reference) to OC.

C4 • Call procedure p, with the arguments given, on OC.

THE RUN-TIME STRUCTURE: OBJECTS§8.4238

tarting
 for
of the

, once
them

 a set

imilar
on

n
iler.

bject
f an
e is a
 year
bitrary
th year
 learn
T, as
ic
e
 need

 they
. The
re

On the {NONE}
construct see “Style
for declaring secret
features”, page 192.

See “CLASS
INVARIANTS”,
11.8, page 364, in
particular “The role
of creation proce-
dures”, page 372.
The export status of creation procedures

In POINT1 the two creation procedures have been declared in a feature clause s
with feature { NONE} . This means they are secret, but only for normal calls, not
creation calls. So the two example creation calls just seen are valid; normal calls
form my_point●make_cartesian (0, 1) or my_point●make_polar (1, Pi/2) are invalid since
the features have not been made available for calling by any client.

The decision to make the two procedures secret means we do not want clients
a point object exists, to set their coordinates directly, although they may set
indirectly through the other procedures of the class such as translate and scale. Of course
this is only one possible policy; you may very well decide to export make_cartesian and
make_polar in addition to making them creation procedures.

It is possible to give a procedure a selective creation status as well by including
of classes in braces in its creation clause, as in

class C creation { A, B, …}
p1, p2,

…

although this is less frequent than limiting the export status of a feature through the s
syntax feature { A, B, …} or feature { NONE} . Remember in any case that the creati
status of a procedure is independent of its call export status.

Rules on creation procedures

The two forms of creation instructions, the basic form !! x and the creation call !! x● p (…),
are mutually exclusive. As soon as a class has a creation clause, then only the creatio
call is permitted; the basic form will be considered invalid and rejected by the comp

This convention may seem strange at first, but is justified by considerations of o
consistency. An object is not just a collection of fields; it is the implementation o
abstract data type, which may impose consistency constraints on the fields. Her
typical example. Assume an object representing a person, with a field for the birth
and another for the age. Then you cannot set these two fields independently to ar
values, but must ensure a consistency constraint: the sum of the age field and the bir
field must equal either the current year or the one before. (In a later chapter we will
how to express such constraints, often reflecting axioms from the underlying AD
class invariants.) A creation instruction must always yield a consistent object. The bas
form of the creation instruction — !! x with no call — is only acceptable if setting all th
fields to the default values yields a consistent object. If this is not the case, you will
creation procedures, and should disallow the basic form of the creation instruction.

In some infrequent cases you may want to accept the default initializations (as
satisfy the class invariant) while also defining one or more creation procedures
technique to apply in this case is to list nothing among the creation procedures. Featu
nothing is a procedure without arguments, inherited from the universal class ANY, which
has an empty body (the feature declaration is simply: nothing is do end) so that it does
exactly what the name indicates. Then you can write:

§8.4 CREATION PROCEDURES 239

ed

ay to
rm

ation
d.

s to
is little
ed as

m of
ersal:
ly on

ve the

s rely

t the
iding

 two
e for
e use

sle (no
h an
tion
 feature

See “What to do
with deferred
classes”, page 487
and exercise E14.5,
page 519.

See “Syntactic over-
loading”, page 93.
class C creation

nothing, some_creation_procedure, some_other_creation_procedure…
feature

…
Although the form !! x is still invalid in this case, clients can achieve the intend

effect by writing the instruction as !! x●nothing

Finally, note that as a special case the rule on creation instructions gives a w
define a class that no client will be permitted to instantiate. A class declaration of the fo

class C creation
-- There is nothing here!

feature

… Rest of class text …
end

has a creation clause — an empty one. The above rule states that if there is a creation
clause the only permitted creation instructions are creation calls using a cre
procedure; here, since there are no creation procedures, no creation call is permitte

Being able to disallow class instantiation is of little interest if we limit ourselve
the object-oriented mechanisms seen so far. But when we move on to inheritance th
facility may prove handy if we want to specify that a certain class should only be us
ancestor to other classes, never directly to create objects.

Another way to achieve this is to make the class deferred, but a deferred class must have
at least one deferred feature, and we will not always have a role for such a feature.

Multiple creation and overloading

In advance of the discussion section, it is illuminating to compare the mechanis
multiple creation procedures with the C++/Java approach. The need is univ
providing several ways to initialize an object on creation. C++ and Java, however, re
a different technique, name overloading.

In these languages all the creation procedures of a class (its “constructors”) ha
same name, which is in fact the class name; if a class POINT contains a constructor with
two real arguments corresponding to make_cartesian, the expression new POINT (0, 1)
will create a new instance. To differentiate between two constructors, the language
on the signatures (the types of the arguments).

The problem is of course, as we saw in the discussion of overloading, tha
argument signature is not the appropriate criterion: if we also want a constructor prov
the equivalent of make_polar we are stuck, since the arguments would be the same,
real numbers. This is the general problem of overloading: using the same nam
different operations, thereby causing potential ambiguity — compounded here by th
of that name as a class name as well as a procedure name.

The technique developed earlier seems preferable in all respects: minimum has
creation procedure) if default initializations suffice; prevent creation, if desired, throug
empty creation clause; to provide several forms of creation, define as many crea
procedures as needed; do not introduce any confusion between class names and

THE RUN-TIME STRUCTURE: OBJECTS§8.5240

f their
ise.

that a
e is a

will be
etween
r:

ted at

id or
nce is

text.
-time
ms of
les,

y be

s also
king

The possible
states of a
reference

Full definition of
“entity”: page 213.
names; let the effect of every operation stand out clearly from its names, as with make_
polar.

8.5 MORE ON REFERENCES

The run-time model gives an important role to references. Let us examine some o
properties, in particular the notion of void reference, and some of the issues they ra

States of a reference

A reference may be in either of two states: void and attached. We have seen
reference is always void initially and can be come attached through creation. Her
more complete picture.

Other than creation, a reference may change state through assignment, as
studied shortly. For the moment, please make sure you understand the difference b
the three notions — object, reference and entity — which recur through this chapte

• “Object” is a run-time notion; any object is an instance of a certain class, crea
execution time and made of a number of fields.

• “Reference” is also a run-time notion: a reference is a value that is either vo
attached to an object. We have seen a precise definition of “attached”: a refere
attached to an object if it identifies that object unambiguously.

• In contrast, “entity” is a static notion — that is to say, applying to the software
An entity is an identifier appearing in the text of a class, and representing a run
value or a set of successive run-time values. (Readers used to traditional for
software development may think of the notion of entity as covering variab
symbolic constants, routine arguments and function results.)

If b is an entity of reference type, its run-time value is a reference, which ma
attached to an object O. By an abuse of language we can say that b itself is attached to O.

Void references and calls

In most situations we expect a reference to be attached to an object, but the rule
permit a reference to be void. Void references play an important role — if only by ma

VOID
STATE

ATTACHED
STATE

b := Void

b := c (where c is void)

!! b

b := c (where c is attached)

§8.5 MORE ON REFERENCES 241

ussed
e call:

to

cute a

ed in

at no
of type
ently
uage).
 will

do so:

 when

ware
pplied

ter) are
ertion
rover,
in that

 a run-
ations

g at
class

e

See chapter 12, in
particular “Sources
of exceptions”, page
412.

The test “x is not
void” may be
written simply as
x /= Void. See
a nuisance of themselves — in the object-oriented model of computation. As disc
extensively in the previous chapter, the fundamental operation in that model is featur
apply to an instance of a class a feature of that class. This is written

some_entity● some_feature (arg1, …)

where some_entity is attached to the desired target object. For the call to work, some_entity
must indeed be attached to an object. If some_entity is of a reference type and happens
have a void value at the time of the call, the call cannot proceed, as some_feature needs a
target object.

To be correct, an object-oriented system must never attempt at run time to exe
feature call whose target is void. The effect will be an exception; the notion of exception,
and the description of how it is possible to recover from an exception, will be discuss
a later chapter.

It would be desirable to let compilers check the text of a system to guarantee th
such event will occur at run time, in the same way that they can check the absence
incompatibilities by enforcing type rules. Unfortunately such a general goal is curr
beyond the reach of compilers (unless we place unacceptable restrictions on the lang
So it remains the software developer’s responsibility to ensure that the execution
never attempt a feature call on a void target. There is of course an easy way to
always write x●f (…) as

if “x is not void” then
x● f (…)

else
…

end

but this is too unwieldy to be acceptable as a universal requirement. Sometimes (as
a call x● f immediately follows a creation !! x) it is clear from the context that x is not void,
and you do not want to test.

The question of non-vacuity of references is part of the larger question of soft
correctness. To prove a system correct, it is necessary to prove that no call is ever a
to a void reference, and that all the software’s assertions (as studied in a later chap
satisfied at the appropriate run-time instants. For non-vacuity as well as for ass
correctness, it would be desirable to have an automatic mechanism (a program p
either integrated with the compiler or designed as a separate software tool) to ascerta
a software system is correct. In the absence of such tools, the result of a violation is
time error — an exception. Developers may protect their software against such situ
in two ways:

• When writing the software, trying to prevent the erroneous situations from arisin
run time, using all means possible: systematic and careful development,
inspections, use of tools that perform at least partial checks.

• If any doubt remains and run-time failures are unacceptable, equipping the softwar
with provisions for handling exceptions.

THE RUN-TIME STRUCTURE: OBJECTS§8.6242

 makes
t. We
f the

ur

 the
Let us

f
e

 source
ent.

 target
d — or
ation
8.6 OPERATIONS ON REFERENCES

We have seen one way of changing the value of a reference x: using a creation instruction
of the form !! x, which creates a new object and attaches x to it. A number of other
interesting operations are available on references.

Attaching a reference to an object

So far the classes of this chapter have had attributes but no routines. As noted, this
them essentially useless: it is not possible to change any field in an existing objec
need ways to modify the value of references, without resorting to instructions o
Pascal-C-Java-C++ form my_beloved● loved_one := me (to set the loved_one field of an
object directly), which violates information hiding and is syntactically illegal in o
notation.

To modify fields of foreign objects, a routine will need to call other routines that
authors of the corresponding classes have specifically designed for that purpose.
adapt class PERSON1 to include such a procedure, which will change the loved_one field
to attach it to a new object. Here is the result:

class PERSON2 feature

name: STRING

loved_one, landlord: PERSON2

set_loved (l: PERSON2) is

-- Attach the loved_one field of current object to l.

do

loved_one := l

end

end

Procedure set_loved assigns to the loved_one field of the current instance o
PERSON2, a reference field, the value of another reference, l. Reference assignments (lik
assignments of simple values such as integers) rely on the := symbol, with the
assignment’s source on the right and the target on the left. In this case, since both
and target are of reference types, the assignment is said to be a reference assignm

The effect of a reference assignment is exactly what the name suggests: the
reference gets reattached to the object to which the source reference is attache
becomes void if the source was void. Assume for example that we start with the situ
shown at the top of the facing page; to avoid cluttering the picture, the landlord fields and
the irrelevant loved_one fields have been left blank.

Assume that we execute the procedure call

a ●set_loved (r)

§8.6 OPERATIONS ON REFERENCES 243

Before
reference
assignment

After
reference
assignment
where a is attached to the top object (O1) and r to the bottom-right object (O3). From the
way set_loved has been written, this will execute the assignment

loved_one := l

with O1 as the current object and l having the same value as r, a reference to O3. The result
is to reattach the loved_one field of O1:

(PERSON2)

"Almaviva"name

loved_one

landlord

O1
a r

(PERSON2)

"Susanna"name

loved_one

landlord

(PERSON2)

"Rosina"name

loved_one

landlord

O3O2

(PERSON2)

"Almaviva"name

loved_one

landlord

O1
a r

(PERSON2)

"Susanna"name

loved_one

landlord

(PERSON2)

"Rosina"name

loved_one

landlord

O3O2

THE RUN-TIME STRUCTURE: OBJECTS§8.6244

t
il

t

an
ct. This

ed to

d

 not an
o
re

ill be

fault
lue
If r had been a void reference, the assignment would have made the loved_one field
of O1 void too.

A natural question at this stage is: what happens to the object to which the modified field
was initially attached — O2 in the figure? Will the space it occupies be automatically
recycled for use by future creation instructions?

This question turns out to be so important as to deserve a chapter of its own — the nex
chapter, on memory management and garbage collection. So please hold your breath unt
then. But it is not too early for a basic observation: regardless of the final answer, a policy
that would always recycle the object’s space would be incorrect. In the absence of further
information about the system from which the above run-time structure is extracted, we do
not know whether some other reference is still attached to O2. So a reference assignmen
by itself does not tell us what to do with the previously attached object; any mechanism
for recycling objects will need more context.

Reference comparison

In the same way that we have an operation (the := assignment) to attach a reference to
object, we need a way to test whether two references are attached to the same obje
is simply provided by the usual equality operator =.

If x and y are entities of reference types, the expression

x = y

is true if and only if the corresponding references are either both void or both attach
the same objects. The opposite operator, “not equal”, is written /= (a notation borrowed
from Ada).

For example, the expression

r = a● loved_one

has value true on the last figure, where both sides of the = sign denote references attache
to the object O3, but not on the next-to-last figure, where a● loved_one is attached to O2
and r is attached to O3.

In the same way that an assignment to a reference is a reference operation,
operation on objects, the expressions x = y and x /= y compare references, not objects. S
if x and y are attached to two distinct objects, x = y has value false even if these objects a
field-by-field identical. Operations which compare objects rather than reference w
introduced later.

The void value

Although it is easy to get a void reference — since all reference fields are by de
initialized to Void –, we will find it convenient to have a name for a reference va
accessible in all contexts and known always to be void. The predefined feature

Void

will play that role.

§8.6 OPERATIONS ON REFERENCES 245

e, and

g

a single
 the
reate

De-attaching a
reference from
an object
Two common uses of Void are to test whether a certain reference is void, as in

if x = Void then …

and to make a reference void, using the assignment

x := Void

This last assignment has the effect of putting the reference back to the void stat
so of de-attaching it from the attached object, if any:

The comment made in the general discussion of reference assignment is worth repeatin
here: the assignment of Void to x has no immediate effect on the attached object (O1 in
the figure); it simply cuts the link between the reference and the object. It would be
incorrect to understand it as freeing the memory associated with O1, since some other
reference may still be attached to O1 even after x has been de-attached from it. See the
discussion of memory management in the next chapter.

Object cloning and equality

Reference assignments may cause two or more references to become attached to
object. Sometimes you will need a different form of assignment, which works on
object itself: rather than attaching a reference to an existing object, you will want to c
a new copy of an existing object.

This goal is achieved through a call to a function called clone. If y is attached to an
object OY, the expression

clone (y)

O1

O1

x

x

BEFORE

AFTER

THE RUN-TIME STRUCTURE: OBJECTS§8.6246

ction

o
e clone

Cloning an
object

“The form of clone
and equality opera-
tions”, page 274.
denotes a new object OX, such that OX has the same number of fields as OY, each field
of OX being identical to the corresponding field of OY. If y is void, the value of clone (y)
is also void.

To duplicate the object attached to y and attach the resulting object to x (or make x
void if y is void), you may use a call to clone in an assignment:

[1]

x := clone (y)

Here is an illustration of this mechanism.

We similarly need a mechanism to compare two objects. The expression x = y, as
noted, fulfills another purpose: comparing references. For objects, we will use fun
equal. The call

equal (x, y)

returns a boolean value, true if and only if x and y are either both void, or attached to tw
objects whose corresponding fields have the same values. If a system executes th
assignment [1], the state immediately following that assignment will satisfy equal (x, y).

You may wonder why function clone has an argument, and equal two arguments treated
symmetrically, rather than being called under forms closer to the usual object-oriented
style, for example y●twin and x● is_equal (y). The answer appears in the discussion
section, but it is not too early to try to guess it.

OY

y
BEFORE

AFTER

'A'

783

OY

'A'

783

OX

'A'

783

y x

§8.6 OPERATIONS ON REFERENCES 247

s the

hes

es

e

ying

See chapter 11
about assertions.
Object copying

Function clone creates a new object as a carbon copy of an existing one. Sometime
target object already exists; all we want to do is to overwrite its fields. Procedure copy
achieves this. It is called through the instruction

x● copy (y)

for x and y of the same type; its effect is to copy the fields of the object attached to y onto
the corresponding ones of the object attached to x.

As with all feature calls, any call to copy requires the target x to be non-void. In
addition, y must also be non-void. This inability to deal with void values distinguis
copy from clone.

The requirement that y must be non-void is so important that we should have a way to
express it formally. The problem is in fact more general: how a routine can state the
preconditions on the arguments passed by its callers. Such preconditions, a case of the
more general notion of assertion, will be discussed in detail in a later chapter. Similarly,
we will learn to express as postconditions such fundamental semantic properties as the
observation made above that the result of a clone will satisfy equal.

Procedure copy may be considered more fundamental than function clone in the
sense that we can, at least for a class with no creation procedure, express clone in terms of
copy through the following equivalent function:

clone (y: SOME_TYPE) is

-- Void if y is void; otherwise duplicate of object attached to y

do

if y /= Void then

!! Result -- Valid only in the absence of creation procedur

Result● copy (y)

end

end

On execution of a function call, Result is automatically initialized using the sam
rules defined above for attributes. This is the reason why the if needs no else: since Result
is initialized to Void, the result of the above function is a void value if y is void.

Deep clone and comparison

The form of copy and comparison achieved by routines clone, equal and copy may be
called shallow since these operations work on an object at the first level only, never tr
to follow references. There will also be a need for deep variants which recursively
duplicate an entire structure.

THE RUN-TIME STRUCTURE: OBJECTS§8.6248

bject

d
f O4,
it

ively,
. The

in

rectly
7.
ct O5,

y must
ine

tines.
To understand the differences assume for example that we start with the o
structure appearing in black (except for the attribute and class names) under A in the figure
on the facing page, where the entity a is attached to the object labeled O1.

For purposes of comparison, consider first the simple reference assignment

b := a

As pictured under B, this simply attaches the assignment’s target b to the same object
O1 to which the source a was attached. No new object is created.

Next consider the cloning operation

c := clone (a)

This instruction will, as shown under C, create a single new object O4, field-by-fiel
identical to O1. It copies the two reference fields onto the corresponding fields o
yielding references that are attached to the same objects O1 and O3 as the originals. But
does not duplicate O3 itself, or any other object other than O1. This is why the basicclone
operation is known as shallow: it stops at the first level of the object structure.

Note that a self-reference has disappeared: the landlord field of O1 was attached to O1
itself. In O4 this field becomes a reference to the original O1.

In other cases, you may want to go further and duplicate a structure recurs
without introducing any sharing of references such as occurred in the creation of O4
function deep_clone achieves this. Instead of stopping at the object attached to y, the
process of creating deep_clone (y) recursively follows any reference fields contained
that object and duplicates the entire structure. (If y is void the result is void too.) The
function will of course process cyclic reference structures properly.

The bottom part of the figure, labeled D, illustrates the result of executing

d := deep_clone (a)

This case introduces no new sharing; all the objects accessible directly or indi
from O1 (the object attached to a) will be duplicated, yielding new objects O5, O6 and O
There is no connection between the old objects (O1, O2 and O3) and the new. Obje
mimicking O1, has a self-reference.

In the same way that we need both deep and shallow clone operations, equalit
have a deep variant. The deep_equal function compares two object structures to determ
whether they are structurally identical. In the figure’s example, deep_equal holds between
any two of a, b and d; but whereas equal (a, c) is true, since the corresponding objects O1
and O4 are field-by-field identical, equal (a, d) is false. In fact equal does not hold
between d and any of the other three. (Both equal (a, b) and equal (b, c) hold.) In the
general case we may note the following properties:

• After an assignment x := clone (y) or a call x●copy (y), the expression equal (x, y) has
value true. (For the first assignment this property holds whether or not y is void.)

• After x := deep_clone (y), the expression deep_equal (x, y) has value true.

These properties will be expressed as postconditions of the corresponding rou

§8.6 OPERATIONS ON REFERENCES 249

Various forms
of assignment
and cloning
(PERSON1)

"Almaviva"name

landlord

loved_one

(PERSON1)

"Figaro"name

landlord

loved_one

(PERSON1)

"Susanna" name

landlord

loved_one

a

O2

O1

O3

B Effect of b := a

b

A Initial state

C Effect of c := clone (a)

"Almaviva"name

landlord

loved_one

O4

c

(PERSON1)

"Almaviva"name

landlord

loved_one

(PERSON1)

"Figaro"name

landlord

loved_one

(PERSON1)

"Susanna" name

landlord

loved_one

d

O6

O5

O7

D Effect of d := deep_clone (a)

THE RUN-TIME STRUCTURE: OBJECTS§8.6250

ments
thod.

ut of
d with
, this
ases,

r

s
ning of

a class
ut

 of the
es (C,
to be
hich

d O-O

major
nted in
s well.

hese

ntain
trieval
cess,
Deep storage: a first view of persistence

The study of deep copy and equality leads to another mechanism which, in environ
where it is available, provides one of the great practical advantages of the O-O me

So far, the discussion has not examined the question of input and output. B
course an object-oriented system will need to communicate with other systems an
the rest of the world. Since the information it manipulates is in the form of objects
means it must be able to write and read objects to and from files, datab
communication lines and various devices.

For simplicity this section will assume that the problem is to write to and write from files,
and will use the terms “storage” and “retrieval” for these operations (“input” and “output”
would also be adequate.) But the mechanisms studied must also be applicable fo
exchanging objects with the outside world through other means of communication, for
example by sending and receiving objects through a network.

For instances of such classes as POINT or BOOK1, storage and retrieval of object
raise no particular novelty. These classes, used as the first examples at the begin
this chapter, have attributes of types such as INTEGER, REAL and STRING, for which
well-understood external representations are available. Storing an instance of such
into a file, or retrieving it from that file, is similar to performing an output or inp
operation on a Pascal record or a C structure. Account must be taken, of course,
peculiarities of data representations on different machines and in different languag
for example, has a special convention for strings, which the language expects
terminated by a null character); but these are well-known technical problems for w
standard solutions exist. So it is reasonable to expect that for such objects a goo
environment could provide general-purpose procedures, say read and write, which, in the
manner of clone, copy and consorts, would be available to all classes.

But such mechanisms will not take us very far because they do not handle a
component of the object structure: references. Since references can be represe
memory (as addresses or otherwise) it is possible to find an external representation a
That is not the difficult part of the problem. What matters is the meaning of t
references. A reference attached to an object is worthless without that object.

So as soon as we start dealing with non-trivial objects — objects that co
references — we cannot satisfy ourselves any more with a storage and re
mechanism that would just work on individual objects; the mechanism must pro
together with an object, all its dependents according to the following definition:

Definition: direct dependents, dependents

The direct dependents of an object are the objects attached to its reference
fields, if any.

The dependents of an object are the object itself and (recursively) the
dependents of its direct dependents

§8.6 OPERATIONS ON REFERENCES 251

 be

 In the
e

Three mutually
dependent
objects

“Book” and
“Writer”
objects
With the object structure shown below (identical to earlier examples), it would
meaningless to store into a file, or transmit over a network, just the object O1. The
operation must also include the dependents of O1: O2 and O3.

In this example any one of the three objects has the other two as dependents.
BOOK3 example reproduced below, we may store W1 by itself, and whenever we stor
B1 or B2 we must store W1 as well.

The notion of dependent was implicitly present in the presentation of deep_equal.
Here is the general rule:

(PERSON1)

"Almaviva"name

landlord

loved_one

(PERSON1)

"Figaro"name

landlord

loved_one

(PERSON1)

"Susanna" name

landlord

loved_one

O1

O2 O3

"Life of Rossini"

1823

title

date

(BOOK3)

307
count

"The R. and the B."

1832

title

date

(BOOK3)

307page_
count

(WRITER)

"Stendhal"

"Henri Beyle"

name

real_name

1783birth_ year

1842death_ year

author author

page_

W1

B2B1

THE RUN-TIME STRUCTURE: OBJECTS§8.6252

s the

the

f

ies

on the

n have

s.

lso

or

se

ture.

d

that

m,

See “ASSIGNMENT
ATTEMPT”, 16.5,
page 591.
The basic mechanism which will achieve this for our purposes is known a

STORABLE facility from the name of the Base library class which includes

corresponding features. The basic features of STORABLE are of the form:

store (f: IO_MEDIUM)

retrieved (f: IO_MEDIUM): STORABLE

The effect of a call of the form x● store (f) is to store the object attached to x, together

with all its dependents, in the file associated with f. The object attached to x is said to be

the head object of the stored structure. The generating class of x must be a descendant o

STORABLE (that is to say, it must inherit directly or indirectly from STORABLE); so you

will have to add STORABLE to the list of its parents if it is not already there. This appl

only to the generating class of the head object; there is no particular requirement

generating classes of the dependent objects — fortunately, since a head object ca

an arbitrary number of direct and indirect dependents, instances of arbitrary classe

Class IO_MEDIUM is another Base library class, covering not only files but a

structures for network transmission. Clearly f must be non-void and the attached file

transmission medium must be writable.

The result of a call retrieved (f) is an object structure recursively identical, in the sen

of deep_clone, to the complete object structure stored in f by an earlier call to store. Feature

retrieved is a function; its result is a reference to the head object of the retrieved struc

If you have already acquired a basic understanding of inheritance and of the associate
type rules, you may have noted that retrieved raises a typing problem. The result of this
function is of type STORABLE; but it seems that its normal use will be in assignments of
the form x := retrieved (f) where the type of x is a proper descendant of STORABLE, not

STORABLE itself, even though the type rules will permit x := y only if the type of y is a
descendant of the type of x — not the other way around. The key to this problem will be
an important construct, the assignment attempt. All this will be examined in detail when
we study inheritance and the associated type rules.

The STORABLE mechanism is our first example of what is known as a persistence
facility. An object is persistent if it survives individual sessions of the systems

manipulate it. STORABLE only provides a partial solution to the persistence proble

suffering from several limitations:

Persistence Closure principle

Whenever a storage mechanism stores an object, it must store with it the
dependents of that object. Whenever a retrieval mechanism retrieves a
previously stored object, it must also retrieve any dependent of that object
that has not yet been retrieved.

§8.6 OPERATIONS ON REFERENCES 253

head

jects
abase

t use
joint.

notion
mber of
ema
?) and

its of
t the
use of
hout
ming
 you
rsive
ch are
rt is
n the

ject

n
 or a
nd to
ficient
ctures
ulties
uring
ou

nted

Chapter 31.
• In the structure stored and retrieved, only one object is known individually: the
object. It may be desirable to retain the identity of other objects too.

• As a consequence, the mechanism is not directly usable to retrieve ob
selectively through contents-based or keyword-based queries as in dat
management systems.

• A call to retrieved recreates the entire object structure. This means that you canno
two or more such calls to retrieve various parts of a structure, unless they are dis

To address this problem is to move from a mere persistence mechanism to the
of object-oriented database, presented in a later chapter, which also discusses a nu
issues associated with STORABLE and other persistence mechanisms, such as sch
evolution (what happens when you retrieve an object and its class has changed
persistent object identity.

But the above limitations should not obscure the considerable practical benef
the STORABLE mechanism as described above. In fact one may conjecture tha
absence of such a mechanism has been one of the major obstacles to the
sophisticated data structures in traditional development environments. Wit
STORABLE or its equivalent, storing a data structure becomes a major program
effort: for every kind of structure that you want to endow with persistence properties
must write a special input and output mechanism, including a set of mutually recu
procedures (one for each type) and special-purpose traversal mechanisms (whi
particularly tricky to write in the case of possibly cyclic structures). But the worst pa
not even the work that you have to do initially: as usual, the real trouble comes whe
structure changes and you have to update the procedures.

With STORABLE a predefined mechanism is available regardless of your ob
structure, its complexity, and the software’s evolution.

A typical application of the STORABLE mechanism is a SAVE facility. Consider a
interactive system, for example a text editor, a graphical editor, a drafting program
computer-aided design system; it needs to provide its users with a SAVE comma
store the state of the current session into a file. The information stored should be suf
to restart the session at any later time, so it must include all the important data stru
of the system. Writing such a procedure in an ad hoc fashion suffers from the diffic
mentioned; in particular, you will have to update it whenever you change a class d
development. But with the STORABLE mechanism and a good choice of head object, y
can implement the SAVE facility using a single instruction:

head● store (save_file)

Just by itself, this mechanism would suffice to recommend an object-orie
environment over its more traditional counterparts.

THE RUN-TIME STRUCTURE: OBJECTS§8.7254

ves an
values

nces to
ects:

 type

. The
t we
 this
thing

es to
er

r

of

in the
re
8.7 COMPOSITE OBJECTS AND EXPANDED TYPES

The preceding discussion described the essentials of the run-time structure. It gi
important role to references. To complete the picture, we must see how to handle
which are not references to objects, but the objects themselves.

References are not sufficient

The values considered so far, save for integers, booleans and the like, were refere
objects. Two reasons suggest that we may also need entities whose values are obj

• An important goal announced in the last chapter is to have a completely uniform
system, in which basic types (such as BOOLEAN and INTEGER) are handled in the
same way as developer-defined types (such as POINT or BOOK). But if you use an
entity n to manipulate an integer, you will almost always want the value of n to be
an integer, for example 3, not a reference to an object containing the value 3
reason is partly efficiency — think of the penalty in both time and space tha
would have to incur if every integer access were indirect; just as important in
case is the goal of faithful modeling. An integer is conceptually not the same
as a reference to an integer.

• Even with complex, developer-defined objects, we may prefer in some cas
consider that object O1 contains a subobject O2, rather than a reference to anoth
object O2. The reason again may be efficiency, faithful modeling or both.

Expanded types

The answer to the need for modeling composite objects is simple. Let C be a class
declared, as all classes so far, under the form

class C feature
…

end

C may be used as a type. Any entity declared of type C represents a reference; fo
that reason C is called a reference type.

Now assume that we need an entity x whose value at run time will be an instance
C — not a reference to such an instance. We may obtain this effect by declaring x as

x : expanded C

This notation uses a new keyword, expanded. The notation expanded C denotes a
type. The instances of this type are exactly the same as the instances of C. The only
difference affects declarations using these types: an entity of type C denotes a reference
which may become attached to an instance of C; an entity of type expanded C, such as x
above, directly denotes an instance of C.

This mechanism adds the notion of composite object to the structure defined
preceding sections. An object O is said to be composite if one or more of its fields a

§8.7 COMPOSITE OBJECTS AND EXPANDED TYPES 255

s

n

e new
en

type”

A composite
object with one
subobject
themselves objects — called subobjects of O. The following example class (routine
again omitted) shows how to describe composite objects:

class COMPOSITE feature

ref: C

sub: expanded C

end

This class relies on C declared as above. COMPOSITE has two attributes: ref,
denoting a reference, and sub, denoting a subobject; sub is what makes the class
composite. Any direct instance of COMPOSITE may look like this:

The ref field is a reference attached to an instance of C (or void). The sub field
(which cannot be void) contains an instance of C.

A notational extension is convenient here. You may sometimes write a class E with
the intention that all entities declared of type E should be expanded. To make this intentio
explicit, declare the class as

expanded class E feature

… The rest as for any other class …
end

A class defined in this manner is said to be an expanded class. Here too th
declaration changes nothing for instances of E: they are the same as if the class had be
declared as just class E … But an entity declared of type E will now denote an object, not
a reference. As a consequence of this new possibility, the notion of “expanded
includes two cases:

Definition: expanded type

A type is said to be expanded in the following two cases:

• It is of the form expanded C.

• It is of the form E, where E is an expanded class.

 ref

(COMPOSITE)

sub (C)
(C)

THE RUN-TIME STRUCTURE: OBJECTS§8.7256

lare

ntities
s is an
.

, you
s. This
nce —
lso a

selves.

key
tware
rately
 issue

ly

allow
o or

jects.
It is not a mistake to declare an entity x as being of type expanded E if E is an
expanded class, just useless, since the result in this case is the same as if you decx to
be just of type E.

We now have two kinds of type; a type which is not expanded is a reference type (a
term already used in this chapter). We may apply the same terminology to the e
correspondingly declared: reference entities and expanded entities. Similarly, a clas
expanded class if it has been declared as expanded class…, a reference class otherwise

The role of expanded types

Why do we need expanded types? They play three major roles:

• Improving efficiency.

• Providing better modeling.

• Supporting basic types in a uniform object-oriented type system.

The first application may be the most obvious at first: without expanded types
would have to use references every time you need to describe composite object
means that accessing their subobjects would require an operation to follow a refere
“dereferencing”, as it is sometimes called – which implies a time penalty. There is a
space penalty, as the run-time structure must devote space to the references them

This performance argument is not, however, the prime justification. The
argument, in line with this chapter’s general emphasis on object-oriented sof
construction as a modeling activity, is the need to model composite objects sepa
from objects that contain references to other objects. This is not an implementation
but a conceptual one.

Consider the two attribute declarations

D1 • ref: S

D2 • exp: expanded S

appearing in a class C (and assuming that S is a reference class). Declaration D1 simp
expresses that every instance of C “knows about” a certain instance of S (unless ref is
void). Declaration D2 is more committing: it states that every instance of C contains an
instance of S. Aside from any implementation issue, this is a quite different relation.

In particular, the “contains” relation as provided by expanded types does not
any sharing of the contained elements, whereas the “knows about” relation allows tw
more references to be attached to the same object.

You may apply this property to ensure proper modeling of relations between ob
Consider for example this class declaration:

§8.7 COMPOSITE OBJECTS AND EXPANDED TYPES 257

ssing
re part
. The
 same
e first

 an
ed in
art-
ar in

cond.
on the
s. The

 can

All classes shown
are assumed to be
reference (non-
expanded) classes.

“Knows about”
and “contains”
relations
between
objects

See “A UNIFORM
TYPE SYSTEM”, 7.4
page 171. The outline
of class REAL was on
page 189.
class WORKSTATION feature

k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK
…

end

Under this model a computer workstation has a keyboard, a CPU (central proce
unit) and a monitor, and is attached to a network. The keyboard, CPU and monitor a
of a single workstation, and cannot be shared between two or more workstations
network component, however, is shared: many workstations can be hooked up to the
network. The class definition reflects these properties by using expanded types for th
three attributes, and a reference type for the network attribute.

So the concept of expanded type, which at first sight appears to be
implementation-level technique, actually helps describe some of the relations us
information modeling. The “contains” relation, and its inverse often known as “is-p
of ”, are central to any effort at building models of external systems; they appe
analysis methods and in database modeling.

The third major application of expanded types is in fact a special case of the se
The previous chapter emphasized the desirability of a uniform type system, based
notion of class, which must encompass both developer-defined types and basic type
example of REAL was used to show how, with the help of infix and prefix features, we

(WORKSTATION)

KEYBOARD1

CPU1

MONITOR1

(WORKSTATION)

KEYBOARD1

CPU2

MONITOR2

(WORKSTATION)

KEYBOARD1

CPU3

MONITOR3

(NETWORK)

k

c

m

n

k

c

m

n

k

c

m

n

,

THE RUN-TIME STRUCTURE: OBJECTS§8.7258

r basic
e
 as

f type

ments
tween

ation”
n (an

 define

clare

client”

of
l client
n-like
etween

mit

und
ions:

ences.
“Void references and
calls”, page 240.
indeed model the notion of real number as a class; we can do the same for the othe
types BOOLEAN, CHARACTER, INTEGER, DOUBLE. But a problem remains. If thes
classes were treated as reference classes, an entity declared of a basic type, such

r : REAL

would at run time denote a reference to a possible object containing a value (here o
REAL). This is unacceptable: to conform to common practice, the value of r should be the
real value itself. The solution follows from the earlier discussion: define class REAL as
expanded. Its declaration will be

expanded class REAL feature
… Feature declarations exactly as given earlier (see page 189) …

end

All the other basic types are similarly defined by expanded classes.

Aggregation

In some areas of computing science — databases, information modeling, require
analysis — authors have developed a classification of the relations that may hold be
elements of a modeled system. Often mentioned in this context is the “aggreg
relation, which serves to express that every object of a certain type is a combinatio
aggregate) of zero or more objects, each of a specified type. For example we might
“car” as an aggregation of “engine”, “body” etc.

Expanded types provide the equivalent mechanism. We may for example de
class CAR with features of types expanded ENGINE and expanded BODY. Another way
to express this observation is to note that aggregation is covered by the “expanded
relation, where a class C is said to be an expanded client of a class S if it contains a
declaration of a feature of type expanded S (or just S if S is expanded). One advantage
this modeling approach is that “expanded client” is just a special case of the genera
relation, so that we can use a single framework and notation to combine aggregatio
dependencies (that is to say, dependencies on subobjects, such as the relation b
WORKSTATION and KEYBOARD in the earlier example) with dependencies that per
sharing (such as the relation between WORKSTATION and NETWORK).

With the object-oriented approach, one can avoid the multiplicity of relations fo
in the information modeling literature, and cover all possible cases with just two relat
client (expanded or not) and inheritance.

Properties of expanded types

Consider an expanded type E (of either form) and an expanded entity x of type E.

Since the value of x is always an object, it can never be void. So the expression

x = Void

will always yield the value false, and a call of the form x●some_ feature (arg1, …) will
never raise the exception “call on void target” that was possible in the case of refer

§8.7 COMPOSITE OBJECTS AND EXPANDED TYPES 259

ether

s:

o

ation
more

ed
ively,

usable
h, as

t make

ady

See “Effect of a
basic creation
instruction”, page
233.

Cycles in the client
relation were stud-
ied in “Self-refer-
ence”, page 226.
Let object O be the value of x. As with the case of a non-void reference, x is said to
be attached to O. So for any non-void entity we may talk of the attached object, wh
the entity is of reference or expanded type.

What about creation? The instruction

!! x

may be applied to an expanded x. For reference x, its effect was to perform three step
(C1) create a new object; (C2) initialize its fields to the default values; (C3) attach it to x.
For expanded x, step C1 is inappropriate, and step C3 is unneeded; so the only effect is t
set all fields to their default values.

More generally, the presence of expanded types affects the default initializ
performed as part of C2. Assume a class, expanded or not, having one or
expanded attributes:

class F feature
u: BOOLEAN
v: INTEGER
w: REAL
x: C
y: expanded C
z: E
…

end

where E is expanded but C is not. The initialization of a direct instance of F involves
setting the u field to false, the v field to 0, the w field to 0.0, the x field to a void reference,
and the y and z to instances of C and E respectively, whose fields are themselves initializ
according to the standard rules. This initialization process is to be applied recurs
since C and E may themselves include expanded fields.

As you may have realized, a restriction is necessary for expanded types to be
(to ensure that the recursive process just defined always remains finite): althoug
discussed earlier, the client relation may in general include cycles, such cycles mus
no use of expanded attributes. For example it is not permitted for class C to have an
attribute of type expanded D if class D has an attribute of type expanded C; this would
mean that every object of type C includes a subobject of type D and conversely — a clear
impossibility. Hence the following rule, based on the notion of “expanded client” alre
introduced informally above:

Expanded Client rule

Let “expanded client” the relation between classes be defined as follows: C
is an expanded client of S if some attribute of C is of an expanded type based
on S (that is to say expanded S, or just S if S is an expanded class).

Then the expanded client relation may not include any cycles.

THE RUN-TIME STRUCTURE: OBJECTS§8.7260

f

nces
ss, may
ts:

C in
he

object,
sing,
 state
OC, a

A subobject
with a
reference to
another object
In other words there may not be a set of classes A, B, C, … N such that A is an
expanded client of B, B an expanded client of C etc., with N being an expanded client o
A. In particular, A may not have an attribute of type expanded A, as this would make A an
expanded client of itself.

No references to subobjects

A final comment about expanded types will answer the question of how to mix refere
and subobjects. An expanded class, or an expanded type based on a reference cla
have reference attributes. So a subobject may contain references attached to objec

The situation pictured assumes the following declarations:

class COMPOSITE1 feature
other: SOME_TYPE
sub: expanded C

end

class C feature
ref: D

x: OTHER_TYPE; y: YET_ANOTHER_TYPE
end

class D feature
…

end

Each COMPOSITE instance, such as O_COMP in the figure, has a subobject (O
the figure) containing a reference ref which may be attached to an object (OD in t
figure).

But the reverse situation, where a reference would become attached to a sub
is impossible. (This will follow from the rules on assignment and argument pas
studied in the next section.) So the run-time structure can never come to the
described by the picture on the facing page, where OE contains a reference to
subobject of O_CMP1, and OC similarly contains a reference to itself.

other

(COMPOSITE1)

sub

(D)
(C)

OD

OC

O_COMP

ref

x

y

§8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS 261

ch.
t this

st be
re few
tion.

d out
ct.

 be

ng.)

at two

e what

ase in
me a

al

A reference to
a subobject

Garbage collection
is studied in the nex
chapter.

If skipping, go to
“DEALING WITH
REFERENCES:
BENEFITS AND
DANGERS”, 8.9,
page 265.
This rule is open to criticism since it limits the modeling power of the approa
Earlier versions of this book’s notation did in fact permit references to subobjects. Bu
possibility was found to cause more problems than it was worth:

• From the implementation’s perspective, the garbage collection mechanism mu
prepared to deal with subobject references even if in a given execution there a
such references, or none at all. This caused a significant performance degrada

• From the viewpoint of modeling, excluding subobject references actually turne
to simplify system descriptions by defining a single unit of referencing, the obje

The discussion will point out what precise attachment rule would have to
modified to revert to the scheme in which references may be attached to subobjects.

8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS

(This section covers more specialized information and you may skip it on first readi

The introduction of expanded types means that we must take a second look
fundamental operations studied earlier in this chapter: assignment, written :=, which
attaches a reference to an object, and the associated comparison operation, written =. Since
entities may now denote objects as well as references to objects, we must decid
assignment and equality will mean in the first of these cases.

Attachment

The semantics of assignment will actually cover more than this operation. Another c
which the value of an entity may change is argument passing in routine calls. Assu
routine (procedure or function) of the form

r (…, x: SOME_TYPE, …)

Here entity x is one of the formal arguments of r. Now consider a particular call to
r, of one of the possible two forms (unqualified and qualified):

r (…, y, …)
t ●r (…, y, …)

where expression y is the actual argument having the same position in the list of actu
arguments as x has in the list of formal arguments.

other

(COMPOSITE1)

sub

(E)

(C)

OE

OC

O_CMP1

ref

x

y
WARNING:

IMPOSSIBLE SITUATION
(FOR PURPOSES OF
ILLUSTRATION ONLY)

t

THE RUN-TIME STRUCTURE: OBJECTS§8.8262

f its

ment
 initial

er an
 effect

nment.

e

not
ent of
ions
Whenever r gets started as a result of one of these calls, it initializes each o
formal arguments with the value of the corresponding actual argument, such as y for x.

For simplicity and consistency, the rules governing such actual-formal argu
associations are the same as the rules governing assignment. In other words, the
effect on x of such a call is exactly as if x were the target of assignment of the form

x := y

This rule yields a definition:

Exactly the same rules will be applicable in both cases to determine wheth
attachment is valid (depending on the types of its target and source) and, if it is, what
it will have at execution time.

Reference and copy attachment

We have seen a first rule for the effect of attachment when studying reference assig
If both source and target are references, then the effect of an assignment

x := y

and of the corresponding argument passing is to make x denote the same reference as y.
This was illustrated through several examples. If y is void prior to the attachment, th
operation will make x void too; if y is attached to an object, x will end up attached to the
same object.

What now if the types of x and y are expanded? Reference assignment would
make sense, but a copy (the shallow form) is possible. The meaning of an attachm
an expanded source to an expanded target will indeed be a copy. With the declarat

x, y: expanded SOME_CLASS

the assignment x := y will copy every field of the object attached to y onto the
corresponding field of the object attached to x, producing the same effect as

x● copy (y)

which of course is still legal in this case. (In the case of reference types, x := y and
x● copy(y) are both legal but have different effects.)

Definition: attachment

An attachment of y to x is either of the following two operations:

• An assignment of the form x := y.

• The initialization of x at the time of a routine call, where x is a formal
argument of a routine and y is the corresponding actual argument in
the call.

In both cases, x is the target of the attachment and y its source.

§8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS 263

 of the

ration:

s:
ect.
 use

 the

e same
s?

ed to

.
, are

t

jects,

“Fixed semantics
for copy, clone and
equality features”,
page 583.

See chapter 12, in
particular “Sources
of exceptions”, page
412.
This copy semantics for expanded types yields the expected effect in the case
basic types which, as noted above, are all expanded. For example if m and n have been
declared of type INTEGER, you will expect the assignment m := n, or a corresponding
argument passing, to copy the value of n onto that of m.

The analysis just applied to attachment transposes immediately to a related ope
comparison. Consider the boolean expressions x = y and x /= y, which will have opposite
values. For x and y of reference types, as already noted, the tests compare referencex =
y yields true if and only if x and y are either both void or both attached to the same obj
For expanded x and y, this would not make sense; the only acceptable semantics is to
field-by-field comparison, so that in this case x = y will have the same value as equal (x, y).

It is possible, as we will see in the discussion of inheritance, to adapt the semantics of
equal to support a specific notion of equality for the instances of some class. This has no
effect on the semantics of =, which, for safety and simplicity, is always that of the original
function standard_equal.

The basic rule for attachment and comparison, then, is summarized by
following observation:

Hybrid attachments

In the cases seen so far, the source and target types of an attachment are of th
category — both expanded or both reference. What if they are of different categorie

First consider x := y where the target x is of an expanded type and the source y is of a
reference type. Because reference assignment does not make sense for x, the only acceptable
semantics for this attachment is copy semantics: copy the fields of the object attachy
onto the corresponding fields of the object attached to x. This is indeed the effect of the
assignment in this case; but it only makes sense if y is non-void at the time of execution
(otherwise there is no attached object). If y is void, the result will be to trigger an exception
The effect of exceptions, and the specification of how to recover from an exception
discussed in a later chapter.

For expanded x, the test x = Void does not cause any abnormal event; it simply yields the
result false. But there is no way we can find an acceptable semantics for the assignmen
x := Void, so any attempt at executing it causes an exception.

Now consider the other case: x := y where x is of a reference type and y is of an
expanded type. Then at run time y is always attached to an object, which we may call OY,
and the attachment should also attach x to an object. One possibility would be to attach x to
OY. This convention, however, would introduce the possibility of references to subob
as in routine reattach below:

An attachment of y to x is a copy of objects x if x and y are of expanded types
(including any of the basic types). It is a reference attachment if x and y are
of reference types.

Similarly, an equality or inequality test x = y or x /= y is a comparison of
objects for x and y of expanded types; it is a comparison of references if x and
y are of reference types.

THE RUN-TIME STRUCTURE: OBJECTS§8.8264

a case

 of the

ied:

ntics

 the

Effect of
attachment
x := y
class C feature
…

end

class COMPOSITE2 feature

x: C

y: expanded C

reattach is

do x := y end
end

If, as suggested earlier, we prohibit references to subobjects, we may in such
prescribe that the attachment perform a clone of OY. This will indeed be the effect of the
attachment for expanded source and reference target: attach the target to a clone
source object.

The following table summarizes the semantics of attachment in the cases stud

To allow references to subobjects, it would suffice to replace the clone sema
defined in the top-right entry by the semantics of reference attachment.

Equality comparison

The semantics of equality comparison (the = and /= signs) should be compatible with
the semantics of attachment: if y /= z is true and you execute x := y, then both x = y and
x /= z should be true immediately after the assignment.

Besides =, we have seen that there is an operation equal applicable to objects. Which
of these operations is available depends on the circumstances:

E1 • If x and y are references, you can test both for reference equality and, if
references are not void, for object equality. We have defined the operation x = y as
denoting reference equality in this case. The equal function was introduced to
cover object equality; for completeness it also applies when x or y is void
(returning true in this case only if both are).

Type of source y →

↓ Type of target x

Reference Expanded

Reference
Reference attachment Clone; effect of

x := clone (y)

Expanded
Copy; effect of

x●copy (y)
(will fail if y is void)

Copy; effect of
x● copy (y)

§8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS 265

ison.

ful

hich
kes

ter or
 in an
n, for
em to

serve
dual

ity tests
ands.

Meaning of
comparison
x = y
E2 • If x and y are expanded, the only operation that makes sense is object compar

E3 • If x is a reference and y is expanded, object equality is also the only meaning
operation — again extended to accept void x, in which case it will return false since
y cannot be void.

This analysis yields the desirable interpretation for = in all cases. For object
comparison, equal is always available, conveniently extended to deal with cases in w
one or both operands are void. = serves to apply reference comparison when it ma
sense, defaulting to equal in other cases:

By comparing with the preceding table, you may check that = and /= are indeed
compatible with := in the sense defined above. Recall in particular that equal (x, y) will be
true as a result of x := clone (y) or x● copy (y).

This issue that we have just settled arises in any language which includes poin
references (such as Pascal, Ada, Modula-2, C, Lisp etc.), but is particularly acute
object-oriented language in which all non-basic types are reference types; in additio
reasons explained in the discussion section, the syntax does not explicitly show th
be references, so we need to be particularly careful.

8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS

Two properties of the run-time model, as introduced in the preceding sections, de
further examination. One is the important role of references; the other is the
semantics of basic operations such as assignment, argument passing and equal
which, as we have seen, produce different effects for reference and expanded oper

Dynamic aliasing

If x and y are of reference types and y is not void, the assignment x := y, or the
corresponding attachment in a call, causes x and y to be attached to the same object.

Type of y →

↓ Type of x

Reference Expanded

Reference
Reference comparison equal (x, y)

i.e. object comparison if x
non-void, false if x void.

Expanded
equal (x, y)
i.e. object comparison if y
non-void, false if y void.

equal (x, y)
i.e. object comparison.

THE RUN-TIME STRUCTURE: OBJECTS§8.9266

 of

g
 person

e

r

 effect

nt

n may

: the

ments
.

Sharing as a
result of an
attachment
The result is to bind x and y in a durable way (until any further assignment to any
them). In particular, an operation of the form x● f, where f is some feature of the
corresponding class, will have the same effect as y● f since they affect the same object.

The attachment of x to the same object as y is known as dynamic aliasing: aliasin
because the assignment makes an object accessible through two references, like a
known under two names; dynamic because the aliasing occurs at run time.

Static aliasing, where a software text specifies that two names will always denote the
same value regardless of what happens at execution time, is also possible in som
programming languages: the Fortran EQUIVALENCE directive states that two variables
will always denote the contents of the same memory location; and the C preprocesso
directive #define x y specifies that any further occurrence of x in the program text means
exactly the same thing as y.

Because of dynamic aliasing, attachment operations have a more far-reaching
on entities of reference types than on those of expanded types. If x and y are of type
INTEGER, an example of expanded type, the assignment x := y only resets the value of x
using that of y; but it does not durably bind x and y. For reference types, the assignme
causes x and y to become aliases for the same object.

The semantics of aliasing

A somewhat shocking consequence of aliasing (static or dynamic) is that an operatio
affect an entity that it does not even cite.

Models of computation that do not involve aliasing enjoy a pleasant property
correctness of such extracts as

[NO SURPRISE]

-- Assume that here P (y) holds

x := y

C (x)

-- Then here P (y) still holds.

This example assumes that P (y) is an arbitrary property of y, and C (x) some
operation whose textual description in the software may involve x but does not involve y.
Correctness here means that the property of “NO SURPRISE” expressed by the com
is indeed satisfied: if P (y) is true initially, then no action on x can invalidate this property
An operation on x does not affect a property of y.

'A'

783

x y

§8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS 267

 is s

r

id.
:

liasing,
tion.

bject-
ere is

.

es it
With entities of expanded types, property NO SURPRISE indeed holds. Here
typical example, assuming x and y of type INTEGER:

-- Assume that here y >= 0
x := y
x := –1
-- Then here y >= 0 still holds.

In no way can the assignment to x have any effect on y in this case. But now conside
a similar one involving dynamic aliasing. Let x and y be of type C, where class C is of the form

class C feature
boolattr: BOOLEAN

-- Boolean attribute, modeling some object property.
set_true is

-- Make boolattr true.
do

boolattr := True
end

… Other features …
end

Assume that y is of type C and that its value at some run-time instant is not vo
Then the following instance of the above scheme violates property NO SURPRISE

[SURPRISE, SURPRISE!]
-- Assume that y● boolattr is false.

x := y
-- Here it is still true that y● boolattr is false.

x● set_true
-- But then here y● boolattr is true!

The last instruction of this extract does not involve y in any way; yet one of its effects
is to change the properties of y, as indicated by the final comment.

Coming to terms with dynamic aliasing

Having seen the disturbing consequences of reference assignments and dynamic a
one may legitimately ask why we should keep such a facility in our model of computa

The answer is twofold — partly theoretical and partly practical:

• We need reference assignments if we are to benefit from the full power of the o
oriented method, in particular to describe complex data structures. The issue h
again to make sure that our tools are versatile enough for our modeling needs

• In the practice of object-oriented software construction, encapsulation mak
possible to avoid the dangers of reference manipulations.

Let us examine these two important aspects in turn.

x
y

boolattrFalse True

THE RUN-TIME STRUCTURE: OBJECTS §8.9268

quire
include
. In
tain a
tation,
s and
any
ore

lready
escribe

at two
 cause

stion,

a
ect,
 using
erous

ble to

A linked
circular list

Page 226.
Aliasing in software and elsewhere

The first observation is simply that many of the data structures we will need re
references and reference sharing. Some standard data structures, for example,
cyclically chained elements, which you cannot implement without references
representing list and tree structures, it is often convenient to let every node con
reference to its neighbor or parent. The figure below shows a circular list represen
combining both of these ideas. Open any textbook on fundamental data structure
algorithms, as used in introductory computing science courses, and you will find m
such examples. With object technology we will want, if anything, to use even m
sophisticated structures.

In fact the need for references, reference attachment and reference sharing a
arises with quite unsophisticated data structures. Recall the classes used above to d
books; one of the variants was

class BOOK3 feature
… Other features; …
author: WRITER

end

Here the need for reference sharing is simply a consequence of the property th
or more books may have the same author. Many of the examples of this chapter also
sharing; in the PERSON case, several people may have the same landlord. The que
as already noted, is modeling power, not just the requirements of implementation.

But then if b1 and b2 are two instances of BOOK3 with the same author, we have
case of aliasing: b1● author and b2● author are two references attached to the same obj
and using any of them as target of a feature call will have exactly the same effect as
the other. Seen in this light, dynamic aliasing appears less as a potentially dang
software facility than as a fact of life, the price to pay for the convenience of being a
refer to things under more than one name.

firstShared
references
(aliasing)

§8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS 269

ever
r any

l
are

with

assical
d
h
roy.
s and
s, one
nd the
n —

eling
uently
 these
how
tware,
imple

fic to
s as

bove
ically

Stendhal lived prior
to the establishmen
of the prize, of
course — and woul
probably not have
got it anyway; he did
not even make it to
the Académie.
It is indeed easy to find violations of the above NO SURPRISE property without
entering the software field. Consider the following property and operation, defined fo
book b:

• NOT_NOBEL (b) stands for: “the author of b has never received the Nobel prize”.

• NOBELIZE (b) stands for: “Give the Nobel prize to the author of b”.

Now assume rb denotes the book The Red and the Black and cp denotes The
Charterhouse of Parma. Then the following is a correct development:

[SURPRISE IN OSLO]
-- Assume that here NOT_NOBEL (rb) holds

NOBELIZE (cp)
-- Then here NOT_NOBEL (rb) does not hold any more!

An operation on cp has changed a property of a different entity, rb, not even named
in the instruction! The consequences on rb may actually be quite significant (with a Nobe
author an out-of-print book will be reprinted, its price may rise etc.). In this non-softw
case exactly the same thing happens as when the operation x● set_true, in the earlier
software example, produced an important effect on y even though it did not refer to y.

So dynamic aliasing is not just a consequence of programmers’ dirty tricks
references or pointers. It is a consequence of the human ability to name things (“objects”
in the most general sense of the word), and to give many names to one thing. In cl
rhetoric, this was known as a polyonymy, as with the use of “Cybele”, “Demeter” an
“Ceres” for the same goddess, and antonomasia, the ability to refer to an object throug
indirect phrases, as with “The beautiful daughter of Agammemnon” for Helena of T
Polyonymy, antonomasia and the resulting dynamic aliasing are not restricted to god
heroes; if in the cafeteria you overhear two conjectures from separate conversation
stating that the spouse of the engineering Vice President just got a big promotion a
other that the company has fired its accountant, you will not realize the contradictio
unless you know that the accountant is the VP’s husband.

Encapsulating reference manipulations

By now we have accumulated enough evidence that any realistic framework for mod
and software development must support the notion of reference, and conseq
dynamic aliasing. How then do we cope with the unpleasant consequences of
mechanisms? The inability to ensure the NO SURPRISE property illustrates
references and aliasing endanger our ability to reason systematically about our sof
that is to say, to infer run-time properties of the software’s execution, in a safe and s
way, by examining the software text.

To find an answer it helps to understand first how much of this issue is speci
the object-oriented method. If you are familiar with such programming language
Pascal, C, PL/I, Ada and Lisp you will probably have noted that much of the a
discussion applies to them as well. They all have a way of allocating objects dynam
(although in C the corresponding function, malloc, is in the library rather than the

t

d

THE RUN-TIME STRUCTURE: OBJECTS§8.10270

vel of
s are
nters in
 their

 the
scal or
but in
, any
rence
uld be

uiring
ation-
s lists
 others.
tions
uch
rence
e using
o as to

bject
ook at
 them
rary.
ple of

uld be
le by

ts and
o it is

ssues
e end
re that
rent

“Reuse consumers,
reuse producers”,
page 69.
language proper) and of letting objects contain references to other objects. The le
abstraction of the language mechanisms varies significantly: C and PL/I pointer
scantily dressed machine addresses; Pascal and Ada use typing rules to wrap poi
more respectable attire, although they do not need much prompting to return to
original state.

What then is new with object-oriented development? The answer lies not in
theoretical power of the method (whose run-time structures are similar to those of Pa
Ada, with the important difference of garbage collection, studied in the next chapter)
the practice of software construction. O-O development implies reuse. In particular
project in which many application classes perform tricky manipulations (such as refe
manipulation) is a flawed use of the object-oriented approach. Such operations sho
encapsulated once and for all in library classes.

Regardless of the application domain, if a system includes object structures req
non-trivial reference operations, the vast majority of these structures are not applic
specific but merely instances of such frequently needed and well-known structures a
of various kinds, trees under various representations, graphs, hash tables and a few
In a good O-O environment a library will be readily available, offering many implementa
of these structures; appendix A will sketch an example, the Base library. The classes of s
a library may contain many operations on references (think for example of the refe
manipulations needed to insert or delete an element in a linked list, or a node in a tre
linked representation). The library should have been patiently crafted and validated, s
take care of the tricky problems once and for all.

If, as you are building the application, you recognize the need for complex o
structures which are not adequately covered by the available libraries, you should l
them as requiring new general-purpose classes. You should design and check
carefully, under the expectation that in due time they will become part of some lib
Using the terminology introduced in an earlier chapter, such a case is an exam
moving from a consumer’s to a producer’s view of reuse.

The remaining reference manipulations in application-dependent classes sho
restricted to simple and safe operations. (The bibliographical notes cite an artic
Suzuki which explores this idea further.)

8.10 DISCUSSION

This chapter has introduced a number of rules and notations for manipulating objec
the corresponding entities. Some of these conventions may have surprised you. S
useful to conclude our exploration of objects and their properties by examining the i
involved and the reasons behind the choices made. Although I hope you will in th
agree with these choices, the more important goal of this discussion is to make su
you fully understand the underlying problems, so that even if you prefer a diffe
solution you choose it with your eyes open.

§8.10 DISCUSSION 271

re is
strate

ns of
ts are
ms, are
lasses:

ill be
le will
cution.
ere is
 both

ifferent
t (for
g class

h the
bject

aper
atures,

n for
posal
cts, then

, so we
ake up

nded
 smaller
 the

ent,

“The mold and the
instance”, page 167

On BON see the bi
liographical notes
and chapter 27.

From a review of
Martin and Odell’s
“Object-Oriented
Analysis and
Design”, in OOPS
(British Computer
Society O-O interes
group newsletter),
16, Winter 1992,
pages 35-37.
Graphical conventions

To warm up let us begin with a little notational issue — a detail, really, but softwa
sometimes in the details. This particular detail is the set of conventions used to illu
classes and objects in graphical representations.

The previous chapter emphasized the importance of not confusing the notio
class and object. Accordingly, the graphical representations are different. Objec
represented as rectangles. Classes, as they appear in system architecture diagra
represented by ellipses (connected by arrows representing the relations between c
single arrow for the inheritance relation, double arrow for the client relation).

Class and object representations appear in different contexts: a class ellipse w
part of a diagram representing the structure of a software system; an object rectang
be part of a diagram representing a snapshot of the state of a system during its exe
Because these two kinds of diagram address completely different purposes, th
usually no opportunity in paper presentations such as the present book for having
class and object representations appear in the same context. But the situation is d
with interactive CASE tools: during the execution of a software system, you may wan
example for debugging purposes) to look at an object, and then display its generatin
to examine the features, parents or other properties of that class.

The graphical conventions used for classes and objects are compatible wit
standard established by Nerson and Waldén’s BON method. In BON (Business O
Notation), which is meant for use in interactive CASE tools as well as for p
documentation, class bubbles can be stretched vertically so as to reveal a class’s fe
invariant, indexing words, and other properties.

As with any choice of graphical representation, there is no absolute justificatio
the conventions used in BON and in this book. But if the graphical symbols at our dis
are ellipses and rectangles, and the elements to be represented are classes and obje
it does appear preferable to assign rectangles to objects: an object is a set of fields
can represent each field by a small rectangle and glue together a set of fields to m
a bigger rectangle which represents an object.

A further convention, illustrated by the figures of this chapter, is to make expa
fields appear shaded, whereas references fields are blank; subobjects appear as
embedded rectangles, containing their own fields. All these conventions follow from
decision to use rectangles for objects.

On the lighter side, it is hard to resist quoting the following non-scientific argum
from Ian Graham’s critique of an O-O analysis book that uses a different convention:

Nor do I like showing classes as sharp cornered triangles. I like to think that
instances have sharp corners because if you drop them on your foot they
hurt, whereas classes can’t hurt anyone and therefore have rounded corners.

.

b-

t

THE RUN-TIME STRUCTURE: OBJECTS§8.10272

nces
gs for

 types:

reader

g the
imula

llows:

 The
 harm

ets of

able
 are of
tics, in
uality,
nd the

ave a
alue
tities

Simula, covered in
chapter 35, abbrevi-
ates reference to
ref.

Simula-style
notations for
operations on
reference and
expanded
values
References and simple values

An important syntactical question is whether we should deal differently with refere
and simple values. As noted, assignment and equality test have different meanin
references and for values of expanded types — the latter including values of basic
integers and the like. Yet the same symbols are used in both cases: :=, =, /=. Is this not
dangerous? Would it not be preferable to use different sets of symbols to remind the
that the meanings are different?

Using two sets of symbols was indeed the solution of Simula 67. Transposin
notation slightly so as to make it compatible with those of the present book, the S
solution is to declare an entity of a reference type C as

x: reference C

where the keyword reference reminds the reader that instances of x will be references.
Assuming the declarations

m, n: INTEGER
x, y: reference C

then different notations are used for operations on simple and reference types, as fo

The Simula conventions remove any ambiguity. Why not keep them then?
reason is that in practice they turn out in spite of the best intentions to cause more
than help. The problems begin with a mundane matter: typing errors. The two s
symbols are so close that one tends to make syntactical oversights, such as using := instead
of :–. Such errors will be caught by the compiler. But although compiler-check
restrictions in programming languages are meant to help programmers, the checks
no use here: either you know the difference between reference and value seman
which case the obligation to prove again, each time you write an assignment or eq
that you did understand this difference, is rather annoying; or you do not understa
difference, but then the compiler message will not help you much!

The remarkable aspect of the Simula convention is that you do not in fact h
choice: for references, no predefined construct is available that would give v
semantics. It might have seemed reasonable to allow two sets of operations on ena
and b of reference types:

• a :– b for reference assignment, and a == b for reference comparison.

• a := b for copy assignment (the equivalent, in our notation, of either a := clone (b) or
a ●copy (b)), and a = b for object comparison (the equivalent of our equal (a, b)).

OPERATION

EXPANDED
OPERANDS

REFERENCE
OPERANDS

Assignment m := n x :– y

Equality test m = n x == y

Inequality test m /= n x =/= y

§8.10 DISCUSSION 273

imula

bject

or

s for
t such
uite
t

 from
erent
f value
on all

pifies
etween

 in
n of

simple
uage
n. But
ch as

tions,
 more
But this is not the case; for operands of reference types, with one exception, S
only provides the first set of operations, and any attempt to use := or = will produce a
syntactical error. If you need operations of the second set (copy or clone, o
comparison), you must write specific routines corresponding to our clone, copy and equal
for each target class. (The exception is the TEXT type, representing character strings, f
which Simula does offer both sets of operations.)

On further examination, by the way, the idea of allowing both sets of operation
all reference types does not appear so clever. It would mean that a trivial oversigh
as typing := for :– would now go undetected by the compiler but produce an effect q
different from the programmer’s intent, for example a clone where a reference assignmen
was intended.

As a result of this analysis, the notation of this book uses a different convention
Simula’s: the same symbols apply for expanded and reference types, with diff
semantics (value in one case, reference in the other). You can achieve the effect o
semantics for objects of reference types by using predefined routines, available
types:

• a := clone (b) or a●copy (b) for object assignment.

• equal (a, b) for object (field-by-field) comparison.

These notations are sufficiently different from their reference counterparts (:= and =,
respectively) to avert any risk of confusion.

Beyond the purely syntactical aspects, this issue is interesting because it ty
some of the tradeoffs that arise in language design when a balance must be found b
conflicting criteria. One criterion, which won in the Simula case, may be stated as:

• “Make sure different concepts are expressed by different symbols”.

But the opposing forces, which dominated in the design of our notation, say:

• “Avoid bothering the software developer.”

• “Weigh carefully any new restriction against the actual benefits that it will bring
terms of security and other quality factors.” Here the restriction is the prohibitio
:= and similar operators for references.

• “Make sure that the most common operations can be expressed by short and
notations.” The application of this principle requires some care, as the lang
designer may be wrong in his guesses of what cases will be the most commo
in the present example it seems clear that on entities of expanded types (su
INTEGER) value assignment and comparison are the most frequent opera
whereas on references entities reference assignment and comparison are
frequent than clone, copy and object comparison. So it is appropriate to use := and =
for the fundamental operations in both cases.

THE RUN-TIME STRUCTURE: OBJECTS§8.10274

s they
sting

 the
oth

nisms
, such
ype.
lity
 actual

s in the
 such a
rm
al

a

 would
 kinds
s, you
antics

uld use

tines

ggest
 style
“THE OBJECT-
ORIENTED STYLE
OF COMPUTA-
TION”, 7.7, page
181.
• “To keep the language small and simple, do not introduce new notations unles
are absolutely necessary”. This applies in particular if, as in this example, exi
notations will do the job and there is no danger of confusion.

• “If you know there is a serious risk of confusion between two facilities, make
associated notations as different as possible.” This leads us to avoid making b:–
and := available for the same operands with different semantics.

One more reason plays a role in the present case, although it involves mecha
that we have not yet studied. In later chapters we will learn to write generic classes
as LIST [G], where G, known as a formal generic parameter, stands for an arbitrary t
Such a class may manipulate entities of type G and use them in assignments and equa
tests. Clients that need to use the class will do so by providing a type to serve as
generic parameter; for example they may use LIST [INTEGER] or LIST [POINT] . As
these examples indicate, the actual generic parameter may be an expanded type (a
first case) as well as a reference type (as in the second case). In the routines of
generic class, if a and b are of type G, it is often useful to use assignments of the fo
a := b or tests of the form a = b with the intent of obtaining value semantics if the actu
generic parameter is expanded (as with INTEGER) and reference semantics if it is
reference type (as with POINT).

An example of a routine which needs such dual behavior is a procedure for inserting an
element x into a list. The procedure creates a new list cell; if x is an integer, the cell must
contain a copy of that integer, but if x is a reference to an object the cell will contain a
reference to the same object.

In such a case the rules defined above ensure the desired dual behavior, which
have been impossible to achieve if a different syntax had been required for the two
of semantics. If, on the other hand, you want a single identical behavior in all case
can specify it too: that behavior can only be value semantics (since reference sem
does not make sense for expanded types); so in the appropriate routines you sho
not := and = but clone (or copy) and equal.

The form of clone and equality operations

A small point of style which may have surprised you is the form under which rou
clone and equal are called. The notations

clone (x)

equal (x, y)

do not look very O-O at first; a dogmatic reading of the previous chapter would su
conventions that seem more in line with what was there called “the object-oriented
of computation”; for example:

x● twin

x● is_equal (y)

§8.10 DISCUSSION 275

t they

n
, will
 set of

 tired
e the
ined,
results

t
 is a
es

 is
s and
ct it

and then is a variant
of and. See “Non-
strict boolean opera
tors”, page 454.

See also “Fixed se-
mantics for copy,
clone and equality
features”, page 583.
In a very early version of the notation, these were indeed the conventions. Bu
raise the problem of void references. A feature call of the form x● f (…) cannot be executed
correctly if, at run time, the value of x is void. (In that case the call will trigger an exceptio
which, unless the class contains specific provisions to recover from the exception
cause the execution of the entire system to terminate abnormally.) So the second
conventions would only work for non-void x. Because in many cases x may indeed be
void, this would mean that most uses of twin would in practice be of the form

if x = Void then

z := Void

else

z := x● twin

end

and most uses of is_equal of the form

if

((x = Void) and (y = Void)) or

((x /= Void) and then x● is_equal (y))

then

…

Needless to say, these conventions were not kept for long. We quickly became
of having to write such convoluted expressions — and even more of having to fac
consequences (run-time errors) when we forgot. The conventions finally reta
described earlier in this chapter, have the pleasant property of giving the expected
for void x: in that case clone (x) is a void value, and equal (x, y) is true if and only if y is
also void.

Procedure copy, called under the form x● copy (y), raises no particular problem: i
requires x (and also y) to be non-void, but this requirement is acceptable because it
consequence of the semantics of copy, which copies an object onto another and so do
not makes sense unless both objects exist. The condition on y, as explained in a later
chapter, is captured by an official precondition on copy and so is present in a clear form
in the documentation for this procedure.

It should be noted that a function is_equal as introduced above exists. The reason
that it is often convenient to define specific variants of equality, adapted to a clas
overriding the default semantics of field-by-field comparison. To obtain this effe
suffices to redefine function is_equal in the desired classes. Function equal is defined in
terms of is_equal (through the expression shown above to illustrate the use of is_equal),
and so will follow its redefinitions.

In the case of clone, there is no need for twin. This is because clone is simply defined
as a creation plus a call to copy. So to adapt the meaning of clone to the specific needs of
a class it suffices to redefine procedure copy for that class; clone will automatically follow.

-

THE RUN-TIME STRUCTURE: OBJECTS§8.11276

t your

tructs.
ry
rom
icular

gether
, we

ass —

ime

odels

 to an
nce).

bjects

es

form

“THE GLOBAL
INHERITANCE
STRUCTURE”,
16.2, page 580.
The status of universal operations

The last comments have partly lifted the veil on a question that have may caugh
attention: what is the status of the universal operations clone, copy, equal, is_equal,
deep_clone, deep_equal?

Although fundamental in practice, these operations are not language cons
They come from a Kernel library class, ANY, which has the special property that eve
class written by a software developer automatically inherits (directly or indirectly) f
ANY. This is why it is possible to redefine the features mentioned to support a part
view of equality or copying.

We need not concern ourselves with the details here, as they will be studied to
with inheritance. But it is useful to know that, thanks to the inheritance mechanism
can rely on library classes to provide facilities that are then made available to any cl
and can be adapted by any class to suit its own specific purposes.

8.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Object-oriented computation is characterized by a highly dynamic run-t
structure, where objects are created on demand rather than pre-allocated.

• Some of the objects manipulated by the software are (usually quite indirect) m
of outside objects. Others serve design and implementation purposes only.

• An object is made of a number of values called fields. Each field corresponds
attribute of the object’s generator (the class of which the object is a direct insta

• A value, in particular a field of an object, is either an object or a reference.

• A reference is either void or attached to an object. The test x = Void tells which of
the two cases holds. A call with target x, such as x● f (…), can only be executed
correctly if x is non-void.

• If the declaration of a class begins with class C …, an entity declared of type C will
denote a reference, which may become attached to instances of C. If the declaration
begins with expanded class D …, an entity declared of type D will denote an object
(an instance of D), and will never be void.

• The basic types (BOOLEAN, CHARACTER, INTEGER, REAL, DOUBLE) are
defined by expanded classes.

• Expanded declarations also make it possible to define composite objects: o
with subobjects.

• Object structures may contain cyclic chains of references.

• The creation instruction !! x creates an object, initializes its field to default valu
(such as void for references and zero for numbers), and attaches x to it. If the class
has defined creation procedures, The instruction will also perform, in the
!! x● creatproc (…), any desired specific initializations.

§8.12 BIBLIOGRAPHICAL NOTES 277

-field

lt to
nce

ject-

igned

ftware
 data
ly

ould
inting

ith

utines

e
sins,
given
here
• On entities of reference types, assignment (:=) and equality test (=) are reference
operations. On entities of expanded types, they represent copy and field-by
comparison. They also have the appropriate semantics for mixed operands.

• Reference operations cause dynamic aliasing, which makes it more difficu
reason formally about software. In practice, most non-trivial refere
manipulations should be encapsulated in library classes.

8.12 BIBLIOGRAPHICAL NOTES

The notion of object identity plays an important role in databases, especially ob
oriented databases. See chapter 31 and its bibliographical notes.

The graphical conventions of the BON method (Business Object Notation), des
by Jean-Marc Nerson and Kim Waldén, appear in [Waldén 1995]. James McKim and
Richard Bielak expound the merits of multiple creation procedures in [Bielak 1994].

The risks caused by unfettered pointer or reference operations have worried so
methodologists for a long time, prompting the inevitable suggestion that they are the
equivalent of what abhorred goto instructions represent on the control side. A surprising
little-known article by Nori Suzuki [Suzuki 1982] explores whether a disciplined
approach, using higher-level operations (in the same way that one avoids goto by sticking
to the “structured programming” constructs of sequence, conditional and loop), c
avoid the troubles of dynamic aliasing. Although the results are somewhat disappo
— by the author’s own admission — the article is useful reading.

I am indebted to Ross Scaife from the University of Kentucky for help w
rhetorical terms. See his page at http://www.uky.edu/ArtsSciences/Classics/rhetoric.html.

EXERCISES

E8.1 Books and authors

Starting from the various sketches given in this chapter, write classes BOOK and WRITER
covering a useful view of books and their authors. Be sure to include the relevant ro
(not just the attributes as in most of this chapter).

E8.2 Persons

Write a class PERSON covering a simple notion of person, with attributes name (a
STRING), mother, father and sibling (describing the next older sibling if any). Includ
routines which will find (respectively) the list of names of ancestors, direct cou
cousins direct or indirect, uncles or aunts, siblings-in-laws, parents-in-laws etc. of a
person. Hint : write recursive procedures (but make sure to avoid infinite recursion w
the relations, for example direct or indirect cousin, are cyclic.).

THE RUN-TIME STRUCTURE: OBJECTS§E8.3278

etween

erhaps

ition,
duce

that
ssigned
ssions,

See “Operator fea-
tures”, page 187
about infix features
and permissible
operators.
E8.3 Notation design

Assume you are frequently using comparisons of the form x● is_equal (y) and want to
simplify the notation to take advantage of infix features (applicable here since is_equal is
a function with one argument). With an infix feature using some operator §, the call will
be written x § y. This little exercise asks you to invent a symbol for §, compatible with the
rules on infix operators. There are of course many possible answers, and deciding b
them is partly (but only partly) a matter of taste.

Hint : The symbol should be easy to remember and somehow suggest equality; but p
even more importantly it should be different enough from = to avoid mistakes. Here you
can benefit from the study of C and C++ which, departing from mathematical trad
use = for assignment rather than equality comparison, but for the latter operation intro
a similar-looking symbol, ==. The matter is made even more delicate by the rule
permits treating an assignment as an expression, whose value is the value being a
to the target, and by the rule accepting values such as integers as boolean expre
meaning true if non-zero, so that compilers will accept a text of the form

if (x = y) then …

although in most practical cases it is in error (mistakenly using = for ==), and will have
the probably incorrect effect of assigning the value of y to x, returning true if and only if
that value is non-zero.

	8 8 The run-time structure: objects
	8.1 OBJECTS
	What is an object?
	Definition: object

	Basic form
	Simple fields
	A simple notion of book
	An object representing a book

	Writers
	A “writer” object

	References
	Two “book” objects with “writer” subobjects
	Two “book” objects with references to the same “wr...
	Definition: reference
	An object with a void reference field

	Object identity
	Declaring references
	Self-reference
	Direct and indirect self- reference

	A look at the run-time object structure
	A possible run- time object structure

	8.2 OBJECTS AS A MODELING TOOL
	The four worlds of software development
	Molds and their instances

	Reality: a cousin twice removed

	8.3 MANIPULATING OBJECTS AND REFERENCES
	Dynamic creation and reattachment
	The creation instruction
	Effect of a basic creation instruction
	Default initialization values
	A newly created and initialized object

	The global picture
	Why explicit creation?

	8.4 CREATION PROCEDURES
	Overriding the default initializations
	Effect of a creation call

	The export status of creation procedures
	Rules on creation procedures
	Multiple creation and overloading

	8.5 MORE ON REFERENCES
	States of a reference
	The possible states of a reference

	Void references and calls

	8.6 OPERATIONS ON REFERENCES
	Attaching a reference to an object
	Before reference assignment
	After reference assignment

	Reference comparison
	The void value
	Object cloning and equality
	De-attaching a reference from an object
	Cloning an object

	Object copying
	Deep clone and comparison
	Deep storage: a first view of persistence
	Definition: direct dependents, dependents
	Three mutually dependent objects
	“Book” and “Writer” objects
	Persistence Closure principle

	8.7 COMPOSITE OBJECTS AND EXPANDED TYPES
	References are not sufficient
	Expanded types
	A composite object with one subobject
	Definition: expanded type

	The role of expanded types
	“Knows about” and “contains” relations between obj...

	Aggregation
	Properties of expanded types
	Expanded Client rule

	No references to subobjects
	A subobject with a reference to another object
	A reference to a subobject

	8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS
	Attachment
	Definition: attachment

	Reference and copy attachment
	Hybrid attachments
	Effect of attachment x := y

	Equality comparison
	Meaning of comparison x = y

	8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS
	Dynamic aliasing
	Sharing as a result of an attachment

	The semantics of aliasing
	Coming to terms with dynamic aliasing
	Aliasing in software and elsewhere
	A linked circular list

	Encapsulating reference manipulations

	8.10 DISCUSSION
	Graphical conventions
	References and simple values
	Simula-style notations for operations on reference...

	The form of clone and equality operations
	The status of universal operations

	8.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	8.12 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E8.1 Books and authors
	E8.2 Persons
	E8.3 Notation design

