
B
Genericity versus inheritance
ground
 was

 teach

eric

hese

t each

 now
ok, to

ues of

 flow
ially in

es on

till has

evered

ch of
em.

 of
 each

eper,

ion of

 the
ating

en to
The material that follows, and its appearance in an appendix, deserve some back
explanation. Part of the original impetus for the work that eventually led to this book

a study that I performed in 1984; in preparation for a graduate course that I was to

on “advanced concepts in programming languages”, I compared the “horizontal” module
extension mechanism of genericity, illustrated by Ada, Z, LPG and other gen

languages, with the “vertical” mechanism of inheritance introduced by Simula: how t

techniques differ, to what extent they compete, and to what extent they complemen

other. This led to an article on “Genericity versus Inheritance” [M 1986], presented at the
first OOPSLA conference, and to a chapter in the first edition of the present book.

When preparing this new edition I felt that both genericity and inheritance were
understood well enough, and their treatment detailed enough in the rest of the bo

make the chapter appear too specialized: useful mostly to readers interested in iss

language design or O-O theory. So I removed it. But then I found out that a regular
of articles in the software press still showed must puzzlement over the issue, espec

the context of C++ for which many people seem to be searching for general guidelin

when to use “templates” and when to use inheritance. This means the discussion s

its place in a general presentation of object technology, although it is perhaps best s
from the main part of the text. Hence this appendix.

The topics reviewed are, in order: genericity; inheritance; how to emulate ea
these mechanisms through the other; and, as a conclusion, how best to reconcile th

If you have read carefully the remainder of this book, you will find the beginning
this discussion familiar since we must restart with the basics to get a full picture of

mechanism, of its contribution, and of its limitations. As we probe deeper and de

perhaps stepping briefly into a few dead ends along the way, the ideal combinat

genericity and inheritance will progressively unfold before our eyes, imposing itself in
end as almost inevitable and letting us understand, in full detail, the fascin

relationship between the two principal methods for making software modules op

variation and adaptation.

GENERICITY VERSUS INHERITANCE§B.11168

er of
s —

ng by
 about

a, a
entous
tween

 and

ple
s) to

 local

require
, and
rmal
ure to

 but
away
the
 be

d since

This extract and the
next few are in Ada
or Ada-like syntax.
B.1 GENERICITY

We begin our review by appraising the merits of genericity as it exists in a numb
languages, object-oriented or not. Let us rely for convenience on the notation
semicolons and all — of the best known non-O-O generic language, Ada (meani
default, as elsewhere in this book, Ada 83). So for the rest of this section we forget
O-O languages and techniques.

Only the most important form of Ada genericity will be considered: type
parameterization, that is to say the ability to parameterize a software element (in Ad
package or routine) by one or more types. Generic parameters have other, less mom
uses in Ada, such as parameterized dimensions for arrays. We may distinguish be
unconstrained genericity, imposing no specific requirement on generic parameters,
constrained genericity, whereby a certain structure is required.

Unconstrained genericity

Unconstrained genericity removes some of the rigidity of static typing. A trivial exam
is a routine (in a language with Ada-like syntax but without explicit type declaration
swap the values of two variables:

procedure swap (x, y) is
local t;

begin
t := x; x := y; y := t;

end swap;

This form does not specify the types of the elements to be swapped and of the
variable t. This is too much freedom, since a call swap (a, b), where a is an integer and b
a character string, will not be prohibited even though it is probably an error.

To address this issue, statically typed languages such as Pascal and Ada
developers to declare explicitly the types of all variables and formal arguments
enforce a statically checkable type compatibility constraint between actual and fo
arguments in calls and between source and target in assignments.The proced
exchange the values of two variables of type G becomes:

procedure G_swap (x, y: in out G) is
t: G;

begin
t := x; x := y; y := t;

end swap;

Demanding that G be specified as a single type averts type incompatibility errors,
in the constant haggling between safety and flexibility we have now erred too far
from flexibility: to correct the lack of safety of the first solution, we have made
solution inflexible. We will need a new procedure for every type of elements to
exchanged, for example INTEGER_swap, STRING_swap and so on. Such multiple
declarations lengthen and obscure programs. The example chosen is particularly ba
all the declarations will be identical except for the two occurrences of G.

§B.1 GENERICITY 1169

s that
at

ped
declare
es,

from
vant

r ease

ttern;

 As a
e the
ement
Static typing may be considered too restrictive here: the only real requirement i
the two actual arguments passed to any call of swap should be of the same type, and th
their type should also be applied to the declaration of the local variable t. It does not matter
what this type actually is as long as it satisfies these properties.

In addition the arguments must be passed inin out mode, so that the procedure can
change their values. This is permitted in Ada.

Genericity provides a tradeoff between too much freedom, as with unty
languages, and too much restraint, as with Pascal. In a generic language you may
G as a generic parameter of swap or an enclosing unit. Ada indeed offers generic routin
along with the generic packages described in chapter 33. In quasi-Ada you can write:

generic

type G is private;

procedure swap (x, y: in out G) is

t: G;

begin

t := x; x := y; y := t;

end swap;

The only difference with real Ada is that you would have to separate interface
implementation, as explained in the chapter on Ada. Since information hiding is irrele
for the discussion in this chapter, interfaces and implementations will be merged fo
of presentation.

The generic… clause introduces type parameters. By specifying G as “private”, the
writer of this procedure allows himself to apply to entities of type G (x, y and t) operations
available on all types, such as assignment or comparison, and these only.

The above declaration does not quite introduce a routine but rather a routine pa
to get a directly usable routine you will provide actual type parameters, as in

procedure int_swap is new swap (INTEGER);

procedure str_swap is new swap (STRING);

etc. Now assuming that i and j are variables of type INTEGER, s and t of type STRING,
then of the following calls

int_swap (i, j); str_swap (s, t); int_swap (i, s); str_swap (s, j); str_swap (i, j);

all but the first two are invalid, and will be rejected by the compiler.

More interesting than parameterized routines are parameterized packages.
minor variation of our usual stack example, consider a queue package, wher
operations on a queue (first-in, first out) are: add an element; remove the oldest el
added and not yet removed; get its value; test for empty queue. The interface is:

GENERICITY VERSUS INHERITANCE§B.11170

usable

ntyped
f all

trings.

g and
es
bles of
 queue

eters

oth a

lues.

From here on most
routine declarations
omit the in mode
specification for
arguments, which is
optional.
generic
type G is private;

package QUEUES is
type QUEUE (capacity: POSITIVE) is private;
function empty (s: in QUEUE) return BOOLEAN;
procedure add (t: in G; s: in out QUEUE);
procedure remove (s: in out QUEUE);
function oldest (s: in QUEUE) return G;

private
type QUEUE (capacity: POSITIVE) is

-- The package uses an array representation for queues
record

implementation: array (0 . . capacity) of G;
count: NATURAL;

end record;
end QUEUES;

Again this does not define a package but a package pattern; to get a directly
package you will use generic derivation, as in

package INT_QUEUES is new QUEUES (INTEGER);
package STR_QUEUES is new QUEUES (STRING);

Note again the tradeoff that generic declarations achieve between typed and u
approaches. QUEUES is a pattern for modules implementing queues of elements o
possible types G, while retaining the possibility to enforce type checks for a specific G, so
as to rule out such unholy combinations as the insertion of an integer into a queue of s

The form of genericity illustrated by both of the examples seen so far, swappin
queues, may be called unconstrained since there is no specific requirement on the typ
that may be used as actual generic parameters: you may swap the values of varia
any type and create queues of values of any type, as long as all the values in a given
are of the same type.

Other generic definitions, however, only make sense if the actual generic param
satisfy some conditions. This form may be called constrained genericity.

Constrained genericity

As in the unconstrained case, the examples of constrained genericity will include b
routine and a package.

Assume first you need a generic function to compute the minimum of two va
You can try the pattern of swap:

generic
type G is private;

function minimum (x, y: G) return G is begin
if x <= y then return x; else return y; end if ;

end minimum;

§B.1 GENERICITY 1171

pes
rity
until
n.

s
ch a
here
and

re
in the

by the

 types

ages.

type
nt; these
blic
Such a function declaration, however, does not always make sense; only for tyG
on which a comparison operator <= is defined. In a language that enhances secu
through static typing, we want to enforce this requirement at compile time, not wait
run time. We need a way to specify that type G must be equipped with the right operatio

In Ada this will be written by treating the operator <= as a generic parameter of it
own. Syntactically it is a function; as a syntactic facility, it is possible to invoke su
function using the usual infix form if it is declared with a name in double quotes,
"<=" . Again the following declaration becomes legal Ada if the interface
implementation are taken apart.

generic
type G is private;

with function "<=" (a, b: G) return BOOLEAN is <>;
function 0(x, y: G) return G is begin

if x <= y then return x; else return y end if ;
end minimum;

The keyword with introduces generic parameters representing routines, such as "<=".

You may perform a generic derivation minimum for any type, say T1, such that there
exists a function, say T1_le, of signature function (a, b: T1) return BOOLEAN:

function T1_minimum is new minimum (T1, T1_le);

If function T1_le is in fact called "<=" , more precisely if its name and type signatu
match those of the corresponding formal routine, then you do not need to include it
list of actual parameters to the generic derivation. So because type INTEGER has a
predefined "<=" function with the right signature, you can simply declare

function int_minimum is new minimum (INTEGER);

This use of default routines with matching names and types is made possible
clause is <> in the declaration of the formal routine, here "<=" . Operator overloading, as
permitted (and in fact encouraged) by Ada, plays an essential role: many different
will have a "<=" function.

This discussion of constrained genericity for routines readily transposes to pack
Assume you need a generic package for handling matrices of objects of any type G, with
matrix sum and product as basic operations. Such a definition only makes sense if G
has a sum and a product of its own, and each of these operations has a zero eleme
features of G will be needed in the implementation of matrix sum and product. The pu
part of the package may be written as follows:

generic
type G is private;
zero: G;
unity: G;
with function "+ " (a, b: G) return G is <>;
with function "✳" (a, b: G) return G is <>;

GENERICITY VERSUS INHERITANCE§B.11172

tines
ed
 list;
uals.)

age:
package MATRICES is
type MATRIX (lines, columns: POSITIVE) is private;
function "+ " (m1, m2: MATRIX) return MATRIX;
function "✳" (m1, m2: MATRIX) return MATRIX;

private
type MATRIX (lines, columns: POSITIVE) is

array (1 . . lines, 1 . . columns) of G;
end MATRICES;

Typical generic derivations are:

package INTEGER_MATRICES is new MATRICES (INTEGER, 0, 1);

package BOOLEAN_MATRICES is
new MATRICES (BOOLEAN, false, true , "or", "and");

Again, you may omit actual parameters corresponding to formal generic rou
(here "+ " and "✳") for type INTEGER, which has matching operations; but you will ne
them for BOOLEAN. (It is convenient to declare such parameters last in the formal
otherwise keyword notation is required in derivations that omit the corresponding act

It is interesting here to take a look at the body (implementation) of such a pack

package body MATRICES is
… Other declarations …
function "✳" (m1, m2: G) is

result: MATRIX (m1'lines, m2'columns);
begin

if m1' columns /= m2'lines then
raise incompatible_sizes;

end if ;
for i in m1'RANGE(1) loop

for j in m2'RANGE(2) loop
result (i, j) := zero;
for k in m1'RANGE(2) loop

result (i, j) := result (i, j) + m1 (i, k) ✳ m2 (k, j)
end loop;

end loop;
end loop;
return result

end "✳";
end MATRICES;

This extract relies on some specific features of Ada:

• For a parameterized type such as MATRIX (lines, columns: POSITIVE), a variable
declaration must provide actual parameters, e.g. mm: MATRIX (100, 75); you may
then retrieve their values using apostrophe notation, as in mm'lines which in this case
has value 100.

§B.2 INHERITANCE 1173

ract

 for
 only
ence of
are

n

ty,

ties.

ntrast
 First
 say,

a tape

y use

a

This extract and the
next few are in the
O-O notation of the
rest of this book.
• If a is an array, a'RANGE(i) denotes the range of values in its i-th dimension; for
example m1'RANGE(1) above is the same as 1 . . m1'lines.

• If requested to multiply two dimension-wise incompatible matrices, the ext
raises an exception, corresponding to the violation of an implicit precondition.

The minimum and matrix examples are representative of Ada techniques
constrained genericity. They also show a serious limitation of these techniques:
syntactic constraints can be expressed. All that a programmer may require is the pres
certain routines ("<=" , "+ ", "✳" in the examples) with given types; but the declarations
meaningless unless the routines also satisfy some semantic constraints. Function minimum
only makes sense if "<=" is a total order relation on G; and to produce a generic derivatio
of MATRICES for a type G, you should make sure that operations "+ " and "✳" have not just
the right signature, G × G → G, but also the appropriate properties: associativi
distributivity, zero a zero element for "+ " and unity for "✳" etc. We may use the
mathematical term ring for a structure equipped with operations enjoying these proper

B.2 INHERITANCE

So much for pure genericity. The other term of the comparison is inheritance. To co
it with genericity, consider the example of a general-purpose module library for files.
here is the outline of an implementation of “special files” in the Unix sense, that is to
files associated with devices:

class DEVICE feature
open (file_descriptor: INTEGER) is do … end
close is do … end
opened: BOOLEAN

end -- class DEVICE

An example use of this class is:

d1: DEVICE; f1: INTEGER; …
!! d1● make; d1● open (f1);

if d1● opened then …

Consider next the notion of a tape device. For the purposes of this discussion,
unit has all the properties of devices, as represented by the three features of class DEVICE,
plus the ability to rewind its tape. Rather than building a class from scratch, we ma
inheritance to declare class TAPE as an extension-cum-modification of DEVICE. The new
class extends DEVICE by adding a new procedure rewind, describing a mechanism
applicable to tapes but not necessarily to other devices; and it modifies some of DEVICE’s
properties by providing a new version of open, describing the specifics of opening
device that happens to be a tape drive.

Objects of type TAPE automatically possess all the features of DEVICE objects, plus
their own (here rewind). Class DEVICE could have more heirs, for example DISK with its
own specific features such as direct access read.

GENERICITY VERSUS INHERITANCE§B.21174

is

ability
t such
stem)

 special
t

rmed

This is approximate
terminology; “is an
ancestor of ” stands
for “conforms to”.
Precise rules appear
in earlier chapters.

A simple
inheritance
hierarchy, with
deferred and
effective classes
Objects of type TAPE will possess all the features of type DEVICE, possibly adapted
(in the case of open), and complemented by the new feature rewind.

With inheritance comes polymorphism, permitting assignments of the form x := y,
but only if the type of x is an ancestor of the type of y. The next associated property
dynamic binding: if x is a device, the call x● open (f1) will be executed differently
depending on the assignments performed on x before the call: after x := y, where y is a tape,
the call will execute the tape version.

We have seen the remarkable benefits of these inheritance techniques for reus
and extendibility. A key aspect was the Open-Closed principle: a software elemen
as DEVICE is both usable as it stands (it may be compiled as part of an executable sy
and still amenable to extensions (if used as an ancestor of new classes).

Next come deferred features and classes. Here we note that Unix devices are a
kind of file; so you may make DEVICE an heir to class FILE, whose other heirs migh
include TEXT_FILE (itself with heirs NORMAL and DIRECTORY) and BINARY_FILE.
The figure shows the inheritance graph, a tree in this case.

Although it is possible to open or close any file, how these operations are perfo
depends on whether the file is a device, a directory etc. So FILE is a deferred class with
deferred routines open or close, making descendants responsible for implementing them:

deferred class FILE feature

open (file_descriptor: INTEGER) is deferred end

close is deferred end;

end -- class FILE

Effective descendants of FILE will provide effective implementations of open
and close.

∗
FILE

DEVICE

Inherits from

TEXT_FILE BINARY_
FILE

∗ Deferred
DEVICE BINARY_

FILE

open*
close*

§B.3 EMULATING INHERITANCE WITH GENERICITY 1175

t of

ricity

same
 define

 one
reby

ices,
ause
t such

This extract and the
next few are in Ada
syntax.

See “Single Choice”,
page 61.
B.3 EMULATING INHERITANCE WITH GENERICITY

To compare genericity with inheritance, we will study how, if in any way, the effec
each feature may be emulated in a language offering the other.

First consider a language such as Ada (again meaning Ada 83), offering gene
but not inheritance. Can it be made to achieve the effects of inheritance?

The easy part is name overloading. Ada, as we know, allows reusing the
routine name as many times as needed for operands of different types; so you can
types such as TAPE, DISK and others, each with its own version of the routines:

procedure open (p: in out TAPE; descriptor: in INTEGER);
procedure close (p: in out DISK);

No ambiguity will arise if the routines are distinguished by the type of at least
operand. But this solution does not provide polymorphism and dynamic binding, whe
d● close, for example, would have a different effect after assignments d := di and d := ta,
where di is a DISK and ta a TAPE.

To obtain the same effect, you have to use records with variant fields: define

type DEVICE (unit: DEVICE_TYPE) is
record

… Fields common to all device types …
case unit is

when tape => … fields for tape devices …;
when disk => … fields for disk devices …;
… Other cases …;

end case
end record

where DEVICE_TYPE is an enumerated type with elements tape, disk etc. Then there
would be a single version of each the procedures on devices (open, close etc.), each
containing a case discrimination of the form

case d'unit is
when tape => … action for tape devices …;
when disk => … action for disk devices …;
… other cases …;

end case

This uses explicit discrimination in each case, and closes off the list of cho
forcing every routine to know of all the possible variants; addition of new cases will c
changes to all such routines. The Single Choice principle expressly warned agains
software architectures.

So the answer to the question of this section is essentially no:

Emulating inheritance
It appears impossible to emulate inheritance through genericity.

GENERICITY VERSUS INHERITANCE§B.41176

effect

meter
e rule
otten

will be
in the
ftware

ificial,
se.

This is
ith its
eneric

ypes,
n

lasses.

o actual

This extract is in Ada
syntax.

This extract and all
remaining ones are
in the O-O notation
of this book.
B.4 EMULATING GENERICITY WITH INHERITANCE

Let us see if we will have more luck with the reverse problem: can we achieve the
of Ada-style genericity in an object-oriented language with inheritance?

The O-O notation introduced in earlier chapters does provide a generic para
mechanism. But since we are comparing pure genericity versus pure inheritance, th
of the game for some time, frustrating as it may be, is to pretend we have all but forg
about that genericity mechanism. As a result the solutions presented in this section
substantially more complex than those obtainable with the full notation, described
rest of this book and in later sections. As you read this section, remember that the so
extracts are not final forms, but for purposes of discussion only.

Surprisingly perhaps, the simulation turns out to be easier, or at least less art
for the more sophisticated form of genericity: constrained. So we begin with this ca

Emulating constrained genericity: overview

The idea is to associate a class with a constrained formal generic type parameter.
a natural thing to do since a constrained generic type may be viewed, together w
constraining operations, as an abstract data type. Consider for example the Ada g
clauses in our two constrained examples, minimum and matrices:

generic

type G is private;

with function "<=" (a, b: G) return BOOLEAN is <>

generic

type G is private;

zero: G; unity: G;

with function "+ " (a, b: G) return G is <>;

with function "✳" (a, b: G) return G is <>;

We may view these clauses as the definitions of two abstract data t
COMPARABLE and RING_ELEMENT; the first is characterized by a compariso
operation "<=", and the second by features zero, unity, "+ " and "✳".

In an object-oriented language, such types may be directly represented as c
We cannot define these classes entirely, for there is no universal implementation of"<=",
"+ " etc.; rather, they are to be used as ancestors of other classes, corresponding t
generic parameters. Deferred classes provide exactly what we need:

deferred class COMPARABLE feature

infix “ <=” (other: COMPARABLE): BOOLEAN is deferred end

end -- class COMPARABLE

§B.4 EMULATING GENERICITY WITH INHERITANCE 1177

erties,

e

 to the

ctive

“ANCHORED
DECLARATION”,
16.7, page 599.

COMPARABLE
becomes a “behavio
class”, with an effec
tive feature relying
on a deferred one.
See “Don’t call us,
we’ll call you”, page
505.
deferred class RING_ELEMENT feature
 infix "+ " (other: like Current): like Current is

deferred
ensure

equal (other, zero) implies equal (Result, Current)
end;

 infix "✳" (other: like Current): like Current is deferred end

zero: like Current is deferred end

unity: like Current is deferred end

end -- class RING_ELEMENT

Unlike Ada, the O-O notation allows us here to express abstract semantic prop
although only one of them has been included as an example (the property that x + 0 = x
for any x, appearing as a postcondition of infix "+").

The use of anchored types (like Current) makes it possible to avoid some improper
combinations, as explained for the COMPARABLE example next. At this stage replacing
all such types by RING_ELEMENT would not affect the discussion.

Constrained genericity: routines

We can write a routine such as minimum by specifying its arguments to be of typ
COMPARABLE. Based on the Ada pattern, the function would be declared as

minimum (one: COMPARABLE; other: like one): like one is
-- Minimum of one and other

do … end

In O-O development, however, every routine appears in a class and is relative
current instance of that class; we may include minimum in class COMPARABLE,
argument one becoming the implicit current instance. The class becomes:

deferred class COMPARABLE feature
infix "<=" (other: like Current): BOOLEAN is

-- Is current object less than or equal to other?
deferred
end

minimum (other: like Current): like Current is
-- Minimum of current object and other

do
if Current <= other then Result:= Current else Result:= other end

end
end -- class COMPARABLE

To compute the minimum of two elements, you must declare them of some effe
descendant type of COMPARABLE, for which infix “ <=” has been effected, such as

r
-

GENERICITY VERSUS INHERITANCE§B.41178

t
d

You

 type
a

mance

f
 by
class INTEGER_COMPARABLE inherit
COMPARABLE

creation
put

feature -- Initialization

put (v: INTEGER) is
-- Initialize from v.

do item:= new end
feature -- Access

item: INTEGER;
-- Value associated with current object

feature -- Basic operations

infix "<=" (other: like Current): BOOLEAN is
-- Is current object less than or equal to other?

do Result:= (item <= other● item) end;
end -- class INTEGER_COMPARABLE

To find the minimum of two integers, you may now apply function minimum to
entities ic1 and ic2, whose type is not INTEGER but INTEGER_COMPARABLE:

ic3 := ic1● minimum (ic2)

To use the generic infix "<=" and minimum functions, you must renounce direc
references to integers, using INTEGER_COMPARABLE entities instead; hence the nee
for attribute item and routine put to access and modify the associated integer values.
will introduce a similar heirs of COMPARABLE, such as STRING_COMPARABLE, and
REAL_COMPARABLE, for each type requiring a version of minimum.

Note that the mechanism of anchored declaration is essential to ensure
correctness. If the argument to minimum in COMPARABLE had been declared as
COMPARABLE, rather than like Current, then the following call would be valid:

ic1 ●minimum (c)

even if c is a COMPARABLE but not an INTEGER_COMPARABLE. Clearly, such a call
should be disallowed. This also applies to the previous example, RING_ELEMENT.

Having to declare features item and put for all descendants of COMPARABLE, and
hence sacrificing the direct use of simple types, is unpleasant. There is also a perfor
cost: rather than manipulating integers or strings we must create and use wrapper objects
of types such as INTEGER_COMPARABLE. But by paying this fixed price in both ease o
use and efficiency we do achieve the full emulation of constrained genericity
inheritance. (In the final notation, of course, there will be no price at all to pay.)

Emulating constrained genericity (1)
It is possible to emulate constrained genericity through inheritance, by using
wrapper classes and the corresponding wrapper objects.

§B.4 EMULATING GENERICITY WITH INHERITANCE 1179

 which

es.
class
lare an
er

.
n
hen,
Constrained genericity: packages

The previous discussion transposes to packages. To emulate the matrix abstraction
Ada implemented through the MATRICES package, we can use a class:

class MATRIX feature

anchor: RING_ELEMENT is do end
implementation: ARRAY2 [like anchor]

item (i, j: INTEGER): like anchor is
-- Value of (i, j) entry

do Result:= implementation● item (i, j) end

put (i, j: INTEGER; v: like anchor) is
-- Assign value v to entry (i, j).

do implementation● put (i, j, v) end

infix "+" (other: like Current): like Current is
-- Matrix sum of current matrix and other

local
i, j: INTEGER

do
!! Result● make (…)
from i := … until … loop

from j := … until … loop
Result● put ((item (i, j) + other● item (i, j)), i, j)
j := j + 1

end
i := i + 1

end
end

infix "∗" (other: like Current): like Current is
-- Matrix product of current matrix by other

local … do … end
end -- class MATRIX

The type of the argument to put and of the result of item raises an interesting
problem: it should be RING_ELEMENT, but redefined properly in descendant class
Anchored declaration is the solution; but here for the first time no attribute of the
seems to be available to serve as anchor. This should not stop us, however: we dec
artificial anchor , called anchor. Its only purpose is to be redefined to the prop
descendant types of RING_ELEMENT in future descendants of MATRIX (that is to say, to
BOOLEAN_RING in BOOLEAN_MATRIX etc.), so that all associated entities will follow
To avoid any space penalty in instances, anchor is declared as a function rather than a
attribute. This technique of artificial anchors is useful to preserve type consistency w
as here, there is no “natural” anchor among the attributes of the class.

GENERICITY VERSUS INHERITANCE§B.41180

 heir
A few loop details have been left out, as well as the body of infix "∗", but they are
easy to fill in. Features put and item as applied to implementation will come from the
library class ARRAY2 describing two-dimensional arrays.

To define the equivalent of the Ada generic package derivation shown earlier

package BOOLEAN_MATRICES is

new MATRICES (BOOLEAN, false, true , "or", "and");

we must first declare the “ring element” corresponding to booleans:

class BOOLEAN_RING_ELEMENT inherit

RING_ELEMENT

redefine zero, unity end

creation

put

feature -- Initialization

put (v: BOOLEAN) is

-- Initialize from v.

do item := v end

feature -- Access

item: BOOLEAN

feature -- Basic operations

infix "+" (other: like Current): like Current is
-- Boolean addition: or

do !! Result● put (item or other● item) end

infix "∗" (other: like Current): like Current is

-- Boolean multiplication: and

do !! Result● put (item and other●item) end

zero: like Current is
-- Zero element for boolean addition

once !! Result● put (False) end

unity: like Current is

-- Zero element for boolean multiplication

once !! Result● put (True) end

end -- class BOOLEAN_RING_ELEMENT

Note how zero and unity are effected as once functions.

Then to obtain an equivalent to the Ada package derivation, just define an
BOOLEAN_MATRIX of MATRIX, where you only need to redefine anchor, the artificial
anchor; all the other affected types will follow automatically:

§B.4 EMULATING GENERICITY WITH INHERITANCE 1181

nce,

 treat
ts. As
ith no

ce the

p and

ss has

 we are
 of
iple
 it is

See the box on pag
1178.
class BOOLEAN_MATRIX inherit
MATRIX

redefine anchor end

feature
anchor: BOOLEAN_RING_ELEMENT

end -- class BOOLEAN_MATRIX

This construction achieves the effect of constrained genericity using inherita
confirming for packages the emulation result initially illustrated for routines.

Unconstrained genericity

The mechanism for simulating unconstrained genericity is the same; we can simply
this case as a special form of constrained genericity, with an empty set of constrain
above, formal type parameters will be interpreted as abstract data types, but here w
relevant operations. The technique works, but becomes rather heavy to apply sin
dummy types do not correspond to any obviously relevant data abstraction.

Let us apply the previous technique to both our unconstrained examples, swa
queue, beginning with the latter. We need a class, say QUEUABLE, describing objects that
may be added to and retrieved from a queue. Since this is true of any object, the cla
no other property than its name:

class QUEUABLE end

We may now declare a class QUEUE, whose operations apply to QUEUABLE
objects. (Remember that this class is not offered as a paragon of good O-O design:
still voluntarily playing with an impoverished version of the O-O notation, devoid
genericity.) Routine postconditions have been left out for brevity. Although in princ
function item could serve as an anchor, its body will not change in descendants, so
better to use an artificial anchor item_anchor to avoid having to redefine item.

indexing

description: "First-in-first out queues, implemented through arrays"

class QUEUE creation

make

feature -- Initialization

make (m: INTEGER) is
-- Create queue with space for m items.

require

m >= 0

do
!! implementation●make (1, m); capacity:= m

first := 1; next:= 1

end

e

GENERICITY VERSUS INHERITANCE§B.41182
feature -- Access

capacity, first, next, count: INTEGER

item: like item_anchor is

-- Oldest element in queue

require

not empty

do

Result:= implementation● item (first)

end

feature -- Status report

empty: BOOLEAN is

-- Is queue empty?

do Result:= (count = 0) end

full: BOOLEAN is

-- Is representation full?

do Result:= (count = capacity) end

feature -- Element change

put (x: like item_anchor) is

-- Add x at end of queue

require

not full

do

implementation●put (x, next); count:= count + 1; next:= successor (next)

end

remove is

-- Remove oldest element

require

not empty

do

first := successor (first); count:= count – 1

end

§B.4 EMULATING GENERICITY WITH INHERITANCE 1183

 type)

s of

For an alternative
technique see e.g. “A
buffer is a separate
queue”, page 990.
feature {NONE} -- Implementation
item_anchor: QUEUABLE is do end
implementation: ARRAY [like item_anchor]

successor (n: INTEGER): INTEGER is
-- Next value after n, cyclically in the interval 1 . . capacity

require
n >= 1; n <= capacity

do
Result:= (n \\ capacity) + 1

end

invariant
0 <= count; count <= capacity; first >= 1; next >= 1
(not full) implies ((first <= capacity) and (next <= capacity))
(capacity = 0) implies full
-- Items, if any, appear in array positions first, … next – 1 (cyclically)

end -- class QUEUE

Bounded queue implementations elsewhere in this book rely on the technique of keeping
one position open. Here, we allocate capacity elements and keep track of count. There is
no particular reason, other than to illustrate alternative implementation techniques.

To get the equivalent of generic derivation (so as to obtain queues of a specific
you must, as with the COMPARABLE example, define descendants of QUEUABLE:

class INTEGER_QUEUABLE inherit
QUEUABLE

creation
put

feature -- Initialization

put (n: INTEGER) is
-- Initialize from n.

do item:= n end

feature -- Access
item: INTEGER

feature { NONE} -- Implementation
item_anchor: INTEGER is do end

end -- class INTEGER_QUEUABLE

and similarly STRING_QUEUABLE etc.; then declare the corresponding descendant
QUEUE, redefining item_anchor appropriately in each.

Emulating unconstrained genericity
It is possible to emulate unconstrained genericity through inheritance, by
using wrapper classes and the corresponding wrapper objects.

GENERICITY VERSUS INHERITANCE§B.51184

anism
:

e with
ity is
uch

icity.

 the
ential
 will

at is)

uld be
or this
o have
r from

u use a

tical
le in

Chapter 17.
B.5 COMBINING GENERICITY AND INHERITANCE

It appears from the previous discussion that inheritance is the more powerful mech
since we have not found a reasonable way to simulate it with genericity. In addition

• You can express the equivalent of generic routines or packages in a languag
inheritance, but this requires some duplication and complication. The verbos
particularly hard to justify for unconstrained genericity, which requires just as m
emulation effort even though it is theoretically simpler.

• Type checking introduces difficulties in the use of inheritance to emulate gener

Anchored declaration solves the second problem. (The reader familiar with
detailed discussion of typing in an earlier chapter will, however, have noted the pot
for system validity problems, which we do not need to explore further since they
disappear in the solutions finally retained below.)

Let us see how we can solve the first problem by introducing (reintroducing, th
the appropriate form of genericity.

Unconstrained genericity

Since the major complication arises for unconstrained genericity even though it sho
the simpler case, it seems adequate to provide a specific genericity mechanism f
case, avoiding the need to rely on inheritance. Consequently, we allow our classes t
unconstrained generic parameters: as we are now (at last) allowed to remembe
earlier chapters, a class may be defined as

class C [G, H, …] …

where the parameters represent arbitrary types. To obtain a directly usable type yo
generic derivation, using types as actual generic parameters:

x: C [DEVICE, RING_ELEMENT, …]

This immediately applies to the queue class, which we can simply declare as

indexing
description: "First-in-first out queues, implemented through arrays"

class QUEUE [G] creation
… The rest as before, but removing the declaration of item_anchor

and replacing all occurrences of type like item_anchor by G …
end -- class QUEUE

We get rid of class QUEUABLE as well as INTEGER_QUEUABLE and other such
descendants; to have a queue of integers, we simply use type QUEUE [INTEGER],
manipulating integers directly rather than through intermediate wrapper objects.

This is a remarkable simplification, suggesting that in spite of the theore
possibility of emulating unconstrained genericity through inheritance, it is desirab
practice to introduce a generic mechanism into the object-oriented framework.

§B.5 COMBINING GENERICITY AND INHERITANCE 1185

ample:

type

cheme

iple:
Constrained genericity

For constrained genericity we can explore the same general scheme. In the matrix ex

class MATRIX [G] feature

anchor: RING_ELEMENT [G]
…Other features as before …

end -- class MATRIX

with ring elements now declared as

deferred class RING_ELEMENT [G] feature

item: G

put (new: G) is do item:= new end

…Other features as before …

end -- class RING_ELEMENT

Using the same a generic parameter in two related classes, RING_ELEMENT and
MATRIX, ensures type consistency: all the elements of a given matrix will be of
RING_ELEMENT [G] for the same G.

We can similarly make class COMPARABLE generic:

deferred class COMPARABLE [G] feature

item: G

put (new: G) is do item:= new end

…Other features (infix "<=", minimum) as before …

end -- class COMPARABLE

The features of the class (infix "<=" , minimum) represent the constraints (the with
routines of the Ada form). The earlier descendants become extremely simple:

class INTEGER_COMPARABLE inherit
COMPARABLE [INTEGER]

creation
put

end

(Note that this is the whole class, not a sketch with features to be added!) The same s
immediately applies to all other variants such as STRING_COMPARABLE.

The technique is indeed fairly simple to apply, leading to one more emulation princ

 Providing unconstrained genericity
Along with inheritance, it is desirable to provide a specific notation for
declaring classes as generic (unconstrained).

GENERICITY VERSUS INHERITANCE§B.51186

uch as
then
ptually
s since

id not
t for
uch
nstruct.
dy to

on into

pecify

n-
t is a
ge of

trix of
d
t as

y
ass). A

 class

r,

Exercise 19.5, page
422 of [M 1988].
Later printings men-
tioned that the exten-
sion had been
integrated into the
language.
But we are again paying a price: we need to reintroduce wrapper classes s
INTEGER_COMPARABLE. This is less shocking than in the earlier solution, because
we had to pay that price for the unconstrained case as well, even though it is conce
very simple. Here it seems easier to justify the need for wrapper classes and object
constrained genericity is a relatively sophisticated idea.

Based on these observations, the notation of this book and compilers for it d
initially — for a little over two years, late 1985 to early 1988 — have special suppor
constrained genericity. The first edition of this book mentioned the possibility of s
support, proposing as an exercise the exact design of an appropriate language co
But it did not take very long afterwards to realize that most applications were not rea
pay the price of wrapper classes and objects, and to integrate the exercise’s soluti
the notation; the compilers soon followed.

The notation in question is, of course, the one earlier chapters have used to s
constrained genericity, as in

class MATRIX [G –> RING_ELEMENT] …

and

class SORTABLE_LIST [G –> COMPARABLE] …

where RING_ELEMENT and COMPARABLE are the original versions, deferred and no
generic. As noted in the first presentation of this notation in an earlier chapter, i
remarkable combination of genericity and inheritance, avoiding all the extra bagga
earlier solutions:

• We do not need, like Ada, to use routines as generic parameters (with clauses). Only
types can be generic parameters; this is simple, consistent and easy to learn.

• We do not need any special wrapper classes and objects. If you want a ma
integers, you declare it as MATRIX [INTEGER] and use plain integers to set an
retrieve its elements; if you want a sortable list of strings, you declare i
SORTABLE_LIST [STRING] and use plain strings.

The semantics, as you will remember, is that G represents not an arbitrary type an
more, but a type that must conform to the constraint (be based on a descendant cl
generic derivation such as MATRIX [T] is valid if and only if T is such a type; this is true
of INTEGER but not, for example, of STRING. Similarly, STRING will inherit from
COMPARABLE and hence will be acceptable as an actual generic parameter for the
SORTABLE_LIST; but this is not true of a class COMPLEX (for complex numbers) which
has no associated order relation. The symbol –> was chosen, as you will also remembe
to evoke the arrow of inheritance diagrams.

Emulating constrained genericity (2)
It is possible to emulate constrained genericity through inheritance and
unconstrained genericity, by using wrapper classes and the corresponding
wrapper objects.

§B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX 1187

ricity

as
ecisely

cate
l find
he
icular
y one
asant

e want,
 could

nd

les.

itting

n the
ations.

and

.

viness

with
sses

n of
can
As a last detail, you will remember that in this scheme constrained gene
becomes the more basic facility: the unconstrained case, as in QUEUE [G], is understood
as an abbreviation for QUEUE [G –> ANY] where ANY denotes the class that serves
ancestor to all developer-defined classes. This has the consequence of defining pr
the operations applicable to G: those, coming from ANY, which are applicable to all
classes, including general-purpose features such as clone, print and equal.

The introduction of constrained genericity provides the final touch to the deli
combination of inheritance and genericity detailed in this chapter. I hope that you wil
the result consistent, elegant, and minimal in the sense that although no component of t
edifice is redundant (as it should indeed always be immediately clear, for any part
circumstance, which of the various possibilities is the appropriate one), removing an
of them would lead us to one of the situations that we found unacceptable or unple
in the earlier sections of this appendix: unacceptable because we cannot do what w
as when we were trying to emulate inheritance with genericity; unpleasant when we
do what we want but at the price of such complications as the use of artificial wrapper
classes and inefficient wrapper objects. The proper combination of inheritance a
genericity should help make our choices not only acceptable but pleasant too.

B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX

• Both genericity and inheritance aim to increase the flexibility of software modu

• Genericity is a static technique, applicable in O-O and non-O-O contexts, perm
the definition of modules parameterized by types.

• There are two forms of genericity: unconstrained, imposing no requirements o
parameters; constrained, requiring parameters to be equipped with specific oper

• Inheritance permits incremental module construction, by extension
specialization. It opens the way to polymorphism and dynamic binding.

• It does not seem possible to obtain the power of inheritance through genericity

• Pure inheritance can be used to emulate genericity, but at the expense of hea
in expression, performance penalties (mostly space) and type difficulties.

• A good compromise is to combine the full power of inheritance and redefinition
genericity, at least in its unconstrained form. This is achieved by permitting cla
to have generic parameters.

• It is also desirable to provide constrained genericity, which relies on the notio
type conformance, itself following from inheritance. Unconstrained genericity
then be viewed as a special case, using the universal class ANY as the constraint.

• The resulting construction seems elegant and minimal.

 Providing constrained genericity
Along with unconstrained genericity, it is desirable to provide constrained
genericity by relying on inheritance rules (through the notion of type
conformance) to define constraints on permissible actual generic parameters.

GENERICITY VERSUS INHERITANCE§B.71188

ence

d this
ill

s
otion
 if its
right
 class

ype of

e

B.7 BIBLIOGRAPHICAL NOTES

The material for this chapter originated with an article at the first OOPSLA confer
[M 1986]. The Trellis language [Schaffert 1986] also offered the combination of multiple
inheritance with constrained and unconstrained genericity.

EXERCISES

E-B.1 Artificial anchors

The artificial anchoranchor is declared as an attribute of class MATRIX and thus entails a
small run-time space overhead in instances of the class. Is it possible to avoi
overhead by declaring anchor as a “once function”, whose body may be empty since it w
never need to be evaluated? (Hint : consider type rules.)

E-B.2 Binary trees and binary search trees

Write a generic “binary tree” class BINARY_TREE; a binary tree (or binary node) ha
some root information and two optional subtrees, left and right. Then consider the n
of “binary search tree” where a new element is inserted on the left of a given node
information field is less than or equal to the information of that node, and to the
otherwise; this assumes that there is a total order relation on “informations”. Write a
BINARY_SEARCH_TREE implementing this notion, as a descendant of BINARY_TREE.
Make the class as general as possible, and its use by a client, for an arbitrary t
“informations” with their specific order relation, as easy as possible.

E-B.3 More usable matrices

Add to the last version obtained for class MATRIX two functions, one for access and on
for modification, which in contrast to item and put will allow clients to manipulate a matrix
of type MATRIX [G] in terms of elements of type G rather than RING_ELEMENT[G].

E-B.4 Full queue implementations

Expand the queue example by defining a deferred class QUEUE, completing the class of
this chapter (now called ARRAYED_QUEUE, inheriting from QUEUE and ARRAY, and
with proper postconditions), and adding a class LINKED_QUEUE for the linked list
implementation (based on inheritance from LINKED_LIST and QUEUE).

	B B Genericity versus inheritance
	B.1 GENERICITY
	Unconstrained genericity
	Constrained genericity

	B.2 INHERITANCE
	A simple inheritance hierarchy, with deferred and ...

	B.3 EMULATING INHERITANCE WITH GENERICITY
	Emulating inheritance

	B.4 EMULATING GENERICITY WITH INHERITANCE
	Emulating constrained genericity: overview
	Constrained genericity: routines
	Emulating constrained genericity (1)

	Constrained genericity: packages
	Unconstrained genericity
	Emulating unconstrained genericity

	B.5 COMBINING GENERICITY AND INHERITANCE
	Unconstrained genericity
	Providing unconstrained genericity

	Constrained genericity
	Emulating constrained genericity (2)
	Providing constrained genericity

	B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX
	B.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E-B.1 Artificial anchors
	E-B.2 Binary trees and binary search trees
	E-B.3 More usable matrices
	E-B.4 Full queue implementations

