33

O-0 programming and Ada

In the nineteen-seventies, advances in programming methodology brought about a ne
generation of languages combining the control structures of Algol 60 and the dat
structuring constructs of Algol W and Pascal with better system structuring facilities anc
support for information hiding. Although their precise traits differ, these languages shar
a common spirit and may be collectively called éneapsulation languagesThey are

also known in the literature as “object-based”, a terminology that will be discussed in the
next chapter.)

Although a complete list of encapsulation languages would be long, only a few have
developed a sizable user community. Five deserve particular atteMmula-2, a
successor to Pascal designed at the Swiss Federal Institute of Technology by Niklal
Wirth, creator of Algol W, Pascal itself and (later) OberGhl, developed at MIT under
the direction of Barbara Liskov, which comes closest to realizing object-oriented concept
but lacks inheritancdylesa, a Xerox effort with particular emphasis on describing inter-
module relationships of large systerAfphard, by Mary Shaw, William Wulf and Ralph
London of Carnegie-Mellon University, which included an assertion mechanism; anc
Ada.

We will limit our study of how to approach O-O techniques in encapsulation
languages to Ada, which, besides having attracted the most attention, is also the mc
complete (and complex) of these languages, embodying in some form most of the featur
found in the others. Modula-2, for example, does not offer genericity or overloading.

33.1 ABIT OF CONTEXT

Ada was a response to a crisis perceived in the mid-seventies by the software polic
makers of the US Department of Defense (DoD). They noted in particular that the variou
branches of the military were using more than 450 programming languages, many of the
technically obsolete, gravely hampering contractor management, programmer training
technical progress, software quality and cost control.

Bearing in mind the successful precedent of COBOL (the result, in the late fifties, of
a DoD call for a COmmon Business-Oriented Language), they put out successive versiol
of a Request For Proposals for a modern software engineering language capable
supporting embedded real-time applications. A first winnowing out of the several dozet
initial responses led to four candidate designs, sealed and color-coded for fairness. Tl
field was narrowed down to two, finally leading in 1979 to the selection of the Green
language designed by Jean D. Ichbiah and his group at Cll-Honeywell Bull in France

1080 0-O PROGRAMMING AND ADA 833.1

(today’s Bull). Following a few years’ experience with the first industrial
implementations, the language was revised and made into an ANSI standard in 1983.

Ada (as Green was renamed) began a new era in language design. Never before had
a language be subjected to such intense examination before being released. Never before
(in spite of some valiant efforts by the PL/I team) had a language been treated like a large-
scale engineering project. Working groups comprising the best experts in many countries
spent weeks reviewing the proposals and contributed — in those pre-Internet days —
reams of comments. Like Algol 60 a generation earlier, Ada redefined not just the
language landscape but the very notion of language design.

A recent revision of Ada has yielded a new language, now officially called Ada 95,
which will be described at the end of this chapter. In the rest of the discussion, as
elsewhere in this book, the name Ada without further qualification refers to the preceding
version, Ada 83, by far the most widely used today.

Has Ada been successful? Yes and no. The DoD got what it had commissioned:
thanks to a rigorous implementation of the “Ada mandate”, Ada became in a few years the
dominant technical language in the various branches of the US military, and of the military
establishment of some other countries too. It has also achieved significant use in such non-
military government agencies as NASA and the European Space Agency. But except for
some inroads in computing science education — aided in part by DoD incentives — the
language has only had limitedcaiess in the rest of the software world. It would probably
have spread more widely were it not for the competition of the very ideas described in this
book: object technology, which burst into the scene just as Ada and the industry were
becoming ripe for each other.

The careful observer of language history can detect two ironies here. The first is that
the designers of Ada were well aware of O-O ideas; although this is not widely known,
Ichbiah had in fact written one of the first compilers for Simula 67, the original O-O
language. As he has since explained when asked why he did not submit an O-O design to
the DoD, he estimated that in the competitive bidding context of Ada’s genesis such a
design would be considered so far off the mainstream as to stand no chance of acceptance.
No doubt he was right; indeed one can still marvel at the audacity of the design accepted
by the DoD. It would have been reasonable to expect the process to lead to something like
an improvement of JOVIAL (a sixties’ language for military applications); instead, all
four candidate languages were based on Pascal, a language with a distinct academic
flavor, and Ada embodied bold new design ideas in many areas such as exceptions,
genericity and concurrency. The second irony is that the Ada mandate, meant to force
DoD software projects to catch up with progress in software engineering by rolderg
approaches, has also had in the ensuing years the probably unintended effect of slowing
down the adoption (newe (post-Ada) technology by the military-aerospace community.

The lessons of Ada remain irreplaceable, and itis a pity that many of the O-O languages
of the eighties and nineties did not pay more attention to its emphasis on software
engineering quality. However obvious, this comment is all the more necessary because the
occasion for discussing Ada in this book is often to contrast some of its solutions with those
of O-O development — as will again happen several times in this chapter. The resulting

§33.2 PACKAGES

1081

See“Packages”,
page 91)

“Modules and
types”, page 170

“Facility inherit-
ance”, page 832

The standard Ada term
for “routine” is “sub-
program”. We keep the
former for consistency
with other chaptels

critiques of Ada techniques should be viewed less as reproach than as homage to the
precursor against which any new solution must naturally be assessed.

33.2 PACKAGES

Each of the encapsulation languages offers a modular construct for grouping logica
related program elements. Ada calls it a package; corresponding notions are knowr
modules in Modula-2 and Mesa, and clusters in CLU.

A class was defined as both a structural system component — a module — an
type. In contrast, a package is only a module. An earlier discussion described t
difference by noting that packages are a pusyntacticnotion, whereas classes also have
a semanti value. Packages provide a way to distribute system elements (variable
routines...) into coherent subsystems; but they are only needed for readability ar
manageability of the software. The decomposition of a system into packages does
affect its semantics: one can transform a multi-package Ada system into a one-pack
system, producing exactly the same results, through a purely syntactical operation
removing all package boundaries, expanding generic derivations (as explained below)
resolving name clashes through renaming. Classes, for their part, are also a seme
construct: besides providing a unit of modular decomposition, a class describes 1
behavior of a set of run-time objects; this semantics is further enriched by polymorphis
and dynamic binding.

An Ada package is a free association of program elements and may be used
various purposes. Sensible uses of this notion include writing a package to gather:

» A set of related constants (as with facility inheritance).
< A library of routines, for example a mathematical library.

< A set of variables, constants and routines describing the implementation of o
abstract object, or a fixed number of abstract objects, accessible only throu
designated operations (as we will do in Fortran in the next chapter).

< An abstract data type implementation.

The last use is the most interesting for this discussion. We will study it through tt
example of a stack package, adapted from an example in the Ada reference manual.

33.3 A STACK IMPLEMENTATION

Information hiding is supported in Ada by the two-tier declaration of packages. Evel
package comes in two parts, officially called “specification” and “body”. The former tern
is too strong for a construct that does not support any formal description of packa
semantics (in the form of assertions or similar mechanisms), so we will use the mc
modest word “interface”.

The interface lists the public properties of the package: exported variables, constal
types and routines. For routines it only gives the headers, listing the formal arguments
their types, plus the result type for a function, as in:

1082 0-O PROGRAMMING AND ADA 833.3

function item(s: STACH return X;

The body part of a package provides the routines’ implementations, and adds any
needed secret elements.

A simple interface

A first version of the interface part of a stack package may be expressed as follows. Note
that the keyworqpackage by itself introduces a package interface; the body, which will
appear later, is introduced lpackage bod.

packageREAL_STACK s
type STACK_CONTENTiIs array (POSITIVErange <>) of FLOAT;
type STACK(capacity. POSITIVE) is
record
implementatio: STACK_CONTENT(1..capacity);
coun: NATURAL:=G;
end record;
procedure put(x: in FLOAT, <:in out STACF);
procedure remove(s: in out STACH);
function item(s: STACF) return FLOAT,
function empty(s: STACH return BOOLEAN,
Overflow, Underflon: EXCEPTION,
end REAL_STACK;3

This interface lists exported elements: the tSTACEK for declaring stacks, the
auxiliary typeSTACK CONTENTused bySTACE, the four basic routines on stacks, and
two exceptions. Client packages will only rely on the interface (provided their
programmers have some idea of the semantics associated with the routines).

This example suggests several general observations:

e It is surprising to see all the details of stack representation, as given by the
declarations of typeSTACKkandSTACK CONTENT, appear in what should be a
pure interface. We will see shortly the reason for this problem and how to correct it.

« Unlike the classes of object-oriented languages, a package does not by itself define
a type. Here you must separately define a tSTACk. One consequence of this
separation, for the programmer who builds a package around an abstract data type
implementation, is the need to invent two different names — one for the package and
one for the type. Another consequence is that the routines have one more argument
than their object-oriented counterparts: here they all act on as, implicit in the
stack classes given in earlier chapters.

A declaration may define not only the type of an entity, but also its initial value. Here
the declaration ocoun in type STACEk prescribes an initial value of 0. It obviates

§33.3 A STACK IMPLEMENTATION 1083

the need for an explicit initialization operation corresponding to creation; this woul
not be the case, however, if a less straightforward initialization were required.

« A few details of Ada are needed to understand the type declaréPOSITIVE and
NATURAI denote the subtypes INTEGEF covering positive and non-negative
integers, respectively; a type specification of the farray (TYPErange <>),
where<> is known as the Box symbol, describes a template for array types. T
derive an actual type from such a template, you choose a finite subraT YPE;f
this is done here ISTACF, which uses the subran(l..capacity of POSITIVE.
STACk is an example of a parameterized type; any declaration of an entity of tyy
STACk must specify an actual value icapacity, as in

s: STACK(1000)

* In Ada, every routine argument must be characterized by a rin, out or in out,
defining the routine’s rights on the corresponding actual arguments (read-onl
write-only or update). In the absence of an explicit keyword, the default min.2 is

« Finally, the interface also specifies two exception naiOverflon andUnderflow.
An exception is an error condition that the programmer has decided to tre
separately from the normal flow of control. The interface of the package should li
any exceptions that may be raised by the package’s routines and propagatec
clients. More on the Ada exception mechanism below.

Using a package

Client code using the package is based on the interface. Here is an example from s
package needing a stack of real numbers:

s: REAL_STACKSTACK(1000);

REAL_STACKSput(3.5, 9); ...;

if REAL_STACKSempt (s) then ...;

An Ada environment must be able to compile such client code even if only th
interface ofREAL_ STACK, notits body, is available.

Syntactically, note how each use of an entity from this package (where “entitie:
here include type names suchSTACk as well as routine names) must repeat the name
of packageREAL STACK, using dot notation. This could become tedious, hence the
need for a more implicit form of qualification. If you include the directive

use REAL_STACK;S
at the beginning of the client package, you may write the above extract more simply a:

s: STACK(1000);
put(3.5, 9); ...;
if empty(s) then ...;

1084 0-O PROGRAMMING AND ADA 833.3

You still need the full form, however, for any entity whose name conflicts with the
name of another accessible to the client package (that is to say, declared in that package
itself or in another supplier listed inuse directive).

Some of the Ada literature advises programmers to stay away frcuse directive
altogether on the grounds that it hampers clarity: an unqualified reference empty(s)
does not immediately tell the reader what supjempt: comes fromREAL _STACK in
the example). The equivalent in the object-oriented apprcsaempty, unambiguously
indicates the supplier through ttype ofs.
A similar problem does arise in the O-O world because of inheritance: when you see a“FLATTENING THE

name in a class, it may refer to a feature declared in any ancestor. But we saw a technlquSTRUCTURE page
that solves this problem at least in part: the notion of flat form. 541,

Implementation

The body of theREAL STACK package might be declared along the following lines.
Only one routine is shown in full.

package bod' REAL_STACK:Is
procedure put(x: in FLOAT, s: in out REAL_STAC) is
begin
if s.count=s.capacitythen
raise Overflow
end if;
s.count:=s.count + J;
s.implementatior(coun’) := x;
end put;
procedure remove(s: in out STACH) is
.. Implementation oremovz ...
end removy;
function item(s: STACF) return Xis
.. Implementation oitem ...
end item;
function empty(s: STACH return BOOLEANiIs
.. Implementation oempt ...
end empty
end REAL_STACK;>3
Two properties apparent in this example will be developed in more detail below: the
use of exceptions to handle a run-time error by raising a special condition and treating it
separately; and the need for the body to repeat most of the interface information (routine
headers) that already appeared in the interface.

Genericity

The package as given is too specific; it should be made applicable to any type, not just
FLOAT. To turn it into a generic package, use the following syntax:

§33.4 HIDING THE REPRESENTATION: THE PRIVATE STORY 1085

See appendiB.

generic

type Gis private;
package STACKSis

... As before, replacing all occurrencesFLOAT by G ...
end STACKS;

The generic clause is heavier syntax than our O-O notation for generic classe
(classC [G]...) because it offers more options. In particular, the parameters declared
a generic clause may represent not just types but also routines. The appendix
genericityvs. inheritance will discuss these possibilities.

Thegeneric clause is not repeated in the package body, which will be identical t
the version given earlier, except for the substitutioG for FLOAT throughout.

Theis private specification directs the rest of the package to G as a private type.

This means that entities of the type may only be used in operations applicable to all A
types: use as source or target of an assignment, as operand of an equality test, as &
argument in a routine, and a few other special operations. This is close to the convent
used for unconstrained formal generic parameters in our notation. In Ada, oth
possibilities are also available. In particular, you can restrict the operations further
declaring the parameter limited private, which essentially bars all uses other than as
actual argument to a routine.

Although called a package, a generically parameterized module sSTACK! is
really a package template, since clients cannot use it directly; they must derive an ac
package from it by providing actual generic parameters. We may define a new version
our stack-of-reals package through such a generic derivation:

package REAL_STACKS_is new STACKS(FLOAT);

Generic derivation is the principal Ada mechanism for adapting modules. It i
somewhat inflexible, since you can only choose between generic modules (parameteri:
but not directly usable) or usable modules (not extendible any more). In contra
inheritance allows arbitrary extensions to existing modules, according to the Open-Clos
principle. AppendixB pursues the comparison further.

33.4 HIDING THE REPRESENTATION: THE PRIVATE
STORY

PackageSTACK\, as given, fails to implement the principle of information hiding: the
declarations of typeSTACkK and STACK_CONTENT are in the interface, allowing
clients to access the representation of stacks directly. For example, a client might inclt
code of the form

[1]
use REAL_STACKS ;...
st STACK; ...
s.implementatior(3) := 7.0; s.last:= 51;

1086 0O-O PROGRAMMING AND ADA 833.4

grossly violating the underlying abstract data type specification.

Conceptually, the type declarations belong in the body. Why did we not put them
there in the first place? The explanation requires that we look, beyond the language, at
programming environment issues.

One requirement on the Ada design, already mentioned, was that it should be
possible to compile packages separately and, moreover, to compile a client of any package
A as soon as you have access to the interfak, but not necessarily to its body. This
favors top-down design: to proceed with the work on a module, it suffices to know the
specification of the facilities it needs; actual implementations may be provided only later.

So if you have access to the interfaceREAL_STACKS_(that is to say, the
interface of STACKY, of whichREAL STACKS is just a generic derivation) you must
be able to compile one of its clients. Such a client will contain declarations of the form
use REAL_STACKS;...
s1, sz STACE, ...
s2:=s];
which the poor compiler cannot properly handle unless it knows what size is taken up by

an object of typtSTACE. But that can only be determined from the type declarations for
STACH and the auxiliary typSTACK_CONTENT. 3

Hence the dilemma that faced the designers of Ada: conceptually, such declarations
belong to the inferno — the body; but implementation concerns seem to require their
inclusion in the paradise — the interface.

The solution retained was to create a purgatory: a special section of the package that
is physically tied to the interface, and compiled with it, but marked in such a way that
clients may not refer to its elements. The purgatory section is called the private part of the
interface; it is introduced by the keywoprivate (also used, as we saw above, as a
qualifier for protected types). Any declaration appearing in the private part is unavailable
to clients. This scheme is illustrated by our final version of the stack package interface:
generic
type G is private;

package STACKSis
type STACK(capacity POSITIVE) is private;
procedure put(x: in G; < in out STACH);
procedure remove(s: in out STACH);
function item(s: STACK) return G;
function empty(s: STACF) return BOOLEAN,

Overflown, Underflov: EXCEPTION,

§33.4 HIDING THE REPRESENTATION: THE PRIVATE STORY 1087

[1] was on pag108E.

See “common mis-
understanding” dis-
cussed on pac5z.

private
type STACK_VALUE!s array (POSITIVErange <>) of G;
type STACK(capacity POSITIVE) is
record
implementatio: STACK_VALUEY1. .capacity);
coun: NATURAL:= G;
end record

end STACKE;

Note how typeSTACF must now be declared twice: first in the non-private part of
the interface, where it is only specified private; then again in the private part, where
the full description is given. Without the first declaration, a line of the fs: REAL
STACkwould not be legal in a client, since clients only have accessit@seclared in
the non-private part. This first declaration only specifies the typprivate, barring
clients from accessing any property of stack objects other than universal operations s
as assignment, equality test and use as actual argument. This is consistent with
discussion of information hiding.

TypeSTACK_ VALUE is purely internal, and irrelevant to clients: so it need only be
declared in the package body.

Make sure to understand that the information in the private part should really be
the package body, and only appears in the package specification for reasons of langt
implementation. With the new form STACK! client code such as [1], which directly
accessed the representation in a client, becomes invalid.

Authors of clients modules cesee the internal structure (STACE instances, but
they cannot take advantage of it in their modules. This can be tantalizing (although c
may imagine that a good Ada environment could hide this part from a client auth
requesting interface information about the class, in the manner short tool of earlier
chapters). While surprising to newcomers, the policy does not contradict the rule
information hiding: as was pointed out during the discussion of that rule, the goal is r
physically to prevent client authors from reading about the hidden details, but to preve
them fromusing these details.

Someone who would like to make things sound very complicated could summari:
by the following two sentences (to be spoken very quickly to impress friend and foe): T
private section of the public part of a package lists the implementation of those conceptu:
private types which must be declared in the public part although theirimplementation is 1
publicly available. In the non-private part, these types are declared private.

1088 0-O PROGRAMMING AND ADA 833.5

33.5 EXCEPTIONS

The STACK! generic package lists two exceptions in its interfeOverflon and
Underflon. More generally, you may deal with error conditions by defining arbitrary
exception names; Ada also includes predefined exceptions, triggered by the hardware or
the operating system, for such cases as arithmetic overflow or exhaustion of memory.

Some elements of the Ada exception mechanism were introduced in the chap“How not to do it —
exceptions, so that we can limit ourselves to a brief examination of how exceptionsan Ada example”,
the Ada approach to software construction. page 415

Simplifying the control structure

Exceptions as they exist in Ada are a technique for dealing with errors without impairing
the control structure of normal processing. If a program performs a series of actions, each
of which may turn out to be impossible because of some erroneous condition, the resulting
control structure may end up looking like

action; Lihke other:s in this
. chapte, this exam-
if errorlthen ple follows Ada’s
error_handling;; use of the semicolon
as an instruction
else) terminato.
actiongz;

if error2then
error_handlingz
else
actiong;
if error3then
error_handlings
else

The Ada exception mechanism is an effort to fight the complexity of such a scheme
— where the elements that perform “useful” tasks sometimes look like a small archipelago
in an ocean of error-handling code — by separating the handling of errors from their
detection. There must still be tests to determine whether a certain erroneous condition has
occurred; but the only action to take then is to raise a certain signal, the exception, which
will be handled elsewhere.

Raising and handling an exception

To raise exceptions rather than handle errors in place, you may rewrite the extract as:

actionl;
if errorl then raise exc’; end;
actiongz;

§33.5 EXCEPTIONS 1089

if error2 thenraise excs, end,;
actions;
if error3 thenraise excs; end;

When an instructioraise exc is executed, control does not flow to the instructions
that would normally follow, but is transferred toexception handle. This disruption of
the normal flow of control explains why tlelse... clauses are no longer necessary here.
An exception handler is a special paragraph of a block or routine, of the form

exception
whenexcy, ... =>treatment;.
whenexc: ... => treatment;’

The handler thatraise excwill select is the first one that handexcin the dynamic
chain, that is to say the list of units beginning with the routine or block containiraisee
and continuing with its caller, its caller’s caller etc.

The call chain o

(This figure origi- ry
nally appeared on
page4it.) ra Routine call or
; Uock execution
3
r4
-\
2~

A handler is said to handexc if exc appears in one of iwhen clauses (or it has a
clause of the fornwhen others). If there is such a handler, the corresponding instructions
(after the=> symbol) are executed and the enclosing routine returns control to its calle
or terminates if it is the main program. (Ada does have a notion of main program.) If |
handler in the dynamic chain handexc, execution terminates and control goes back to
the operating system, which presumably will print out an error message.

Discussion

See chaptet 2. It is interesting to compare the Ada exception mechanism with the one developed in
chapter on exceptions earlier in this book. There are technical differences and differen
of methodology.

The technical differences, apart from the different ways of discriminating betwee
exceptions (multiplewhen clausesvs. inheriting from classEXCEPTIONY), involve
retrying, which the O-O design considered sufficiently important to warrant a speci
instruction, whereas Ada has no direct support for it and reqgotc instructions or
similar control structures.

1090 0-O PROGRAMMING AND ADA 833.5

The methodological difference follows from the strong policy that we adoppage417.
leading to the Disciplined Exception Handling principle that requires every exceg
handler, apart from the rare case of a “false alarm”, to end in «etrying or official
failure (“organized panic”). Ada is less strict in this respect, and we saw that as a
consequence it is possible to misuse exceptions by executing a seemingly normal return
without having handled the problem.

The need to avoid such dangerous situations led us to a basic rule, worth repeating:

Ada exception rule Lnlite!ally on page

The execution of any Ada exception handler should end by either exeguting
araise instruction or retrying the enclosing program unit.

More generally, exceptions in the Ada spirit are control structures, helping to
separate the handling of abnormal situations from their detection and hence to keep
software structure simple. In practice, however, this hope is often disappointed.

When you writeraise some_excepti, you may have the impression of freeinTheraise instruc-
yourself from the messy and boring task of taking care of strange cases, and iitions appeared in
concentrate on the core of the algorithm, handling normal cases. But raising an exc&i%ﬁlﬁﬁ?& of
does not by itself solve the problem. Exceptions inSTACKSpackage are typical. Anstack:, page
attempt to push an elementinto a full stack raises exceOverflow, and an attempt to108<.
access an element of an empty stack reUnderflon. How will you handleUnderflow,
the exception raised by a call remov¢ or iter on an empty stack? As we saw in the
discussion of Design by Contract, the routines themselves cannot reasonably contain a
handler item does not know what to do when applied to an empty stack); so the

responsibility lies with the client, which should include code of the form

[2]
use REAL_STACK;>
procedure proc(...) is
s: STACK; ...
begin
. remove(s); ...
exception
when Underflow=> action];

endproc;

So the client must specify exactly what happens in the erroneous case. Omitting the
when Underflow clause would be a design error. Compare this with the usual, non-
exception-based form of the call (written in the syntax of the rest of this book):

(3]

if not s.emptythen s.removeels¢ actionlend

. - “The a posteriori
(or a variant which detects the error a posteriori). Form [2], using exceptions, differs SchemeQ’ page

[3] in two aspects only: 801

§33.6 TASKS

1091

See“Precondition
design: tolerant or
demanding?”,
page 35,5

On CSP se“Com-
munication-based
mechanisms”, page
97¢.

« The code for handling the erraction], is textually separate from the calls that may
raise the error;

 Error handling is the same for all such calls if more than one.

Onthe first point, although it is desirable to avoid the deeply nif ... then... else...
error-handling structures cited at the beginning of this chapter, the place in the algorit
where an error is detected is often the one that has the best information to handle the e
and if you separate the two you may need to use complicated control structures for ce
that require restarting or resuming processing.

On the second point, if a routine contains more than one cremovy, the way to
deal with empty stacks will unlikely be the sameach case.

There are two general styles of exception usagecontrol structure style, which
views exceptions as a normal mechanism to handle all but the most common cases;
theabnormal case styl, which reserves them for unpredictable situations, when all othe
mechanisms have failed. Tlrescue/retry approach described earlier in this book tends
to favor the abnormal case style, although it can be used for the other style as well. £
exception handling is more geared towards the control structure style.

You will decide for yourself which of the two styles you prefer; you should in any
case remember, from this discussion and the earlier ones, not to place any naive hope il
use of exceptions. With or without an exception mechanism, run-time errors are a fact
system life, which the software must handle explicitly. A good methodological approac
supported by an effective exception mechanism, can help; but some of the complexity
inherent to the problem of errhandling, anino megica ward will make it goaway.

33.6 TASKS

Besides packages, Ada offers another interesting modular construct: the task. Tasks
the basic Ada mechanism for handling concurrency; the underlying concurrency mode
close to the CSP approach described in the concurrency chapter. But they also deser
mention purely for their modular concepts, since they actually come closer than packa
to supporting object-oriented concepts.

Syntactically, tasks share many aspects of packages. The main difference is th:
task is not just a modular unit but the representation of a process, to be executed in par
with other processes. So besides making up a syntactical unit it also describes a sem:
component — unlike a package, and like a class.

Like a package, a task is declared in two parts, interface and body. Instead
routines, a task specification introduces a number of entries. To the client, entries look |
procedures; for example, the interface of a buffer manager task may be

task BUFFER_MANAGE is
entry read (x: out G);
entry write (x: in G);

end BUFFER_MANAGEQR

1092 0-O PROGRAMMING AND ADA 833.7

(Tasks may not be generic, so that t'G has to be globally available, or a generic
parameter of an enclosing package.) It is only the implementation of entries that
distinguishes them from procedures: in the boaccept instructions will specify
synchronization and other constraints on execution of the entries; here, for example, we
might prescribe that only orread or write may proceed at any point fime, thatread
must wait until the buffer is not empty, awrite until it is not full.

Besides individual tasks you may also specitask type, and use it to create as many
tasks — instances of the task type — as you need at run time. This makes tasks similar to
classes, without inheritance. One can indeed conceive of an Ada realization of O-O concepts
which would represent classes by task types and objects by their instances (perhaps even
usingaccep instructions with different conditions to emulate dynamic binding). Because
in sequential O-O computation we may expect classes to have many instances, this exercise
is mostly of academic interest, given the overhead of creating a new process in current
operating systems. Perhaps some day, in massively paradware nvironments...

33.7 FROM ADA TO ADA 95

The Ada 95 version of the language is a major revision intended in particular to add O-O
concepts. There is in fact no notion of class in the sense of this book (rcurr type),
but support for inheritance and dynamic binding for record types.

O-O mechanisms of Ada 95: an example

The package text at the top of the facing page illustrates some of the Ada 95 techniques;
its meaning should be clear enough to a reader of this book. To denew type with

more fields (the Ada 95 form of inheritance), you must have declared a type, such as
ACCOUNT, astaggec; this of course contradicts the Open-Closed principle, since you
must know in advance which types may have descendants and which mamnew type

may be derived from only one type; that is to say, there is no multiple inheritance. Note the
syntax null record, with, surprisingly, ncend) for a derived type that adds no attribute.

Tagged types remain declared as records. The basic property of most O-O languages
— that operations on a type become part of that type, and in fact, as we saw in the
discussion of abstract data typdefine the type — is not in force here: the routines that
apply to a tagged type appear outside of its declaration, and take as argument a value of
that type. (In languages generally recognized as object-oricdeposi etc. would be part
of the declaration c(ACCOUNTandcompouncpart of SAVINGS ACCOUN, they would
not need their first arguments.) Here the only link between the routines and the type is that
they must be declared as part of the same package; they do not even have to appear next to
each other. Only the layout conventions, in the above example, indicate to the reader that
certain routines are conceptually attached to certain tagged record types.

This is different from the usual view of O-O software construction. Althougl“LinguisticModular
tagged record type and the associated routines are, from a theoretical perspective,Units’, page 51
the same abstract data type, they do not form a syntactical unit — contradictin
Linguistic Modular Units principle, which suggested a close association betweern uic
modularizing concept and the syntactical structure.

§33.7 FROM ADA TO ADA 95 1093

An Ada 95 packageAccount is
package type MONEY is digits 12 delta 0.01;

type ACCOUNTis tagged private

The package may be procedure deposii(a: in out ACCOUNT, amoun: in MONEY);

better split off into

three, with “child procedure withdraw(a: in out ACCOUNT, amoun: in MONEY);
packages” for function balance(a: in ACCOUNT) return MONEY;

_checklng and sav-

'r:‘g)i 3‘;‘59}“”‘-’ See type CHECKING_ACCOUN’is new ACCOUNTwith private;

function balance(a: in CHECKING_ACCOUN) return MONEY,

type SAVINGS_ACCOUNIis new ACCOUNTwith private;

procedure compound (a: in out SAVINGS ACCOUN, perioc: in
Positive);

private
type ACCOUNTis tagged
record
initial_balance MONEY := 0.0;
ownelr: String(1..30);
endrecord;

type CHECKING_ACCOUN’is new ACCOUNTwith null record ;

type SAVINGS_ ACCOUNIis new ACCOUNTwith
record
rate: Float;
end record;
end Account;

“OVERLOADING The appearance of a new declarationbalance for SAVINGS ACCOUN signals

AND GENERIC- 3 redefinition. Procedurewithdraw and deposi are not redefined. As you will have

ITY",4.8,page 93 1ocognized, this means that Ada 95 usesoverloading mechanism to obtain the 0-O
effect ofroutine redefinitiol. There is no syntactical mark (suchredefine) to signal a
routine redefinition: to find out that functicbalancediffers for SAVINGS_ACCOUNT
from its base version IACCOUNT, you must scan the text of the entire package. Here, o
course, each routine version appears next to the corresponding type, with indentatior
highlight the relationship, but this is a style convention, not a language rule.

A tagged type can be declaredabstract, corresponding to the notion of deferred
class; you may make a routiabstract too instead of giving it a body.

A function returning a result of an abstract type must be abstract itself. This rule m.
seem strange at first, appearing to preclude writing an effective function returning, s:
the top of a stack of figures, assumFIGURE is abstract. In Ada, however, the result of
such a function will typically be not of tyfFIGURE but of an “access type” describing
references to instances FIGURE. Then the function can be effective.

You can apply dynamic binding to entities of a tagged type, as in:

1094 0-O PROGRAMMING AND ADA 833.7

procedure print_balance(a: in ACCOUNTClasy) is
-- Print current balance.
begin
Put (balance(a));
New_Ling
end print_balancg;

You must request the dynamic binding explicitly by declaring the routine &The C++
“classwide operation”, as represented by Clas: qualification to the type of its argumentapproach to bind-
this is similar to the C++ obligation to declare any dynamically bound function as “virt/"9" Page 51«
except that here it is the client that must choose between static and dynamic binding.

Ada 95 allows you to define a “child packacA’B of an existing packagA. This
enables the new package to obtain features fA and add its own extensions and
modjifications. (This concept is of course close to inheritance — but distinct.) Instead of
declaring the three account types in a single package as on the preceding page, it is indeed
probably better to split the package into three, vAccountsCheckingintroducing
CHECKING_ACCOUN and its routines, aniAccountsSavin¢ doing tle sam for
SAVINGS_ACCOUNT

Ada 95 and object technology: an assessment

If you come to Ada 95 from a background in object technology, you will probably find the
language befuddling at first. After a while, you should be able to master the various
language mechanisms enabling you to obtain the effects of single inheritance,
polymorphism and dynamic binding.

The price to pay, however, is complexity. To Ada 83, a sophisticated construction,
Ada 95 has added a whole new set of constructs with many potential interactions both
between themselves and with the old constructs. If you come from the O-O side and are
used to the pristine simplicity of the notion of class, you will find that you have to learn
the intricacies of at least firconcepts, each covering some of the aspects of classes:

« Packages, which are modules but not types, can be generic, and offer something
resembling inheritance: child packages (as well as a number of other options not
detailed above, such as the possibility of declaring a child packeprivate).

e Tagged record types, which are types but not modules, and have a form of
inheritance, although unlike classes they do not allow the syntactical inclusion of
routines into a type declaration.

» Tasks, which are modules but not types and have no inheritance.

» Task types, which are modules and types, but cannot be generic (although they can be
included in generic packages) and have no inheritance.

« “Protected types” (a notion we have not yet encountered), which are typmaynd
include routines, as in

§33.7 FROM ADA TO ADA 95 1095

From
[Wheeler-Web|

protected type ANOTHER_ACCOUNT _TYFis:
procedure deposit(amoun: in MONEY);
function balance¢return MONEY;

private
deposit_lis: ...; ...

endANOTHER_ACCOUNT_TYFRKE

making them at first similar to classes — but with no inheritance.

The combination of interacting possibilities is mind-boggling. Packages, fo
example, still have, in addition to the notion of child package, the Ada mechaniuses of
andwith, with explanations such as this one from a tutorial text:

Private children are intended for “internal” packages that should only be
“with'ed” by a restricted number of packac. A private child can only be
“with'ed” by the body of its parent or by descendants of the private child's
paren. In exchange for such a restrictive requiren, a private child gets a
new authorit: a private child's specification automatically sees both the public
and private parts of all of its ancestors' specificat.ons

No doubt it is possible to make sense of such explanations. But is the result wo
the trouble?

It is interesting to note that Jean Ichbiah, the creator of Ada, resigned publicly from the
Ada 95 reviewing group after trying in vain for several years to keep the extensions
simple. His long resignation letter includes comments sucl/A massive increase in
complexity will result from 9’[later renamed Ada 9 adding one or more additional
possibilities where Ada now offers 1. For exampl, 9X add: [...] access parametess

to in, out, and in out; tagged type, to normal type; dispatched subprogram cg, to
normal subprogram cal; use type clauy, to use package claus; [Other examples
skipped; overall 12 were includecWith 9%, the number of interactions to consider is
close to 6,000 since we have 3 or more possibilities in each (that i, 310).

The basic concepts of object technology, for all their power, are strikingly simple
Ada 95 may be the most ambitious effort so far to make them appear complicated.

Discussion: module and type inheritance

As a side observation following from this study of Ada 95, it is interesting to note that tf
Ada 95 design has found it necessary, along with the “inheritance” mechanism for tagc
record types, to introduce the notion of child package. Ada, of course, has always k
module and type concepts separate, whereas classes are both. But then Ada
methodologists will suggest that when you introduce a descendant type such

SAVINGS ACCOUNyou should declare it, for clarity and modularity, not in the original
package Account) but in a child package. If you generalize this advice, you will end uf
creating, along with the type hierarchy, a module hierarchy which follows it faithfully.

1096 0-O PROGRAMMING AND ADA 833.7

With the classes of object technology, such questions do not arise; classes being
modules, there is by construction only one hierarchy.

The choices of Ada 95 show yet another example of the popular viewonat “ONE MECHA-
should separate type inheritance from code r”. Instead the insight of objectm'ggégfmﬁ
technology since Simula has beenunify concepts: module and type, subtyping aipage 83; “The two
module extension. Like any other bold unification of notions theretofore considSY!eS" Page 602
completely distinct, this idea can be scary at times, hence the attempts to reintroduce the
distinction. But they would deprive us of the remarkable simplification that O-O ideas

have brought to the understang of sotwarearchitedture.

Towards an O-O Ada

That Ada 95 seems hard to teach and to manage does not mean the idea of making Ada
more O-0 is doomed; one should simply set reasonable goals and keep a constant concern
for simplicity and consistency. The Ada community might try again to develop an object-
oriented extension, which should be accompanied by the removal of a few facilities to
keep the language size palatable. Two general directions are possible:

» The first idea, close in spirit to what the design of Ada 95 has attempted to achieve,
is to keep the package structure and introduce a notion of class that would generalize
Ada’s record types, with support for inheritance and dynamic binding. But these
should be true classes, including the applicable routines. Such an extension would be
similar in principle to that which led from C to C++. It should strive for minimalism,
trying to reuse as much as possible of the existing mechanisms (swith anduse
for packages), rather than introducing new facilities which would then cause the
interaction problems mentioned by Ichbiah.

* The other approach would build on an observation made in the presentation ofA thesis by Mats
earlier in this chapter. It was noted then that task types are close in spirit to clai\g';:‘;;g;ggg: the
since they may have instances created at run time; but structurally they have mrtypes. See the link in
th ti f K isibilit d inf fi hidi | www.adahome.com/

e properties of packages (visibility and information hiding rules, sepagagources/Research
compilation). This suggests adding a modular unit that, roughly, has the syntResearch.html.
packages and the semantics of classes; think of it as a package-class, or as a task ype
that does not need to be concurrent. The notion of “protected type” may be a starting

point; but of course, it should be integrated into the existing mechanism.

Exercises at the end of this chapter ask you (if, like many software people, yOIExercises33.2 and
dabbling in language design experiments, if only to gain a better understanding of ex=>3->: page 1058
languages and, through them, of software issues) to explore these possibilities further.

§33.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 1097

33.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« Ada, studied as a representative of the class of “encapsulation languages” which &
includes Modula-2, offers modular decomposition constructs: packages (and task

« The emphasis is on information hiding: interface and implementation ar
declared separately.

» Genericity increases the flexibility of packages.

e Conflicts between methodological requirements and language implementatic
concerns give rise to the “private” section, a conceptually secret element that
syntactically included in the interface..

» The package is a purely syntactic mechanism. Modules remain distinct from type
No inheritance mechanism is possible.

< Exceptions separate error detection from error handling, but provide no mag
solution to the problem of run-time errors.

* The Ada exception mechanism should only be used in a disciplined fashion; a
execution of an exception handler should terminate by either retrying the operati
or signaling failure to the caller.

« Task types could in principle be used to implement classes without inheritance, t
this solution is not practical in most current environments.

« Ada 95 enables the definition of a new record type as being derived from an existi
type, with support for routine redefinition, polymorphism and dynamic binding.

33.9 BIBLIOGRAPHICAL NOTES

[Booch 1986¢ discusses (under the label “object-oriented design”, but not using classe
inheritance, polymorphism etc.) how to obtain some of the benefits of object orientati
in Ada.

The official reference on Ada [ANSI 1983], recommended neither as bedtime
reading nor as introductory material. Numerous books are available to fulfill the latter nee

References on the other modular languages mentioned at the beginning of t
chapter ar{Mitchell 1979] for Mesa [Wirth 1982]for Modula-2, an(Liskov 1981 for
CLU. See alsq[Liskov 1986 on programming methodology, based on CLU. The
reference on Alphard [Shaw 1981|

The Ada 95 reference manual is available on-linff[Ada 95-Web. [Wheeler-Web]
is anon-line tutorial (prelude to an announced book). For a commented list of Ada ¢
textbooks, seqFeldman-Weh. | am greatly indebted to Richard Riehle and Magnus
Kempe for clarifying a number of points about Ada 95; the views expressed are as us
my own. Magnus Kempe is the source of the reference to Weber’s thesis.

1098 0-O PROGRAMMING AND ADA 8E33.1

EXERCISES

E33.1 Winning the battle without privates

The Ada compilation problem that gives rise to private construct might appear 1C. IDING THE REP-
affect object-oriented languages as well if the underlying environment supports SEJRESENTATION:
compilation of classes. In fact, the problem seems to be worse because of inheriteTHE PRIVATE
variable declared of typC may at run time refer to instances not onlyQ but of any STORY".334, page
descendant class; since any descendant may add its own attributes, the size G/ uicou
instances is variable. C is a deferred class, it is not even possible to assign a default size

to its instances. Explain why, in spite of these remarks, the object-oriented notation of this

book does not need a language construct similar tprivate mechanism of AdaHint:

your discussion should consider in particular the following notions: expavs.ed

reference types; deferred classes; and the techniques used in our O-O framework to

produce abstract class specifications without requiring class authors to write two separate

module separate parts.) Discuss the tradeoffs involved in both solutions. Can you suggest

other approaches to the problem in the Ada framework?

E33.2 Gerrric routine parameters

Generic parameters to Ada packages may be not just types but also routines. Explain the
relevance of this possibility to the implementation of object-oriented concepts, and its
limitations. (See also appencB.)

E33.3 Classes as tasks (for Ada programmers)

Rewrite classCOMPLE)> as an Ada task type. Show examples using the resulting tyy‘Legitimate side
effects: an exam-

ple”, page 7549
E33.4 Adding classes to Ada

(This language design exercise assumes a good knowledge of Ada 83.) Devise an
adaptation of Ada (83) that keeps the notion of package but extends records to classes with
polymorphism, dynamic binding and inheritance (single or multiple?), in line with general
O-0 principles.

E33.5 Package-classes

(This language design exercise assumes a good knowledge of Ada 83.) Using task types
as inspiration, devise an adaptation of Ada (83) supporting packages that can be
instantiated at run time and hence can play the role of classes, with polymorphism,

dynamic binding and inheritance.

	33 33 O-O programming and Ada
	33.1 A BIT OF CONTEXT
	33.2 PACKAGES
	33.3 A STACK IMPLEMENTATION
	A simple interface
	Using a package
	Implementation
	Genericity

	33.4 HIDING THE REPRESENTATION: THE PRIVATE STORY
	33.5 EXCEPTIONS
	Simplifying the control structure
	Raising and handling an exception
	The call chain
	(This figure originally appeared on page 418.)

	Discussion

	33.6 TASKS
	33.7 FROM ADA TO ADA 95
	O-O mechanisms of Ada 95: an example
	An Ada 95 package

	Ada 95 and object technology: an assessment
	Discussion: module and type inheritance
	Towards an O-O Ada

	33.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	33.9 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E33.1 Winning the battle without privates
	E33.2 Generic routine parameters
	E33.3 Classes as tasks (for Ada programmers)
	E33.4 Adding classes to Ada
	E33.5 Package-classes

