B

Genericity versus inheritance

The material that follows, and its appearance in an appendix, deserve some backgrou
explanation. Part of the original impetus for the work that eventually led to this book was
a study that | performed in 1984; in preparation for a graduate course that | was to teax
on “advanced concepts in programming langudgesompared the “horizontal” module
extension mechanism of genericity, illustrated by Ada, Z, LPG and other generic
languages, with the “vertical” mechanism of inheritance introduced by Simula: how thest
techniques differ, to what extent they compete, and to what extent they complement ea
other. This led to an article on “Genericity versus Inheritapide1986], presented at the
first OOPSLA conference, and to a chapter in the first edition of the present book.

When preparing this new edition | felt that both genericity and inheritance were now
understood well enough, and their treatment detailed enough in the rest of the book,
make the chapter appear too specialized: useful mostly to readers interested in issues
language design or O-O theory. So | removed it. But then | found out that a regular flov
of articles in the software press still showed must puzzlement over the issue, especially
the context of C++ for which many people seem to be searching for general guidelines c
when to use “templates” and when to use inheritance. This means the discussion still h
its place in a general presentation of object technology, although it is perhaps best sever
from the main part of the text. Hence this appendix.

The topics reviewed are, in order: genericity; inheritance; how to emulate each o
these mechanisms through the other; and, as a conclusion, how best to reconcile them.

If you have read carefully the remainder of this book, you will find the beginning of
this discussion familiar since we must restart with the basics to get a full picture of eac
mechanism, of its contribution, and of its limitations. As we probe deeper and deepel
perhaps stepping briefly into a few dead ends along the way, the ideal combination ¢
genericity and inheritance will progressively unfold before our eyes, imposing itself in the
end as almost inevitable and letting us understand, in full detail, the fascinating
relationship between the two principal methods for making software modules open t
variation and adaptation.

1168 GENERICITY VERSUS INHERITANCES§B.1

B.1 GENERICITY

We begin our review by appraising the merits of genericity as it exists in a number of

languages, object-oriented or not. Let us rely for convenience on the notations —
semicolons and all — of the best known non-O-O generic language, Ada (meaning by
default, as elsewhere in this book, Ada 83). So for the rest of this section we forget about
0O-0 languages and techniques.

Only the most important form of Ada genericity will be considertype
parameterizatio, that is to say the ability to parameterize a software element (in Ada, a
package or routine) by one or more types. Generic parameters have other, less momentous
uses in Ada, such as parameterized dimensions for arrays. We may distinguish between
unconstraine genericity, imposing no specific requirement on generic parameters, and
constrainer genericity, whereby a certain structure is required.

Unconstrained genericity

Unconstrained genericity removes some of the rigidity of static typing. A trivial example
is a routine (in a language with Ada-like syntax but without explicit type declarations) to
swap the values of two variables:

procedure swap(x, y) is This extract and the
localt; next few are in Ada

begin or Ada-like syntax

t=x; X:=y Y=t
end sway;
This form does not specify the types of the elements to be swapped and of the local
variablet. This is too much freedom, since a (swap(a, b), wherea is an integer anb
a character string, will not be prohibited even though it is probably an error.

To address this issue, statically typed languages such as Pascal and Ada require
developers to declare explicitly the types of all variables and formal arguments, and
enforce a statically checkable type compatibility constraint between actual and formal
arguments in calls and between source and target in assignments.The procedure to
exchange the values of two variables of tG becomes:

procedure G_swap(x, y: in out G) is
t: G;

begin
t=x; X:=y Y=t

end sway;

Demanding theG be specified as a single type averts type incompatibility errors, but
in the constant haggling between safety and flexibility we have now erred too far away
from flexibility: to correct the lack of safety of the first solution, we have made the
solution inflexible. We will need a new procedure for every type of elements to be
exchanged, for examplINTEGER swa, STRING swa and so on. Such multiple
declarations lengthen and obscure programs. The example chosen is particularly bad since
all the declarations will be identical except for the two occurrencG. of

8§8B.1 GENERICITY 1169

Static typing may be considered too restrictive here: the only real requirement is tt
the two actual arguments passed to any cesway should be of the same type, and that
their type should also be applied to the declaration of the local vat. It does not matter
what this type actually is as long as it satisfies these properties.

In addition the arguments must be passein out mode, so that the procedure can
change their values. This is permitted in Ada.

Genericity provides a tradeoff between too much freedom, as with untype
languages, and too much restraint, as with Pascal. In a generic language you may de«
G as a generic parameterswapor an enclosing unit. Ada indeed offers generic routines,
along with the generic packages described in chi33. In quasi-Ada you can write:

generic

type Gis private;
procedure swap(x, y: in out G) is
t: G;

end sway;

The only difference with real Ada is that you would have to separate interface fro
implementation, as explained in the chapter on Ada. Since information hiding is irreleve
for the discussion in this chapter, interfaces and implementations will be merged for e:
of presentation.

Thegeneric... clause introduces type parameters. By specifG as “private”, the
writer of this procedure allows himself to apply to entities of iG (x, y andt) operations
available on all types, such as assignment or comparison, and these only.

The above declaration does not quite introduce a routine but rather a routine patte
to get a directly usable routine you will provide actual type parameters, as in

procedureint_swajis new swap(INTEGEF);

procedurestr_swayjis newswap(STRINC);

etc. Now assuming thi andj are variables of typINTEGEF, s andt of type STRING,
then of the following calls

int_swap(i, j); str_swap(s, t); int_swap(i, s); str_swag(s, j); str_swag(i, j);
all but the first two are invalid, and will be rejected by the compiler.

More interesting than parameterized routines are parameterized packages. A
minor variation of our usual stack example, consider a queue package, where
operations on a queue (first-in, first out) are: add an element; remove the oldest elem
added and not yet removed; get its value; test for empty queue. The interface is:

1170 GENERICITY VERSUS INHERITANCES§B.1

generic
type Gis private;
package QUEUESIs
type QUEUE (capacity. POSITIVE) is private;
function empty(s: in QUEUE) return BOOLEAN
procedure add(t: in G; s: in out QUEUE);
procedure remove(s: in out QUEUE);
function oldest(s: in QUEUE) return G;
private
type QUEUE (capacity: POSITIVE) is
-- The package uses an array representation for queues
record
implementatio: array (0 .. capacity) of G;
coun: NATURAL
end record;
end QUEUES;

Again this does not define a package but a package pattern; to get a directly usable
package you will use generic derivation, as in

packagelNT _QUEUESis newQUEUES(INTEGEF);
packageSTR_QUEUE is newQUEUES(STRINQ);

Note again the tradeoff that generic declarations achieve between typed and untyped
approachesQUEUES is a pattern for modules implementing queues of elements of all
possible type:G, while retaining the possibility to enforce type checks for a speG, so
as to rule out such unholy combinations as the insertion of an integer into a queue of strings.

The form of genericity illustrated by both of the examples seen so far, swapping and
gueues, may be calleunconstraine since there is no specific requirement on the types
that may be used as actual generic parameters: you may swap the values of variables of
any type and create queues of values of any type, as long as all the values in a given queue
are of the same type.

Other generic definitions, however, only make sense if the actual generic parameters
satisfy some conditions. This form may be caconstrainei genericity.

Constrained genericity

As in the unconstrained case, the examples of constrained genericity will include both a
routine and a package.

Assume first you need a generic function to compute the minimum of two values.
You can try the pattern sway:

generic From here on m_ost
. . . routine declarations
type Gis private; omit thein mode
function minimum(x, y: G) return Gis begin specification for
if x<=ythenreturn x; elsereturn y; endif; arguments, which is
optional.

end minimun;

8§8B.1 GENERICITY 1171

Such a function declaration, however, does not always make sense; only fc(Gtype:
on which a comparison operat<= is defined. In a language that enhances security
through static typing, we want to enforce this requirement at compile time, not wait un
runtime. We need a way to specify that tG must be equipped with the right operation.

In Ada this will be written by treating the opera<= as a generic parameter of its
own. Syntactically it is a function; as a syntactic facility, it is possible to invoke such
function using the usual infix form if it is declared with a name in double quotes, hel
"<=". Again the following declaration becomes legal Ada if the interface anc
implementation are taken apart.

generic
type Gis private;
with function "<=" (a, b: G) return BOOLEANiIs <>;
function Q(x, y: G) return Gis begin
if x<=ythenreturn x; elsereturn yendif;
end minimurm,

The keyworcwith introduces generic parameters representing routines, s"'<=".s

You may perform a generic derivatiminimun for any type, saT1, such that there
exists a function, saT1_le, of signaturefunction (a, b: T1) return BOOLEAN.

function T1_minimunis new minimum(T1, T1_le);

If functionT1 leis in fact callel "<=", more precisely if its name and type signature
match those of the corresponding formal routine, then you do not need to include it in
list of actual parameters to the generic derivation. So becauseINTEGEF has a
predefinec'<=" function with the right signature, you can simply declare

function int_minimumis new minimum(INTEGEF);

This use of default routines with matching names and types is made possible by
clauseis <> in the declaration of the formal routine, hi"<=". Operator overloading, as
permitted (and in fact encouraged) by Ada, plays an essential role: many different tyy
will have a"<=" function.

This discussion of constrained genericity for routines readily transposes to packag
Assume you need a generic package for handling matrices of objects of aG, with
matrix sum and product as basic operations. Such a definition only makes sensGif typ
has a sum and a product of its own, and each of these operations has a zero element;
features oG will be needed in the implementation of matrix sum and product. The publi
part of the package may be written as follows:

generic
type G is private;
zerc: G;
unity: G;
with function "+" (a, b: G) return Gis <>,
with function "0" (a, b: G) return Gis <>;

1172 GENERICITY VERSUS INHERITANCES§B.1

package MATRICESis
type MATRIX(lines, column: POSITIVE) is private;
function "+" (m1, mz MATRIX) return MATRIX;
function "O" (m1, mz: MATRI>) return MATRIX
private
type MATRIX(lines, column: POSITIVE) is
array (1..lines, 1..columny) of G;
end MATRICES;

Typical generic derivations are:
package INTEGER_MATRICEis new MATRICES(INTEGEF, G, 1);

packageBOOLEAN_MATRICE is
new MATRICES(BOOLEAN, falsg, true, "or", "and");

Again, you may omit actual parameters corresponding to formal generic routines
(here"+" and"[1") for typeINTEGEF, which has matching operations; but you will need
them forBOOLEAN. (It is convenient to declare such parameters last in the formal list;
otherwise keyword notation is required in derivations that omit the corresponding actuals.)

It is interesting here to take a look at the body (implementation) of such a package:

package bodyMATRICESis
... Other declaration...
function "O" (m1, mz: G) is
resul: MATRIX(m1'lines, m2'column);
begin
if m1'columny= m2'linesthen
raise incompatible_siz¢s
end if;
for i in m1'RANGI(1) loop
for jin m2'RANGI(2) loop
result(i, j) := zerg
for kin m1'RANGK?2) loop
result(i, j) :=result(i, j) + m1(i, k) O m2(k, j)
endloop;
end loop;
end loop;
return result
end"O";
end MATRICES;
This extract relies on some specific features of Ada:

e For a parameterized type suchMATRIX(lines, column: POSITIVE), a variable
declaration must provide actual parameters, mn: MATRIX(10C, 75); you may
then retrieve their values using apostrophe notation,mm’'line: which in this case
has value 100.

§B.2 INHERITANCE 1173

This extract and the
next few are in the
O-0 notation of the
rest of this bock

e If ais an arraya' RANGE(i) denotes the range of values ini-th dimension; for
examplem1'RANGI(1) above is the same 1«. m1'lines

* If requested to multiply two dimension-wise incompatible matrices, the extrac
raises an exception, corresponding to the violation of an implicit precondition.

The minimum and matrix examples are representative of Ada techniques f
constrained genericity. They also show a serious limitation of these techniques: ol
syntactic constraints can be expressed. All that a programmer may require is the present
certain routines"'<=","+", "[]" in the examples) with given types; but the declarations are
meaningless unless the routines also satisfy some semantic constraints. Fminimum
only makes sense "<=" is a total order relation cG; and to produce a generic derivation
of MATRICE! for a typeG, you should make sure that operati"+" and"[1" have not just
the right signature,GxG - G, but also the appropriate properties: associativity,
distributivity, zerc a zero element fo"+" and unity for "[J" etc. We may use the
mathematical terrring for a structure equipped with operations enjoying these properties

B.2 INHERITANCE

So much for pure genericity. The other term of the comparison is inheritance. To contr:
it with genericity, consider the example of a general-purpose module library for files. Fir
here is the outline of an implementation of “special files” in the Unix sense, that is to se
files associated with devices:

classDEVICE feature
open(file_descripto: INTEGEF) is do... end
closeis do... end
opene: BOOLEAN

end -- classDEVICE

An example use of this class is:

d1: DEVICE; f1: INTEGEF; ...
Il d1. make; d1.open(fl);
if d1.openecthen...

Consider next the notion of a tape device. For the purposes of this discussion, a t
unit has all the properties of devices, as represented by the three featuresDEVICE,
plus the ability to rewind its tape. Rather than building a class from scratch, we may
inheritance to declare claTAPE as an extension-cum-modificationDEVICE. The new
class extendsDEVICE by adding a new procedurrewind, describing a mechanism
applicable to tapes but not necessarily to other devices; and it modifies SDEVICE's
properties by providing a new version oper, describing the specifics of opening a
device that happens to be a tape drive.

Objects of typeTAPE automatically possess all the featureDEVICE objects, plus
their own (heraewinc). ClassDEVICE could have more heirs, for exam|DISK with its
own specific features such as direct access read.

1174 GENERICITY VERSUS INHERITANCES§B.2

Objects of typeTAPE will possess all the features of tyDEVICE, possibly adapted
(in the case coper), and complemented by the new featrewind.

With inheritance comes polymorphism, permitting assignments of thexc=y, This is approximate
but only if the type ox is an ancestor of the type y. The next associated property iterm'”to'og]}fi 'ts ag
dynamic binding: ifx is a device, the calx.open (f1) will be executed differently ;nrc,izr?fz)?mssts? S
depending on the assignments performex before the call: aftex:=y, wherey is a tape, precise rules app;ear

the call will execute the tape version. in earlier chapters.

We have seen the remarkable benefits of these inheritance techniques for reusability
and extendibility. A key aspect was the Open-Closed principle: a software element such
asDEVICEis both usable as it stands (it may be compiled as part of an executable system)
and still amenable to extensions (if used as an ancestor of new classes).

Next come deferred features and classes. Here we note that Unix devices are a special
kind of file; so you may makDEVICE an heir to clasFILE, whose other heirs might
include TEXT_FILE (itself with heirsNORMAL and DIRECTOR") and BINARY _FILE.

The figure shows the inheritance graph, a tree in this case.

opert A simple
clos¢ inheritance

hierarchy, with
/ f deferred and
i effective classes
BINARY
FILE

Inherits from
BINARY _ f
FILE [] Deferred

Although it is possible to open or close any file, how these operations are performed
depends on whether the file is a device, a directory etFILE is a deferred class with
deferred routineoper or close, making descendants responsible for irmenting them:

deferred classFILE feature
open(file_descripto: INTEGEF) is deferred end
closeis deferred end,

end -- classFILE

Effective descendants (FILE will provide effective implementations «open
andclose.

§B.3 EMULATING INHERITANCE WITH GENERICITY 1175

This extract and the
next few are in Ada
synta:.

See“Single Choice”,
page 6..

B.3 EMULATING INHERITANCE WITH GENERICITY

To compare genericity with inheritance, we will study how, if in any way, the effect o
each feature may be emulated in a language offering the other.

First consider a language such as Ada (again meaning Ada 83), offering generic
but not inheritance. Can it be made to achieve the effects of inheritance?

The easy part is name overloading. Ada, as we know, allows reusing the sal
routine name as many times as needed for operands of different types; so you can de
types such aTAPE, DISK and others, each with its own version of the routines:

procedure open(p: in out TAPE; descripto: in INTEGEF);
procedure close(p: in out DISK);

No ambiguity will arise if the routines are distinguished by the type of at least on
operand. But this solution does not provide polymorphism and dynamic binding, where
d.closg, for example, would have a different effect after assigniret:= di andd := ta,
wheredi is aDISK andta aTAPE.

To obtain the same effect, you have to use records with variant fields: define
type DEVICE (unit: DEVICE_TYPJ) is

record
... Fields common to all device typ...i
case unitis
when tape=> ... fields for tape device...;
when disk=> ... fields for disk device...;
... Other case...;
end case
end record

whereDEVICE_TYPI is an enumerated type with elemetape, disk etc. Then there
would be a single version of each the procedures on dewper, close etc.), each
containing a case discrimination of the form

cased'unitis
whentape=> ... action for tape device...;
whendisk=> ... action for disk device...;
... other case...;

end case

This uses explicit discrimination in each case, and closes off the list of choice
forcing every routine to know of all the possible variants; addition of new cases will cau:
changes to all such routines. The Single Choice principle expressly warned against s
software architectures.

So the answer to the question of this section is essentially no:

Emulating inheritance
It appears impossible to emulate inheritance through genericity.

1176 GENERICITY VERSUS INHERITANCES§B.4

B.4 EMULATING GENERICITY WITH INHERITANCE

Let us see if we will have more luck with the reverse problem: can we achieve the effect
of Ada-style genericity in an object-oriented language with inheritance?

The O-O notation introduced in earlier chapters does provide a generic parameter
mechanism. But since we are comparing pure genericity versus pure inheritance, the rule
of the game for some time, frustrating as it may be, is to pretend we have all but forgotten
about that genericity mechanism. As a result the solutions presented in this section will be
substantially more complex than those obtainable with the full notation, described in the
rest of this book and in later sections. As you read this section, remember that the software
extracts are not final forms, but for purposes of discussion only.

Surprisingly perhaps, the simulation turns out to be easier, or at least less atrtificial,
for the more sophisticated form of genericity: constrained. So we begin with this case.

Emulating constrained genericity: overview

The idea is to associate a class with a constrained formal generic type parameter. This is
a natural thing to do since a constrained generic type may be viewed, together with its

constraining operations, as an abstract data type. Consider for example the Ada generic
clauses in our two constrained examples, minimum and matrices:

generic This extract is in Ada
type G is private; synta.
with function "<=" (a, b: G) return BOOLEAN is <>

generic
type Gis private;
zerc: G; unity: G;
with function "+" (a, b: G) return Gis <>,
with function "0O" (a, b: G) return Gis<>;

We may view these clauses as the definitions of two abstract data types,
COMPARABLI and RING_ELEMEN’ the first is characterized by a comparison
operation’'<=", and the second by featuizerc, unity, "+" and"[J".

In an object-oriented language, such types may be directly represented as classes.
We cannot define these classes entirely, for there is no universal implementi'<=",of
"+" etc.; rather, they are to be used as ancestors of other classes, corresponding to actual
generic parameters. Deferred classes provide exactly what we need:

deferred classCOMPARABLI feature This extract and all
infix “ <=" (other: COMPARABLI): BOOLEANIs deferred end ir,?r:;]ael%rj%?]rg;ﬁagﬁ

end -- classCOMPARABLE of this boo«

8§B.4 EMULATING GENERICITY WITH INHERITANCE 1177

deferred classRING_ELEMEN feature
infix "+" (other like Curren): like Currentis
deferred

ensure
equal(othel, zerc) implies equal(Resul, Curren)
end;

infix "0O" (other like Curren): like Currentis deferred end
zerc: like Currentis deferred end
unity: like Currentis deferred end

end-- classRING_ELEMENT

Unlike Ada, the O-O notation allows us here to express abstract semantic properti
although only one of them has been included as an example (the propex + 0 = x
for anyx, appearing as a postconditioninfix "+").

“ANCHORED The use of anchored typelike Curren) makes it possible to avoid some improper
DECLARATION”, combinations, as explained for t COMPARABLEexample next. At this stage replacing
16.7, page 5¢9 all such types bRING_ELEMEN would not affect the discussion.

Constrained genericity: routines

We can write a routine such iminimun by specifying its arguments to be of type
COMPARABLL Based on the Ada pattern, the function would be declared as

minimun (one: COMPARABLI; other: like one): like oneis
-- Minimum of one andother
do ... end
In O-O development, however, every routine appears in a class and is relative to

current instance of that class; we may incluninimun in class COMPARABLI.:
argumenione becoming the implicit current instance. The class becomes:

COMPARABLI: deferred classCOMPARABLLI feature

becomes a *behavior infix "<=" (other: like Curren): BOOLEANis

class”, with an effec- .

tive feature relying -- Is current object less than or equaother?
on a deferred one. deferred

SeeDon’t call us,
we'll call you”, page
50¢.

end

minimum(other: like Curren): like Currentis
-- Minimum of current object another
do
if Current<=otherthen Result:= Currentelse Result:= otherend
end
end -- classCOMPARABLE

To compute the minimum of two elements, you must declare them of some effecti
descendant type (COMPARABLL, for whichinfix “<=" has been effected, such as

1178 GENERICITY VERSUS INHERITANCES§B.4

classINTEGER_COMPARABL inherit
COMPARABLE
creation
put
feature -- Initialization
put(v: INTEGEF) is
-- Initialize fromv.
doitem:= newend
feature -- Access

item: INTEGEF;
-- Value associated with current object
feature -- Basic operations

infix "<=" (other: like Curreni): BOOLEAN:Is
-- Is current object less than or equaother?
do Result:= (item<= other.item) engd,
end -- classINTEGER_COMPARABLE

To find the minimum of two integers, you may now apply funciminimun to
entitiesicl andic2, whose type is NndNTEGERbutINTEGER_COMPARABLE

ic3:=icl.minimum(ic2)

To use the generiinfix "<=" and minimun functions, you must renounce direct
references to integers, usiiNTEGER_COMPARABL entities instead; hence the need
for attributeitem and routineputto access and modify the associated integer values. You
will introduce a similar heirs cCCOMPARABLI, such a<STRING_COMPARABIL, and
REAL_COMPARABL, for each type requiring a versionminimurn.

Note that the mechanism of anchored declaration is essential to ensure type
correctness. If the argument minimun in COMPARABLI had been declared as a
COMPARABLI, rather thatlike Curren, then the following call would be valid:

icl.minimum(c)

even ifcis aCOMPARABLI but not arINTEGER_COMPARABL. Clearly, such a call
should be disallowed. This also applies to the previous exaRING _ELEMEN""

Having to declare featurdtem andputfor all descendants (COMPARABLI, and
hence sacrificing the direct use of simple types, is unpleasant. There is also a performance
cost: rather than manipulating integers or strings we must create awrapper objects
of types such aINTEGER_COMPARABL. But by paying this fixed price in both ease of
use and efficiency we do achieve the full emulation of constrained genericity by
inheritance. (In the final notation, of course, there will be no price at all to pay.)

Emulating constrained genericity (1)

It is possible to emulate constrained genericity through inheritance, by|using
wrapper classes and the corresponding wrapper objects.

8§B.4 EMULATING GENERICITY WITH INHERITANCE 1179

Constrained genericity: packages

The previous discussion transposes to packages. To emulate the matrix abstraction w
Ada implemented through ttMATRICE: package, we can use a class:

classMATRIX feature

anchori: RING_ELEMENTis do end
implementatio: ARRAYZlike ancho]
item(i, j: INTEGEF): like anchoris
-- Value of i, j) entry
do Result:= implementationitem(i, j) end
put(i, j: INTEGEF; v: like ancho) is
-- Assign valuev to entry i, j).
do implementatiorput (i, j, v) end
infix "+" (other: like Curren): like Currentis
-- Matrix sum of current matrix arother
local
i, j: INTEGER
do
Il Resultmake(...)
from i:= ... until ... loop
from j:= ... until ... loop
Result put((item(i, j) + other.item(i, j)), i, j)
j=j+1
end
=i+l
end
end

infix "C* (othel: like Curreni): like Currenis
-- Matrix product of current matrix bother
local ... do ... end
end -- classMATRIX

The type of the argument iput and of the result oitem raises an interesting
problem: it should beRING ELEMEN', but redefined properly in descendant classes.
Anchored declaration is the solution; but here for the first time no attribute of the cla
seems to be available to serve as anchor. This should not stop us, however: we declal
artificial anchor, called anchol. Its only purpose is to be redefined to the proper
descendant types RING_ELEMEN"in future descendants MATRIX (that is to say, to
BOOLEAN_RIN(in BOOLEAN_MATRI etc.), so that all associated entities will follow.
To avoid any space penalty in instancanchol is declared as a function rather than an
attribute. This technique of artificial anchors is useful to preserve type consistency whe
as here, there is no “natural” anchor among the attributes of the class.

1180 GENERICITY VERSUS INHERITANCES§B.4

A few loop details have been left out, as well as the bodnfix "[, but they are
easy to fill in. Featureput anditen as applied timplementatio will come from the
library classARRAY describing two-dimensional arrays.

To define the equivalent of the Ada generic package derivation shown earlier

packageBOOLEAN_MATRICE is
new MATRICES(BOOLEAN, falsg, true, "or", "and");

we must first declare the “ring element” corresponding to booleans:

classBOOLEAN_RING_ELEMEN inherit
RING_ELEMENT
redefine zer¢, unityend
creation
put
feature -- Initialization
put(v: BOOLEAN) is
- Initialize fromv.
doitem:=vend
feature -- Access
item: BOOLEAN
feature -- Basic operations
infix "+" (other like Curren): like Currentis
-- Boolean addition: or
do!! Resultput(itemor other.iterr) end
infix "[" (other: like Curren): like Currentis
-- Boolean multiplication: and
do!! Resulfput(itemand other.item) end
zerc: like Currentis
-- Zero element for boolean addition
once!!l Resultput (False) end
unity: like Currentis
-- Zero element for boolean multiplication
once!!l Resultput(True) end
end -- classBOOLEAN_RING_ELEMENT

Note howzerc andunity are effected as once functions.

Then to obtain an equivalent to the Ada package derivation, just define an heir
BOOLEAN_ MATRI of MATRIX, where you only need to redefianchoy, the artificial
anchor; all the other affected types will follow automatically:

8§B.4 EMULATING GENERICITY WITH INHERITANCE 1181

classBOOLEAN_MATRI inherit
MATRIX
redefine anchorend
feature
anchoi: BOOLEAN_RING_ELEMENT
end -- classBOOLEAN_MATRIX

See the box on page This construction achieves the effect of constrained genericity using inheritanc
117¢. confirming for packages the emulation result initially illustrated for routines.

Unconstrained genericity

The mechanism for simulating unconstrained genericity is the same; we can simply tr
this case as a special form of constrained genericity, with an empty set of constraints.
above, formal type parameters will be interpreted as abstract data types, but here witt
relevant operations. The technique works, but becomes rather heavy to apply since
dummy types do not correspond to any obviously relevant data abstraction.

Let us apply the previous technique to both our unconstrained examples, swap ¢
gueue, beginning with the latter. We need a classQUEUABLE, describing objects that
may be added to and retrieved from a queue. Since this is true of any object, the class
no other property than its name:

class QUEUABLEend

We may now declare a claQUEUE, whose operations apply QUEUABLE
objects. (Remember that this class is not offered as a paragon of good O-O design: we
still voluntarily playing with an impoverished version of the O-O notation, devoid of
genericity.) Routine postconditions have been left out for brevity. Although in principls
functionitem could serve as an anchor, its body will not change in descendants, so it
better to use an artificial anchitem_ancha to avoid having to redefiritem.

indexing

descriptior: "First-in-first out queue, implemented through arra"rs
class QUEUEcreation

make
feature -- Initialization

make(m: INTEGEF) is
-- Create queue with space imitems.
require
m>=0
do
Il'implementatiormake(1, m); capacity:= m
first:=1; next:=1
end

1182

GENERICITY VERSUS INHERITANCES§B.4

feature -- Access
capacity, first, nex, coun: INTEGER
item: like item_anchoiis
-- Oldest element in queue
require
not empty
do
Result:= implementatioritem (first)
end
feature -- Status report
empt: BOOLEANis
-- Is queue empty?
do Resuli:= (count=0) end
full: BOOLEANIs
-- Is representation full?
do Resuli:= (count= capacity) end
feature -- Element change
put (x: like item_anchc) is
-- Add x at end of queue
require
not full
do

implementatiorput(x, nex); count:= count + ; next:= successc(nex)

end
removeis
-- Remove oldest element
require
not empty
do

first := successo(first); count:= count — 1

end

8§B.4 EMULATING GENERICITY WITH INHERITANCE 1183

For an alternative
technique see.g.“A
buffer is a separate
queue”, page 90

feature {NONE} -- Implementation
item_ancho: QUEUABLE is do end
implementatio: ARRAY[like item_anchc]
successo(n: INTEGEF): INTEGERIs
-- Next value aften, cyclically in the interval .. capacity
require
n>=1; n <= capacity
do
Result:= (n \\ capacit) + 1
end

invariant
0 <= coun; count<= capacity, first >= 1, next>=1
(not full) implies ((first <= capacity) and (next<= capacity))
(capacity= 0) implies full
-- Items, if any, appear in array positicfirst, ... next — 1(cyclically)
end -- classQUEUE
Bounded queue implementations elsewhere in this book rely on the technique of keeping
one position open. Here, we alloccapacity elements and keep trackcoun:. There is
no particular reason, other than to illustrate alternative implementation techniques.
To get the equivalent of generic derivation (so as to obtain queues of a specific tyj
you must, as with thCOMPARABLEexample, define descendantsQUEUABLE:

classINTEGER_QUEUABL inherit
QUEUABLE
creation
put
feature -- Initialization
put(n: INTEGEF) is
-- Initialize fromn.
doitem:=nend

feature -- Access
item: INTEGER
feature {NONE} -- Implementation
item_ancho: INTEGERIs do end
end-- classINTEGER_QUEUABLE

and similarlySTRING _QUEUABL etc.; then declare the corresponding descendants o
QUEUE, redefiningitem_anchoiappropriately in each.

Emulating unconstrained genericity

It is possible to emulate unconstrained genericity through inheritance, by
using wrapper classes and the corresponding wrapper objects.

1184 GENERICITY VERSUS INHERITANCES§B.5

B.5 COMBINING GENERICITY AND INHERITANCE

It appears from the previous discussion that inheritance is the more powerful mechanism
since we have not found a reasonable way to simulate it with genericity. In addition:

« You can express the equivalent of generic routines or packages in a language with
inheritance, but this requires some duplication and complication. The verbosity is
particularly hard to justify for unconstrained genericity, which requires just as much
emulation effort even though it is theoretically simpler.

« Type checking introduces difficulties in the use of inheritance to emulate genericity.

Anchored declaration solves the second problem. (The reader familiar wittChapter17.
detailed discussion of typing in an earlier chapter will, however, have noted the pot
for system validity problems, which we do not need to explore further since they
disappear in the solutions finally retained below.)

Let us see how we can solve the first problem by introducing (reintroducing, that is)
the appropriate form of genericity.

Unconstrained genericity

Since the major complication arises for unconstrained genericity even though it should be

the simpler case, it seems adequate to provide a specific genericity mechanism for this
case, avoiding the need to rely on inheritance. Consequently, we allow our classes to have
unconstrained generic parameters: as we are now (at last) allowed to remember from
earlier chapters, a class may be defined as

classC[G, H,...] ...

where the parameters represent arbitrary types. To obtain a directly usable type you use a
generic derivation, using types as actual generic parameters:

x: C[DEVICE, RING_ELEMEN] ...]
This immediately applies to the queue class, which we can simply declare as
indexing
descriptior: "First-in-first out queue, implemented through arra"rs
class QUEUE[G] creation
... The rest as before, but removing the declaraticitem_anchor

and replacing all occurrences of tylike item_anchoiby G ...
end -- classQUEUE

We get rid of clasQUEUABLEas well asINTEGER_QUEUABL and other such
descendants; to have a queue of integers, we simply useQUEUE [INTEGEF],
manipulating integers directly rather than through intermediate wrapper objects.

This is a remarkable simplification, suggesting that in spite of the theoretical
possibility of emulating unconstrained genericity through inheritance, it is desirable in
practice to introduce a generic mechanism into the object-oriented framewaork.

8§B.5 COMBINING GENERICITY AND INHERITANCE 1185

Providing unconstrained genericity

Along with inheritance, it is desirable to provide a specific notation for
declaring classes as generic (unconstrained).

Constrained genericity

For constrained genericity we can explore the same general scheme. In the matrix exan

classMATRIX[G] feature

anchoi RING_ELEMENTG]
...Other features as befo...
end -- classMATRIX

with ring elements now declared as
deferred classRING _ELEMENT[G] feature
item: G
put(new: G) is do item:= newend
...Other features as befo...
end-- class RING_ELEMENT

Using the same a generic parameter in two related cleRING_ELEMEN" and
MATRIX, ensures type consistency: all the elements of a given matrix will be of typ
RING_ELEMENT[G] for the sam G.

We can similarly make claaCOMPARABLI generic:
deferred classCOMPARABLE[G] feature

item: G

put(new: G) is do item:= newend

...Other featuresinfix "<=", minimun) as before...

end -- classCOMPARABLE

The features of the clasinfix "<=", minimun) represent the constraints (twith
routines of the Ada form). The earlier descendants become extremely simple:

classINTEGER_COMPARABLinherit
COMPARABLE[INTEGEF]
creation
put
end

(Note that this is the whole class, not a sketch with features to be added!) The same sch
immediately applies to all other variants suctSTRING_ COMPARABLE

The technique is indeed fairly simple to apply, leading to one more emulation princip|

1186 GENERICITY VERSUS INHERITANCES§B.5

Emulating constrained genericity (2)

It is possible to emulate constrained genericity through inheritance and
unconstrained genericity, by using wrapper classes and the corresppnding
wrapper objects.

But we are again paying a price: we need to reintroduce wrapper classes such as
INTEGER_COMPARABL. This is less shocking than in the earlier solution, because then
we had to pay that price for the unconstrained case as well, even though it is conceptually
very simple. Here it seems easier to justify the need for wrapper classes and objects since
constrained genericity is a relatively sophisticated idea.

Based on these observations, the notation of this book and compilers for it diExercise 1.5, page
initially — for a little over two years, late 1985 to early 1988 — have special suppor422 of[M 1988].
constrained genericity. The first edition of this book mentioned the possibility of si-ic"’)‘gdptrr']r:t”:ﬁ: g(‘igr']_
support, proposing as an exercise the exact design of an appropriate language COgjon had been
But it did not take very long afterwards to realize that most applications were not recintegrated into the
pay the price of wrapper classes and objects, and to integrate the exercise’s solutilanguage.

the notation; the compilers soon followed.

The notation in question is, of course, the one earlier chapters have used to specify
constrained genericity, as in

classMATRIX[G —> RING_ELEMEN] ...
and
classSORTABLE_LISTG -> COMPARABL] ...

whereRING_ELEMENTandCOMPARABLEare the original versions, deferred and non-
generic. As noted in the first presentation of this notation in an earlier chapter, it is a
remarkable combination of genericity and inheritance, avoiding all the extra baggage of
earlier solutions:

* We do not need, like Ada, to use routines as generic paramwith clauses). Only
types can be generic parameters; this is simple, consistent and easy to learn.

« We do not need any special wrapper classes and objects. If you want a matrix of
integers, you declare it iMATRIX[INTEGEF] and use plain integers to set and
retrieve its elements; if you want a sortable list of strings, you declare it as
SORTABLE_LISTSTRIN(C and use plain strings.

The semantics, as you will remember, is 1G represents not an arbitrary type any
more, but a type that must conform to the constraint (be based on a descendant class). A
generic derivation such MATRIX[T] is valid if and only ifT is such a type; this is true
of INTEGEF but not, for example, oSTRINC. Similarly, STRINC will inherit from
COMPARABLEand hence will be acceptable as an actual generic parameter for the class
SORTABLE_LIS; but this is not true of a claCOMPLEX(for complex numbers) which
has no associated order relation. The syn-> was chosen, as you will also remember,
to evoke the arrow of inheritance diagrams.

8B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX 1187

Providing constrained genericity

Along with unconstrained genericity, it is desirable to provide constrgined
genericity by relying on inheritance rules (through the notion of type
conformance) to define constraints on permissible actual generic parameters.

As a last detail, you will remember that in this scheme constrained generici
becomes the more basic facility: the unconstrained case QUEUE[G], is understood
as an abbreviation fQQUEUE [G —> ANY] whereANY denotes the class that serves as
ancestor to all developer-defined classes. This has the consequence of defining preci
the operations applicable 1G: those, coming fromANY, which are applicable to all
classes, including general-purpose features suclong, print andequa.

The introduction of constrained genericity provides the final touch to the delicat
combination of inheritance and genericity detailed in this chapter. | hope that you will fin
the result consistent, elegant, eminima in the sense that although no component of the
edifice is redundant (as it should indeed always be immediately clear, for any particu
circumstance, which of the various possibilities is the appropriate one), removing any c
of them would lead us to one of the situations that we found unacceptable or unpleas
in the earlier sections of this appendix: unacceptable because we cannot do what we w
as when we were trying to emulate inheritance with genericity; unpleasant when we col
do what we want but at the price of such complications as the use of arwrapper
classes and inefficienwrapper objects. The proper combination of inheritance and
genericity should help make our ches not only acceptable but pleasant too.

B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX

« Both genericity and inheritance aim to increase the flexibility of software modules

< Genericity is a static technique, applicable in O-O and non-O-O contexts, permittir
the definition of modules parameterized by types.

» There are two forms of genericity: unconstrained, imposing no requirements on t
parameters; constrained, requiring parameters to be equipped with specific operatic

 Inheritance permits incremental module construction, by extension an
specialization. It opens the way to polymorphism and dynamic binding.

« It does not seem possible to obtain the power of inheritance through genericity.

< Pure inheritance can be used to emulate genericity, but at the expense of heavir
in expression, performance penalties (mostly space) and type difficulties.

* A good compromise is to combine the full power of inheritance and redefinition witl
genericity, at least in its unconstrained form. This is achieved by permitting class
to have generic parameters.

« It is also desirable to provide constrained genericity, which relies on the notion
type conformance, itself following from inheritance. Unconstrained genericity ca
then be viewed as a special case, using the universaANY as the constraint.

» The resulting construction seems elegant and minimal.

1188 GENERICITY VERSUS INHERITANCES§B.7

B.7 BIBLIOGRAPHICAL NOTES

The material for this chapter originated with an article at the first OOPSLA conference
[M 1986]. The Trellis languag[Schaffert 198¢ also offered the combination of multiple
inheritance with constrained and unconstrained genericity.

EXERCISES
E-B.1 Artificial anchors

The artificial anchoanchol is declared as an attribute of ckiMATRI> and thus entails a
small run-time space overhead in instances of the class. Is it possible to avoid this
overhead by declarinranchoias a “once function”, whose body may be empty since it will
never need to be evaluateHint: consider type rules.)

E-B.2 Binary trees and binary search trees

Write a generic “binary tree” claBINARY TRE; a binary tree (or binary node) has
some root information and two optional subtrees, left and right. Then consider the notion
of “binary search tree” where a new element is inserted on the left of a given node if its
information field is less than or equal to the information of that node, and to the right
otherwise; this assumes that there is a total order relation on “informations”. Write a class
BINARY_SEARCH_TRIimplementing this notion, as a descendarBINARY_TRE.Z

Make the class as general as possible, and its use by a client, for an arbitrary type of
“informations” with their specific order relation, as easy as possible.

E-B.3 More usable matrices

Add to the last version obtained for cktMATRI> two functions, one for access and one
for modification, which in contrast litem andput will allow clients to manipulate a matrix
of typeMATRIX[G] in terms of elements of ty|G rather tharRING_ELEMENTG].

E-B.4 Full gueue implementations

Expand the queue example by defining a defe classQUEUE, completing the class of
this chapter (now calleARRAYED_QUEU, inheriting fromQUEUE andARRA", and
with proper postconditions), and adding a clILINKED_ QUEUE for the linked list
implementation (based on inheritance frLINKED_LISTandQUEUE).

	B B Genericity versus inheritance
	B.1 GENERICITY
	Unconstrained genericity
	Constrained genericity

	B.2 INHERITANCE
	A simple inheritance hierarchy, with deferred and ...

	B.3 EMULATING INHERITANCE WITH GENERICITY
	Emulating inheritance

	B.4 EMULATING GENERICITY WITH INHERITANCE
	Emulating constrained genericity: overview
	Constrained genericity: routines
	Emulating constrained genericity (1)

	Constrained genericity: packages
	Unconstrained genericity
	Emulating unconstrained genericity

	B.5 COMBINING GENERICITY AND INHERITANCE
	Unconstrained genericity
	Providing unconstrained genericity

	Constrained genericity
	Emulating constrained genericity (2)
	Providing constrained genericity

	B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX
	B.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E-B.1 Artificial anchors
	E-B.2 Binary trees and binary search trees
	E-B.3 More usable matrices
	E-B.4 Full queue implementations

