
33
O-O programming and Ada
a new
data
 and
hare

n the

have

iklaus

cepts
r-

 and

tion
 most
atures
.

olicy-
rious

f them
ining,

s, of
rsions
ble of
ozen
s. The
reen
ance
In the nineteen-seventies, advances in programming methodology brought about
generation of languages combining the control structures of Algol 60 and the
structuring constructs of Algol W and Pascal with better system structuring facilities
support for information hiding. Although their precise traits differ, these languages s
a common spirit and may be collectively called the encapsulation languages. (They are
also known in the literature as “object-based”, a terminology that will be discussed i
next chapter.)

Although a complete list of encapsulation languages would be long, only a few
developed a sizable user community. Five deserve particular attention: Modula-2, a
successor to Pascal designed at the Swiss Federal Institute of Technology by N
Wirth, creator of Algol W, Pascal itself and (later) Oberon; CLU , developed at MIT under
the direction of Barbara Liskov, which comes closest to realizing object-oriented con
but lacks inheritance; Mesa, a Xerox effort with particular emphasis on describing inte
module relationships of large systems; Alphard , by Mary Shaw, William Wulf and Ralph
London of Carnegie-Mellon University, which included an assertion mechanism;
Ada.

We will limit our study of how to approach O-O techniques in encapsula
languages to Ada, which, besides having attracted the most attention, is also the
complete (and complex) of these languages, embodying in some form most of the fe
found in the others. Modula-2, for example, does not offer genericity or overloading

33.1 A BIT OF CONTEXT

Ada was a response to a crisis perceived in the mid-seventies by the software p
makers of the US Department of Defense (DoD). They noted in particular that the va
branches of the military were using more than 450 programming languages, many o
technically obsolete, gravely hampering contractor management, programmer tra
technical progress, software quality and cost control.

Bearing in mind the successful precedent of COBOL (the result, in the late fiftie
a DoD call for a COmmon Business-Oriented Language), they put out successive ve
of a Request For Proposals for a modern software engineering language capa
supporting embedded real-time applications. A first winnowing out of the several d
initial responses led to four candidate designs, sealed and color-coded for fairnes
field was narrowed down to two, finally leading in 1979 to the selection of the G
language designed by Jean D. Ichbiah and his group at CII-Honeywell Bull in Fr

O-O PROGRAMMING AND ADA §33.11080

ial
83.

ore had
r before
 large-
ntries
ys —
t the

 95,
n, as
eding

oned:
rs the
ilitary
h non-
pt for
 the

ly
in this
 were

s that
own,
-O

sign to
uch a
ptance.
epted

ing like
, all
ademic
ptions,
 force

lowing
ity.

e

(today’s Bull). Following a few years’ experience with the first industr
implementations, the language was revised and made into an ANSI standard in 19

Ada (as Green was renamed) began a new era in language design. Never bef
a language be subjected to such intense examination before being released. Neve
(in spite of some valiant efforts by the PL/I team) had a language been treated like a
scale engineering project. Working groups comprising the best experts in many cou
spent weeks reviewing the proposals and contributed — in those pre-Internet da
reams of comments. Like Algol 60 a generation earlier, Ada redefined not jus
language landscape but the very notion of language design.

A recent revision of Ada has yielded a new language, now officially called Ada
which will be described at the end of this chapter. In the rest of the discussio
elsewhere in this book, the name Ada without further qualification refers to the prec
version, Ada 83, by far the most widely used today.

Has Ada been successful? Yes and no. The DoD got what it had commissi
thanks to a rigorous implementation of the “Ada mandate”, Ada became in a few yea
dominant technical language in the various branches of the US military, and of the m
establishment of some other countries too. It has also achieved significant use in suc
military government agencies as NASA and the European Space Agency. But exce
some inroads in computing science education — aided in part by DoD incentives —
language has only had limited success in the rest of the software world. It would probab
have spread more widely were it not for the competition of the very ideas described
book: object technology, which burst into the scene just as Ada and the industry
becoming ripe for each other.

The careful observer of language history can detect two ironies here. The first i
the designers of Ada were well aware of O-O ideas; although this is not widely kn
Ichbiah had in fact written one of the first compilers for Simula 67, the original O
language. As he has since explained when asked why he did not submit an O-O de
the DoD, he estimated that in the competitive bidding context of Ada’s genesis s
design would be considered so far off the mainstream as to stand no chance of acce
No doubt he was right; indeed one can still marvel at the audacity of the design acc
by the DoD. It would have been reasonable to expect the process to lead to someth
an improvement of JOVIAL (a sixties’ language for military applications); instead
four candidate languages were based on Pascal, a language with a distinct ac
flavor, and Ada embodied bold new design ideas in many areas such as exce
genericity and concurrency. The second irony is that the Ada mandate, meant to
DoD software projects to catch up with progress in software engineering by retiring older
approaches, has also had in the ensuing years the probably unintended effect of s
down the adoption of newer (post-Ada) technology by the military-aerospace commun

The lessons of Ada remain irreplaceable, and it is a pity that many of the O-O languages
of the eighties and nineties did not pay more attention to its emphasis on software
engineering quality. However obvious, this comment is all the more necessary because th
occasion for discussing Ada in this book is often to contrast some of its solutions with those
of O-O development — as will again happen several times in this chapter. The resulting

§33.2 PACKAGES 1081

e

ically
wn as

and a
 this

ve
bles,
 and
es not
ckage
on —

) and
mantic
s the
hism

ed for

f one
ough

 the
l.

very
erm
kage
more

tants,
ts and

See “Packages”,
page 90.

“Modules and
types”, page 170.

“Facility inherit-
ance”, page 832.

The standard Ada term
for “routine” is “sub-
program”. We keep the
former for consistency
with other chapters.
critiques of Ada techniques should be viewed less as reproach than as homage to th
precursor against which any new solution must naturally be assessed.

33.2 PACKAGES

Each of the encapsulation languages offers a modular construct for grouping log
related program elements. Ada calls it a package; corresponding notions are kno
modules in Modula-2 and Mesa, and clusters in CLU.

A class was defined as both a structural system component — a module —
type. In contrast, a package is only a module. An earlier discussion described
difference by noting that packages are a purely syntactic notion, whereas classes also ha
a semantic value. Packages provide a way to distribute system elements (varia
routines …) into coherent subsystems; but they are only needed for readability
manageability of the software. The decomposition of a system into packages do
affect its semantics: one can transform a multi-package Ada system into a one-pa
system, producing exactly the same results, through a purely syntactical operati
removing all package boundaries, expanding generic derivations (as explained below
resolving name clashes through renaming. Classes, for their part, are also a se
construct: besides providing a unit of modular decomposition, a class describe
behavior of a set of run-time objects; this semantics is further enriched by polymorp
and dynamic binding.

An Ada package is a free association of program elements and may be us
various purposes. Sensible uses of this notion include writing a package to gather:

• A set of related constants (as with facility inheritance).

• A library of routines, for example a mathematical library.

• A set of variables, constants and routines describing the implementation o
abstract object, or a fixed number of abstract objects, accessible only thr
designated operations (as we will do in Fortran in the next chapter).

• An abstract data type implementation.

The last use is the most interesting for this discussion. We will study it through
example of a stack package, adapted from an example in the Ada reference manua

33.3 A STACK IMPLEMENTATION

Information hiding is supported in Ada by the two-tier declaration of packages. E
package comes in two parts, officially called “specification” and “body”. The former t
is too strong for a construct that does not support any formal description of pac
semantics (in the form of assertions or similar mechanisms), so we will use the
modest word “interface”.

The interface lists the public properties of the package: exported variables, cons
types and routines. For routines it only gives the headers, listing the formal argumen
their types, plus the result type for a function, as in:

O-O PROGRAMMING AND ADA §33.31082

s any

. Note
ill

d
heir

 the
a
ct it.

define
s
a type
e and
ument

ere
s

function item (s: STACK) return X;

The body part of a package provides the routines’ implementations, and add
needed secret elements.

A simple interface

A first version of the interface part of a stack package may be expressed as follows
that the keyword package by itself introduces a package interface; the body, which w
appear later, is introduced by package body.

package REAL_STACKS is

type STACK_CONTENTS is array (POSITIVE range <>) of FLOAT;

type STACK (capacity: POSITIVE) is
record

implementation: STACK_CONTENTS (1. .capacity);

count: NATURAL:= 0;

end record;

procedure put (x: in FLOAT; s: in out STACK);

procedure remove (s: in out STACK);

function item (s: STACK) return FLOAT;

function empty (s: STACK) return BOOLEAN;

Overflow, Underflow: EXCEPTION;

end REAL_STACKS;

This interface lists exported elements: the type STACK for declaring stacks, the
auxiliary type STACK_CONTENTS used by STACK, the four basic routines on stacks, an
two exceptions. Client packages will only rely on the interface (provided t
programmers have some idea of the semantics associated with the routines).

This example suggests several general observations:

• It is surprising to see all the details of stack representation, as given by
declarations of types STACK and STACK_CONTENTS, appear in what should be
pure interface. We will see shortly the reason for this problem and how to corre

• Unlike the classes of object-oriented languages, a package does not by itself
a type. Here you must separately define a type STACK. One consequence of thi
separation, for the programmer who builds a package around an abstract dat
implementation, is the need to invent two different names — one for the packag
one for the type. Another consequence is that the routines have one more arg
than their object-oriented counterparts: here they all act on a stack s, implicit in the
stack classes given in earlier chapters.

• A declaration may define not only the type of an entity, but also its initial value. H
the declaration of count in type STACK prescribes an initial value of 0. It obviate

§33.3 A STACK IMPLEMENTATION 1083

ould

e

. To

 type

only,
s

treat
d list
ted to

 some

 the

ties”
me
the

 as
the need for an explicit initialization operation corresponding to creation; this w
not be the case, however, if a less straightforward initialization were required.

• A few details of Ada are needed to understand the type declarations: POSITIVE and
NATURAL denote the subtypes of INTEGER covering positive and non-negativ
integers, respectively; a type specification of the form array (TYPE range <>),
where <> is known as the Box symbol, describes a template for array types
derive an actual type from such a template, you choose a finite subrange of TYPE;
this is done here in STACK, which uses the subrange 1. .capacity of POSITIVE.
STACK is an example of a parameterized type; any declaration of an entity of
STACK must specify an actual value for capacity, as in

s: STACK (1000)

• In Ada, every routine argument must be characterized by a mode: in, out or in out,
defining the routine’s rights on the corresponding actual arguments (read-
write-only or update). In the absence of an explicit keyword, the default mode iin .

• Finally, the interface also specifies two exception names: Overflow and Underflow.
An exception is an error condition that the programmer has decided to
separately from the normal flow of control. The interface of the package shoul
any exceptions that may be raised by the package’s routines and propaga
clients. More on the Ada exception mechanism below.

Using a package

Client code using the package is based on the interface. Here is an example from
package needing a stack of real numbers:

s: REAL_STACKS● STACK (1000);

REAL_STACKS● put (3.5, s); …;

if REAL_STACKS● empty (s) then …;

An Ada environment must be able to compile such client code even if only
interface of REAL_STACKS, not its body, is available.

Syntactically, note how each use of an entity from this package (where “enti
here include type names such as STACK as well as routine names) must repeat the na
of package REAL_STACKS, using dot notation. This could become tedious, hence
need for a more implicit form of qualification. If you include the directive

use REAL_STACKS;

at the beginning of the client package, you may write the above extract more simply

s: STACK (1000);

put (3.5, s); …;

if empty (s) then …;

O-O PROGRAMMING AND ADA §33.31084

 the
ackage

e

s.

: the
ting it
outine

ot just

“FLATTENING THE
STRUCTURE”, page
541.
You still need the full form, however, for any entity whose name conflicts with
name of another accessible to the client package (that is to say, declared in that p
itself or in another supplier listed in a use directive).

Some of the Ada literature advises programmers to stay away from the use directive
altogether on the grounds that it hampers clarity: an unqualified reference such as empty(s)
does not immediately tell the reader what supplier empty comes from (REAL_STACKS in
the example). The equivalent in the object-oriented approach, s● empty, unambiguously
indicates the supplier through the type of s.

A similar problem does arise in the O-O world because of inheritance: when you see a
name in a class, it may refer to a feature declared in any ancestor. But we saw a techniqu
that solves this problem at least in part: the notion of flat form.

Implementation

The body of the REAL_STACKS package might be declared along the following line
Only one routine is shown in full.

package body REAL_STACKS is
procedure put (x: in FLOAT; s: in out REAL_STACK) is

begin
if s● count = s● capacity then

raise Overflow
end if;
s● count:= s● count + 1;
s● implementation (count) := x;

end put;
procedure remove (s: in out STACK) is

… Implementation of remove …
end remove;

function item (s: STACK) return X is
… Implementation of item …

end item;
function empty (s: STACK) return BOOLEAN is

… Implementation of empty …
end empty;

end REAL_STACKS;

Two properties apparent in this example will be developed in more detail below
use of exceptions to handle a run-time error by raising a special condition and trea
separately; and the need for the body to repeat most of the interface information (r
headers) that already appeared in the interface.

Genericity

The package as given is too specific; it should be made applicable to any type, n
FLOAT. To turn it into a generic package, use the following syntax:

§33.4 HIDING THE REPRESENTATION: THE PRIVATE STORY 1085

sses
ed in
ix on

l to

ll Ada
s actual
ention
other
er by
as

actual
ion of

It is
erized,
trast,
losed

he

clude

See appendix B.
generic
type G is private;

package STACKS is
… As before, replacing all occurrences of FLOAT by G …

end STACKS;

The generic clause is heavier syntax than our O-O notation for generic cla
(class C [G]…) because it offers more options. In particular, the parameters declar
a generic clause may represent not just types but also routines. The append
genericity vs. inheritance will discuss these possibilities.

The generic clause is not repeated in the package body, which will be identica
the version given earlier, except for the substitution of G for FLOAT throughout.

The is private specification directs the rest of the package to treat G as a private type.
This means that entities of the type may only be used in operations applicable to a
types: use as source or target of an assignment, as operand of an equality test, a
argument in a routine, and a few other special operations. This is close to the conv
used for unconstrained formal generic parameters in our notation. In Ada,
possibilities are also available. In particular, you can restrict the operations furth
declaring the parameter as limited private , which essentially bars all uses other than
actual argument to a routine.

Although called a package, a generically parameterized module such as STACKS is
really a package template, since clients cannot use it directly; they must derive an
package from it by providing actual generic parameters. We may define a new vers
our stack-of-reals package through such a generic derivation:

package REAL_STACKS_1 is new STACKS (FLOAT);

Generic derivation is the principal Ada mechanism for adapting modules.
somewhat inflexible, since you can only choose between generic modules (paramet
but not directly usable) or usable modules (not extendible any more). In con
inheritance allows arbitrary extensions to existing modules, according to the Open-C
principle. Appendix B pursues the comparison further.

33.4 HIDING THE REPRESENTATION: THE PRIVATE
STORY

Package STACKS, as given, fails to implement the principle of information hiding: t
declarations of types STACK and STACK_CONTENTS are in the interface, allowing
clients to access the representation of stacks directly. For example, a client might in
code of the form

[1]

use REAL_STACKS_1;…
s: STACK; …
s● implementation (3) := 7.0; s● last := 51;

O-O PROGRAMMING AND ADA §33.41086

them
ge, at

ld be
ackage
s
 the

ater.

t
rm

up by
 for

ations
 their

ge that
 that
 of the
 a
ilable
ce:
grossly violating the underlying abstract data type specification.

Conceptually, the type declarations belong in the body. Why did we not put
there in the first place? The explanation requires that we look, beyond the langua
programming environment issues.

One requirement on the Ada design, already mentioned, was that it shou
possible to compile packages separately and, moreover, to compile a client of any p
A as soon as you have access to the interface of A, but not necessarily to its body. Thi
favors top-down design: to proceed with the work on a module, it suffices to know
specification of the facilities it needs; actual implementations may be provided only l

So if you have access to the interface of REAL_STACKS_1 (that is to say, the
interface of STACKS, of which REAL_STACKS_1 is just a generic derivation) you mus
be able to compile one of its clients. Such a client will contain declarations of the fo

use REAL_STACKS_1;…

s1, s2: STACK; …

s2:= s1;

which the poor compiler cannot properly handle unless it knows what size is taken
an object of type STACK. But that can only be determined from the type declarations
STACK and the auxiliary type STACK_CONTENTS.

Hence the dilemma that faced the designers of Ada: conceptually, such declar
belong to the inferno — the body; but implementation concerns seem to require
inclusion in the paradise — the interface.

The solution retained was to create a purgatory: a special section of the packa
is physically tied to the interface, and compiled with it, but marked in such a way
clients may not refer to its elements. The purgatory section is called the private part
interface; it is introduced by the keyword private (also used, as we saw above, as
qualifier for protected types). Any declaration appearing in the private part is unava
to clients. This scheme is illustrated by our final version of the stack package interfa

generic

type G is private;

package STACKS is

type STACK (capacity: POSITIVE) is private;

procedure put (x: in G; s: in out STACK);

procedure remove (s: in out STACK);

function item (s: STACK) return G;

function empty (s: STACK) return BOOLEAN;

Overflow, Underflow: EXCEPTION;

§33.4 HIDING THE REPRESENTATION: THE PRIVATE STORY 1087

 of
e

s such
ith the

 be

be in
nguage

h one

thor

le of
s not

event

arize
: The
tually
is not

[1] was on page 1085.

See “common mis-
understanding” dis-
cussed on page 52.
private

type STACK_VALUES is array (POSITIVE range <>) of G;

type STACK (capacity: POSITIVE) is

record

implementation: STACK_VALUES (1. .capacity);

count: NATURAL:= 0;

end record

end STACKS;

Note how type STACK must now be declared twice: first in the non-private part
the interface, where it is only specified as private; then again in the private part, wher
the full description is given. Without the first declaration, a line of the form s: REAL_

STACK would not be legal in a client, since clients only have access to entities declared in
the non-private part. This first declaration only specifies the type as private, barring
clients from accessing any property of stack objects other than universal operation
as assignment, equality test and use as actual argument. This is consistent w

discussion of information hiding.

Type STACK_VALUES is purely internal, and irrelevant to clients: so it need only

declared in the package body.

Make sure to understand that the information in the private part should really
the package body, and only appears in the package specification for reasons of la
implementation. With the new form of STACKS client code such as [1], which directly
accessed the representation in a client, becomes invalid.

Authors of clients modules can see the internal structure of STACK instances, but
they cannot take advantage of it in their modules. This can be tantalizing (althoug

may imagine that a good Ada environment could hide this part from a client au
requesting interface information about the class, in the manner of the short tool of earlier
chapters). While surprising to newcomers, the policy does not contradict the ru
information hiding: as was pointed out during the discussion of that rule, the goal i

physically to prevent client authors from reading about the hidden details, but to pr
them from using these details.

Someone who would like to make things sound very complicated could summ
by the following two sentences (to be spoken very quickly to impress friend and foe)
private section of the public part of a package lists the implementation of those concep
private types which must be declared in the public part although their implementation

publicly available. In the non-private part, these types are declared private.

O-O PROGRAMMING AND ADA §33.51088

ary
are or
ry.

ter on
 fit in

iring
, each
sulting

eme
elago
 their
on has
which

as:

“How not to do it —
an Ada example”,
page 415.

Like others in this
chapter, this exam-
ple follows Ada’s
use of the semicolon
as an instruction
terminator.
33.5 EXCEPTIONS

The STACKS generic package lists two exceptions in its interface: Overflow and
Underflow. More generally, you may deal with error conditions by defining arbitr
exception names; Ada also includes predefined exceptions, triggered by the hardw
the operating system, for such cases as arithmetic overflow or exhaustion of memo

Some elements of the Ada exception mechanism were introduced in the chap
exceptions, so that we can limit ourselves to a brief examination of how exceptions
the Ada approach to software construction.

Simplifying the control structure

Exceptions as they exist in Ada are a technique for dealing with errors without impa
the control structure of normal processing. If a program performs a series of actions
of which may turn out to be impossible because of some erroneous condition, the re
control structure may end up looking like

action1;

if error1 then
error_handling1;

else
action2;

if error2 then
error_handling2;

else
action3;

if error3 then
error_handling3;

else
…

The Ada exception mechanism is an effort to fight the complexity of such a sch
— where the elements that perform “useful” tasks sometimes look like a small archip
in an ocean of error-handling code — by separating the handling of errors from
detection. There must still be tests to determine whether a certain erroneous conditi
occurred; but the only action to take then is to raise a certain signal, the exception,
will be handled elsewhere.

Raising and handling an exception

To raise exceptions rather than handle errors in place, you may rewrite the extract

action1;
if error1 then raise exc1; end;
action2;

§33.5 EXCEPTIONS 1089

ns

re.

ons
aller,
 If no
 to

in the
ences

een

ecial

The call chain
(This figure origi-
nally appeared on
page 418.)

See chapter 12.
if error2 then raise exc2; end;
action3;
if error3 then raise exc3; end;
…

When an instruction raise exc is executed, control does not flow to the instructio
that would normally follow, but is transferred to an exception handler. This disruption of
the normal flow of control explains why the else… clauses are no longer necessary he
An exception handler is a special paragraph of a block or routine, of the form

exception
when exc1, … => treatment1;
when exc2 … => treatment2;
…

The handler that a raise exc will select is the first one that handles exc in the dynamic
chain, that is to say the list of units beginning with the routine or block containing the raise
and continuing with its caller, its caller’s caller etc.

A handler is said to handle exc if exc appears in one of its when clauses (or it has a
clause of the form when others). If there is such a handler, the corresponding instructi
(after the => symbol) are executed and the enclosing routine returns control to its c
or terminates if it is the main program. (Ada does have a notion of main program.)
handler in the dynamic chain handles exc, execution terminates and control goes back
the operating system, which presumably will print out an error message.

Discussion

It is interesting to compare the Ada exception mechanism with the one developed
chapter on exceptions earlier in this book. There are technical differences and differ
of methodology.

The technical differences, apart from the different ways of discriminating betw
exceptions (multiple when clauses vs. inheriting from class EXCEPTIONS), involve
retrying, which the O-O design considered sufficiently important to warrant a sp
instruction, whereas Ada has no direct support for it and requires goto instructions or
similar control structures.

r0
r1

r2

r3

r4

Routine call or
block execution

O-O PROGRAMMING AND ADA §33.51090

ted,
tion

as a
 return

ating:

g to
 keep

g
nstead
eption

e
tain a

 the

ng the
non-

 from

Page 417.

Initially on page
416.

The raise instruc-
tions appeared in
REAL_STACKS,
the initial variant of
STACKS, page
1084.

“The a posteriori
scheme”, page
801.
The methodological difference follows from the strong policy that we adop
leading to the Disciplined Exception Handling principle that requires every excep
handler, apart from the rare case of a “false alarm”, to end in either retrying or official
failure (“organized panic”). Ada is less strict in this respect, and we saw that
consequence it is possible to misuse exceptions by executing a seemingly normal
without having handled the problem.

The need to avoid such dangerous situations led us to a basic rule, worth repe

More generally, exceptions in the Ada spirit are control structures, helpin
separate the handling of abnormal situations from their detection and hence to
software structure simple. In practice, however, this hope is often disappointed.

When you write raise some_exception, you may have the impression of freein
yourself from the messy and boring task of taking care of strange cases, and i
concentrate on the core of the algorithm, handling normal cases. But raising an exc
does not by itself solve the problem. Exceptions in the STACKS package are typical. An
attempt to push an element into a full stack raises exception Overflow, and an attempt to
access an element of an empty stack raises Underflow. How will you handle Underflow,
the exception raised by a call to remove or item on an empty stack? As we saw in th
discussion of Design by Contract, the routines themselves cannot reasonably con
handler (item does not know what to do when applied to an empty stack); so
responsibility lies with the client, which should include code of the form

[2]
use REAL_STACKS;
procedure proc (…) is

s: STACK; …
begin

… remove (s); …
exception

when Underflow => action1;
…

end proc;

So the client must specify exactly what happens in the erroneous case. Omitti
when Underflow clause would be a design error. Compare this with the usual,
exception-based form of the call (written in the syntax of the rest of this book):

[3]
if not s●empty then s● remove else action1 end

(or a variant which detects the error a posteriori). Form [2], using exceptions, differs
[3] in two aspects only:

Ada exception rule
The execution of any Ada exception handler should end by either executing
a raise instruction or retrying the enclosing program unit.

§33.6 TASKS 1091

y

rithm
e error;
 cases

s; and
ther
ds
ll. Ada

ny
e in the
act of
ach,
xity is

ks are
del is
serve a
kages

 that a
arallel
mantic

ad of
k like

See “Precondition
design: tolerant or
demanding?”,
page 355.

On CSP see “Com-
munication-based
mechanisms”, page
979.
• The code for handling the error, action1, is textually separate from the calls that ma
raise the error;

• Error handling is the same for all such calls if more than one.

On the first point, although it is desirable to avoid the deeply nested if… then… else…
error-handling structures cited at the beginning of this chapter, the place in the algo
where an error is detected is often the one that has the best information to handle th
and if you separate the two you may need to use complicated control structures for
that require restarting or resuming processing.

On the second point, if a routine contains more than one call to remove, the way to
deal with empty stacks will unlikely be the same in each case.

There are two general styles of exception usage: the control structure style, which
views exceptions as a normal mechanism to handle all but the most common case
the abnormal case style, which reserves them for unpredictable situations, when all o
mechanisms have failed. The rescue/retry approach described earlier in this book ten
to favor the abnormal case style, although it can be used for the other style as we
exception handling is more geared towards the control structure style.

You will decide for yourself which of the two styles you prefer; you should in a
case remember, from this discussion and the earlier ones, not to place any naïve hop
use of exceptions. With or without an exception mechanism, run-time errors are a f
system life, which the software must handle explicitly. A good methodological appro
supported by an effective exception mechanism, can help; but some of the comple
inherent to the problem of error handling, and no magical wand will make it go away.

33.6 TASKS

Besides packages, Ada offers another interesting modular construct: the task. Tas
the basic Ada mechanism for handling concurrency; the underlying concurrency mo
close to the CSP approach described in the concurrency chapter. But they also de
mention purely for their modular concepts, since they actually come closer than pac
to supporting object-oriented concepts.

Syntactically, tasks share many aspects of packages. The main difference is
task is not just a modular unit but the representation of a process, to be executed in p
with other processes. So besides making up a syntactical unit it also describes a se
component — unlike a package, and like a class.

Like a package, a task is declared in two parts, interface and body. Inste
routines, a task specification introduces a number of entries. To the client, entries loo
procedures; for example, the interface of a buffer manager task may be

task BUFFER_MANAGER is
entry read (x: out G);

entry write (x: in G);
end BUFFER_MANAGER;

O-O PROGRAMMING AND ADA §33.71092

ic
 that

le, we

y
ilar to

ncepts
s even

use
xercise
urrent

 O-O

iques;

ch as
you

te the
.

uages
in the
at
alue of

is that
r next to
er that

h a
 part of
g the
n the

“Linguistic Modular
Units”, page 53.
(Tasks may not be generic, so that type G has to be globally available, or a gener
parameter of an enclosing package.) It is only the implementation of entries
distinguishes them from procedures: in the body, accept instructions will specify
synchronization and other constraints on execution of the entries; here, for examp
might prescribe that only one read or write may proceed at any point in time, that read
must wait until the buffer is not empty, and write until it is not full.

Besides individual tasks you may also specify a task type, and use it to create as man
tasks — instances of the task type — as you need at run time. This makes tasks sim
classes, without inheritance. One can indeed conceive of an Ada realization of O-O co
which would represent classes by task types and objects by their instances (perhap
using accept instructions with different conditions to emulate dynamic binding). Beca
in sequential O-O computation we may expect classes to have many instances, this e
is mostly of academic interest, given the overhead of creating a new process in c
operating systems. Perhaps some day, in massively parallel hardware environments…

33.7 FROM ADA TO ADA 95
The Ada 95 version of the language is a major revision intended in particular to add
concepts. There is in fact no notion of class in the sense of this book (module cum type),
but support for inheritance and dynamic binding for record types.

O-O mechanisms of Ada 95: an example

The package text at the top of the facing page illustrates some of the Ada 95 techn
its meaning should be clear enough to a reader of this book. To derive a new type with
more fields (the Ada 95 form of inheritance), you must have declared a type, su
ACCOUNT, as tagged; this of course contradicts the Open-Closed principle, since
must know in advance which types may have descendants and which may not. A new type
may be derived from only one type; that is to say, there is no multiple inheritance. No
syntax (null record, with, surprisingly, no end) for a derived type that adds no attribute

Tagged types remain declared as records. The basic property of most O-O lang
— that operations on a type become part of that type, and in fact, as we saw
discussion of abstract data types, define the type — is not in force here: the routines th
apply to a tagged type appear outside of its declaration, and take as argument a v
that type. (In languages generally recognized as object-oriented, deposit etc. would be part
of the declaration of ACCOUNT and compound part of SAVINGS_ACCOUNT; they would
not need their first arguments.) Here the only link between the routines and the type
they must be declared as part of the same package; they do not even have to appea
each other. Only the layout conventions, in the above example, indicate to the read
certain routines are conceptually attached to certain tagged record types.

This is different from the usual view of O-O software construction. Althoug
tagged record type and the associated routines are, from a theoretical perspective,
the same abstract data type, they do not form a syntactical unit — contradictin
Linguistic Modular Units principle, which suggested a close association betwee
modularizing concept and the syntactical structure.

§33.7 FROM ADA TO ADA 95 1093

, of
tion to

d

 may
, say,
f

An Ada 95
package

The package may b
better split off into
three, with “child
packages” for
checking and sav-
ings accounts. See
next page.

“OVERLOADING
AND GENERIC-
ITY”, 4.8, page 93.
package Accounts is
type MONEY is digits 12 delta 0.01;

type ACCOUNT is tagged private;
procedure deposit (a: in out ACCOUNT; amount: in MONEY);
procedure withdraw (a: in out ACCOUNT; amount: in MONEY);
function balance (a: in ACCOUNT) return MONEY;

type CHECKING_ACCOUNT is new ACCOUNT with private ;

function balance (a: in CHECKING_ACCOUNT) return MONEY;

type SAVINGS_ACCOUNT is new ACCOUNT with private;
procedure compound (a: in out SAVINGS_ACCOUNT; period: in

Positive);

private
type ACCOUNT is tagged

record
initial_balance: MONEY := 0.0;
owner: String (1. .30);

end record;

type CHECKING_ACCOUNT is new ACCOUNT with null record ;

type SAVINGS_ACCOUNT is new ACCOUNT with
record

rate: Float;
end record;

end Accounts;

The appearance of a new declaration for balance for SAVINGS_ACCOUNT signals
a redefinition. Procedures withdraw and deposit are not redefined. As you will have
recognized, this means that Ada 95 uses the overloading mechanism to obtain the O-O
effect of routine redefinition. There is no syntactical mark (such as redefine) to signal a
routine redefinition: to find out that function balance differs for SAVINGS_ACCOUNT
from its base version in ACCOUNT, you must scan the text of the entire package. Here
course, each routine version appears next to the corresponding type, with indenta
highlight the relationship, but this is a style convention, not a language rule.

A tagged type can be declared as abstract, corresponding to the notion of deferre
class; you may make a routine abstract too instead of giving it a body.

A function returning a result of an abstract type must be abstract itself. This rule
seem strange at first, appearing to preclude writing an effective function returning
the top of a stack of figures, assuming FIGURE is abstract. In Ada, however, the result o
such a function will typically be not of type FIGURE but of an “access type” describing
references to instances of FIGURE. Then the function can be effective.

You can apply dynamic binding to entities of a tagged type, as in:

e

O-O PROGRAMMING AND ADA §33.71094

s a
t;
al”,
.

d
ad of
 indeed

 the
rious
ance,

tion,
 both

nd are
earn
:

ething
s not

m of
n of

can be

“The C++
approach to bind-
ing”, page 514.
procedure print_balance (a: in ACCOUNT'Class) is

-- Print current balance.

begin

Put (balance (a));

New_Line;

 end print_balance;

You must request the dynamic binding explicitly by declaring the routine a
“classwide operation”, as represented by the 'Class qualification to the type of its argumen
this is similar to the C++ obligation to declare any dynamically bound function as “virtu
except that here it is the client that must choose between static and dynamic binding

Ada 95 allows you to define a “child package” A● B of an existing package A. This
enables the new package to obtain features from A and add its own extensions an
modifications. (This concept is of course close to inheritance — but distinct.) Inste
declaring the three account types in a single package as on the preceding page, it is
probably better to split the package into three, with Accounts● Checking introducing
CHECKING_ACCOUNT and its routines, and Accounts● Saving doing the same for
SAVINGS_ACCOUNT.

Ada 95 and object technology: an assessment

If you come to Ada 95 from a background in object technology, you will probably find
language befuddling at first. After a while, you should be able to master the va
language mechanisms enabling you to obtain the effects of single inherit
polymorphism and dynamic binding.

The price to pay, however, is complexity. To Ada 83, a sophisticated construc
Ada 95 has added a whole new set of constructs with many potential interactions
between themselves and with the old constructs. If you come from the O-O side a
used to the pristine simplicity of the notion of class, you will find that you have to l
the intricacies of at least five concepts, each covering some of the aspects of classes

• Packages, which are modules but not types, can be generic, and offer som
resembling inheritance: child packages (as well as a number of other option
detailed above, such as the possibility of declaring a child package as private).

• Tagged record types, which are types but not modules, and have a for
inheritance, although unlike classes they do not allow the syntactical inclusio
routines into a type declaration.

• Tasks, which are modules but not types and have no inheritance.

• Task types, which are modules and types, but cannot be generic (although they
included in generic packages) and have no inheritance.

• “Protected types” (a notion we have not yet encountered), which are types andmay
include routines, as in

§33.7 FROM ADA TO ADA 95 1095

for
f

worth

ple.

t the
gged
 kept
da 95
h as
al
 up
y.

From
[Wheeler-Web].
protected type ANOTHER_ACCOUNT_TYPE is

procedure deposit (amount: in MONEY);

function balance return MONEY;

private

deposit_list: …; …

end ANOTHER_ACCOUNT_TYPE;

making them at first similar to classes — but with no inheritance.

The combination of interacting possibilities is mind-boggling. Packages,
example, still have, in addition to the notion of child package, the Ada mechanisms ouse
and with , with explanations such as this one from a tutorial text:

Private children are intended for “internal” packages that should only be
“with'ed” by a restricted number of packages. A private child can only be
“with'ed” by the body of its parent or by descendants of the private child's
parent. In exchange for such a restrictive requirement, a private child gets a
new authority: a private child's specification automatically sees both the public
and private parts of all of its ancestors' specifications.

No doubt it is possible to make sense of such explanations. But is the result
the trouble?

It is interesting to note that Jean Ichbiah, the creator of Ada, resigned publicly from the
Ada 95 reviewing group after trying in vain for several years to keep the extensions
simple. His long resignation letter includes comments such as: A massive increase in
complexity will result from 9X [later renamed Ada 95] adding one or more additional
possibilities where Ada now offers two. For example, 9X adds: […] access parameters,
to in, out, and in out; tagged types, to normal types; dispatched subprogram calls, to
normal subprogram calls; use type clause, to use package clauses; [Other examples
skipped; overall 12 were included.] With 9X, the number of interactions to consider is
close to 60,000 since we have 3 or more possibilities in each case (that is, 310).

The basic concepts of object technology, for all their power, are strikingly sim
Ada 95 may be the most ambitious effort so far to make them appear complicated.

Discussion: module and type inheritance

As a side observation following from this study of Ada 95, it is interesting to note tha
Ada 95 design has found it necessary, along with the “inheritance” mechanism for ta
record types, to introduce the notion of child package. Ada, of course, has always
module and type concepts separate, whereas classes are both. But then A
methodologists will suggest that when you introduce a descendant type suc
SAVINGS_ACCOUNT you should declare it, for clarity and modularity, not in the origin
package (Accounts) but in a child package. If you generalize this advice, you will end
creating, along with the type hierarchy, a module hierarchy which follows it faithfull

O-O PROGRAMMING AND ADA §33.71096

 being

“

t

nd

ered

ce the

eas

ng Ada

concern

ject-

es to

ieve,

eralize

ese

uld be

m,

 the

 tasks

asses,

ost of

rate

ax of

ask type

arting

u like

isting

er.

“ONE MECHA-
NISM, OR
MORE?”, 24.6,
page 833; “The two
styles”, page 609.

A thesis by Mats
Weber explores the
idea of package
types. See the link in
www.adahome.com/
Resources/Research/
Research.html.

Exercises 33.4 and
E33.5, page 1098.
With the classes of object technology, such questions do not arise; classes

modules, there is by construction only one hierarchy.

The choices of Ada 95 show yet another example of the popular view that one

should separate type inheritance from code reuse”. Instead the insight of objec

technology since Simula has been to unify concepts: module and type, subtyping a

module extension. Like any other bold unification of notions theretofore consid

completely distinct, this idea can be scary at times, hence the attempts to reintrodu

distinction. But they would deprive us of the remarkable simplification that O-O id

have brought to the understanding of software architecture.

Towards an O-O Ada

That Ada 95 seems hard to teach and to manage does not mean the idea of maki

more O-O is doomed; one should simply set reasonable goals and keep a constant

for simplicity and consistency. The Ada community might try again to develop an ob

oriented extension, which should be accompanied by the removal of a few faciliti

keep the language size palatable. Two general directions are possible:

• The first idea, close in spirit to what the design of Ada 95 has attempted to ach

is to keep the package structure and introduce a notion of class that would gen

Ada’s record types, with support for inheritance and dynamic binding. But th

should be true classes, including the applicable routines. Such an extension wo

similar in principle to that which led from C to C++. It should strive for minimalis

trying to reuse as much as possible of the existing mechanisms (such as with and use
for packages), rather than introducing new facilities which would then cause

interaction problems mentioned by Ichbiah.

• The other approach would build on an observation made in the presentation of

earlier in this chapter. It was noted then that task types are close in spirit to cl

since they may have instances created at run time; but structurally they have m

the properties of packages (visibility and information hiding rules, sepa

compilation). This suggests adding a modular unit that, roughly, has the synt

packages and the semantics of classes; think of it as a package-class, or as a t

that does not need to be concurrent. The notion of “protected type” may be a st

point; but of course, it should be integrated into the existing mechanism.

Exercises at the end of this chapter ask you (if, like many software people, yo

dabbling in language design experiments, if only to gain a better understanding of ex

languages and, through them, of software issues) to explore these possibilities furth

§33.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 1097

h also
sks).

are

ation
at is

ypes.

agic

; any
ation

, but

isting

sses,
ation

e
eed.

f this

he

a 95
us
 usual
33.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Ada, studied as a representative of the class of “encapsulation languages” whic
includes Modula-2, offers modular decomposition constructs: packages (and ta

• The emphasis is on information hiding: interface and implementation
declared separately.

• Genericity increases the flexibility of packages.

• Conflicts between methodological requirements and language implement
concerns give rise to the “private” section, a conceptually secret element th
syntactically included in the interface..

• The package is a purely syntactic mechanism. Modules remain distinct from t
No inheritance mechanism is possible.

• Exceptions separate error detection from error handling, but provide no m
solution to the problem of run-time errors.

• The Ada exception mechanism should only be used in a disciplined fashion
execution of an exception handler should terminate by either retrying the oper
or signaling failure to the caller.

• Task types could in principle be used to implement classes without inheritance
this solution is not practical in most current environments.

• Ada 95 enables the definition of a new record type as being derived from an ex
type, with support for routine redefinition, polymorphism and dynamic binding.

33.9 BIBLIOGRAPHICAL NOTES

[Booch 1986a] discusses (under the label “object-oriented design”, but not using cla
inheritance, polymorphism etc.) how to obtain some of the benefits of object orient
in Ada.

The official reference on Ada is [ANSI 1983], recommended neither as bedtim
reading nor as introductory material. Numerous books are available to fulfill the latter n

References on the other modular languages mentioned at the beginning o
chapter are [Mitchell 1979] for Mesa, [Wirth 1982] for Modula-2, and [Liskov 1981] for
CLU. See also [Liskov 1986] on programming methodology, based on CLU. T
reference on Alphard is [Shaw 1981].

The Ada 95 reference manual is available on-line at [Ada 95-Web]. [Wheeler-Web]
is an on-line tutorial (prelude to an announced book). For a commented list of Ad
textbooks, see [Feldman-Web]. I am greatly indebted to Richard Riehle and Magn
Kempe for clarifying a number of points about Ada 95; the views expressed are as
my own. Magnus Kempe is the source of the reference to Mats Weber’s thesis.

O-O PROGRAMMING AND ADA §E33.11098

parate
nce: a

f these
 size
of this

ork to
parate
uggest

ain the
d its

e.

ise an
es with
eral

k types
an be
hism,

“HIDING THE REP-
RESENTATION:
THE PRIVATE
STORY”, 33.4, page
1085.

“Legitimate side
effects: an exam-
ple”, page 759.
EXERCISES

E33.1 Winning the battle without privates

The Ada compilation problem that gives rise to the private construct might appear to
affect object-oriented languages as well if the underlying environment supports se
compilation of classes. In fact, the problem seems to be worse because of inherita
variable declared of type C may at run time refer to instances not only of C but of any
descendant class; since any descendant may add its own attributes, the size o
instances is variable. If C is a deferred class, it is not even possible to assign a default
to its instances. Explain why, in spite of these remarks, the object-oriented notation
book does not need a language construct similar to the private mechanism of Ada. (Hint :
your discussion should consider in particular the following notions: expandedvs.
reference types; deferred classes; and the techniques used in our O-O framew
produce abstract class specifications without requiring class authors to write two se
module separate parts.) Discuss the tradeoffs involved in both solutions. Can you s
other approaches to the problem in the Ada framework?

E33.2 Generic routine parameters

Generic parameters to Ada packages may be not just types but also routines. Expl
relevance of this possibility to the implementation of object-oriented concepts, an
limitations. (See also appendix B.)

E33.3 Classes as tasks (for Ada programmers)

Rewrite class COMPLEX as an Ada task type. Show examples using the resulting typ

E33.4 Adding classes to Ada

(This language design exercise assumes a good knowledge of Ada 83.) Dev
adaptation of Ada (83) that keeps the notion of package but extends records to class
polymorphism, dynamic binding and inheritance (single or multiple?), in line with gen
O-O principles.

E33.5 Package-classes

(This language design exercise assumes a good knowledge of Ada 83.) Using tas
as inspiration, devise an adaptation of Ada (83) supporting packages that c
instantiated at run time and hence can play the role of classes, with polymorp
dynamic binding and inheritance.

	33 33 O-O programming and Ada
	33.1 A BIT OF CONTEXT
	33.2 PACKAGES
	33.3 A STACK IMPLEMENTATION
	A simple interface
	Using a package
	Implementation
	Genericity

	33.4 HIDING THE REPRESENTATION: THE PRIVATE STORY
	33.5 EXCEPTIONS
	Simplifying the control structure
	Raising and handling an exception
	The call chain
	(This figure originally appeared on page 418.)

	Discussion

	33.6 TASKS
	33.7 FROM ADA TO ADA 95
	O-O mechanisms of Ada 95: an example
	An Ada 95 package

	Ada 95 and object technology: an assessment
	Discussion: module and type inheritance
	Towards an O-O Ada

	33.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	33.9 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E33.1 Winning the battle without privates
	E33.2 Generic routine parameters
	E33.3 Classes as tasks (for Ada programmers)
	E33.4 Adding classes to Ada
	E33.5 Package-classes

