

XML
FOR

DUMmIES
‰

4TH EDITION

02_588451 ftoc.qxd 4/15/05 12:13 AM Page i

02_588451 ftoc.qxd 4/15/05 12:13 AM Page ii

XML
FOR

DUMmIES
‰

4TH EDITION

02_588451 ftoc.qxd 4/15/05 12:13 AM Page i

02_588451 ftoc.qxd 4/15/05 12:13 AM Page ii

by Lucinda Dykes and Ed Tittel

XML
FOR

DUMmIES
‰

4TH EDITION

02_588451 ftoc.qxd 4/15/05 12:13 AM Page iii

XML For Dummies®, 4th Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005923240

ISBN-13: 978-0-7645-8845-7

ISBN-10: 0-7645-8845-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4O/QT/QV/QV/IN

02_588451 ftoc.qxd 4/15/05 12:13 AM Page iv

About the Author
Lucinda Dykes started her career in a high-tech area of medicine, but left
medicine to pursue her interests in technology and the Web. She has been
writing code and developing Web sites since 1994, and also teaches and
develops online courses — including the JavaScript courses for the
International Webmasters Association/HTML Writers’ Guild at www.
eclasses.org.

Lucinda has authored, co-authored, edited, and been a contributing author to
numerous computer books; the most recent include Dreamweaver MX 2004
Savvy (Sybex), XML for Dummies (3rd Edition, Wiley), Dreamweaver MX
Fireworks MX Savvy (Sybex), XML Schemas (Sybex), and Mastering XHTML
(Sybex). When she can manage to move herself away from her keyboard,
other interests include holographic technologies, science fiction, and
Bollywood movies.

Ed Tittel is a 23-year veteran of the computing industry. After spending his
first seven years in harness writing code, Ed switched to the softer side of the
business as a trainer and talking head. A freelance writer since 1986, Ed has
written hundreds of magazine and Web articles — and worked on over 100
computer books, including numerous For Dummies titles on topics that
include several Windows versions, NetWare, HTML, XHTML, and XML.

Ed is also Technology Editor for Certification Magazine, writes for numerous
TechTarget Web sites, and writes a twice-monthly newsletter, “Must Know
News,” for CramSession.com. In his spare time, Ed likes to shoot pool, cook,
and spend time with his wife Dina and his son Gregory. He also likes to
explore the world away from the keyboard with his trusty Labrador retriever,
Blackie. Ed can be contacted at etittel@yahoo.com.

02_588451 ftoc.qxd 4/15/05 12:13 AM Page v

02_588451 ftoc.qxd 4/15/05 12:13 AM Page vi

Dedication
To the heroes at the W3C and OASIS, sung and unsung, especially members of
the many XML working groups who have made the world (or the Web, at
least) a better place through their tireless efforts, and to all those Web pio-
neers who generously offered help and support to those of us trying to figure
out how to make our contribution to the Web in the early ‘90s.

Author’s Acknowledgments
Lucinda Dykes: Thanks to everyone on the scene and behind the scenes who
has contributed to making this project possible.

First, I’d like to thank Ed Tittel for giving me not only the opportunity to be
involved in this book, but who also played a major role in my entry into the
world of technical writing. Ed and I share a long-term interest in language,
computers, and markup languages. I’d also like to thank everyone involved in
any edition of this book for the excellent foundation they made for this edi-
tion to build on.

Next, thanks to the team at Wiley, especially Katie Feltman for her vision and
support of this project, Paul Levesque for quiet and steady guidance in addi-
tion to excellent editing, Allen Wyatt for insight and outstanding technical
editing, and Barry Childs-Helton for superb copy-editing as well as a delight-
ful sense of humor. And thanks to Carole McClendon, my agent at Waterside
Productions, who made it possible for me to lead this project.

On a personal note, special thanks to my mother, Doris Dykes, who instilled
and supported a lifelong interest in learning and in books. She claims that I’m
the first child she lost to the Internet — but that makes me easy to find. Mom:
I’ll be in front of the nearest computer screen. Thanks and love always to Wali
for making it possible for me to spend all these late nights tapping away at
the keyboard, and for always making me remember the things that are really
important. Thanks to our dear friends, Rose Rowe and Karmin Perless, who
walked softly and made room for having a writer around. And finally, thanks
to Wendy Fries and Cheryl Kline for great conversation, good advice, and lots
of laughter at our monthly writers’ session at the Coffee Grove.

02_588451 ftoc.qxd 4/15/05 12:13 AM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Paul Levesque

Acquisitions Editor: Katie Feltman

Copy Editor: Barry Childs-Helton

Technical Editor: Allen Wyatt, Sr.

Editorial Manager: Leah Cameron

Permissions Editor: Laura Moss

Media Development Specialist: Kit Malone

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Maridee Ennis

Layout and Graphics: Andrea Dahl,
Stephanie D. Jumper, Julie Trippetti

Proofreaders: Leeann Harney, Joe Niesen,
Carl William Pierce, TECHBOOKS
Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

02_588451 ftoc.qxd 4/15/05 12:13 AM Page viii

Contents at a Glance
Introduction ..1

Part I: XML Basics ...9
Chapter 1: Getting to Know XML ...11
Chapter 2: Using XML for Many Purposes ...23
Chapter 3: Slicing and Dicing Data Categories: The Art of Taxonomy33

Part II: XML and the Web ..45
Chapter 4: Adding XHTML for the Web ..47
Chapter 5: Putting Together an XML File ...65
Chapter 6: Adding Character(s) to XML ...83
Chapter 7: Handling Formatting with CSS ..95

Part III: Building In Validation with DTDs
and Schemas ...109
Chapter 8: Understanding and Using DTDs ...111
Chapter 9: Understanding and Using XML Schema ..135
Chapter 10: Building a Custom XML Schema ...157
Chapter 11: Modifying an Existing Schema ..173

Part IV: Transforming and Processing XML195
Chapter 12: Handling Transformations with XSL ..197
Chapter 13: The XML Path Language ..215
Chapter 14: Processing XML ..235

Part V: XML Application Development245
Chapter 15: Using XML with Web Services ..247
Chapter 16: XML and Forms ...259
Chapter 17: Serving Up the Data: XML and Databases ...271
Chapter 18: XML and RSS ...285

Part VI: The Part of Tens ..299
Chapter 19: XML Tools and Technologies ..301
Chapter 20: Ten Top XML Applications ..313
Chapter 21: Ten Ultimate XML Resources ..321

Glossary ..329

Index ...347

02_588451 ftoc.qxd 4/15/05 12:13 AM Page ix

02_588451 ftoc.qxd 4/15/05 12:13 AM Page x

Table of Contents
Introduction ...1

About This Book ..1
Conventions Used in This Book ..2
Foolish Assumptions ..3
How This Book Is Organized ..4

Part I: XML Basics ..4
Part II: XML and the Web ..4
Part III: Building in Validation

with DTDs and Schemas ...5
Part IV: Transforming and Processing XML6
Part V: XML Application Development ...6
Part VI: The Part of Tens ..7
Glossary ..7

Icons Used in This Book ...7
Where to Go from Here ...8

Part I: XML Basics ...9

Chapter 1: Getting to Know XML .11
XML (eXtreMely cooL) ...12

Mocking up your own markup ...12
Separating data and context ..12
Making information portable ...13
XML means business ..13

Figuring Out What XML Is Good For ...14
Classifying information ...14
Enforcing rules on your data ...15
Outputting information in a variety of ways16
Using the same data across platforms ...17

Beyond the Hype: What XML Isn’t ..18
It’s not just for Web pages anymore ..19
It’s not a database ...20
It’s not a programming language ...20

Building XML Documents ...21

Chapter 2: Using XML for Many Purposes .23
Moving Legacy Data to XML ..23
The Many Faces of XML ...24

Creating XML-enabled Web pages ...24
Print publishing with XML ...25

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xi

Using XML for business forms ...28
Incorporating XML into business processes29
Serving up XML from a database ...31

Alphabet Soup: Even More XML ..31

Chapter 3: Slicing and Dicing Data Categories:
The Art of Taxonomy .33

Taking Stock of Your Data ..33
Looking at business practices and partners34
Gathering some content ...34
Checking whether a DTD or schema already exists35
Searching for a schema repository ...36

Breaking Down Data in Different Ways ...37
Winnowing out the wheat from the chaff ...38
Types of data that can be stored in XML ...39

Developing Your Taxonomy ...39
Testing Your Taxonomy ..41

Using trial and error for the best fit ..41
Testing your content analysis ..42

Looking Ahead to Validation ..43

Part II: XML and the Web ...45

Chapter 4: Adding XHTML for the Web .47
HTML, XML, and XHTML ..47

What HTML does best ..48
The limits of HTML ..49

Comparing XML and HTML ..50
Using XML to describe data ...51
The benefits of using HTML ...53
The benefits of using XML ..53

XHTML Makes the Move to XML Syntax ..54
Making the switch ...55
Every element must be closed ...56
Empty elements must be formatted correctly56
Tags must be properly nested ...57
Case makes a difference ...57
Attribute values are in quotation marks ..58

Converting a document from HTML to XHTML ..59
The Role of DOCTYPE Declarations ...62

Chapter 5: Putting Together an XML File .65
Anatomy of an XML File ...65

The XML declaration ...67
Marking up your content ..68

Playing by the Rules: Well-Formed Documents ...74

XML For Dummies, 4th Edition xii

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xii

Adding Style for the Web ..76
Seeking Validation with DTD and XML Schema ...78

Why describe XML documents? ..79
Choosing between DTD and XML Schema80

Chapter 6: Adding Character(s) to XML .83
About Character Encodings ...84
Introducing Unicode ...85
Character Sets, Fonts, Scripts, and Glyphs ..87
For Each Character, a Code ...88
Key Character Sets ..89
Using Unicode Characters ...91
Finding Character Entity Information ...93

Chapter 7: Handling Formatting with CSS .95
Viewing XML on the Web with CSS ...96
Basic CSS Formatting: CSS1 ...97
The Icing on the Cake: CSS2 ...98
Building a CSS Stylesheet ...98
Adding CSS to XML ...99

A simple CSS stylesheet for XML ...101
Dissecting a simple CSS stylesheet ...102
Linking CSS and XML ..106

Adding CSS to XSLT ...107

Part III: Building In Validation
with DTDs and Schemas ..109

Chapter 8: Understanding and Using DTDs .111
What’s a DTD? ..112

When to use a DTD ..113
When NOT to use a DTD ...113

Inspecting the XML Prolog ...114
Examining the XML declaration ..115
Discovering the DOCTYPE ...116
Understanding comments ..116
Processing instructions ..117
How about that white space? ...117

Reading a DTD ...118
Using Element Declarations ...119

Using the EMPTY element type and the ANY element type120
Adding mixed content ...121
Using element content models ..122

Declaring Attributes ..123
Discovering Entities ..125

General entities ..126
Parameter entities ...128

xiiiTable of Contents

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xiii

Understanding Notations ...130
Calling a DTD ...131

Internal DTDs ...131
External DTDs ..132
When to use an internal or external DTD133

Chapter 9: Understanding and Using XML Schema 135
What’s an XML Schema? ...136
So Many Datatypes, So Little Time ...138
XML Prolog ...139
Document Structures ..141

Element declarations ..141
</confirmOrder> Attribute declarations ..144
Attribute groups ..144
What about that white space? ...145

Datatype Declarations ..148
Simple datatypes ...148
Complex datatypes ...149
Defining constraints and value checks ...149

Dealing with Entities, Notations, and More ...150
Annotations ..151
Deciding When to Use a Schema ...152
Referencing XML Schema Documents ..153

The inside view: Referencing a schema in an XML document153
Calling for outside support: Referencing external schemas

in your schema ...153
Double-Checking Your Schemas

and Documents ..155

Chapter 10: Building a Custom XML Schema 157
Doing the Validity Rag ..157
Step 1: Understanding Your Data ..159
Step 2: Being the Root of All Structure: Elements159
Step 3: Building Content Models ...161
Step 4: Using Attributes to Shed Light on Data Structure163
Step 5: Using Datatype Declarations to Define What’s What164
Tricks of the Trade ..167
Creating a Simple Schema ..168
Using a Schema with an XML File in Word 2003170

Chapter 11: Modifying an Existing Schema .173
Trading Control for Flexibility ...174
Eliciting Markup from an XML Schema ..174
Modifying a Schema ..176
Using Datatypes Effectively ...177

Using datatypes with data-intensive content177
Using datatypes with text-intensive content179

XML For Dummies, 4th Edition xiv

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xiv

Making Elements Work Wisely and Well ...180
Creating crafty content models ...180
A matter of selection ...181
Mixing up the order ...183

Using Complex Datatypes ..183
When XML Schemas Collide: Namespaces ..185
Including External Data ..188
Including/Excluding Document Content ..188
Converting DTDs to Schemas ..190

Part IV: Transforming and Processing XML195

Chapter 12: Handling Transformations with XSL 197
The Two Faces of XSL ...198

XSLT ...198
XSL-FO ...200

XSL Stylesheets Are XML Documents ...201
A Simple Transformation Using XSLT ...202
An XSLT Stylesheet for Converting XML to HTML202

The pieces of the stylesheet puzzle ..205
Processing element content ...207
Dealing with repeating elements ...209

Creating an XSLT Stylesheet with XSLT Editors210

Chapter 13: The XML Path Language .215
Why Do You Need Directions? ...216

XPath document trees ..217
Understanding XPath nodes ..218

XPath Directions and Destinations ...220
XPath Syntax ..221

Some simple location paths ...222
Adding expressions ...223
Taking steps along the XPath ...223
Looking at attributes ...224
Going backward ...224
Reversing direction ...225
Null results ...225
Getting back to your roots ...226
XPath functions ...226

Using XPath with XMLSpy ..226
The Short Version ...228

Child-axis abbreviations ...229
Attribute-axis abbreviation ..229
Predicate and expression abbreviations ..229
Some more abbreviations ...230

What’s New in XPath 2.0? ...231
Where to Now? ..233

xvTable of Contents

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xv

Chapter 14: Processing XML .235
Frankly, My Dear, I Don’t Give a DOM ...235

Keeping in touch with the family ..238
Understanding DOM structure ..238

What Goes In Must Come Out: Processing XML240
So many processors, so little time ..242
Which processor is right for you? ...243

Part V: XML Application Development245

Chapter 15: Using XML with Web Services .247
What’s Up with Web Services? ..248
A Web Services Architecture ...251

Transport: Moving XML messages ..252
Packaging/Extensions: Managing information exchange253
Description: Specifying services and related components254
Discovery: Finding what’s available ..255

Where Will Web Services Lead? ..256

Chapter 16: XML and Forms .259
Collecting Information with Forms: The Basics260
HTML Forms ..260
XML Forms ...261

XForms ..261
InfoPath ...267

Chapter 17: Serving Up the Data: XML and Databases 271
Using Databases with XML ...272

Text-intensive XML ..272
Data-intensive XML ...273

Creating XML from Database Files ..273
Using Word 2003 ..274
Using InfoPath ..275
Using XMLSpy ..278

Using XML with Access 2003 ...281

Chapter 18: XML and RSS .285
Introducing RSS ...286
Sorting Out the Versions ..286

RSS 0.9x ...287
RSS 2.0/2.01 ..290
RSS 1.0 ...291

Validating an RSS Feed ..295
Creating RSS Feeds ..296
Get Syndicated! ..297
Using an RSS Reader ...298

XML For Dummies, 4th Edition xvi

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xvi

Part VI: The Part of Tens ...299

Chapter 19: XML Tools and Technologies .301
Creating Documents with Authoring Tools ...301

Epic Editor ..302
Turbo XML v2.4.1 ..303
XMetaL Author 4.5 ...303
XML Pro v2.0.1 ...303
XML Spy 2005 ...304

Checking Documents with Parser Tools ..304
Ælfred ...305
expat ..306
Lark ...306

Viewing with XML Browsers ..307
Amaya ...307
Internet Explorer 6 ..307
Mozilla ...308
Firefox 1.0 ...308
Opera ..308

Using XML Parsers and Engines ..309
XML C Library for Gnome ..309
Java XML Pack ...310
Xerces ...310

Employing Conversion Tools ...311
HTML Tidy ..311
Extensible Programming Script (XPS) ..311

The Ultimate XML Grab Bag and Goodie Box ..312
Microsoft does XML, too! ...312
webMethods automates XML excellence312

Chapter 20: Ten Top XML Applications .313
XHTML = XML + HTML ...314
XML Style Is a Matter of Application ..314
Wireless Markup Language (WML) ...314
DocBook, Anyone? ..315
Mathematical Markup Language (MathML) ..315
Scalable Vector Graphics (SVG) ..316
Resource Description Framework (RDF) ...316
Synchronized Multimedia Integration Language (SMIL)317
Servin’ Up Web Services ...317
XQuery ..318
Create XML Applications with Zope ...319

Chapter 21: Ten Ultimate XML Resources .321
XML’s Many and Marvelous Specs ..321
An XML Nonpareil ...322
Top XML Tutorial Sites ...322

xviiTable of Contents

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xvii

XML in the Mail ..323
Excellent XML Examples at zvon.org ..323
XML News and Information ...323
XML Training Options ..324
Building a Bodacious XML Bookshelf ...325
Studying XML for Certification ..326
Serious Searches Lead to Success ..327

Glossary ..329

Index..347

XML For Dummies, 4th Edition xviii

02_588451 ftoc.qxd 4/15/05 12:13 AM Page xviii

Introduction

Welcome to the latest frontier of Web technology. In XML For Dummies,
4th Edition, we introduce you to the mysteries of eXtensible Markup

Language (XML). XML is helping developers capture, manipulate, and exchange
all kinds of documents and data, ranging from news feeds to financial transac-
tions. In fact, many experts believe XML represents a kind of “lingua franca”
that can represent information in just about any imaginable form, more accessi-
bly than ever before — not only to human readers, but also to all kinds of com-
puter applications and services.

We take a practical and straightforward approach to telling you about XML
and what it can do for your data and document capture, management, and
exchange efforts. We try to keep the amount of technobabble to a minimum
and stick to plain English as much as possible. We also try to keep the focus
on practical applications of XML technology, including desktop applications
such as Office 2003. We have carefully chosen what we feel are the most rele-
vant XML technologies for developers today. Besides plain talk about XML —
and the many special-purpose applications that XML supports for document
designers and authors, graphics developers, and many other communities of
technical and business interests — we include lots of sample markup to help
you put XML to work in your organization, business, or personal life. (No per-
sonal life is quite complete without a little XML.)

The Web page for this book is available at www.dummies.com/go/xmlfd4e.
This Web page includes all the XML example files from this book, as well as
numerous XML authoring tools, parsers, development kits, and other goodies
for you to download. We hope you’ll find it helpful for your own projects!

About This Book
Think of this book as your friendly, approachable guide to using XML for all
kinds of interesting purposes. Using XML is a bit trickier than using HTML, so
this book is organized to make it easier to grapple with XML’s fundamentals,
wrestle them to the ground, and use them well. We also document volumi-
nous additional sources of information, both online and offline. Here are
some of the topics we include:

� An overview of XML’s capabilities, terminology, and technologies

� Tips for styling XML with CSS and XSLT

03_588451 intro.qxd 4/15/05 9:30 AM Page 1

� Hands-on practice in developing DTDs and XML Schema for validating
XML documents

� A beginner’s guide to XPath

� An introduction to XForms and InfoPath

� A guide to XML application development, including Web services, data-
bases, and news feeds

Because XML is essentially a markup language used to create other XML-
based markup languages — or what we also call XML applications — it’s not
exactly accurate to call a document based on one particular XML application
or another an “XML document.” It really makes more sense to call it an “XML-
based document” because the document itself contains markup defined using
XML. But for brevity’s sake, we call such documents XML documents in this
book. After all, such documents must adhere to the rules of XML syntax and
structure if they are to work properly. We could get all fussy and always refer
to them (more correctly) as “XML-based documents” or “documents based
on such-and-such an XML application.” But that makes us squirm too.

Although you might think that using XML requires years of training and
advanced technical wizardry, we don’t think that’s true. If you can tell some-
one how to drive across town, you can certainly use XML to build documents
that do what you want them to. The purpose of this book isn’t to turn you into
a true-blue geek, complete with pocket protector. Rather, XML For Dummies,
4th Edition shows you which design and technical elements you need so you
can get a practical handle on what XML is and how it works. We also provide
numerous examples and case studies to illustrate how XML behaves, so you
can gain the know-how and confidence to use XML to good effect!

Conventions Used in This Book
Throughout this book, you see lots and lots of markup. All XML markup
appears in monospace type, like this:

<Greeting>Hello, world!</Greeting>. ..

When you type XML tags or other related information, be sure to copy the
information exactly as you see it between the angle brackets (< and >),
because that’s part of the magic that makes XML work. Other than that, we
tell you how to marshal and manage the content that makes your pages spe-
cial, and we tell you exactly what you need to do to mix the elements of XML
with your own work.

2 XML For Dummies, 4th Edition

03_588451 intro.qxd 4/15/05 9:30 AM Page 2

Because the margins in this book can’t accommodate some long lines of XML
markup and still stay legible, sometimes we have to break lines of code. That
tends to happen in designations for Web sites (called URLs, for Uniform
Resource Locators) or special XML identifiers for namespaces and other
information objects (called URIs, or Uniform Resource Identifiers) and also in
the odd monstrously long line of markup that wraps to the next line. On your
computer, these wrapped lines would appear on-screen as a single line of
XML or as a single URL or URI — so don’t insert a hard return when you see
any such lines wrap in the book. Here are some examples of wrapped lines:

www.infomagic.austin.com/nexus/plexus/lexus/praxis/
this_is_deliberately_long.html

and

<Item>Scientists have developed a robot that “learns” to walk like a toddler,
improving its step and balance with every stride.</Item>

XML is sensitive to how element text is entered. If you’re following our exam-
ples from the comfort of your living room, keep in mind that you have to use
uppercase, lowercase, or other characters exactly as they appear in the book
(or, more important, as they’re defined in the document description that gov-
erns any well-formed, valid XML document — be it an XML Schema or a
Document Type Definition, or DTD). To make your work look like ours as
much as possible, enter all element text exactly as it appears in this book.
Better yet, download the file from the Web page for the book (www.dummies.
com/go/xmlfd4e)!

Foolish Assumptions
Someone once said that making assumptions makes a fool out of the person
who makes them and the person who is their subject. Even so, we’re going to
make a few assumptions about you, our gentle reader:

� You’re already familiar with text files and know how to use a text editor.

� You have a working connection to the Internet.

� You’re hip to the difference between a Web browser and a Web server.

� You want to build your own XML documents for fun, for profit, or
because it’s part of your job.

Also, we assume that you have a modern Web browser — one that can sup-
port XML directly. As we write this, that elite includes Internet Explorer 5.5
(and higher), Netscape Navigator 6 (and later), Opera, Firefox, Mozilla, and

3Introduction

03_588451 intro.qxd 4/15/05 9:30 AM Page 3

Amaya — all have decent XML parsing and rendering capabilities. Don’t
worry, though, if you don’t have such a browser. Part of what you find in
these pages and on the Web page for the book is a collection of pointers to
help you obtain the tools you need to work directly with XML on your own
computer. You don’t need to be a master logician or a programming whiz to
work with XML; all you need are the time required to discover its ins and outs
and the determination to understand its intricacies and capabilities.

Even if you were one of those who fled English Composition in school and hid
out in the computer lab, take heart: If you can write a sentence and you know
the difference between a heading and a paragraph, you can build and publish
your own XML documents. If you have an imagination and the ability to com-
municate what’s important to you in an organized manner, you’ve already
mastered the ingredients necessary to build useful, information-rich XML doc-
uments and data collections. The rest is details — and we help you with those!

How This Book Is Organized
This book contains six major parts; each part contains three or more chapters;
each chapter has (in all modesty) lots of good stuff. Any time you need help or
information, pick up the book and start anywhere you like, or use the table of
contents and index to locate specific topics or keywords. This section of your
friendly intro offers a preview of the six parts and what you find in each one.

Part I: XML Basics
Part I sets the stage. It begins with an overview of XML’s special capabilities
and discusses what XML is and what XML is not. We tempt you toward the
XML side of the Force (hopefully) by exploring the many uses for XML — and
checking out the applications to which it’s so well suited. We also briefly dis-
cuss the relationships between and among the many XML languages and let
you know which ones we think are particularly useful for today’s developer.
We conclude Part I with a look at techniques for analyzing and classifying
your data so that you can make XML documents meet your data require-
ments. You also get to see how XML documents gain their structure and
content — from a thorough analysis of requirements and examples.

Part II: XML and the Web
In Part II, you find out all about displaying XML content on Web pages. First,
we cover what’s involved in converting HTML to its XML-based equivalent,
XHTML, as a way of introducing XML’s syntax and structure.

4 XML For Dummies, 4th Edition

03_588451 intro.qxd 4/15/05 9:30 AM Page 4

Chapter 5 picks up that thread, and you find out how to construct an XML
document piece by piece while playing by the rules of XML. We show you
how to create well-formed documents and discuss how XML documents and
data can be made subject to formal descriptions (a great way to define a set
of rules that humans and computers can follow with equal ease). You find out
why you might (or might not) want to validate your XML documents with a
DTD or XML Schema.

In Chapter 6 we explore character sets and related entities that XML depends
on to represent content and explain how to use them in your documents.

We conclude Part II with an explanation of what’s involved in bringing XML
documents to the Web and talk about the best ways to use styles to make their
contents more presentable. To that end, we explore ways to use Cascading
Style Sheets (CSS) to make native XML documents (or XML content trans-
formed into HTML) easier to read and appreciate online.

Part III: Building in Validation
with DTDs and Schemas
In Part III, we explain the purpose and functions that Document Type
Definitions (DTDs) can play in describing XML documents. We use a DTD to
teach you about the XML markup that it enables. We explain how to read a
DTD to recognize the elements, attributes, and content models it contains.

After that, we look at an “all-XML, all the time” alternative to DTDs called
XML Schema — an application that provides even more capabilities to
describe, use, and control XML documents. One part of XML Schema’s appeal
derives from its basis in XML itself. Because XML Schema is just another XML
application (albeit one that allows you to describe other XML applications),
you’ve got a leg up if you already have a working knowledge of XML: You can
apply that knowledge to describing XML applications without having to learn
yet another markup language. DTDs (on the other hand) are based on SGML,
not XML; you have to have XML under your belt before you can use, cus-
tomize, or create DTDs that describe XML applications. Another major part
of XML Schema’s appeal derives from its broad selection of built-in datatypes
and support for user-derived datatypes; you can be as specific as you want
(or need) to be in describing your data.

We explain how to create elements, attributes, datatypes, and content models
to work in XML Schemas. We provide details on how to construct a valid XML
Schema document and show you how to use this document to create new
XML documents in Word 2003.

5Introduction

03_588451 intro.qxd 4/15/05 9:30 AM Page 5

We conclude Part III by explaining how to combine XML Schemas and how to
mix and match XML Schema contents or components to maximize this tech-
nology. We also introduce XML namespaces and take a look at converting
DTDs to XML Schemas.

The four chapters in this part represent some of the most important nuts and
bolts in the entire book.

Part IV: Transforming and Processing XML
In Part IV, we jump into the ins and outs of the eXtensible Stylesheet Language
(XSL) that can be used to turn XML-based data or documents into just about
any form or format imaginable. After that, we explore the details of transform-
ing an XML document into different formats — and dispel the mysteries
involved in putting XSL to work for you when you change things around.

Next, we show you how to use XPath to describe the precise location of ele-
ments, attributes, and their values in an XML document.

To conclude Part IV, our final stop is inside the machinery that makes XML
usable, as we explore what’s involved when a computer reads and absorbs
an XML document and list what kinds of capabilities the necessary software
(usually called an XML processor) can deliver.

Part V: XML Application Development
In Part V, we explore what you can do with XML when you’ve got some ready
to work with — and show you many possible ways to get things done with a
little help from XML.

First, we take a look at an exciting set of XML-based applications designed to
advertise, locate, and use so-called “Web services” — a software and messag-
ing architecture that enables service providers to advertise their services on
the Web and users to locate and use such services. Web services can involve
anything from access to proprietary databases, remote storage or process-
ing, or even access to basic productivity applications (word processing,
spreadsheets, e-mail, and so forth) that users normally see on their own
desktops but often show up running elsewhere on the Internet. There’s
plenty of hype and hope for the future of Web services, and you explore the
reasons why this is the case.

Next, you find out all about using forms to collect XML data and take a close
look at two very different ways to use forms with XML: XForms, the W3C’s
“next generation” of Web forms, and InfoPath, Microsoft’s visual XML forms
editor.

6 XML For Dummies, 4th Edition

03_588451 intro.qxd 4/15/05 9:30 AM Page 6

In Chapter 17, you explore using XML with databases and how to import and
export XML data using Word, InfoPath, XMLSpy, and Access.

To conclude Part V, we explain how to use XML on the Web for syndicating
content with RSS news feeds. You get the word on how to create an RSS file,
as well as how to validate your file and submit it for syndication.

Part VI: The Part of Tens
Part VI introduces our picks of the best XML tools, applications and resources.
We begin this part with a brief survey of popular, widely used XML tools and
technologies. These include special-purpose XML editors and authoring tools,
XML-based management tools, XML-capable browsers, parsers and engines,
and conversion tools.

In Chapter 20, you have a chance to observe some of the best and brightest
uses of XML and to understand why a certain set of XML applications is of
such great interest to so many content designers and developers. Finally, in
Chapter 21, you can read about some of the most appealing and useful
sources of information about XML and related applications known to man
and woman.

Glossary
In the glossary, you can find definitions for all terms that make you go “Huh?”
We did our best to choose the ones that really need an explanation and to
define them in a way that’s easy to understand.

The materials on the XML For Dummies, 4th Edition Web site (www.dummies.
com/go/xmlfd4e/) are designed to help you match up the markup and exam-
ples that appear within the pages of the book to their electronic counterparts
on the Web site. In addition, we’ve provided links to as comprehensive a col-
lection of tools and programs for XML as we could gather here for your delec-
tation and use.

Icons Used in This Book
This icon signals technical details that are informative and interesting but not
critical to writing XML. Skip these if you want (but please, for the sake of your
inner geek, come back and read them later).

7Introduction

03_588451 intro.qxd 4/15/05 9:30 AM Page 7

This icon flags useful information that demystifies (and helps uncomplicate)
XML markup, Web-page design, or other important stuff.

This icon points out information that you shouldn’t pass by — don’t overlook
these gentle reminders (the life you save could be your own).

Be cautious when you see this icon. It warns you of things you shouldn’t do;
the bomb emphasizes that the consequences of ignoring these bits of
wisdom can be severe.

Where to Go from Here
To keep up with the latest version of these references, please visit the related
XML For Dummies site at www.dummies.com/go/xmlfd4e/. Here, you find
the results of our best efforts to keep the information in the book current and
a list of errata to straighten out any mistakes, boo-boos, or gotchas that we
weren’t able to root out before the book went to publication. We hope you
find this a convincing demonstration that our hearts are in the right place
(we already know we’re not perfect).

Please share your feedback with us about the book. We can’t claim that we’ll
follow every suggestion or react to every comment, but you can be pretty
certain that suggestions that occur repeatedly — or that add demonstrable
value to the book — will find a place in the next edition!

Good luck on your journey, and don’t forget to keep your eyes on the road
and your hands on the wheel as you cruise the information highway.

Enjoy!

8 XML For Dummies, 4th Edition

03_588451 intro.qxd 4/15/05 9:30 AM Page 8

Part I
XML Basics

04_588451 pt01.qxd 4/15/05 12:22 AM Page 9

In this part . . .

Here you get a gentle-but-formal introduction to the
eXtensible Markup Language, also known as XML.

Starting in Chapter 1, you get a look at XML’s capabilities,
strengths, and versatility. You get tips on the best uses of
XML, and draw a bead on the other pieces that may be
necessary for an XML solution. In Chapter 2, we introduce
you to the options for XML output — including Web
pages, print documents, forms, spreadsheets, and data-
bases. Then the wide variety of XML languages comes to
light. Finally, Chapter 3 rounds out your basic toolkit with
a close look at how to develop and test a classification
scheme for your data.

04_588451 pt01.qxd 4/15/05 12:22 AM Page 10

Chapter 1

Getting to Know XML
In This Chapter
� Introducing XML

� Examining the many uses of XML

� Deciphering what XML is and what XML isn’t

� Building an XML document

Have you ever needed a document format that you could use to exchange
data — either across the Internet or across an intranet? Well, eXtensible

Markup Language (XML) may be just the solution. In fact, many different indus-
tries have discovered the wonders of XML — and use it extensively to help
organize and classify their data.

XML is a markup language — it uses tags to label, categorize, and organize
information in a specific way. Markup describes document or data structure
and organization. Content, such as text, images, and data, is that part of the
code that the markup tags contain; it’s also what’s of greatest interest to
most everyday humans who read or interact with data or documents. XML
isn’t limited to a particular set of markup — you create your own markup to
suit your data and document needs. The flexibility of XML has led to its wide-
spread use for exchanging data in a multitude of forms.

And that’s not all! With XML, you can send the same information to various
locations — say, to a person using a mobile phone and a person using a Web
browser — at the same time. In addition, you can customize the information
sent out so it’s displayed appropriately on the various devices.

Getting started with XML isn’t difficult. Just check out this chapter, and you’ll
get the skinny on what markup languages are, what XML is, and what you can
use XML to do.

05_588451 ch01.qxd 4/15/05 12:20 AM Page 11

XML (eXtreMely cooL)
If you take a close look at the use of XML in today’s business world, you soon
recognize that pinning down a single, definitive use for XML is nearly impossi-
ble. In fact, it is precisely the open-ended nature of XML that makes it so
useful for many different things — and so difficult to put into a single, small
box. Read on to see what we mean.

Mocking up your own markup
You may be familiar with Hypertext Markup Language (HTML), the markup
language used to display information on Web pages. Both XML and HTML are
derived from the “mother of all markup languages,” Standard Generalized
Markup Language (SGML) — but any similarity ends there.

HTML includes a set of predefined tags that format information for display on
the Web. XML has no predefined tags — instead, you can create your own XML
tags to structure your XML document so its content is in a form that meets
your needs. Basically, you design your own custom markup language (actually
an XML application) to do data exchange in a way that works for you.

Although XML doesn’t include predefined tags, it does include very specific
rules about the syntax of an XML document. You’ll get a chance to explore
those rules (and use said rules to create your own XML document) in
Chapter 5.

XHTML is yet another markup language — designed as a transition language
between HTML and XML. In a nutshell, XHTML is a version of HTML that fol-
lows the strict syntax rules of XML. After you’ve used it for a while, you’re well
prepared to use XML. (We uncover the mysteries of XHTML in Chapter 4 —
where you also get a chance to create an XHTML file to view on the Web.)

Separating data and context
Among the many benefits of using XML is that it automatically separates data
from context (presentation). An XML document by itself includes no instruc-
tions about how to display the content contained in the document — it only
defines the structure of the document. You can then add styles — formatting
instructions for displaying the content — in a separate document called a
stylesheet. This separation is actually pretty handy; you can change the dis-
play instructions without having to make any changes to your XML docu-
ment. If the same style sheet is used with more than one document, you can
make uniform style changes in all those documents simply by making
changes in the stylesheet. All the associated XML documents follow the
stylesheet’s orders.

12 Part I: XML Basics

05_588451 ch01.qxd 4/15/05 12:20 AM Page 12

XML can be combined with both two different types of stylesheets — Cascad-
ing Style Sheets (CSS) and/or Extensible Stylesheet Language Transformations
(XSLT) — for extra versatility. This makes it possible to view XML documents
on the Web as more than just raw document markup — and you can change
this display easily to accommodate different output devices. For example,
you can use one stylesheet for display on a PDA and a separate one for print-
out.

We’ll have more to tell about the world of CSS formatting in Chapter 7, where
(lucky you) we even show you how to create and link a CSS stylesheet to an
XML document. XSLT gets the same treatment in Chapter 12, where you get a
chance to explore the power of XSLT stylesheets for formatting the display of
an XML document.

Making information portable
XML is all about managing your data — using the best possible format avail-
able to you. To talk about how XML can handle your data as discrete bits of
information, what better format is there to use than a bulleted list? Check out
the following items:

� XML enables you to collect information once and reuse it in a variety
of ways.

� XML data is not limited to one application format. You can design an
XML document that allows you to collect data online for use in other
documents, databases, and spreadsheets.

For example, suppose your business collects sales information on a
group of products by using an XML document to contain the data. The
same XML data could be used to create customer purchase records,
commission reports, and product-sales graphs.

� Making information portable does require planning and design before
the information is collected. (You get a chance to explore the art of
developing strategies for data collection in Chapter 3.)

XML means business
XML provides an easy way for businesses to manage and share information.
Although XML was originally created by the World Wide Web Consortium
(W3C) as a way to disseminate complex, structured data and documents over
the Web, its use has expanded. Now no longer a Web-only format, XML is
right at home on the business desktop.

13Chapter 1: Getting to Know XML

05_588451 ch01.qxd 4/15/05 12:20 AM Page 13

Microsoft Office 2003 is one notable application package that includes XML
tools for office applications. Using Office 2003, office documents can be cre-
ated in XML format and information tagged and collected for re-use in other
office applications as well as on the Web. We highlight some uses of XML in
Office 2003 throughout this book.

Figuring Out What XML Is Good For
Case studies of XML never fail to mention new and exciting possibilities
where XML adds value to existing environments — or solves previously
intractable problems. That’s probably why XML applications are widely used
for everything from displaying chemical formulas to setting up a family tree.
So how can you use the power of XML?

Classifying information
One of the most useful functions of XML involves classifying information. To
see how this would work, imagine yourself in the business of selling books.

Books can be classified in many ways, but we kind of like the following classi-
fication scheme:

� Title

� Author

� Publisher

� Price

� Content Type (Fiction, Nonfiction)

� Format (Paperback, Hardback)

� ISBN

Using XML, you can create tags to classify this information. The following
code shows a possible XML format for one book:

<book>
<title>Night Fall</title>
<author>Demille, Nelson</author>
<publisher>Warner</publisher>
<price>$26.95</price>
<contentType>Fiction</contentType>
<format>Hardback</format>
<isbn>0446576638</isbn>

</book>

14 Part I: XML Basics

05_588451 ch01.qxd 4/15/05 12:20 AM Page 14

Giving your tags meaningful names that actually reflect the content makes it
easier to work with the information.

Classifying the information as shown here makes it possible for you to search
for — and retrieve — any item with ease. For example, after the information
on all the books for your imaginary book business is collected and tucked
away in XML format, you can create a list of all the authors — or authors and
titles, or titles and ISBNs, whatever information you want to access. (Talk
about power at your fingertips!)

We go over all the gory details of classifying information in Chapter 3, but do
keep this imaginary book business in mind as you make your way through the
other chapters of this book: For the sake of illustration, you get to become the
next giant (imaginary) bookstore chain. We expand the book-business exam-
ple in later chapters to demonstrate how you can use XML to collect and use
information about inventory, customers, stores, and sales, however massive a
success you become.

Enforcing rules on your data
XML excels at allowing you to create rules for the format of your data. Using
either Document Type Definitions (DTDs) or XML Schemas to validate your
data gives you two immediate advantages:

� It helps ensure the accuracy of the information you collect.

� It helps ensure that the information gathered is in the most usable
format for your business needs.

Not sure what a DTD is? Check out the “Getting to know markup-language
lingo” sidebar, later in this chapter.

Taking another look at the XML we came up with in the previous section for
your imaginary book business, you can see several items for which you might
want to include rules to govern how the data is formatted, such as

� A currency format for the price

� A number format for the ISBN

� A restricted selection for content type (Fiction or Nonfiction)

� A restricted selection for format (Paperback or Hardback)

You get a detailed look at creating and using DTDs and XML Schemas in Part
III of this book.

15Chapter 1: Getting to Know XML

05_588451 ch01.qxd 4/15/05 12:20 AM Page 15

Outputting information
in a variety of ways
Outputting your data means releasing it from its storage locker — presumably
somewhere inside the guts of your computer — and getting it to some other
place where it can be a bit more useful. The great thing about XML documents

16 Part I: XML Basics

Getting to know markup-language lingo
You don’t have to be a markup pro to read this
book or to use XML. If you’re new to the markup
world (or if you need to brush up on your vocab-
ulary), the following list should help you out.

These terms are the most common ones you run
into in the XML world. As you get to know them,
you also get a handle on markup languages in
general (including XML):

� Attribute: In XML, a property associated
with an XML element that’s also a named
characteristic of the element. An attribute
also provides additional data about an ele-
ment, independent of element content. For
example:

<book location=”GatewayMall”>Whiteout
</book>

In this case, the element (book) content is
Whiteout, but the attribute (location)
provides additional data (GatewayMall).

� Document Type Definition (DTD): This is a
statement of rules for an XML document —
based on SGML (the ancestor of XML) —
that specifies which elements (markup
tags) and attributes (names and values
associated with specific elements) are
allowed in your documents. A DTD also
governs the order in which the elements
and attributes may appear — or (if you want
to get strict) must appear.

� Element: A section of a document defined
by start and end tags (or an empty tag),
including any associated content.

� Metalanguage: A language used to com-
municate information about a language
itself; many experts consider both SGML
and XML to be metalanguages because
they can be used to define other markup
languages.

� Nesting: An ordering of elements that
opens and closes a child element before its
parent element is closed. (Child elements
nest within parent elements.)

� Schema: An XML-based statement of rules
that represents how an XML document
models its data and defines its elements (or
objects), their attributes (or properties), and
relationships between elements.

� Syntax: The rules that govern the correct
construction of intelligible statements in a
markup language.

� Tag; empty tag: The markup used to enclose
an element’s content. An empty element
employs a single tag; a regular element
(which isn’t empty) has an opening and a
closing tag.

� Valid: Said of a document if it adheres to the
rules outlined in an associated DTD or
schema document.

� Well formed: Said of a markup-language
document that adheres to the syntax rules
for XML — which are explicitly designed to
make documents easy for a computer to
interpret.

05_588451 ch01.qxd 4/15/05 12:20 AM Page 16

is that they’re not limited to any particular form of output; they can end up in
a variety of different places, in whatever form is appropriate — for example, in
a database, a computer monitor, a printer, or a PDA.

XML documents are at home in a wide range of processes. The phrase post-
processing was practically tailor-made for XML; it means taking information
from a document and using it in some other process or program. For exam-
ple, suppose you receive a purchase order in the form of an XML document.
An application that understands XML purchase orders can use that data to
determine which items (and in what quantities) have been ordered — and
can even send instructions to another piece of software to generate a pick list
so the order can be picked, packed, and shipped from the warehouse. (Now,
that’s our kind of post-processing!)

In many cases, XML documents are used with stylesheets to provide high-
quality output on-screen. You can use the same data, however, to send infor-
mation to a speech-synthesis program that reads the text to a person who is
vision impaired. Alternatively, that same data might also create output on a
Braille reader. The same document with a layout program and a stylesheet
also might be used for high-quality printouts. (Figure 1-1 gives you an idea of
the infinite variety of output choices that XML makes available to you.)

The beauty of this concept is that you never need to fuss and fidget with the
XML data to create output for different devices. You need only use different
pieces of software that can read XML and can provide the output for a partic-
ular format or output device.

Using the same data across platforms
The good news looks, at first, like no news: XML documents are not specific
to any particular platform or programming language. Okay, why is that some-
thing to e-mail home about? Think versatility. Suppose you want to exchange
database information across the Web — say, use a Web browser to send infor-
mation from a user questionnaire back to a Web server. To accomplish this
task (and many others), you need a document format that is

� Extensible: An extensible format is one that can be tailored or customized
for specific applications.

� Open: It’s well documented and widely available.

� Nonproprietary: It’s expressed in an accepted or standard form of nota-
tion that isn’t the exclusive property of some individual, company, or
organization.

These characteristics enable the document to adapt to changing conditions,
to take best advantage of the work of others, and to avoid incurring extra
expense or legal liability.

17Chapter 1: Getting to Know XML

05_588451 ch01.qxd 4/15/05 12:20 AM Page 17

Guess what? XML meets all three requirements for a document format for
exchanging data — it’s open, extensible, and nonproprietary. No surprise,
then, that XML is the best choice for data exchange; those three magic char-
acteristics make it a handy, consistent way to hand data around among multi-
ple applications and multiple platforms with the most efficiency and least
hassle.

Check out Chapter 2 for additional information and examples of the many
uses of XML, as well as an introduction to the world of XML technologies.

Beyond the Hype: What XML Isn’t
The previous section spells out what XML is — an extensible markup lan-
guage that allows you to create your own tags to develop XML applications.
Now it’s time to clarify what XML is not.

XML
processorXML

document

Printed document

Display document

Database document

Sound document

Figure 1-1:
Use XML for

different
outputs.

18 Part I: XML Basics

05_588451 ch01.qxd 4/15/05 12:20 AM Page 18

It’s not just for Web pages anymore
Although the World Wide Web Consortium (W3C) developed XML, it’s not
specifically designed only for Web pages. In fact, if you display an XML docu-
ment on the Web in its raw form (without adding styles to format the dis-
play), all you’ll see is the XML markup itself. Figure 1-2 shows an XML file in
Internet Explorer — not much to look at! And there’s even less to see when
this same file is displayed in Netscape Navigator, as shown in Figure 1-3.

So banish this Web-only idea from your thoughts. XML is a markup language
that allows you to organize information by creating tags to construct a spe-
cific document structure. XML documents can be viewed on the Web, but
unlike HTML documents, they’re not limited to the Web.

Browser support for XML is limited and variable. Hopefully this will change in
the next generation of browsers, but for now XML works well in Web pages
only when combined with another language (CSS) or XML technology (XSLT)
to format the display of the XML information. Figure 1-4 shows our XML file
when it’s combined with simple CSS style instructions — now, that’s more
like it!

Figure 1-3:
An XML file

as it looks in
Netscape
Navigator.

Figure 1-2:
An XML file

as it looks
in Internet

Explorer.

19Chapter 1: Getting to Know XML

05_588451 ch01.qxd 4/15/05 12:20 AM Page 19

It’s not a database
Whether XML “is” a database depends on your definition of database. If
you’re defining a database as a collection of data, then yes, XML qualifies as
a database. If you’re defining a database as a Database Management System
(DBMS) program, such as Microsoft Access, XML has some DBMS features
(storage, queries, programming interfaces) but doesn’t have others (queries
across multiple documents, security, indexes). So, okay, you could use XML
as a database for a small amount of data — but it wouldn’t be efficient to use
XML as a database for large amounts of data. (Why would you want to, when
DBMS programs are designed to do exactly that?)

That’s not to say XML is in any way database unfriendly. XML documents work
well for both input and output, going to and from a database — and you can
also use them to display database information in print or on the Web. (You get
a closer look at how to use XML effectively with databases in Chapter 17.)

It’s not a programming language
One of the most common misconceptions about XML is that it’s a program-
ming language. Although XML can be used with programming languages for
certain types of application development, it’s a markup language, not a pro-
gramming language. A markup language is essentially descriptive; a program-
ming language is for issuing logical commands. Programming languages
include (for example) variables, datatypes, operators, loops, functions, and
conditional statements. XML doesn’t include any of these features, so it’s no
programming language.

Figure 1-4:
An XML file

with an
attached

CSS
stylesheet,

shown in
Internet

Explorer.

20 Part I: XML Basics

05_588451 ch01.qxd 4/15/05 12:20 AM Page 20

Part of the confusion here is that some XML document types do include some
features found in programming languages. For example, XML Schemas (which
are themselves XML documents) include several built-in datatypes and also
allow user-defined datatypes. But wait a minute: Although XML Schema docu-
ments can include datatypes — one feature of programming languages —
that doesn’t make them full-fledged programming languages with all the fea-
tures just listed here. They remain XML documents — with an XML document
structure, created with a markup language (XML). You can get XML to
describe how a document will look; you can’t get it to dim your house lights
or start your car — at least, not without some help from an actual program-
ming language.

Building XML Documents
When it comes to actually getting your XML tags in a row, regular old-fashioned
text editors (such as Notepad) can do the job if you’re just getting your feet
wet with XML. If you’re using Windows, you can access Notepad by choosing
Start➪Programs➪Accessories➪Notepad. A new Notepad window opens. You
can save the files just as you would in a word processor — and do simple
functions such as copy and paste. Aside from that, though, Notepad is a
pretty bare-bones program — you must insert all the markup yourself when
you use a text editor such as Notepad.

Avoid using the WordPad text editor to create an XML document; it won’t let
you save a file with the .xml extension.

If the bare-bones approach just isn’t good enough, you may want to check
out text editors that are built specifically for XML. (We think they are defi-
nitely the way to go if you plan on using XML regularly.) These editors often
look like a blend of traditional word processors and HTML editors. In fact,
most XML editors work so much like word processors that you could easily
forget you’re working with XML.

XML editors can make your job easier and help keep those creative juices
flowing! (Tracking tags and cleaning up structures can interrupt — even
completely destroy — the creative train of thought.) XML editors have two
distinct features that are essential for creating good XML documents:

� Ease of markup: XML editors, such as XMLSpy, Turbo XML, and XML
Pro, can add markup to text as simply as you can turn text bold in
today’s word processors. All XML editors provide the capability to
select text with a cursor and choose which markup you want to apply
from a menu of selections. (See Chapter 19 for more on XMLSpy, Turbo
XML, XML Pro, and other XML-authoring tools.)

21Chapter 1: Getting to Know XML

05_588451 ch01.qxd 4/15/05 12:20 AM Page 21

� Automatic enforcement of XML document rules: For many applications,
XML editors can determine which element types can appear in certain
contexts. In this way, the editor helps you avoid making syntax or struc-
ture mistakes. For example, if you specify that the ChapterTitle element
is valid only at the beginning of a chapter and never within an ordinary
paragraph, the editor can make sure that your rule is enforced if you acci-
dentally break it.

XML is a subset of SGML, so many authoring tools and editors previously
used for SGML have been recast and are now ready to take on XML.

22 Part I: XML Basics

05_588451 ch01.qxd 4/15/05 12:20 AM Page 22

Chapter 2

Using XML for Many Purposes
In This Chapter
� Moving your data into XML

� Making use of XML for the Web, print media, forms, and databases

� Introducing the many flavors of XML

Businesses generate, store, and share information in a variety of ways,
including text-based reports, forms, spreadsheets, and databases.

Often, this important data is not collected and saved in a format that makes it
possible for anyone to reuse, index, or search this information. For example,
business data in a text document may be available only in that document; a
spreadsheet program that could create a graph from this same information
may not be able to get at it — and that means typing in the data all over again.
Duplicate entry of the same data is not only inefficient, but also creates more
opportunities for errors.

XML makes it possible to collect information once — and then access and
use that data in as many different formats as you need. Although it requires
some planning up front (and a close look at the kinds of data you actually col-
lect), XML is not difficult to implement as a solution for data collection, stor-
age, and exchange,

You don’t have to be a technical whiz to start using XML. XML is accessible
to users at all levels, from beginners creating their first XML documents in
Word 2003 to the more technically savvy users out there entrusted with the
task of constructing XML schemas to validate those documents.

Moving Legacy Data to XML
Using XML for your data doesn’t necessarily land you back on Square One;
you don’t have to start collecting and processing your data all over again.
You may be able to import, export, and otherwise shape-shift your current
data into an XML format. Here’s a glimpse of what’s possible:

06_588451 ch02.qxd 4/15/05 12:22 AM Page 23

� Is your data in spreadsheets? You can transform this data into XML
format by creating an XML schema for the data and then using that
schema in Excel 2003 to create a map that connects the spreadsheet cell
data and the schema. You can then export the spreadsheet file as an
XML document. (See the “Getting started in Excel” section later in this
chapter for more details on using XML with Excel 2003.)

� Is your data in database tables? In Access 2003, you can export data in
XML format from one or more tables. Access can create and export an
XML document — along with an XML schema and an XSLT stylesheet that
creates an HTML document to display the data on the Web — automati-
cally. You can also use XMLSpy (an XML editor) to import and convert
database information from various databases — including Microsoft SQL
Server, Oracle, MySQL, IBM DB2, Sybase, Access, or any ADO (ActiveX
Data Objects) or ODBC (Open DataBase Connectivity) source — into
XML format. See Chapter 17 for more information on using XML with
databases.

� Is your data in CSV (comma-separated values) text files? You can use
XMLSpy to import and convert these text files into XML format.

Even if your current data isn’t in any of these formats, you can take stock of
your data and organize it for efficient use in XML — if you follow the advice
we offer in Chapter 3, that is.

The Many Faces of XML
After your data is in XML format, you have many ways you can present and
share it. The same data can be accessed through Web pages, print docu-
ments, forms, spreadsheets, and databases.

Creating XML-enabled Web pages
All this XML versatility does require just a little extra tweaking: Your content
(that is, the data) is separate from its context (the way you present it) in XML
documents. That means you have to add some formatting information if you
want to display more than just “raw” XML markup on a Web page.

When it comes to actually adding formatting information, you have a couple
of options. You can link an XML document to a CSS (Cascading Style Sheets)
stylesheet — which would (hopefully) make the information easier to read as
well as visually interesting. Figure 2-1 shows (on the left) an unformatted XML
file in a Web browser.

24 Part I: XML Basics

06_588451 ch02.qxd 4/15/05 12:22 AM Page 24

If you use an XSLT (eXtensible Stylesheet Language Transformations)
stylesheet with your XML document, voilà! You can generate an HTML page
with a formatted display — with almost no effort. As you can see at right in
Figure 2-1, the information is now in a much more usable form for the Web.
And by the way — this XML file and XSLT stylesheet were both generated
from a database table in Access 2003!

We show you all the details about how to create a CSS stylesheet and link it
to an XML document in Chapter 7 — and do the same for XSLT in Chapter 12.

Print publishing with XML
Okay, suppose you want a hard copy of your XML data. No problem: SGML,
the parent language of HTML and XML, was developed to meet the publishing
industry’s need for a language that could mark up electronic documents so
they could be edited, reused, and shared. XML documents are well suited for
creating printed documents — especially technical manuals and other large,
organized collections of information in text form.

Microsoft Office 2003 includes features that take full advantage of XML and give
it an expanded role on the desktop. All versions of Word 2003 and Excel 2003
can save documents in XML format. The professional version of Office 2003
takes this a step further, offering a way to add customized XML schemas to
your documents. Result: XML is now even easier to use with print documents.

At heart, XML files are text files — you can open, modify, or create them in
any text editor. If you prefer to use a word processor, Word 2003 includes fea-
tures designed to make XML documents easy to create and use in Word.

Word 2003 uses a built-in schema document called WordML for XML docu-
ments. If you’re using the professional version, you can also add any schema
to any XML document in Word.

Figure 2-1:
An XML file

in Internet
Explorer.

25Chapter 2: Using XML for Many Purposes

06_588451 ch02.qxd 4/15/05 12:22 AM Page 25

When you open an XML document in Word, you can display the document in
one of two ways:

� As XML markup with visible XML tags, as shown in Figure 2-2.

� As content without tags, as shown in Figure 2-3.

You can toggle back and forth between these views by using the Show XML
Tags in the Document check box in the XML Structure task pane (located to
the left of the main window). To open the task pane, select View➪Task Pane,
and then select XML Structure from the drop-down menu at the top of the
task pane.

If you have an XSLT stylesheet for your XML document, you can open the
“transformed” XML document in Word by using the drop-down menu from
the Open button (File➪Open, as shown in Figure 2-4), selecting Open with
Transform, and then browsing to the location of your XSLT file. XML files
used to print documents are similar to the XML files used with Web pages —
they aren’t formatted until you add display information (in this case, with an
XSLT stylesheet).

Figure 2-2:
An XML file

displayed
with markup

tags in
Word 2003.

26 Part I: XML Basics

06_588451 ch02.qxd 4/15/05 12:22 AM Page 26

You can also save an XML file as a Word template and use it to create new
XML files in the same format:

1. Save the XML file in Word, using the .dot extension.

The .dot extension identifies the saved file as a template.

2. Attach a schema to the template you just saved (Tools➪Templates and
Add-Ins➪XML Schema).

This step formats the XML document; any documents you base on it will
have the same format.

Figure 2-4:
Options for
opening an
XML file in
Word 2003.

Figure 2-3:
Content of

an XML file
displayed

without
markup tags

in Word
2003.

27Chapter 2: Using XML for Many Purposes

06_588451 ch02.qxd 4/15/05 12:22 AM Page 27

Using XML for business forms
Forms are a very useful way to collect data and can be used in text docu-
ments or on a Web page. You can create XML documents that include HTML
forms by adding an XSLT stylesheet to generate the HTML form markup. You
can also use XForms, an XML technology, to create forms that submit the
form data as XML. (For more on XForms, see Chapter 16.) Or, for an easy way
to create XML forms that you can use online or even send by e-mail, check
out InfoPath. (Not sure what InfoPath is? Read on and find out!)

InfoPath — part of Office 2003 — is an XML forms editor that conforms to the
principle of WYSIWYG (What You See Is What You Get): It shows you what
your finished form will actually look like, whether on-screen or printed out. In
InfoPath, you can create a form based on an XML document or XML schema,
use one of InfoPath’s 25 sample forms, or design your own form. (If you
design your own, InfoPath will create a schema for you.)

InfoPath forms can be used in a Web page or sent in e-mail. Users can com-
plete the forms online or download them and make entries offline. InfoPath
can even create form-validation code automatically, so the information you
gather is formatted to meet your needs — no extra tweaking required.

Figure 2-5 shows a preview of an InfoPath form that was automatically cre-
ated from an XML schema and then populated with data from an XML file.

You can create a form template in InfoPath that can then be used to collect
new data or be filled with data from a pre-existing XML file. The form can be

28 Part I: XML Basics

When Word isn’t what you want
If you create an XML document in Word that
you want to use outside of Word, you’re going
to need to do some fiddling. More specifically,
you’re going to need to delete the following from
your document:

<?mso-application progid=”Word.
Document”?>

This little snippet is a processing instruction that
indicates that the document is to open in Word.
If you’re not going to open it in Word, then leav-
ing this snippet in is going to cause problems.

As to how you actually get rid of the little snip-
pet, there hangs a tale. Word documents hang

on to their processing instructions; you can’t
use Word to get rid of something Word wants to
keep, so you have to open your XML document
in a plain-text editor (such as Notepad) to do the
job. There, you can view the code. delete this
particular line, and save the document.

If you open an XML file in Word that was cre-
ated in another program, the file won’t contain
this processing instruction, so you won’t have
to worry about it — unless, of course, you save
the XML file as a Word document.

06_588451 ch02.qxd 4/15/05 12:22 AM Page 28

published online directly from InfoPath or sent in e-mail. You can even export
the form data to Excel 2003, if you want.

Okay, all this convenience is just a little proprietary — users must have
InfoPath installed on their computers in order to fill out InfoPath forms.

You’ll have the opportunity for a closer look at creating forms with InfoPath
in Chapter 16.

Incorporating XML into business processes
XML makes it possible for businesses to bring together information from
diverse sources, such as text documents, forms, and spreadsheets, and then
reuse, search, store, and aggregate that information. A crucial piece of col-
lecting this information is for a business to decide what data they want to
collect and then design XML Schemas or DTDs (short for Document Type
Definitions) to define the structure of their documents so that they’re able to
capture this data through the course of everyday business procedures. (You
can find more about using data categories in Chapter 3 — and unearth a
plethora of info on creating DTDs and schemas throughout Part III.)

Multiple uses of the same set of data
We’ve said it before, and we’ll say it again: Being able to reuse data is a vastly
important feature of XML! This capability is what makes it economical to inte-
grate XML into your business flow. Gather information once and using it over
and over in multiple applications — without ever having to collect and process
the data all over again — you can almost hear the efficiency experts cheering.

Figure 2-5:
An InfoPath

form,
populated
with book

data.

29Chapter 2: Using XML for Many Purposes

06_588451 ch02.qxd 4/15/05 12:22 AM Page 29

To drive this point home, picture in your mind’s eye that ubiquitous business
tool — the spreadsheet. Spreadsheets have traditionally been used in most
businesses as a way to collect and present information. They come in a famil-
iar format, and their features are generally well known to anyone in a busi-
ness setting. With Excel 2003, you can now import and export XML data into
and out of the familiar spreadsheet form — while at the same time still being
able to use all of Excel’s traditional data-analysis features (such as charts,
graphs, and reports).

Excel creates an XML schema — Excel calls this an XML map — that connects
items of XML data and the worksheet cells in which the data appears. You
can use more than one map with a worksheet, in case you have different data
sources using different schemas. (If you don’t have a schema associated with
your XML file, Excel creates one for you automatically.)

Getting started in Excel
When you open an XML file in Excel, an Open XML dialog box displays, and
you can choose among the following three options for opening the XML file:

� As an XML list: XML tag names are displayed as data headings at the top
of worksheet columns; any content in the XML file is displayed in work-
sheet cells. New data can be imported and added to the XML file — and
it gets the same treatment automatically.

� As a read-only workbook: XML tag names and content are displayed,
but no changes can be made, and no new data can be incorporated.

� As a display in the XML Source task pane: XML tag names are shown
in Excel’s XML Source task pane. From there, you can drag and drop ele-
ments onto the any worksheet, right where you want your data headings
to appear. You can then Import (Data➪XML➪Import) or Refresh (Data➪
XML➪Refresh XML Data) the XML data to populate the worksheet cells.

The drag-and-drop task-pane method is easy to use and offers a distinct
advantage: You can add only those elements that you want to view on a par-
ticular worksheet. Figure 2-6, for example, shows an Excel worksheet with
only three columns of our book data: Title, Author, and ISBN.

Figure 2-6:
Excel 2003
worksheet
with XML

data.

30 Part I: XML Basics

06_588451 ch02.qxd 4/15/05 12:22 AM Page 30

Serving up XML from a database
It should come as no surprise to you (given our touting of XML’s flexibility)
that you can import or export database information in XML format to create
XML files from database tables or database tables from XML files. We’ll get to
all the messy details in Chapter 17, but write this down on your cuff — XML +
databases = great idea.

If you are new to databases, we recommend Access 2003 for importing and
exporting XML data. It’s easy to use, it’s part of the Office 2003 Professional
Edition package, and it’s a great place to start your work with XML and data-
bases. If your business already uses another database technology, you can
import and export information from your existing database by using a pro-
gram such as XMLSpy.

Alphabet Soup: Even More XML
Although the term XML refers to the W3C standard for XML (www.w3.org/TR/
REC-xml/), the same term (XML) is also commonly used for the entire family
of W3C XML-based language formats. Although an exhaustive discussion of
the whole XML family won’t fit into this book, the following list introduces
the major members of the XML group:

� XLink and XPointer: XLink and XPointer are XML languages for hyper-
links (XLink) and for document components with ID attributes (XPointer).
XLink allows you to incorporate sophisticated linking mechanisms in XML
documents. This capability goes far beyond simple HTML hyperlinks.
XPointer enables you to travel to a specific item in a document by specify-
ing element types, attribute values, character content, and position. If
these technologies seem a little unfamiliar, there’s a reason: They have
been in development for years, but neither one is supported by today’s
browsers (yet).

� XSLT, XPath, and XSL-FO: All three of these XML technologies are parts of
XSL (Extensible Style Language). XSLT (the T stands for Transformations)
is designed to transform raw XML into complex display formats such as
tables and indexes. XSLT is also widely used to generate HTML pages from
XML documents. XPath is an XML language used to navigate an XML docu-
ment. It’s based on viewing an XML document as a tree of nodes and using
this node structure to navigate the document. XPath is used with both
XSLT and XPointer. XSL-FO (XSL-Formatting Objects) is used for com-
pletely formatting the layout, style, and pagination (dividing a document
into pages) of documents that are rendered in print format. XSL-FO can
be used with electronic documents such as PDFs, as well as traditional
print documents. You’ll find out more about these three languages in
Chapters 12 and 13.

31Chapter 2: Using XML for Many Purposes

06_588451 ch02.qxd 4/15/05 12:22 AM Page 31

� XForms: XForms is an XML language created to collect and submit form
information as XML data. XForms uses both XPath and XML schemas.
You’ll hear all about XForms in Chapter 16.

� XML Encryption and XML Signature: XML Encryption is an XML language
developed for secure exchange of XML data. XML Signature is also used
for secure data exchange. It provides syntax and processing rules for digi-
tal signatures.

� XML Query: XML Query is an XML language designed to query — request
information from — any collection of XML data, whether that data is con-
tained in an XML file or a database.

� SOAP: SOAP (Simple Object Access Protocol) is an XML language used
for communication between a Web page requesting a Web service and
the Web service application. You’ll find out more about SOAP and Web
services in Chapter 15.

� SVG and SMIL: SVG (Scalable Vector Graphics) and SMIL (Synchronized
Multimedia Integration Language) are XML languages for multimedia.
SVG enables you to display 2-dimensional vector graphic images and
animations from XML code. (Vector graphics use mathematical formulas
to create images on-screen.) SMIL is used for integrating text, images,
audio, and video content for multimedia presentations.

If you didn’t know it before, you know it now: XML is for data, and data is
for XML. Now it’s time to take a closer look at organizing and collecting that
data — which is precisely what you do in Chapter 3.

32 Part I: XML Basics

06_588451 ch02.qxd 4/15/05 12:22 AM Page 32

Chapter 3

Slicing and Dicing Data
Categories: The Art of Taxonomy

In This Chapter
� Appraising your data

� Searching for schemas

� Separating your data into categories

� Developing a strategy for data

� Testing your data design

It’s important to make sure that your markup fits your content the way (a)
puzzle pieces fit together, (b) peas and carrots go together, or (c) a hand

fits in a glove. (Choose your metaphor.)

You can create perfectly written XML, but if your perfect XML doesn’t fit your
content, all that work isn’t going to do diddly for you. This chapter is devoted
to helping you get a handle on the content that you’re creating so you can use
XML to describe it well. Content analysis isn’t nearly as scary as it sounds; a
little analysis early on (tell us what you see in these ink blots) can save you
from going loco later.

After you assess your content, you can create a taxonomy — no, not the part
where you mount deer heads on the wall, but rather a naming scheme: You
break your content down into categories and subcategories according to a
well-thought-out plan.

Taking Stock of Your Data
The process of becoming best friends with your content is often called
content analysis or information analysis. Whatever name it goes by, analysis
requires breaking down content into bite-size chunks to see exactly what
pieces are going to become key components when you describe the data
with a markup language (in this case, XML).

07_588451 ch03.qxd 4/15/05 9:32 AM Page 33

When we use the term components, we’re referring to types of data that run
throughout a document. (Titles and authors are two key components of a
book description, for example.) Until you have a good handle on the compo-
nents of your content, you can’t create markup that fits it — or even use an
existing markup language to describe it.

Looking at business practices and partners
Taking a close look at the flow of information in your business will help you
identify the components of your content. For example, what data is collected
when a customer places an order? What kind of inventory information do you
maintain? Do you use a catalog of your products? Do you use a database?
What happens to all this information you are amassing? Each different
process is a specialized use of information.

If you’re already familiar with the information that qualifies as content, then
you’ve already got a leg up on the process. If you’re unfamiliar with the con-
tent, however, take some time to talk to those people who create or frequently
process the data. Find out

� What users do with individual pieces of information.

� What data users think is impossible to live without (and why).

� What data is unnecessary or optional (and why).

Gather enough information to sufficiently understand what the key compo-
nents of the content are, why the content was created, and what’s needed to
make the content useful to the people who created it.

Gathering some content
To get started analyzing data, you need to gather up several samples of the
data content to work with so that you can create as complete a composite (a
collection made up of distinct parts) of the key data components as possible.

The more complete your collection of samples is, the better chance you have
of creating markup that fits all your content. Here are some ideas:

� Get data from multiple sources: If you’re working with data for a busi-
ness, be sure to gather invoices, receipts, and other data from multiple
vendors or customers. One vendor may exclude vital info that another
vendor includes.

� Get a lot of data: If you need to describe data that will eventually go into
an existing database, see whether you can get sample data that’s already

34 Part I: XML Basics

07_588451 ch03.qxd 4/15/05 9:32 AM Page 34

in the database so that you can be sure that your markup and the data-
base’s requirements match.

You may have to make modifications to the database to make sure that
all the available information is gathered and used to its fullest extent.

� Get a lot of data from multiple sources: If you need to describe com-
plex reports, lay your hands on several different reports, written by dif-
ferent people if possible.

You’re getting the drift, aren’t you?

To create a complete picture, try to find five or six samples, at least, to
work with.

Because your content is ultimately destined for a processing system of some
kind, you should talk with the people building that system to see what their
data requirements are for it (assuming there’s no predefined DTD or schema
already in place). You want your markup to work with their system; a little
communication up front about their needs and expectations goes a long way
toward avoiding a complete rework of your DTD or schema.

For more information on DTDs and schemas, see Part III (Chapters 8 – 11) of
this book.

Checking whether a DTD or
schema already exists
It’s important that you look around for predefined schemas and DTDs before
you try to create your own. If you find one that meets your needs, you can
save yourself a lot of time by building on existing markup that at least one
other person or group is using — and you know that much of your new
markup already works. (If you’re trying to work with an established system
such as ASP.NET, for example, you won’t have a choice; you have to use that
particular DTD to make your instructions work with that system.)

ASP.NET is the next generation of ASP (Active Server Pages) and is part of
Microsoft’s .NET framework (a programming model for developing and using
XML Web services). For more details on XML and Web services, see Chapter
15. For more information on the .NET framework, see

http://msdn.microsoft.com/netframework/programming/fundamentals/default.aspx

Lots and lots of DTDs and schemas are already available for your use. For
example, the DTD used by the Open Financial Exchange (OFX) is freely avail-
able online. OFX enables online exchange of financial information between
banks, businesses, and consumers. OFX accomplishes this goal by using XML

35Chapter 3: Slicing and Dicing Data Categories: The Art of Taxonomy

07_588451 ch03.qxd 4/15/05 9:32 AM Page 35

to describe bank data and then transfer that data electronically via the
Internet. OFX came about through an alliance among CheckFree, Inuit,
and Microsoft. Because these three major players — and the banking
organizations — can agree on a single format to describe banking data, infor-
mation exchange is as easy as pie. They chose XML because it’s a standard
and is becoming the de facto format for data exchange. To discover more
juicy stuff about OFX, check out www.ofx.net.

When you create a document according to a DTD or schema, you use a pre-
defined structure that specifies how the components of markup (elements,
attributes, and such) should be used to describe a particular kind of content.
Predefined DTDs and schemas usually come from a couple of different
sources:

� Industry groups or organizations that want to establish a common
format for standard data — OFX is a perfect example of this source.
Another good example is the Chemical Markup Language (CML), created
by chemists to describe chemical equations.

� Application builders who created their systems to run with content
described by a particular set of markup. For example, the ColdFusion
Markup Language (CFML), created by Allaire/Macromedia, defines a par-
ticular set of markup for describing applications written to run in the
ColdFusion system. ASP.NET from Microsoft also uses a similar prede-
fined flavor of XML for creating Active Server Pages (ASP).

Searching for a schema repository
In the “early days” — in terms of XML, that means a few years ago — several
schema repositories were available online at sites such as www.Biztalk.org
and www.schema.net. You could search for a schema or DTD, or add one of
your own to the repository. Microsoft’s BizTalk schema repository ended in
2002 and is no longer available — and at least for now, schema.net is no
longer active.

That doesn’t mean public schemas and DTDs aren’t obtainable — it’s just
harder to find them. There is one still existing schema repository hosted by
OASIS (the Organization for the Advancement of Structured Information
Standards) at www.xml.org/xml/registry.jsp. In addition, OASIS provides
a very comprehensive list of proposed XML applications and industry initia-
tives at www.oasis-open.org/cover/xml.html#applications — also a
great resource for finding schemas.

Industry groups and associations are good sources of information about what
schemas or DTDs are used in specific industries.

36 Part I: XML Basics

07_588451 ch03.qxd 4/15/05 9:32 AM Page 36

When you’re trying to decide whether you need to build a new DTD or
schema for your content or use an existing one, remember that the most
important issue is the way that the markup fits your content. The whole point
of using XML is to make your content as accessible to a system as possible.
That goal is thwarted when you force your content into an existing markup
scheme because the markup doesn’t accurately reflect the content.

Content analysis with XML in mind is much easier when you have a handle
on the ins and outs of XML Schemas and DTDs and how to put them together.
Once again, keep what you read here in mind as you check out DTDs and
schemas in Part III.

Breaking Down Data in Different Ways
When we developed our hypothetical book-selling business, we went through
the same data-analysis process we’re sharing with you. After we gathered our
documents (invoices, inventory reports, mailing lists) and familiarized our-
selves with them, we took a good hard look at what we learned about our
content. Here’s what we came up with:

� Books can be categorized in a number of different ways, including:

• Author

• Title

• Publication date

• Publisher

• Edition

• Language

• Number of pages

• Size

• Type: Fiction, Nonfiction

• Genre: Historical, Fantasy, Biography, Mystery . . . and so forth

• Special features: illustrations, color plates, ornate end papers,
leather binding . . . and so on

• Format: Paperback, Hardback, Audio, Large Print, New, Used

• Price: Retail, Wholesale

• ISBN

37Chapter 3: Slicing and Dicing Data Categories: The Art of Taxonomy

07_588451 ch03.qxd 4/15/05 9:32 AM Page 37

� The customer information we collect includes:

• First Name

• Last Name

• Address

• City

• State

• Zip Code

• E-mail Address

• Phone Number

� The sales information we gather in addition to customer information
includes:

• Date

• Item Number

• Price

• Total Cost

We also do (at least in our hypothetical world) both direct retail sales online
(from our online catalog) and traditional wholesale to four brick-and-mortar
department stores.

Winnowing out the wheat from the chaff
When we analyzed our content, we made some judgments about what infor-
mation we needed to collect. Many possible categories — genre, number of
pages, size — were not useful information for our specific book business, so
we chose to exclude them from our taxonomy strategy.

In the end, we discovered that the book business can be very complex and
have a variety of component types. Some components are consistent across
all books (such as author, title, publisher), but others are found only in some
(such as illustrations). We created our book business to help you understand
XML — not to produce an overly elaborate markup language that covered all
the bases. (We left special features out of the fray, for example.) That deci-
sion was as much of the content-analysis process as discovering that illustra-
tions are a possible content element. Knowing the purpose of your markup
can help you keep your goals in sight — and in check.

38 Part I: XML Basics

07_588451 ch03.qxd 4/15/05 9:32 AM Page 38

Types of data that can be stored in XML
XML content can be divided into two main groups: data-intensive and docu-
ment- or text-intensive.

On the data end of the spectrum, you find collections of data like those that
reside in a database. Each collection consists of a more or less arbitrary
number of record structures, in which each record contains

� A unique identifier or key: This value, unique to each record, is to help
locate individual records. For example, an ISBN could serve as a unique
identifier for each book in a book collection.

� A common collection of named, organized values: Think of an address
book, a card catalog in a library, or a set of medical records in your
doctor’s office. For example, each card in a card catalog contains the
same categories of information: title, author, publisher, publication date,
keywords, and description.

On the document or text end of that continuum, the content to be captured
and represented fits typical notions of text or hypertext materials — that is,
a collection of words, graphics, and other information meant to be read or
viewed as a structured object. Examples on this end of the spectrum include
books, articles, magazines, narratives, training materials, and so forth.

Then, too, XML can capture and represent data that describes other collec-
tions of data — for example, start and stop dates for time-sensitive files,
status information, modification data, and so forth. That handy capability
makes all kinds of helpful information easy to describe and use — whether
stored in a document or data collection.

As you explore the kinds of data and documents that XML can capture and
represent, remember that the term XML document embraces a whole lot more
than text. XML can handle many kinds of data. In particular, it can accommo-
date (or point to) binary information — and that means it can supply data to
other computer applications outside XML’s control. Thus, an XML document
can reference anything that a computer can represent — including video,
graphics, multimedia, and other specialized kinds of data!

Developing Your Taxonomy
After you look at your content, you can start breaking it down into categories
and subcategories. (If you haven’t already made decisions about what con-
tent to include, this process will also help you make those judgments.)

39Chapter 3: Slicing and Dicing Data Categories: The Art of Taxonomy

07_588451 ch03.qxd 4/15/05 9:32 AM Page 39

Here’s how we broke it down for our hypothetical book business:

� Book

• Item Number

• Title

• Author

• Publisher

• Price

• Content Type

• Format

• ISBN

� Sales

• Item Number

• Price

• Shipping

• Total Cost

• Date

• Source

� Customer

• Customer Number

• First Name

• Last Name

• Address

• City

• State

• Zip Code

• E-mail Address

• Phone Number

As you can see, some subcategories show up under more than one major cat-
egory. In particular, Item Number appears as a subcategory in both the Book
and the Sales categories. The Item Number is unique to each copy of a book,
which makes it easy to keep track of sales and inventory.

40 Part I: XML Basics

07_588451 ch03.qxd 4/15/05 9:32 AM Page 40

Testing Your Taxonomy
You might be surprised by this tidbit, but one of the best ways to start testing
your taxonomy is to jump in and write some markup that describes how it
should be used — after you have a good understanding of what it takes to
create and use the content, of course. What you start with may only slightly
resemble your finished markup language, but you do have to start somewhere.

During this process of writing markup, you’re really doing a detailed analysis
of the content, which means that at the end of the day you’re going to have
two (count ’em, two) results: a solid content analysis and a working draft of
the markup that you need to describe it.

To create your markup, pick an invoice and start creating elements. Every
XML document has one root element that contains all the other elements in
the document. In our own initial round of markup, we used book as the root
element because we thought that each book would have its own document.
After giving it some thought, we realized that we might want to include sev-
eral books in one document (such as an invoice for more than one book).
Thus we made books the root element and set the book element to delineate
each individual book in a document.

Using trial and error for the best fit
We’re not going to lie to you: A lot of this stuff is plain old-fashioned trial and
error. As you work with your markup, experiment with using combinations of
elements and attributes until you get the best results. For example, initially,
we used two nested elements to specify the content type for a book:

<book>
<contentType>Fiction</contentType>

</book>

This option would work very well if we thought that a book could have more
than one type of content to work with. The markup would use as many
contentType elements within the book element as there were categories,
with at least one required.

In the end, we decided to go with contentType as an attribute of the book
element instead, as shown here:

<book contentType=”Fiction”/>

41Chapter 3: Slicing and Dicing Data Categories: The Art of Taxonomy

07_588451 ch03.qxd 4/15/05 9:32 AM Page 41

We decided on this route because we thought that we’d want to predefine the
category names and require that valid documents choose one of the names
from the list in our DTD or schema. This choice narrows the category to one
but allows us to enforce category names.

As you become more comfortable with content analysis, you’ll know instinc-
tively that some data components work best as attributes and other data
components work better as elements. As you discover the details of the
XML syntax for elements and attributes — and how they work together (see
Part III) — you develop a firm basis for deciding what should be an element
and what should be an attribute.

While creating your initial markup, you may find that you have new questions
about the content that you need to answer before going on. That’s okay. (We
might even say that’s a good thing, but that’s because we’re perfectionists.)
Just keep in mind that analysis is part science and part intuition.

Testing your content analysis
The best way to test your final (or final draft) markup is to apply it to as
many content samples as you can lay your hands on. With each test, you may
find something that you need to tweak or change outright. However, after
much testing, you’ll end up with a final product that serves you well.

In a perfect world, you would have talked with the system’s developer early
in the process to find out what content the system needs to work with, using
that knowledge while conducting data analysis. (We’ll pretend that’s exactly
what you did.) Show your markup to the system developers and make sure it
has the information they were expecting; expect more tweaks and changes.
Feed sample documents into the system and see what happens. Tweak and
change some more. Listing 3-1 shows the final draft of our bookstore markup.

Listing 3-1: bookstore.xml

<?xml version=”1.0” standalone=”yes”?>
<books>
<book contentType=”Fiction” format=”Hardback”>
<bookInfo>
<title>The Da Vinci Code</title>
<author>Brown, Dan</author>
<publisher>Doubleday</publisher>
<isbn>0385504209</isbn>
</bookInfo>
<salesInfo>
<price priceType=”Retail”>$24.95</price>
<itemNumber>0385504209-1</itemNumber>

42 Part I: XML Basics

07_588451 ch03.qxd 4/15/05 9:32 AM Page 42

<date>January 12, 2005</date>
<source sourceType=”Retail” />
<shipping>$5.00</shipping>
<cost>$29.95</cost>
</salesInfo>
</book>
<totalCost>$29.95</totalCost>
<customer custType=”newRetail”>
<custNumber>5594</custNumber>
<lastName>Blow</lastName>
<firstName>Joe</firstName>
<address>52 Joetta Lane</address>
<city>Cottage Grove</city>
<state>OR</state>
<zip>97424</zip>
<phone>767-3333</phone>
<email>jblow@pacinfo.com</email>
</customer>
</books>

The first line in our code <?xml version=”1.0” standalone=”yes”?> is
an XML declaration. You’ll learn all about XML declarations and all the other
details of XML syntax in Chapter 5.

Our document went through lots of changes from our initial look at cate-
gories to our final-draft version of the markup. We deleted some subcate-
gories and added some new ones. And you can expect even more changes as
you test out your markup and design a DTD or schema for validating it.

Looking Ahead to Validation
If you want to play the eXtensible Markup Language (XML) game, you have to
know the rules. But the X in XML means eXtensible; the element names you
can use and define are unlimited. That is, you get to make up as many (or as
few) rules as you want or need to make the markup do what you want it to.
For example, you can create a document definition for a bookstore to define
precisely what kind of data can go into any future XML documents that
adhere to your definition.

The rules that you create with XML can dictate which elements make up an
XML document, which kinds of content these elements can contain, and how
such elements may be ordered. Document descriptions even support rules
about which elements are optional, which ones are required, and how many
times that certain elements can (or must) appear.

43Chapter 3: Slicing and Dicing Data Categories: The Art of Taxonomy

07_588451 ch03.qxd 4/15/05 9:32 AM Page 43

Creating XML document descriptions enables you to state the rules that a
whole class of documents must follow.

The two main forms of XML document descriptions in use today are DTDs
and XML schemas — and there’s more about both in Part III.

DTDs work well for validating XML with text-intensive content, while XML
schemas work well for validating XML with data-intensive content.

Before you can actually validate your XML document, you need to make sure
it’s well formed — in other words, does it follow the rules of XML syntax?
You’ll learn these rules in Chapter 4 and 5. After your XML document is well
formed, you can then validate it against your XML document description (i.e.,
your DTD or schema) to make sure that your document follows the rules in
your document description. There are pros and cons to validating your docu-
ments, and you’ll find out about all the angles to consider in Part III.

When you’ve got a pretty firm handle on all the ins and outs of content analy-
sis, it’s time to tackle the rules for creating XML markup. Chapter 4 makes
that transition into XML syntax via another markup language, XHTML.

44 Part I: XML Basics

07_588451 ch03.qxd 4/15/05 9:32 AM Page 44

Part II
XML and the Web

08_588451 pt02.qxd 4/15/05 12:11 AM Page 45

In this part. . .

First up in this part is the super-competent hybrid lan-
guage XHTML — a reformulation of HTML that uses

the stricter syntax of XML. You examine the structure and
rules of XML documents, and delve into converting an
HTML document into XHTML. In Chapter 5, you get a thor-
ough grounding in the pieces and parts that make up any
XML document, and get a crack at marking up your con-
tent using elements and attributes. You master the making
of a well-formed XML document, and launch into the mys-
teries of the markup descriptions known as a Document
Type Definition (DTD) and XML Schema, which govern
most XML documents. Chapter 6 explains how to use
alternate alphabets, special symbols, and all kinds of char-
acter sets in your XML documents. Chapter 7 covers view-
ing XML content on the Web; it’s a must if you’re looking
to marry modern XML content with those creaky old Web
browsers (they’re soooo 20th-century . . .). We also reveal
how to use XML with CSS to make your XML documents
on the Web easier to view.

08_588451 pt02.qxd 4/15/05 12:11 AM Page 46

Chapter 4

Adding XHTML for the Web
In This Chapter
� Understanding the limitations of HTML

� Comparing HTML with XML

� Getting the best of both worlds: XHTML

� Converting HTML to XHTML

HTML (Hypertext Markup Language) and XML (eXtensible Markup
Language) are two very different markup languages. They appear simi-

lar because, like all markup languages, they both use tags to mark up docu-
ment content, but the similarity ends there. XHTML combines features of
both HTML and XML — this chapter highlights those features as well as the
benefits of using XHTML.

Your choice of markup language depends on your content and information
handling needs. You can easily convert HTML to XHTML — and we’ll show
you how in an upcoming section, “Converting a document from HTML to
XHTML.”

HTML, XML, and XHTML
HTML, XHTML, and XML represent stages in the development of markup lan-
guages. Of these three, HTML, designed to display content in Web browsers,
came first. HTML uses markup tags, but these specialized bits of markup are
limited to a predefined set created by the W3C (Worldwide Web Consortium).
XML, intended for data exchange, came next. Although the rules of XML
syntax are also defined by the W3C, the tags are defined by each creator of a
specific XML document. XML markup can be viewed in some Web browsers
(such as Internet Explorer 6), but unlike HTML, it’s not limited to the Web.
Then came XHTML — which uses the markup tags of HTML and the strict
syntax of XML, and is considered a transition language between HTML
and XML.

09_588451 ch04.qxd 4/15/05 12:11 AM Page 47

What HTML does best
Although you purchased this book to find out about XML, you wouldn’t get
your money’s worth if we didn’t take some time to talk about HTML. As a Web
designer/developer, you’re forced to work in an imperfect world. For exam-
ple, new markup language capabilities take center stage every few months,
but new browser versions don’t always follow suit. Therefore, a user’s
browser doesn’t always support every bit of standard or nonstandard
markup. The two main groups of browsers — Microsoft Internet Explorer (IE)
and the Gecko-based browsers (such as Firefox and Netscape Navigator, ver-
sions 6 and later) — still don’t fully support Cascading Style Sheets (CSS)
Level 2 . . . so don’t expect their next versions to support XML completely,
either. If your target audience is the world at large, you may have to use
HTML or XHTML on the Web for some time to come; a complete switch over
to XML markup may not be practical yet.

Gecko-based browsers include Mozilla, Firefox, Safari, and newer versions of
Netscape Navigator (versions 6 and later). Gecko is the open-source Web
browser layout engine developed by Mozilla.

For more information on using XML in Gecko-based browsers, see “Loading
XML into Gecko-based browsers” at http://builder.com.com/5100-6371-
5195655.html.

HTML makes our Web world look pretty. In some instances, pretty is all that’s
needed for a Web page, such as a personal site that you create for your
family. You want an easy, cheap way to let others know what you’ve been
doing and to post a few pictures of your new baby, kitten, Chia Pet, or elec-
tronic gadget.

Most Web sites use straight HTML to display data — say, a portfolio (as
shown in Figure 4-1.) The site would have little need for flexibility and
wouldn’t need a database.

If you want to sell the infamous widget from your Web site, however, you
have to jump through additional hoops. You may want to create a database
with product codes, styles, and colors, and you also may want your cus-
tomers to be able to select any combination of this data. In this case, HTML
isn’t the best tool to represent widget data in text form: You want something
that can do a better job of representing (and presenting) database fields and
values as such. That’s where XML comes in.

48 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 48

The limits of HTML
The idea behind HTML is modest: HTML is meant to describe only basic page
content, providing rudimentary control over how that content should appear
in your browser. Since its public introduction, however, HTML has been
forced to provide solutions for problems it was never meant to solve. HTML
was enlisted to perform some pretty specific tasks:

� Allow tight control over document display.

� Provide the flexibility to describe different, specific types of informa-
tion and data.

� Convey information from a variety of media and in various formats.

� Define complex linking relationships between documents.

� Publish a single set of information across a variety of media.

And that was about it. Web designers, however, quickly got finicky.
Sometimes they caught themselves thinking, “But my heading has to be in
45.5-point Arial type, centered in the second two-thirds of the page.”
Although this sentiment is a bit overstated, many Web designers do expect
that much fine-tuned control from HTML; then they’re left wondering why
HTML can’t live up to those expectations.

Figure 4-1:
A basic

HTML page,
displayed

with a
browser’s

default
settings.

49Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 49

Web designers sometimes try to achieve the same formatting control over
Web documents that they have over, say, printed documents. They want what
they see on their screens with their browsers to be exactly what any visitor
to their sites may also see. (Even if they can’t pronounce WYSIWYG, they
want “what you see” to be “what you get.”) Two overarching problems pre-
vent Web designers from achieving this control with HTML:

� HTML lacks fine controls. First and foremost, HTML by itself doesn’t
include mechanisms for fine control. You can’t specify a document’s dis-
play size or control the size of a browser window. A user’s monitor size
and display settings can dramatically affect how a browser displays
HTML documents. Although HTML 4.01 does include a font element to
help you manipulate font style, size, and color, users can override your
settings with their own.

� Displays vary. Along with the different versions of the two most
common browsers (IE and Navigator), users view Web pages on different
platforms, such as Windows XP, Unix, or Mac OS X. And you can’t realis-
tically test every Web page on every available browser on every plat-
form just to see what your users see.

Although adding CSS (Cascading Style Sheets) to your arsenal gives you more
flexibility than HTML alone, it doesn’t solve every Web design problem.

Stylesheets have become an integral part of the XML discussion. For an in-
depth look at the use of stylesheets with XML, please visit Chapter 7 (CSS)
and Chapter 12 (XSLT).

Comparing XML and HTML
Right off the bat, we want to tell you in no uncertain terms that XML won’t —
and can’t — replace HTML. XML and HTML are not the same kind of markup
language. But XML and HTML both derive from the same parent, SGML, so
they must be similar, right? The answer is: “Yes, they’re similar, but not iden-
tical, and they can’t pinch-hit for each other.”

HTML and XML both use tags and attributes. Indeed, XML and HTML look
similar. But whereas HTML defines basic text elements and includes defaults
(and more explicit controls) for how text may be displayed in a browser
window, XML tells us only what each element means. XML says nothing about
how elements should or must be displayed — XML separates content and the
presentation of that content.

50 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 50

Using XML to describe data
Unlike HTML, XML is not limited to any fixed set of tags or element types
(which is the proper name for the whatchamathingies that show up between
the opening < and closing > characters in XML markup). By using XML, you
can define your own sets of elements and even your own attributes that you
may then use within your documents. On the other hand, XML has already
been used to define lots of specific markup languages (called XML applica-
tions) that you can use within your documents as well.

Although it might seem that the terms tag and element are interchangeable,
they’re not. One example of a tag is the opening <p> tag; an example of an ele-
ment is <p>text</p>. An element includes the opening and closing tags for a
tag pair — and everything in between. A tag is just a tag, all by itself.

With this power, XML enables you to give meaningful names to your markup.
In HTML, the paragraph element (p) is one of the most frequently used ele-
ments. In XML, you can replace the paragraph element with something more
descriptive.

For example, suppose you have HTML text that looks like this:

<html>
<p>
This book is about the foundations of the Extensible Markup Language (XML)
and how to use it for your own applications.
</p>
<p>
The authors are Lucinda Dykes and Ed Tittel.
</p>
</html>

Looks like a plain old HTML document; you know nothing about the meaning
of the data. In other words, the first sentence could be a very long title, a
description in a catalog, the first line of a book, the chorus of a new song, or
something else entirely.

HTML is used to describe the display of data as seen through a Web browser.
We could have just as easily written

<html>
<p>
Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah (XML)
blobbity blobbity blobitty blah blah blah blah.
</p>
<p>
Blah blah blah Lucinda Dykes blah Ed Tittel.
</p>
</html>

51Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 51

and you would have gained just as much (or as little, depending on your
point of view) insight as to the function of this data. But you would know that
the data is displayed in two distinct paragraphs, because the paragraph tags
<p> and </p> define the appearance of the data.

Consider this alternate form of expression, in which cover copy (the informa-
tion found on the cover of a book) is provided and divided into specific,
named elements:

<Cover>
<Abstract>
This book is about the foundations of the Extensible Markup Language (XML)
and how to use it for your own applications.
</Abstract>
<AuthorInfo>
The authors are <Author>Lucinda Dykes</Author> and
<Author>Ed Tittel</Author>.
</AuthorInfo>
</Cover>

The Cover, Abstract, and AuthorInfo elements identify the previous
markup as XML based. By using the elements in this markup language, you
can now identify cover copy and specify further what that cover copy
includes (say, an abstract plus a section for author information). In addition,
this markup identifies each of the book’s authors individually.

Never fear, XML also provides numerous ways to translate this information so
it looks the way you want it to on-screen. These ways include CSS and XSL.
(See Chapter 7 of this book for more about CSS and Chapter 12 for more
about XSL.)

XML enables you to define and use your own elements and attributes. This is
what XML is all about and explains why XML is called the extensible markup
language.

After you get your head wrapped around the differences between XML and
HTML, it’s a lot easier to think of ways to increase the information associated
with particular elements. For example, perhaps the Author element should
include not only an author’s name, but also a brief biography.

In “The limits of HTML,” earlier in this chapter, we outline the shortcomings
of HTML. Perhaps you’re wondering why you would want to use it at all.
HTML does have some advantages (see the following section); and in the
short term, you have no real choice in the matter. Besides, HTML can create a
reasonably consistent Web-page presentation for users. As the expectations
of businesses and end-users increase, however, so does the need for more
flexible markup languages. XML rises to meet that challenge.

52 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 52

The benefits of using HTML
Why use HTML? Because it’s quick, easy, and cheap. In addition, HTML is way
easier than the alternative — which is to use an XML-based source document
along with a document created with XSLT (or something similar) to define the
display attributes for your document’s contents.

Anyone can create an HTML document by using a text editor and a little
knowledge. Even if you don’t know HTML, you can use an HTML editor — a
What You See Is What You Get-style (that is, WYSIWYG-style) editor such as
FrontPage or Dreamweaver — to produce readable Web pages in minutes.

The most important reason not to write off HTML just yet lies in where it’s
headed: XHTML. HTML isn’t out of the game. (See “XHTML Makes the Move
to XML Syntax,” later in this chapter, for more information.)

The benefits of using XML
XML seems to be brimming with benefits. Here’s a list that puts these bene-
fits in a nutshell:

� Unlimited elements: You get to create your own elements and attributes
instead of working with a restricted, predefined set.

� Structured data: Applications can extract information that they need
from XML documents.

� Data exchange: Using XML enables you to exchange database contents
or other structured information across the Internet or between dissimi-
lar applications.

� XML complements HTML: XML data can be used in HTML pages.

� XML documents are well formed: XML documents must follow certain
rules. This consistency makes such documents easier to read and
create.

� Self-describing: No prior knowledge of an XML application is needed. Of
course, knowing HTML can really help you understand more about XML
(but software thrives on self-describing documents and data).

� Search engines: XML delivers a noticeable increase in search relevance
because it provides ample contextual information and explicit labels for
document elements.

� Updates: No need to update an entire site page by page; the Document
Object Model (DOM) built into XML documents permits individual ele-
ments to be accessed (and updated).

� User-selected view of data: Different users can access different informa-
tion or can present the same information in various ways.

53Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 53

Intelligent XML-based pages that contain human-readable data offer exciting
potential for users. For example, they can go beyond HTML-based search
tools that use keywords and text strings; XML-based search tools can also
use metadata and data structures. XML-powered searches produce more rele-
vant results — and quicker.

A Web designer/developer reaps several benefits from XML as well. For exam-
ple, if you maintain a site that sells widgets, and inflation kicks in, raising
prices by $1.50 per widget is easy to implement across an entire site. No late
nights spent changing each page — you’re working with intelligent data now.

The benefits of XML are endless. Trust us, large corporations have good rea-
sons for using XML-based markup languages to maintain their intranets.

XHTML Makes the Move to XML Syntax
XHTML is the successor to HTML 4.01; in effect, it’s the final version of HTML.
This progress was needed; HTML has some limitations (spelled out, appropri-
ately enough, in “The limits of HTML,” earlier in the chapter). XHTML is a
clever reformulation of HTML 4 as an application of XML 1.0. By definition,
this arrangement offers you the benefits of XML in any XHTML documents. If
you’re familiar with HTML 4.01, XHTML 1.0 won’t seem all that revolutionary
as long as you don’t let the new acronym scare you. (If it helps, think of
XHTML as HTML 4.01 with a facelift.)

We’re focusing on XHTML version 1.0 in this section. XHTML 1.0 documents
are compatible with current browsers and closely resemble HTML docu-
ments. Other forms of XHTML have already been developed, though. XHTML
modules have been created to allow you to create documents with subsets of
XHTML. These modules are described in the document “Modularization of
XHTML”, available at www.w3.org/TR/2004/WD-xhtml-modularization-
20040218/. XHTML Basic, XHTML 1.1, and XHTML 2.0 (currently a W3C
Working Draft specification) are all built from these modules. These versions
of XHTML offer expanded XML features and aren’t as similar to HTML as
XHTML 1.0. Details on the newer versions of XHTML would take up too much
space in this book about XML, but you can get more information about them
in Beginning Web Programming with HTML, XHTML, and CSS, by Jon Duckett
(also published by Wiley).

Why do we like XHTML? Let us count the ways:

54 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 54

� XHTML documents can be viewed, edited, and validated using XML tools.

� Well-formed XHTML documents mean better-structured documents.
This improvement and uniformity in structure makes it easier to inter-
face XHTML documents with databases and with other highly structured
documents.

� XHTML documents can be delivered using different Internet media types
and output devices, such as handheld computers, Internet-enabled cell
phones, and specialized browsers such as speech-enabled browsers.

� Using valid XHTML gives you the best chance of having your document
displayed the way you intend, especially if you’re using a browser that’s
compliant with Web standards, such as Internet Explorer 6 or Netscape
Navigator (versions 6 and later).

Web standards are the specifications created by the W3C and other stan-
dards organizations for Web content. The XML and XHTML specifications are
part of these standards. For more information, see www.webstandards.org.

Making the switch
Making the switch from HTML to XHTML means mastering the rules of
XHTML — in particular, XML syntax and structure. Mastering XHTML is a
jump-start to finding out how to create XML documents (as described in
Chapter 5).

You have only a few major rules to get under your belt, but you have to
follow them if you want to create a valid XHTML document. Here they are in a
nutshell:

� Every tag in an XHTML document must be closed.

� Empty elements (elements without content, such as a br tag) must be
correctly formatted with a closing slash. For example, a break tag is
formatted
.

� All tags must be nested correctly — the tag you open last must be the tag
you close first.

� All XHTML tags must be written using only lowercase.

� All attribute values must be put in quotation marks.

These requirements are pretty straightforward, even though they aren’t
strictly necessary in HTML. If you want to transform an HTML document into
an acceptable XHTML document, you have to keep in mind that the docu-
ment has to work with an XML-based application (namely XHTML).

55Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 55

An acceptable XML document must be well formed (which means it follows
the rules of XML syntax). XML won’t let you use HTML shortcuts and is unfor-
giving of syntax errors. Although they impose a bit more fuss and bother,
these requirements make XML and XHTML documents easy for computers
to read and digest. For these reasons, each requirement is worth a closer
look — coming right up in the next several sections.

Every element must be closed
The first XHTML requirement is that all nonempty elements (that is, those
that contain actual text) must have a start tag and an end tag. Several HTML
elements, such as p and li, act as text containers but don’t explicitly require
end tags. Those tags work in nonpair containers because a special SGML
shortcut allows the HTML parser to assume an end tag must occur before
another start tag for the same element. So in effect

<p>text text text

is the same as

<p>text text text</p>

. . . at least, that’s the case in HTML. Doing without an end tag just doesn’t fly
in XHTML. You have to add closing paragraph tags where they belong if you
want the resulting lines to work right.

You also need to add ending list item tags () if you have list items,
whether those lists are numbered or bulleted.

Empty elements must be formatted
correctly
The XML way to format empty elements may seem a bit strange, but remem-
ber that all nonempty XML elements must use both a start tag and an end tag
to be correct.

An empty element is a singleton tag (also called an empty tag) that hangs
around by itself. (A nonempty element sandwiches some text between a pair
of tags.) Empty tags in HTML include the
, <hr>, and tags.

56 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 56

The hr element looks like this in HTML:

<hr>

In XHTML, it looks like this:

<hr />

For backward compatibility with older browsers, you have to put a space in
front of the closing slash that occurs near the end of each XHTML empty ele-
ment (like this:
). Doing so permits older, XML-ignorant Web browsers
to recognize empty elements. When native XML markup is used (or, more to
the point, interpreted properly), that extra space isn’t necessary.

If you validate your XHTML document, you’ll find that you can either include
the space before the closing slash or not — your document will validate in
either case. The extra space is a browser issue, not a validation issue.

Tags must be properly nested
The rules of XHTML syntax say that tags must be nested in the correct order.

The rule is always to close first what you opened last, working your way from
the inside to the outside tags. So even though this HTML markup

<p>This book was written by <i>Dan Brown</i>.

looks fine in a browser, the line is technically ill formed. To make it a well-
formed line, you must make these changes:

<p>This book was written by <i>Dan Brown</i>.</p>

You probably noticed that we also added a closing paragraph tag (</p>) to
follow the previous rule about closing all elements.

Case makes a difference
HTML is not case sensitive; XHTML is. When you use HTML, it doesn’t matter
what case you use for elements and attributes. For example, for the opening
body tag, you can use <BODY>, <body>, or even <Body> — they all work fine.
In fact, you can even mix case between opening and closing tags (for exam-
ple, <BODY> and </body>, respectively), and it won’t make a difference in a
browser.

57Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 57

XHTML, on the other hand, is a bit more finicky about case. All XHTML ele-
ments and attribute names must be in lowercase or your page won’t validate.
You can, however, use any case for the value of an attribute — for example,
<h3 align= “CENTER”> will work just as well as <h3 align= “center”>.

Attribute values are in quotation marks
HTML requires that only some attribute values, such as text strings and
URLs, be in quotation marks. Other values, such as image dimensions and
font sizes, produce the desired results whether quoted or not. In XHTML, all
attribute values must be in quotation marks.

The following markup works just fine on an HTML page:

<tr align=right>

If you want to create valid XHTML, however, you have to add quotation
marks around the attribute value, like this:

<tr align=”right”>

Both single quotation marks (‘) and double quotation marks (“) are legal in
XML and XHTML. You see double quotation marks used more, mostly
because they’re easier to see.

Table 4-1 highlights the major rules for XHTML syntax and shows how
markup looks in HTML and XHTML. Some additional rules are highlighted in
Chapter 5 when you create an XML document. If you’d like to see the full set
of rules, check out the “HTML Compatibility Guidelines” document in the
XHTML 1.0 specification at

www.w3.org/TR/xhtml1/#guidelines

Table 4-1 Correct Formats for XHTML versus HTML
Rule Looks Like This in XHTML Looks Like This in HTML

XHTML tags must This text is This text is
be written using bold bold
only lowercase.

Empty tags in XHTML <img src=”goblin.gif” <img src=”goblin.
must include a trailing alt=”goblin” /> gif” alt=”goblin”>
/ > or /> in all empty

elements.

58 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 58

Rule Looks Like This in XHTML Looks Like This in HTML

All nonempty elements <p>Closing tags mean <p>Closing tags
in XHTML must have no errors</p> mean no errors
closing tags.

All elements in XHTML this text is in this text is
must be nested prop- bold in bold
erly; elements can’t
overlap.

In XHTML, attribute <col width=”20” /> <col width=20>
values must always be
in quotes.

Converting a document
from HTML to XHTML

You’ll find that it’s very easy to convert an HTML document to XHTML. Our
sample HTML page — which we also convert to XHTML — is a document that
contains an HTML table with listings for two of the books in our hypothetical
bookstore. You can see the page itself in Figure 4-2; it uses the HTML markup
you see in Listing 4-1.

Listing 4-1: The HTML Document to Convert to XHTML

<HTML>
<HEAD>
<TITLE>Book</TITLE>
</HEAD>
<BODY>
<H3 ALIGN=CENTER>Bestselling Books</H3>

<TABLE BORDER=1 BGCOLOR=tan CELLSPACING=0 CELLPADDING=2>
<TR ALIGN=LEFT>
<TH>ID
<TH>Title
<TH>Author
<TH>Publisher
<TH>Price
<TH>ContentType
<TH>Format
<TH>ISBN
<TR>

(continued)

59Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 59

Listing 4-1 (continued)

<TD>1
<TD>The Five People You Meet in Heaven
<TD>Albom, Mitch
<TD>Hyperion
<TD>$19.95
<TD>Fiction
<TD>Hardback
<TD>0786868716
<TR>
<TD>2
<TD>The Da Vinci Code
<TD>Brown, Dan
<TD>Doubleday
<TD>$24.95
<TD>Fiction
<TD>Hardback
<TD>0385504209

</TABLE>
</BODY>
</HTML>

Okay, we admit it — we broke all the XML rules here so we could review the
important syntax rules one more time. So what would it take to convert this
breezy HTML document to valid XHTML? Four changes:

� Convert all the uppercase HTML tags to lowercase.

� Add closing tags to all elements.

� Change the formatting for empty tags.

� Add quotes to attribute values.

Figure 4-2:
Start out

with some
HTML.

60 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 60

So even in this worst-case scenario, it’s really not difficult to convert an
HTML document to valid XHTML. If you changed our original HTML markup
as indicated here, the result would be a proper XHTML document that looks
like Listing 4-2. We’re not even going to show you the figure for this, because
what shows up on-screen looks the same as Figure 4-2!

An XHTML file has a .htm or .html file extension.

Listing 4-2 The HTML Document After Conversion to XHTML
<html>
<head>
<title>Book</title>
</head>
<body>
<h3 align=”center”>Bestselling Books</h3>

<table border=”1” bgcolor=”tan” cellspacing=”0” cellpadding=”2”>
<tr align=”left”>
<th>ID</th>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Price</th>
<th>ContentType</th>
<th>Format</th>
<th>ISBN</th>
</tr>
<tr>
<td>1</td>
<td>The Five People You Meet in Heaven</td>
<td>Albom, Mitch</td>
<td>Hyperion</td>
<td>$19.95</td>
<td>Fiction</td>
<td>Hardback</td>
<td>0786868716</td>
</tr>
<tr>
<td>2</td>
<td>The Da Vinci Code</td>
<td>Brown, Dan</td>
<td>Doubleday</td>
<td>$24.95</td>
<td>Fiction</td>
<td>Hardback</td>
<td>0385504209</td>
</tr>
</table>
</body>

</html>

61Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 61

You can convert your HTML to XHTML with ease by using Dave Raggett’s free
open-source program, HTML Tidy. The maintenance of HTML Tidy is now
provided by Source Forge. Check it out at http://tidy.sourceforge.net/.
For a version that’s even easier to use than the original, see the HTML-Kit at
www.chami.com/html-kit/.

The Role of DOCTYPE Declarations
Actually, there’s one further requirement for a valid XHTML document: A
valid XHTML document needs a valid XHTML DOCTYPE declaration.

The DOCTYPE declaration serves several purposes:

� It allows your page to be validated as XHTML.

� It tells the browser which version of which markup language you used to
create the page and references the specific DTD for that language.

� It enables your page to be displayed properly in Web-standards-compliant
browsers (Internet Explorer 6, Netscape Navigator 6 and later, Mozilla,
Firefox, and Opera 7 and later).

The newer versions of Internet Explorer and Gecko-based browsers use two
different modes to display HTML and XHTML pages: standards-mode and
quirks-mode (yes, really). If you don’t include a DOCTYPE declaration, then
your page — regardless of whether it’s HTML or XHTML — is rendered in
quirks-mode. This means the browser will attempt to parse your page in so-
called “backward-compatible” mode using proprietary DOMs (not the W3C
DOM) and other old rules.

You have three different DOCTYPES to choose among for an XHTML 1.0 docu-
ment: strict, transitional, and frames.

� Use the strict DOCTYPE declaration if you’re using CSS for styles and
there’s no presentational markup in your document (for example, if
there’s not even one font tag or align attribute):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

� Use the transitional DOCTYPE declaration if your document includes any
presentational markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

62 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 62

� Use the frames DOCTYPE declaration, of course, if your document is in
frames, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

Frankly, we find the transitional DOCTYPE declaration to be the easiest to use.
It allows us to write valid XHTML — and to convert older HTML documents
to XHTML without scouring the documents for any vestiges of presentational
markup.

The XHTML DOCTYPE declaration must be followed by an additional line of
markup:

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

This line replaces the opening <html> tag and adds information about the
XHTML namespace. (A namespace is basically a vocabulary of elements and
attributes. You find out more about namespaces in Chapter 11.)

An XHTML document is technically an XML document. As detailed in Chap-
ter 5, XML documents can include an XML declaration as the first line in the
document, something like this: <?xml version=”1.0” encoding=”UTF-8”?>.
This line tells the XML processor that this is an XML document, it’s created in
version 1.0 of XML, and the character encoding is UTF-8. That’s all fine and
good for XML documents, but it can cause problems with XHTML documents
in many browsers. If that happens, the browser may not display your page.

So for XHTML documents — at least for now — we recommend that you
leave out the XML declaration. Start your XHTML document with a DOCTYPE
declaration. If you need to add encoding information to your XHTML docu-
ment, you can always include that information in a meta tag. (You find out
more about character sets and encodings in Chapter 6.)

Are you ready to actually start creating some XML documents? We thought
so! In Chapter 5, you’ll find out how to create well-formed XML documents, as
well as how to validate your XML files with DTDs and schemas.

63Chapter 4: Adding XHTML for the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 63

64 Part II: XML and the Web

09_588451 ch04.qxd 4/15/05 12:11 AM Page 64

Chapter 5

Putting Together an XML File
In This Chapter
� Creating well-formed XML documents

� Adding style to XML

� Upgrading to valid documents

XML was created to help people do things — why make an XML document
if the document doesn’t have a function . . . or (even worse) won’t func-

tion at all? This chapter gives you a brief overview of the different compo-
nents that you should include in every XML document so that it’s well
formed. To add to the fun, we show you how to be sure your documents are
also valid. (If you haven’t figured it out already, as soon as you start creating
your own XML documents, you’ll understand the importance of terms like
valid and invalid.)

Validation — the capability to check individual documents against a govern-
ing collection of rules — is what gives XML so much power. Validation also
enables you to use a general-purpose approach (XML itself) to create all
kinds of document types or XML applications. In turn, this kind of open-
ended extensibility — there’s that “X” word again — puts few limits on the
imagination and ingenuity of individuals who design document descriptions
(DTDs and XML schemas).

Anatomy of an XML File
Obviously, a document that describes the elements in a complex chemical
formula is a bit more intricate than one that describes the different pieces
and parts of an address book, recipe, or novel.

10_588451 ch05.qxd 4/15/05 9:35 AM Page 65

No matter. XML documents are exactly as simple or as complex as they need
to be to do the job that you have in mind for them. They don’t need any extra
fluff added along the way just for good measure. And whether an XML docu-
ment is extremely complex or very simple, it must — we repeat, must —
follow a basic set of rules.

XML documents that play by all the official rules are well formed. Figure 5-1
shows an XML document with some pointers to the parts that make it well
formed.

A document that isn’t well formed doesn’t go far in the XML world, because it
doesn’t qualify technically as an XML document. Heed and beware: You’ll be
sorry if you don’t take the time to make sure that every document you create
plays by these very basic rules. (Fortunately, they aren’t that hard to follow.)

Opening tag

Root element

Attribute XML declaration

Closing tag

Empty tagAttribute value

Root element

Figure 5-1:
Dissecting

the different
parts of
a well-

formed XML
document.

66 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 66

The XML declaration
The first thing to include in every XML document is an XML declaration. This
statement specifies that the document is XML compliant. The declaration is
always the first line and looks something like this:

<?xml version=”1.0”?>

This particular line of code makes two things clear to the processor:

� This is an XML document.

� This document is based on XML version 1.0.

XML 1.0 is the most commonly used version of XML. The W3C XML 1.1 speci-
fication was released in February 2004, but the W3C recommends that you
continue to create documents in XML 1.0 unless you need the new features of
XML 1.1 (changes in the use of character encoding). You’ll find out more
about character encoding in Chapter 6. For more details on XML 1.1, see
www.w3.org/TR/2004/REC-xml11-20040204/.

You can also add two other attributes to your XML declaration:

<?xml version=”1.0” standalone=”yes” encoding=”UTF-8”?>

The attribute standalone with a value of yes means that the document isn’t
dependent on any other document to be complete. You can still reference
stylesheets, Document Type Documents (DTDs), schemas, and other such
documents, but what you’re saying with this attribute is that you don’t have
to; the application that processes the document won’t have to look for any
other documents to get a complete set of content. Most XML documents are
standalone. Look for more information on this topic in Chapter 8.

The encoding attribute specifies the character encoding used in the docu-
ment. UTF 8 corresponds to what most of us know as 8-bit ASCII characters.

You’ll find out about other encoding options in Chapter 6.

The XML declaration is part of the XML prolog. The prolog can include addi-
tional items, as we’ll detail in Chapter 8.

67Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 67

Marking up your content
After you’ve started your XML document creation with an XML declaration,
it’s time to get down to the details of the markup. If you’ve already done your
content analysis — the stuff we discuss in Chapter 3 — it’s easy to start mark-
ing up your content. (If you haven’t yet ventured into Chapter 3, now may be
the time to do so.)

XML elements are the basic building blocks of XML document structure. XML
elements can contain other elements and/or text content. XML attributes are
used to provide additional information about an element or its content.
Attributes are contained within an element tag. For example, in the following
markup

<source sourceType=”Retail”/>

an empty element (source) contains an attribute (sourceType) that adds
information about a subcategory (Retail).

You could use two elements to provide the same content:

<source>
<sourceType>Retail</sourceType>
</source>

You find out more using attributes in the section “Adding attributes,” later in
this chapter.

Choosing a root element
The XML declaration (in a well-formed document, anyway) is followed by the
opening tag of the root element. The root element is the most important ele-
ment in any XML document. The root element contains all other elements —
in effect, everything else in the XML document. All the markup is contained
between the opening and closing tags of the root element. In any well-formed
HTML document, html is always the root element. In XML, however, the root
element can be just about anything you want it to be. In XML, you create a
root element and then put all the related XML elements inside it.

For our bookstore example, it makes sense for us to designate books as the
root element. Because our document contains one or more books, our root
element’s name sets the stage for our document, which can contain a single
book or many books.

68 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 68

At this point in the process, our markup looks like this:

<?xml version=”1.0” standalone=”yes” encoding=”UTF-8”?>
<books>
</books>

When you think about your root element, keep in mind that every other ele-
ment has to fit neatly inside it. Don’t be surprised if a couple of candidates
for your root element appear. With a little trial and error, you can find the one
that works right for you.

Defining elements
The categories and subcategories that you extracted during your content
analysis — all that Chapter 3 stuff — are a good place to start when you’re
defining elements. These should include all the important content areas for
your data.

For our bookstore, we chose to include these categories (and subcategories):

� Book : Title, Author, Publisher, ISBN, Content Type, Format

� Sales: Item Number, Date of Sale, Source, Price, Shipping, Cost
per Item (Price + Shipping), Total Cost

� Customer: Customer Number, First Name, Last Name, Street
Address, City, State, Zip Code, Phone, E-mail Address

For the first draft of our markup, we include all these categories and subcate-
gories as elements — and add opening and closing tags for each element, like
this:

<books>
<book>

<title></title>
<author></author>
<publisher></publisher>
<isbn></isbn>
<contentType></contentType>
<format></format>

</book>
<sales>

<itemNumber></itemNumber>
<date></date>
<source></source>
<shipping></shipping>
<cost></cost>
<totalCost></totalCost>

</sales>

69Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 69

<customer>
<customerNumber></customerNumber>
<firstName></firstName>
<lastName></lastName>
<address></address>
<city></city>
<state></state>
<zipcode></zipcode>
<phone></phone>
<email></email>

</customer>
</books>

Looking at the family tree
The elements in an XML document are like one big happy family that comes
together to describe your content. Imagine a family tree with a single trunk
that splits into branches — which in turn split into branches with leaves at
the end. An XML document has the same structure: The root element is the
trunk that forms the foundation for the tree; the branches and their branches
are the elements and (ultimately) content in your document.

� Parent elements: An element becomes a parent element when it con-
tains other elements.

� Child element: A child element is — yep, you guessed it — an element
that sits inside of a parent element.

� Sibling element: When a parent has more than one child element, those
elements are siblings of one another. Sibling elements occupy the same
level in the document hierarchy.

But what about grandparents, aunts, uncles, and cousins? Well, no. XML
doesn’t take the family-tree metaphor to such an extreme.

The categories and subcategories we list here are all child elements of the
root element books — and all the categories are sibling elements to one
another. The subcategories are child elements of category elements, and —
no surprise here — are all sibling elements to one another.

Mapping relationships
Using the family-tree structure is a convenient way to map our document
hierarchy and look at relationships between elements.

As you glanced over the first draft of our markup, you may have noticed a
problem with our family structure: The totalCost is a child of the sales ele-
ment. Because we want to be able to include more than one book in our doc-
uments, and because each book has a cost (price plus shipping), totalCost
won’t work well as a child of the sales element. We need to take totalCost
out of the sales element and make it a separate element, like so:

70 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 70

<sales>
<itemNumber></itemNumber>
<date></date>
<source></source>
<shipping></shipping>
<cost></cost>
</sales>
<totalCost></totalCost>

Because each book includes information about the book itself, such as the
title, and sales information for that book, we added a new category
(bookInfo) that wasn’t included in our original content analysis. We also
changed the name of the sales element to salesInfo just to keep things
consistent. The new draft of our markup looks like this:

<books>
<book>

<bookInfo>
<title></title>
<author></author>
<publisher></publisher>
<isbn></isbn>
<contentType></contentType>
<format></format>

</bookInfo>
<salesInfo>

<itemNumber></itemNumber>
<date></date>
<source></source>
<shipping></shipping>
<cost></cost>

</salesInfo>
</book>
<totalCost></totalCost>
<customer>

<customerNumber></customerNumber>
<firstName></firstName>
<lastName></lastName>
<address></address>
<city></city>
<state></state>
<zipcode></zipcode>
<phone></phone>
<email></email>

</customer>
</books>

So, Notes to Self: Change the hierarchy of the document so that totalCost is
now a child of the root element, books. Also add a bookInfo element and
change sales-element name to salesInfo.

71Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 71

Adding attributes
With a little savvy about elements in hand, you can turn your attention to the
attributes that modify or manage the content that those elements may con-
tain. Not only can attributes help clarify what content elements may contain,
but they can also help define what an element does and how it relates to
other elements.

To help you decide when to use an attribute with an element, here’s a quick
quiz:

� Are you defining a particular aspect of an element, such as size, height,
or color?

� Do you need a way to provide more information about individual
instances of an element?

� Do you want to be sure that every time an element is used, certain infor-
mation is included with it?

Keeping these guidelines in mind while you’re looking at the first draft of our
document markup, behold! Two elements appear to be good candidates for
attribute status: contentType and format, both child elements of the book
element. With a little ingenuity, we can add attributes to these elements so
they end up bearing a bit more of the informational burden. Our ingenuity is
on display in the final draft of the markup:

<book contentType=”Fiction” format=”Hardback”>

We also added other attributes that weren’t included in our initial content
analysis. Because our bookstore does both retail and wholesale sales, we
realized we needed to add categories for the aspects of price, source, and
customer. So our final markup also includes three additional attributes,
priceType, sourceType, and custType, like so:

<price priceType=”Retail”>$24.95</price>
...
<source sourceType=”Retail”/>
...
<customer custType=”newRetail”>

The custType attribute also allows us to include information about whether
a customer is a new or repeat customer.

As you can see from the process we went through to create our final markup
document, using content analysis, creating markup, and testing the markup
allow you to create the XML document that best meets your needs for data
storage and exchange.

72 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 72

The final form of our markup is shown in Listing 5-1. You’ll notice another
change — the line after the XML declaration is a processing instruction for
adding a CSS stylesheet. (You get a look at adding a stylesheet in the section
called “Adding Style for the Web,” later in this chapter.)

Listing 5-1: bookstore.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<?xml-stylesheet type=”text/css” href=”bookstore.css”?>
<books>

<book contentType=”” format=””>
<bookInfo>

<title></title>
<author></author>
<publisher></publisher>
<isbn></isbn>

</bookInfo>
<salesInfo>

<price priceType=””></price>
<itemNumber></itemNumber>
<date></date>
<source sourceType=””/>
<shipping></shipping>
<cost></cost>

</salesInfo>
</book>
<totalCost></totalCost>
<customer custType=””>

<custNumber></custNumber>
<lastName></lastName>
<firstName></firstName>
<address></address>
<city></city>
<state></state>
<zip></zip>
<phone></phone>
<email></email>

</customer>
</books>

Our document at this point doesn’t include any information about what order
elements should appear in, and it also doesn’t indicate whether elements are
required or optional, or whether they can occur more than once in the docu-
ment. To add these kind of rules, you need to add validation for your docu-
ment with a DTD or XML schema. Before you can validate an XML document,
though, you need to ensure that it’s well formed, as outlined in the following
section.

73Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 73

Playing by the Rules: Well-Formed
Documents

A well-formed XML document follows all the rules of XML syntax. XML is very
flexible; its syntax is rigid. This is a good thing, because it guarantees that all
XML documents adhere to the same basic rules (and computers like data
that follows the rules).

If you think some of these rules are a bit nitpicky, you’re right. Remember, the
intended audience for your XML isn’t a human being who can intuit what you
“meant to mark,” but a computer that can only work with what you give it.

We introduce the rules of XML syntax in our discussion of XHTML in Chapter
4; this chapter throws in a couple more rules for good measure. The following
list includes all the rules introduced so far and adds one more rule so that
you have everything you need to create well-formed XML documents:

� You need an XML declaration. The first line in every XML document
is a simple declaration that specifies that the document is an XML
document. In its simplest form, it looks like this:

<?xml?>

� You need a root element to contain all the other elements. All ele-
ments and content within an XML document must live within a single
top-level element, appropriately called the document element or root
element.

� Every nonempty element must have a start tag and an end tag. If you
open an element with a tag, make sure that you close it with a tag.

� Empty elements have to end with a slash (/). Elements that consist of
only a start tag — such as the source element in our example — are
called empty elements because they don’t hold content between opening
and closing tags (they don’t even have closing tags). To avoid confusion
and to prevent your XML tools from searching endlessly for closing tags
that don’t exist, identify all empty elements with a slash (/) before the
closing greater-than sign (>), like this:

<source sourceType=”Retail”/>

In XHTML documents, you add a space before the closing slash in empty
elements so that older browsers can recognize them as empty elements.
You don’t need to include a space before the ending slash in an XML
document — the XML processor will recognize an empty element with-
out that extra space.

74 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 74

� Tags must be properly nested. To avoid breaking this cardinal rule,
always close first the tag that you opened last, working your way from
the inside to the outside tags.

A good way to remember to nest your elements correctly is to think of
nested suitcases. Before you can close and zip the outer suitcase, you
have to close and zip the inner suitcase. Think of tags as suitcase tops:
You can’t close the one on the outside until you close the one on the
inside.

� All attribute values must be in quotation marks. You must enclose
every attribute value in quotation marks (either single or double
quotes — double quotes are used most often). If you forget even one set
of quotation marks, you can count on the markup to break somewhere
along the line.

� Tags have to be built the right way. Every XML tag must begin with a
less-than sign (<),. XML tools don’t know what to do with tags that don’t
play by this rule and usually treat them as plain ol’ content. Not a total
disaster (if you fix the error) — but certainly not a boon to the docu-
ment if you leave it alone.

A corollary to this rule is that every XML entity must begin with an
ampersand (&). Fine, you say, but what’s an entity? We’re glad you asked.
An entity is a virtual storage unit that can contain text, binary files such
as graphics or sound clips, or non-ASCII characters such as the copy-
right symbol. You reference an entity in an XML document by using a
string of characters that begins with an ampersand (&) and ends with a
semicolon (;).

XML supports non-ASCII characters. In Chapter 6, we discuss the XML
use of characters and entities in depth.

If you’re worried that building well-formed documents by hand will be
tedious and not worth the effort, don’t abandon us (and XML) here. Take a
look at the sidebar “Staying well formed with good tools” elsewhere in this
chapter to find out how a good XML tool picks the nits for you.

We’ve found that people with HTML experience have a harder time learning
to adhere to the rules of well-formedness simply because Web browsers seem
to encourage breaking rules instead of following them. Although this shift in
thinking happens gradually (some may say painfully), with a little practice,
you’ll be over the HTML hump. (We made it without too much discomfort.)

75Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 75

Adding Style for the Web
Although XML is a great tool for storing data for all kinds of stuff, it’s not
completely Web compatible yet. But because the Web is hot, hot, hot, it’s no
surprise that content developers — like you — want to deliver their data
through the Web. So if you want to transmit XML through the Web, Cascading
Style Sheets (CSS) provide a mechanism to display XML documents directly.

A CSS stylesheet is a plain-text file that lists style properties. It’s saved with a
.css file extension. CSS is so important that we’ve devoted a whole chapter
to it (Chapter 7), but for now, you only need to know a bit of CSS syntax to
add a stylesheet to your XML markup for an enhanced Web view of your
content.

We like CSS because it’s human-readable and uses a simple-but-flexible
syntax. To understand CSS, you only need to remember this magic formula:

selector {property: value}

76 Part II: XML and the Web

Staying well formed with good tools
You’re probably wondering how you can possi-
bly remember all the rules that we describe in
this chapter when you develop XML documents.
Even veteran document designers forget a quo-
tation mark or two here and there — not to
mention occasionally forgetting a closing tag or
a slash at the end of an empty tag. If you try to
send such a malformed XML document to the
application that is going to work with it, the
application will spit it right back out at you or
spit out error messages (and that’s just as bad).
Before you get your document to your applica-
tion, it pays to ensure that it’s well formed and
valid (if necessary).

The best way to make sure your documents are
well formed is to build your XML document with
a text editor designed specifically for XML doc-
uments. XML editors can check documents as

you build them so that easy-to-make mistakes
don’t fester long enough to grow into ugly, mal-
formed documents. Believe us, you’ll be a hap-
pier and less-stressed camper if you go out and
find yourself a good editor — we promise! XML
editors are available for a variety of platforms
and range in price from free to fairly expensive.
Every editor has extra gimmicks and functions,
but no XML editor is worth its salt if it can’t
check documents to make sure they’re well
formed.

In Chapter 19, we focus entirely on XML-related
tools, including a section on XML editors. Read
more about the editors available for your plat-
forms of choice and then download a few and
try them out. The best online resource that
we’ve found for XML software is www.xml
software.com.

10_588451 ch05.qxd 4/15/05 9:35 AM Page 76

The selector identifies the XML element to which a particular style rule
applies. The property indicates the name of the CSS property, and the value
specifies the value of the CSS property. For example, the following code
shows the style information for the title element as included in the
stylesheet we attached to bookstore.xml:

title {
display: block;
margin-bottom: 10pt;
margin-left: 10pt;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: x-small;
background-color: #7fff00;
padding: 5px;
}

In this code, the title element is the selector, and the CSS properties we
applied to this element are display, margin-bottom, margin-left,
font-family, font-size, background-color, and padding.

The stylesheet is attached to bookstore.xml to make our XML document
more readable on the Web, as displayed in Figure 5-2. To attach a stylesheet,
just add an additional processing instruction to your XML file:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”bookstore.css”?>

Listing 5-2 shows the stylesheet (bookstore.css) for the XML file (bookstore.
xml).

Figure 5-2:
An XML

page
(bookstore.

xml), viewed
in Internet

Explorer
with an

attached
CSS

stylesheet.

77Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 77

Listing 5-2: bookstore.css
books {

display: block;
margin-bottom:30pt;
margin-left: 0;

}

title, publisher, price, date, cost, custNumber, firstName, city, zip, email {
display: block;
margin-bottom: 10pt;
margin-left: 5pt;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: x-small;
background-color: #7fff00;
padding: 5px;

}
author, itemNumber, isbn, shipping, totalCost, lastName, address, state, phone

{
display: block;
margin-bottom: 5pt;
margin-left: 5pt;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: x-small;
background-color: #ffffff;
padding: 5px;

}

The entire CSS file, bookstore.css, along with all the other listings for this
book, is included on the Web site for this book at www.dummies.com/go/
xmlfd4e.

Seeking Validation with
DTD and XML Schema

In order to validate your well-formed XML document, you need to add a docu-
ment description — either a Document Type Definition (DTD) or a schema. An
XML document description is nothing more than a formal statement of the
rules that govern how content can (or must) appear in any XML document
that claims to follow those rules. Software grabs and digests the document
descriptions, and then checks the structure and content of individual docu-
ments against the descriptions’ rules. Whether a document adheres to or
breaks those rules becomes easy to determine.

Computer scientists in general — and XML document wizards in particular —
recognize document descriptions as a form of metadata (data that describes
other data). Document descriptions are considered metadata because they
incorporate lots of crucial information, including:

78 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 78

� A description of the various elements within the document.

� An explanation of what kinds of content the various elements can
contain.

� The order in which elements can or must appear.

� The ranges of values from which element attribute values or actual ele-
ment content must be chosen.

� Rules governing the occurrence of specific elements. (They may be
optional or required, and if required, they may be constrained to occur
some specific number of times.)

� The relationships between and among elements in a document.

The metadata definitions don’t contain the actual data that you care about;
they just contain rules for describing the data.

Why describe XML documents?
At this point, you may be asking yourself why you need to bother creating a
formal XML document description. Before those sinister visions of essay
questions start dancing before your eyes, consider: Creating a document
description may be just the thing for your situation — or not. Situations vary;
so do arguments for and against document descriptions. That’s why Table 5-1
describes both the pros and cons of creating your own XML document
description.

Table 5-1 XML Document Descriptions: Pros and Cons
Pros Cons

When you need to accommodate or When an existing document description
incorporate specific types of content or can accommodate your data or docu-
document structures not readily avail- ments, you don’t need to create a docu-
able elsewhere, creating a document ment description. Why bother if the
description helps meet those needs. work’s already done for you?

When you want to check documents Well-formed XML documents that don’t
automatically against a set of formal refer to a DTD or an XML schema needn’t
rules (be it for quality control or other conform to a document description; they
purposes), using a document descrip- need only to conform to XML syntax
tion and a validator makes such checks rules. For single-use or trivial applica-
easy to automate and apply. tions, invoking a formal document

description may be overkill.

(continued)

79Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 79

Table 5-1 (continued)
Pros Cons

When you have a great deal of specific When data or document collections are
data to collect, store, and maintain, a small (or very simple in structure and/or
detailed and formal document descrip- content), creating a document descrip-
tion for such data helps organize and tion may be overkill. On the other hand,
control that process. when numerous instances abound, see

the column to the left!

In general, it’s not worth creating your own formal XML document descrip-
tions unless one or more of the following conditions is true:

� You’ve got sizable collections of documents or data to manage.

� Your data collection (whether large or small) is pretty complex; you
could benefit from the analysis and documentation that a document
description represents.

� You want to promote a new industry standard.

Even if creating document descriptions seems desirable, it’s only worthwhile
when what you’ve got doesn’t fit nicely into some existing, predefined XML
markup language. This is when you create what is known as an XML applica-
tion. XML applications invariably include one or more document descriptions
at the core of their formal specifications, so feel free to lean on them if they
meet your needs.

The extensible part of XML (X marks that spot) also means that you can
extend not only existing XML documents, but also XML document descrip-
tions. Before creating document descriptions from scratch, survey the land-
scape of existing XML applications and see whether you can recycle one or
more of ’em. Don’t be afraid to reuse pieces and parts of existing document
descriptions. You, too, can stand on the shoulders of the XML giants who’ve
gone before you!

Choosing between DTD and XML Schema
If you’re on the horns of the document-description dilemma, here are a few
simple guidelines for deciding between the use of a DTD and an XML Schema:

� Examine the data to be described. One of the two approaches will
suggest itself as more workable. In general, DTDs work better for docu-
ment- or text-intensive collections; an XML Schema works better for
data-intensive collections.

80 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 80

� Go with what you know. If you’re already familiar with DTDs and under-
stand how they work, the learning curve is behind you. Ditto for XML
Schema. If you work with a description language that you already know,
you can concentrate on describing XML documents, rather than learning
a description language.

� Consider whether you’re going to have to master XML structure and
syntax anyway. That’s the favorite argument of XML Schema propo-
nents. (Gee. Ya think?) They figure it this way: If you want to build XML
documents, why not also use a document-description language based
on XML?

Office 2003 supports XML Schema as its preferred document-description lan-
guage. If you’re going to be creating and using XML documents in Office 2003,
cut to the chase and use XML Schema.

Of course, there are pros and cons for both languages. We cover each of
these major approaches in Part III of this book. You can pick whichever lan-
guage you like best, try your luck at both of them, or flip a coin and go from
there.

Now for something completely — well, almost! — different. Chapter 6 high-
lights the use of character sets in XML. The use of character sets is important
if you plan to distribute your XML documents to a global audience. (Cyrillic
or Mandarin, anyone?) See Chapter 6 for more information.

81Chapter 5: Putting Together an XML File

10_588451 ch05.qxd 4/15/05 9:35 AM Page 81

82 Part II: XML and the Web

10_588451 ch05.qxd 4/15/05 9:35 AM Page 82

Chapter 6

Adding Character(s) to XML
In This Chapter
� Working internationally

� Understanding character sets, fonts, scripts, and glyphs

� Introducing key character sets: ASCII, ISO, and Unicode

� Using character sets in XML

� Finding character and numeric entities for XML use

The topic of character sets might seem a little obscure at first glance. You
may well ask, “Why do I need to know anything about character sets?

Character encoding is one little attribute value, and I usually use UTF-8 —
end of story.” Well, not quite — if you deal with an international audience,
then character encoding is an important issue. Have you checked statistics
for your audience lately? You might be surprised at how international your
audience actually is. The latest (February 2005) statistics from World Internet
Usage (www.internetworldstats.com/stats.htm) show the following
breakdown for world Internet users:

� Asia: 32.6%

� Europe: 28.3%

� North America: 26.7%

� Latin America/Caribbean 6.8%

These statistics also include a small percentage of users in Africa, the Middle
East, and Australia. The point is — if your audience isn’t international now,
chances are very good that it will include international visitors in the future.

Although the majority of Web content is in English — 56 percent, according
to a 2002 survey — that doesn’t mean English is the only language that the
Web supports. As Web technology becomes increasingly global in scope, the
ability to use character sets beyond the traditional Roman alphabet will help
you reach a truly global audience in their native languages.

11_588451 ch06.qxd 4/15/05 9:35 AM Page 83

As you’ve probably noticed by now, all the markup and syntax related to XML
1.0 uses Roman characters — ASCII text, to be specific. Although that’s all
well and good for those of us in the Western world, it doesn’t get you very
far when you want to create localized sites or application for deployment in
Asia with content available in both Mandarin and Cantonese. To expand the
scope of your content to encompass the whole world and all of its character
sets, you need a good understanding of how XML works with characters
(letters) — and of how you can use XML’s character conventions (called
encoding) to make your XML content available in any language. Armed with
knowledge about character encoding, you can take further advantage of
XML’s extensibility — making content available to multiple applications and
in multiple spoken languages.

When you get right down to it, computers think in binary — 1s and 0s. Those
1s and 0s are called bits, and they’re the most basic unit of storage in a com-
puter. To give you some perspective, a byte is always made up of 8 bits —
even if you’re only using 4 of them. When you put 1,000 bytes together, you
have a kilobyte (the k in 64K). Early computers used 7-bit strings to represent
simple alphabetical characters; modern computers use a mix of 8- and 16-bit
strings to represent a broad range of characters, depending on the applica-
tion and the location. The more bits you have in your string, the more charac-
ters you can use (more about this in a minute). Normally, you don’t use 16-bit
character strings unless you want to work with non-Roman alphabets, such
as those for Hebrew or Japanese.

In keeping with its intent to be friendly to all Web users, XML is designed to
support 16-bit character encoding. Encoding is the technical term for specify-
ing how many bits describe your characters. 16-bit character encoding uses
16-bit strings to represent characters in XML documents. This encoding
already includes character strings for most of the world’s known alphabets,
plus all kinds of symbols for disciplines from genetics to mathematics. It even
has room left over to accommodate more character sets and symbols as the
need for them arises.

This chapter is full of a bunch of technical stuff. We apologize in advance for
the pounding “huh?” headache that may accompany this chapter. But if
you’ve always wanted to know more about Unicode — or if your work in XML
involves an international audience and languages other than English — this
chapter is definitely for you. Otherwise, feel free to move on to Chapter 7.

About Character Encodings
Clearly, the trend is toward longer bit strings to encode character data, so
size does matter when representing character data. Here’s why:

84 Part II: XML and the Web

11_588451 ch06.qxd 4/15/05 9:35 AM Page 84

� A 7-bit string can represent a maximum of 27, or 128, different charac-
ters. This is enough for the 26-character basic Roman alphabet in upper-
case and lowercase (A–Z and a–z), plus a modicum of symbols,
punctuation characters, and so on. In short, a 7-bit string works fine for
simple Roman alphabets and related characters — but just barely.

� An 8-bit string can represent a maximum of 28, or 256, different charac-
ters, including everything a 7-bit encoding can handle, and leaves room
for what some experts call higher-order characters (accented letters,
trademark symbols, and so forth). An 8-bit string permits computer
character sets to add all kinds of control characters and a modest set of
diacritical marks not frequently used in English but frequently used in
German (with its umlauts), French (with its accent marks), and other
European languages.

� A 16-bit string can represent a maximum of 216, or 65,536, different char-
acters. This captures everything an 8-bit encoding can handle — and
allows for another 65,280 character codes (more than 99.6 percent of the
available character space). This leaves room for most of the major
human alphabets, from ancient Aramaic and Greek to modern Hangul
(Korean), plus all kinds of symbols and other special characters — but it
doesn’t allow for all the characters of (for example) some Asian lan-
guages, such as Mandarin. In the following section, you find out how
Unicode found a way to go beyond the 16-bit ceiling.

Some modern computers still use 8-bit encodings to represent most charac-
ter data, especially in English — the bottom line is that it’s faster to process
8-bit characters than it is 16-bit characters. Windows NT, Windows 2000, and
Windows XP, however, use 16-bit encoding for internal representations of
text, and most global solutions use 16-bit encoding to support all possible
languages and characters. The encoding you use will depend entirely on what
characters you need to represent.

Introducing Unicode
An industry group called the Unicode Consortium was formed in January
1991 to promote an open, standard, fully international, 16-bit character
encoding technology. Not surprisingly, this encoding is also known as Unicode.
Today, Unicode 4.0 (the current, standard version of Unicode) represents the
fourth generation of the consortium’s work in defining a single character-
encoding technology to accommodate nearly every known human character
set under a single representational scheme. Pretty amazing stuff!

85Chapter 6: Adding Character(s) to XML

11_588451 ch06.qxd 4/15/05 9:35 AM Page 85

In addition, the Unicode Consortium has maintained an ongoing relationship
with the International Organization for Standardization (ISO). This produced
an organized, international ISO standard (how’s that for redundant?), known
as ISO 10646, that represents almost the same information as the Unicode
standard. By 1993, the ISO working group responsible for incorporating
Unicode as an official ISO standard had completed its initial work, and ISO
10646-1:1993 came into being. The -1 after the number indicates that it is the
first draft of the standard; 1993 indicates that it was approved in 1993. ISO
has updated 10646 to stay synchronized with the most current Unicode stan-
dards. ISO 10646:2003 is synchronized with Unicode 4.0.

Today, Unicode defines just over 96,000 different character codes. Of this
range, 70,000 characters are defined for the Han ideographs used for
Mandarin and other Chinese languages; over 11,000 characters are defined
for Hangul (Korean). The nearly 15,000 remaining characters represent most
other written languages. For convenience, the Unicode character codes for 0
through 255 (8-bit character codes, in other words) match the character set
defined for ISO-8859-1 — which is also known as ISO-Latin-1, the default char-
acter set used to encode all HTML documents on the Web.

So if a 16-bit string can represent a maximum of 65,536 character codes, how
can Unicode 4.0 represent over 96,000 character codes? Through the use of
encoding formats such as UTF (Unicode Transformation Format) and UCS
(Universal Character Set) and the use of surrogate pairs of values to repre-
sent numbers greater than 65,536. You find out more about these encoding
formats and surrogate pairs later in this chapter.

Many people — including numerous XML experts — refer to the XML charac-
ter set as “Unicode” (and we think there’s good reason to do so). However, if
you ever spend any time perusing the W3C XML specifications, you’ll notice
that they refer to character sets by their ISO designations. You’ll see plenty of
references to ISO 10646 but only scant mention of Unicode. Go figure!

Note that XML 1.0, 2nd Edition (www.w3.org/TR/2000/REC-xml-20001006)
references Unicode 2.0 and 3.0, and XML 1.1 references Unicode 4.0, whereas
the 1st Edition of XML 1.0 references only Unicode 2.0. If your XML docu-
ments are used internationally, make sure that you are using a Unicode ver-
sion (and an associated XML version) that contains representations for all
the characters that may be used in your documents.

The terms Unicode and ISO 10646 are often interchanged as if they were
exactly the same thing. The Unicode standard, however, includes much more
in-depth information on implementation issues such as character rendering.

For more information about Unicode characters, symbols, history, and the
current standard, you can find a plethora of information at the Unicode con-
sortium’s Web site at www.unicode.org.

86 Part II: XML and the Web

11_588451 ch06.qxd 4/15/05 9:35 AM Page 86

You can even join a Unicode-oriented mailing list that operates at unicode@
unicode.org by sending an add request in the Subject field of an e-mail mes-
sage to unicode-request@unicode.org. If you’re seeking a definitive refer-
ence to Unicode, the Unicode Consortium has authored a book entitled The
Unicode Standard, Version 4.0 (published by Addison-Wesley Developers
Press). Although it lists for $60, it’s a worthwhile reference if you want to be
able to check that your browser is interpreting a character code correctly.

Character Sets, Fonts,
Scripts, and Glyphs

Although XML can represent just about any kind of character data imagin-
able, that’s just the beginning of what’s involved to make exotic character
data appear on a computer’s display. The raw character data — which XML
can handle just fine, thank you very much — represents a set of written char-
acters, called a script, which may or may not use a conventional Roman
alphabet.

To see what’s in XML scripts that 7- or 8-bit character encodings can’t
cover — which means special symbols or non-Roman alphabets — you’ll
need a few extra local ingredients:

� A character set that matches the script you’re trying to read and dis-
play. For the purposes of this discussion, a character set represents a
collection of 16-bit values that maps to some specific symbol set or
alphabet.

� Software that understands the character set for the script (or at least
the general encoding type). Such software includes the underlying
operating system on your computer. Fortunately, most modern operat-
ing systems — including various flavors of UNIX, Linux, and Windows 9x,
NT, 2000, and XP — can handle 16-bit character codes. Mac OS X,
depending on the particular configuration of the OS, can handle 16-bit
character codes, and conversion tools are readily available for Mac OS
9x. Likewise, that character set must be interpreted by an application
(such as your Web browser or a word processor; some browsers can
handle 16-bit character codes, and others can’t).

� An electronic font that allows the character set to be displayed on
screen (and in print, and so forth). A font is a complete set of graphical
bitmaps that correspond to character codes that appear in a character
set, so that each character has its own unique bitmap — usually follow-
ing a consistent design for the entire set. These bitmaps are scaled (to
create font sizes) and styled (to create font appearances, such as bold
and italic) to create bitmaps for display on-screen or in print image files.
Each individual bitmap in a font is known as a glyph.

87Chapter 6: Adding Character(s) to XML

11_588451 ch06.qxd 4/15/05 9:35 AM Page 87

All these ingredients are necessary to work with alternate character sets
because humans understand scripts, computers understand numbers (or bit
patterns, if you prefer), and displays require images. Character sets represent
a mapping from a script to a set of corresponding numeric character codes.
Fonts represent a collection of glyphs for the numeric character codes in a
character set. All three elements are necessary to represent and render char-
acters on-screen.

Finally, to create text to match the alphabet used in a script, you need an
input tool — such as a text or XML editor — that can work with the character
set and its corresponding font. The goal is to create additional text that
uses the same character set so you can use the alternate alphabet in your
document — and (oh, yeah) to see what you’re doing.

For Each Character, a Code
In the Unicode/ISO 10646 character set, individual characters correspond to
specific 16-bit numbers. For convenience, most character sets occur in the
form of sequential ranges of such numbers — where uppercase and lower-
case characters, as well as characters for the digits 0 through 9, are in
sequence. To determine the code that represents a character, you have to
look it up in the Unicode or ISO 10646 specification. (Here’s where the
Unicode book we mentioned earlier in this chapter comes in handy.)

Even if you don’t have access to an editor or text-entry tool that understands
a particular character set, you can always use numeric entities to represent
those characters. In general, numeric entities take one of two forms, decimal
or hexadecimal (as indicated in the comments in the code that follows):

က
<!-- &# indicates a decimal number -->
ༀ
<!-- &#x indicates a hexadecimal number-->

In this case, each of these two types of numeric entity represents the first
character in Tibetan script — in decimal form, that’s 4096, which is the same
as 0F00 in hexadecimal (Base-16) notation.

Each numeric entity in XML has an associated text encoding. If some specific
encoding is not defined in a numeric entity’s definition, the default is an
encoding called UTF-8, which stands for Unicode Transformation Format,
8-bit form.

88 Part II: XML and the Web

11_588451 ch06.qxd 4/15/05 9:35 AM Page 88

UTF and UCS (Universal Character Set) are mechanisms for implementing
Unicode. UTF versions include UTF-32, UTF-16, UTF-8, UTF-EBCDIC, and
UTF-7; UCS versions include UCS-4 and UCS-2. The numbers represent the
number of bits in 1 unit (UTF) or in 1 byte (UCS). In UTF-32 or UCS-4, 1 unit is
enough for any character. In UTF-8, a single character code may require 3
units, but UTF-8 represents the Roman alphabet efficiently, requiring only a
single byte for common characters.

UTF-16 is used mainly for internal processing — for example, for internal rep-
resentations of text in Microsoft Windows. UTF-16 uses a distinct 16-bit string
to represent each character whose character code value is less than or equal
to 65,536. For those character code values greater than 65,536, Unicode uses
surrogate pairs of values in the range D800 – DFFF. For example, 65,536 is rep-
resented in hexadecimal as FFFF. The next hex number after FFFF is 10000.
This is represented in UTF-16 as D800 DC00. Bottom line? Unicode 4.0 cur-
rently defines around 90,000 different characters. With the use of surrogate
pairs, there is room for 1,114,112 characters.

Key Character Sets
Around the world, computers use a variety of character sets, depending on
the languages (or scripts, if you prefer) that their users employ to represent
text. Most computers today use some variant of the American Standard Code
for Information Interchange (ASCII), an 8-bit character set that handles the
basic Roman alphabet used for English, along with punctuation, numbers,
and simple symbols. To augment this meager character set, extensions to
support additional characters or diacritical marks are added on a per-lan-
guage basis. Most European languages match standard ASCII values from 0 to
127 and go on from there to define alternate mappings between character
codes and local script characters for values from 128 to 255.

Non-Roman alphabets, such as Hebrew, Japanese, and Thai, depend on spe-
cial character sets that include basic ASCII (0-127, or 0-255, depending on the
implementation) plus the character sets for the script that corresponds to
the “other alphabet” in use. The number of bits in such character encodings
depends on the size of the other alphabet. It’s not uncommon for such encod-
ings to use 16-bit values to accommodate a second character and symbol set
along with the ASCII set. (A listing of character sets built around the ASCII
framework appears in Table 6-1.)

89Chapter 6: Adding Character(s) to XML

11_588451 ch06.qxd 4/15/05 9:35 AM Page 89

Table 6-1 ISO 8859 Character Sets
Character Script Languages
Set

ISO-8859-1 Latin-1 ASCII plus most Western European languages,
including Albanian, Afrikaans, Basque, Catalan,
Danish, Dutch, English, Faroese, Finnish, Flemish,
Galician, German, Icelandic, Irish, Italian,
Norwegian, Portuguese, Scottish, Spanish, and
Swedish. Omits certain Dutch, French, and German
characters.

ISO-8859-2 Latin-2 ASCII plus most Central European languages, includ-
ing Czech, English, German, Hungarian, Polish,
Romanian, Croatian, Slovak, Slovene, and Serbian.

ISO-8859-3 Latin-3 ASCII plus characters required for English, Esperanto,
German, Maltese, and Galician.

ISO-8859-4 Latin-4 ASCII plus Estonian, Greenlandic, Lappish, and most
Baltic languages, including Latvian and Lithuanian;
now superseded by ISO-Latin-6 (ISO-8859-10).

ISO-8859-5 Latin/Cyrillic ASCII plus Cyrillic characters for Slavic
languages, including Byelorussian, Bulgarian,
Macedonian, Russian, Serbian, and Ukrainian.

ISO-8859-6 Latin/Arabic ASCII plus Arabic characters.

ISO-8859-7 Latin/Greek ASCII plus Greek characters.

ISO-8859-8 Latin/Hebrew ASCII plus Hebrew.

ISO-8859-9 Latin-5 Latin-1, except that some Turkish symbols replace
Icelandic ones.

ISO-8859-10 Latin-6 ASCII plus most Nordic languages. plus Inuit
(Greenlandic Eskimo), non-Skolt Sami (Lappish), and
Icelandic.

ISO-8859-11 Latin/Thai ASCII plus Thai.

ISO-8859-12 Not currently At one point, this was to be used for ASCII plus
in use Celtic; now superseded by Latin-8 (ISO-8859-14).

ISO-8859-13 Latin-7 ASCII plus the Baltic Rim characters.

ISO-8859-14 Latin-8 ASCII plus Celtic.

ISO-8859-15 Latin-9 Variation on Latin-1, including Euro currency sign,
plus extra accented Finnish and French characters.

ISO-8859-16 Latin-10 ASCII plus Romanian.

90 Part II: XML and the Web

11_588451 ch06.qxd 4/15/05 9:35 AM Page 90

A careful reading of Table 6-1 shows that most character sets can render
English and German, plus a collection of other, sometimes-related languages.
When choosing a variant of ISO-8859, remember that all the languages you
want to include must be part of that variant; otherwise, you must use
Unicode.

XML goes beyond such idiosyncratic or customized character sets and uses
Unicode because it can house character codes for the vast majority of known
human scripts in a single encoding. Even if an XML processor can’t display
certain character codes — because (for instance) necessary fonts are not
present — such processors must be capable of handling any valid character
code in the Unicode range.

Using Unicode Characters
Any software that supports XML files directly, including the XML tools and
editors listed on the download page on the Web site for this book at www.
dummies.com/go/xmlfd4e, supports Unicode or UTF-8 formats. So do many

91Chapter 6: Adding Character(s) to XML

The use of Unicode characters in XML 1.1
XML 1.1, released as a W3C specification in
February 2004, incorporates major changes in
the use of Unicode characters. In fact, this is
the biggest difference between XML 1.0 and
XML 1.1.

The Unicode standard has been growing and
evolving — no new tentacles or legs, but it has
more capabilities these days. XML 1.0 was cre-
ated back in the era of Unicode 2.0, with its cast
of 40,000 Unicode characters. XML 1.1 is more
up-to-date; it references Unicode 4.0, which has
96,000 characters.

Even beyond the increase in characters,
though, XML 1.1 makes some major changes in
how Unicode characters can be used. For
example, the old XML 1.0 has specific lists of
characters that can be used as newline char-
acters or as valid characters in the names
of elements or attributes — and only those
characters are legit. XML 1.1, however, allows
any Unicode character that’s not expressly

forbidden to be used as part of an element or
attribute name and adds support for NEL (the
new-line character in IBM mainframes).

The change in valid element and attribute
names makes it possible for any document cre-
ator to use his/her native language for XML ele-
ment and attribute names — and that’s the good
news about XML 1.1.

However, this change in the rules of XML syntax
also changes the definition of a well-formed
document. That wouldn’t be a big deal if it didn’t
open the possibility that XML 1.1 documents
won’t be backward compatible with XML 1.0
applications and processors. But it does — and
that’s the bad news about XML 1.1.

We’re hoping that XML 2.0 will incorporate
some means of supporting internationalization
while maintaining backward compatibility with
earlier versions of XML — stay tuned!

11_588451 ch06.qxd 4/15/05 9:35 AM Page 91

modern word processors — for instance, Word 97 and later versions support
a format called encoded text that uses Unicode encoding.

If you don’t have ready access to such tools and want to save XML files in
Unicode format, you must use a conversion tool. Several different tools, both
freeware and commercial products, are available, depending on your OS.
Search “Unicode converters” in your favorite search engine for more details.

For an example of text conversion into Unicode, see the free Unicode
Encoder/Converter page at www.pinnacledisplays.com/unicode-
converter.htm. You enter a string of text, click a button, and immediately
you see the Unicode equivalent. For example, if you enter

Bob’s your uncle

the Unicode equivalent you get is

Bob's your unc&#
108;e

If you can’t convert your XML text to UTF-8 or to straight Unicode encodings,
you can tell the XML processor what kind of character encoding you’re using.
If you do so, however, you’re taking a chance — not all XML processors can
handle arbitrary encodings. Fortunately, however, widely used tools such as
Netscape Navigator (Version 4.1 or newer) and Internet Explorer (Version 5.0
or newer) can handle most ISO-8859 variants. If you want to use an alternate
character encoding, you must identify that encoding in your XML document’s
prolog as follows:

<?xml version=”1.0” encoding=”ISO-8859-9”?>

In addition to the encoding names that appear in Table 6-1, you can use other
encoding names — within a certain approved range. For a range of other pos-
sible encodings, check the official Internet Assigned Numbers Authority
(IANA) list at

www.iana.org/assignments/character-sets

Please note that XML parsers are required to support only UTF-8 and UTF-16
(native Unicode) encodings, so the encoding attribute in an XML document
prolog might not work with all such tools. If you try using an ISO-8859 variant
(or some other character set) and don’t get the results you want, you might
have to figure out how to translate the document into Unicode. Ouch!

92 Part II: XML and the Web

11_588451 ch06.qxd 4/15/05 9:35 AM Page 92

Finding Character Entity Information
Elsewhere in this chapter, we mention one excellent source for obtaining
information about character entity assignments for Unicode — namely, the
Unicode Consortium’s book titled The Unicode Standard, Version 4.0. If the
book’s price tag makes your wallet start to gibber in fear, you can also find
plenty of encoding information online. For example, here’s the site of the
Unicode Character Database:

www.unicode.org/ucd/

Likewise, the W3C has information about Unicode character ranges and
encodings in Appendix B, “Character Classes,” for the XML 1.0 Recommended
Specification at

www.w3.org/TR/REC-xml#CharClasses

You’ll also find the XHTML entity lists useful in this context:

� Latin-1: www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent

� Special: www.w3.org/TR/xhtml1/DTD/xhtml-special.ent

� Symbols: www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

Accessing any of the three URLs shown here will open the File Download box
of your browser.

A bit of judicious poking around via your favorite search engine, using search
strings such as “Unicode encodings” or “XML character encodings” ,
can turn up other interesting sources of this information online. Happy
hunting!

Okay, it might have been a bit of a hike to get through a chapter about char-
acter sets — but as the Web gets increasingly international, you may be glad
you did. And now for something just as important for your (potential) global
audience: Chapter 7 briefs you on using CSS to format your XML pages for
display on the Web.

93Chapter 6: Adding Character(s) to XML

11_588451 ch06.qxd 4/15/05 9:35 AM Page 93

94 Part II: XML and the Web

11_588451 ch06.qxd 4/15/05 9:35 AM Page 94

Chapter 7

Handling Formatting with CSS
In This Chapter
� Viewing XML on the Web

� Introducing CSS 1 and 2

� Using CSS stylesheets

� Linking CSS to XML

Although most of the cool things you can do with XML don’t involve the
Web, many of you do want to use XML to contribute to (or to drive) a

Web-based solution. You’ve got it: That’s what this chapter is all about.
Without the addition of formatting instructions, XML documents display as
plain text on a Web page — not a particularly useful way to present your data
on a Web site. Adding CSS (Cascading Style Sheets) to your XML pages is an
easy way to create a specific appearance for your XML pages on the Web by
defining display properties such as font family, text color, background images
and colors, and position of elements. We think CSS is so important for dis-
playing XML on the Web that we’ve devoted a whole chapter to it.

CSS is a topic too big to cover thoroughly in this book — we leave that to
Beginning CSS: Cascading Style Sheets for Web Design, by Richard York, pub-
lished by Wrox Press.

A newer specification for stylesheets — XSLT — is more powerful and more
complex than CSS. XSLT stylesheets allow you to transform your document
as well as add style information. You get the goods on XSLT in Chapter 12. For
the purposes of this chapter, CSS is powerful (and complex) enough.

12_588451 ch07.qxd 4/15/05 12:18 AM Page 95

Viewing XML on the Web with CSS
If you want to see how a CSS document can affect the look and feel of a Web
page, visit Dave Shea’s CSS Zen Garden page, at www.csszengarden.com,
also shown in Figure 7-1. The CSS Zen Garden beautifully demonstrates the
power of CSS. The site applies different CSS stylesheets to the same HTML file
to produce different displays of the same information. What you see are good
stylesheets at work — not tricks made possible by convoluted HTML or
XHTML. In the end, building a good stylesheet is a much easier approach
(after you get the hang of the underlying markup conventions), because it’s
designed to drive complex displays. You will be using the right tool for the
right job.

CSS is really, really easy to use with XML — even if you’re building stylesheets
from scratch. This is a huge plus when you’re trying to get a solution of any
kind up and running quickly. Okay, we don’t dispute that XSLT is more power-
ful than CSS — and robust enough to support many uses for XML. But XSLT is
also more work — and may be overkill in some simple situations.

Figure 7-2 shows how the bookstore XML file looks with the addition of a dif-
ferent CSS stylesheet to display our book information. This time, we included
a graphic among our styles, though there’s more here than meets the eye.
(We take a closer look at this stylesheet later in this chapter.)

Figure 7-1:
The CSS

Zen Garden.

96 Part II: XML and the Web

12_588451 ch07.qxd 4/15/05 12:18 AM Page 96

To use CSS with XML (or XHTML, for that matter), you need to know a bit
about how to create CSS stylesheets. For openers, CSS is simply a set of rules
that you use to create stylesheets — specifically, those that Web browsers
recognize and can work with. CSS documents are just plain text, so you don’t
have to buy special software to use them — or do something awful to your
browser to make it work with them. All you need to do to use CSS is to learn
its syntax.

Basic CSS Formatting: CSS1
Cascading Style Sheets 1 (CSS1) was the first version of CSS developed for
use with HTML. Partial support for CSS1 in Web browsers started with
Internet Explorer 3.0 and Netscape Navigator 4.0.

Now, however, the newest versions of the big browsers (namely, Internet
Explorer 6.0 and Netscape Navigator 6+) support all elements in CSS1. Can we
hear a big woo-hoo? CSS1 deserves a cheer; it took a long time for this sup-
port to happen.

With CSS1, you can control the format and display of:

� Colors and backgrounds

� Fonts and text

� Lists

� Margins, padding, and borders

Figure 7-2:
XML file

with
attached

CSS
stylesheet in

Internet
Explorer.

97Chapter 7: Handling Formatting with CSS

12_588451 ch07.qxd 4/15/05 12:18 AM Page 97

The Icing on the Cake: CSS2
Cascading Style Sheets 2 (CSS2) was published as a W3C recommendation in
1998. Unfortunately, developers and browser vendors have been slow to
adopt CSS2, even though it provides more page-layout controls. Although it
took a long time for browsers to support CSS2, the latest big browsers
(Internet Explorer and Netscape Navigator, versions 6 and later) support
almost all of the CSS2 specification. Even so, use CSS2 markup with care (and
test your work carefully on your target browsers).

Additions to CSS1 in CSS2 include the following:

� Element positioning

� Element visibility

� Support for specifying page breaks

� Table styles

� Aural stylesheets (used for defining how your page sounds when read in
a speech-enabled browser)

� Support for system colors and fonts

� Counters and automatic numbering

Building a CSS Stylesheet
In this section, you lift the hood on CSS and poke into some of the details
involved in using CSS markup to create stylesheets. Here, the primary focus
is understanding and using CSS markup, and understanding its capabilities
and limitations.

Although a judicious mixture of XML and CSS creates a positive presentation,
be aware that the combination may not always work the way you want or the
way you think it should. You must also understand that not all Web browsers
treat CSS definitions exactly the same, so experimentation and testing to
achieve the right look may be required.

You’re probably wondering what the C in CSS (Cascading) is about. Sorry, no
waterfalls here. Cascading refers to the capability of applying multiple
stylesheets to any document — in a hierarchy of importance — in a way that
defines all styles and handles conflicting style definitions gracefully. Each CSS

98 Part II: XML and the Web

12_588451 ch07.qxd 4/15/05 12:18 AM Page 98

stylesheet attached to a document is either more or less important than
those next to it in the overall scheme of style. If one stylesheet conflicts with
another, the stylesheet with the heavier “weight” — that is, the one that’s
higher on the stylesheet food chain — takes precedence. Then the subordi-
nate stylesheets fill in what’s left — so smoothly that, okay, it might as well
be a waterfall.

For example, if an individual Web page implements CSS, several stylesheets
may apply to it: styles defined in the document itself (inline or embedded);
the external CSS stylesheet that you created; the individual user’s preference
settings (if any), such as font sizes, styles, and colors; and the browser’s
default stylesheet. These three stylesheets cascade — are applied in order —
to the Web page according to the following priority order:

1. User-defined stylesheets (a specific stylesheet created for the user)

2. Inline styles (created with HTML’s style attribute)

3. Embedded styles (contained within the head section of an HTML/
XHTML document)

4. External stylesheets

5. The user’s preferences

6. The browser’s default stylesheet

We included all the options here for the sake of completeness, but some of
them don’t apply to XML documents: The second option applies only to
HTML and the third option only to HTML and XHTML.

If your stylesheet indicates that the font size should be 10-point Times, but
the user has set his or her user-defined stylesheet so that all text is always
displayed in 12-point Garamond, the user’s stylesheet wins.

User-defined stylesheets are uppermost in the hierarchy because they enable
users with disabilities to be sure their preferred styles trump any and all
other stylesheet settings and meet their specific needs.

Adding CSS to XML
Best to begin with basics — the XML to which we’ll be adding a CSS style-
sheet. Listing 7-1 shows our books XML file — which includes only book
information (no sales or customer information).

99Chapter 7: Handling Formatting with CSS

12_588451 ch07.qxd 4/15/05 12:19 AM Page 99

Listing 7-1: The Books XML Document (books.xml)

<?xml version=”1.0” encoding=”UTF-8”?>
<books>
<book>
<title>The Da Vinci Code</title>
<author>Brown, Dan</author>
<publisher>Doubleday</publisher>
<price>$24.95</price>
<contentType>Fiction</contentType>
<format>Hardback</format>
<isbn>0385504209</isbn>
</book>
<book>
<title>State of Fear</title>
<author>Crichton, Michael</author>
<publisher>HarperCollins</publisher>
<price>$27.95</price>
<contentType>Fiction</contentType>
<format>Hardback</format>
<isbn>0786868716</isbn>
</book>
<book>
<title>Night Fall</title>
<author>Demille, Nelson</author>
<publisher>Warner</publisher>
<price>$26.95</price>
<contentType>Fiction</contentType>
<format>Hardback</format>
<isbn>0446576638</isbn>
</book>
</books>

This document includes the following elements (we’ve added display tips to
each one — things such as “larger font” — so you know what we’re planning
when we build the stylesheet in the next section):

� <books> holds everything in the document (much like the <html> ele-
ment in an HTML document). Its style rule should include margin infor-
mation for the entire document, as well as specifications for background
color and base font.

� <book> data should be separated for each book so it’s easy to read
on-screen.

� <title> should be emphasized with a larger font and a different color
background so that each book is easy to locate on the page.

� <author>, <publisher>, <price>, <contentType>, <format>, and
<isbn> work well together and should be displayed in a similar style on
separate lines.

100 Part II: XML and the Web

12_588451 ch07.qxd 4/15/05 12:19 AM Page 100

We could do quite a bit more with a stylesheet to create an impressive layout
and design, but that only adds more lines of markup to our examples. For
demonstration purposes, simple is beautiful. Feel free to enhance and build
on this stylesheet, however, as you find out more about CSS.

A simple CSS stylesheet for XML
When you have a pretty good general sense of how you want the document
to look on-screen, you have a guideline for creating the stylesheet to make it
happen. Listing 7-2 shows a simple CSS stylesheet for our books XML file. We
analyze this stylesheet in the following section of this chapter.

Listing 7-2: books.css — CSS Stylesheet for books.xml

books {
display: block;
width: 100%;
background-color: gray;
background-image: url(officebooks.gif);
background-repeat: no-repeat;
background-position: 80% 10px;
margin: 0;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
}

book {
display: block;
background-color: Silver;
width: 50%;
margin-bottom: 20px;
margin-top: 15px;
margin-left: 10px;
}

author, publisher, price, contentType, format, isbn {
display: block;
background-color: #ffe4c4;
font-size: x-small;
padding: 2px;
}

title {
display:block;
color: Maroon;
font-size: medium;
}

101Chapter 7: Handling Formatting with CSS

12_588451 ch07.qxd 4/15/05 12:19 AM Page 101

Dissecting a simple CSS stylesheet
A stylesheet is nothing more than a collection of style rules that tells the
computer how to format of the various elements in an XML document when it
puts them on-screen. All style rules use the same syntax, so even if you’ve
never seen a CSS stylesheet, you can probably guess how to build a basic
style rule.

The magic formula for building CSS style rules
CSS stylesheets consist of style rules called statements. A statement is made
up of a selector that specifies which elements the statement applies to and a
declaration that specifies which style properties to apply. The declaration
includes a style property name and a value. The syntax looks like this:

selector {declaration}

Here’s an example of a CSS statement from the books.css stylesheet:

books { background-color: gray;}

books is the selector, and the declaration includes background-color, a for-
matting property, and gray, the value of this formatting property.

Some of the declarations from our books stylesheet include these:

� {background-repeat: no-repeat; background-position: 80%
10px;}

This declaration displays the books element content on a page with a
background image that appears only once — and shows up on-screen at
a specific position: 80 percent of the page width from the left side of the
page and 10 pixels down from the top of the page. This positions a
graphic on our page — without using any HTML.

� {font-family: Verdana, Geneva, Arial, Helvetica,
sans-serif;}

This instruction tells the computer to display the books element text
content in a sans-serif font such as Verdana.

� {margin-bottom: 20px; margin-top: 15px;}

Here, the instruction says to display each book element with a 15-pixel
margin at the top and a 20-pixel margin at the bottom.

� {padding: 2px;}

The specification creates 2 pixels of space in each direction around the
content of the author, publisher, price, contentType, format, and
isbn elements.

102 Part II: XML and the Web

12_588451 ch07.qxd 4/15/05 12:19 AM Page 102

All specific CSS properties — and the values they can take — are predefined
in the CSS1 and CSS2 specifications. The hardest part of learning CSS is
remembering specific property names and their values.

A quick note about another important CSS term: inheritance. When you set
style rules (as we did for the books and book elements) — and specify mar-
gins, background color, font, and text color — you don’t have to set them
again for every other element. When you create a style rule for an element,
any other elements it contains are also subject to that style rule. Cool, eh?
Just put together a whole bunch of selectors and declarations, and poof! —
you have a stylesheet.

In our example, the books element is the root element that contains all other
elements inside it — so the style rule is inherited by all other elements it
contains.

Combining declarations
You can combine declarations in a style rule to include a collection of property-
and-value combinations in a single selector. The syntax for this neat trick is to
separate your property: value combinations with semicolons, as we did in
most of our style rules, including this one:

title {
display:block;
color: Maroon;
font-size: medium;
}

Efficiency is good: Combining selectors and declarations
What if you want to assign the same style rule to two different elements?
Well, you could retype the declaration or cut and paste it. But then, if you
change one instance of that declaration, you must make the same change in
each and every selector where that declaration appears. It’s much easier to
simply apply one declaration to several selectors. To do so, simply list all
your selectors separated by commas, as in

selector, selector . . . {declaration}

Our sample stylesheet combines selectors this way in a style rule:

author, publisher, price, contentType, format, isbn {
display: block;
background-color: #ffe4c4;
font-size: x-small;
padding: 2px;
}

103Chapter 7: Handling Formatting with CSS

12_588451 ch07.qxd 4/15/05 12:19 AM Page 103

104 Part II: XML and the Web

Using a CSS editor
You can make it easy for yourself and learn CSS
at the same time by using an excellent CSS
editor such as Nick Bradury’s TopStyle Pro,
available for purchase at www.bradsoft.
com/topstyle/. TopStyle Pro includes a
split-screen view that allows you to create a
stylesheet and immediately see the effects of
your styles applied to the preview file that
you selected. For example, you can choose an
XML file for your preview file while you create a
CSS stylesheet in TopStyle Pro. You know the
results of your style rules instantaneously and
without leaving TopStyle Pro. This sidebar
includes a shot of the TopStyle Pro workspace
for the books.xml file and the books.css
stylesheet.

TopStyle Pro includes many additional features
to make it as simple as possible to create valid
CSS for your HTML, XHTML, and XML files. You
can, for example,

� Check your CSS syntax in multiple
browsers.

� Convert HTML to XHTML with TopStyle’s
integration with another software product,
HTML Tidy.

� Upgrade any deprecated HTML presenta-
tion tags, such as font tags, to CSS specs.

12_588451 ch07.qxd 4/15/05 12:19 AM Page 104

Note that this rule includes another background-color declaration —
otherwise, these elements would inherit the background color of the books
element.

Variations on the magic: Selector specifications
You can also apply specific styles when elements occur in a particular order.
For example, you could create a style that applies to the dog element only
when it follows the cat element. To do this just add a space between the ele-
ment names and use them both as the selector, like so:

cat dog {color: teal}

That space between the element names tells the application processing the
stylesheet to look for cat tags followed by dog tags. If those tags don’t
appear in that specific order, the style rule doesn’t apply to the dog element.

The example in the previous paragraph is just one of the many variations on
the selector portion of the magic formula. You can link selectors to different
elements based on attribute values, context, type, parent–child relationships,
and a variety of other options.

The specifics of selectors are too detailed to discuss here, but they are cov-
ered brilliantly in the CSS1 specification at

www.w3.org/TR/REC-CSS1

and the CSS2 specification at

www.w3.org/TR/REC-CSS2

Meanwhile, if you want a handy tool for creating and/or modifying a CSS
stylesheet, check out the “Using a CSS editor” sidebar in this section.

Punctuating CSS rules
Punctuation plays a large role (one your grade-school grammar teacher prob-
ably never imagined) when you’re creating CSS style rules. If you accidentally
use a colon instead of a semicolon to separate property: value pairs in a
declaration, your stylesheet will break. Table 7-1 provides a short-but-helpful
guide to punctuating CSS properly.

105Chapter 7: Handling Formatting with CSS

12_588451 ch07.qxd 4/15/05 12:19 AM Page 105

Table 7-1 Punctuation in CSS
Character Name What It Does

Space Specifies that an element must appear after the other
element for the rule to apply

, Comma Separates multiple selectors in a style rule

; Semicolon Separates multiple property/value combinations in a
style rule

: Colon Separates a property from its value in a declaration

Linking CSS and XML
After you’ve built some stylesheets, the next step is to use them with XML.
This process is pretty easy, but the method varies between XML and XHTML.

To reference a CSS stylesheet in an XML document, use a processing instruc-
tion that takes this format:

<?xml-stylesheet href=”url” type=”text/css”?>

For books.xml, we added this processing instruction as the line following the
XML declaration:

<?xml-stylesheet type=”text/css” href=”books.css”?>

To reference a CSS stylesheet in an HTML or an XHTML document, use a link
element that takes this format:

<link href=”url” rel=”stylesheet” type=”text/css”>

Listings 7-1 (the XML document) and 7-2 (the CSS document) are on the
download page for this book at www.dummies.com/go/xmlfd4e. To see the
CSS stylesheet from Listing 7-2 applied to the books XML document, save
both listings in the same directory.

W3C devotes an entire recommendation to governing how stylesheets link to
XML documents. Check it out at

www.w3.org/TR/xml-stylesheet

106 Part II: XML and the Web

12_588451 ch07.qxd 4/15/05 12:19 AM Page 106

Adding CSS to XSLT
Just because CSS and XSL (including XSLT and XSL-FO) are competing tech-
nologies doesn’t mean you have to choose one or the other to use forever-
more. CSS and XSL play well together — so well, in fact, that one of the most
powerful uses for both style mechanisms involves using them in tandem.

XSL (eXtensible Stylesheet Language) has two primary purposes: as XSL-FO,
to apply style to XML documents, and as XSLT, to convert documents written
according to one DTD or schema to documents that use another DTD or
schema. Many XML developers use the transformation side of XSL — XSLT —
to transform documents that were written using any XML vocabulary into
authentic XHTML documents.

If you take this approach, you can style your newly transformed XHTML doc-
uments with CSS for display on the Web. By using XSLT to convert XML docu-
ments to XHTML and then using CSS to control the display of the resulting
XHTML, you can use the power of XML for data storage, yet still deliver con-
tent to users through standard Web browsers. What’s not to like?

As we’ve mentioned just a few times already — okay, maybe more than a
few — you can validate your XML documents with DTDs or schemas. In
Chapter 8, you’ll learn all the details about creating and using DTDs for
validation.

107Chapter 7: Handling Formatting with CSS

12_588451 ch07.qxd 4/15/05 12:19 AM Page 107

108 Part II: XML and the Web

12_588451 ch07.qxd 4/15/05 12:19 AM Page 108

Part III
Building in

Validation with
DTDs and Schemas

13_588451 pt03.qxd 4/15/05 12:09 AM Page 109

In this part. . .

Here’s where you get a line on what formal descrip-
tions for XML documents (known as DTDs and XML

Schemas) do, as well as why (and when) they can be
handy. Here’s where the contents of Part II (all that good
stuff about XML document structures) can get down to
work. In Chapter 8, you find out how to read a DTD that
describes an XML document — as well as how to use that
information to build XML documents. Chapter 9 follows
up with a look at creating XML document descriptions by
using an “all-XML” approach: XML Schema — both the
application and the product of the application.

Chapter 10 explains how to build a custom XML Schema,
step by step. You get the goods on creating an XML
Schema in Word 2003 and using it to create new XML doc-
uments. In Chapter 11, you start modifying XML Schema
to meet your data and document needs — and you get a
handle on a crucial XML concept: namespaces.

13_588451 pt03.qxd 4/15/05 12:09 AM Page 110

Chapter 8

Understanding and Using DTDs
In This Chapter
� Defining DTDs

� Knowing when and why to use a DTD

� Using an XML prolog

� Exploring an XML DTD

� Declaring elements and their attributes

� Declaring an entity

� Noting notations

� Including internal and external DTDs

� Choosing between internal and external DTDs

Let’s face it: What makes a document different from a useless pile of char-
acters is consistency. To get that benefit, you declare a DOCTYPE (docu-

ment type) in your XML document — in effect, telling it to invoke a Document
Type Definition (DTD) you’ve prepared. The DTD defines the rules of the
game for your document. In general, you use DTDs to add structure and logic,
and to make it easier to ensure that all required elements and attributes are
present — in the right order — in your XML document. Okay, DTDs aren’t
absolutely necessary when you’re creating an XML document — but under-
standing what they are and how they work can reduce hassle by keeping the
document consistent.

Using a DTD properly ensures that your document will be valid — that is, one
that follows the rules set out in the DTD. Being valid isn’t the same thing as
being well formed (though a document that is both is a joy to behold).
Chapter 5 outlines what it takes for an XML document to be well formed; this
chapter covers creating an XML document that’s valid when interpreted
according to the rules defined in a specific DTD.

When you use DTDs, please understand that they define a set of rules for the
documents that they govern — and rules are rules. If you break the rules in
any DTDs that your XML documents invoke, those documents will fail to vali-
date properly — and they may therefore be unusable. That’s because some
document processors quit processing when they find an error in syntax or
structure. Okay, so. . . .

14_588451 ch08.qxd 4/15/05 12:23 AM Page 111

What’s a DTD?
A Document Type Definition (DTD) is a set of rules that defines the elements
and their attributes for an XML document. Any XML document that invokes
that DTD gets the same treatment. You could say that a DTD defines the
“grammar” for an XML document, because it tells applications — and the
people using them — what each element means and how to use it. In essence,
grammar is a set of rules that govern the way we speak and write a language.
Well, when you use a DTD, you automatically become subject to a bunch of
rules that tell you how to write — markup, that is.

DTDs consist of declarations for elements and their attributes. DTDs are
really nothing new; in techno years, they’re pretty darn old. Originally,
DTDs were created as part of the Standard Generalized Markup Language
(SGML) — XML’s parent.

DTDs aren’t actually required, because — unlike SGML — XML follows strict
rules of construction. This enables XML processors to read a well-formed
document and infer the rules that govern the document. The processors do
this bit of magic by building a tree of all elements and their children and then
drawing conclusions from the patterns in which elements occur. It’s kind of
like drawing your family tree by knowing who’s related to whom and how.

Table 8-1 deciphers some of the terms you need as you get farther into DTDs
in this chapter.

Table 8-1 DTD Lingo
Term Example What It Does

XML declaration <?xml version=”1.0” Tells the processor which ver-
encoding=”UTF-8” sion of XML to use
standalone=”yes”?>

Document type <!DOCTYPE Root- Tells the processor where a
(DOCTYPE) Element SYSTEM DTD is located
declaration “filename.dtd”>

Element type <!ELEMENT Name Defines an element type
declaration (#PCDATA)>

Attribute-list <!ATTLIST Element- Defines a name, datatype, and
declaration Name Name Datatype default value (if any) for each

Default> attribute associated with an
element

Entity declaration <!ENTITY Entity- Defines a set of information
Name “text”> that can be referred to by

name as an entity

112 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 112

Term Example What It Does

Notation declaration <!NOTATION Associates a notation name
NameSystem with information that can help
“externalID”> find an external program to

interpret that notation (used
to accommodate data and
executables within XML doc-
uments that XML processors
themselves can’t handle
directly)

When to use a DTD
XML doesn’t require you to use a DTD (though it’s often a good idea to use
one), so the first step in including DTDs in a document is to decide whether
you want to jump off that particular bridge.

Why would you want to use a DTD? Well, here are several reasons:

� To create and manage large sets of documents for your company. DTDs
allow you to create and maintain rules that all documents must follow.

� To define clearly what markup may be used in certain documents and
how markup should be sequenced. DTDs make document rules explicit.

� To provide a common frame of reference for documents that many
users can share. Big-name XML applications such as XPath have their
own associated DTDs.

Therefore, when it comes to working with DTDs, standardization and control
are what they’re all about!

When NOT to use a DTD
Why might you want to scrap this chapter and create an XML document with-
out a formal description? Well, sheer practicality. You may not need to use a
DTD if:

� You’re working with only one or a few small documents. Remember why
you create DTDs: to make your life easier. If a DTD is bigger than the doc-
ument that it describes, you may be wasting your time.

� You’re using a nonvalidating processor to handle your XML documents.
If the processor checks only for well-formedness, you don’t need an
external DTD.

113Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 113

In general, do what works. Let the XML documents or data that you work
with drive you toward or away from creating formal document descriptions.
Our experience has been that any application that involves more than a one-
time or throwaway document or data collection is worthy of its own formal
description (or at least, customization or outright use of an existing standard
DTD). Because XML’s rules let you skip the document description if you like,
you may certainly decide otherwise.

Inspecting the XML Prolog
In order to use a DTD with your XML document, you need to add a DOCTYPE
declaration to your document — and the XML prolog is where you put it.

The XML prolog is the first thing that a processor — or human eye, for that
matter — sees in an XML document. You place it at the top of your XML docu-
ment, and it describes the document’s content and structure.

An XML prolog may include the following items:

� XML declaration

� DOCTYPE declaration

� Comments

� Processing instructions

� White space

Notice the phrase may include. An XML prolog doesn’t have to include any of
that information — but Listing 8-1shows an XML prolog that does.

Listing 8-1: An XML Prolog

<!-- Beginning of Prolog -->
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<!DOCTYPE books SYSTEM “bookstore.dtd”>
<!-- End of Prolog -->
<!-- Beginning of Document Body -->
<books>
. ..
</books>
<!-- End of Document Body -->

114 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 114

Take a second to look at what we include in the prolog:

� The first line is the XML declaration.

� The second line invokes a specific DOCTYPE declaration named books.

� The next two lines are comments that denote the end of the prolog and
the beginning of the document proper.

Examining the XML declaration
Generally speaking, a declaration is markup that tells an XML processor what
to do. Declarations don’t add structure or define document elements.
Instead, they provide instructions for a processor, such as what type of docu-
ment to process and what standards to use.

As you discover in Chapter 5, the XML declaration can include version,
encoding, and/or standalone attributes:

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

This statement tells the processor some essential stuff:

� This is an XML document.

� The version of XML is XML 1.0.

� The character encoding is UTF-8.

� An external document may be needed to complete the document con-
tent (standalone=”no”).

DTDs can be internal (included within an XML document itself) or a separate
external document. If we include a standalone attribute in our XML declara-
tion, standalone=”yes” implies that the document doesn’t rely on markup
declarations defined in an external document — such as an external DTD —
but could include an internal DTD. If standalone is set to equal “no”, or if
you don’t include a standalone attribute, it leaves the issue unresolved —
translation, it may or may not reference one or more external DTDs.

If you’re not sure whether or not to include a standalone attribute, leave it
out. The default value is standalone=”no” , so the XML processor will load
whatever documents it needs.

115Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 115

Discovering the DOCTYPE
The document type (DOCTYPE) declaration is markup that tells the processor
where it can find a specific DTD. In other words, a DOCTYPE declaration links
an XML document to a corresponding DTD. Please also note that the DOCTYPE
declaration is an SGML construct and, therefore, follows SGML syntax and
not XML syntax. This explains why only some values appear in quotes in this
statement.

While you read this chapter, don’t confuse document type (DOCTYPE) declara-
tions with Document Type Definitions (DTDs). The DOCTYPE declaration is
the locator — it simply tells the processor where to find the DTD.

Here’s the basic markup of a DOCTYPE declaration:

<!DOCTYPE books SYSTEM “bookstore.dtd”>

<!DOCTYPE marks the start of the DOCTYPE declaration. books is the name of
the DTD used. SYSTEM “bookstore.dtd” tells the processor to fetch an
external document — in this case, a file named bookstore.dtd.

In the preceding example, bookstore.dtd is a relative Uniform Resource
Identifier (URI). URIs are basically filenames — in effect, locations. bookstore.
dtd points to an external DTD that resides in the same folder as the XML doc-
ument but not in the same document. We delve into how to reference exter-
nal DTDs in the “Calling a DTD” section later in this chapter. (Hint: You might
notice the resemblance between the terms URL and URI. No accident: A URL
is a type of URI.)

Understanding comments
Comments — use them and read them! An author (yes, we mean you) can use
comments to include text that explains a document better (humans love that
sort of thing) without that text being displayed — or even processed. The
syntax — the same as for HTML comments, because HTML is built on
SGML — looks like this:

<!-- comment text -->

Comments are like an owner’s manual; they can help you find your way
through a document when something breaks down or when you need to
make changes. Use them liberally, but know why and how to use them!

As long as you follow the correct format, comments remain visible only when
you’re viewing the markup itself. If you don’t follow the correct format,
though, parts of your comments may show up when users view your docu-
ment ,or your document may not display correctly. The correct format is:

116 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 116

<!-- Include your comment here -->

You have two rules to live by when you’re using comments:

� Never nest a comment inside another element.

� Never include - (hyphen) or -- (double hyphen) within the comment text.
Those characters might confuse processors into thinking that you’re
closing the comment — which means they’d end up treating the remain-
ing comment content as a syntax error!

Processing instructions
Using comments enables you to leave human-style instructions (that is, com-
ments) addressed to someone who reads the markup without disrupting the
document’s structure. Processing instructions are like comments addressed to
machines; they provide a way to send instructions to computer programs or
applications.

All processing instructions follow this format:

<?name data?>

A common example of a processing instruction in XML documents is a refer-
ence to stylesheets. For example, in the following processing instruction

<?xml:stylesheet type=”text/css” href=”bookstore.css”?>

the name is xml:stylesheet, and the data is type=”text/css” and
href=”bookstore.css”. If the processor recognizes the name, the data is
used — otherwise, it’s ignored.

All processing instructions must begin with <? and end with ?>.

How about that white space?
Any document has places where writing is and places where writing isn’t —
but in an XML document, many of the places that look blank are actually
white space — nonprinting characters such as spaces, tabs, carriage returns,
or line feeds. The XML specification allows you to add white space outside
markup; it’s ignored when the document is processed.

Think of it this way: If we wrote a book without paragraph breaks, readers
would give up reading after a few pages. A line of white space between para-
graphs (that is, a break) is easier on the eyes. The same logic applies to XML

117Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 117

documents. When you write markup, consider adding a line of white space
between sections. That way, when someone reads your XML document, he or
she can read it without a hitch.

Some elements treat white space in a special way. Including white space out-
side XML elements is safe, but do your homework before you add extra white
space inside an element. If you find yourself intrigued by the use of white
space, read up on the xml:space attribute, which lets applications know
when white space matters and when it doesn’t. For more information on
the xml:space attribute, check out the W3C site at www.w3.org/TR/
REC-xml#sec-white-space.

The preceding section on the XML prolog refers to your XML document —
not to a DTD. A DTD may include an XML declaration and comments, but
those are optional — and a DTD is not required to have a prolog.

Reading a DTD
Even if you don’t plan to create your own DTDs from scratch, knowing how to
read them is helpful. In theory — and we hope in practice — XML (and DTDs)
should be easy to read and understand. You should be able to look at a DTD,
list all elements and their attributes, and understand how and when to use
those elements and attributes.

Create a document tree to help you better understand the hierarchy of docu-
ment elements. A document tree begins with one root element. All other ele-
ments are children of (in other words, nest within) that root element.

In the following sections, we dissect the bookstore DTD, shown in Listing 8-2.
You need to get your mind around all the pieces and parts of a DTD before
you try to create one yourself. (If you already recognize all the pieces of a
DTD, feel free to move on over to Chapter 9 to find out more about XML
schemas.)

DTDs aren’t written in XML — they’re written in SGML and follow SGML
rules. The DTD terms must be used exactly as written below; in other words,
!ELEMENT, !ATTLIST, #REQUIRED, #PCDATA, and EMPTY must all be capital-
ized. If you change the case, your DTD won’t work.

Listing 8-2: The bookstore DTD, External Version

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT books (book+, totalCost, customer)>
<!ELEMENT book (bookInfo, salesInfo)>
<!ATTLIST book contentType (Fiction | Nonfiction) #REQUIRED format (Hardback |

Paperback) #REQUIRED>

118 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 118

<!ELEMENT bookInfo (title, author, publisher, isbn)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT salesInfo (price, itemNumber, date, source, shipping, cost)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST price priceType (Retail | Wholesale) #REQUIRED>
<!ELEMENT itemNumber (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT source EMPTY>
<!ATTLIST source sourceType (Retail | Wholesale) #REQUIRED>
<!ELEMENT shipping (#PCDATA)>
<!ELEMENT cost (#PCDATA)>
<!ELEMENT totalCost (#PCDATA)>
<!ELEMENT customer (custNumber, lastName, firstName, address, city, state, zip,

phone, email)>
<!ATTLIST customer custType (newRetail | prevRetail | newWholesale |

prevWholesale) #REQUIRED>
<!ELEMENT custNumber (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>

Using Element Declarations
Because the heart of an XML document is made up of its elements, you must
define them in your DTD. To do so, you use element type declarations.
Element type declarations are important because they not only name your
elements, but also define any children (nested elements) that an element
might have.

We start with the root element for a document based on our example DTD:

<books>
. . .
</books>

All other elements occur inside the root (if they’re not more deeply nested),
and all other elements relate back to the root somehow. Therefore, the root
element is topmost in a document’s hierarchy of elements. Part of what
makes XML so great is that the element hierarchy is logical and easy to read
or understand.

119Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 119

In the world of DTDs, elements can be defined to contain four types of con-
tent, as listed in Table 8-2.

Table 8-2 Types of Content Found in Elements
Content Type Example What It Means

ANY <!ELEMENT Name ANY> Allows any type of element
content, either data or ele-
ment markup information.

EMPTY <!ELEMENT Name EMPTY> Specifies that an element
must not contain any content.
(Not as silly as it sounds.)

Mixed content <!ELEMENT Name #PCDATA>

Or

<!ELEMENT Name (#PCDATA Allows an element to contain
| ChildName)*> character data or a combina-

tion of subelements and char-
acter data.

Element content <!ELEMENT Name (Child1, Specifies that an element can
Child2)> contain only subelements, or

children.

Perhaps you’re wondering what the commas (,) and the pipe bars (|) in the
table’s examples mean. Stay tuned; we discuss them in an upcoming section
(“Adding mixed content”).

Using the EMPTY element type
and the ANY element type
Sometimes, you may want an element type to remain empty with no content
to call its own, so you use an empty element instead of an element with an
opening tag and a closing tag. (Check out Chapter 4 to see the proper XML
markup for empty elements.) Empty elements are like boxes you put in place
but want left empty. To use them, first you have to point them out to the
processor — by declaring them. Such a declaration looks like this:

<!ELEMENT Name EMPTY>

120 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 120

In our example DTD, the source element is an empty element:

<!ELEMENT source EMPTY>

The source element does include an attribute (sourceType), but it has no
content.

If (on the other hand) you want your element to serve as a catch-all box that
you can put anything in, you may want to use another type of content specifi-
cation: ANY. If you declare an element to contain ANY content, you allow that
element type to hold any element or character data. Using the ANY content
specification creates no structure to speak of, however, so it’s rarely used.

Adding mixed content
Mixed content allows elements to contain character data, or character data
and child elements. In other words, it allows elements to contain a mixture of
information types. Even if an element actually contains only character data,
it’s still said to contain mixed content.

Keep in mind that mixed content is one of four valid types of element con-
tent. (The other three are element content [children], ANY, and EMPTY.)

The basic structure for a mixed-content element declaration is as follows:

<!ELEMENT Name (#PCDATA | Child1 | Child2)*>

If the element contains only character data, then the structure looks like this:

<!ELEMENT Name #PCDATA>

White space is not recognized within parentheses in DTDs. For example,
(#PCDATA) is the same as (#PCDATA).

In the following example, we take some liberties with our basic example
DTD and fiddle with the declaration for the author element. The string
<!ELEMENT begins the declaration; author is the element name.

<!ELEMENT author (#PCDATA | publisher)*>

Including #PCDATA means that the element may contain parsed character data,
which is text that the document processor actually looks at and interprets to
display both content and markup. (That’s what the PC part is referring to —
parsed character.) For example, entity references in the character data are
replaced with their entity values. Whenever you want your element to con-
tain parsed character data, use the #PCDATA keyword. If you simply want an
element to contain character data with no markup, use (#CDATA) by itself for
the content definition part.

121Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 121

What does | signify? In this example, | means that the author element may
contain parsed character data or a publisher element. The purpose of
mixed content is to enable the author to specify an element that may contain
both text and other elements.

With mixed content, you can’t control the order of the elements or how many
times they appear. In effect, you give up control over some features of docu-
ment structure when you use mixed-content models.

In the preceding example, you also find the element name publisher. This
means that the element named publisher may nest within the parent ele-
ment author. The * in the preceding markup is required in mixed-content
element type declarations that contain both text and elements. It means that
any number of the preceding group can appear — in other words, #PCDATA
and/or any number of the nested elements listed. See the following section
for more information on symbols in declarations.

You can work with mixed content in one of two ways:

� Use only parsed character data

� Allow an element to contain both text and other elements (In that case,
don’t forget the asterisk!)

Using element content models
An element content model describes the child elements that an element can
contain. The basic structure is

<!ELEMENT Name (childName)>

which states that the element Name must contain the childName element.

In the following example, as with all element declarations, !ELEMENT begins
the declaration. Then the element receives its name, books. Next comes the
content specification, which states that books may have a child, book. The +
is an occurrence indicator that states the book element must occur at least
once — but also that it can be used as many times as needed. For clarity, the
+ is also called the one or more times occurrence indicator.

<!ELEMENT books (book+)>

The element content model uses occurrence indicators to control the order
and number of times that elements can occur. Take a look at Table 8-3.

122 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 122

Table 8-3 Occurrence Indicators
Symbol Example What It Means

, (comma) <!ELEMENT customer All child elements listed must be
(custNumber, used in the sequence shown.
lastName, firstName,
address, city,
state, zip, phone,
email)>

| (pipe bar) <!ELEMENT books Either the book1 element or the
(book1 | book2)> book2 element may occur inside

books.

(No symbol) <!ELEMENT books Indicates that a single occurrence
(book)> of book must occur inside books.

+ (plus sign) <!ELEMENT books The book child element must be
(book+)> used one or more times inside

books.

* (asterisk) <!ELEMENT books The book element may be used
(book*)> zero or more times within books.

? (question mark) <!ELEMENT books The book element may be used
(book?)> once or not at all within books.

Apply what you just read to our example. You use the , (comma) occurrence
indicator to imply sequence when listing elements. The example DTD uses
the following content model for the customer element:

<!ELEMENT customer (custNumber, lastName, firstName, address, city, state, zip,
phone, email)>

The preceding declaration means that custNumber must precede lastName,
which must precede the firstName element, and so on when nested within a
parent customer element.

Declaring Attributes
In the “Using Element Declarations” section earlier in this chapter, you found
out how to declare an element. In this section, you need to define an ele-
ment’s better half: its attributes. In techie terms, you need to include
attribute-list declarations in your DTD whenever you want elements to use
associated attributes. The attribute-list declaration lists all attributes that
may be used within a given element and also defines each attribute’s type
and default value.

123Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 123

The basic format for an attribute-list declaration is:

<!ATTLIST element-name attribute-name datatype defaultvalue>

The attribute-list declaration begins with the !ATTLIST string, followed by
white space. Remember, DTDs are case sensitive, so don’t forget to use capi-
tal letters. Next come the element name, the associated attribute’s name, its
type, and a default value. Here’s an example:

<!ATTLIST customer custType CDATA #REQUIRED>

The following list defines the terms that appear in attribute-list declarations:

� Element name is the name of the element to which the attribute belongs
(customer, in this case).

� Attribute name is the name given to the attribute (custType, in this
case).

� Datatype is one of the following nine kinds of datatype attributes:

• CDATA, or character data, enables the author to include any string
of characters that doesn’t include the ampersand (&), less-than
and greater-than signs (< or >), or quotation marks (“). These four
characters may be represented using character entities (&,
<, >, or ", respectively).

• ID creates a unique ID for an attribute that identifies an element.
This type is most often used by programs that process a document.

• IDREF allows the value of an attribute to be the same as the ID of
an element somewhere else in the document.

• IDREFS is just like IDREF, but the value may be made up of multi-
ple IDREFs.

• ENTITY allows you to use external binary data or unparsed enti-
ties. You’ll get the scoop on entities in the next section of this
chapter.

• ENTITIES allows you to link multiple entities.

• NMTOKEN restricts the value of the attribute to any valid XML name.

• NMTOKENS allows the value of the attribute to be composed of mul-
tiple XML names.

• NOTATION allows you to use a value already specified with a nota-
tion declaration in the DTD. (Notations are covered later in this
chapter.)

124 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 124

You can also use an enumerated list of values in place of a datatype. An
enumerated list is an inclusive list of all possible value for an attribute,
separated with vertical bars (|). The XML author has a choice! Here’s an
example:

<!ATTLIST price priceType (Retail | Wholesale) #REQUIRED>

� Default value consists of one of the following four options:

• #REQUIRED means you must always include the attribute when the
element is used. No specific default value for the attribute can be
included in this case, so you must include a value for it in your
XML document, like this:

<!ATTLIST element-name attribute-name CDATA #REQUIRED>

• #IMPLIED means the attribute is optional. The attribute may be
used in an element, but no default value is provided if the attribute
isn’t used. Here’s what it looks like:

<!ATTLIST element-name attribute-name CDATA #IMPLIED>

• #FIXED means the attribute is optional, but if used, the attribute
must always take on the default value assigned in the DTD. Thus:

<!ATTLIST element-name attribute-name #FIXED “value”>

• value simply defines a specific value as the default value — end of
story. You can use values other than the default value for this
attribute — this option just provides a value to be used if none is
included in your XML document. In other words, if your XML docu-
ment includes the element but doesn’t include the attribute, the
processor assumes that the element has an attribute with the
default value. Here’s the code that does the job:

<!ATTLIST element-name attribute-name CDATA
“default-value”>

Discovering Entities
Entity declarations are a little trickier than other declarations, but they sure
save you time! An entity declaration defines an alias for a block of text. You
can attach a name to a specific block of text and then insert the whole block
by using just one name.

125Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 125

For example, think about how quickly you could include your company’s
address in different documents that all used the same DTD. Or what if the
company moved? If your company address were defined as an entity, you
wouldn’t have to chase down every document to change the address — that
address is centralized, so you can make the change en masse.

An entity declaration in a DTD looks like this:

<!ENTITY entityName “replacementText”>

entityName is the name of the entity and is used to call up the replacement
Text in your document. Nice, huh? This allows you to take those long footers
— which you normally have to type again and again and again — and refer-
ence them with one word. No more extraneous typing — almost.

The two main classifications of entities are general entities and parameter
entities. A general entity is an abbreviation for data that becomes part of the
content of an XML document. A parameter entity is an abbreviation for data
that becomes part of the content of a DTD.

General entities
The XML specification supports two types of general entities: internal and
external. Internal entities hold their values in the entity declaration, whereas
external entities point to an external file.

Internal entities
To declare a general internal entity, you must use the following syntax:

<!ENTITY entityName “replacementText”>

or

<!ENTITY store1 “River Valley Center”>

To reference an internal entity anywhere in the text of your XML document,
you use an ampersand (&), followed by the entity’s name, followed by a semi-
colon (;), as in &store1;.

Try turning common strings of text, like your company name or a standard
copyright disclaimer, into entities.

Five commonly used internal entities are already defined as part of XML for
your use and are listed in the following table. You don’t have to define these
entities in your DTD before you use them in your XML document; you can
simply use them.

126 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 126

Entity Refers To Symbol

< Less-than sign <

> Greater-than sign >

& Ampersand &

' Single quotation mark or apostrophe ‘

" Double quotation mark “

External entities
External entities help you integrate external documents and files into your
XML document. In general, you use them in one of two ways:

� As a mechanism to divide your document into logical pieces. Rather
than creating a single, large, and unwieldy document, such as a book
stored in a single document that holds all of the chapters, you can store
each chapter in a separate file and use external entities to include those
files in a book document whose only job is to bring the chapters together.

� To reference images, multimedia clips, and other non-XML files.
Before you can include any non-XML file in your document, like a picture
of a book cover, you first have to reference it as an external entity.

To declare an external entity, you use the following syntax:

<!ENTITY entityName SYSTEM “system-identifier”>

The system-identifier is defined as a URI (or a URL). The most common
URI is a filename. You may also use the following syntax to refer to a public
identifier not stored on your system (for example, your local computer or the
system running your XML application):

<!ENTITY entityName PUBLIC “system-identifier”>

The benefit of using external entities is that they’re reusable. If you want to
use the same arrow image over and over again in a document, you have only
to create the entity for it once — and you can reference the entity time and
again. Or suppose you have a standard legal disclaimer — for example
“Warning, we can’t promise you’ll like our books” — that you
want to include at the end of every purchase order. You can save the dis-
claimer as a separate file, create an external entity that points to it, and then
reference that entity at the end of every purchase order.

If you create a general external entity that references a non-XML file, like an
image, Word document, or media clip, you can reference that entity only in an
attribute value. See the “Understanding Notations” section, later in this chap-
ter, for more information.

127Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 127

General entity references can be pretty handy, but they are subject to three
important limitations:

� You can’t use an entity before you define it. No general entity reference
may occur in a document until it’s been declared and defined in the doc-
ument’s DTD. To follow good DTD practices, always declare entities at
the beginning of the DTD document.

� Your entity references have to do something. In other words, circular
entity references — when an entity declaration mentions a second entity,
and the second entity declaration mentions the first — just don’t work.
The following example is an example of a circular reference:

<!ENTITY loc “Library of Congress &US;”>
<!ENTITY US “&loc; United States”>

The problem with this pair of declarations is that neither one defines a
plain, simple string by itself. Each declaration depends on the other, yet
neither is completely defined — which makes both machines and people
crazy. Avoid this error in your designs by all means possible!

� The entity has to refer to data that’s in the XML document. In other
words, you can’t use entities as shortcuts to writing the DTD. General
entity references can’t handle text that is only part of a DTD (and not
used as part of the XML document’s content). The reason for this rule is
that you might be tempted to abbreviate common DTD-reserved words,
such as (#PCDATA), as in this example:

<!ENTITY PCD “(#PCDATA)”>
<!ELEMENT Title &PCD;>
...
<!ELEMENT Item &PCD;>

DTDs do allow the use of another kind of entity — a parameter entity, which
can define substitutable text usable inside DTDs themselves. More about this
handy little item in the next section.

Parameter entities
A parameter entity is an entity that is created specifically for the purpose of
helping you use shortcuts when you write a DTD. They don’t refer to content
in XML documents at all.

Similar to general entities, parameter entities may also be internal or external.

Internal entities
Internal parameter entities work well to eliminate the need to repeat com-
monly used element and attribute declarations. Like other kinds of entities,
the parameter entity works like a gigantic = sign that says, “When I use this
markup, please replace it with that markup.”

128 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 128

In general, if you know that you need to repeat complex markup more than
twice in a DTD, consider taking time out to create a parameter entity so you
can use the entity reference instead of repeating the markup. This option ulti-
mately simplifies document maintenance, not just for you, but also for
anyone else who uses the DTD after you do.

As with general entities, parameter entities must be declared before they can
be used. We hope that’s intuitive: Without a definition, an XML parser can’t
know what to substitute for the %name; symbol when it appears in a DTD.

Here’s the general syntax for an internal parameter entity declaration:

<!ENTITY % entityName “replacementText”>

As with general entity references, entityName represents the name of the
entity, and replacementText represents the text that replaces that name
each time it appears as a parameter entity.

Unlike general entity references, parameter entities take the form %name; to
reference the entity when you use it in the DTD.

External entities
External parameter entities work well for using parts of DTDs with more flexi-
bility: You can use external parameter entities to carve DTDs into bite-size
bits of declarations that are easy to read and manipulate. You can then save
each bit in a separate file and create a single parameter entity in the master
DTD that points to each individual file. Using parameter entities in this way
lets you mix and match meaningful pieces of DTD markup in various XML
projects. Just customize the DTDs, changing specific markup as needed.

These kinds of parameter entities are called external parameter entity refer-
ences because they refer to information that’s external to the DTD in which
they appear. Thus, if you created three DTD files named book.dtd,
sales.dtd, and customer.dtd, respectively, you could use the following
markup to create a single DTD to combine their contents:

<-- Master DTD for book information, sales data,
and customer information -->

<!ENTITY % Bks SYSTEM “book.dtd”>
<!ENTITY % Sls SYSTEM “sales.dtd”>
<!ENTITY % Cust SYSTEM “customer.dtd”>
%Bks;
%Sls;
%Cust;

129Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 129

Understanding Notations
General external entities can be one of two types: parsed entities or unparsed
entities. If they contain text or XML, they are usually used as parsed entities —
the XML parser analyzes them as it goes through an XML document. General
external entities that are bypassed by the XML parser are called unparsed enti-
ties. The content of an unparsed entity can be anything — an image file, for
example, or an audio clip, Flash animation, Microsoft Word 2003 file — any-
thing the parser normally ignores.

When the XML parser identifies non-XML data, the parser returns control
over that data back to whatever application called the parser. As with
modern Web browsers, this standard operating procedure provides an oppor-
tunity to call a helper module or plug-in that knows how to handle this spe-
cial non-XML data so that the special data can be rendered or displayed
within the overall XML document.

All unparsed entities are general entities. Unparsed entities can only become
part of an XML document, not part of a DTD. Parameter entities are always
parsed entities. Parameter entities can only become part of a DTD.

To use unparsed entities you must use an entity declaration, a notation
declaration, and an attribute declaration. The format for the unparsed entity
declaration is:

<!ENTITY entityName SYSTEM “entity.url” NDATA id>

You declare an unparsed entity in a DTD, but it adds its content within an
XML document.

The entityName is the abbreviation for the unparsed entity, entity.url
gives the location of the file, and id is the notation type name that’s used to
specify the unparsed entity. For example, if you wanted to include a company
logo in an XML document, you could use this entity declaration in your DTD:

<!ENTITY logo SYSTEM “logo.gif” NDATA gif>

The inclusion of the NDATA keyword in the declaration, followed by a notation
type name, clues the parser into what’s going on — and allows the applica-
tion to invoke the right kind of help.

Then you must also create a <!NOTATION declaration to identify the NDATA
type and provide the application with the necessary identification to call the
correct helper or plug-in. A notation declaration represents a set of rules that
describes how an identifiable class of non-XML data behaves, which is usu-
ally different from how XML data behaves.

130 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 130

The format for a notation declaration is:

<!NOTATION id SYSTEM contentType>

For example, a notation for your logo might look like this:

<!NOTATION gif SYSTEM “image/gif”>

SYSTEM is an SGML and XML keyword that indicates an entity appears in a
URL or URI. PUBLIC indicates that a standard name for an entity is used. You
can use either SYSTEM or PUBLIC in an external entity declaration.

In order to use an unparsed entity in your XML document, you must use it as
an attribute, so first add an element declaration to the DTD for the element
that contains the attribute (in this case, the image element):

<!ELEMENT image EMPTY>

Then add an attribute declaration for the attribute, named source in this
case:

<!ATTLIST image source ENTITY #REQUIRED>

At last you can use the unparsed entity in your XML document! (Whew! But it
saves you work later. Honest.)

<book>
<image source=”logo”/>
...
</book>

Calling a DTD
DTDs come in two flavors: internal and external. Internal DTDs are entirely
contained in the XML prolog of an XML document. External DTDs are con-
tained in an external file and are referenced in the DOCTYPE declaration of an
XML document.

Internal DTDs
If your DTD is short and simple, and you don’t need to include it in a large
group of XML documents, you may want to use it as an internal DTD.

131Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 131

To add an internal DTD to your XML document, you include it within the
DOCTYPE declaration, like this:

<!DOCTYPE rootElement [
... the entire DTD goes here ...
]

For the bookstore DTD, our root element is books, so our XML document
with an internal DTD would have a format like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE books [
<!ELEMENT books (book+, totalCost, customer)>
<!ELEMENT book (bookInfo, salesInfo)>
...
]
<books>
<book contentType=”Fiction” format=”Hardback”>
<bookInfo>

...

Because we’re planning to use the bookstore DTD for a large group of XML
documents, we chose to use an external DTD instead, as discussed in the fol-
lowing section.

External DTDs
Using external DTDs is a great idea, because you can then share a single DTD
among any group of XML documents. As long as all those documents use the
markup described in the DTD, you can manage that markup by operating on
a single, common DTD instead of having to slog through changing the same
prolog information over and over across an entire set of XML documents.

To use an external DTD with an XML document, simply reference the external
DTD in the DOCTYPE declaration in the XML prolog of your XML document.

As detailed earlier in this chapter, the format for a DOCTYPE declaration is:

<!DOCTYPE rootElement SYSTEM dtd.url>

The rootElement is the name of the root element in your XML document,
and dtd.url is the location of the external DTD that you’re using to validate
the XML document.

To add bookstore.dtd as an external DTD in our bookstore.xml file, we do
the following:

132 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 132

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<!DOCTYPE books SYSTEM “bookstore.dtd”>
<books>
...

In this case, the URL is simply the file name, because the XML document and
the DTD are in the same folder. If they aren’t in the same folder, make sure the
URL uses the correct file path to the location of the DTD.

When to use an internal or external DTD
Obviously, there are advantages and disadvantages to both internal and
external DTDs. Your choice depends entirely on the form that works best for
your XML document needs.

Formally, internal and external DTDs are called internal and external subsets.
These two approaches follow the same markup structure but have some key
differences, such as where they live. Sometimes, the best approach is to com-
bine internal and external DTD subsets.

The inside view: Internal DTD subsets
The most important drawback to using internal DTDs is that only the docu-
ment that contains them can use them. When you create an internal DTD,
you’re essentially keeping all the information in one single document.
However, internal DTDs have a few benefits, as follows:

� A single file processes faster than multiple files.

� Validity and well-formedness are kept in the same place. Any processor
can process your document without looking elsewhere.

� You can use internal DTDs on a local system without connecting to the
Internet — you can take that file on the plane and run it on a laptop!

Calling for outside support: Referencing external DTDs
Although internal DTDs are quicker, easier, and more mobile, we don’t neces-
sarily recommend them over external DTDs. Compared with internal DTDs,
external DTDs have many advantages:

� They’re recyclable. You can use one DTD file for multiple documents.
(For internal DTDs, there’s one in every file.)

� They’re versatile. Your external DTD can simply be a public one
already created by someone else. (Internal DTDs are totally private and
isolated.)

133Chapter 8: Understanding and Using DTDs

14_588451 ch08.qxd 4/15/05 12:23 AM Page 133

� They’re easy to change. Editing an external DTD can be a breeze when
you need to change one item found in multiple documents. (You can
only edit internal DTDs one at a time.)

� They’re timesavers. Because you can manage and maintain external
DTDs in single, discrete documents (rather than multiple instances of
the same in-line SGML markup in multiple XML documents), there’s less
work involved in keeping external DTDs up-to-date than internal ones.

Two are sometimes better than one
Sometimes, you need a large, complex external DTD; other times, you not
only need a monster DTD, but you also want to define more information inter-
nally. We find that more often than not, authors combine internal and exter-
nal DTDs to get the most from their XML document structure.

You already know how to read internal and external DTDs. Combining DTDs
isn’t much different. Live by these two major rules when mixing these two
types of DTDs:

� An XML processor always reads the internal subset first. Therefore, the
internal DTD takes precedence.

� Entities declared in the internal subset can be referenced in the external
subset.

When you’ve had some practice at mastering all the ins and outs of using DTDs
for validation, you can add some more tools to your kit. Thus, Chapter 9 intro-
duces another approach to validation: using XML Schemas.

134 Part III: Building In Validation with DTDs and Schemas

14_588451 ch08.qxd 4/15/05 12:23 AM Page 134

Chapter 9

Understanding and Using
XML Schema

In This Chapter
� Defining schemas (yes, with an s)

� Declaring datatypes

� Declaring elements and their attributes

� Dealing with entities, notations, and more

� Knowing when and why to use schemas

� Referencing schemas

� Validating schemas and documents built on schemas

Although you can use any old markup to describe your XML documents,
chances are any document you come up with will be more valuable if it

includes a structure that the business solution can actually work with. For
example, Office 2003 uses schemas for XML documents, so if your business
uses Office 2003, XML Schemas are a good choice for validating your XML
documents.

An XML Schema (created according to the XML Schema specification) defines
rules for the structure and content of an XML document. Schemas specify the
overall structure of an XML document and identify all of the components of the
XML document. Like documents that adhere to Document Type Definitions
(DTDs, covered in Chapter 8), documents that adhere to an XML schema are
considered valid documents.

A valid document is not the same as a well-formed document. All XML docu-
ments must follow certain standards to be considered well formed — they
must (for openers) contain a root element and follow proper syntax, and all
additional elements must be nested. (We cover well-formed documents in
Chapters 4 and 5).

15_588451 ch09.qxd 4/15/05 9:36 AM Page 135

A well-formed XML document is the first requirement for a valid XML docu-
ment. On the other hand, not all XML documents have to be valid. A document
is considered valid if it adheres to the rules of a schema — or to a DTD, for that
matter. As long as you have a well-formed document, you don’t have to worry
about validity unless the application that is ultimately going to process your
document requires that the document be valid. See Chapters 4 and 5 for more
details on requirements for well-formed and valid XML documents.

If you’re building an XML document according to a schema, you probably
want it to be valid. When you follow the rules of a well-built schema, it can
help you construct a document that’s valid and well made.

What’s an XML Schema?
You build an XML Schema document (just call it a schema for ease of both
typing and reading) according to the rules of the XML Schema specification
defined by the World Wide Web Consortium (W3C).

A schema lays down the rules a valid XML document should follow to ensure
that the information contained in the XML document is in the right form.
In effect, the schema acts like a template, specifying the form that the XML
document must take. When a program processes an XML document written
against a schema, it validates (compares and checks) the document against
the schema.

You can, of course, build schema documents from scratch, but don’t forget
that you can also reuse schemas — either the ones you’ve created or third-
party schemas that are available (for example) from industry groups. In
Chapter 11, you look in on the process of modifying an existing schema.

As you see a bit later in the chapter, the XML Schema specification is nothing
more than a guide to creating an XML document that defines the structure
that other XML documents should follow. Despite their special purpose,
schemas are just XML documents. You use XML markup to create them; the
XML Schema specification tells you what markup to use and how.

If you’ve read up on DTDs, you know that a DTD can be partially or totally
included in the XML document it governs. This means the DTD and XML doc-
ument can be contained in one file. (Look back to Chapter 8 for all the details
on the factors that govern where you put your DTD.) We bring this facet of
DTDs up here because it’s important for you to know that schemas don’t
work this way. Schemas are stored in a totally separate file from the XML
documents they govern. In other words, all schemas are external to their doc-
uments; you can’t combine a schema and its XML document into a single file.

136 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 136

As a separate document, a schema consists of declarations for elements and
attributes, and specifies how those elements and attributes work together to
define content and to establish a document structure. In addition, a schema
allows you to restrict the content of these elements and attributes by using
and defining very specific datatypes. (More on datatypes in the next section.)

XML Schema, though only one of many schema specifications, is the one rec-
ommended by the W3C. You can use one of the other schema options — such
as REgular LAnguage for XML Next Generation (RELAX NG), Schematron, and
Microsoft’s XML-Data Reduced (XDR) schema language — but chances are
you won’t get a lot of support for these options beyond a few systems. We’re
a bit more mainstream in this book; when we talk about schemas, we’re
always referring to those written according to the XML Schema specification
unless we say otherwise. For more information on the varieties of available
schema mechanisms, see the XML Cover Pages at

www.oasis-open.org/cover/schemas.html

An XML Schema document includes many parts — conveniently listed in
Table 9-1 — along with some examples from our favorite bookstore schema,
bookstore.xsd.

Table 9-1 XML Schema Lingo
Term Syntax Example What It Does

XML dec- <xml version= <xml version= Tells the processor
laration ”version” ”1.0”encoding= which version of

encoding= ”UTF-8”> XML and which
”encoding”> character encoding

to use

Schema <xsd:schema <xsd:schema Identifies the
element xmlns:xsd= xmlns: docu ment as

”namespace”> xsd=”http:// XML Schema
www.w3.org/>
2001/XMLSchema”

Element <xsd:element <xsd:element Defines the element
declaration name=”name”> name= named books

”books”>

Attribute <xsd: <xsd:attribute Defines the
declaration attribute name= attribute named

name=”name” ”sourceType” sourceType
type= type=”xsd:
”datatype”> string”>

137Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 137

Even if you don’t plan on writing your own schemas from scratch, it’s useful
to know how to read and understand them. You should be able to look at a
schema, list all the elements, attributes, and datatypes, and understand how
and when to use those elements and attributes and how to format the data in
your XML document.

Unlike a DTD, schemas are simply XML documents that use XML’s standard
markup syntax to define the structure for other documents. When you write
a schema, you’re simply writing XML. This means you don’t have to learn a
new language; you only have to learn how to use a particular set of XML ele-
ments and attributes.

Which is where this chapter comes in. Following a brief detour down the road
to datatype land, you’ll have a chance to look at each part of a schema so
that you understand each piece of it before you read someone else’s schema
or create your own schema. (If you’re already familiar with the components
of an XML Schema document, go to Chapter 10 to find out how to build a
custom XML Schema.)

So Many Datatypes, So Little Time
Unlike Document Type Definitions (DTDs), which are great for directing the
development of documents that consist mainly of groups of text, schemas are
great for directing documents that include lots of data, such as phone num-
bers, addresses, part numbers, or prices. Schemas work much better when
you want to be sure a document not only follows a particular structure, but
also uses particular kinds of data — numbers versus strings, for example —
because it allows you to get very specific about the format of that data in the
XML document.

Think about an invoice for a minute and the particular kinds of data it includes.
It might include strings of text that describe services rendered or products
sold, payment addresses, and terms of payment. It also includes a number of
other things: the amount in dollars for a particular product or service, the
quantity of something sold, or the number of hours spent delivering a partic-
ular service. A schema allows you not only to break down the invoice into a
basic structure defined by elements and attributes, but also to define what
kind of data each element and attribute can hold. For example, you can spec-
ify that any elements that describe amounts can hold only numbers with two
digits after the decimal point.

In other words, schemas not only give you control over your document struc-
ture, but also give you control over your document data. The secret to con-
trol of the kind of data an XML document includes is datatypes. A datatype

138 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 138

indicates what kind of data you expect; the XML Schema specification sup-
ports 44 different datatypes. (Betcha didn’t know there were that many types
of data, huh?)

An exhaustive list of all datatypes would overflow this book (and maybe put
you to sleep), but a sampling of them includes these:

� string: A collection of characters that is treated as a simple string of
text.

� decimal: A number that includes a decimal point and some number of
decimal places after the point. When you use the decimal datatype in
your schema, you can specify how many decimal places the number in
the element or attribute can include.

� dateTime: The date and time. You can specify what pattern the date and
time should use.

� anyURI: A URI or URL.

� integer: A number without a decimal point. When you use this
datatype, you can specify the total number of digits the number can
include.

Each of the 44 datatypes has a list of constraints that you can use to further
define the data described with an element or attribute. For example, the
string datatype has both minLength and maxLength constraints that you
can use to specify the minimum and maximum lengths for the string. If you
want to be sure the value of a firstName element is a string with at least 1
character but no more than 20, you can specify that as part of the string
datatype for the element.

Databases allow for similar datatype controls. The idea is to carefully guide
the data stored in the different database fields. If you’re creating XML docu-
ments whose data will eventually be moved into a database, you can use a
schema to create rules for the data in the document that are compatible with
the rules in the database.

Part 2 of the XML Schema Recommendation is entirely devoted to the partic-
ulars of datatypes. You can read about each of the 44 datatypes and their
constraints at www.w3.org/TR/xmlschema-2/.

XML Prolog
The XML prolog is the housekeeping section of the document. It contains
useful information about the document that is helpful to both people and
computers — whoever/whatever may read the document.

139Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 139

Because a schema is simply an XML document, and the XML declaration is
the first thing in an XML document, each schema starts with an XML declara-
tion. Even though your schema is just an XML document with a particular
purpose — to define a schema — you need to say, “Hello, this document uses
XML Schema.” You do that in the prolog. So at the very least, the prolog to
your schema needs to include:

� An XML declaration: An XML declaration identifies the document as an
XML document and specifies its version:

<?xml version=”1.0” encoding=”UTF-8”?>

For more information about XML declarations, see Chapter 5.

� A schema element declaration: The schema element is similar to the
root element in a DTD; it contains all the other elements in the XML
Schema document and includes an xmlns (XML NameSpace) attribute
that specifies the namespace for the schema. The namespace is the URL
that provides the details of XML vocabulary — in this case, the XML
Schema vocabulary — that the document must adhere to. The resulting
line of code looks like this:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

By using the format xmlns:xsd, you indicate that any elements or attributes
with an xsd: prefix belong to this namespace (http://www.w3.org/2001/
XMLSchema).

You don’t have to use the prefix xsd: — xs: is also commonly used. You can
actually use any prefix you choose, as long as you specifically associate it
with the XML Schema namespace. It’s not, however, valid to use xsd: or xs:
to refer to namespaces other than the XML Schema namespace.

In fact, if you’re only using one namespace, you don’t have to use a prefix
at all! Prefixes are used to distinguish between two or more namespaces. If
you are only using elements and attributes as defined in the XML Schema
specification — and, therefore, referencing only one namespace in your XML
document — you can indicate that namespace without using a prefix, like so:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”>

In this case, you don’t need to prefix elements and attributes in your schema
document with xsd: — it’s assumed.

For more details on using namespaces, see Chapter 11.

This is what a complete prolog for an XML Schema looks like:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

140 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 140

What does XSD stand for? When XML Schema were first proposed by the
W3C, they were called XSDs (XML Schema Definitions) — corresponding to the
nomenclature for DTDs (Document Type Definitions). By the time XML Schema
became an official W3C specification, however, Definition had been dropped
from the official name, and these documents were called XML Schema.

Document Structures
Following the XML prolog is the meat of the schema that defines the schema’s
basic structures — elements and attributes. It also specifies how these struc-
tures work together — which elements are contained in other elements and
which attributes belong to which elements.

Element declarations
XML Schema documents always include elements, and all elements included
in a schema must be defined in an element declaration. (Write that down so
you don’t forget it.) The element declaration must include the element name
and may also include the element datatype. There are two categories of ele-
ment declarations:

� Simple type definitions: These declare elements that cannot contain
any other elements and cannot include any attributes.

� Complex type definitions: These declare elements that can contain
other elements and can also take attributes. The attribute declara-
tions that go with these kinds of elements are part of the complex
type definition.

Examples make this much clearer, so read on for a couple. In the follow-
ing example, a simple type definition is used to specify an element named
date that can contain only date information in the format YYYY-MM-DD —
year-month-day:

<xsd:element name=”date” type=”xsd:date”/>

The type attribute specifies the datatype for the element, in this case, a date.
The xsd: prefix before date (xsd:date) indicates that this datatype is part of
the XML Schema vocabulary (namespace).

The date datatype (YYYY-MM-DD) is only one of several XML Schema data-
types for date and time information. Others include duration, dateTime,
time, date, gYearMonth, gYear, gMonthDay, gDay, and gMonth. For details,
see Part 2 of the XML Schema Recommendation at www.w3.org/TR/xml
schema-2/.

141Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 141

In the following example, a complex type definition — the stuff between the
<xsd:complexType> and </xsd:complexType> tags — specifies an element
named book that includes a required attribute named format that uses the
XML Schema string datatype:

<xsd:element name=”book”>
<xsd:complexType>
<xsd:attribute name=”format” type=”xsd:string” use=”required”/>
</xsd:complexType>
</xsd:element>

A content model defines what type of content — text, other elements, or
some combination of the two — can be contained in an element. There are
four basic content models for XML Schema elements. These four content
models are:

� Text: The element can contain only text. The following example is a
simple type definition for an element with text-only content. A string
datatype is used, because text is a string of characters.:

<xsd:element name=”author” type=”xsd:string”/>

� Empty: The element cannot contain child elements or text — that is, the
content of the element must be empty. Empty elements can include
attributes, as in the following example of a complex type definition for
an empty element:

<xsd:element name=”source”>
<xsd:complexType>
<xsd:attribute name=”yearsInService” type=”xsd:positiveInteger”/>
</xsd:complexType>

<xsd:element>

When you create an element that’s empty (or that can contain only text),
you can use a simple type definition to declare it — as long as it doesn’t
contain any attributes. If your element’s content model includes other
elements (whether element content or mixed content) — or includes
attributes — you have to use a complex type definition.

� Element: The element can contain child elements, like this:

<xsd:element name=”bookInfo”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”title”/>
<xsd:element ref=”author”/>
<xsd:element ref=”publisher”/>
<xsd:element ref=”isbn”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”title” type=”xsd:string”/>
...

142 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 142

The bookInfo element is a complex type element that can contain a
sequence of four elements. It could be used in an XML document as
follows:

<bookInfo>
<title>London Bridges</title>
<author>Patterson, James</author>
<publisher>Little, Brown</publisher>
<isbn>0316710598</isbn>
</bookInfo>

Notice the xsd:sequence element that encloses the list of child ele-
ments in the previous example. This element is a compositor element,
and its job is to specify order and occurrence constraints for these child
elements. The three compositors included in XML Schema are:

• sequence indicates that the elements must occur in the specified
order in the XML document. Use this compositor if you want to be
sure every instance of an element includes all of its child elements
in a particular order.

• choice indicates that any one of the elements may occur in the
XML document. Think of this compositor as the multiple-choice
compositor. Use it if you want the element to contain only one of
several possible children.

• all indicates that any or all of the elements may occur in the XML
document. This is the free-for-all compositor. Use it if you don’t care
if the element contains one, none, some, or all possible children.

Elements referenced in the sequence must appear in this exact order in
the XML document. That’s because they’re contained with the sequence
compositor. If we change xsd:sequence to xsd:choice, the bookInfo
element could contain only one of the elements listed. If we change it to
xsd:all, the bookInfo element could then contain any number of the
elements, or none, in any order. Small change; big effect.

� Mixed: The element can contain child elements and text, and uses com-
positor elements to define the structure for child elements:

<xsd:element name=”confirmOrder”>
<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:element ref=”opening”/>
<xsd:element ref=”fullName”/>
<xsd:element ref=”date”/>
<xsd:element ref=”title”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The mixed attribute with a value of true in the complexType element
indicates that character data can be used in between the child elements
of the confirmOrder element.

143Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 143

Mixed content (as defined in the preceding example) could be used in an
XML document as follows:

<confirmOrder>
<opening>To:</opening>
<fullName>Jolene Wilkes</fullName>,
This is to confirm that on <date>2005-01-24</date>,
we received your order for
<title>Whiteout</title>.
We expect to ship your title via media mail
within 2 business days of your order.
Thank you,
Best Seller Bookstores, Inc.

</confirmOrder> Attribute declarations
Attribute declarations are code snippets that include just a name and a type.
They are always simple type definitions; they can’t contain elements or
other attributes. Complex type definitions, however, can contain one or more
attribute declarations — which must be declared at the very end of the com-
plex type, after all other components of the complex type have been speci-
fied. In the following example, the attribute custNumber is specified as part
of the complex type definition of the element customer:

<xsd:element name=”customer”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”firstName” type=”xsd:string”/>
<xsd:element name=”lastName” type=”xsd:string”/>

</xsd:sequence>
<xsd:attribute name=”custNumber” type=”xsd:positiveInteger”/>

</xsd:complexType>
</xsd:element>

Attributes are always optional unless you include a use attribute with the
value required, as in the following example:

<xsd:attribute name=”custType” type=”xsd:string” use=”required”/>

Attribute groups
If you’re all set to use the same set of attributes with more than one element
in an schema, you can create an attribute group that can be accessed by as
many elements as you choose. This following markup snippet combines
several different geographical locations into a single attribute group. This

144 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 144

group could be used over and over again with any element that would refer to
location:

<xsd:attributeGroup name=”location”>
<xsd:attribute name=”US” type=”xsd:string”/>
<xsd:attribute name=”Canada” type=”xsd:string”/>
<xsd:attribute name=”Europe” type=”xsd:string”/>
</xsd:attributeGroup>

An attribute group must be declared globally — that is, at the top level of
your schema (right below the schema element declaration).

What about that white space?
Well, there’s more to it than doesn’t meet the eye. White space includes
nonprinting characters such as tabs, carriage returns, spaces, or line feeds.
White space is ignored by XML processors as long as it is included outside
the XML markup itself. For example, an extra carriage return between two
element declarations is ignored.

However, white space within the XML document content is not always
ignored by XML Schema. Element or attribute content that includes white
space is normalized according to the value declared for the whiteSpace
facet in the element or attribute definition. The possible values for the
whiteSpace facet are as follows:

� preserve indicates that no white-space normalization is done.

� replace indicates that tabs, carriage returns, and line feeds are
replaced with spaces.

� collapse indicates that after tabs, carriage returns, and line feeds are
replaced with spaces, sequences of spaces are collapsed to a single
space.

For example, you could include a whiteSpace facet with value =
“preserve” in the definition of the fullName element in the previous
example of a mixed-content model. Doing so ensures that the space
within the fullName content is preserved:

<xsd:element name=”confirmOrder”>
<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:element ref=”opening”/>
<xsd:element ref=”fullName”/>
<xsd:element ref=”date”/>
<xsd:element ref=”title”/>

145Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 145

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”opening” type=”xs:string”/>
<xsd:element name=”fullName”>
<xsd:simpleType>
<xsd:restriction base=”xs:string”>
<xsd:whiteSpace value=”preserve”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
...

A simpleType element and a restriction element are used here to specify a
white-space preference for the fullName element. A simpleType element is
used to create a simple type definition for an element that can’t contain any
other elements or any attributes. A simpleType element is used with either a
restriction element or an extension element to constrain (restriction)
or expand (extension) the properties of the element’s datatype. In this case, a
restriction element is used with a string datatype to create a new datatype
that preserves any white space in the content of the fullName element. Why
would you want to preserve the white space anyway? In this case, preserving
the white space is a way to retain the space between the first and the last name
in the fullName element content.

Listing 9-1 shows the full schema for our order-confirmation example of a
mixed content model. This file (plus the XML file it validates — confirm.
xml) is available on the Web site for this book at www.dummies.com/go/
xmlfd4e.

Listing 9-1: confirm.xsd

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”confirmOrder”>
<xsd:complexType mixed=”true”>

<xsd:sequence>
<xsd:element ref=”opening”/>
<xsd:element ref=”fullName”/>
<xsd:element ref=”date”/>
<xsd:element ref=”title”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”opening” type=”xsd:string”/>
<xsd:element name=”fullName”>

<xsd:simpleType>

146 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 146

<xsd:restriction base=”xsd:string”>
<xsd:whiteSpace value=”preserve”/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”date” type=”xsd:date”/>
<xsd:element name=”title” type=”xsd:string”/>

</xsd:schema>

This schema has several parts:

� The XML prolog and schema declaration comprise the first part. The
schema element is the root element of the XML Schema document:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

� The second part is a complex type definition for the confirmOrder
element — it requires a complex type definition because it contains
other elements. The other elements are in a sequence, so they must
occur in that specific order. Each of the other elements include a ref
attribute that references the name of an element that’s declared outside
the sequence — actually, in the next part of the schema!

<xsd:element name=”confirmOrder”>
<xsd:complexType mixed=”true”>

<xsd:sequence>
<xsd:element ref=”opening”/>
<xsd:element ref=”fullName”/>
<xsd:element ref=”date”/>
<xsd:element ref=”title”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

� The third part contains element declarations for each element in the
sequence. Note that the declaration for the fullName element doesn’t
include a type attribute. Instead, a simpleType element is used to create
a simple type definition that includes a restriction element. A specific
but anonymous (unnamed) datatype is derived from the string datatype
by putting a constraint on it. The new datatype is a string datatype with
the additional feature that it preserves white space.

You can also derive a new named datatype — the advantage of naming a
datatype is that you can re-use it. You find out more about user-derived
datatypes in the following section.

The last line of the schema is the closing tag of the xsd:schema
element — that’s all, folks!

147Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 147

<xsd:element name=”opening” type=”xsd:string”/>
<xsd:element name=”fullName”>

<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:whiteSpace value=”preserve”/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”date” type=”xsd:date”/>
<xsd:element name=”title” type=”xsd:string”/>
</xsd:schema>

Datatype Declarations
A datatype declaration is markup that defines the data format for the content
of an element or attribute and is included in the element or attribute declara-
tion, as in the following example:

<xsd:element name=”publisher” type=”xsd:string”/>

The datatype declaration in this example is included in the element declara-
tion for the element named publisher. The type attribute specifies that the
type is equal to xsd:string, which is the string datatype from the XML
Schema namespace.

XML Schema includes no less than 44 built-in datatypes — and allows you
to derive your own datatypes by specifying additional constraints on the 44
basic types. XML Schema not only includes more datatypes than any other
schema language, but it’s also the only schema language that lets you define
your own, reusable datatypes. This makes it the language of choice for vali-
dating XML documents that include a lot of data.

Simple datatypes
A datatype can be used in a simple type definition, where an element con-
tains no attributes and no other elements, as in the following example:

<xsd:element name=”itemNumber” type=”xsd:integer”/>

This line of code specifies that the content of the itemNumber element in our
XML document must be formatted according to the XML Schema definition
for the datatype named integer.

148 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 148

Complex datatypes
A datatype can also be defined in a complex type definition, where an ele-
ment contains other elements and/or attributes, as in the following example:

<xsd:complexType name=”priceInfo”>
<xsd:sequence>
<xsd:element ref=”priceType”/>
<xsd:element ref=”priceN”/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name=”priceType” type=”xsd:string”/>
<xsd:element name=”priceN” type=”xsd:decimal”/>

This creates a new type named priceInfo that includes the sequence of two
elements listed. But wait — where’s the complex type element? Aaah, very
good, grasshopper! The complex type element is the price element that
include the priceInfo datatype, as follows:

<xsd:element name=”price” type=”priceInfo”/>

This datatype doesn’t include an xsd: prefix because it’s not part of the XML
Schema namespace — of course not; we just created it!

Other elements in this XML Schema can also use this priceInfo datatype, as
shown in the following example:

<xsd:element name=”shipping” type=”priceInfo”/>

Technically, you can use a complex type definition to create a new type —
which can be used in an XML Schema document anywhere that a datatype
can be specified. Remember, however, that the new type is actually a content
model (described earlier in the chapter, in the discussion of element declara-
tions); it isn’t really a datatype.

Defining constraints and value checks
New datatypes can be derived from any of the 44 built-in datatypes through the
use of simple type definitions and a restriction element. A restriction
element creates a restriction constraint — a limit on a built-in datatype, which
narrows the definition to be whatever you specify.

In the following example, a simple type definition with totalDigits
and fractionDigits constraints is used to specify valid content for a
costNumber element:

149Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 149

<xsd:element name=”costNumber”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:totalDigits value=”6”/>
<xsd:fractionDigits value=”2”/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element>

This snippet of code creates a new, anonymous, user-derived datatype with a
base datatype of decimal, with constraints on the number of total digits (six)
and the number of digits after the decimal point (two).

For additional information on the 44 built-in datatypes and on the use of the
restriction element to create new datatypes, see Part 2 of the XML Schema
Recommendation at www.w3.org/TR/xmlschema-2/.

Dealing with Entities,
Notations, and More

Although notations (statements that tell a processor how to handle non-XML
data, such as an image) and entities (structures that hold references to fre-
quently used text or the location of external documents you want to include
in your XML document) can be used in XML Schema, they can be used only in
certain, very specific ways.

Using notations in XML Schema is a tedious process — this is one of the
limitations of XML Schema — so if your documents don’t need notations
and entities, feel free to move on to the next section on annotations.

For starters, entities and notations in XML Schema can be used only as
attribute values and can be used only if there’s a preceding notation dec-
laration in the schema, as shown in this example:

<xsd:notation name=”gif” public=”image/gif” system=”GIFViewer.exe”/>

In this example, the notation declaration includes the name of the notation as
well as values for the public and system attributes — attributes that define
the location of external non-XML data as well as an external application to
handle the data.

150 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 150

After you’ve declared a notation, you associate the notation declaration
with an attribute. The way to do that is to derive a new datatype from the
NOTATION datatype, as follows:

<xsd:simpleType name=”imageType”>
<xsd:restriction base=”xsd:NOTATION”>
<xsd:enumeration value=”gif”/>
</xsd:restriction>
</xsd:simpleType>

This creates an enumerated list — a list with one list item, in this case — for
imageType that limits the value to gif.

Next, associate an attribute with the new datatype:

<xsd:complexType name=”photos”>
<xsd:attribute name=”imageFormat” type=”imageType” use=”required”/>
</xsd:complexType>
<xsd:element name=”img” type=”photos”/>

For more information on notations and entities, and how to use them in a
DTD, see Chapter 8.

If your XML document includes references to external non-XML data or exter-
nal entities, you may want to use a DTD for validation rather than an XML
Schema.

Annotations
Annotations are used in XML Schema documents to provide additional infor-
mation to humans who happen to read the document (and/or to other appli-
cations). You start with an annotation element and then include either a
documentation element (if you want the information read by humans —
then it works like a comment in XML and HTML) or an appInfo element (if
you want the information read by computer applications — then it’s similar
to XML processing instructions). In this example, a documentation element
is contained in the annotation element:

<xsd:element name=”books”>
<xsd:annotation>
<xsd:documentation xml:lang=”en”>
This is a collection of best-selling books.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

151Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 151

The documentation includes a comment for the reader between the
documentation tags.

In the following example, we add an appInfo element to our markup to
include information from another XML schema language (in this case,
Schematron) in our XML Schema document:

<xsd:element name=”books”>
<xsd:annotation>
<xsd:documentation xml:lang=”en”>
This element specifies book, sales, and customer information.
</xsd:documentation>
<xsd:appinfo>
<assert test=”totalCost > cost”>totalCost should be greater than

cost</assert>
</xsd:appinfo>
</xsd:annotation>

</xsd:element>

Schematron is another schema language used to extend the capabilities of
XML Schema documents. Schematron allows XML Schema documents to
include conditional statements such as the one included in the preceding
example.

Deciding When to Use a Schema
You don’t have to use a DTD — or a schema, for that matter — to create and
use XML documents. Validating your XML documents is a really good idea
but entirely optional. When validity is important, however, you have to
decide when to choose schemas or DTDs.

Use XML Schema when you want:

� To make sure that your XML document includes all the needed infor-
mation in a correct and consistent format. An invoicing system is a
good example. Invoices contain a lot of required information, and you
want to be sure the different bits of information are in the right format
and use the right datatype (string, integer, dateTime, and so on).

� To create a large set of XML documents that all have the same docu-
ment structure. Payroll checks are a good example of this. Each check
has the same format, and you need to closely control the structures and
their data format.

� To share your document structure rules with others when you’ve built
an application that requires valid documents with particular data for-
mats. If you want people to send you data, you have to help them create
and structure that data. In addition to being a validation tool, a schema
can be a great communication tool.

152 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 152

Schemas really make sense when your XML document contains large amounts
of data. In this case, you can ensure that the data in the XML document is as
accurate as possible by validating it against a schema. If your document vali-
dates, you can be sure that all required data is present and in the correct
format. The XML Schema specification allows you to create schemas that are
as specific as they need to be about what that format should be.

If your document content consists of blocks of text rather than other types
of data, it may be easier to use a DTD for validation instead of a schema.

Referencing XML Schema Documents
If you’ve based an XML document on a schema, you can reference that (sepa-
rate) schema document — as well as public schema documents different
from your own — from your XML document.

The inside view: Referencing a
schema in an XML document
Although you can’t include an entire schema inside your XML document, as
you can with an internal DTD, you can reference a schema namespace within
the root element of your XML document.

For example, suppose we create a schema named bookstore.xsd based on
our hypothetical bookstore. We can reference that schema in the following
way in our XML document:

<?xml version=”1.0” encoding=”UTF-8”?>
<books xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”bookstore.xsd”>

In this example, we use the W3C Schema-instance namespace (http://www.
w3.org/2001/XMLSchema-instance) and the xsi:noNamespaceSchema
Location attribute to tie our XML document to the W3C XML Schema and
to our XML Schema document (bookstore.xsd). This link is not required,
but it does help XML Schema validators locate a schema.

Calling for outside support: Referencing
external schemas in your schema
From within the depths of your own schema document, you can include refer-
ences to multiple other schemas as long as they were written according to

153Chapter 9: Understanding and Using XML Schema

15_588451 ch09.qxd 4/15/05 9:36 AM Page 153

the XML Schema specification. Referencing multiple schemas enables you to
include elements and attributes from other schemas in your own schema
document.

To refer to other schemas from within your schema document, you use a
namespace reference and create a prefix for this namespace. Some prefixes
are standard. For example, W3C XML Schema components usually have the
prefix xs: or xsd: (including the colons) in front of the component name.
You don’t have to use the prefixes from the W3C’s recommendations. You can
use whatever prefix you choose — as long as the prefix you use in the name-
space reference is the same as the prefix you use in the schema document to
identify the components of that namespace. But why reinvent the wheel? For
some friendly pointers on using namespaces, we’ve included a handy sidebar
(namely, “Namespaces are your friends”).

You can also include new schema components that you create. For example,
our schema, bookstore.xsd, could include references to as many name-
spaces as we choose to include. Here’s what that looks like:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:bk=”http://www.example.com/book.xsd”
xmlns:wg=”http://www.example.com/writersguild.xsd”
xmlns:or=”http://www.oregonbooksellers.com/Rbooklist.xsd”>

154 Part III: Building In Validation with DTDs and Schemas

Namespaces are your friends
Because everyone can build their own elements
using XML, it’s possible — and most likely prob-
able — that two DTDs, schemas, or documents
will use some elements with the same names.

A parser can deal with just about any set of XML
elements. And a well-formed XML document can
use elements from any DTD or schema. However,
a special processor designed to work with docu-
ments written with one or two specific DTDs
might not know what to do with a document that
combines elements from several different DTDs,

some of which may conflict because they have
elements with the same names.

Namespaces let the parser know which DTD or
schema you’re using so you can use the markup
from several different DTDs or schemas in one
document. In the end, namespaces permit effi-
cient sharing of vocabularies across documents
and help eliminate confusion when two or more
vocabularies use the same names for elements.

We cover namespaces in more detail in
Chapter 11.

15_588451 ch09.qxd 4/15/05 9:36 AM Page 154

In this example, we include references to three namespaces in addition to
the W3C XML Schema namespace. We assign these prefixes to the additional
namespace: bk, wg, and or. If we use components from these namespaces in
our schema document, we must use the appropriate prefix in front of each
component. For example, to access a title element from the www.example.
com/book.xsd namespace, we would create an element declaration that
included the prefix we assigned to that namespace, like this:

<bk:element name=”title”>

Double-Checking Your Schemas
and Documents

After you’ve created your XML document and defined all the elements and
attributes in a schema, you’re ready to parse!

Be sure that your XML document is well formed before you try to validate it.
No mystery here: If your XML document isn’t well formed, it won’t validate.
For more information on well-formed documents, see Chapters 4 and 5.

155Chapter 9: Understanding and Using XML Schema

For more information on XML Schema
For more information on the details of using and
writing XML Schema documents, see the W3C
XML Schema Recommendation documents on
the W3C Web site. The W3C XML Schema
Recommendation has three parts:

� XML Schema Part 0: Primer Second Edition at

www.w3.org/TR/xmlschema-0/

� XML Schema Part 1: Structures Second
Edition at

www.w3.org/TR/2001/REC-xml
schema-1/

� XML Schema Part 2: Datatypes Second
Edition at

www.w3.org/TR/xmlschema-2/

The Second Editions are not new versions of the
XML Schema recommendations — they were
issued to provide corrections to the information
in the First Editions. The W3C is currently work-
ing to develop a set of requirements for XML
Schema 1.1.

15_588451 ch09.qxd 4/15/05 9:36 AM Page 155

Here’s a list of the tools available to help you validate your XML document:

� Validating parsers: Compare your XML document to the referenced
schema. Validating your XML document involves using the constraints
defined in your schema to check the structure and hierarchy of the ele-
ments and attributes in your XML document, as well as to check the
structure of the content contained in the elements and attributes.

� Schema validity testers: Compare your schema to the W3C’s XML Schema
recommendation to be sure it is valid. It doesn’t do you any good to vali-
date an XML document against an invalid schema. (You’d be surprised
how many people forget that.)

� Conversion tools: Convert DTDs to schemas, and convert from one
schema language to another.

In Chapter 10, we outline the steps for creating custom schema documents —
and create another custom XML Schema document (books2.xsd) to validate
an XML bookstore example (books2.xml).

156 Part III: Building In Validation with DTDs and Schemas

15_588451 ch09.qxd 4/15/05 9:36 AM Page 156

Chapter 10

Building a Custom XML Schema
In This Chapter
� Getting to know your data

� Defining elements

� Using content models

� Defining attributes

� Using datatypes

� Incorporating best practices

� Creating a simple XML Schema document

If you build custom XML documents, you probably want to create a map for
the documents that defines how you intend to use markup to describe your

content. (A wise move, that.) You also want to be sure all your custom XML
documents play by the same set of markup rules, so you’ll want to double-
check them against your custom map — the process known as validating.

The two most popular and useful methods for defining the structure (map) for
an XML document are Document Type Definitions (DTDs) and XML schemas.
DTDs are most useful for defining the structure of XML documents with text-
intensive content, although they can be used with any XML document. For
more information on using and creating DTDs, check out Chapter 8. For data-
intensive XML documents, schemas (which we also discuss in Chapters 9 and
11) have much more to offer in the way of data definition.

Doing the Validity Rag
An XML document is valid if it conforms to the rules you define in your
schema. Validation against a schema is very useful if your XML documents
contain a lot of data content that needs to be formatted in a particular way.
For example, say the data content includes e-mail addresses, and you want
to be sure that the addresses contain alphanumeric characters before and
after the @ symbol. A schema lets you define a datatype to do just that!

16_588451 ch10.qxd 4/15/05 9:37 AM Page 157

Building a simple XML Schema requires these steps:

1. Understand your data.

2. Create element declarations.

3. Define content models.

4. Create attribute declarations.

5. Add datatype declarations.

This chapter takes you through the entire process of creating a custom
schema that perfectly suits your XML document’s every need. Whereas
Chapter 9 described and gave examples of all the components of schemas,
this chapter takes you through the process of actually building a schema
document, piece by piece. You also get the word on how to use a schema
to create an XML template in Word 2003 and use the template to create
new XML documents.

We use the term schema throughout this chapter to refer to an XML docu-
ment that has two specific characteristics:

� It’s written according to the XML Schema specification.

� It’s designed to describe the structure for other XML documents.

The XML Schema specification isn’t the only option for writing schemas, but
it’s the one published by the W3C to work with XML, so it’s probably your best
choice. Look over Chapter 9 for more information on other schema options.

XML Schema basics are covered in detail in Chapter 9. To jog your memory,
here’s a quick review of the essential pieces of a schema:

� Element declarations: These statements are part of the basic structure
of the schema document; they show how each component of the docu-
ment is related to every other component. Elements can be simple (con-
taining only text content) or complex (containing other elements,
attributes, and/or text content).

� Attribute declarations: These statements are contained within the com-
plex type definition for the element that contains the attribute. Attributes
are always optional unless you specify in the attribute declaration that an
attribute is required. A group of attributes that will be used in more than
one element in an XML document can be defined as an attribute group
and accessed by any elements you choose.

� Content models: These statements define what type of content can be
contained in an element. There are four basic content models for XML
Schema elements: element (can contain other elements), text (can con-
tain only text), mixed (can contain other elements as well as text), and
empty (contains no content).

158 Part III: Building In Validation with DTDs and Schemas

16_588451 ch10.qxd 4/15/05 9:37 AM Page 158

� Datatype declarations: These statements tell the processor the valid
format for an XML element or attribute. You can use any of the 44 built-
in XML Schema datatypes or build your own custom datatypes. The
datatype declaration is included within an XML Schema element or
attribute declaration.

Schemas are just XML documents that use a specific set of markup defined
by the XML Schema specification to define the structure for other docu-
ments. You use elements and attributes in a schema to define elements and
attributes for use in other documents. (Cool, huh?)

The fact that XML schemas are XML documents is one of the advantages
of using schemas — unlike using DTDs, you don’t have to learn another
language format to use schemas.

Step 1: Understanding Your Data
Before building a custom schema, you must understand the basic nature and
function of your data. Is your data a collection of book titles, author names,
and publishers? Or is your data a group of part numbers, phone numbers,
and e-mail addresses? Take some time to look at the kind(s) of data you’ll be
using in your XML documents so you can use the right structures and
datatypes to describe your content.

Before you design your schema, you also need to be clear about what you
want to do with the data. Do you want to export data to a database from your
XML documents, or do you want it available for access from wireless devices?
Be sure your document structure matches up with the format you need for
importing and exporting your data accurately and efficiently.

Step 2: Being the Root of
All Structure: Elements

Elements define the basic structure for any XML document, including those
created according to a schema. After you’ve got a good handle on your data
and are ready to build a schema that fits it, you should first decide which ele-
ments will be included in your XML document.

As a first step in declaring the elements for your schema, map out the basic
structure of the document: What elements do you think you’ll need? How do
they fit together? The best way to go about answering those questions is to
gather up several sample documents and take a stab at defining markup to
fit their content. After you have that basic structure down in a marked-up

159Chapter 10: Building a Custom XML Schema

16_588451 ch10.qxd 4/15/05 9:37 AM Page 159

sample document or two, you have your map. For more details on content
analysis, see Chapter 3.

A map makes deciding what kind of attributes, content models, and
datatypes you need to define a lot easier. Listing 10-1 shows the books2.xml
document (an adaptation of books.xml from Chapter 7 — we’ve changed two
child elements of book to attributes of book) with just the elements listed —
without the content or attribute values.

The books2.xml document (content included) can be downloaded at www.
dummies.com/go/xmlfd4e.

Listing 10-1: books2.xml without the Content or Attribute Values

<books>
<book contentType=”” format=””>
<title></title>
<author></author>
<publisher></publisher>
<price></price>
<isbn></isbn>
</book>
</books>

As you can see in Listing 10-1, identifying the underlying structure of an XML
document makes building your schema a lot easier, because you can clearly
see the relationships between the basic structural components (elements
and attributes) before you start creating the document that describes this
structure.

Only one book element is shown here, but the books element can contain any
number of book elements as long as you specify that in the schema.

books2.xml is a very simple XML document — and that’s deliberate on our
part. Schema documents can get very complicated very quickly, so we’re
starting with a simple XML document to show the basics of schema creation.
In Chapter 11, you get a chance to modify this schema into a more complex
schema to validate bookstore.xml.

Elements that contain other elements and/or attributes are, by definition,
complex types. We show you how to define complex type elements in the
next section, “Step 3: Building Content Models.” Simple element types contain
only text content and can’t contain attributes or other elements.

As you can see in Listing 10-1, books is the only complex type element in our
document. The simple type elements are title, author, publisher, price,
and isbn. You can add restrictions to these simple type elements to create
user-defined datatypes, as detailed in Step 5.

160 Part III: Building In Validation with DTDs and Schemas

16_588451 ch10.qxd 4/15/05 9:37 AM Page 160

Step 3: Building Content Models
A content model defines the type of content that can be contained in an ele-
ment. The four content models for XML Schema elements are element (con-
tains child elements), text (contains only text content), mixed (contains child
elements and text), and empty (contains no content). For more details and
examples of each of these content models, see Chapter 9.

For the schema you’re building based on the books2.xml document, you
need only two of these content models: element and text. (To see an example
of a mixed-content model, see the files confirm.xml and confirm.xsd on
the book Web site at www.dummies.com/go/xmlfd4e. If you get a hankering
to add an empty content model to this schema, Chapter 11 shows you how.)

The books element in our XML document contain other elements, so you will
need to create a complex type definition for this parent element.

Complex type definitions can include compositor elements, which specify
order and occurrence restraints. The three compositors included in the XML
Schema language are as follows:

� sequence indicates that the elements must occur in the specified order
in the XML document.

� choice indicates that any one of the elements may occur in the XML
document.

� all indicates that any or all of the elements may occur in the XML
document.

For more information on compositors, see Chapter 9.

First, create a complex type definition for the books element. In the DTD
you created in Chapter 8, the books element was the root element. In XML
Schema, however, the schema element is always the root element and con-
tains all the other elements of the document. The books element in this
case contains all the other elements in the schema document except for
the schema element. The following markup shows the complex type defini-
tion for the books element:

<xsd:element name=”books”>
<xsd:complexType>
<xs:sequence maxOccurs=”unbounded”>
<xsd:element name=”book” type=”bookType”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

161Chapter 10: Building a Custom XML Schema

16_588451 ch10.qxd 4/15/05 9:37 AM Page 161

The xsd: prefix indicates the namespace for our schema — namely, the XML
Schema namespace. For more information on namespaces, see Chapters 9
and 11.

A sequence includes one or more element references.

Note that the sequence compositor element contains a maxOccurs attribute
that specifies how many times the book element can occur in the document.
Because you want the books element to contain any number of book ele-
ments, that value is unbounded.

The default values for occurrence of an element are a minimum of 1 and a
maximum of 1. If you want to specify a different value, you need to use
minOccurs and/or maxOccurs attributes.

When you use a sequence compositor, you specify child elements in one of
two ways:

� By using a ref attribute with a value equal to the value of the name
attribute in each child element’s element declaration. The ref attribute
must refer to an actual element declaration, though, and is not sufficient
markup just by itself, so in this case you also need to add a separate ele-
ment declaration for the title element in your schema:

<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”title”/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name=”title”/>
...

� By using a name attribute with a value equal to the value of the child ele-
ment’s name along with a type attribute with the value of a user-defined
complex type, as shown in this code from the complex type definition
for the books element, listed earlier in this section. In this case, you
don’t need a separate element declaration for book, but you do need to
add a complex type definition for bookType. It would look like this:

<xsd:element name=”book” type=”bookType”/>

Adding such a complex type definition for bookType is pretty easy, as can be
seen in the following:

<xsd:complexType name=”bookType”>
<xsd:sequence>
<xsd:element ref=”title”/>
<xsd:element ref=”author”/>
<xsd:element ref=”publisher”/>
<xsd:element ref=”price”/>
<xsd:element ref=”isbn”/>

162 Part III: Building In Validation with DTDs and Schemas

16_588451 ch10.qxd 4/15/05 9:37 AM Page 162

</xsd:sequence>
</xsd:complexType>
<xsd:element name=”title”/>
...

The title element uses a simple element declaration that is included imme-
diately after the complex type definition for bookType. The other elements
referenced in the bookType definition (author, publisher, price, and
isbn) also use simple type declarations — namely, these:

<xsd:element name=”author”/>
<xsd:element name=”publisher”/>
<xsd:element name=”price”/>
<xsd:element name=”isbn”/>

Congratulations! Here, you’ve created all the element declarations and com-
plex type definitions that you need for your schema. All that’s left is to add
attributes, define datatypes, and put all the pieces together!

Step 4: Using Attributes to Shed
Light on Data Structure

An attribute declaration is a declaration that describes an attribute for an ele-
ment. Attribute declarations are always simple type definitions because they
can’t contain elements or other attributes. However, attribute declarations
are always contained within a complex type definition.

Properly built schemas must declare attributes at the very end of a complex
type definition, after all other components of the complex type have been
specified.

The book element (for instance) contains two attributes: contentType and
format. We want to limit the possible values for each of these attributes rather
than letting the document author use just any text content willy-nilly. To build
an attribute declaration that specifies exactly what values the attribute can
take, you need to add the list of values to the attribute declaration and specify
that the value of the attribute is restricted to those on the list.

In essence, you’re making a list of values and saying that the attribute should
take its values only from the list. Because markup often speaks louder than
words, take a gander at the following markup:

<xsd:attribute name=”contentType” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Fiction”/>

163Chapter 10: Building a Custom XML Schema

16_588451 ch10.qxd 4/15/05 9:37 AM Page 163

<xsd:enumeration value=”Nonfiction”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name=”format” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Hardback”/>
<xsd:enumeration value=”Paperback”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

The simpleType element inside of the attribute declaration indicates that
you need to add some additional information about this attribute. The
restriction element is a flag that says (in effect), Choose only from the
values in this list. Each enumeration element lists the possible options to
choose from. Even with the many layers of markup involved, it’s still pretty
simple.

Note that the restriction statement includes a base attribute with the
value of the datatype that’s being restricted. You’ll find out more about
datatypes in Step 5.

Attributes are always optional unless you specify that they’re required. In
this case, you want a value to be present for both attributes. Therefore,
make sure the use attribute (with a value of required) is included in your
attribute declarations.

Any XML Schema datatype can be further restricted to a certain set of valid
content values. For example, you might want to restrict the valid content for an
attribute to the set of integers that includes the values 23, 25, 27, and 29. You
can do that pretty easily by using restriction and enumeration elements.

Step 5: Using Datatype Declarations
to Define What’s What

A datatype declaration is a statement added to an element or attribute in a
schema that lets document creators (or validating parsers) know exactly
what kind of data you’re actually working with when you declare an element
or attribute. Using XML Schema, you can get even more explicit than a run-of-
the-mill built-in datatype: Using any of the 44 XML Schema datatypes, you can
derive your own datatypes, adding further qualifications in your quest to
make the datatype more specific to the demands of your work.

164 Part III: Building In Validation with DTDs and Schemas

16_588451 ch10.qxd 4/15/05 9:37 AM Page 164

As you build your custom schema, you need to think carefully about the type
of data each element and attribute will hold, and take advantage of datatype
declarations to pass the specifics to document builders and processing appli-
cations. After you’ve created your initial set of elements and attributes, go
back and add datatype declarations to them.

As we mention in Chapter 9, XML Schema offers 44 built-in datatypes — from
strings to integers, to date and time stamps, and beyond — for you to use.
XML Schema also has the unique feature of supporting reusable user-derived
datatypes — in other words, you can derive your own datatypes from the built-
in datatypes and reuse these datatypes throughout your schema document.

To find all you ever wanted to know about datatypes — including the gory
details of every individual datatype and how you can use each one — refer to
Part II of the XML Schema specification at

http://www.w3.org/TR/xmlschema-2

To create a simple type element whose data type is string, follow these steps:

1. Create an element declaration.

2. Include an xsd: prefix to specify that this is an XML Schema string
datatype.

The following markup is the element declaration for the title element,
with an added type attribute:

<element name=”title” type=”xsd:string”/>

In our books schema, each simple type element (title, author, publisher,
price, and isbn) takes a string datatype.

165Chapter 10: Building a Custom XML Schema

Is it worth the hassle?
You may have noticed that schemas are more
complex to create than DTDs, and you may be
asking yourself why you would want to bother
with the added complexity. For many documents
(especially those with text-intensive content
that doesn’t need to be in any specific data
format), the benefits of using XML Schema may
not be worth the extra time and effort.

However, for data-intensive content (such as
invoices, financial data, catalogs, and other con-
tent where the data format matters), the strong
datatyping system of XML Schema is an advan-
tage that makes it well worth the time and effort
required to use it.

16_588451 ch10.qxd 4/15/05 9:37 AM Page 165

You define datatypes for attributes in the same way. Create the attribute dec-
laration, and add the following datatype declaration:

<attribute name=”bookbinding” type=”xsd:string”/>

If you’re adding further restrictions to an attribute, you don’t include a type
in the attribute declaration statement. Instead, you use a base attribute in
the restriction element that specifies the datatype, as in the contentType
and format attributes for the book element.

Several XML Schema datatypes are derived from the string datatype. For
that matter, you can use a string datatype as a base type for creating a
user-defined type — such as a specific pattern of text or text with a specific
number of characters.

Even if an XML element describes text-only data (such as a name or a copy-
right statement), you may want that text to follow a particular pattern. Using
a custom datatype, you can specify, for example, that the price element
must consist of a $ sign followed by one to four numeric digits, a decimal
point, and two more digits, as in the following markup:

<xsd:element name=”price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\$[0-9]{1,4}.[0-9]{2}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

In this example, an element named price is defined using a simple type defi-
nition and a restriction of the string type to this particular pattern. An XML
document based on this schema must include the price element content in
this format to be valid.

XML Schema supports the use of regular expressions when you define a
pattern. A regular expression is a specific pattern for a group of characters,
such as the one we use in the previous example:

\$[0-9]{1,4}.[0-9]{2}

This pattern starts with a $, followed by one to four single digits (in the range
0 to 9), followed by a period — decimal point — followed by two single digits
in the range 0 to 9.

Regular expressions are ideal for defining patterns of characters — their
inclusion in XML Schema adds a very powerful feature for defining datatypes.

Basic regular expressions are not difficult to learn and give you a wealth of
choices for formatting character data. To make it even easier, you can use an

166 Part III: Building In Validation with DTDs and Schemas

16_588451 ch10.qxd 4/15/05 9:37 AM Page 166

online regular expression tester, such as the one at www.quanetic.com/
regex.php, to test that your regular expression matches the character data
in your XML document. (Be sure to include a / at the beginning and end of
your regular expression in the tester — this is the format for regular expres-
sions in most other programming languages.)

We also used a regular expression to derive a more specific datatype from the
string datatype for the isbn element:

<xsd:element name=”isbn”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”[0-1][0-9]{9}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

This regular expression denotes that the pattern must be a string that starts
with 0 or 1 ([0-1]) — because ISBNs for books in English start with 0 or 1 —
and be followed by 9 other digits ([0-9]{9}) .

You can get much, much more specific about the pattern of an ISBN. See the
ISBN simple type definition created by Roger Costello at www.xfront.com/
isbn.html.

Tricks of the Trade
In this chapter and in Chapter 9, we cover the basics of building schemas.
Here are some reminders and additional tips for building and using them:

� Use annotation and documentation: The annotation and documen-
tation elements are similar to comments in HTML documents — they
provide additional information for humans reading the schema docu-
ment. (For more information, see Chapter 9.)

� The schema element comes first: The schema element is the root ele-
ment of the schema document and is always the first element to appear
after the XML prolog.

� Tools do XML Schemas too: See Chapter 19 for more details on XML edi-
tors that can create schemas from DTDs and vice versa.

� Review your validation options: Schemas are designed for data-intensive
document or text content that includes many additional constraints
(such as specific patterns of content). Otherwise, a DTD may be a better
choice for validating your XML document. Visit Chapter 9 for more infor-
mation on when to use a schema, and visit Chapter 11 for additional
details on using schema for data-intensive documents.

167Chapter 10: Building a Custom XML Schema

16_588451 ch10.qxd 4/15/05 9:37 AM Page 167

Creating a Simple Schema
When you’ve created all the pieces of your schema, it’s time to piece them all
together to complete your little (or possibly huge) project. If you’re ready to
take that plunge, follow these steps:

1. Create an XML prolog and a schema element.

2. Add an xmlns attribute to the schema element to specify that the docu-
ment uses the XML Schema namespace and the xsd: prefix.

Here’s an example:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

3. Add the element and attribute declarations you created in the previ-
ous sections.

What you get looks similar to this example:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:element name=”books”>
<xsd:complexType>
<xsd:sequence maxOccurs=”unbounded”>
<xsd:element name=”book” type=”bookType”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name=”bookType”>
<xsd:sequence>
<xsd:element ref=”title”/>
<xsd:element ref=”author”/>
<xsd:element ref=”publisher”/>
<xsd:element ref=”price”/>
<xsd:element ref=”isbn”/>
</xsd:sequence>
<xsd:attribute name=”contentType” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Fiction”/>
<xsd:enumeration value=”Nonfiction”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name=”format” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>

168 Part III: Building In Validation with DTDs and Schemas

16_588451 ch10.qxd 4/15/05 9:37 AM Page 168

<xsd:enumeration value=”Hardback”/>
<xsd:enumeration value=”Paperback”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>

<xsd:element name=”title” type=”xsd:string”/>
<xsd:element name=”author” type=”xsd:string”/>
<xsd:element name=”publisher” type=”xsd:string”/>

<xsd:element name=”price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\$[0-9]{1,4}.[0-9]{2}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name=”isbn”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”[0-1][0-9]{9}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

</xsd:schema>

Except for attribute declarations (which must occur at the end of com-
plex type declarations), the declarations in your schema can occur in
any order. In other words, you can list the declarations in any order
you choose, as long as they’re contained within the schema element.
Remember, however, that when you define the structure of the parent–
child relationships in your schema document, you also determine the
order of elements in your XML document. (A document’s underlying
structure is often easier to view, however, if you list the declarations
in the same order as the elements in the XML document.)

4. Save your schema document with an .xsd file extension.

You can give your schema any name you like, but descriptive names
make it easier to keep track of which schema document validates which
XML documents. (For example, we decided to name this schema
books2.xsd.)

The full schema document that we created in this chapter, books2.xsd, is
available for download on the book’s Web site atwww.dummies.com/go/
xmlfd4e.

169Chapter 10: Building a Custom XML Schema

16_588451 ch10.qxd 4/15/05 9:37 AM Page 169

Using a Schema with an
XML File in Word 2003

The professional version of Word 2003 allows you to add your own schema
documents to Word’s Schema library and attach these schemas to XML docu-
ments in Word.

You can start with a new XML file, add elements from your schema, add con-
tent, and then validate the content against your schema. This is an easy way
to create new XML documents that conform to a schema.

When you’ve created a schema (or downloaded books2.xsd from the book
Web site at www.dummies.com/go/xmlfd4e), you can use that schema to
create new XML documents. Just follow these steps:

1. Open Word 2003; then choose File➪New➪XML document.

The XML Structure pane will appear to the left of the new blank
document.

You can also open an existing XML document or start with a Word docu-
ment (.doc) and mark up the document content according to the chosen
schema.

2. Click Templates and Add-Ins in the XML Structure pane to open the
Templates and Add-Ins dialog box; then click the XML Schema tab.

3. In the XML Schema tab, click the Add Schema button; then use the
Browse window to locate the schema document you want to add (in
this case, books2.xsd).

4. After selecting the schema document you want, click the Open button
in the Browse pane.

The Schema Settings dialog box opens, as shown in Figure 10-1.

5. Enter http://www.XMLFD.com/books2.xsd for the URI and books for
the alias.

Figure 10-1:
The Schema

Settings
dialog box,

open in
Word 2003.

170 Part III: Building In Validation with DTDs and Schemas

16_588451 ch10.qxd 4/15/05 9:37 AM Page 170

The URI specifies the namespace for the schema. Because the schema
will be listed in the XML Schema tab by the name of the alias, the root
element of the document is usually a good choice for the alias.

The names of the available XML elements now appear in the bottom of
the XML Structure pane — to the left of your still-blank new document.
You can add elements to the document by clicking each element’s name.

6. Add new elements to your blank document by clicking the element
name in the XML Structure pane.

Start with the root element of the document, books, and work your way
down through all the elements, adding each in the correct order accord-
ing to the schema (book, title, author, publisher, price, isbn).

Note the check box named List only child elements of current element in
the bottom-left corner of the XML Structure pane. You’ll need to uncheck
this in order to add all the elements; most of them are siblings.

As you add elements, the upper part of the XML Structure pane shows
the document structure.

7. After you’ve added all the elements in order, add content — in other
words, the data, such as book title and author name — to each element.

a. To add attributes, right-click the element that contains your
chosen attribute(s) — in this case, book — and then choose
Attributes from the context menu.

The Attributes dialog box appears and shows available attributes
for this element.

b. Select the contentType attribute, choose a value from the Value
drop-down menu (because a list of values is included in the
schema), and then click the Add button.

The new attribute is added to your element.

c. Repeat for the format attribute and then click OK.

If any validation problems crop up, a yellow, diamond-shaped icon iden-
tifies them in the display.

8. To deal with a validation problem, move the cursor over any such
icon to view the specific error message.

If the pane shows no icons, your XML document is valid! Figure 10-2
shows a (valid) sample XML file in Word 2003.

9. Save your XML file.

Next to the Save button is a check box named Save data only. Check
this box if you want to save the file without any WordML (Word Markup
Language). Unless you have added document-formatting features in
Word or are starting from an existing Word document, check this box
before you click Save.

171Chapter 10: Building a Custom XML Schema

16_588451 ch10.qxd 4/15/05 9:37 AM Page 171

XML schemas are a very effective validation method for XML files. You’ve dis-
covered how to create a schema for a simple XML document in this chapter.
In Chapter 11, you’ll create a more complex schema and find out more about
using namespaces.

Figure 10-2:
An XML file

in Word
2003 with
XML tags

displayed.

172 Part III: Building In Validation with DTDs and Schemas

Creating an XML template in Word 2003
You can easily make a template from any XML
file in Word 2003. Just open an XML file; then
choose File➪Save As➪Document Template.
This creates a .dot file that you can use to
create additional XML files.

This is a fast, easy way to make new XML files —
and anyone can use this method in Word 2003 to
create new (and valid!) XML content files,
whether they understand XML structure or not.

To use your template file:

1. Choose File➪New.

The New Document task pane appears.

2. In the New Document task pane (to the left),
select On my computer from the Templates
section.

If the New Document task pane isn’t visible,
choose View➪Task Pane to display it.

3. Choose your template file from the Tem-
plates dialog box and then click OK,

4. Click any tag to highlight the content you
want to replace and then replace it with
new content.

5. Save as a new XML file.

16_588451 ch10.qxd 4/15/05 9:37 AM Page 172

Chapter 11

Modifying an Existing Schema
In This Chapter
� Structuring XML Schema markup

� Designing for data

� Choosing a content model

� Getting complex with data

� Calling XML Schema

� Including external data

� Including and excluding document content

� Generating an XML Schema in XMLSpy

� Converting DTDs to XML Schema

This chapter grows right out of what you find in Chapters 9 and 10. In
Chapter 9, you get to know the ins and outs of the basic structure of an

XML Schema document; Chapter 10 walks you through building a custom
schema step by step, according to the rules of the XML Schema specification.
Here’s where you get to try out the capabilities of a typical schema built
using XML Schema.

If you’re using a schema to guide the development of your XML documents,
you have four possible basic approaches:

� Work with an existing, off-the-shelf schema: This is usually the fastest
approach (but you knew that).

� Create your own schema from scratch: Laborious, sure, but what
custom-built item isn’t?

� Customize an existing schema: Tinker with it till it fits your content like
a glove.

� Convert a DTD to a schema: This approach is the very thing if you
already have a DTD but you want to take advantage of the XML Schema
specification’s strong datatyping capabilities.

17_588451 ch11.qxd 4/15/05 12:15 AM Page 173

In this chapter, you test-drive the XML Schema specification so you can con-
struct a schema in different ways, depending on the type of data you’re work-
ing with. In addition, you discover how to convert a DTD to a schema.

Trading Control for Flexibility
Schemas offer much tighter control of your content’s format than do DTDs.
This is a major advantage when you’re using schemas to drive the creation of
documents — and for validation when those documents are pulled into a pro-
cessing system.

Of course, decisions about control and flexibility are best made at the begin-
ning of the document design process. Examine your content closely, and
make decisions about the most effective way to obtain and share the informa-
tion in your XML document. After reviewing the content you want to include,
you can make choices that determine how to structure that content to meet
your requirements. Making these decisions at the beginning of the docu-
ment’s design cycle saves time in the end and reduces the amount of time
spent revising and rewriting.

The basic structure of the content determines the flexibility of the document.
You can make your schemas more versatile by using the choice compositor
and enumerated lists of attributes. We show you how in the section “A matter
of selection.” later in this chapter. Add such flexibility with care, though —
the price you pay may be a much more complex schema design.

Eliciting Markup from an XML Schema
In Chapter 10, you got the chance to create a simple XML schema
(books2.xsd) to validate an XML file (books2.xml) that contains seven
pieces of information about a book — five elements (title, author, pub-
lisher, price, and isbn) and two attributes (contentType and format).
This schema could validate any XML file that conformed to this specific
structure, whether it included information for 1 book or 1,000 books. So far,
so good! However, in our (hypothetical) book business, we want to use XML
to describe not only basic book information for one or more books, but also
sales and customer information. For a closer look at how to go about that,
flip over to Chapter 5 (bookstore.xml).

All the files mentioned in this chapter are available for download on the Web
site for this book at

www.dummies.com/go/xmlfd4e

174 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:15 AM Page 174

Comparing the structure of books2.xml and bookstore.xml visually will
help guide the modification and expansion of the books2.xsd schema into
the more complex bookstore.xsd schema. The following two figures show
diagrams of the XML file structure for each of these documents as presented
in XMLSpy — books2.xml in Figure 11-1 and bookstore.xml in Figure 11-2.
The equal sign (=) indicates an attribute, and the brackets (<>)show an
element.

XMLSpy is a great tool for working with XML documents in general — and
especially for creating documents that conform to the XML Schema specifica-
tion. You find out how to generate an XML Schema in XMLSpy in the last sec-
tion of this chapter, “Creating a schema With XMLSpy.” Chapter 19 includes
additional information on XMLSpy and other XML tools.

Figure 11-2:
The book

store.xml
page in Grid

View in
XMLSpy.

Figure 11-1:
The

books2.
xml page in
Grid View in

XMLSpy.

175Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:15 AM Page 175

The second file is obviously more complex. As you’ll see in the following sec-
tion, however, the increased complexity is mainly in the outer levels of the
document structure — the inner structure of bookstore.xml contains simi-
lar elements and datatypes to the simpler books2.xsd. We’ll introduce some
additional options later in this chapter.

Modifying a Schema
Comparing the two document structure diagrams in the previous section,
you can see that the first document, books2.xml, has a very simple struc-
ture: All the information is contained within the book element. (There are
three book elements, but the structure for each is the same.) The second
document, bookstore.xml, uses the following three elements to structure
the basic book stuff plus all additional information:

� A book element that contains book and sales information

� A totalCost element

� A customer element that contains customer data

This document has to have a relatively complex structure, for one simple
reason: One customer can buy more than one book at a time. Our document
has to include the option for multiple books, with book information and sales
information for each book. We can use the basic format of the books2.xsd
schema as a starting point, adding to it and modifying it to create a schema
for the bookstore document.

After you compare the schema you’ve targeted for re-use with your new XML
document, your next step in creating or modifying a schema is to look at how
you want the structures defined in the schema to describe your content. The
basic structure of your XML document is specified by the complex type defin-
itions in the schema — in other words, which elements contain other ele-
ments and attributes. You need to have a good understanding of the pieces
and parts of your content before you can create a set of structural compo-
nents to accurately describe them.

A quick look at bookstore.xml confirms that you will need to create com-
plex type definitions for the books, book, and customer elements.

Start by creating a complex type definition (if you’re shaky on what terms like
“complex type definition” mean, see Chapter 10) for the root element of the
bookstore.xml document, books:

<xsd:element name=”books”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”book” type=”bookType”/>

176 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:15 AM Page 176

<xsd:element ref=”totalCost”/>
<xsd:element name=”customer” type=”customerType”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

You’ll need to add a simple type definition for the totalCost element, but
here’s a timesaver: The format of the data is the same as the price element
in the books2.xsd schema, so you can just change the name and use the
same definition, like this:

<xsd:element name=”totalCost”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\$[0-9]{1,4}.[0-9]{2}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

As we’re sure you’ve noticed, “simple” type definitions aren’t necessarily that
simple! The term just means they don’t contain other elements.

You’ll also need two complex datatypes for bookType and customerType.
You’ll find out how to create complex datatypes later in this chapter.

Using Datatypes Effectively
You can use XML Schema datatypes in your schemas whether your document
content is data intensive or text intensive. (Not sure about the distinction,
grasshopper? Read on and become enlightened!)

Using datatypes with
data-intensive content
For data-intensive content such as e-mail addresses, time and date informa-
tion, and floating-point numbers — numbers with a decimal point, XML
Schema offers built-in datatypes for most datatypes used in common pro-
gramming languages such as Java.

For a graphic presentation of the built-in datatype hierarchy, see the diagram
“Built-in datatypes” in the W3C Schema Recommendation at

www.w3.org/TR/xmlschema-2/#built-in-datatypes

177Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:15 AM Page 177

The schema definition of each datatype can be found in the W3C Schema for
Datatype Definitions at

www.w3.org/TR/xmlschema-2/#schema

In addition, XML Schema offers the capability to further customize these
built-in datatypes by defining new ones. For example, numeric data of any
type can be restricted to

� A minimum value, either exclusive or inclusive

� A maximum value, either exclusive or inclusive

You don’t have to use minimum values and maximum values together; you
can use one or the other, or both. For example, if you want to be sure that a
telephone number has at least ten digits (the seven-digit number plus the
area code), you can set the minimum value to 10.

If you want to leave the maximum size of the phone number open so folks
can include an extension or even an international number, just don’t set the
maximum size. Or if you want to be safe, you can cap the phone number at
50 characters or so, just so you don’t get a 1,000-digit phone number.

Sometimes, of course, your minimum value and maximum value are the same.
Say what? You read right: If you want to be sure a value is made up of a spe-
cific number of digits (nine of ’em for a Social Security number, for example),
you’d set both the minimum value and maximum value to 9. A Social Security
number has to be at least 9 digits but no more than 9 characters; setting the
minimum and maximum values to the same number ensures that you get
exactly 9 digits. It may look silly, but it works.

You could do something similar by using totalDigits, as in the following
simple type definition for the custNumber element:

<xsd:element name=”custNumber”>
<xsd:simpleType>
<xsd:restriction base=”xsd:integer”>
<xsd:totalDigits value=”6”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

You can also further restrict numeric data that includes a decimal point. You
can specify

� The total number of digits in the data (includes digits on both sides of
the decimal point)

� The number of digits to the right of the decimal point

178 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:15 AM Page 178

For example, if you want to include the price for a book, you could require
that your datatype specifies four total digits, with two digits after the decimal
place, like this:

<xsd:element name=”price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:totalDigits value=”4”/>
<xsd:fractionDigits value=”2”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

This datatype is derived from the xsd:decimal type. The value for
totalDigits specifies the total number of digits in the content of the price
element. The value for fractionDigits specifies the number of the total
digits that must occur after the decimal point.

Using datatypes with
text-intensive content
For text-intensive content such as technical manuals or textbooks, XML
Schema offers the string datatype and other built-in datatypes for text con-
tent, including time and date formats. You can heavily customize the content
of your string by creating custom datatypes — so valid string content can
contain goodies like these:

� Specific patterns of alphanumeric characters

� A minimum and/or a maximum length (number of characters)

� One of a list of valid values

� Instructions for preserving or converting white space in content

For example, to allow zip to be either a five- or a nine-digit number, we used
a modification of the string datatype that includes a specific pattern that (in
turn) includes both possibilities. Here’s what it looks like:

<xsd:element name=”zip”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\d{5}(-\d{4})?”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

This specifies a pattern of five single digits, followed by four more optional
single digits — the ? means the part contained in parentheses can occur zero
or one times.

179Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:15 AM Page 179

Making Elements Work Wisely and Well
One of the first steps in designing an effective schema is to define elements
and attributes. Your XML document will include elements and attributes in
a particular pattern — and you have to specify every one of them in the
schema if you want the document to be valid.

The basic structure of your schema is based on the structure of the content
you want to describe in an XML document. The content itself will tell you
which elements are complex types (contain other elements and/or attrib-
utes) and which elements are simple types (contain only text content).

When it’s clear which elements are complex types and which are simple
types, you can create the schema type definitions to specify these elements
and attributes.

Creating crafty content models
Content models define what type of content can be contained in an element.
The four types of content are:

� Element: The element can contain child elements.

� Text: The element can contain only text.

� Mixed: The element can contain child elements and text.

� Empty: The element cannot contain child elements or text but can
include an attribute.

See Chapters 9 and 10 for detailed examples of each content model.

Both element content and text content are pretty straightforward. An element-
content model requires a complex type definition. A text-content model can
be defined with a simple element declaration, as here:

<xsd:element name=”date” type=”xsd:date”/>

where name specifies the element name (date) and type specifies an XML
Schema datatype (xsd:date).

If your content lends itself to elements that can contain other elements as
well as text content, use a mixed-content model. As you’d expect, such a
model is generally more useful for text-intensive content than for data-
intensive content. (See Chapter 9 for a detailed example of a mixed-content
model.)

180 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:15 AM Page 180

Using an empty content model is (believe it or not) a useful way to include
attributes without specifying any element content. Basically, the empty
element acts as a container for attribute content. For example, the source
element is an empty element used to contain the sourceInfo attribute, as
shown in the following markup for a complex datatype named sourceInfo:

<xsd:complexType name=”sourceInfo”>
<xsd:attribute name=”sourceType” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Retail”/>
<xsd:enumeration value=”Wholesale”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>

The empty element is the source element, which is declared like so:

<xsd:element name=”source” type=”sourceInfo”/>

A matter of selection
You can build flexibility into your XML document by including options for
selecting element and/or attribute content in your schema. You can choose
what attributes work with an element or which elements make up the content
model for an element. You use the enumeration compositor for attributes and
the choice compositor for elements. By adding flexibility to the schema and
the content it can describe, built-in selection mechanisms help you create a
schema that fits a wider range (or bigger collection) of content. If you aren’t
sure exactly what the content model for an element will be, down to the last
element, or you want to allow some flexibility in the attributes and values an
element takes, use a selection.

You use the choice compositor element to make a choice between child ele-
ments. For example, you could specify a choice of customer types in the XML
Schema document, as shown here:

<xsd:element name=”priceType”>
<xsd:complexType>
<xsd:choice maxOccurs=”unbounded”>
<xsd:element ref=”Retail”/>
<xsd:element ref=”Wholesale”/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name=”Retail” type=”xsd:string”/>
<xsd:element name=”Wholesale” type=”xsd:string”/>

181Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:15 AM Page 181

where the priceType element can contain either a Retail element or a
Wholesale element — either a Retail element or a Wholesale element
is a valid option in an XML document that conforms to this schema.

The choice compositor element in the preceding example includes a
maxOccurs attribute with the value unbounded. The unbounded occurrence
constraint means this choice can occur an unlimited number of times in the
XML document — which means you can include any number of Retail ele-
ments and any number of Wholesale elements. That’s a handy way to give
your document structure some flexibility.

The following components are required when you want to provide a choice
between attribute values:

� A complex type definition for the element containing the attribute

� An attribute declaration

� A simple type definition

� A restriction on the simple type definition

� A series of enumeration elements to define the possible attribute values

Although creating attribute choices might seem complex, it’s actually quite
simple. For example, to include a choice of values for the custType attribute,
you could use this markup:

<xsd:element name=”customer”>
<xsd:complexType>
<xsd:attribute name=”custType” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”newRetail”/>
<xsd:enumeration value=”prevRetail”/>
<xsd:enumeration value=”newWholesale”/>
<xsd:enumeration value=”prevWholesale”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

The custType attribute of the customer element includes a simpleType ele-
ment that creates a simple type definition that includes a restriction ele-
ment. The restriction element creates a constraint on the string content of
the custType attribute. The four enumeration elements spell out the four
valid choices for the value of the custType attribute.

182 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:15 AM Page 182

Mixing up the order
You can also make your schema more flexible by using a choice compositor
to include a selection of elements that contain different child elements (or
that contain different sequences of the same child elements).

For example, to give your schema an option to specify the author and title
in different sequences, you could include a choice of format1 and format2
elements, as shown here:

<xsd:element name=”book”>
<xsd:complexType>
<xsd:choice>
<xsd:element ref=”format1”/>
<xsd:element ref=”format2”/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name=”format1”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”author”/>
<xsd:element ref=”title”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”format2”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”title”/>
<xsd:element ref=”author”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”author” type=”xsd:string”/>
<xsd:element name=”title” type=”xsd:string”/>

It’s certainly possible to include flexibility in your schemas by using selec-
tions of elements and attributes. As you can see in this example, though,
your schema can quickly become complex.

Using Complex Datatypes
XML Schema offers extensive support for custom (user-derived) datatypes.
Using these custom datatypes gives you tight control over the structure of
the content in your XML document.

183Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:15 AM Page 183

Both simple and complex types can be used for custom datatypes. Simple
types are used to put further restrictions on a datatype. You could, for exam-
ple, put constraints on the format of the email element in the bookstore
schema. For example, the following markup restricts the content to any
number of alphanumeric characters followed by an @, followed by any
number of alphanumeric characters, a period, and any number of alphanu-
meric characters (Now, there’s a long description of an e-mail address!):

<xsd:element name=”email”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”(\w+)@(\w+).(\w+)”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

Complex datatypes can be named — and that allows you to reuse a datatype
(even a complex one) in your schema. As a result, you can write more effi-
cient (and less complex!) schemas. Take a look at the following markup:

<xsd:element name=”books”>
<xsd:complexType>
<xsd:sequence maxOccurs=”unbounded”>
<xsd:element ref=”book”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”book”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”author”/>
<xsd:element ref=”title”/>
<xsd:element ref=”publisher”/>
<xsd:element ref=”price”/>
<xsd:element ref=”isbn”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”author” type=”xsd:string”/>
...

This portion of the schema document uses a book element with a complex
type definition but doesn’t name the type. Although you can include as many
book elements as your heart desires, you can’t reuse the structure of the
book element for another element without rewriting the entire complex type
definition. (D’oh!)

184 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:15 AM Page 184

In the following example, a complex type definition is used to create a com-
plex datatype named bookType:

<xsd:element name=”books”>
<xsd:complexType>
<xsd:sequence maxOccurs=”unbounded”>
<xsd:element name=”book” type=”bookType”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name=”bookType”>
<xsd:sequence>
<xsd:element ref=”author”/>
<xsd:element ref=”title”/>
<xsd:element ref=”publisher”/>
<xsd:element ref=”price”/>
<xsd:element ref=”isbn”/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name=”author” type=”xsd:string”/>
...

The complex datatype is named bookType — otherwise, these schemas are
exactly the same. The advantage of using a complex datatype is that you can
reuse it an unlimited number of times. This datatype definition is not limited
to any particular element. You could, for instance, include a new element
named childrensBook with the bookType datatype with just an element
declaration, like this:

<xsd:element name=”childrensBook” type=”bookType”/>

You can download the entire bookstore.xsd schema file at www.dummies.
com/go/xmlfd4e. (You can also view it in Listing 10-2 in Chapter 10.) You
have all the necessary techniques under your belt to create this schema file.

When XML Schemas
Collide: Namespaces

You can use namespaces to include references to as many other schemas as
you want from within one master schema document. Doing so enables you to
use elements and attributes from more than one schema within your XML
document.

185Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:16 AM Page 185

A namespace is a collection of all the names of elements, types, and attrib-
utes in a specific schema. Because you can use components from multiple
schemas in your master schema document, it’s nearly inevitable that con-
flicts arise — and that they’re mainly a result of namespace issues. Collisions
can occur, for example, if an element in one schema has the same name as an
element in another schema. The more elements you have, the likelier that is.

Namespaces enable you to associate prefixes with specific schemas. You can
then reference the elements, types, and attributes from a specific schema
quickly and easily. For example, names from XML Schema documents usually
have an xs: or xsd: prefix.

Namespaces are also called vocabularies because they consist of a collection
of names and definitions.

For example, you could include components from other bookstore schemas
in your XML document by first identifying the namespaces and defining pre-
fixes for those namespaces in the schema element of your schema document,
as in the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://xmlfd.com/ns/bookstore”
xmlns:ob=”http://www.oregonbooksellers.com/oregonBooks”
xmlns:nwb=”http://www.northwestbooks.net/new”
xmlns:fic=”http://www.fictionwriters.org/fiction”
elementFormDefault=”qualified”>

Then add xsd:import elements to indicate where the schema documents for
these namespaces can be found, like so:

<xsd:import namespace=”http://www.oregonbooksellers.com/oregonBooks”
schemaLocation=”books.xsd”/>
<xsd:import namespace=”http://www.northwestbooks.net/new”
schemaLocation=”newbooks.xsd”>
<xsd:import namespace=”http://www.fictionwriters.org/fiction”
schemaLocation=”fiction.xsd”>

<xsd:element name=”books”>
. . .

The first line of the schema element declares the default namespace for the
schema — the XML Schema namespace — and associates the xsd: prefix
with this namespace so you can use names such as schema, element,
attribute, as defined by the XML Schema specification:

xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

186 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:16 AM Page 186

The second line creates a namespace for the elements defined in this schema
document — for example, books, book, customer. Specifying a target name-
space allows you to use these components in other schema documents:

targetNamespace=”http://xmlfd.com/ns/bookstore”

The next three lines in the schema element associate prefixes with additional
namespaces, so you can use components from those schemas in your
schema document:

xmlns:ob=”http://www.oregonbooksellers.com/books.xsd”
xmlns:nwb=”http://www.northwestbooks.net/newbooks.xsd”
xmlns:fic=”http://www.fictionwriters.org/fiction.xsd”>

The final line in the schema element is added because, by default, only glob-
ally declared elements and attributes are associated with the target name-
space. (Global elements and attributes are children of the schema element.)
To add local elements to the target namespace, you add:

elementFormDefault=”qualified”

The next three lines in the schema document indicate the location of the
schemas associated with the three imported namespaces:

<xsd:import namespace=”http://www.oregonbooksellers.com/books.xsd”
schemaLocation=”books.xsd”/>
<xsd:import namespace=”http://www.northwestbooks.net/newbooks.xsd”
schemaLocation=”newbooks.xsd”>
<xsd:import namespace=”http://www.fictionwriters.org/fiction.xsd”
schemaLocation=”fiction.xsd”>

To access elements from other namespaces, you create components that
include the prefix you assigned to that namespace. You could, for example,
define new elements to include in the book element in the following way:

<xsd:element name=”book”>
<xsd:complexType>
<xsd:sequence maxOccurs=”unbounded”>
<xsd:element ref=”author”/>
<xsd:element ref=”ob:title”/>
<xsd:element ref=”nwb:publisher”/>
<xsd:element ref=”fic:price”/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”author” type=”xsd:string”/>

The book element is a complex type element — it contains other elements.
The complex type definition defines a sequence of four elements. The author

187Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:16 AM Page 187

element is defined in this schema. The next three elements in the sequence
are defined in other schemas. By using a ref attribute with a prefix associated
with an imported namespace in the element declaration, the name and defini-
tion for that element are imported into this schema document. The title ele-
ment definition is imported from the namespace associated with the prefix
ob:, the publisher element from the namespace associated with the prefix
nwb:, and the price element from the namespace with the prefix fic:.

Namespaces are one of the most complex areas in XML — especially in XML
Schema. For more details on using namespaces in schemas, see “Working
with Namespaces in XML Schema” at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnexxml/html/xml08192002.asp

Including External Data
If you’re using a Document Type Definition (DTD) to drive the creation of
your XML documents, it’’ easy to include external data by using entities and
notations. Alas, a major weakness of XML Schema is its meager support (so
far!) for entities and notations — you can use them in your schemas, but only
in very specific and limited ways.

If your XML document includes references to external non-XML data or exter-
nal entities (any nontext file, like a picture or an XML file), consider using a
DTD rather than a schema — and also check out Chapter 8 for more details
on DTDs and Chapter 9 for more information on using entities in schemas.

XML Schema only provides for entities and notations to be used as attribute
values, rather than as elements. This severely limits the use of external data
in your schemas. Better support for entities and notations in XML Schema is
at the top of the wish list for improvements in the next version of the XML
Schema specification.

Including/Excluding Document Content
XML Schema includes two methods for including or excluding content in an
XML document. The first method is using a choice group, which allows you
to use either/or choices between two elements. as well as choices among
several elements. For example, you could extend the bookstore schema to

188 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:16 AM Page 188

include a choice between child elements of the book element. In this exam-
ple, the choice is between the publisher and the isbn elements:

<xsd:element name=”book”>
<xsd:complexType>
<xsd:choice>
<xsd:element ref=”publisher”/>
<xsd:element ref=”isbn”/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name=”publisher” type=”xsd:string”/>
<xsd:element name=”isbn” type=”xsd:string”/>

The second method uses a substitution group, which allows you to substi-
tute one element for another element of the same type (or one derived from
the same type). One element acts as the head of the substitution group;
you can replace this element with other elements from the group as needed.

If the bookstore schema included a location element, and you wanted
to replace it with a more specific element (such as OakwayCenter,
RiverValleyMall, or GatewayMall), you could create a substitution
group so you could use one of these more specific elements.

To create a substitution group in the bookstore schema, follow these
steps:

1. Add a location element.

<xsd:element name=”location” type=”locationType” abstract=”true”/>

The location element declaration includes an abstract attribute
with the value true. Because the location element is abstract, it can’t
appear in an XML document; instead, it’s represented in the document
by a member of the substitution group. The location element is the
head element of the substitution group.

2. Include a substitutionGroup that consists of three other elements:
OakwayCenter, RiverValleyMall, and GatewayMall.

All of them use the same datatype: locationType.

<xsd:element name=”OakwayCenter” type=”locationType”
substitutionGroup=”location”/>
<xsd:element name=”RiverValleyMall” type=”locationType”
substitutionGroup=”location”/>
<xsd:element name=”GatewayMall” type=”locationType”
substitutionGroup=”location”/>

Each of these element declarations includes a substitutionGroup
attribute with the value location to identify it as a member of this
group.

189Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:16 AM Page 189

3. Define the locationType datatype.

It includes a sequence of four elements: address, phone, fax, and
email:

<xsd:complexType name=”locationType”>
<xsd:sequence>
<xsd:element name=”address” type=”xsd:string”/
<xsd:element name=”phone” type=”xsd:string”/>
<xsd:element name=”fax” type=”xsd:string”/>
<xsd:element name=”email” type=”xsd:string”/>
</xsd:sequence>
</xsd:complexType>

Your XML document can now use an OakwayCenter, RiverValleyMall, or
GatewayMall element in place of a location element.

Converting DTDs to Schemas
If you’ve been using DTDs to drive the development of your XML documents,
you may want to convert the DTD to a schema to provide tighter control of
your document content.

Tools for DTD-to-schema conversion are available both separately and as part
of XML editor packages (such as XMLSpy and Turbo XML). Doing the conver-
sion yourself, however — without any additional software — is easy. Just keep
in mind as you do the conversion that a DTD is usually a less-specific structure
than a schema. You’ll definitely have to modify the DTD structure to change it
from a general document-description tool to a much more specific, datatype-
focused tool that utilizes the features of XML Schema. No instant transforma-
tion here.

Even if you use a tool for DTD-to-schema conversion, you’ll still need to tweak
the resulting schema by hand in order to make it more specific. (You’ll need to
add in things like complex datatypes and simple type definitions, for example.)

Take a look at a DTD (books2.dtd) to validate books2.xml (Listing 11-1);
then we look more closely at how to transform this DTD into a schema.
(See Chapter 8 to refresh your memory about DTD syntax.)

Listing 11-1: Books2 DTD

<!ELEMENT books (book+)>
<!ELEMENT book (title, author, publisher, price, isbn)>
<!ATTLIST book
contentType CDATA #REQUIRED

190 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:16 AM Page 190

format CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>

The first line specifies that the books element includes one or more book
elements:

<!ELEMENT books (book+)>

To create the same specification in an XML Schema, use a complex type defi-
nition and a sequence compositor with unlimited occurrence:

<xsd:element name=”books”>
<xsd:complexType>
<xsd:sequence maxOccurs=”unbounded”>
<xsd:element ref=”book”/>
</xsd:sequence>
</xsd:complexType>

The next DTD line indicates that the book element contains five other ele-
ments in a specific order:

<!ELEMENT book (title, author, publisher, price, isbn)>

To convert this DTD element declaration to a schema declaration, we create
a complex type definition and a sequence, as follows:

<xsd:element name=”book”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”title”/>
<xsd:element ref=”author”/>
<xsd:element ref=”publisher”/>
<xsd:element ref=”price”/>
<xsd:element ref=”isbn”/>
</xsd:sequence>
</xsd:complexType>

The book element in the DTD includes two attributes:

<!ATTLIST book
contentType CDATA #REQUIRED
format CDATA #REQUIRED>

191Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:16 AM Page 191

These attributes each have two possible values, so we include them in the
schema’s complex type definition for the book element:

<xsd:element name=”book”>
<xsd:complexType>
<xsd:sequence>
...

</xsd:sequence>
<xsd:attribute name=”contentType” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Fiction”/>
<xsd:enumeration value=”Nonfiction”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name=”format” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Hardback”/>
<xsd:enumeration value=”Paperback”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>
</xsd:element>

You use the general DTD definitions for book attributes and transform them
into very specific schema definitions.

The attribute declarations for the two attributes are included at the end of
the complex type definition for this element. The DTD uses CDATA to specify
that the content is any combination of characters; by contrast, the schema
invokes specific restrictions on the XML Schema string datatype: Both the
DTD and the schema define the attribute content as a string, but the DTD
allows the content to include any string, while the XML Schema only allows
specific strings.

<!ATTLIST book
contentType CDATA #REQUIRED
format CDATA #REQUIRED>

#REQUIRED specifies that the attribute is required and is replaced with
use=”required” in the schema, which looks like this:

<xsd:attribute name=”format” use=”required”>

The following lines of the DTD declare elements with PCDATA content. PCDATA
stand for parsed character data — text that the document processor actually
looks at and interprets to display both content and markup. For example, the

192 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:16 AM Page 192

character entity < would be interpreted by the processor as <. PCDATA
content can include numbers, letters, symbols, and entities.

<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>

In this case, the schema uses the string datatype for the first three ele-
ments:

<xsd:element name=”title” type=”xsd:string”/>
<xsd:element name=”author” type=”xsd:string”/>
<xsd:element name=”publisher” type=”xsd:string”/>

You can use more specific XML Schema datatypes for PCDATA content, such
as date and time formats. XML Schema also allows you to further restrict the
string datatype if you want to control other attributes (such as the pattern
of the characters, minimum and maximum length, and instructions for deal-
ing with white space). For the bookstore example, we want to create more
specific definitions for the price and isbn elements, so we add datatypes
for these elements with simple type definitions:

<xsd:element name=”price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\$[0-9]{1,4}.[0-9]{2}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name=”isbn”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”[0-1][0-9]{9}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

Schemas are designed to be more specific than DTDs. If you convert a DTD to
a schema, convert the general DTD markup to specific XML Schema markup
whenever possible. Fortunately, both built-in and user-derived XML Schema
datatypes make this conversion possible.

As you can see, it’s really not difficult to convert a DTD to an XML schema.
What you gain is a much more specific validation tool for your XML
documents.

193Chapter 11: Modifying an Existing Schema

17_588451 ch11.qxd 4/15/05 12:16 AM Page 193

This chapter introduces all the essential techniques for modifying schema
documents so they meet your document validation requirements. In addition,
it covers how to convert a DTD to a more specific schema document. That’s
a start. In the next chapter, you discover the art of transforming XML docu-
ments with XSL (Extensible Style Language).

194 Part III: Building In Validation with DTDs and Schemas

17_588451 ch11.qxd 4/15/05 12:16 AM Page 194

Part IV
Transforming and
Processing XML

18_588451 pt04.qxd 4/15/05 9:37 AM Page 195

In this part. . .

By itself, XML doesn’t look like much in a Web
browser. But there’s a lot more to XML than making

it look pretty for human reading or consumption. Part IV
delves into packaging and delivering XML content for all
kinds of uses. Chapter 12 covers how the eXtensible
Stylesheet Language (XSL) works with XML, not only to
turn XML into HTML, but also to turn it into just about any
format you might need.

Chapter 13 introduces XPath, a powerful tool for mapping
elements, attributes, and content in an XML document.
But wait, there’s more: The XPath Analyzer in XMLSpy
helps you fine-tune your use of XPath for even mightier
results.

Chapter 14 gives you pointers in handling XML for data
delivery, explains how XML processors read and internal-
ize XML content (as well as other aspects of internalizing
and handling XML content for reuse, delivery, or transfor-
mation), then calls it a day and orders out for pizza (just
kidding).

18_588451 pt04.qxd 4/15/05 9:37 AM Page 196

Chapter 12

Handling Transformations
with XSL

In This Chapter
� Picking your style of XSL

� Transforming XML documents with XSLT

� Using templates for style

� Creating an XSLT stylesheet with an XSLT editor

XSL (eXtensible Stylesheet Language) helps you do something meaningful
with your XML. Though XSL is the stylesheet language created specifi-

cally for XML, it’s more than just a tool for creating display templates. XSL
is also a powerful tool for converting your XML document from one set of
markup (vocabulary) to another — a key component of many solutions that
use XML for data exchange. This capability is equally important if you want
to turn your XML into a format that a display device can understand — say,
eXtensible HyperText Markup Language (XHTML) or Portable Document
Format (PDF).

One great thing about XSL is that (surprise!) it’s really just XML. An XSL docu-
ment is simply an XML document written according to a particular set of
rules. The really good news is that you don’t have to learn a new language to
learn XSL — just the particular rules that apply to the creation of transforma-
tions or the use of formatting objects. Learning to use XSL is just like learning
to use any other XML vocabulary. Neat, huh?

An XML vocabulary is a set of names and definitions for XML elements, attrib-
utes, and datatypes. A vocabulary is defined in an XML Schema or a DTD.

In this chapter, you’ll find out how XSL’s two sides, transformation and for-
matting, make it a powerful tool for manipulating your XML for a variety of
purposes.

19_588451 ch12.qxd 4/15/05 12:21 AM Page 197

The Two Faces of XSL
XML’s style needs are pretty extensive. Clean XML document structures are
rarely in the form you need for presentation, and you may need to present
the same XML document in several ways — in print, on the screen, or even in
a multimedia presentation. In addition, for those who want to take full advan-
tage of XML’s power as a tool for sharing data across systems, there should
be an easy way to convert documents from one vocabulary to another.

The architects of XML have you covered. They decided that the responsibility
for display and for document conversion should be handled by a separate
mechanism rather than XML proper, so they developed XSL as a special vocab-
ulary of XML, designed to describe stylesheets for XML documents. During
development, these same architects realized that creating one mechanism for
both display and conversion was a Herculean task. So they split the style and
conversion mechanisms of XSL into two different but related mechanisms:

� XSL Transformations (XSLT) handles the conversion from one set of
markup to another.

� XSL Formatting Objects (XSL-FO) helps you format XML for devices that
want to display XML.

XSLT
The first and most well-developed face of XSL is a conversion tool known
as XSLT. The T stands for transformation, and that’s exactly what this part
of XSL is designed to do — use a set of rules to transform (that is, convert)
documents described by one set of elements into documents described by
another set of elements. The two sets of elements don’t even have to look
anything alike.

You can use XSLT in a couple of especially intriguing ways:

� To transform documents described using XML elements into HTML or
XHTML for display in a Web browser. This nifty trick overcomes the
dilemma created by the overall lack of consistency in browser support
for XML and its friends, such as XSL-FO and even CSS. One day, browsers
will all be XML savvy, but until then, XSLT lets us have our cake and eat
it too — with XSLT, you can describe data with XML for storage and
manipulation and transform it into HTML or XHTML to display it on the
Web for all the world to see.

� In XML-based data exchange systems. Systems need to exchange data
regularly, and many use XML for that exchange. More often than not, the

198 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 198

two systems don’t use the same XML internally, so they have to spit out
and receive data written in an XML vocabulary they aren’t ready to work
with. These systems use XSLT to convert data from their internal XML
vocabulary to one that another system can work with, and vice versa.

To write an XSLT stylesheet, you simply identify an element in one document
and specify how it should be described using a different element or set of ele-
ments in the new document. You can grab entire elements or just an element’s
content. You can even reference attribute values and turn them into element
content (or turn element content into attribute values). All in all, XSLT is really
cool. You’ll learn to create a simple XSLT stylesheet later in this chapter.

The ins and outs of data exchange
It’s entirely possible that two (or more) systems exchanging data don’t use
the exact same schema or DTD. One possible solution to this quandary is for
one system to change its internal programming to work with the other’s DTD
or schema. As much as this fosters a cooperative spirit, often it simply isn’t
practical. If a system is built around a particular DTD or schema, you can’t
just come along and rebuild it.

A more practical solution is for each system to support data transformation
so that each can continue to use the format it needs. Here’s how that solution
works:

1. When My Business, Inc., gets data from Your Company, Ltd., that’s
described with markup based on Your Company’s schema or DTD,
My Business simply transforms that data into its own data formats
(described with markup based on My Business’s schema or DTD)
before pulling it in.

2. Alternatively, Your Company, Ltd., may be nice enough to transform
its data to My Business’s XML format before sending it along to My
Business.

Either way, a data transformation has to take place.

The mechanism XML uses for defining how data should be transformed from
one flavor of XML markup to another is XSL, and specifically the transforma-
tion functionality of XSL known as XSL Transformations (XSLT).

See Chapter 17 for more information on data exchange with XML.

The role of XPath
Without XPath, XSLT simply wouldn’t work. Before you can transform an ele-
ment, attribute, or even a chunk of content using XSLT, you have to be able to
identify its exact location. For example, if you want to do something special
to every third instance of a list item, you have to be able to point to it — and
that’s what XPath makes possible. XPath is the mechanism XSLT uses to

199Chapter 12: Handling Transformations with XSL

19_588451 ch12.qxd 4/15/05 12:21 AM Page 199

point to a piece of an XML document so that it can be transformed. If you
can’t find it, you can’t change it.

XPath is a very sophisticated set of rules for identifying the most specific
pieces of an XML document. You can not only specify particular elements
or attributes or their content, but you can also find individual pieces of
content — strings — based on the elements and letters around them.

XPath is such a helpful specification that it’s not only used by XSLT to guide
transformations, but it’s also what the XML Linking (XLink) specification uses
to make very specific pieces of an XML document into links — and the XML
Query language uses XPath for data exchange. Because XPath is so impor-
tant, we’ve devoted Chapter 13 to it.

XSL-FO
XSL-FO is used to specify how the structured content of an XML document
should be displayed — how content should be styled, laid out, and paginated
for presentation on a Web page, a handheld device, or a set of pages in a cata-
log or book.

As XSL-FO’s name indicates, formatting objects are the key to making your
XML ready for display.

If you’re familiar with CSS, many of these formatting objects will be very
familiar, as will the general concepts of formatting.

The different XSL-FO formatting objects are organized into these eight
categories:

� Declaration, Pagination, and Layout formatting objects include all the
things you need to set up the basic layout of a document, including
pages, master pages, and a title.

� Block formatting objects create paragraphs, block quotes, and the other
building blocks of a document.

� Inline formatting objects create styles such as boldface, italics, specific
colors, and even special individual characters (or strings) inside a block.

� Table formatting objects create and control tables.

� List formatting objects create and control lists of all kinds.

� Links and Multi formatting objects handle — and style — links and
multimedia components.

� Out-of-line formatting objects create and style floating areas and
footnotes.

� Other formatting objects are catch-alls for the objects that don’t fit in
other categories.

200 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 200

Every formatting object has properties that can be applied to it. For example,
the object that creates a table (fo:table) can take properties that specify
how thick its borders are, what color they are, and so on. You can use proper-
ties to control just about every aspect of a particular object.

XSL-FO is intended to do more than just specify how XML documents should
appear on-screen; it’s also designed to make the content easier for computers
to read aloud. The aural part of the XSL-FO specification focuses on how to
make XML content accessible to everyone, including those who can’t see the
content.

The specifics of using XSL-FO are beyond the scope of this book. For an excel-
lent introduction to the details, see “What is XSL-FO?” at www.xml.com/pub/
a/2002/03/20/xsl-fo.html.

XSL Stylesheets Are XML Documents
If you’re a little perplexed by all this alphabet-soup terminology, don’t worry:
XSL stylesheets (whether XSLT or XSL-FO) are really just XML documents. They
use elements, attributes, and all the other standard XML syntax tools; the rules
they must follow are what set them apart from other XML documents.

201Chapter 12: Handling Transformations with XSL

Knowing which XSL you’re dealing with
If you’re just getting into XSL, figuring out which
version of XSL is the topic of a particular book or
article can be difficult. Generally, information
about XSLT involves the word transformation,
and anything that involves the word formatting
probably refers to XSL-FO. The W3C uses the
term XSL to mean the general XML stylesheet
standard that includes both XSLT and XSL-FO.
In this book, when we use the term XSL, we’re
also using the W3C definition. But if we’re talk-
ing about XSLT or XSL-FO specifically, we use
their proper names.

When you go looking for information about
XSL — whether it’s lurking in books, magazines,
or online — look for the most recent informa-
tion. Although XML itself has been stable for
quite a while now, XSL is only just now starting

to slow down from the blur of changes. The
more recent your information is, the more likely
it refers to the latest developments of XSL.

For a complete history of XSL, XSLT, and XSL-
FO, as well as links to the current XSL recom-
mendation that includes both XSLT and XSL-FO,
visit the W3C’s XSL page at

www.w3.org/Style/XSL

Though the basic concepts behind XSL are fairly
straightforward, the syntax for creating XSL doc-
uments is complex. Although we’ll introduce
some basic XSLT syntax later in this chapter, it’s
not something we can cover in detail in this book.
For more detailed information on XSLT, see XSLT
For Dummies, by Richard Wagner.

19_588451 ch12.qxd 4/15/05 12:21 AM Page 201

Because XSL stylesheets are XML documents, technically, any system that
can process XML can process an XSL stylesheet. For a stylesheet to be useful,
however, the system has to know what to do with the results of the
processed stylesheet.

The best way to keep up with XSL and new XSL tools is to visit the W3C’s XSL
Web page (www.w3.org/Style/XSL).

A Simple Transformation Using XSLT
An XSLT stylesheet consists of instructions that tell the computer how to
convert a document described by a particular schema or DTD to a document
described by a second, different schema or DTD. Each instruction focuses on
one element in the source document and specifies how it should be changed
to fit the second schema or DTD. The stylesheet doesn’t replace or change
the elements in the source file but instead builds a new file to hold the results
of the transformation. When you’re working with XSLT, all you’re really doing
is using XSLT elements to transform a document using one set of elements
into a document that uses another set of elements.

The best way to show you how XSLT works is by example. In the following
section, we show a simple XSLT stylesheet that transforms books2.xml into
an HTML document. After that bit of magic, we break the XSLT stylesheet into
its component parts so you can see what’s really going on — and how the
transformations occurred in each part.

An XSLT Stylesheet for Converting
XML to HTML

If we open books2.xml in Internet Explorer, the program ignores all the ele-
ments it doesn’t recognize — which is all of them — and simply displays the
text within the markup, as shown in Figure 12-1.

If you want people to see the books2 document in a useful and meaningful
way while they’re using a Web browser, you have to describe the document
with something the Web browser can recognize and handle — namely, HTML.

If you use the following XSLT stylesheet with books2.xml and then open it
in Internet Explorer, as shown in Figure 12-2, you have a much more user-
friendly and functional document for the Web.

202 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 202

Listing 12-1 shows all the code for books2.xslt. You’ll learn about each part
of the code in the following sections.

At www.dummies.com/go/xmlfd4e, you can download the code for
books2_xslt.xml (which is books2.xml with a link to the XSLT stylesheet),
books2.xslt, and books2_xslt.css.

Figure 12-2:
Here’s

books2.
xml after
books2.

xslt
transforms

it, as
displayed in

Internet
Explorer.

Figure 12-1:
books2.

xml in
standard

XML as
displayed in

Internet
Explorer.

203Chapter 12: Handling Transformations with XSL

19_588451 ch12.qxd 4/15/05 12:21 AM Page 203

Listing 12-1: The books2.xslt Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:template match=”/”>
<html>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<head>
<title>Books</title>
<link rel=”stylesheet” type=”text/css” href=”books2_xslt.css”/>
</head>
<body>
<xsl:for-each select=”books”>
<table>
<tr>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Price</th>
<th>ISBN</th>
<th>Content Type</th>
<th>Format</th>
</tr>

<xsl:for-each select=”book”>
<tr>
<td>
<xsl:for-each select=”title”>
<xsl:apply-templates />
</xsl:for-each>
</td>
<td>
<xsl:for-each select=”author”>
<xsl:apply-templates />
</xsl:for-each>
</td>
<td>
<xsl:for-each select=”publisher”>
<xsl:apply-templates />
</xsl:for-each>
</td>
<td>
<xsl:for-each select=”price”>
<xsl:apply-templates />
</xsl:for-each>
</td>
<td>
<xsl:for-each select=”isbn”>
<xsl:apply-templates />
</xsl:for-each>
</td>
<td>
<xsl:for-each select=”@contentType”>
<xsl:value-of select=”.” />

204 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 204

</xsl:for-each>
</td>
<td>
<xsl:for-each select=”@format”>
<xsl:value-of select=”.” />
</xsl:for-each>
</td>
</tr>
</xsl:for-each>
</table>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

In a nutshell, this stylesheet specifies exactly how each element in our XML
document should be changed to HTML. Each style rule identifies one element
from the XML document — and provides instructions for converting it to a
similar or equivalent HTML element (or set of elements).

The pieces of the stylesheet puzzle
In this section, we break up an XSLT stylesheet into its component parts to
see what makes it do its stuff. XSLT is a robust conversion tool and has many
facets; an attempt to describe them all would take us too far afield. Instead,
we focus on the most basic structures that make up an XSLT stylesheet.
Getting all the pieces of the XSLT puzzle right means creating and using XSLT
templates to transform one set of markup (vocabulary) to another.

The instructions in an XSLT stylesheet that control how an element and its
content should be converted are called templates. These instructions identify
which element in a document should be changed — and then specify exactly
how the element should be changed. The template element goes by a distinc-
tive (if obvious) name: xsl:template.

Using patterns
A template in an XSLT stylesheet focuses on a single node in a document. To
identify the node to which the template applies, XSLT uses the match
attribute with the xsl:template element to point to a specific node. The
value of match is called a pattern. The XSLT processor looks at the pattern,
works its way through the source document to find the pattern, and then
applies the template to every node that matches the pattern. Pretty neat.

The structure of XML documents can be described as a tree. Anywhere that
the tree branches is a node. Nodes can be described using family relation-
ships; for example, this node is a parent of that node; this other node is a sib-
ling of those other two nodes, and so forth. XSLT uses the nodes of XPath (see

205Chapter 12: Handling Transformations with XSL

19_588451 ch12.qxd 4/15/05 12:21 AM Page 205

Chapter 13 for more on XPath), which include element, attribute, comment,
document element, root, processing instruction, namespace, and text
nodes — that should cover it!

Our XSLT document begins with an XML declaration, followed by a name-
space declaration that includes the xsl: prefix and the URI for the XSLT
namespace:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

A namespace is a vocabulary — it’s a collection of names and definitions of
elements, attributes, and types. A namespace declaration associates a spe-
cific namespace (vocabulary) with a document. In this case, any component
in the stylesheet that uses an xsl: prefix belongs to the XSL namespace
(http://www.w3.org/1999/XSL/Transform). For more information on
namespaces, see Chapter 11.

This is followed by a template:

<xsl:template match=”/”>

This template matches the XML document root (/) to the HTML document
root — and (as spelled out in Listing 12-1) adds the following HTML markup:

<html>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<head>
<title>Books</title>
<link rel=”stylesheet” type=”text/css” href=”books2_xslt.css”/>
</head>
<body>

This procedure is an easy way to include whatever markup we choose for the
head section of the HTML document. Our markup includes a meta tag to
specify the character encoding, a title to display in the browser title bar, and
a link to an external CSS stylesheet, but any legitimate HTML markup for the
head section of an HTML document could be included here.

In our XSLT document, this xsl:template element contains the entire HTML
document — but we could also use an XSLT stylesheet that uses a separate
template element to match each XML element. Here’s an example:

<xsl:template match=”publisher”>
<td>
<xsl:apply templates/>
</td>
</xsl:template>

206 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 206

The td element creates a table cell in an HTML table — the XSLT stylesheet
applies a template to the publisher element and then includes it in an HTML
table cell.

Because our XML document can include any number of book elements, our
XSLT stylesheet uses one xsl:template element that contains instructions
for the transformation of repeating XML elements, as detailed in the following
sections of this chapter.

Using instructions to get results
In addition to using a pattern to identify which node(s) in the source docu-
ment to transform, the template specifies how to transform each node. These
instructions guide the XSLT processor through content transformation. For
example, we use a value-of instruction with the book attributes to tell the
processor to convert the result to text and place it in an HTML table cell:

<td>
<xsl:for-each select=”@contentType”>
<xsl:value-of select=”.” />
</xsl:for-each>

</td>

This snippet says (in effect), “For each contentType attribute node (@), take
the text content of that node (. specifies the current node) and make it the
content of an HTML table cell — in other words, place the content between
an opening (<td>) and closing (</td>) HTML table cell tag.”

Processing element content
You use the xsl:apply-templates instruction when you want to return the
content and text nodes of the current element and its children — but not the
surrounding element tags. For example, to put the content of each XML
price element into an HTML table cell without including the surrounding
<price></price> tags, we use:

<td>
<xsl:for-each select=”price”>
<xsl:apply-templates />
</xsl:for-each>
</td>

Unless you add a select attribute to apply-templates to limit its scope,
the template will be applied to the current node and to all its child nodes,
including any text nodes that are children of the current node.

207Chapter 12: Handling Transformations with XSL

19_588451 ch12.qxd 4/15/05 12:21 AM Page 207

Choosing templates
Well, okay, what template gets applied here? It depends; the XSLT processor
looks for the best template to apply and makes a choice:

� If a select attribute is used with apply-templates, then the processor
looks for the best template for that node.

� If no select attribute is used, the template rule that contains the
apply-templates instruction is chosen as the current node — in this
case, the XML price element.

We’ve included style instructions for td elements in our CSS stylesheet, so
that style is applied to the content of the price element.

So when you create XSLT style rules, you have to think about not only the
way you’re transforming an individual node, but also how to deal with its
content. Does the content from the source document need its own transform-
ing? Should it be nested in a particular set of markup in the new document?
Or do you even want to transform the content at all? If you don’t specify
xsl:apply-templates, the resulting document won’t include any of the con-
tent from within any element — text, markup, or otherwise.

Adding external CSS
You may have noticed that we included a link to an external CSS stylesheet in
our XSLT markup:

<link rel=”stylesheet” type=”text/css” href=”books2_xslt.css”/>

You can include style information directly in the XSLT markup if you choose,
but we find it faster and more efficient to use external CSS and XSLT. Need
convincing? Here’s why . . .

First, here’s the code that sets up an HTML table cell to hold the content of
the author element from our XML document:

<td>
<xsl:for-each select=”author”>
<xsl:apply-templates />
</xsl:for-each>
</td>

The following code is concise because we use an external CSS stylesheet to
define the display style for the content of a table data <td> tag:

td {
background-color: #ffff80;
color: #800000;
text-align: left;
vertical-align: text-top;

208 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 208

padding: 5px;
font-family: “Trebuchet MS”, Verdana, sans-serif;
font-size: small;
border-color: #800000;
border-width: 1px;
border-style: solid;

}

We know you can’t tell colors apart in our black-and-white screenshots, but
this page actually displays in color: background color, text color, and border
color. The style information also includes vertical alignment, padding, and
border style instructions.

Okay, now look at the alternative. Here’s the same XSLT stylesheet without
any external CSS:

<td style=”background-color:#FFFF80; color:#800000;border-color:#800000;
border-width:1px;border-style:solid;
font-family:Trebuchet MS, Verdana, sans-serif; font-size:small;
padding:5px; text-align:left; vertical-align:text-top;”>

<xsl:for-each select=”author”>
<xsl:apply-templates />
</xsl:for-each>

</td>

We haven’t really changed the XSLT here; we’ve just used the HTML style
attribute to write out the style info. And to really ice the cake? We have to
change this spec for every one of the table cells — every time we want to
change the way the information is displayed. Thanks, but we have a life; we
choose to use an external CSS stylesheet instead.

Dealing with repeating elements
Our XSLT stylesheet (books2.xslt) deals with repeating elements by using a
single template element that contains all the instructions for transforming each
instance (xsl:for-each) of these elements in our XML document. That’s one
way — but not the only way — to deal with repeating elements. What if your
XML document includes a list? A single list might have 50 items — what if you
want each of those items transformed the same way? That may sound difficult,
but actually, you can handle the task pretty easily if you write a template that
loops through the items one at a time, applying the same transformation to
each instance of the element — as in the following style rule:

<xsl:template match=”books/book”>

<xsl:for-each select=”publisher”>

<xsl:apply-templates/>

209Chapter 12: Handling Transformations with XSL

19_588451 ch12.qxd 4/15/05 12:21 AM Page 209

</xsl:for-each>

</xsl:template>

Here the xsl:for-each element points at a specific element that is repeated —
and applies the same transformation to each instance of that element. In this
template, every publisher element nested within <books><book> . . .
</book></books> is changed to an HTML list item (li) within an unordered
list (ul).

The XSLT elements we discuss are only a few of the XSL elements that you
can use to transform an XML document from one schema or DTD to another.
You can sort through elements, point to attribute values, create attributes,
and assign attribute values in the results document — and that’s only the
beginning.

Creating an XSLT Stylesheet
with XSLT Editors

If hand-coding is not your favorite art form, you can also use an XSLT editor
to create your XSLT stylesheets instead. One of the friendliest WYSIWYG
(What You See Is What You Get) XSLT editors is Altova StyleVision. (We’ll talk
more about another Altova product, XMLSpy, in Chapter 19.)

StyleVision enables you to open an XML schema document and use a GUI
(Graphic User Interface) to add CSS style rules to your XML elements and
attributes to create an XSLT or XSL-FO stylesheet. Seriously easy.

Altova offers a 30-day trial version of all its products, including StyleVision.
See the link to the trial version of StyleVision on the Web page for this book
at www.dummies.com/go/xmlfd4e. After getting StyleVision on your hard
drive, go ahead and download the books2.xsd file from the same Web page,
and take StyleVision for a spin. Here’s how:

1. Open books2.xsd (or any schema document) in StyleVision.

At the top left of the StyleVision window, you’ll see the document dia-
gram. Under the heading / DocumentRoot, find the books element. Click
on the + next to books to expand it and display all the elements in
books2.xsd. You’ll see the document diagram on the left above two
tables of style properties, as shown in Figure 12-3.

210 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 210

2. Select the book element from the document diagram, and drag it onto
the pane on the right, onto the area labeled (contents).

A menu appears, as shown in Figure 12-4.

Figure 12-4:
The

Formatting
menu in

StyleVision.

Figure 12-3:
Opening

books2.
xsd in

StyleVision.

211Chapter 12: Handling Transformations with XSL

19_588451 ch12.qxd 4/15/05 12:21 AM Page 211

3. Choose Create Table from the displayed menu.

The Create Dynamic Table dialog box, shown in Figure 12-5, opens. All
the attributes and child elements of the book element are automatically
selected.

4. In the Create Dynamic Table dialog box, deselect any attributes or
children you don’t want to include in the table display and then
click OK.

This action creates table cells for each of the selected attributes and
child elements of the book element.

You can specify additional table formatting features in this dialog box:

• Table Growth specifies whether the cells of the table are displayed
as a column (Top/Down) or as a row (Left/Right). Use the default
choice (Top/Down).

• Display Cells As specifies how to format the table cells. You can
choose Contents to format the cell content as plain text or choose
formatting options: Combo Box (drop-down menus), Field (text
input fields), Multiline Fields (text area fields), Check Box, or Radio
Buttons. Use the default choice (Contents).

• Header/Footer is used to create table headers and footers. Create
Header creates table header cells from the names of the elements
or attributes. Create Footer creates table footers for tables with
multiple columns (Top/Down). The sum of numeric contents in
cells can be displayed in a footer if the Summary for Numeric
Fields option is checked. Check the box in front of Create Header;
then click OK to close the dialog box.

Figure 12-5:
The Create

Dynamic
Table dialog

box in
StyleVision.

212 Part IV: Transforming and Processing XML

19_588451 ch12.qxd 4/15/05 12:21 AM Page 212

The selected elements and attributes are now displayed on the
StyleVision canvas in columns with three rows. The top row is the table
header; the middle row contains the opening and closing tags for ele-
ments and attributes, with a (Contents) label in between these tags.

You can preview the table display by selecting an XML document to
work with. Choose File➪Assign Working XML File and then browse to
the location of the XML file. Click OK. Then click on the HTML Preview
tab in the bottom right of the StyleVision window to see a preview of
the display.

5. To add formatting properties, place the cursor inside the table, row,
column, or cell that you want to format.

You choose Table➪Table Properties to open the Table Properties
window. You can choose table formatting properties such as alignment,
width, and background color for the entire table or for individual rows,
columns, or cells.

6. Select additional formatting properties for individual cells on the
StyleVision canvas.

You can do so by placing the cursor in the cell to be formatted and then
choose styles from the Block Style window at the lower left. Here, you
click through the tabs to choose styles from each group of style proper-
ties in the Block Style window.

7. Click the XSLT-HTML tab at the bottom of the canvas on the right side
to view the source code for the XSLT document.

Click the HTML Preview tab to get a preview of how your XML page
appears in a browser after transformation with XSLT.

8. Choose File➪Save Generated Files➪Save Generated XSLT-HTML File.

Sure enough, doing so saves the XSLT stylesheet.

Voilà! You’ve got a full-fledged XSLT stylesheet! But don’t let it just sit there.
Attach it to your XML file by adding this line after the XML declaration:

<?xml-stylesheet type=”text/xsl” href=”books2.xslt”?>

You now have a stylesheet that can transform any XML document that’s
based on the schema you started with (books2.xsd) to create a dynamic
HTML table from the XML document content.

In the next chapter, you find out all about using XPath to locate elements,
attributes, and content in an XML document.

213Chapter 12: Handling Transformations with XSL

19_588451 ch12.qxd 4/15/05 12:21 AM Page 213

214 Part IV: Transforming and Processing XML

FrontPage 2003 and XSLT
StyleVison is not the only XSLT editor in town —
although we do think it’s pretty neat. FrontPage
2003 also includes a WYSIWYG XSLT editor that
is very easy to use. However, there are several
requirements for using XSLT in FrontPage 2003:

� Windows Server 2003

� IIS 6.0

� ASP.NET

� Windows SharePoint Services

All of the live data-driven features of FrontPage
2003 require Windows SharePoint Services —
basically, a Web-services intranet. You can find
a SharePoint hosting service (just use your
favorite search engine), or Microsoft offers a
free, 30-day trial of SharePoint Services (visit
www.sharepointtrial.com/default.a
spx for more details).

Windows Server 2003, Enterprise edition, and
SharePoint Services are included in the Front-
Page 2003 trial CD, available for purchase at

www.microsoft.com/office/
frontpage/prodinfo/trial.
mspx

There are lots of XSLT editors to choose among
these days — see Chapter 19 for more details. If
you don’t have a need for the full gamut of
SharePoint Services, we recommend you down-
load trial versions of several XSLT editors and see
which one works best for you.

If you already own FrontPage 2003, however, be
sure to check out the XSLT features. For more
information on creating a Web page to display
XML data in FrontPage 2003, see

http://office.microsoft.com/
enus/assistance/HA011123381
033.aspx

Note: FrontPage 2003 is no longer included in
the Microsoft Office suite, so you must pur-
chase this software as a separate product if you
want to use it.

19_588451 ch12.qxd 4/15/05 12:21 AM Page 214

Chapter 13

The XML Path Language
In This Chapter
� Defining XPaths, directions, and destinations

� Explaining document trees

� Looking at nodes and relationships

� Figuring out the full and abbreviated XPath syntax

� Exploring XPath 2.0

Nobody creates XML just for the fun of creating XML. The idea is to actu-
ally DO something with the XML, and for that you need software to

manipulate the XML (software that uses XML document content to populate
a database, for example, or software that manages online financial transac-
tions). Software, as smart of some of the programs may be, usually can’t
figure out XML on its own.

You need some way to tell software where to go in an XML document — you
need a language that describes the paths built into a document as well as
how to follow a route through that document. XML Path Language (XPath)
does just that, providing a concise language describing the location of spe-
cific elements, attributes, and their values in an XML document.

Here’s how you might describe a path through an XHTML document:

“Starting at the top of the document, go to the root element <html>,
then go to the <body> element, and then find the third <p> element.”

This is quite simple and understandable to a human reader, but what you
really want is a common simple language that you can use to describe this
path to software. XPath is such a language.

The XPath 1.0 specification (available at www.w3.org/TR/xpath) is all about
naming the XML paths that run through a document — its mission in life is
to provide a concise language to describe directions for how to get from one

20_588451 ch13.qxd 4/15/05 12:21 AM Page 215

place to another in an XML document. XPath 2.0 is a W3C working draft speci-
fication (www.w3.org/TR/xpath20/) as of October 2004. For more details on
the features in XPath 2.0, see “What’s New in XPath 2.0,” later in this chapter.

In this chapter, you find out how XPath creates paths to help computer sys-
tems find every little piece of markup or content in your XML document. You
also discover where those paths lead, what markup to use to describe them,
and how to correctly document them.

Why Do You Need Directions?
In XML, you need to know how to get from point A to point B only if there’s
some purpose to your journey. XML has no equivalent to the Sunday after-
noon drive to see the fall colors. XML gurus navigating XML documents are
like stern Puritans who travel only when they have a purpose. In other words,
if you don’t need to worry about paths, hooray — don’t bother. But if you do
need to know your document’s path, then you need the right tool for the job:
a specific, XML-based language.

To do some of the higher-end tasks that are possible with XML, you need
a language to describe how to move about a document, for two primary
reasons:

� To find your way to and describe a section of a document that needs
to be transformed or formatted for display. This task involves XSL
Transformations (XSLT) or XSL Formatting Objects (XSL-FO). See
Chapter 12 for more information.

� To be able to point to a certain part of the document. This task involves
the use of XPointer or XML Query (XQuery) language. Visit www.w3.org/
TR/xptr-framework/ for more information on XPointer and www.w3c.
org/XML/Query for information on XQuery.

For example, if you want to transform every paragraph element that contains
the word W3C into an indented block with a purple background for display,
you have to be able to find those specific paragraphs, which you can do with
XPath. Or if you want to create a link from the W3C to every paragraph ele-
ment that contains the word W3C, you have to be able to locate those para-
graphs so that you can link to them.

XPath may be used for other purposes as well, but these two tasks were
tricky and complex enough that they provided the motivation for writing
the XPath specification.

216 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 216

XPath document trees
To understand how XPath describes paths and directions, we use the
clients.xml document — an example of an XML document that we could
use to keep track of clients:

<?xml version=”1.0”?>
<!-- Clients.xml-->
<Clients>
<!--This is the root element of Clients.xml-->
<Client id=”c1”>
<Name>Jon Smith</Name>
<Phone type=”home”>440-123-3333</Phone>
<Fax>440-123-3334</Fax>
<Email>jon@acme.com</Email>
</Client>
<Client id=”c2”>
<Name>Bill Jones</Name>
<Phone type=”cellphone”>330-124-5432</Phone>
<Fax>440-123-5433</Fax>
<Email>bjones@someinc.com</Email>
</Client>
<Client id=”c3”>
<Name>Matt Brown</Name>
<Phone type=”work”>220-125-1234</Phone>
<Phone type=”cellphone”>233-344-4455</Phone>
<Phone type=”home”>234-567-8910</Phone>
<Fax>220-125-1235</Fax>
<Email>matthew@hotstuff.com</Email>
</Client>
</Clients>

This document can be laid out like a tree, as shown in Figure 13-1.

Figure 13-1:
A tree

diagram of
an XML

document.

217Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 217

Figure 13-1 shows the root node, comments, and elements in the
clients.xml file (we haven’t included the text or attributes in this diagram).
These components are called nodes in XPath terminology. XPath uses nodes
to create a map of an XML document based on family relationships: child,
parent, sibling, descendant, ancestor, and so on.

Understanding XPath nodes
Understanding XPath nodes is essential to successfully using XPath in your
documents. The XPath document tree is very similar to the DOM (Document
Object Model) tree we discuss in Chapter 14 but isn’t exactly the same —
we’ll point out differences as we go along.

The name node is borrowed from biology. When a tree or a plant branches,
the place where it does so is a node. Sometimes this comparison is carried
even farther — a node with no children is called a leaf.

There are seven kinds of nodes in the XPath data model:

� Root node: A single node that is the root of the document tree and con-
tains the entire document. The root node is a concept — there is no visi-
ble element or text in a document that represents the root node. A root
node contains the element node for the document element and can also
contain processing instruction nodes and comment nodes.

� Element node: There is an element node for every element in the docu-
ment. Element nodes can contain other element nodes, comment nodes,
processing instruction nodes, and comment nodes.

The document element node is a single node that contains the entire
contents of the document except for any processing instruction nodes
or comment nodes that are children of the root node.

The document element is comparable to the root element in an XML
document — but be careful! The document element node is not the root
node of the document.

� Attribute node: Each element node has an associated set of attribute
nodes. The element is considered the parent of these nodes, but the
attribute node is not considered the child of the element node.

The W3C Document Object Model (DOM) considers an attribute to be a
property of the element that contains it. (For more information on the
DOM, see Chapter 14.)

� Namespace node: Each element has an associated set of namespace
nodes — one for each namespace prefix for that element and one for the
default namespace. As with attribute nodes, the element node is the
parent of the namespace nodes, but the namespace nodes are not con-
sidered the children of the element node.

218 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 218

The reason for this contorted reasoning about attribute nodes, name-
space nodes, and family relationships in XPath is nerdy stuff that has to
do with XML namespaces. If you want a beginner’s guide to namespaces,
take a peek at Chapter 11. To read even more about the topic of name-
spaces and how they relate to all manner of XML goodness, we suggest
reading Ronald Bourret’s “XML Namespaces FAQ” at

www.rpbourret.com/xml/NamespacesFAQ.htm

If you want to read about it in hard copy, pick up a copy of XML 1.1 Bible,
3rd Edition, by Elliotte Rusty Harold (Wiley Publishing).

� Processing instruction node: There is a processing instruction node for
every processing instruction in a document unless the processing
instruction is part of a DTD.

The XML declaration is not a processing instruction — therefore,
there is no processing instruction node that corresponds to the XML
declaration.

� Comment node: There is a comment node for every comment in a docu-
ment unless the comment is part of a DTD.

� Text node: Character data — strings of characters — is contained in text
nodes. Each text node contains at least one character, and as much char-
acter data as possible is grouped into a single text node — in other
words, no text node has a text-node sibling directly before or directly
after it.

Reserved characters can’t be included in strings in XML documents
unless they are part of a CDATA section or unless they’re escaped with
a character entity For example, to include a <, it must be replaced by
< — otherwise, an XML processor interprets the < as the start of
a tag.

Characters inside comments, processing instructions, and attribute
values are considered part of the comment, processing instruction, or
attribute node — they don’t make up a separate text node.

Here are some examples of the XPath relationships among the various nodes
in clients.xml:

� A single node, called the root node, is the root of the document tree and
contains the entire document.

� The root node in clients.xml contains two children: a comment node
and the document element node (Clients). These two very different
nodes are siblings.

� The Clients node is the document element node of the document.

� The Clients node has four child nodes: a comment node and three
Client element nodes.

219Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 219

� The parent of the second comment node in the document is the docu-
ment element node. The comment node has no children (the text of a
comment is considered part of the node) but has three siblings in the
form of Client element nodes.

� Each Client element node has children of its own. For example, the
third Client node has six children elements: a Name element node,
three Phone element nodes, a Fax element node, and an Email element
node. All these element nodes are siblings of one another.

� Each of these element nodes has a text node as a child.

� The parent of every Phone element node is a Client element node.

XPath Directions and Destinations
In this section, you take a look at the language that XPath uses to describe a
route through a document. We need to clarify that an XPath is a terse set of
directions presented as a string — which is read by suitable software and
then returns a destination node or a set of nodes.

A string is a term for a line of text. Similarly, when we talk about something
being returned, we’re talking about the answer that a piece of software gives if
you ask it a question.

Different software systems can use the set of directions in XPath in various
ways. For example, a transformation system takes what it finds at the end of
the path and applies transformation rules to create new markup from it. The
XPointer specification uses this set of directions in its fragment identifier, and
the XSL specification uses it as an attribute.

XPath says nothing about what to do with a destination after it’s been
reached. Again, this is left up to the individual system that uses XPath for its
own purposes.

Every trip has three parts, and here is what XPath has to say about each part:

� The starting point is called the context node. It can be the root node of
the document or another node in the document.

� The journey itself consists of both a direction and a number of steps.
XPath describes each of these steps using its syntax. Each step is sepa-
rated by a forward slash (/). Sometimes, a journey consists of one step;
at other times, a journey may involve many steps. In the following sec-
tion, we look at several examples of these steps.

220 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 220

� The destination can be either a single node or a collection of nodes.
This concept shouldn’t be too difficult. For example, in a real journey,
you could say that your destination is 27 Palace Court, London, W1; or
Europe; or England; or London, UK (or, if you’re just landing here, Earth).
All these statements are correct.

XPath says nothing about what to do when you reach your destination: It just
describes the destination and how to get there.

XPath Syntax
XPath uses two types of syntax: an abbreviated form and an unabbreviated
form. In this section, we show you both forms. We start with the unabbrevi-
ated syntax because it’s a little more descriptive and easier to follow.

XPath calls the most important of its set of directions a location step. A loca-
tion step searches for a node depending on the information that you give it.
The general syntax for a location step is as follows:

axisname :: nodetest[expression1] [expression2] ...

Here’s a closer look at the parts of this syntax:

� axisname is the type of selection that you want to perform. It also tells
you the direction in the document that you need to travel. If you select
child, descendant, or following-sibling as an axis, you travel for-
ward in the document. If you select parent, ancestor, or previous-
sibling, you travel backward in the document. If you select self, you
stand still.

� nodetest tests for the type of node that you want to select. This is usu-
ally the name of a node.

� expression appears in square brackets and further refines your selec-
tion process for a node or set of nodes. You can use more than one
expression (which may also be called a predicate).

A location path is made up of one or more location steps. A / is used to sepa-
rate each step.

Before getting into more of the details of XPath, here are a few simple exam-
ples of location steps using the clients.xml document. In the examples in
the following sections, the starting point (the context node) is the root node
of clients.xml, unless otherwise stated.

221Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 221

Some simple location paths
Here are some simple examples of location steps and location paths using the
clients.xml document. First, we show you the code, followed by a brief
description:

� Handy Example #1

child::Clients

The axis is child, and the node test is Clients. This selects all the
Clients element children of the root node.

� Handy Example #2

child::*

The axis is child, and the node test is *, which represents a wildcard
selection. This selects all the element children of the context node (the
root node, in this case).

222 Part IV: Transforming and Processing XML

Got any (XPath) axes to grind?
Here are the various axes that XPath provides,
along with a brief description of each:

� child selects the children of the context
node.

� descendant selects from any of the
descendants of the context node.

� parent selects the parent of the context
node.

� ancestor selects the parent of the con-
text node, and the parent of the parent, and
so forth, up to the root node.

� following-sibling selects from all the
following siblings.

� preceding-sibling selects from all the
preceding siblings.

� following is any following node other
than attribute or namespace nodes.

� preceding is any preceding node other
than attribute or namespace nodes.

� attribute contains all attributes of the
context node.

� namespace contains all namespace nodes
of the context node.

� self contains just the context node itself.

� descendant-or-self contains the con-
text node and all of its descendants.

� ancestor-or-self contains the context
node and all of its ancestors.

20_588451 ch13.qxd 4/15/05 12:21 AM Page 222

� Handy Example #3

child::node()

The axis is child, and the node test is node(), which selects all the
child nodes of the root node, including the comment node and the ele-
ment node Clients.

The child axis is the default axis for a location step. You can omit child::
from a location step, if you want — the result will be identical.

Adding expressions
Here are some simple examples of expressions, which further refine the
selection process. As before, first we show you the code and then we give a
brief description:

� Additional Handy Example #1

child::Clients[position()=1]

The axis is child, and the node test is Clients. We add an expression,
[position()=1], which selects the first node that is a child of the root
node and is also named Clients. You can also abbreviate this to the fol-
lowing format:

child::Client[1]

In this case, you could also use the last() function to return the last
node in the list:

child::Clients[position()=last()]

Or you could do the same thing in abbreviated form, like this:

child::Client[last()]

Because there’s only one Clients node, the last Clients node is identical to
the first Clients node.

Taking steps along the XPath
Having taken one step on the path, take another one and step into the docu-
ment properly. XPath uses a forward slash (/) to tell you when to take another
step. The new context node is the node that’s selected in the preceding step:

child::Clients[position()=1]/child::Client

223Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 223

After the first step, you make a new location step from a new context node. In
other words, the first step selects the first node that is a child of the root
node and is also named Clients — and that node becomes the context node
for the second step. The second step selects all the nodes that are child
nodes of the Clients node and that are named Client.

Looking at attributes
You can use the value of attributes to narrow your selection of a destination
node. For example:

Clients/Client[attribute::id=”c3”]

The first step selects all the nodes that are a child of the root node and are
also named Clients — the Clients node becomes the context node for the
second step. The second step selects all the Client nodes that are children
of the Clients node and also have an attribute named id with a value of
c3 — which is to say, the last Client element.

Going backward
You can also step backward through an XML document. Of course, if you
start from the root node, you have nowhere to go. It’s like the old joke about
taking a picture of someone at the edge of the Grand Canyon (“Just take one
more step back . . .”). If you want to step backward, you have to start farther
forward.

For these next examples, we assume that the context node is the last Email
element of the third Client — that is, the Email element with the content
matthew@hotstuff.com. Here’s the first example:

preceding-sibling::Fax

Using this code returns all the preceding sibling elements called Fax — in
this case, just one element. The next example returns all the preceding sib-
ling elements called Phone:

preceding-sibling::Phone

When you apply this to the clients.xml file, it describes the three Phone
elements.

224 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 224

Finally, the following path returns the parent element, provided it’s named
Client:

parent::Client

When applied to the clients.xml file, this path indeed returns its parent. In
this case, the context node is the Email element node of the third Client
element node, so this path returns the third Client element node.

Reversing direction
When you start going backward, you also reverse the direction of counting
for the position() function. If (for example) you assume the same context
node as in the preceding section, what’s returned is the Phone element node
with a type attribute with a value of home:

preceding-sibling::*[position()=1]

The following example returns the Name element node:

preceding-sibling::*[position()=last()]

Null results
Sometimes you ask for something, and nothing is there! For example, the fol-
lowing command returns the preceding parent element if it’s called
MoneyBags:

parent::MoneyBags

Alas, there’s no parent called MoneyBags, so XPath returns a null value.

Null is one of those nerdy terms that crops up from time to time, and it means
there is no value. Null is different from empty, different from zero. It’s the
black hole of XML — it doesn’t suck you in but does just sit there, stubbornly
being nothing. Okay, it’s weird, hard to explain, and plain old goofy. A null
value is something that is “completely devoid of any value” (no cheap jokes,
please). It’s different from an empty string — it’s not something that’s empty;
it’s just happy being nothing. (How strange is that??)

225Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 225

Getting back to your roots
You can always go back to the root node of a document by using the forward
slash (/). If the context node is still the Email node, the following selects the
root element of the document (Clients):

/child::*

The / takes you back to the root of the document (think of it as the top of the
document); child is an axis that selects the children and * makes sure that
you select only the element children. Because of the rules of XML, there can
only be one document element node, which means that this construct always
selects the document element node.

XPath functions
XPath also includes several handy functions — these, for example:

� String functions such as starts-with() compare a particular substring
to a string and return true if the string starts with that substring.

� Node set functions such as count() return the number of nodes in a
node set.

� Boolean (true/false) functions such as lang() return true if the lan-
guage matches the language of the xsl:lang element.

� Number functions such as round() modify numbers (for example, this
one rounds to the nearest integer value).

Using XPath with XMLSpy
XMLSpy is a multifaceted XML tool (you can find more about it in Chapter
19). In this section, you give XMLSpy’s XPath Analyzer tool a test drive.

You can download a free, full-featured, 30-day trial version of XMLSpy (either
the Enterprise or Professional Edition) or a free, time-unlimited version of
XMLSpy Home Edition. Here’s where:

www.altova.com/download.html

XMLSpy 2005 includes a built-in XPath Analyzer tool to help you build and
test XPath expressions. To use the XPath Analyzer, follow these steps:

1. Open an XML file in XMLSpy.

226 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 226

2. Choose XML➪Evaluate XPath.

The Evaluate XPath dialog box opens, as shown in Figure 13-2.

3. Enter an expression in the Input pane.

Presto! The destination node(s) is listed in the Results pane.

The features of the XPath Analyzer include three especially useful ones:

� The Input pane: You enter an XPath expression in the Input pane. The
expression is displayed in black type if the syntax is correct and in red
type if the syntax is not correct. Correct syntax doesn’t guarantee that
the expression is error free — any errors are shown in the Results pane
at the bottom of the dialog box.

� Evaluator options: You have several choices regarding the evaluation of
your XPath expression.

• XPath Syntax options: For XPath 1.0 expressions, you can choose
the full XPath 1.0 grammar, the XML Schema Selector grammar, or
the XML Schema Field grammar. (Schema selectors and fields are
used to specify constraints if your XML document is an XML
schema.)

• XPath Origin options: You choose the context node, either the
Document Root (root node) or a Selected Element. You can specify
the selected element via your XPath expression, or you can high-
light the selected element in the XML file that’s open in the main
XMLSpy window. The file should be opened in Text view or Grid
view.

• Real-Time Evaluation options: The expression can be evaluated as
you type it, or you can choose to evaluate the expression only
when you click the Evaluate button.

Figure 13-2:
The

Evaluate
XPath

dialog box in
XMLSpy

2005.

227Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 227

• XPath Version options: You can select either XPath 1.0 or XPath
2.0. The XPath evaluator uses a different engine for each version.

� The Results pane: When an expression is evaluated, the Results pane
displays a list of items in sequence, along with their corresponding
attributes and/or values.

Okay, here’s a look at what some of these can do for you. In Figure 13-2, the
expression

Clients/Client/attribute::*

returns all the attributes of the Client element nodes and displays them in
sequence in the Results pane.

Watch what happens if we change the context node to the Fax element node
of the second Client element node and then evaluate this expression:

preceding-sibling::*

As shown in Figure 13-3, the result is both the Phone element node and the
Name element node of the second Client element node. (We’re moving back-
wards in the document, so the Phone element is listed first.)

Make sure you’ve selected From Selected Element as the XPath origin — other-
wise, your result will be null.

The Short Version
XPath is designed to be used with other applications such as XPointer, XSL,
and XQuery. To limit the resulting complexity, it makes sense to provide less
verbose syntax. This is called abbreviated syntax for XPath.

Figure 13-3:
Using a

selected
element in
the XPath

Analyzer in
XMLSpy

2005.

228 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 228

The most important (and compact) abbreviation is child::. This abbrevi-
ates to . . . wait for it . . . nothing!

Child-axis abbreviations
For other compact ways to show a child axis, here are some of the previous
examples from this chapter, set out with their abbreviated equivalents:

� child::Client abbreviates to Client.

� child::* abbreviates to *.

� child::node() abbreviates to node().

� child::text() abbreviates to text() and selects all text nodes of the
context node.

Attribute-axis abbreviation
The attribute:: axis abbreviates to the @ symbol. So the example

child::Client[attribute::id=”c3”]

abbreviates to

Client[@id=”c3”]

Predicate and expression abbreviations
XPath offers several useful abbreviations for common expressions that can
make your coding go faster and take up less space. The position expression
(for example) abbreviates to nothing; therefore

Client[position()=1]

abbreviates to

Client[1]

This simply selects the first Client element of the context node.

The next expression selects the last child of the context node:

Client[position()=last()]

229Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 229

It must retain the empty parentheses; otherwise, it looks for other child ele-
ments. Therefore, it abbreviates to

Client[last()]

Here are some other handy abbreviations:

� Client[>1] selects all the client nodes other than the first Client
node.

� Client[< last()] selects all the Client nodes other than the last
Client node.

� Client[last()-1] selects the Client node immediately before the last
Client node.

� Client[position()=1]/phone abbreviates to Client[1]/phone.

Some more abbreviations
Here are a few more abbreviations, just so you can’t claim that we’re not
working you hard enough.

The descendant axis abbreviates to two forward slashes, as when

descendant::Name

(which selects all the Name elements in the document) abbreviates to

//Name

The context node abbreviates to a dot (.), so

.//Fax

is a compact way to select all the Fax element nodes that are descendants of
the context node.

The parent node abbreviates to two dots (..), so

..

selects the parent of the context node.

230 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 230

More XPath abbreviations and functions are possible, but the examples just
given are the ones you’re likeliest to use in most cases. To see the other
examples, consult the specification at www.w3.org/TR/xpath.

Let’s face it: All by themselves, XPath expressions aren’t very useful. They’re
just part of a language that describes how to select a set of nodes or a single
node from a document. You have to make them useful by combining them
with some other application. For instance . . .

� In XSL, XPath expressions are used to select a node or a whole series of
nodes so that they can either be transformed from one XML element set
to another element set or have styles applied to them.

� In XML Query language, XPath expressions are used for retrieving hunks
of data from an XML document.

� In XPointer, the expressions of XPath are used to point software to a par-
ticular spot in the document.

What’s New in XPath 2.0?
XPath 2.0 is at the W3C Working Draft stage at the time of this writing. XPath
2.0 is used with both XSLT 2.0 and XQuery 1.0, and introduces several new
features not available in XPath 1.0, including:

� XML Schema datatypes: XPath 1.0 processes everything as string data,
but XPath 2.0 supports the 19 XML Schema primitive datatypes so that
you have access to decimal, float, double, and date and time
datatypes.

� New features for nodes:

• Element and attribute nodes can now be associated with XML
Schema datatypes.

• The root node is now called the document node.

• XPath1.0 expressions return a node set, which is an unordered
collection. XPath 2.0 expressions return an ordered sequence of
nodes.

� Aggregation: XPath 2.0 offers aggregation functions such as min() and
avg() that allow functions to be applied to data in groups. This capabil-
ity expands the new grouping features of XSLT 2.0, including these:

• the xsl:for-each-group element

231Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 231

• new attributes for grouping that can be used with the xsl:for-
each-group element include group-by, group-adjacent, and
group-starting-with

• a current-group () function for referring to a group

� Programming constructs: XPath 2.0 adds support for several common
programming constructs, including these:

• for loops

• conditional expressions

• regular expressions

� User-defined functions: xsl:function allows you to create user-
defined functions to use in XPath 2.0 expressions.

� A wide variety of new functions, including these:

• numeric functions such as absolute value, floor, ceiling, and
round

• string functions such as concatenation, length, uppercase, and
lowercase

• substring functions such as contains, starts-with, and ends-
with

• pattern matching functions that support regular expressions

• a multitude of date and time functions

� New operators, including these:

• operators on numeric values, including add, subtract, multiply,
divide, and modulus

• operators for comparison of numeric values, such as greater
than and lesser than

• operators for comparison of date and time values

This is by no means an exhaustive list! For more details on all the new func-
tions and operators in XPath 2.0, see “XQuery 1.0 and XPath 2.0 Functions
and Operators” at www.w3.org/TR/xpath-functions/.

XPath 2.0 supports many features of programming languages — and document-
mapping capabilities are much more powerful than what you get with XPath
1.0. True, XPath 1.0 can be expanded with proprietary extensions, but these
are tied to specific XSLT processors — and that can easily lead to a swarm of
incompatibilities. XPath 2.0 — in combination with XSLT 2.0 — enables you to

232 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 232

create stylesheets that are compatible with multiple processors and multiple
platforms. (Think of the savings on aspirin alone.)

Also, XQuery is an extension of XPath 2.0. Okay, XQuery is not quite ready
for prime time yet — but learning XPath 2.0 will speed you right up the learn-
ing curve when it comes time to implement XQuery. That could happen soon;
XQuery is expected to become the standard method for querying XML
documents.

Where to Now?
There are many resources online for finding out more about XPath. Check out
the tutorials at these sites:

� www.zvon.org/xxl/XPathTutorial/Output/

� www.topxml.com/xsl/tutorials/intro/

� www.w3schools.com/xpath/default.asp

One fun way to apply XPath occurs in a language called Schematron (an alter-
native to XML Schema, in fact). Schematron uses XPath (and some XSL) to
describe document structures. To get the goods on Schematron, visit

www.ascc.net/xml/resource/schematron/schematron.html

In this chapter, you found out about using directions and paths to locate
nodes in the XML document tree. In the next chapter, you find out more
about the document tree and the DOM (Document Object Model). XML
processors use the DOM to make your XML document available to program-
ming applications.

233Chapter 13: The XML Path Language

20_588451 ch13.qxd 4/15/05 12:21 AM Page 233

234 Part IV: Transforming and Processing XML

20_588451 ch13.qxd 4/15/05 12:21 AM Page 234

Chapter 14

Processing XML
In This Chapter
� Understanding XML processing

� Investigating the Document Object Model (DOM)

� Choosing an XML processor

Processing XML means putting your document to work. That usually
means changing it so an application (whatever its function) can do

something with your XML document.

The key to the “something” that an application can do with your XML is the
Document Object Model (DOM) — a structure that breaks up your XML docu-
ment into a form that an application can get at and work with. This chapter
explains how applications use the DOM to work with the content in your XML
documents.

To process your XML documents, you need an XML processor. An XML
processor takes in XML files — along with any stylesheets — and makes their
structure and content available (in a format that’s useful to a programming
language) so the XML document can be used in an application. In this chap-
ter, we take an in-depth look at what’s involved in processing XML, and we
give you some insight into how a program can access and work with the data
in an XML document.

Frankly, My Dear, I Don’t Give a DOM
A Document Object Model (DOM) is a programming interface that allows pro-
grams and programming languages to access and update the content, struc-
ture, and style of documents in a standard way. The DOM does this by using
a standard syntax to describe a document as a series of objects. When an
XML document is passed through an XML processor, the processor creates a
DOM for that document. Programming languages (such as C++ and Java) and
scripting languages (such as JavaScript and VBScript) can access the DOM,

21_588451 ch14.qxd 4/15/05 9:38 AM Page 235

reach out and grab a particular object, and manipulate it. We take a different
view of the bookstore.xml document to show its DOM. In case you haven’t
already downloaded this XML file, it’s available at www.dummies.com/go/
xmlfd4e.

To really understand what a DOM is, you need to get a mental picture of how
XML documents actually work with the DOM. This Zen approach to under-
standing may be a little, um, Zenlike (After all, how can you know how a DOM
works without knowing what it is?), but trust us on this one, and you’ll feel
much more balanced. Keep in mind that although there’s a sense of hierarchy
to how a DOM works, you shouldn’t confuse it with the hierarchy of a filing
system (such as Windows Explorer or another filing cabinet application),
because the DOM is not a filing system or data-storage hierarchy. It’s a pro-
gramming hierarchy and a method for exposing data for manipulation.

You can describe the bookstore.xml document as a series of elements and
their content. You can also describe the document as a series of objects —
after all, each element in the document is an individual object. The following
piece of the document (for example) includes five different objects:

<bookInfo>
<title>The Da Vinci Code</title>
<author>Brown, Dan</author>
<publisher>Doubleday</publisher>
<isbn>0385504209</isbn>
</bookInfo>

The five objects are:

� The bookInfo element

� The title element that contains the content “The Da Vinci Code”

� The author element that contains the content “Brown, Dan”

� The publisher element that contains the content “Doubleday”

� The isbn element that contains the content “0385504209”

The DTD and XML schema we have used to validate this document in previ-
ous chapters allow more than one book element per document, so there
could be more than one title element, author element, and so on. In that
case, even though individual elements use the same markup tags, they’re all
separate objects in the document — the first title element is a different
object from the second title element, and so forth.

All these individual objects are part of the DOM for the bookstore.xml doc-
ument. In addition to identifying each element in an XML document as an
individual object, a DOM shows how each element relates to the others hier-
archically. In fact, the DOM identifies each unique object in a document
according to its position in the document’s hierarchy.

236 Part IV: Transforming and Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 236

As in any hierarchy, the DOM consists of a fairly complex system of relation-
ships that must be adhered to. (We introduce these relationships in Chapters
5 and 12.) See “Keeping in touch with the family” (the section coming up) to
get a better picture of siblings, parents, and the rest of the gang.

A processor is an application that makes your documents do something. XML
processors create a DOM each time they process an XML document so that
the programming code can get and work with the content in the document.
Figure 14-1 is a grid view of bookstore.xml in XMLSpy. It illustrates how the
DOM for this document might look to an XML processor. (See “What Goes In
Must Come Out: Processing XML” for more information about how process-
ing works.)

Of course, if you don’t plan to program an application that reads and processes
XML documents, then you can probably live the remainder of your life happily
without the brief review of document-family relationships, trees, and nodes in
the next two sections of this chapter. Remember, however, that many XML
resources — especially the more technical ones — tend to assume you’re hip
to at least the basics of trees and nodes. If you’re already comfortable with
these concepts — or if you’re not planning to program applications for XML —
you can skip ahead to the section called “Using the DOM and XSL.”

Figure 14-1:
The book
store.

xml DOM,
as an XML
processor

sees it.

237Chapter 14: Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 237

Keeping in touch with the family
To understand how the DOM works and how applications use programming
commands to access individual objects in a document, first you need a good
grasp of how the document’s elements relate to each other. As you found out
in previous chapters, the terms parent, child, and sibling are all used to
describe element relationships. These relationships have to do with how the
elements are nested. For example, in the following bit of markup, the street,
city, and state elements are nested within (and children of) the address
element:

<address>
<street>1312 Wilshire Blvd</street>
<city>Santa Monica</city>
<state>California</state>
</address>

street, city, and state are also siblings of each other, and address is their
parent. The concept of parents and siblings doesn’t extend past one level of
nesting. You can refer to parents, children, and siblings but not to grandpar-
ents, grandchildren, great-aunts, or second cousins. Fortunately.

Understanding DOM structure
Ultimately, this whole discussion comes down to a common terminology that
explains how this relates to that. A tree is a diagram of an XML document’s
structure that shows the order of elements and illustrates the relationships
between elements in exactly the same way that a family tree illustrates
genealogy. A tree is a visual representation of the DOM. If you refer back to
Figure 14-1, the tree’s root is the books element. The book, totalCost, and
customer elements are branches under the books element, and both the
book and the customer elements contain child elements.

Notice that the tree includes things other than the elements in the docu-
ment — for example, attributes and element content. The objects included in
a DOM are more than just the elements; they’re called nodes when displayed
on the DOM tree. Figure 14-2 illustrates some additional types of nodes that a
DOM tree can include.

If you’re familiar with basic XML structures, you probably recognize the
majority of node types, because they’re common XML elements. The ones in
bookstore.xml are:

� Root node: This node contains the whole document, including the
prolog and the document element node.

238 Part IV: Transforming and Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 238

� Document element node: This node contains the entire contents of the
document except for any processing instruction nodes or comment
nodes that are children of the root node. For this example, it’s books.

� Element nodes: book, bookInfo, title, author, publisher, isbn,
salesInfo, price, itemNumber, date, source, shipping, cost,
totalCost, customer, custNumber, lastName, firstName, address,
city, state, zip, phone and email.

� Text nodes: The text content of any element. For example, Joe is the
text node of the firstName element.

� Attribute nodes: contentType, format, priceType, sourceType, and
custType.

Node types that aren’t included in bookstore.xml but that are discussed in
other chapters of the book are:

� Namespaces (Chapter 11)

� Processing instructions (Chapter 8)

� Comments (Chapter 8)

As you can see, there’s not much in any given XML document that you can’t
access by using the DOM. Not surprisingly, that’s what the members of the
W3C had in mind when they created the DOM specification.

Using the DOM and XSL
XSL-FO and XSLT stylesheets are XML documents. When an application uses a
stylesheet, it processes the stylesheet like any other XML document. The only
difference is that the application applies the stylesheet to the XML document.
The stylesheet has its own DOM, as does the XML document; the final trans-
formation or display guided by the stylesheet takes information in both DOMs
into account. (For more on XSL-FO and XSLT stylesheets, see Chapter 12.)

Document element

Element
Processing instructions

attribute="value" element
text comment

Figure 14-2:
Additional

node types
in a DOM

tree.

239Chapter 14: Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 239

Web browsers and the DOM
A good example of an application that uses XSLT stylesheets and the DOM to
process XML documents is a Web browser. To display XML documents in
Web browsers (as something other than a list of elements, attributes, and/or
content, anyway), you actually have to apply an XSLT stylesheet to the XML
document — which converts XML to HTML or XHTML. Or you can use an
XSL-FO stylesheet with the XML document for display in the browser. For
example, when Internet Explorer 6 displays content using an XSL-FO
stylesheet, two processes actually occur:

1. Internet Explorer accesses the DOM that’s created when its processor —
Microsoft XML (MSXML) — reads and processes both the XML docu-
ment and the related XSL-FO stylesheet.

2. The browser uses the document and stylesheet together to determine
the final display of the content.

As you found out in Chapter 7, you can also use a CSS stylesheet for display-
ing an XML document in a browser.

What Goes In Must Come
Out: Processing XML

In Chapter 12 and the chapters in Part V of this book, we look closely at what
you have to do to make your XML do something for you. XML DTDs, schemas,
and documents are almost always part of a larger solution, such as the XML
solution used by an online loan-refinancing system. Stylesheets can also be
important tools — both for the transformation of data from one set of markup
to another and for controlling the display of data in an XML document.

240 Part IV: Transforming and Processing XML

The DOM recommendation
As you might have guessed, the way a DOM is
laid out adheres to a specific syntax, and that
syntax is defined in W3C recommendations.
DOM Level 1, Level 2, and Level 3 are all now
W3C specifications. To find out more details on
each of these DOMs, visit the W3C DOM
Activity Statement page at

www.w3c.org/DOM/Activity

As always, keep your eye on the W3C Web
site to keep up with the latest versions of all
specifications.

21_588451 ch14.qxd 4/15/05 9:38 AM Page 240

For all the different pieces in a solution to work together, you need program-
ming code of some kind, and that programming code needs a way to access
the content you’ve described with XML and any stylesheets you’ve written to
go with it. Enter the XML processor. A processor takes the code and makes it
do something. A processor may be part of a simple Web browser (such as
Internet Explorer or Mozilla), or it can be a whole other kind of program —
such as a utility that takes in an XML document, grabs the info it’s carrying,
and populates an Oracle database.

XML processors and the DOM go hand in hand. The processor creates the
DOM; without the DOM, you can’t use programming code to get your XML
content and do something with it. All things considered, that makes the XML
processor a seriously important tool in your XML arsenal.

All Web browsers have HTML processors built into them, and those that can
work with XML also have XML processors built into them. Because a browser
is really designed for display, when you view an XML document in a browser,
the browser uses the information the processor feeds it to drive the display
of your document.

If you create a stylesheet in either XSL or CSS, an XML-enabled browser can
also open and process that stylesheet. It then uses the processed XML and
processed stylesheet to present a final display. The browser is programmed
to look for information provided by the processed document — and then to
do something with it.

Although we use a display-driven solution (to display XML documents in a
browser) as an example, remember that putting stuff on-screen is just one
use for XML. All XML solutions have processors involved in them; the pro-
gramming code behind the solution’s XML processor just does something dif-
ferent — whatever the solution calls for — with the processed XML. For
example, if the solution takes data from a document and plugs it into a data-
base, the document is processed and then the processor uses the processed
data to insert the document’s content into the database.

Many different processors are available for you to choose among. This is a
Good Thing because it means you don’t have to write your own processor;
you can use one that someone else wrote. You probably don’t want to pick
the first processor you trip over on a Web page — it helps to know a little bit
about your processor options so you can find one that’s right for you.

Although the job of every XML processor is approximately the same — to
expose the structure and content of the document to a program for manipula-
tion — processors are written in a variety of languages. Processors may also
be validating or nonvalidating (more about these in just a bit). Throughout
the rest of this section, we take a look at different kinds of processors and
give you the information you need to find the processor that best meets your
requirements.

241Chapter 14: Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 241

We use the terms processor and processing in our discussions of making your
XML do something useful. You often see the words parser and parsing used in
the same context. Okay, an XML parser and an XML processor are really the
same thing — a tool you use to make your XML content and structure avail-
able to programming code for manipulation. For the sake of consistency, we
stick with processor. As you check out other sources of information, keep in
mind that parsers and processors do the same thing.

So many processors, so little time
Browse the XML Parsers/Processors section of xmlsoftware.com (the full
address is www.xmlsoftware.com/parsers.html), and you see more than
three dozen processors listed (and this isn’t even a complete listing, just a
good start). So what makes all these processors different from one another?
Each processor has four distinct characteristics:

� The programming language it was written in: For each of the many
different programming languages, there’s at least one processor. Each
language needs its own processor because the processor has to be pro-
grammed to work seamlessly with that language and to run on the same
system as the code written in that language. For example, if you’re creat-
ing a C++ application, it doesn’t make sense to use a processor written
in Java. You’d waste a lot of time trying to get the two to communicate
when you can get a C++ processor that’s already designed to play nice
with your C++ code.

� Whether or not it validates documents: A key difference among proces-
sors is whether they validate your XML documents. Every XML docu-
ment needs to be well formed, and if it isn’t, any processor (validating or
not) spits it (or an error message) right back at you — no DOM, no con-
tent, no nothing. On the other hand, some processors also validate your
documents against a DTD or schema. Invalid documents are spat out
just like malformed ones.

The benefit of a validating processor is that you know the data coming
into your system adheres to a DTD or schema, so you can be sure that
you get the data you need for the system to work properly. The down-
side to a validating processor is that it takes longer to process the XML
document; it has to check the document for well-formedness, and then
for validity, before doing anything else. (In the next section, we talk a
little more about determining whether you need a validating processor.)

� The version of the different specifications (DTD, schema, and so on)
that it supports: For example, most processors support XML 1.0 DTDs,
but some don’t support XML Schemas. When you read the description of
a processor, check to be sure it supports the standards you’re using.

242 Part IV: Transforming and Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 242

� If it was written to accompany a particular software or database appli-
cation: Some processors are built to work with specific applications or
databases; MSXML (for example) is the processor built by Microsoft for
Microsoft solutions. Oracle offers a range of processors written in vari-
ous programming languages, each specifically designed to work with
Oracle database applications. Such a processor is a kind of tradeoff:
Usually, it has utilities or functionality designed to use a specific applica-
tion or database — but will those features limit compatibility? Your call.

Which processor is right for you?
When you’re trying to pick a processor, you should ask yourself the following
questions to help narrow your search:

� What programming language is the rest of your solution using?

Generally, you can avoid some compatibility headaches if you go with a
processor that’s written in the same language.

� Do your documents need to be validated during processing?

If you’ve created a solution that revolves around a particular DTD or
schema, you want valid documents coming into that system — but you
don’t necessarily have to validate during processing. If you control the
document-creation process, you can set up standards for valid docu-
ments. If you don’t control that process (as when, say, data comes in via
a Web page or from someone else’s system), validating during process-
ing may make more practical sense. You can do some testing to find out
which is the greater tradeoff — the slower processing time you get with
a validating processor or the number of errors you have to handle when
invalid data gets into your system.

� Which XML versions and standards are you using?

If you’re using schemas, be sure that your processor supports them. As
a general rule, you want the most up-to-date processor you can lay your
hands on.

� Does the application framework or database you’re using have a
processor?

If you’re working with an Oracle database, it pays to look into the Oracle
processor. If you’re working with any of Microsoft’s products, look into
MSXML. Whatever you wind up with, read the documentation for your
database or application, and find out what kind of processor it offers. Be
sure the processor meets other essential criteria: proper programming-
language support, validating capability (if necessary), and proper stan-
dards support.

243Chapter 14: Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 243

The best person to help you pick out your processor is probably an experi-
enced programmer who can help you answer the questions just listed. Good
programmers have worked with XML, know the pitfalls of the various proces-
sors for each language, and can help you work through validation issues.

The next part of this book (Part V) focuses on XML application development.
Chapter 15 starts off Part V by introducing the use of XML for Web services.

244 Part IV: Transforming and Processing XML

21_588451 ch14.qxd 4/15/05 9:38 AM Page 244

Part V
XML Application

Development

22_588451 pt05.qxd 4/15/05 12:15 AM Page 245

In this part. . .

“I tell you, we can use the power of XML to capture,
organize, and represent data of many different

kinds, to make it available for all kinds of uses, and rule
the galaxy . . .”

Chapter 15 invades the world of Web services with a
potent combination of XML applications to advertise,
describe, and broker connections between service
providers and the consumers who (hopefully) love them.
Chapter 16 offers fishing tips for gathering information
with XML forms — some of which you create with the
W3C XForms technology and with InfoPath (the Microsoft
XML Forms editor). Chapter 17 ushers you into the use of
XML with databases; before you know it, you’ll be import-
ing and exporting XML data using Word 2003, InfoPath,
XMLSpy, and Access. Chapter 18 introduces RSS, an
XML application for creating news feeds and weblogs
(blogs) — complete with a how-to for creating an RSS feed
and syndicating your Web content. That galaxy had just
better look out.

22_588451 pt05.qxd 4/15/05 12:15 AM Page 246

Chapter 15

Using XML with Web Services
In This Chapter
� Understanding the vision behind Web services

� Unstacking the Web Services Architecture

� Explaining the ubiquitous role of XML in Web services

� Moving messages for Web services

� Exchanging information to support Web services

� Describing or advertising Web services

� Discovering Web services

� Understanding where Web services can lead

The Internet and the Web are remaking and reshaping the world of com-
puting in fundamental ways — and (of course) XML plays a key role in

this reshaping. That’s because XML documents — at least, those governed by
Document Type Definitions (DTDs), XML Schemas, or other alternative forms
of documentation — are sufficiently self-describing to carry their descrip-
tions along with their content and make themselves understood to any XML-
capable software program.

Web services are remote applications (accessed via a Web page) that carry
out specific tasks or functions. They allow different applications from differ-
ent sources to communicate with each other by using XML. Through the use
of Web services technology, the Web can be accessed not only to share infor-
mation, but also to share services.

From the view of Web services, there are two broad classes of computer
users: those who have specific information-gathering or -processing needs to
fulfill (we dub them service consumers) and those who have specific informa-
tion resources or processing capabilities to offer (service providers). Basic
supply and demand.

A service provider can also be a service consumer because, in addition to
providing its own unique data, the provider may provide content that it
digested from another resource. For example, say an accounting firm offers
access to IRS tax code information. The service provider passes on the

23_588451 ch15.qxd 4/15/05 12:16 AM Page 247

content to end users, along with useful tips on reading and interpreting the
code. This is what Web services are fundamentally about: the use, reuse, aug-
mentation, and dissemination of information.

This chapter gives you a bird’s-eye view of how XML plays a role in the
exchange and storage of data for consumers and providers.

What’s Up with Web Services?
In the Web services world, service consumers — individuals, corporations,
organizations, associations, and institutions — seek the best resources and
the best deals for their information and processing needs. In this same world,
service providers seek to advertise and promote their services so that ser-
vice consumers can take a look at the wealth of resources and pass these ser-
vices on to their customers.

For example, most people run an e-mail client on their desktop, downloading
and managing e-mail messages locally. When you’re ready to read your e-mail,
you click the Receive button (or something similar) to signal your e-mail
server that you’d like to receive all your e-mail messages. The server com-
plies and sends them to you. Your e-mail client handles all this for you (that’s
what clients are supposed to do, after all). When you’re ready to send an
e-mail message, you type it into your e-mail client’s editor and click the Send
button. Your client shoots the message off to the outgoing mail server, and
the mail is off and running. Figure 15-1 illustrates how an e-mail client on the
desktop sends and receives messages via mail servers on the Internet.

The e-mail software and the entire store of downloaded e-mail messages
reside on your desktop machine, but these e-mail messages made their way
to your desktop via the Internet. As evidenced by the collection of e-mail
piling up in your mailbox, service providers have created elaborate systems
to make it possible for you to send and receive e-mail seamlessly from a
server on the Internet.

A Web services model for e-mail (of which many implementations are already
available, including Hotmail, Yahoo! Mail, and others) takes a different
approach to e-mail access. To use one of the Web-based e-mail services, you
set up an e-mail account and use your Web browser to send and receive
e-mail. The brains that drive the e-mail software are split between your desk-
top and the remote e-mail server that holds your messages and folders.
Figure 15-2 shows how the Web service e-mail approach is different from the
desktop client e-mail approach.

248 Part V: XML Application Development

23_588451 ch15.qxd 4/15/05 12:16 AM Page 248

In this e-mail scenario, you manage the e-mail interface, decide what to do
with incoming e-mail messages, and create outgoing e-mail messages just as
you do with a desktop e-mail client. However, a server somewhere on the
Web handles all the dirty work: requesting and sending messages, storing
messages, filing messages, and so on. With most of these Web-based e-mail
services, you get the same functionality as you do with your favorite desktop
client, and as a bonus, you can access your e-mail from any location through
any computer with a Web browser and Internet connection.

You have to access a Web page and provide an account name and password
to supply proof of identity before you can access the stored data (the collec-
tion of folders and saved messages in the case of e-mail) of the Web applica-
tion service — the Web-based e-mail service you use to send and receive,
read and write, and otherwise manage e-mail messages.

Desktop PC running
an e-mail client

Incoming e-mail server

Outgoing e-mail server

Incoming e-mail

Outgoing e-mail

Figure 15-1:
Desktop

e-mail
clients com-

municate
directly with

e-mail
servers on

the Internet
to send and

receive
messages.

249Chapter 15: Using XML with Web Services

23_588451 ch15.qxd 4/15/05 12:16 AM Page 249

But the concept of Web-based applications goes way beyond e-mail. Word
processing applications, spreadsheet programs, database management sys-
tems, and presentation systems can become service based. The great benefit
of Web services is that they aren’t tied to any single computer, like traditional
software applications are. A centralized server stores both the application
functionality and the data. This makes the functionality and content more
accessible and encourages online collaboration.

But how? Patience, Grasshopper. If a service provider maintains a current
copy of the Web-based application and gives you access to all the necessary
data (e-mail messages for e-mail services, documents for word processing,
spreadsheets for spreadsheet services, and so on), just about any conceiv-
able form of computing could fall into the Web services model. We think this
explains why many software vendors are moving away from selling software
outright and are instead beginning to license software on a renewable term.

Okay, but what does all this have to do with XML? We’re glad you asked. In
the following sections, you find out about the key role of XML in providing
Web services.

Desktop PC running
a Web browser

Incoming e-mail server

Outgoing e-mail server

Web-based e-mail
service server

Incoming e-m
ail

Outgoing e-mail

E-mail
activities

Figure 15-2:
In a Web

service
e-mail

solution,
remote Web

servers
handle tasks
that desktop

clients
usually
handle.

250 Part V: XML Application Development

23_588451 ch15.qxd 4/15/05 12:16 AM Page 250

A Web Services Architecture
Because XML is well suited to describing all kinds of documents and data,
and because such descriptions are easy to exchange across the Internet, XML
is a natural foundation on which to construct a model for Web services in
general. In fact, XML experts have constructed a general model for how XML
Web services should work; this model is known as the XML Web Services
Architecture.

The Web Services Architecture is divided into four layers, each of which
depends on access to one or more XML applications to support that layer’s
specific functions. In this particular section, we examine the entire model and
provide (admittedly brief) explanations of the layers involved. In the follow-
ing sections, we explore each layer in more detail and introduce some of the
many XML applications that various Web services implementations require at
each layer.

In addition, the following list is presented top-down, so that the highest layer
in this stack represents the most abstract functions and the lowest layer in
this stack represents the least abstract functions. As is the case with many
layered models for communications (and that’s a big part of what Web ser-
vices is about), higher layers depend and build on the capabilities supplied
at lower layers. Here’s the list:

� Discovery is the part of the Web services environment in which service
providers can supply descriptions of the information and services that
they have to offer. This is also where would-be service consumers can
make inquiries about what services are generally available or request
details about specific services. This layer generally addresses the ques-
tion “What’s available out there?”

� Description is the part of Web services in which available services and
information are described in detail, along with the mechanisms necessary
for prospective service consumers and service providers to exchange
information with one another. This layer generally addresses questions
like “For Service X, what are the details involved in accessing this service,
and what kinds of messages and data objects must be exchanged to take
advantage of that service?”

� Packaging/Extensions is the part of Web services that handles issues
related to managing, packaging, and securing exchanges of information
between a service consumer and a service provider. This layer generally
addresses questions like “What kinds of requests and replies are reason-
able for consumers and providers to exchange, and how will that mes-
sage traffic be managed, controlled, secured, packaged, and
represented?”

251Chapter 15: Using XML with Web Services

23_588451 ch15.qxd 4/15/05 12:16 AM Page 251

� Transport is the part of Web services that implements protocols related
to moving messages from a sender to a receiver. (Note that both con-
sumers and providers can be senders and receivers; this changes as
needed to maintain a working consumer/provider relationship.) This
layer addresses questions like “What kinds of messages will be sent or
received across the network, and what kinds of requests and replies do
those messages represent?”

If you’re familiar with the construction of network protocol stacks, you’ll
notice an intentional resemblance between the names and definitions we list
here and the OSI (Open System Interconnection) layers model.

In the following sections, we tackle the Web Services Architecture from the
bottom up, starting with the Transport layer and working up to the Discovery
layer.

Transport: Moving XML messages
At the Transport level — the bottom of the stack — software clients (like Web
browsers) and service delivery software on Web servers communicate with
each other. In general, browsers and servers talk to each other at this level
without requiring much user knowledge or interaction, if any.

Bottom line? The Transport layer acts like the highway that carries messages
from senders to receivers; as long as the messages are suitable for the under-
lying road, the messages move along just fine.

SOAPing it up
Nearly every major XML player has endorsed SOAP — the XML application
known as Simple Object Access Protocol (SOAP) — as a basic mechanism for
exchanging XML messages between senders and receivers (or providers and
consumers, if you prefer) across the Internet. SOAP is independent of plat-
form and language. A SOAP message is an XML document that is sent via a
transport protocol.

Underlying protocols in SOAP include not only the HyperText Transport
Protocol (HTTP) already used for everyday Web communications, but also
other implementations of HTTP, including secure HTTP implementations and
a newly minted reliable HTTP (also known as HTTPR). The newest version of
the SOAP specification, SOAP 1.2, also supports protocols in addition to
HTTP, including SMTP (Simple Mail Transfer Protocol) and TCP/IP
(Transmission Control Protocol/Internet Protocol).

252 Part V: XML Application Development

23_588451 ch15.qxd 4/15/05 12:16 AM Page 252

SOAP revisited (version 1.2)
SOAP 1.2 is a World Wide Web Consortium (W3C) Recommendation and con-
sists of four basic parts:

� An envelope that describes what’s in a message and how to process it

� A set of encoding rules for application-defined data types

� A convention for remote procedure calls (RPCs) and responses

� A binding convention for exchanging messages via an underlying protocol

SOAP allows applications to invoke object methods on remote servers.
Because SOAP is platform- and language-independent, the application and the
server can use different languages as long as they both use the SOAP protocol.

For more details on using SOAP, see “Getting Your Feet Wet with SOAP” at
http://webmonkey.wired.com/webmonkey/02/08/index0a.html.

For more information about the SOAP specification, visit the W3C XML
Protocol page at www.w3.org/2000/xp/Group. You can find links to all the
parts of the SOAP 1.2 specification about halfway down that page.

Packaging/Extensions: Managing
information exchange
One layer up from the Transport layer in the Web Services Architecture is the
Packaging/Extensions layer. This layer is primarily concerned with establish-
ing, managing, securing, and packaging information for exchange between
service consumers and providers.

The functions associated with this layer are aptly named. Packaging permits
text information, images, and other kinds of binary data to be neatly encapsu-
lated and sent to another party over a network.

Extensions address enhancements to basic messaging services for the follow-
ing reasons:

� To increase the level of security through encryption

� To strengthen the credentials that establish consumer and provider
identities (such as digital signatures or certificates, which act the same
way for virtual proofs of identity that inspections of driver’s licenses or
passports act for visual proofs of identity)

� To manage how messages are delivered from sender to receiver

253Chapter 15: Using XML with Web Services

23_588451 ch15.qxd 4/15/05 12:16 AM Page 253

SOAP provides packaging and extensions for Web services by specifying a
binding. A binding is a protocol — usually HTTP — and data-format specifi-
cation for a specific port type. (A port associates a network address with a
binding.)

For more information on packaging and extensions, see “SOAP Version 1.2
Part 1: Messaging Framework” at www.w3.org/TR/soap12-part1 and “XML-
binary Optimized Packaging” at www.w3.org/TR/xop10.

Description: Specifying services
and related components
The Description layer is where things start to get more interesting from the
overall perspective of what Web services are and can do (as compared to
how they’re packaged, delivered, and addressed). In fact, the Description
layer encompasses a number of XML applications designed to describe the
following:

� How services are composed

� How services may be used

� How services can interact with other services

� How services must behave

� What services can offer potential consumers

Many languages are available for Description layer services, but some are tai-
lored for specific IBM or Microsoft views of Web services. Others are designed
to make it easier for multiple service providers to interact and exchange data
on behalf of shared service consumers.

Of greatest interest at present is the Web Services Description Language
(WSDL), which describes what kinds of information and services a specific
service provider has to offer. Yep, that’s right: a service that lists the services
you can provide. Think about how many services a company like Yahoo! has
to offer: e-mail, chat, bill pay, shopping, and more. WSDL can provide a cata-
log of Yahoo!’s many services and the particulars of each of them.

To access a Web service application, your Web page needs a way to commu-
nicate with the application to determine the programmatic interface — the
available methods and parameters. WSDL is the proposed standard for this
communication. WSDL is an XML format that describes the basic form of Web

254 Part V: XML Application Development

23_588451 ch15.qxd 4/15/05 12:16 AM Page 254

service requests with different network protocols. It can be extended to any
network protocol or message format.

Each Web service includes a WSDL file that describes the bindings, methods,
and data inputs and outputs.

For more information on WSDL, see “Web Services Description Language
(WSDL) Explained” at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/wsdlexplained.asp

WSDL 2.0 is a W3C Working Draft in four parts (www.w3.org/TR/wsdl20-
primer, www.w3.org/TR/wsdl20, www.w3.org/TR/wsdl20-extensions,
and www.w3.org/TR/wsdl20-bindings). The W3C Working Drafts describe
bindings (protocol and data-format specifications) with SOAP 1.2, HTTP 1.1
GET/POST, and MIME (Multipurpose Internet Mail Extensions) but are not
limited to these bindings. More information about current W3C work in the
Web services area is available on the W3C Web Services Activity Page at
www.w3.org/2002/ws.

Discovery: Finding what’s available
At the top of the Web Services Architecture, you find XML applications geared
to registering Web services for discovery by searching for services, inquir-
ing about specific services, or inspecting what services a particular service
provider offers. Think of this as Google for Web services consumers. The cus-
tomers can go out and search for which providers have what services (how
many e-mail or shopping services are out there, for example).

Providers readily understand that providing information to assist the dis-
covery process is essential. Providers also recognize that documenting how
they can interact with other services is similarly important. In a sense, the
Discovery layer is the public face that drives the Web services environment.
The remaining layers of the Web Services Architecture make it possible to
request and obtain services; to handle matters of payment, identity, and
security; and to make sure that consumers and providers can communicate
seamlessly and successfully with one another.

For example, a user asks his or her online bill-paying service to request and
pay bills from billers. This request launches the discovery that sends the ser-
vice out to find out if it can get the bill and if it can pay the bill online. The
results of the discovery drive what the user sees in the online system. If Web
service communication is possible, the bill-paying system displays the bill,

255Chapter 15: Using XML with Web Services

23_588451 ch15.qxd 4/15/05 12:16 AM Page 255

prompts the user to pay the bill, and manages the electronic funds transfer
(EFT) from the user’s bank account to the biller’s bank account (yet another
example of Web services). If the Web service communication isn’t possible,
then the online bill-paying service has to use another tool to display bills and
make payments (such as scanning in printed bills and mailing printed checks
for payment).

The major XML application used for discovery is UDDI (Universal
Description, Discovery, and Integration). UDDI enables businesses to dis-
cover one another, to define how they can interact, and to share service
descriptions in a global registry.

UDDI is a method for finding Web services. UDDI is built upon SOAP and is
independent of platform and implementation. A UDDI interface is used to
connect to services provided by external partners. A UDDI registry provides
a place for businesses to publish services, as well as a place for clients to
obtain services. Three types of information are provided in a UDDI registry:

� Contact and general business information (services, categories, URLs)

� Information about Web services a business provides and how an appli-
cation finds a particular service

� Technical details and binding information

For more information on UDDI, see “About UDDI” at www.uddi.org/about.
html. To find products and services in the UDDI Business Registry, start at
www.uddi.org/find.html.

Where Will Web Services Lead?
Those who build Web services applications must master the details of numer-
ous XML languages, as well as know a scripting and/or programming lan-
guage. But unless you plan to join their ranks, all you need to know as a Web
services consumer is how to use the discovery process.

Regardless of how deeply you dig into the details of Web services, the discov-
ery process enables you (and every other Web user out there) to find Web
service providers. Both free and commercial services are available. For a
commercial service, you need to satisfy the requirement that you can prove
your identity as well as your ability to pay for information and/or services
before you can access their Web services.

256 Part V: XML Application Development

23_588451 ch15.qxd 4/15/05 12:16 AM Page 256

If you want to check out some Web services, here are some Web sites of
interest:

� XMethods: XMethods (www.xmethods.com) provides a list of publicly
available Web services that you can try out.

� SOAPMethods: Tony Hong of XMethods (and an occasional contributor
to XMLhack) has a UDDI browser with a sample repository ready for
immediate access at www.soapclient.com/uddisearch.html.

� Microsoft UDDI Registry: The Microsoft UDDI registry is free, but you
must register to use it at http://uddi.microsoft.com/default.
aspx.

� Web Services List: The Web Services List offers a list of over 1,000 Web
services. This list is updated very frequently and can be accessed at
www.webservicelist.com.

You access a Web service from a Web page. In order to create a Web page
that accesses a Web service application, you need to know the server imple-
mentation and the protocol used by the application. This information is avail-
able as part of the online registry listing or directly from the service provider.

We honestly believe that Web services will remake the computing landscape
in the next five years. After that, the way we interact with computers, soft-
ware, and data is going to change dramatically and radically.

After going out on that limb, it’s time to move on. In the next chapter, you
find out all about using XML with forms.

257Chapter 15: Using XML with Web Services

23_588451 ch15.qxd 4/15/05 12:16 AM Page 257

258 Part V: XML Application Development

23_588451 ch15.qxd 4/15/05 12:16 AM Page 258

Chapter 16

XML and Forms
In This Chapter
� Using forms for data collection

� Collecting information with HTML forms

� Using XForms to create XML forms

� Producing XML forms with InfoPath

� Creating an InfoPath form from an XML schema

Forms are an easy and efficient way to collect information. Almost every
business uses some type of form to gather data about their customers —

via a printed form, an online Web form, or an interactive form displayed in a
kiosk.

XML is an obvious choice for collecting data with forms, and two very differ-
ent options are now available for using XML with forms:

� XForms is an XML application created by the World Wide Web
Consortium (W3C) to provide “the next generation of Web forms.”
XForms is not a freestanding document type — it’s used with XHTML or
other XML languages to create XML forms.

� InfoPath is part of Microsoft Office 2003. It’s a visual XML forms editor
that you can use to create forms from an XML document or XML
Schema. You can also use it to design an XML form from scratch —
InfoPath automatically creates an XML Schema document for your form.

In this chapter, we take a close look at creating forms with XForms and with
InfoPath.

24_588451 ch16.qxd 4/15/05 12:18 AM Page 259

Collecting Information with Forms:
The Basics

Most of us are used to filling in blanks and checking boxes to provide
requested information on a printed form. Since the advent of e-commerce,
Web users have also become very familiar with completing online HTML
forms, including typing text in boxes, choosing radio buttons, checking
boxes, and selecting options from scrolling lists.

Most interaction on the Web takes place through the use of forms, though it’s
not always obvious that a form is involved. In addition to data collection and
submission with forms, HTML form elements can create interactivity via
scripting languages such as JavaScript.

HTML Forms
You can use HTML to create forms for display on Web pages. HTML includes
elements for creating text boxes, text areas (larger boxes), radio buttons,
check boxes, and menus. These forms have a standard look and structure,
which makes it easy for Web users to use them to enter data. Figure 16-1
shows a standard HTML form.

Figure 16-1:
An HTML

form for
collecting

book
information.

260 Part V: XML Application Development

24_588451 ch16.qxd 4/15/05 12:18 AM Page 260

HTML form elements, however, can create only the structure of a form for dis-
play on a Web page. Actually collecting the data that’s entered on an HTML
form requires the use of a scripting or programming language in addition to
HTML. Perl, PHP, and Java are programming languages commonly used for
forms processing. Form data is submitted to a Web server and processed by
a server-side script that conforms to the CGI (Common Gateway Interface)
specification. The form results can then be returned to a Web page, sent in an
e-mail message, saved as a data file, or submitted to a database.

You now have other options for using and gathering data — you can use XML
files to create XML forms and collect data with XForms or InfoPath.

XML Forms
XML and forms go together well — both XML and forms have to do with col-
lecting and exchanging data. Although you can use Extensible Stylesheet
Language Transformation (XSLT) to generate HTML forms code, two new
options (XForms and InfoPath) provide easier solutions for XML data
exchange.

XForms
XForms is an XML application created by the W3C. XForms allows the separa-
tion of presentation and content, expanded form capabilities, and a
decreased reliance on scripting for forms validation and processing.

Why use XForms?
Using XForms for your XML data has several advantages over using HTML
forms:

� Form data can be collected and submitted as XML.

� External XML documents can be loaded as initial form data.

� XPath expressions and XML Schema datatypes can be used with XForms.

� XForms can be integrated with Web services.

� XForms is device independent — the same markup can be used in Web
browsers, speech-enabled Web browsers, mobile phones, and PDAs.

XForms properties
XForms markup resembles HTML forms markup and is not difficult to learn
and use. XForms markup is shown in Listing 16-1.

261Chapter 16: XML and Forms

24_588451 ch16.qxd 4/15/05 12:18 AM Page 261

Listing 16-1: book_XForms.html

<h:html xmlns:h=”http://www.w3.org/1999/xhtml”
xmlns=”http://www.w3.org/2002/xforms”>

<h:head>
<h:title>Books</h:title>
<model>
<submission action=”http://example.com/books”
method=”get” id=”bk”/>

</model>
</h:head>
<h:body>
<h:p>
<input ref=”bk”><label>Title</label></input>
<submit submission=”bk”><label>Enter</label></submit>
</h:p>
</h:body>
</h:html>

XForms does not include a form element; the form markup is divided
between the head section and the body section of the document. The head
element contains a model element with a submission element that includes
the attributes that are usually contained in an HTML form element: action,
method, and id. (Form controls such as input and select are included in
the body section.)

<model>
<submission action=”http://example.com/books”
method=”get” id=”bk”/>

</model>

XForms uses XML namespace prefixes so that the XML processor knows
which elements to associate with which languages:

<h:html xmlns:h=”http://www.w3.org/1999/xhtml”
xmlns=”http://www.w3.org/2002/xforms”>

In this case, XForms is the default namespace, and the XHTML namespace
uses an h: prefix. For more information on using namespaces, see Chapter 11.

The input element doesn’t include a name attribute as in HTML — a ref
attribute is used instead. The value of the ref attribute can be an identifier
(as in an HTML name attribute) or an XPath expression:

<input ref=”bk”><label>Title</label></input>

There’s no type attribute in the input element; the type is string by
default.

262 Part V: XML Application Development

24_588451 ch16.qxd 4/15/05 12:18 AM Page 262

Styling in XForms is done with Cascading Style Sheets (CSS). For example,
rather than specifying the number of rows and columns in a textarea ele-
ment, you use CSS to define the size of the text area:

<textarea ref=”comments”><label>Comments</label></textarea>
...
textarea[ref=”comments”] {font-family: serif;

height: 100px;
width: 50%;}

XForms includes all the form control elements of HTML forms. HTML forms
markup, however, controls the appearance of form elements. In the case of
XForms, markup is used to control the action of form elements. For example,
XForms includes a select and a select1 element. You use the select ele-
ment when there are zero or more choices (such as with check boxes) and
the select1 element when only one choice can be selected (such as with
radio buttons). An appearance attribute specifies the appearance of select
or select1 elements, as in

<select1 appearance=”full” ref=”bk1”>
<label>Content Type</label>
<item><label>Fiction</label><value>F</value></item>
<item><label>Nonfiction</label><value>NF</value></item>

</select1>

for radio-button markup and

<select appearance=”full” ref=”bk1”>
<label>Shipping Options</label>
<item><label>Gift Wrap</label><value>GW</value></item>
<item><label>Gift Card</label><value>GC</value></item>

</select>

for check-box markup.

XForms includes the following built-in features that require scripting when
used in HTML forms:

� Required values: A required value must be entered in the form before
the form can be submitted.

� Value constraints: A value must be within a certain range of values. An
XPath expression is used to evaluate this constraint.

� Datatypes for values: An XML Schema datatype can be specified for a
value.

� Values that are calculated from other values: An XPath expression is
used to calculate a new value from other values in the form. The XPath
expression can include XPath functions and mathematical operators.

263Chapter 16: XML and Forms

24_588451 ch16.qxd 4/15/05 12:18 AM Page 263

XForms also provides these additional features:

� The capability to specify an initial value for form data.

� p3ptypes for privacy-related values: P3P (the W3C Platform for Privacy
Preferences) datatypes can be used for privacy monitoring.

For more information on P3P, visit the P3P Project page on the W3C site
at www.w3.org/P3P/.

� A switch element for creating wizard-like behavior for form completion
(as shown in Figure 16-2).

� A repeat element that allows items to be added and deleted, as in a
shopping cart.

� Functions galore — including arithmetic functions, string manipulation,
date handling, and conditional statements using if.

Submission options
XForms includes several options for the method of submitting form data.
These are specified in a method attribute in the submission element. Three
of these methods are similar to those available with HTML forms:

Figure 16-2:
An XForms
form with a

switch
element to

create
wizard-like

behavior.

264 Part V: XML Application Development

24_588451 ch16.qxd 4/15/05 12:18 AM Page 264

� method=“get”

� method=“urlencodedpost”

� method=“form-data-post”

In addition, XForms offers

� method=”post” (posts the results as an XML document)

� method=”put” (puts the results in an XML document)

Figures 16-3, 16-4, and 16-5 show the use of the “put” method. Figure 16-3
shows an XML document with content. Figure 16-4 shows an XForms form to
edit this content, and Figure 16-5 shows the same XML document with new
content.

To find out more about using XForms, see the XForms tutorial at http://
xformsinstitute.com/lesson1.php.

Although special browsers are available for viewing XForms, Mozilla has cre-
ated an XForms project to implement XForms in the Mozilla and Firefox
browsers. To find out more about the XForms project and to download an
XForms extension for Mozilla or Firefox, visit www.mozilla.org/projects/
xforms. (This Web page also includes sample XForms documents; some of
these documents were used to create the XForms screen shots in this
chapter.)

Figure 16-3:
An XML

document
and content.

265Chapter 16: XML and Forms

24_588451 ch16.qxd 4/15/05 12:18 AM Page 265

The XForms 1.0 specification can be viewed at www.w3.org/TR/xforms.
Several other XForms documents are available via the W3C XForms Activity
page at www.w3.org/MarkUp/Forms.

Figure 16-5:
The XML

document
with new
content.

Figure 16-4:
An XForms

form that
edits

content in
the XML

document in
Figure 16-3.

266 Part V: XML Application Development

24_588451 ch16.qxd 4/15/05 12:18 AM Page 266

InfoPath
Now, for a completely different approach to XML forms, take a look at
Microsoft’s InfoPath. (You can order a free 60-day trial version on CD at
www.microsoft.com/office/infopath/prodinfo/trial.mspx.) InfoPath
is a WYSIWYG (What You See Is What You Get) XML forms editor that can
create an XML form from an XML document or XML Schema document. You
can also create your own form — and InfoPath will create the XML Schema to
accompany it — or use any of InfoPath’s sample form designs.

InfoPath forms can be used online or downloaded and completed offline.
Users must have InfoPath on their computers to use these forms, however.

Why use InfoPath?
You should consider using InfoPath for several reasons:

� InfoPath is easy to use and doesn’t require any knowledge of XML.

� Form data from InfoPath can be exported to other Microsoft applica-
tions, such as Excel 2003.

� InfoPath allows you to select multiple forms and combine the data into
one form.

� You can use an existing XML Schema document and automatically create
a form based on the structure of the schema.

� InfoPath can be integrated with Web services.

� InfoPath includes data validation and conditional formatting features.

Automated form design from an XML Schema
You can easily design a form from an existing XML Schema in InfoPath:

1. Open InfoPath, and select File➪Design a Form.

The Design a Form task pane opens on the right side of the InfoPath
window.

2. From the Design a New Form list in the task pane on the right side of
the page, select New from XML Document or Schema.

The InfoPath Data Source Wizard window opens.

3. Click the Browse button in the Data Source Wizard window, and
browse to the location of the bookstore.xsd file.

That’s the file we created in Chapter 9. (By the way, you can download
the bookstore.xsd file at www.dummies.com/go/xmlfd4e.)

267Chapter 16: XML and Forms

24_588451 ch16.qxd 4/15/05 12:18 AM Page 267

4. Select the bookstore.xsd file, click Open, and then click Next in the
Data Source Wizard window.

The Data Source Wizard window displays a question: Do you want to add
another XML document or schema to the data source?

5. Choose No in response to the question and then click the Finish
button.

InfoPath displays a blank template document, and the Data Source task
pane opens on the right. The XML document tree is visible in the Data
Source task pane.

6. Select the Layout task pane from the list at the top of the task pane
and then select Two Column Table from the Insert Layout Tables
menu in the task pane.

7. Select the Data Source task pane, highlight the book element in the
task pane, and then drag the book element into the left column of the
table.

A contextual menu appears in the left column of the table.

8. Choose Section with Controls from the contextual menu.

Doing so adds all the elements contained in the book element as form
controls and automatically binds the form controls to the corresponding
schema elements.

9. Select and drag the totalCost element into the bottom of the left
column, below the repeating section. Then select and drag the cus-
tomer element into the lower-right cell.

A contextual menu appears.

10. Choose Section with Controls from the contextual menu.

The bottom of your form should now resemble Figure 16-6.

You don’t have to include all the elements from the schema in your form.
You can select and drag individual elements into the template window.

11. Choose File➪Save As➪Save➪ to open the Save As dialog box. Enter
bookstore.xsn for the file name and then click the Save button.

This saves your file as an InfoPath template document (.xsn).

12. Choose File➪Preview Form. Then choose With Data File from the
submenu.

This opens the Choose Data File to Preview window.

268 Part V: XML Application Development

24_588451 ch16.qxd 4/15/05 12:18 AM Page 268

13. Browse to the location of bookstore_schema.xml from Chapter 9,
select it, and then click Preview.

Check out your Preview file; then close the Preview window to return to
the main InfoPath window. (Figure 16-7 shows the InfoPath Preview file.)
You can also preview the file without data by choosing Default from the
submenu.

14. Publish your file to a folder, and put your form to work.

You can publish your file to a folder on your computer or on a network,
to a Web server, or to a SharePoint form library by choosing File➪
Publish.

You can open the form template in InfoPath and fill in new data by
choosing File➪Fill Out a Form and then selecting the form template file
from the menu on the left side of the Fill Out a Form dialog box that
appears.

Now you can see why we included InfoPath in this chapter — it’s fast, and it’s
easy to

� Create a working XML form document that can be populated with data
from any XML document that corresponds to the XML Schema the form
is based on.

� Fill out new data in a blank form based on a form template document.

Figure 16-6:
The total

Cost
element

goes below
the

repeating
section on

the left.

269Chapter 16: XML and Forms

24_588451 ch16.qxd 4/15/05 12:18 AM Page 269

For more information on InfoPath, see http://office.microsoft.com/
en-us/assistance/HA011221251033.aspx.

In Chapter 17, you find out more than you probably want to know about using
XML with databases.

Figure 16-7:
Preview file
in InfoPath.

270 Part V: XML Application Development

24_588451 ch16.qxd 4/15/05 12:18 AM Page 270

Chapter 17

Serving Up the Data:
XML and Databases

In This Chapter
� Integrating XML with databases

� Using a database to create an XML document in Word

� Creating database queries using InfoPath

� Using databases for import and export in XMLSpy

� Using XML with Access 2003

These days, data exchange makes the world go ’round. Online billing sys-
tems receive electronic bills and send out electronic statements. Colleges

and universities exchange student data without the hassle of printouts or
data entry. Loan underwriters receive credit reports electronically, instead of
by fax, and incorporate that information directly into their systems. If one
business needs to share data with another — for any reason — it can be done
electronically with XML.

We can’t talk about XML data exchange without restating what we hope is
indelibly ingrained in your head by now: XML is simply text, and it works on
any platform and with just about any application that can read a text file.

In this chapter, you have the opportunity to get some hands-on practice with
XML and databases. Using three different software applications (Word,
InfoPath, and XMLSpy), you find out how to import data from a database to
an XML document and how to export data from an XML document to a data-
base. You also discover how to export data directly from Access 2003 in sev-
eral different file formats.

25_588451 ch17.qxd 4/15/05 9:39 AM Page 271

Using Databases with XML
The connection between databases and XML is a logical one: Both store data
in a structured manner. A very common use for XML is to take data stored in
XML documents and move it into a database so that the data can be accessed
and manipulated by an application. All the major database systems — from
Oracle to Microsoft SQL (Structured Query Language) Server and beyond —
have XML utilities that help you work with XML in the context of the
database.

Another common use of databases with XML is to let the database serve as
an index to the content described with XML. For example, an online article
archive uses XML as the format for describing articles. When a new article
comes into the system, the tool that pulls the article into the archiving
system populates a database with some basic data about the article, such as
the author, date, title, and topic. The rest of the article is stored as a flat text
file on the system’s hard drive for later access. You can then use the database
to search for articles by the information stored in the database: author, date,
title, and topic.

This particular solution, an online article archive, takes advantage of the indi-
vidual strengths of both XML and databases:

� XML provides detailed structural information about the articles, which a
database can’t handle very well.

� The data about the articles (the article metadata) stored in the database
can be searched and filtered according to all manner of criteria — some-
thing XML isn’t particularly suited for.

For example, if you want to find all articles written by John Doe between
January and February of 2005 that include XML in the subject line, this
system helps you find them and then makes their content available to you (or
a display system) for further manipulation.

If your solution includes a database, you need to think about how, if at all,
your XML documents will interface with the database.

Text-intensive XML
XML documents usually fall into one of two broad categories:

� Text-intensive (also known as document-intensive)

� Data-intensive

272 Part V: XML Application Development

25_588451 ch17.qxd 4/15/05 9:39 AM Page 272

Although data-intensive XML documents such as financial records lend them-
selves easily to interaction with databases, text-intensive XML documents
can also be configured to work with a database. For example, a database can
store paragraphs of text; an XML document can then connect with the data-
base to import a particular block of text information to add to the content of
the XML document. When the information in the database changes, the con-
tent of the XML document changes, too.

In Chapter 18, you find out more about using XML with text-intensive content
such as news feeds.

Data-intensive XML
Interacting with a database is “natural” for XML documents with data-
intensive content. Businesses commonly use databases to store data-
intensive content. This content can be imported from a database to popu-
late XML documents with the most current version of the data. The XML
document can then be displayed in print, on a Web page, in an online form,
or on a mobile device.

Creating XML from Database Files
Using XML with databases is becoming easier and easier, thanks to software
products that support XML. The particular product you choose depends, of
course, on your data, the database you use, and your output needs.

In the following sections, we focus on using an Access database with XML
documents in Microsoft Word 2003, Microsoft InfoPath, and Altova XMLSpy.
You can download the Access database file (bookstore.mdb) from the Web
site for this book: www.dummies.com/go/xmlfd4e. You don’t need to be a
database pro to do this — we provide any information you need as we go
along.

The details of database structure and database management are beyond the
scope of this book. For more information, see the Access 2003 All-in-One Desk
Reference For Dummies, by Alan Simpson, Margaret Levine Young, and Alison
Barrow (Wiley Publishing, Inc.).

273Chapter 17: Serving Up the Data: XML and Databases

25_588451 ch17.qxd 4/15/05 9:39 AM Page 273

Using Word 2003
All versions of Word 2003 can save documents in XML format. (The profes-
sional version of Word 2003 allows you to add external XML Schema docu-
ments to your Word XML documents.) You can download a 60-day free trial of
the Standard Microsoft Office Suite (which includes Word 2003, Excel 2003,
Outlook 2003, and PowerPoint 2003) at www.microsoft.com/office/
trial/default.mspx.

To import database information into a Word 2003 XML document, follow
these steps:

1. Open Word 2003, choose File➪New from the main menu, and then
choose XML Document from the New Document task pane on the left.

2. Select View➪Toolbars➪Database.

The Database toolbar appears above the task pane.

3. Click the Insert Database icon on the Database toolbar.

The Database dialog box appears.

4. Click the Get Data button, browse to the bookstore.mdb file, and then
click Open.

New options now appear in the Database Dialog box: Query Options,
Table AutoFormat, and Insert Data.

5. If you want to use Word’s default table formatting options, move on to
Step 6.

(Optional) If you want to select among Word’s table formatting display
options, click the Table AutoFormat button in the Database dialog box,
choose a display style, and then click OK.

6. Click the Insert Data button in the Database dialog box.

The Insert Data dialog box makes an appearance.

7. From the Insert Data dialog box, choose All or a range of values for
the Insert records option and then click OK.

Your XML file now displays the database information in a table, as
shown in Figure 17-1.

If you don’t want to display the id column, just select and delete that column
of the table. The id column is the primary key in the Book database table. A
primary key is used to uniquely identify a record (row) in a database table.

274 Part V: XML Application Development

25_588451 ch17.qxd 4/15/05 9:39 AM Page 274

Using InfoPath
InfoPath allows you to import database information into a blank InfoPath
form. You can then design the form to make database queries and display the
query results on the form page.

If you also want to use the form to add and edit records in the database, the
database must be the primary data source for the form. In this case, you
must start with a new InfoPath form — you can’t modify an existing form to
create a primary connection to a database.

You can order a free 60-day trial version of InfoPath on CD at www.
microsoft.com/office/infopath/prodinfo/trial.mspx.

To import database information and create a new InfoPath form, follow these
steps:

1. Open InfoPath, and choose File➪Design a Form to open the Design a
Form task pane.

2. From the Design a Form task pane, choose New from Data Connection.

The Data Connection Wizard window appears.

Figure 17-1:
Book.xml

displays
data

imported
from book
store.

mdb.

275Chapter 17: Serving Up the Data: XML and Databases

25_588451 ch17.qxd 4/15/05 9:39 AM Page 275

3. Choose Database from the Data Connection Wizard and then click
Next.

4. Click the Select Database button in the next screen in the wizard,
browse to the location of bookstore.mdb, and then click Open.

The Data Source window in the Data Connection Wizard now displays
the column headers from the Book database table: ID, Title, Author,
Publisher, Price, ContentType, Format, and ISBN.

5. Click Next in the wizard screen and then enter a name for the data
connection in the text field labeled “Enter a name for this data
connection.”

A summary of information about the connection is displayed beneath
the name.

6. Click Finish.

The form template opens with the Data Source task pane on the right.
Query fields and Data fields are shown in the task pane.

7. Insert the cursor in the Drag Data Fields Here box on the form
template.

The text “Drag Data Fields Here” disappears, and a small gray box
appears above the upper-left corner of the Data Fields box.

8. Select the dataFields folder from the task pane and then right-click the
folder.

A contextual menu duly appears on-screen.

9. Choose Section with Controls from the contextual menu.

All of the Book table fields display as form controls. Notice that this is a
Repeating Section, because the table holds more than one record (row).

10. To format the display, right-click the Repeating Section label; choose
Borders and Shading; use the main tab of the Borders and Shading
dialog box to make your selections for border width, color, and size;
and then click the Shading tab to choose a background color.

11. With your data fields out of the way, insert the cursor into the Drag
Query Fields Here box on the form template.

The text “Drag Query Fields Here” disappears, and a small gray box
appears above the upper-left corner of the Query Fields box.

12. Select the queryFields folder from the task pane, and right-click the
folder.

Another contextual menu makes an appearance.

276 Part V: XML Application Development

25_588451 ch17.qxd 4/15/05 9:39 AM Page 276

13. Choose Section with Controls from the contextual menu.

All of the Book table fields display as controls, but you can delete any
fields that you don’t want to include as query items. For example, we
included only Title, Author, Publisher, and ISBN.

14. Put the cursor in the Query box, and add a title for this box. Do the
same in the Data box (we used Book Query and Book Data for our
titles).

You can use the Font task pane to format the title text. Just click the
downward-pointing arrow next to Data Source to see the task pane
menu.

15. In the area that says Click to Add a Title, enter a title for your form.

16. In the area that says Click to Add Form Content, add some instruc-
tions for form users.

For example, we used these instructions:

To query the book database, type a value in one or more boxes in the Book
Query table, and then click the Run Query button. To enter a new record in
the book database, click New Record, then enter values in the Book Data
table. Click the Submit button on the above toolbar to Submit the new
information or changes to the database.

17. Choose File➪Save and then click Save in the Microsoft Office InfoPath
window to save the form design changes.

The Save As dialog box opens. Make sure that InfoPath Form Template
(*.xsn) displays as the file type in the Save As Type box.

18. Enter a name for your form (we used Book.xsn) and then click Save.

This saves your form as an InfoPath form template file.

19. Choose File➪Preview Form➪Default to create a functional Preview
file, and test out the form!

Figure 17-2 shows the Preview version of the Book form.

When you create a form from a database table, InfoPath automatically creates
a form with two layout tables and adds queryFields and dataFields to the
Data Source task pane. After you add form controls to the tables, you can
delete any field without affecting the underlying field in the database table.

If you’re going to use the form for data editing and entry, you want to retain
all the dataFields except for those that are automatically generated by the
database, such as the id field in our database.

277Chapter 17: Serving Up the Data: XML and Databases

25_588451 ch17.qxd 4/15/05 9:39 AM Page 277

Clicking the Run Query button makes queries to the database based on the
values in the queryField control fields. The database returns any records
that match these values and displays them in the data entry part of the form.
You can edit the returned values and submit them to the database by clicking
the Submit icon on the toolbar.

Using XMLSpy
XMLSpy is a multifaceted XML tool, and we talk more about it in Chapter 19.
In this section, you find out how to import and export XML to databases by
using XMLSpy. You can download a free 30-day trial version of the full version
of XMLSpy Enterprise or Professional Edition, or a free time-unlimited version
of XMLSpy Home Edition, at www.altova.com/download.html.

Follow these steps to import information from a database and create a new
XML file:

1. Open XMLSpy, and choose Convert➪Import Database Data from the
main menu.

The Import Database data window appears.

Figure 17-2:
InfoPath

form to
query a

database.

278 Part V: XML Application Development

25_588451 ch17.qxd 4/15/05 9:39 AM Page 278

2. In the Import Database data dialog box, choose Convert Database
Data into XML, and click OK.

The Select a Source Database window appears.

3. Select Microsoft Access (ADO) from the Select a Source Database
window and then click Next.

The Select a MS Access Database window makes an appearance.

4. In the Select a MS Access Database window, click the Browse button
and navigate to bookstore.mdb; then click Next.

The Import Database Data window appears.

5. In the Import Database Data window, click the Choose Database Table
button.

The Choose a Database Table window appears.

6. In the Choose a Database Table window, select Book and then click OK.

7. In the Import Database Data window, go to the Import Settings section
and choose the Compatible with Schema Data Types option, check the
boxes for the Exclude Primary/Foreign Keys and the Create Empty
Elements from Empty Fields options, and then click the Import button.

The XML file appears in XMLSpy in Grid view.

8. Click the Text tab at the bottom of the file to see the underlying
markup.

Note that the root element is Import and the data is contained in Row
elements, as shown in Figure 17-3.

Here’s how to export data from an XML file to a database:

1. Choose File➪Open from the main menu in XMLSpy. Navigate to your
XML file in the Open dialog box and then click Open.

2. Choose Convert➪Export to Text Files/Database.

The Export to Text Files/Databases dialog box appears.

3. From the Export to Text Files/Databases dialog box, select Convert
XML into Text Files or Database Data and then click OK.

The Export to Text Files/Database window appears.

4. In the Automatic Fields section of the Export to Text Files/Database
window, uncheck the Independent Primary Key Counter for Every
Element box and then click the Export to Database button.

The Export to Database window appears.

279Chapter 17: Serving Up the Data: XML and Databases

25_588451 ch17.qxd 4/15/05 9:39 AM Page 279

5. Click OK in the next window (Export to Database) to create the data-
base file.

The Save As dialog box appears. Enter a name for the database file and
then click Save.

6. Open the database file in Access and then click the Row table to view
the table contents, as shown in Figure 17-4.

Figure 17-4:
Exporting

XML to
create an

Access
database in

XMLSpy.

Figure 17-3:
Importing
database

information
to create an

XML file in
XMLSpy.

280 Part V: XML Application Development

25_588451 ch17.qxd 4/15/05 9:39 AM Page 280

As you have seen, all three of these software programs use database informa-
tion in a different way to create XML files. Your choice depends on whether
you want to create print documents for display of database information,
searchable forms that directly interact with a database, or database files
themselves.

Using XML with Access 2003
In addition to importing and exporting Access databases with other software,
you can use Access 2003 itself to export XML data in several formats.

Using Access 2003, you can import data from an XML file as well as export
data as XML files. The import and export methods in Access 2003 also allow
you to import and export XML data, schema information, and/or presentation
information to and from Microsoft SQL Server 2000 Desktop Engine, Microsoft
SQL Server 7.0 or later, and the Microsoft Jet Database Engine. Access 2003
also supports the use of XSLT files when importing or exporting XML data.

Follow these instructions to import data from an XML file into Access 2003:

1. Select File➪New to create a new database file.

The New File task pane opens on the right side of the Access window.

2. Select Blank Database from the New list in the New File task pane.

The File New Database window appears.

3. Enter a name for the database in the File New Database window and
then click Create.

A Database window opens in the Access workspace.

4. To get the import ball rolling, choose File➪Get External Data➪Import.

The Import dialog box makes an appearance.

5. In the Import dialog box, choose XML from the Files of Type drop-
down menu and then browse to the location of your XML file. Select
your XML file and then click Import.

The Import XML dialog box appears.

6. Click the Options button to show all the import options, as shown in
Figure 17-5.

You can choose to import Structure Only, Structure and Data, or Append
Data to Existing Table(s). If you import an XML Schema, the Options
button is grayed out, because the only option is to import the structure
only. You can also click the Transform button to add an existing XSLT
stylesheet to the imported data.

281Chapter 17: Serving Up the Data: XML and Databases

25_588451 ch17.qxd 4/15/05 9:39 AM Page 281

You must import the entire XML file to Access — you can’t select a subset of
the information for import. The fields in the database table will be the same
as the names of the elements in the imported XML document.

Follow these instructions to export data from an Access 2003 table to an XML
file:

1. Open the database table in Access and then select File➪Export.

The Export dialog box comes to the fore.

2. In the Export dialog box, choose XML in the Save as Type drop-down
menu and then click the Export button.

The Export XML dialog box appears, as shown in Figure 17-6. You can
choose any or all of the options: Data, Schema, and/or Presentation. If
you click the More Options button in this dialog box, you can choose
additional features of the XML file, XML Schema file, or XSLT file.

Depending on your choices in the Export XML dialog box, Access 2003 will
create the following files:

Figure 17-6:
The Export
XML dialog

box in
Access

2003.

Figure 17-5:
The Import
XML dialog

box in
Access

2003.

282 Part V: XML Application Development

25_588451 ch17.qxd 4/15/05 9:39 AM Page 282

� An XML file: Additional options include exporting all records or just the
current record; applying an existing filter, sort, or XSLT stylesheet to the
data; and choosing an encoding format.

� An XML Schema file: Schema options include creating a separate
schema file, embedding the schema file in an XML document, and includ-
ing primary-key and index information.

� An XSLT file: Access creates an XSLT file and also creates an HTML or
ASP file from the transformation of the XML file with this XSLT docu-
ment. Options include the choice of an HTML file or an ASP file and, if
the data includes images, the choice to export images in these files.

In addition to exporting XML files from Access 2003 database tables, you can
export Access 2003 database tables as RTF (Rich Text Format) files. This
automatically displays the data in tabular form in a Word document, as
shown in Figure 17-7. To transform your XML data for print, you can import
the file to a database table in Access 2003 and then export the data as an RTF
file.

Ready to distribute your Web site content? In the next chapter, you find out
all about using RSS, an XML application, to create RSS feeds and syndicated
content. RSS is not really a single thing; it’s an acronym for Rich Site
Summary, RDF Site Summary, or Really Simple Syndication, depending on the
version of RSS you use — see Chapter 18 for all the details!

Figure 17-7:
Exporting

data as an
RTF file in

Access
2003.

283Chapter 17: Serving Up the Data: XML and Databases

25_588451 ch17.qxd 4/15/05 9:39 AM Page 283

284 Part V: XML Application Development

25_588451 ch17.qxd 4/15/05 9:39 AM Page 284

Chapter 18

XML and RSS
In This Chapter
� Sharing information with RSS

� Choosing a flavor: RSS versions

� Making an RSS feed for your content

� Syndicating your content

RSS is an XML application for syndicating Web content and creating news
feeds. It allows potential visitors to get a preview of the latest content

on a site, and it’s an economical and easy way to attract visitors. RSS feeds
are used to distribute links to Web site content. Any time you want to retrieve
the latest headlines from your favorite sites, you can access the available RSS
feeds via a desktop RSS reader. You can also make an RSS feed for your own
site if your content changes frequently.

RSS technology is in widespread use on the Web today for sites with dynamic
content such as blogs (Web logs) and news sites. RSS is not limited to news,
however — you can use it with any content that can be broken down into dis-
tinct items.

What does RSS stand for? Rich Site Summary, RDF Site Summary, or Really
Simple Syndication — depending on which version of RSS you’re referring to.
You’ll learn the details of the main RSS versions in the section “Sorting Out
the Versions.”

So get ready to rock. This is the chapter where you find out how to create
RSS feeds and how to syndicate your RSS files. (You always wanted to go into
syndication, didn’t you? Now’s your chance.)

26_588451 ch18.qxd 4/15/05 9:40 AM Page 285

Introducing RSS
RSS files include basic information about a site (title, URL, description), plus
one or more item entries that include — at a minimum — a title (headline), a
URL, and a brief description of the linked content. Your RSS files can be regis-
tered with an RSS registry to make them more available to viewers interested
in your content area. You can also submit your RSS feeds to an aggregator.
Aggregators filter a group of RSS feeds to create a feed that includes items
from several different feeds in the same content area.

Visit O’Reilly’s Meerkat service at www.oreillynet.com/meerkat/ for an
example of an aggregator. Desktop RSS readers are also sometimes referred
to as aggregators, but they don’t include the capability of filtering and group-
ing feeds from different sites.

You can also download RSS feeds from other sites to display news items on
your site, or use a desktop or online reader to access your favorite RSS feeds.
The news content is dynamically updated as new RSS feeds become avail-
able, so it’s always up to date — or at least as up to date as the last RSS feed!

Sorting Out the Versions
RSS development has been anything but a smooth and straight path. One of
the main areas of contention is whether to use the W3C RDF (Resource
Description Framework) data model for RSS. Two separate but parallel devel-
opments occurred in RSS: a version of RSS based on RDF (RSS 1.0) and a sep-
arate set of RSS versions that don’t incorporate all the complexities of RDF
(versions RSS 0.91, 0.92, 0.93, 0.94, 2.0, and 2.01).

You’ll learn more about RDF in the “RSS 1.0” section in this chapter.

There are actually nine different versions of RSS, including both a Netscape
and a UserLand version of some of the 0.9x series. We don’t explore every
detail of RSS history here — just the major versions — but if you’re inter-
ested, you can learn more about all the details in Mark Pilgrim’s article, “The
myth of RSS compatibility,” at

http://diveintomark.org/archives/2004/02/04/incompatible-rss

Different meanings for the term RSS came with the different forms of RSS:
Rich Site Summary (RSS 0.9), RDF Site Summary (RSS 1.0), and Really Simple
Syndication (RSS 0.9x, 2.0, and 2.01).

286 Part V: XML Application Development

26_588451 ch18.qxd 4/15/05 9:40 AM Page 286

Four RSS versions are still in widespread use today. Statistics from Syndic8.
com (www.syndic8.com/stats.php?Section=rss#RSSVersion), an RSS
syndication site, show that RSS 2.0/2.01 is the most common version used
today (61 percent of RSS feeds), followed by RSS 0.91/0.92 (22 percent) and
finally RSS 1.0 (17 percent).

The good news is that you can usually use any RSS version for your RSS
feeds. RSS validators, aggregators, directories, and readers generally support
all RSS versions — at least so far!

RSS 0.9x
RSS 0.91 was originally released by Netscape and then modified by Dave
Winer of RadioUserLand (http://radio.userland.com), who later released
RSS 0.92, 0.93, and 0.94 — the last in the 0.9x series.

RSS 0.92, 0.93, and 0.94 were released after RSS 1.0.

RSS 0.9x syntax
An RSS file is an XML file and begins with an XML declaration:

<?xml version=”1.0”?>

This is followed by the root element, rss, which contains one channel
element that includes the rest of the document. It looks like this:

<rss version=”0.91”>
<channel>
...
</channel>
</rss>

There are five required child elements of channel in RSS 0.91:

� title: the name of the feed

� link: the URL of the Web site associated with the feed

� description: a description of the channel in plain text

� language: the code for the language (English, French, Chinese, what
have you) the feed is written in

� image: an element to describe the graphic icon for the feed

287Chapter 18: XML and RSS

26_588451 ch18.qxd 4/15/05 9:40 AM Page 287

The image element includes three required child elements:

� url: the location of the graphic icon file

� title: a description of the image

� link: the URL that the image links to (usually the same location as the
link element in channel)

The image element can also include two optional elements:

� width: width of the icon (maximum 144 pixels; more common is a maxi-
mum width of 88 pixels)

� height: height of the icon (maximum 400 pixels; more common is a max-
imum height of 31 pixels)

There are also ten optional child elements of the channel element. Many of
these elements have static content, so they don’t need to be changed each
time a new RSS file is created:

� copyright: copyright notice for the feed content

� managingEditor: e-mail contact

� webMaster: e-mail address

� rating: PICS (Platform for Internet Content Selection) rating

� pubDate: publication date of the feed content

� lastBuildDate: the date and time the feed last changed

� docs: URL that points to the RSS standard for this feed

� skipDays: specifies days of the week that the feed should not be
retrieved

� skipHours: specifies hours of the day that the feed should not be
retrieved

� textInput: text box and Submit button to a script for search features or
e-mail

The heart of an RSS feed is the item element, a child of the channel element.
Technically, it’s optional — but without it, what’s the point of a feed? The
item element includes two required child elements:

title: the headline of the content item

link: the URL of the content item

It also includes one optional child element:

description: a plain-text summary of the content, up to a maximum of
500 characters

288 Part V: XML Application Development

26_588451 ch18.qxd 4/15/05 9:40 AM Page 288

An RSS 0.91 file can include a maximum of 15 item elements.

Listing 18-1 shows a simple RSS 0.91 file with one news item:

Listing 18-1: An RSS 0.91 File (silkcreek.xml)

<?xml version=”1.0”?>
<rss version=”0.91”>
<channel>
<title>Silk Creek News</title>
<link>http://www.silkcreek.net/news.html</link>
<description>Silk Creek News - By Lucinda Dykes</description>
<language>en-us</language>
<copyright>Copyright 2005, Lucinda Dykes</copyright>
<managingEditor>editor@wiley.com</managingEditor>
<webMaster>webmaster@wiley.com</webMaster>
<pubDate>Sun, 20 Feb 2005 13:00:00 GMT</pubDate>
<lastBuildDate>Sun, 20 Feb 2005 13:00:00 GMT
</lastBuildDate>
<docs>http://backend.userland.com/rss091</docs>

<item>
<title>Attack update</title>
<link>http://www.silkcreek.net/news.html</link>
<description>

Just when you think it’s safe . . .

be sure to note that virus update renewal date!
By Lucinda Dykes, Feb 20, 2005
</description>
</item>
</channel>
</rss>

The text file can be saved with any file extension; the most common ones are
.xml and .rss. Regardless of the file extension you use, this is an XML file
and must follow XML rules; make sure your file is well-formed XML.

Some characters are illegal in XML; convert any illegal characters that show
up in your content to character entities before you validate your file. (For
example, a URL might include an ampersand or other XML-illegal character.)
For a list of character entities, see

www.webdevtips.com/webdevtips/html/special.shtml

289Chapter 18: XML and RSS

26_588451 ch18.qxd 4/15/05 9:40 AM Page 289

RSS 0.92, 0.93, 0.94
The major changes to RSS 0.91 in later versions of RSS 0.9x included these:

� RSS 0.92

• Any number of item elements can be used.

• The description element can include HTML content, not just
plain text.

� RSS 0.93

• The optional expirationDate element is added.

� RSS 0.94

• The expirationDate element is deleted.

• The type attribute for MIME type is added to description
element.

RSS 2.0/2.01
RSS 2.0/2.01 is very similar to RSS 0.9x, so we discuss RSS 2.0/2.01 first and
then move on to RSS 1.0 in the next section of this chapter.

RSS 2.0/2.01 adds namespace modules and six optional elements to RSS 0.9x.
The RSS 2.0/2.01 specification was written by Dave Winer of Radio UserLand.
The copyright was later transferred to Harvard University.

Using namespaces in RSS 2.0/2.01
To use namespace modules in RSS 2.0/2.01, add the namespace declaration in
the root element of the feed (rss), and use the correct prefix when using ele-
ments from this namespace. For example, to add the radioWeblogPost
module, you could add the namespace as shown in the following code:

<?xml version=”1.0”?>
<rss version=”2.0”
xmlns:radio=”http://backend.userland.com/radioWeblogPostModule”>

To see all currently available modules for RSS 2.0/2.01, visit

http://blogs.law.harvard.edu/tech/directory/5/specifications/
rss20ModulesNamespaces

290 Part V: XML Application Development

26_588451 ch18.qxd 4/15/05 9:40 AM Page 290

Options in RSS 2.0/2.01
The six new optional elements of RSS 2.0/2.01 are:

� comment: child of item; contains URL of comment page for the item.

� generator: child of channel; indicates which program was used to
create the RSS file.

� author: child of item; contains e-mail address of author of content in
the item.

� ttl: child of channel; specifies the number of minutes to wait before
refreshing the feed.

� pubDate: child of item; gives the date the item content was originally
published.

� guid: child of item; contains a string that uniquely identifies the item;
guid stands for globally unique ID. (Not sure if it rhymes with squid.)

The guid element in RSS 2.0/2.01 is not necessarily the same GUID defined by
the OSF (Open Software Foundation), which consists of a 16-byte integer gen-
erated by the OSF GUID algorithm.

The full RSS 2.0/2.01 specification, including sample files, is available online
at http://blogs.law.harvard.edu/tech/rss.

RSS 1.0
RSS 1.0 (RDF Site Summary) is a W3C specification — based on the W3C RDF
specification, to be more precise — and was released in 2000. RDF is a system
for describing and interchanging metadata about resources on the Web. And
while we’re defining stuff, you should probably know that metadata is a spe-
cial kind of data that describes and models other data. RDF is a framework
for using metadata effectively for information search and retrieval on
the Web.

There is currently very little metadata available on the Web; Search-engine
strategy is still relatively crude because of this scarcity. For example, to
search for a list of publications on the Web by a specific author, you could
search on the author’s name itself and hope that this query would find Web
documents that included the author’s name in the title, keywords, or text
content of the page. It is not currently possible to search based on a category
of metadata — say, a list of all authors of Web documents.

291Chapter 18: XML and RSS

26_588451 ch18.qxd 4/15/05 9:40 AM Page 291

The RDF specification is complex and at the present time consists of six doc-
uments (Primer, Concepts, Syntax, Semantics, Vocabulary, and Test Cases) —
whew! Luckily for us, RSS 1.0 is a relatively lightweight version of RDF.

How does an RSS 1.0 differ from an RSS 0.9x or RSS 2.0/2.01 file? Glad you
asked; the upcoming steps convert the RSS 0.91 file to an RSS 1.0 file and, in
the process, highlight those differences.

1. Start with an XML declaration.

This line is the same for all RSS files:

<?xml version=”1.0”?>

2. Replace the rss element with an rdf element, and specify the
namespace.

This must be used exactly as shown here (except for adding more name-
spaces, if you choose):

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns=”http://purl.org/rss/1.0/”>

3. Use the channel element and its link, title, and description ele-
ments as in the RSS 0.91 file (see Listing18-1), but add an rdf:about
attribute to the channel element.

The rdf:about attribute is required for each resource (channel, image,
item, and text input). It associates a URI (Uniform Resource Identifier)
with a resource. For the channel, the URI is our RSS 1.0 file itself
(http://www.silkcreek.net/silkcreek.rdf). Note that the RSS 1.0
file is saved with a .rdf file extension:

<channel rdf:about=”http://www.silkcreek.net/silkcreek.rdf”>
<title>Silk Creek News</title>
<link>http://www.silkcreek.net/news.html</link>
<description>Silk Creek News - By Lucinda Dykes </description>

A URI is a general class of identifiers that includes URL (Uniform
Resource Locator) and URN (Uniform Resource Name). For more infor-
mation about URIs, see the URI Syntax protocol at

www.gbiv.com/protocols/uri/rfc/rfc3986.html

4. Close the channel element.

Unlike RSS 0.91, the channel element does not include the rest of the
document. You’ll add some additional child elements to the channel ele-
ment later, however.

</channel>

292 Part V: XML Application Development

26_588451 ch18.qxd 4/15/05 9:40 AM Page 292

5. Add the image element as in the RSS 0.91 file (leaving out the height
or width subelements) and then add an rdf:about attribute to the
image element.

The value should be the same as the value of the url element for the
image, like this:

<image rdf:about=”http://www.silkcreek.net/graphics/sc_logo.jpg”>
<title>Silk Creek Logo</title>
<url>http://www.silkcreek.net/graphics/sc_logo.jpg</url>
<link>http://www.silkcreek.net</link>
</image>

6. Add the item element as in the RSS 0.91 file and then add an
rdf:about attribute to the item element.

The value should be the same as the value of the link element for the
item. Check it out:

<item rdf:about=”http://www.silkcreek.net/news.html”>
<title>Attack update</title>
<link>http://www.silkcreek.net/news.html</link>
<description>
Just when you think it’s safe . . .

be sure to note that virus update renewal date!
By Lucinda Dykes, Feb 20, 2005

</description>
</item>

Now, to tie all the pieces of the file together, Steps 7 through 9 add some
further elements to the channel element . This is important, because
aggregators may filter items from their parent channel elements.

7. Add an image element within the channel element and then add an
rdf:resource attribute to this image element.

The value of the attribute should be the same as what you used for the
rdf:about attribute in the image element in Step 5.

Use a closing slash (/); this is an empty element. Here’s how it looks:

<channel rdf:about=”http://www.silkcreek.net/silkcreek.rdf”>
<title>Silk Creek News</title>

...
<image rdf:resource=”http://www.silkcreek.net/graphics/sc_logo.jpg” />

8. Add an items element within the channel element and then add an
RDF sequence to contain the item(s).

In this case, our sequence contains only one item.

293Chapter 18: XML and RSS

26_588451 ch18.qxd 4/15/05 9:40 AM Page 293

9. Add an li element for each item and then add an rdf:resource
attribute to the li element.

The value of the attribute is the same as the value of the rdf:about
attribute for each item. Here’s what you get:

<items>
<rdf:Seq>
<li rdf:resource=”http://www.silkcreek.net/news.html” />
</rdf:Seq>
</items>

10. Close the rdf element, and save the file:

</rdf:RDF>

Make sure your XML file is well formed and doesn’t include any illegal
characters.

Listing 18-2 shows the complete code for the RSS 1.0 file.

Listing 18-2: An RSS 1.0 File (silkcreek.rdf)

<?xml version=”1.0”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns=”http://purl.org/rss/1.0/”>
<channel rdf:about=”http://www.silkcreek.net/silkcreek.rdf”>
<title>Silk Creek News</title>
<link>http://www.silkcreek.net/news.html</link>
<description>Silk Creek News - By Lucinda Dykes </description>
<image rdf:resource=”http://www.silkcreek.net/graphics/sc_logo.jpg” />
<items>
<rdf:Seq>
<li rdf:resource=”http://www.silkcreek.net/news.html” />
</rdf:Seq>
</items>
</channel>
<image rdf:about=”http://www.silkcreek.net/graphics/sc_logo.jpg”>
<title>Silk Creek</title>
<url>http://www.silkcreek.net/graphics/sc_logo.jpg</url>
<link>http://www.silkcreek.net</link>
</image>
<item rdf:about=”http://www.silkcreek.net/news.html”>
<title>Attack update</title>
<link>http://www.silkcreek.net/news.html</link>
<description>
Just when you think it’s safe . . .

be sure to note that virus update renewal date!
By Lucinda Dykes, Feb 20, 2005

</description>
</item>
</rdf:RDF>

294 Part V: XML Application Development

26_588451 ch18.qxd 4/15/05 9:40 AM Page 294

If you’re interested in delving further into RSS 1.0, check out “The W3C RSS
1.0 News Feed Creation How-To” at

www.w3.org/2001/10/glance/doc/howto

You can also view the RSS 1.0 specification at

http://web.resource.org/rss/1.0/spec

Validating an RSS Feed
When you’re ready to validate your file, a couple of quick steps get the job
done:

1. Upload the file to your server so the validator can find the file.

2. Use an RSS validator such as http://rss.scripting.com/.

Just enter the URL of your RSS feed and then click the Validate button.

Once your file is valid (as shown in Figure 18-1), your feed is ready to be
downloaded by RSS readers or added to a syndication site.

295Chapter 18: XML and RSS

The Semantic Web
The Semantic Web is a vision of Tim Berners-
Lee and the W3C for automating data and infor-
mation processing on the Web by adding
semantic capabilities (okay, call it meaning) by
using metadata (data about data).

Here’s how it works: The key Semantic Web
technologies are XML, RDF, and OWL (Web
Ontology Language). That last one may be a bit
unfamiliar: A Web ontology is a document that
defines the relationships among terms as well
as inference rules. For example, in the case of
phone numbers, a specific value for area
code infers a particular value for city, even
though that is not a direct part of the area-code
data. For more information on OWL, see the
W3C specification at

www.w3.org/TR/owl-features/

Ontologies and metadata could improve Web
searches by allowing precise searches rather
than general (and often useless) searches using
keywords.

At the time of this writing, the Semantic Web
remains a vision that has a long way to go
before it can be implemented. For an excellent
introduction, see “The Semantic Web” by Tim
Berners-Lee, and James Hendler on the
Scientific American Web site at

www.sciam.com/article.cfm?
articleID=00048144-10D2-1C7
0-84A9809EC588EF21

For the latest news on the Semantic Web, see
the W3C Semantic Web Activity page at
www.w3.org/2001/sw.

26_588451 ch18.qxd 4/15/05 9:40 AM Page 295

Creating RSS Feeds
If you’ve been following along in the chapter, you’ve created two RSS files
from scratch: an RSS 0.91 file and an RSS 1.0 file. Hand-coding is always an
option for creating RSS feeds, of course, but consider: RSS feeds are really
for content that changes frequently; they can be a good way to avoid having
to hand-code a new RSS file every time your site’s content changes. The easi-
est way to set up this timesaver is to use an RSS feed template, such as the
one used for blogs created with Movable Type blog publishing software

Figure 18-1:
Validating

an RSS file.

296 Part V: XML Application Development

Atom is where it’s at
The latest addition to the Web-publishing scene
for blogs and news is the Atom syndication
format. Atom is an XML document format and
an HTTP protocol. Although already in use on
the Web, Atom is still in development in the IETF
(Internet Engineering Task Force) at the time of
this writing.

Atom provides a format for feeds as well as a
protocol for editing syndicated content. Atom is

sometimes called the successor to RSS. The
Atom model supports any MIME (Multipurpose
Internet Mail Extensions) type, can include non-
XML content (such as HTML), and can handle
binary content such as images.

For more information on Atom, see www.atom
enabled.org/ and www.intertwingly.
net/wiki/pie/FrontPage.

26_588451 ch18.qxd 4/15/05 9:40 AM Page 296

(www.sixapart.com/movabletype/). You can also use an RSS-module or class
such as Perl’s XML::RSS module (http://perl-rss.sourceforge.net/).

Get Syndicated!
If you want to make your RSS file widely available, register the feed with an
RSS directory (also known as an RSS syndication site). The process is similar
to registering a site with a search engine. The major RSS directory sites are:

� Syndic8 (www.syndic8.com): Syndic8 is the largest directory of RSS
feeds. As shown in Figure 18-2, you can suggest a site at

www.syndic8.com/suggest.php?Mode=data

� Daypop (www.daypop,com): Daypop is a large RSS search engine, where
you can search the content of 59,000 RSS feeds. Daypop also features a
Top 40 list and a Top News list. You can submit a site at www.daypop.
com/info/submit.htm.

� Feedster (www.feedster.com): Feedster is another RSS search engine.
You can add your feed at www.feedster.com/add.php.

Of course, it only makes sense to syndicate your content if your site changes
frequently — which means you also have to update your RSS feed frequently.
If you don’t want or need to syndicate your content, consider adding a link on
your site to your RSS feed so interested visitors can add your feed to their
RSS readers.

Figure 18-2:
Submitting

an RSS
feed for

syndication
by Syndic8.

297Chapter 18: XML and RSS

26_588451 ch18.qxd 4/15/05 9:40 AM Page 297

If you want to create your own RSS aggregator and display RSS content from
other sites on your site, you can use software such as zFeeder, available for
free download at http://zvonnews.sourceforge.net/.

Using an RSS Reader
If you want to peruse headlines from your favorite news sites, you can use an
RSS reader to check out the latest updates from these sites.

Feedreader is an easy-to-use and free RSS reader available for download at
www.feedreader.com/. Add links for your favorite RSS feeds, and view the
links and the content from Feedreader, as shown in Figure 18-3.

AmphetaDesk is another popular free RSS reader. Download the latest version
at www.disobey.com/amphetadesk/.

If you use the Firefox browser (www.mozilla.org/products/firefox/),
you can also create your own reader within Firefox by using Firefox Live
Bookmarks. Using Live Bookmarks, you can view headlines from your favorite
RSS feeds from the Bookmarks menu. For more information on adding a
Live Bookmark to Firefox, visit www.mozilla.org/products/firefox/
live-bookmarks.html.

Although RSS gives you a pretty nifty way to enhance your Web site’s con-
tent, XML capabilities don’t stop there. If you want to tinker with those capa-
bilities, the next chapter presents our choices for the top XML tools.

Figure 18-3:
Using a
desktop

RSS reader.

298 Part V: XML Application Development

26_588451 ch18.qxd 4/15/05 9:40 AM Page 298

Part VI
The Part of Tens

27_588451 pt06.qxd 4/15/05 9:45 AM Page 299

In this part. . .

This is the revered and traditional closing for all For
Dummies books. With tongue planted firmly in cheek,

this part of the book summarizes, epitomizes, and concen-
trates some of the most important content that appears in
this book.

Chapter 19 covers a collection of useful and interesting
XML software tools — from XML editors to XML document
managers, XML-enabled Web browsers, and more such
fiendish devices — many of which you’ll find ready for
your personal exploration on the companion Web site for
this book (www.dummies.com/go/xmlfd4e).

Chapter 20 describes the ten most widely used XML appli-
cations on today’s Web sites. Chapter 21 closes out this
fiesta with the top ten resources for XML.

27_588451 pt06.qxd 4/15/05 9:45 AM Page 300

Chapter 19

XML Tools and Technologies
In This Chapter
� Discovering the tricks of the trade

� Creating XML documents with your favorite tools

� Validating like a breeze with a parser

� Viewing XML documents gets easier

� Converting XML documents

Nobody tackles a lot of XML authoring without the help of some author-
ing tool or another, and no one should try to manage a collection of

XML documents without using some software tools along the way. To help
you, we offer here a list of some of our favorite tools for authoring, checking,
viewing, and converting XML documents. If your resources or your time are
limited — and whose aren’t these days? — these are the essential tools that
you absolutely must check out.

At the beginning of each section, you find a quick reference table (Table 19-1
through Table 19-5) that lists all the tools discussed in the section, along with
the most pertinent of details: how much it costs and where to find out more.
Also, we’ve included links to these sites on the Web page for this book at
www.dummies.com/go/xmlfd4e.

Creating Documents with Authoring Tools
The first step in working with XML is to create a document, and you may
have already gotten around to using your trusty old text editor to create your
first XML documents. Don’t feel like you have to go it alone, though, because
we’ve found a few XML-specific editors that might change your habits. Table
19-1 introduces some heavy hitters among authoring tools.

28_588451 ch19.qxd 4/15/05 9:46 AM Page 301

Because many of the editors listed come at a hefty price, we recommend that
you test-drive demo/trial versions when they’re available. Demos or trial ver-
sions should be accessible on the product pages.

Table 19-1 XML Authoring Tools
Product Name URL Single-User Price Free Demo

Copy or
Trial
Version?

Epic Editor 5.0 www.arbortext.com $695 Yes

Turbo XML v2.4.1 www.tibco.com $269.95 Yes

XMetaL Author 4.5 www.xmetal.com $495 Yes

XML Pro v2.0.1 www.vervet.com Free for non- N/A
commercial use

XML Spy 2005 www.altova.com Free Home Edition Yes

To help you get your documents under construction, the following sections
list some of the best XML authoring tools available that we know of. Keep in
mind that as long as XML continues to create a buzz, more tools will emerge
on the scene. To keep up to date on the latest technology, be sure to read
Chapter 21 for more on XML resources.

Epic Editor
Arbortext has built Standard Generalized Markup Language (SGML) editors
for years — and has helped pave the way for XML tools. Epic Editor comes
from that SGML background and has been adapted for XML.

Epic Editor, which has earned worldwide recognition for its power, perfor-
mance, and capabilities, enables you to author and edit a medium-to-large
volume of XML-based business documentation that needs to be disseminated
in multiple forms (across the Web, on a CD-ROM, as PDFs, in print, and
through wireless devices, for example). Use Epic Editor when you need to
handle large document collections or documents with multiple authors.

This product is definitely designed for advanced XML creation. Although Epic
Editor is expensive, it’s complete and worth every pretty penny if you’re
building complex documents with XML or SGML. Visit the Arbortext site at
www.arbortext.com to learn more about this tool.

302 Part VI: The Part of Tens

28_588451 ch19.qxd 4/15/05 9:46 AM Page 302

Turbo XML v2.4.1
Turbo XML v2.4.1, from TIBCO Software, Inc., is an IDE (Integrated
Development Environment) for XML that accelerates the creation and man-
agement of XML documents, DTDs, and schemas. It includes a toolset to help
convert existing application and document structures to schemas, providing
the base for well-formed and valid XML documents. In addition, it has import
and output support for XML Schema, External Data Representation (XDR),
Schema for Object-Oriented XML (SOX v2), RELAX (Regular Language
Description for XML), and Document Type Definitions (DTDs).

Turbo XML v2.4.1 is well worth the money (only $269.95). We should add,
however, that Turbo XML is definitely not designed for the beginner; a work-
ing knowledge of XML and an understanding of schema design basics are
assumed. Turbo XML fully supports and extends the XML Schema specifica-
tion. Read more about Turbo XML at www.tibco.com.

XMetaL Author 4.5
XMetaL, originally developed by SoftQuad Software, is now offered by Blast
Radius (www.xmetal.com). XMetaL has expanded into a family of five prod-
ucts — with XMetal Author being the XML-authoring member of the family.
It’s not badly priced ($495 in the United States). Like many XML editors,
XMetaL Author offers users a familiar word-processing environment that’s
easy to use. XMetaL Author supports both Cascading Style Sheets (CSS) and
XSLT editing capabilities. XMetaL also supports both DTDs and XML Schema.
It conforms to numerous standards, including SGML, XML, CALS tables,
Document Object Model (DOM), CSS, and HTML. Find out more at www.
xmetal.com.

XML Pro v2.0.1
A more basic product is XML Pro, developed at Vervet Logic. XML Pro sure
can edit, but it doesn’t claim to do much more. There’s no support for docu-
ment conversion, DTD creation, or stylesheet design.

You can create and edit XML documents while using a clean, easy interface.
The newest release claims to be fully compliant with W3C XML 1.0, and is
now open-source and free for individual and nonprofit use. You can read
more at www.vervet.com.

303Chapter 19: XML Tools and Technologies

28_588451 ch19.qxd 4/15/05 9:46 AM Page 303

XML Spy 2005
XML Spy 2005 Suite is one of the sweetest XML multitools around. Okay,
maybe it can’t slice, dice, chop, and pare, but it does handle XML and knows
how to deal with XSLT, XPath, XQuery, WSDL, SOAP, and XML Schemas. But
wait, there’s more: It also supports graphical design, schema- or DTD-based
validation, database connectivity, and so much more.

The XML Spy Suite includes three different software products:

� XMLSpy: A top-of-the-line XML editor that offers everything you need to
create, debug, validate, and edit XML documents in a standards-based
fashion.

� MapForce: A visual data-mapping tool that easily transforms data from
one format into another.

� StyleVision: A visual interface for creating XSLT and XSL:FO stylesheets
to transform XML documents; can also transform an XML document into
HTML, PDF, or RTF (Rich Text Format) files.

XMLSpy Suite is available in an Enterprise ($1,499) and a Professional edition
($729)— it does an awful lot for the money. You can download a 30 day-
evaluation copy of either the Enterprise or Professional edition.

Altova has now released a free version of XMLSpy — XMLSpy Home Edition.
This is a great introduction to the XMLSpy family of products. You can
request a free license for the home version at www.altova.com/support_
freexmlspyhome.asp.

Be sure to check out Altova’s StyleVision. It’s a user-friendly WYSIWYG XSLT
editor and creates clean, concise, valid XSLT markup. You can download a
30-day trial version at www.altova.com/download_stylevision.html.

Checking Documents with Parser Tools
Your XML document is a carefully crafted work of art and adheres to strict
XML 1.0 compliance. You believe that you’ve followed the rules, and now
you’re ready to check your work. Luckily, you don’t have to check each ele-
ment by hand — parsers do that for you! Table 19-2 introduces some espe-
cially good ones.

Much of the software listed in this chapter is free for the downloading. The
only payment you’re asked to give is feedback. XML tools are still pretty
green; this means you must watch out for bugs. Make sure that you report
any bugs that you find to the responsible parties. They’ll thank you for it!

304 Part VI: The Part of Tens

28_588451 ch19.qxd 4/15/05 9:46 AM Page 304

Table 19-2 Parsers
Product Name Validating? URL Single-

User Price

Ælfred v7 No http://saxon.sourceforge. Free
net/aelfred.html

expat No http://sourceforge.net/ Free
projects/expat/

Lark No www.textuality.com/Lark/ Free

Use a parser to ensure that your XML documents are well formed and, if
linked to a DTD or schema, valid as well. (See Chapter 5 for more information
on valid and well-formed XML documents.)

Parsing is a basic but important step in XML publishing. Errors can be the
death knell to any XML document. Forget those old HTML days when
browsers picked up your slack. An XML document must be well formed, and
it must also be valid if it uses a DTD or schema. Parsers help enforce these
requirements.

Some parsers check only to make sure that a document is well formed; others
also check for validity. Make sure you examine the parser’s capabilities when
you’re selecting one to meet your needs.

Ælfred
Ælfred is a Java-based parser available for free download at

http://saxon.sourceforge.net/aelfred.html

(Can’t squawk about the price.) Ælfred is a nonvalidating parser, which
means that it checks documents only for well-formedness. According to its
designers, Ælfred concentrates on optimizing speed and size rather than
error reporting, so it’s most useful for deployment over the Internet.

Ælfred2 is a separate version of the parser that includes an optional valida-
tor. Read more about Ælfred2 at

www.gnu.org/software/classpathx/jaxp/apidoc/gnu/xml/aelfred2/
package-summary.html

305Chapter 19: XML Tools and Technologies

28_588451 ch19.qxd 4/15/05 9:46 AM Page 305

expat
James Clark is a legend in the SGML community because of his amazing col-
lection of tools that support all kinds of cool functionality — most of it in the
form of freeware that works like the dickens. This James Clark contribution,
expat v1.2, is a nonvalidating XML parser written in C. The 1.2 version was
the last release by James Clark before he handed over the maintenance and
further development of the software to a team of developers. You can down-
load beta versions of the new expat releases on SourceForge at http://
sourceforge.net/projects/expat/.

Lark
Tim Bray offers the Java-based XML processor Lark, which he built as a way
to sanity-check the XML design requirement so that “. . . it shall be easy to
write programs that process XML documents.” (What a concept.) Tim Bray
has been a member of the W3C’s XML Working Group since long before it
operated under that name. (It all started as a special-interest group within
the SGML cadre at the W3C.) His work on XML is widely recognized and
deservedly renowned. Among other things, Tim was the coeditor of the XML
specification.

Lark, a nonvalidating parser, could be useful for other programmers who seek
to follow in his footsteps, but it’s also a pretty great tool in its own right. The
parser is solidly built and has been tweaked over time to meet most program-
mers’ needs. The fruits of Tim’s labor are available for download at www.
textuality.com/Lark.

306 Part VI: The Part of Tens

Seeking validation on the Web
The following are some Web sites where you
can go to validate (or check) XML documents
for errors:

� Robin Cover’s Check or Validate XML
page at

www.oasis-open.org/cover/check-xml.html

� Microsoft’s XML Validation page at

http://msdn.microsoft.com/archive/en-
us/ samples/internet/xml/
xml_validator/default.asp

� XML.com RUWF? page (RUWF? stands for
aRe yoU Well Formed?) at

www.xml.com/pub/a/tools/ruwf/check.html

28_588451 ch19.qxd 4/15/05 9:46 AM Page 306

Viewing with XML Browsers
According to most Web developers, XML can revolutionize the way that
people look at and transfer information across the Web — and that isn’t just a
caffeine-induced vision. Before XML can continue that revolution, however,
browsers must provide their support. Netscape Navigator doesn’t currently
support XML fully. A few other browsers, however — such as Amaya, Opera,
Mozilla, and Firefox — do provide such support. We find the browsers that
we cover in this section (which Table 19-3 sums up) especially noteworthy.

Table 19-3 XML-Enabled Web Browsers
Product Name URL Single-User Price

Amaya 9.0 www.w3.org/Amaya/ Free

Internet Explorer 6 www.microsoft.com/ Free
windows/ie/default.asp

Mozilla www.mozilla.org Free

Firefox 1.0 www.mozilla.org/ Free
products/firefox/

Opera www.opera.com Free

Amaya
Amaya is the W3C browser and authoring tool (software that’s used to create
Web content) that you can use to demonstrate and test many new develop-
ments in Web protocols and data formats. Amaya is versatile and extensible,
which makes it easy to add new features. Along with support for XML, Amaya
supports HTML, XHTML, MathML, and CSS 2. It also has limited Scalable
Vector Graphics (SVG) support. (See Chapter 4 for more information on
XHTML.) If it’s good enough for the W3C, it should be good enough for you
(hey, it’s good enough for us)! Read more at www.w3.org/Amaya and then
download the software for free.

Internet Explorer 6
The Microsoft king of browsers can’t be left in the cold. Internet Explorer (IE)
also offers XML support: Microsoft XML (MSXML) version 4.0 specifically. IE 6
also supports CSS 1, much of CSS2, and DOM 1. It also provides some support

307Chapter 19: XML Tools and Technologies

28_588451 ch19.qxd 4/15/05 9:46 AM Page 307

for Synchronized Multimedia Integration Language (SMIL). If you’re using one
of the current flavors of Windows, you probably already have it. Download
the latest version of IE from

www.microsoft.com/windows/ie/default.asp

Microsoft has recently announced Internet Explorer 7 — though it’s not yet
known what, if any, changes in XML support this will include. Many observers
expect no significant changes in Internet Explorer until the next version of
the Windows OS is released.

Mozilla
Like many free XML tools, Mozilla is built around publicly available source
code. Mozilla is fully compliant with standards for HTML 4.0, XML, CSS, and
DOM. It includes expat for XML parsing (for more on expat, see the previous
section on parser tools), supports CSS display for XML, and provides partial
support for namespaces (Chapter 11) and simple XLinks. For more details
about Mozilla’s support for XML, see “Mozilla and XML” at www.mozilla.
org/newlayout/xml/.

The Mozilla XForms Project is working toward the implementation of XForms
1.0 in Mozilla. A free XForms extension is available for Mozilla and Firefox at
www.mozilla.org/projects/xforms/.

The folks at Mozilla.org are dedicated to debugging and updating this soft-
ware, and you should be, too. Mozilla.org provides users an open forum to
report bugs. To download this free software or keep up with changes, visit
www.mozilla.org.

Firefox 1.0
Mozilla Firefox is Mozilla’s award-winning new browser that supports XML,
XPath, XSLT, and XForms. Firefox also offers a Live Bookmarks feature that
enables you to read RSS feeds in Firefox. (See Chapter 18 for more details on
RSS feeds.) Firefox can be extensively customized to meet your browsing
needs. For more information, see www.mozilla.org/products/firefox/.

Opera
The brainchild of the markup gurus at Opera Software ASA in Norway, Opera
is easily the most international and platform-friendly browser around. In
addition to support for common operating systems such as Windows,

308 Part VI: The Part of Tens

28_588451 ch19.qxd 4/15/05 9:46 AM Page 308

Macintosh OS, and Linux/Solaris, Opera also runs on BeOS, OS/2, QNX
(a real-time version of Unix), and Symbian (a handheld device OS popular in
Europe). This browser really gets around — and is much smaller, faster, and
easier to customize than some other browsers we know. Opera also claims to
provide “ . . . full support for the XML 1.0 recommendation” and does a good
enough job of delivering on that claim to be a part of our standard XML test
environment.

You can get Opera for free (in which case you must submit to the small
banner ads that support its “free” mode of operation), or you can buy it
for a modest $39 or so per copy. Discover more about this fine tool at
www.opera.com.

Using XML Parsers and Engines
XML parsers and engines provide tools that can ingest and interpret the con-
tents of XML documents (with or without governing DTDs or schemas against
which to validate). Most of the other tools we cover up to this point in this
chapter have parsers and engines at the core; Table 19-4 sums up three.

Table 19-4 XML Parsers and Engines
Product Name URL Single-User Price

XML C Library for Gnome xmlsoft.org Free

Java XML Pack java.sun.com/xml/ Free
download.html

Xerces xml.apache.org Free

XML C Library for Gnome
Daniel Veillard’s XML C Library for Gnome (libxml) is a collection of
C-language routines that implement a validating XML parser. This parser
is versatile enough to work with various XML document models (including
the DOM and the so-called Simple API for XML, or SAX). It also implements
support for XPath and XPointers, as well as lots of other goodies. (For more
on XPath, see Chapter 13.) Check it all out at xmlsoft.org.

309Chapter 19: XML Tools and Technologies

28_588451 ch19.qxd 4/15/05 9:46 AM Page 309

Java XML Pack
Sun Microsystems, Inc. offers a cornucopia of Java-based XML tools, APIs,
and more. To find the Java XML Pack, visit the Sun Java Technology and XML
page at

java.sun.com/xml/download.html

This site includes some of the most popular Java XML tools, including

� The Java Web Services Developer Pack

� JAXM: The Java API for XML Messaging

� JAXP: The Java API for XML Processing

� JAXR: The Java API for XML Registries

� JAX-RPC: The Java API for XML-based Remote Procedure Call

Of these elements, JAXP offers a reasonably complete XML processing
engine, but the other tools will be of interest to those building distributed
applications using Java and XML as well. Visit java.sun.com/xml/
download.html for more information.

Xerces
The Open Source Apache project is famous for producing the world’s most
popular Web-server software — but that’s just the barest suggestion of its
large, intriguing collection of Web- and document-related software tools and
technologies. Among the many Apache offerings, the Xerces-C++ Parser 2.0
offers a powerful (yet compact) XML parser to build your documents around.
The Apache library of routines can handle a wide range of XML tasks — from
parsing to generating, validating, and manipulating XML documents. The
library is definitely worth your time. Discover more at xml.apache.org/
xerces-c/index.html.

Originally developed by IBM as XML4J, Apache also offers a validating XML
parser, Xerces2, that’s written in Java. Xerces2 is a fully conformant XML
Schema processor. It can also parse documents written in XML 1.1. Find more
information about Xerces2 at http://xml.apache.org/xerces2-j/index.
html.

310 Part VI: The Part of Tens

28_588451 ch19.qxd 4/15/05 9:46 AM Page 310

Employing Conversion Tools
When it comes to making XML content as accessible as possible, consider
using a tool to convert it from its native document format to something else.
Many of these tools use XSLT (or implement similar capabilities) to do their
thing. As you look at some of the conversion tools that we cover here, you
should get a good idea that something else covers a lot of territory! Table 19-5
sums up two such tools; then you get a closer look at each one.

Table 19-5 XML Conversion Tools
Product Name URL Single-User Price Free

Demo
Copy?

HTML Tidy tidy.sourceforge.net Free N/A

XPS www.softml.net/xps/ Free N/A
index.html

HTML Tidy
W3C stalwart Dave Raggett created a wonderful tool called HTML Tidy that
can validate against a whole slew of HTML, XHTML, and other DTDs. This
conversion tool can even convert HTML to XHTML (or other forms of XML)
as well. In fact, Dave’s tool sits at the heart of numerous extremely good
HTML tools — including HTML-Kit (available free from www.chami.com), a
program that puts a friendly face on Tidy and adds lots of functionality. For
more information on HTML Tidy, please visit tidy.sourceforge.net.

Extensible Programming Script (XPS)
SoftML Pte Ltd has created the powerful transformation tool XPS that can
translate XML into other formats, or other formats into XML — and it’s all
based on an XML data-manipulation language. XPS supports easy transforma-
tions to — or from — databases that comply with Structured Query Language
(SQL) or Open Database Connectivity (ODBC) — and it supports more text-
intensive document types. For more information, please visit

www.softml.net/xps/index.html

311Chapter 19: XML Tools and Technologies

28_588451 ch19.qxd 4/15/05 9:46 AM Page 311

The Ultimate XML Grab Bag
and Goodie Box

All the other products that we list in this chapter have a focus on a particular
piece of an XML solution — editing, validating, and so on. For those who want
to collect the whole set of XML tools, some companies offer products that do
it all. Here are a few of our favorites.

Microsoft does XML, too!
In its search to extend the reach and capability of its Internet software, par-
ticularly the Internet Explorer browser, Microsoft is an unexpected and
ardent XML supporter, particularly for the Channel Definition Format (CDF)
and the Resource Definition Framework (RDF) — among other XML applica-
tions. As Microsoft begins to add more XML support to its next release of
Internet Explorer, it offers numerous other XML tools as well. To read more
about the Microsoft view of XML, visit msdn.microsoft.com/xml.

webMethods automates XML excellence
webMethods, Inc., has constructed the core of its Web services toolkit (the
webMethods integration platform) around XML and Java technology. This
toolkit is marketed heavily for use in electronic commerce and related appli-
cations, and for automating access to a variety of Web-based data and ser-
vices, both in HTML and XML. The webMethods integration platform has
been well received in the marketplace and is worth investigating, especially if
you’re looking for a way to improve data access, data handling, and data
security on your Web site.

To obtain an evaluation copy of the webMethods integration platform or
for more information about the company and its products, visit www.web
methods.com

A complete account of all the wonderful XML tools available would overflow
our toolbox — and this book. To find a complete guide on XML software,
check out www.xmlsoftware.com.

We hope you enjoy some of our favorite XML tools as much as we do. And
don’t overlook these two great tools: Consult the Web page for this book at
www.dummies.com/go/xmlfd4e for links to download the XML tools covered
in this chapter, and flip through this book’s glossary for great help in decod-
ing the sometimes-mysterious terminology and acronyms you’re likely to
encounter when you’re canvassing the wild and wooly intellectual landscape
of XML.

312 Part VI: The Part of Tens

28_588451 ch19.qxd 4/15/05 9:46 AM Page 312

Chapter 20

Ten Top XML Applications
In This Chapter
� Redefining HTML

� Styling XML with grace and panache

� Going wireless with XML

� Marking up with math

� Drawing with XML

� Exchanging data between computers

� Making multimedia work for you

� Serving up the Web

� Searching the Web

� Creating your own XML applications

By itself, any XML document contains nothing but plain, simple text. But
when you look at XML the right way, or when you use various XML-

based technologies together, its benefits can’t be overstated. XML applica-
tions provide powerful tools to display and work with your XML documents.

Industry requirements drive most XML developments. That’s the reason so
many XML applications inevitably embody industry initiatives. Many applica-
tions are already available — for free! In this chapter, we highlight a few of the
most interesting XML applications designed for specific uses.

This is a chapter on XML applications, yes, but that doesn’t mean the applica-
tions listed here are the only ones worth investigating. To see a fairly exhaus-
tive list, visit www.oasis-open.org/cover/xml.html#applications or
www.xml.com. With a little elbow grease, you may find an application that’s
perfect for your needs!

29_588451 ch20.qxd 4/15/05 9:47 AM Page 313

XHTML = XML + HTML
As we’ve mentioned elsewhere in this book (particularly in Chapter 4),
XHTML takes easy, familiar HTML markup and rationalizes it within a more
rigorous and regular XML framework. Don’t let that extra rigor stop you from
using this excellent tool, though — in most respects, it’s enough like HTML
that even older browsers can’t tell the difference as long as you follow safe
formatting rules. (See Chapter 4 for more on these rules.)

Thinking about upgrading your HTML markup to its XHTML equivalent? Dave
Raggett’s wonderful HTML-Tidy tool is built into Chami.com’s outstanding
HTML-Kit utility and does most of the conversion work for you automatically.
Just don’t forget to validate the results (which HTML-Kit also does for you).
Download HTML-Kit at www.chami.com.

XML Style Is a Matter of Application
The richest, most powerful ways to manage how XML data and documents
are delivered to a Web browser involve the use of XML applications designed
to read, organize, transform, and format XML into a variety of looks, feels,
and formats. Possible forms of output include Rich Text Format (RTF), Adobe
Acrobat’s Portable Document Format (PDF), HTML or XHTML, plain text, and
many more formats. To pull off this kind of magic, though, you need to find
out about numerous XML applications, including:

� The eXtensible Stylesheet Language (XSL) and its relatives, XSL
Transformations (XSLT) and XSL Formatting Objects (XSL-FO). For more
details on XSLT, see Chapter 12.

� XML-based linking languages, especially XLink, XPath, and XPointer. For
more information on XPath, see Chapter 13.

� And of course, you also need to understand how to grab XML content
and reshape it into the exact form required to match your target format.
For simple formats, such as plain text or XHTML/HTML, this is pretty
easy; for more complex formats, such as PDF or RTF, you probably need
help from special-purpose software tools such as the XMLSpy 2005 Suite
(www.altova.com) or Office 2003 (http:office.microsoft.com).

Wireless Markup Language (WML)
As the name is meant to suggest, WML aims to support applications for wire-
less communications networks. It’s part of an effort sponsored by leading
telecommunications companies, including Ericsson, Motorola, Nokia, and the

314 Part VI: The Part of Tens

29_588451 ch20.qxd 4/15/05 9:47 AM Page 314

wireless communications specialist Unwired Planet. In essence, WML is
designed to make it easier to use handheld, wireless communications devices
of all kinds to access the Internet.

WML is an XML application designed specifically to meet constraints inher-
ent in wireless devices. These constraints include a small display area with
limited user-input capabilities (as on a cell phone), limited bandwidth (19.2
Kbps is typical for most handheld wireless devices), and limited CPU power
and memory space. You might say that WML is a markup language designed
with the phrase “small is beautiful” foremost in mind!

Read more about WML at www.oasis-open.org/cover/wap-wml.html. For
general information on WAP (Wireless Application Protocol) and OMA (Open
Mobile Alliance), check www.wapforum.com/about_OMA/index.html.

DocBook, Anyone?
DocBook is a standard SGML DTD designed to capture computer documenta-
tion and other types of lengthy, complex documents. DocBook already enjoys
worldwide use in hundreds of organizations that manage millions of pages of
documentation in a variety of print and online formats.

Visit Robin Cover’s site at www.oasis-open.org/docbook/ for more infor-
mation on this subject. Also visit

www.oasis-open.org/committees/docbook/xmlschema/index.shtml

to view the experimental XML Schema-based version of DocBook.

Mathematical Markup Language
(MathML)

Based on years of hard labor, the most recent version of the MathML 2.0
specification appeared on February 21, 2001. Before MathML came along, it
was tricky to express mathematical equations inside Web pages. As an XML
application, MathML supports mathematical and scientific markup for use on
the Web. But it doesn’t end there: You can also use MathML for computer
algebra systems, mathematical typesetting, and voice synthesis.

Read more about MathML at its W3C home at www.w3.org/Math/. Robin
Cover’s site also offers a wealth of information on this application. Visit
http://xml.coverpages.org/mathML.html for all the details.

315Chapter 20: Ten Top XML Applications

29_588451 ch20.qxd 4/15/05 9:47 AM Page 315

Scalable Vector Graphics (SVG)
Scalable Vector Graphics (SVG) is a language for describing two-dimensional
graphics in XML. SVG 1.0 is a recommended W3C standard — which means
(heads up!) it’s ready for production use.

SVG allows for three basic types of objects: vector graphic shapes (paths
consisting of straight lines and curves), images, and text. The drive behind
SVG is to develop a standard for the Web-based display of such objects.

Graphical objects can be grouped, styled, and added to previously rendered
objects. What’s more exciting is that these objects can be dynamic and inter-
active! The Document Object Model (DOM) for SVG, which includes the full
XML DOM, allows authors to use scripting to create straightforward and effi-
cient vector graphics animation for any SVG graphical object.

We wish we could outline all the fun ways to create graphics using SVG, but
that would require its own book. To read more about SVG, visit the W3C at
www.w3.org/Graphics/SVG/.

Resource Description Framework (RDF)
The Resource Description Framework (RDF) is a framework for metadata.
RDF assures interoperability between applications that exchange application-
or platform-specific information — you know, metadata — across the Web.

Why might this concern you? Because RDF helps increase the relevance of
searches conducted in your XML documents. That fact alone gets us excited
and might be a boon to you, too. (Okay, we admit it; we’re really into the
metasearch thing. Anything that saves us from wading through countless
documents only to find irrelevant information on a two-headed reptile from
New Guinea is okay in our book!) Briefly put, RDF provides a basis for generic
tools for authoring, manipulating, and searching machine-readable data on
the Web.

RDF is also the base for RSS (RDF Site Summary) 1.0. For more information on
all versions of RSS, see Chapter 18.

For more information on RDF, see the W3C RDF page at www.w3.org/RDF/.
To read more about RDF, visit Dave Beckett’s excellent site on this subject at
www.ilrt.bris.ac.uk/discovery/rdf/resources/.

316 Part VI: The Part of Tens

29_588451 ch20.qxd 4/15/05 9:47 AM Page 316

Synchronized Multimedia Integration
Language (SMIL)

We talked a little about graphics in the section on SVG, so now we turn your
attention to multimedia. Ever since desktop computer systems started to
include loudspeakers, multimedia has played a significant role on more than
a few Web sites. If multimedia’s your bag, you may want to keep up with the
Synchronized Multimedia Integration Language (SMIL, pronounced, happily
enough, “smile”).

SMIL enables you to integrate a set of independent multimedia objects into a
synchronized multimedia presentation. As stated by the W3C, you can use
SMIL to:

� Describe the temporal behavior (or sequential behavior, such as the
sequence presented in an animation) of the presentation

� Describe the layout of the presentation on a screen

� Associate hyperlinks with media objects

The bottom line is that SMIL enables authors to create television-like content
for the Web and still avoid the limitations of traditional television. In addition,
you don’t have to worry about lowering the bandwidth requirements to
transmit such content across the Internet. Yes, we mean that movies on the
Web are theoretically possible — with no skimping on bandwidth (what a
concept) — because producing audio-visual content is easy with SMIL. The
best part is that using SMIL doesn’t require you to learn a programming lan-
guage; you can create it with a simple text editor.

To keep track of SMIL progress, stay tuned to www.w3.org/AudioVideo/.

Servin’ Up Web Services
An interlocking collection of XML applications is under development to sup-
port so-called Web services (which we cover in more detail in Chapter 15).
A Web service is a tool or capability that you use your Web browser to access;
it doesn’t reside locally on your own desktop, and it isn’t saved on your hard
drive. Web services permit users with just about any kind of computer (using
any operating system) to run the same database access programs, read or
send faxes, manage bank accounts or financial portfolios, and so on, without
a care in the world. (We shudder to think of all the possibilities — today the
server, tomorrow the universe. . . .)

317Chapter 20: Ten Top XML Applications

29_588451 ch20.qxd 4/15/05 9:47 AM Page 317

The Web services infrastructure includes a bunch of pieces and parts
designed to make it easier for service providers to create and advertise such
services and for would-be end users to identify and access such services.
These pieces and parts include the following elements:

� Simple Object Access Protocol (SOAP): This is an XML-based technology
that permits senders and receivers to easily exchange self-describing,
XML-based messages. SOAP enables arbitrary service providers and
service consumers to communicate directly. For a super collection of
SOAP resources, visit http://xml.coverpages.org/soap.html.

� Universal Description, Discovery, and Integration (UDDI): This XML-
based technology is designed to permit service providers to describe
the services they offer, to permit those services to be discovered by
those seeking same, and to establish how providers and consumers can
interact with each other should a consumer decide to request services
from a provider. Think of it as a kind of Yellow Pages that also brokers
direct connections between those who list themselves therein (the
providers) and those who use them (the consumers) as a way to locate
potential providers. A good place to start further investigations regard-
ing UDDI is Robin Cover’s pointers at http://xml.coverpages.org/
uddi.html.

� Web Services Description Language (WSDL): An XML-based technology
that permits Web services — and the message formats and contents nec-
essary to interact with them — to be formally described and advertised.
Those message formats are, in turn, based on SOAP. Thus, WSDL pro-
vides the ways to integrate the providers and consumers between whom
UDDI acts as a broker. For more information on WSDL, see Robin Cover’s
Web site at http://xml.coverpages.org/wsdl.html.

XQuery
The goal of XQuery is to provide an interaction between XML and databases
so that XML documents can be accessed and queried like databases. XQuery
and XPath are closely related; many features of XQuery are seen as so impor-
tant that they will be incorporated into the next version of XPath — XPath 2.0.

Several XQuery and XPath documents have been very recently released by
the W3C, including a Working Draft of the XQuery 1.0 specification. For more
information on XQuery and XPath specifications, see

www.w3.org/XML/Query

An XQuery tutorial is available at

www.yukonxml.com/articles/xquery/

318 Part VI: The Part of Tens

29_588451 ch20.qxd 4/15/05 9:47 AM Page 318

Create XML Applications with Zope
Although this chapter focuses on applications used with XML, we’d also like
to point you to software that enables you to create your own XML applica-
tions. Zope 2.7.4 is a free, open-source application server that does just that.
Created by Digital Creations and written mainly in Python, Zope runs on both
Windows and UNIX platforms.

Zope works in an object-oriented environment. More plainly, Zope views a
Web application in terms of objects, which define not only types of data, but
also the kinds of operations (called methods in object-oriented programming
lingo) that may be performed on those objects.

Zope enables you to combine objects to create powerful and flexible ways to
acquire, manage, and manipulate all kinds of data. As you’d expect, these
object collections can respond to Web requests dynamically — which makes
building interactive, Web-based applications a relative breeze. The result is
dynamic content and a happy content creator (that would be you).

If you can’t find the right XML application for your needs, you might want to
create one yourself using Zope. Read more about this open-source treasure at
www.zope.org.

319Chapter 20: Ten Top XML Applications

29_588451 ch20.qxd 4/15/05 9:47 AM Page 319

320 Part VI: The Part of Tens

29_588451 ch20.qxd 4/15/05 9:47 AM Page 320

Chapter 21

Ten Ultimate XML Resources
In This Chapter
� Seeking XML specifications

� Garnering general XML information

� Tracking and tackling XML tutorials

� Mastering XML mailing lists

� Extracting XML examples

� Nattering about XML news and information

� Tucking into XML training

� Building better XML bibliographies

� Studying XML certification

� Searching for more information

You can find information on just about any XML topic online, in addition to
other more “real” (or at least, less virtual) locations. If we had to boil this

entire chapter down to a single tip, it would have to be: “When looking for
XML information, search the Web first and foremost.” Chances are eXtreMeLy
good that you can find what you seek! Allow us to demonstrate. . . .

XML’s Many and Marvelous Specs
For XML itself, and for standard XML applications, the place to start your
search for descriptions, metadata, and other details is the World Wide Web
Consortium (W3C) site:

www.w3c.org/XML/

Check the left-hand column listing for the acronym you seek or visit the W3C
XML page. And when you visit the home page for an XML application at the
W3C’s site, you find a plethora of pointers to other resources on the same
subject, so it’s a good place from which to mount broader searches as well.

30_588451 ch21.qxd 4/15/05 9:47 AM Page 321

An XML Nonpareil
Nonpareil isn’t just a chocolate candy covered with sprinkles. No, the XML
nonpareil (which is just a fancy-schmancy word for unparalleled) on the Web
is Robin Cover’s XML Pages site. Here’s how you get to it:

www.oasis-open.org/cover/

At this site, you not only find pointers to relevant specifications and other
related documents, but also see brief descriptions of the markup or applica-
tion itself, as well as pointers to numerous other useful resources. If you’re
into XML, you may want to add this one to your bookmarks or favorites.
(Note: Robin’s last name rhymes with “over” or “clover.”)

Top XML Tutorial Sites
We dare you to type application tutorial, (substituting the name or acronym
of your favorite XML application, of course) in your favorite search engine.
Go ahead. See? Your search produced a plethora of results. If you’d like to
come out from under it, we’ve found the following sites to be unusually useful
when seeking sources for XML tutorials:

� www.zvon.org: A crazy, quirky, but incredibly competent Czech XML
collective, Zvon offers some of the best XML tutorials we’ve seen any-
where. Czech them out! Also, be sure to look up the original meaning of
the term “zvon” in Czech; you’ll never think of these guys as anything
other than humble forever afterward. (For those of you too busy to look
it up, it means “bell” or “ding-dong.”)

� www.xml.com: An O’Reilly & Associates Web site devoted to covering
XML news, applications, tools, and technologies, this site also offers a
plethora of tutorials on everything from namespaces to SOAP (212 tuto-
rials total during our last visit there, in fact).

� www.w3schools.com/xml/: World Wide Web Schools has its own XML
School, which you can enter here. Check it out for a well-organized
collection of information about basic XML, and important XML
applications.

Try them; we think you’ll like them!

322 Part VI: The Part of Tens

30_588451 ch21.qxd 4/15/05 9:47 AM Page 322

XML in the Mail
Although mailing lists on the Internet are neither terribly interactive. nor do
they always address your questions without some effort on your part, they
can be wonderful sources of information — and they provide a superb way
for you to seek answers to particular, detailed questions that may not be
addressed elsewhere on the Internet (at least, not without a long, complex,
tedious search)

Once again, XML master and maven Robin Cover scores big with a massive
collection of SGML- and XML-related mailing lists (70 in all). Visit his site to
see what we mean; don’t overlook the annotated listings on each list:

www.oasis-open.org/cover/lists.html

Excellent XML Examples at zvon.org
So simple, so useful:

www.zvon.org

Although assiduous digging and careful reading of XML-related specifications
can produce examples galore, example collections created specifically to
instruct and demonstrate XML applications are quite worthwhile. Clever
searches turn up lots of potential sources, but we’ve found those crafty
Czechs at www.zvon.org to be a peachy source for well-organized and
explained XML examples.

For a great collection of XML examples, please visit Zvon’s Example
Respository at www.zvon.org/HowTo/Output/index.html.

XML News and Information
Numerous trade publications are available in print and online. We’ve looked
at most of them but have found the following to be especially interesting,
useful, or informative. In many cases, you can read them online and, if you
like what you see, qualify for free delivery of the printed versions.

� www.xml.com: This O’Reilly Web site covers the topic pretty darn well
and is usually worth reading. XML.com is not only a good source of
information on topics you want to research, but it’s also a good bell-
wether for topics you might not know exist! They also provide an RSS 1.0
feed at www.oreillynet.com/meerkat/?_fl=rss10&t=ALL&c=47.

323Chapter 21: Ten Ultimate XML Resources

30_588451 ch21.qxd 4/15/05 9:47 AM Page 323

� www.xml-zone.com/: Fawcette Publications’ DevX includes an “XML
Zone” that’s chock-full of late-breaking XML news, information, tutorials,
how-tos, and more.

� www.fawcette.com/xmlmag/: Fawcette also publishes XML & Web
Services Magazine, which operates online. The XML & Web Services
Magazine is also worth regular visits.

� www.oasis-open.org/cover/sgmlnew.html: Robin Cover — who
else? — also provides regular news updates and information. This Web
page is more newsy and less technical or how-to than the other items
mentioned here, but it’s still worth following.

� www.ibiblio.org/xml/: Elliotte Rusty Harold’s Café Con Leche XML
News and Resources isn’t just a great source for XML news and musings,
it’s also a wonderful XML resource in its own right (and you see his
name later on in the “Building a Bodacious XML Bookshelf” section in
this chapter; he’s a real XML star, too). Visit the Café Con Leche XML
News and Resources site and see for yourself!

� comp.text.xml: In the Usenet newsgroup hierarchy, this newsgroup is
a great source of XML news and discussion, although you sometimes
have to blow a lot of chaff off the wheat. You can now access this group
at http://groups-beta.google.com/group/comp.text.xml.

XML Training Options
When it comes to training, you can find as much about XML offered online as
you can in various classrooms in the real world. If you’re interested in XML
training, try to find offerings that best fit your learning style — and although
it’s undoubtedly cheaper to learn through self-study, computer-based train-
ing, or Web classes, sometimes the opportunity to interact with a real, live
instructor in a real classroom is worth the extra time and expense.

The following training companies, among many others, offer classroom train-
ing on XML:

� Global Knowledge: www.globalknowledge.com

� SkillBuilders: www.skillbuilders.com

� Zveno: www.zveno.com/courses

Also, don’t overlook offerings from local community colleges, colleges, and
universities, many of which also offer classroom XML training.

324 Part VI: The Part of Tens

30_588451 ch21.qxd 4/15/05 9:47 AM Page 324

When it comes to XML training via computer-based training (CBT) or online,
check with your favorite online training company for more information —
many, if not most of them, now offer online introductory and advanced XML
classes. Everybody from DigitalThink (www.digitalthink.com/dtfs/) to
SmartForce (www.smartforce.com/smb/) has jumped on this bandwagon!

Commercial classroom training normally costs upwards of $250 per person
per day (sometimes $500 or more); computer- or Web-based training seldom
costs more than $700-800 per class (and prices at half that amount or lower
are common). Be sure to pick XML training offerings that meet your educa-
tion needs but that also stay within your training budget!

Building a Bodacious XML Bookshelf
A quick hop to Amazon.com or your favorite online bookstore and typing
XML as a title element or keyword choice produces hundreds of hits (827 hits
in Amazon as we write this, in fact). XML has no shortage of reference, tutor-
ial, introductory, or advanced material. If reading helps you feed your brain,
or you’re like us and enjoy the heft and easy access to information that a
good reference book can provide, you’ll probably find it worthwhile to amass
at least a small collection of XML books.

To begin with, we urge you to look for competitive reviews (like the customer
reviews posted on Amazon and at other online bookstores or published book
reviews that you can find in abundance on the Web) and let them guide you
to prospective purchases. At the bookstore, be sure to use your own judg-
ment before buying anything; if you purchase online (and you can get some
fabulous deals if you do), be sure you can get your money back if you return
a book that you decide you don’t like later on.

All that said, here is our top-five list of XML books, any or all of which are
well worth their purchase price:

� Elliotte Rusty Harold: XML: Extensible Markup Language, Wiley,
Indianapolis, IN, 1998. ISBN: 0-6745-3199-9. List Price: $39.99. The
best technical introduction to XML around, period. Now out of print
but available used for a great price on Amazon.com.

� Elliotte Rusty Harold: XML 1.1 Bible, Wiley, Indianapolis, IN, 2004. ISBN:
0-7645-4986-3. List Price: $39.99. A great general reference and how-
to book, chock-full of useful examples, and updated with XML 1.1
information.

325Chapter 21: Ten Ultimate XML Resources

30_588451 ch21.qxd 4/15/05 9:47 AM Page 325

� Elliotte Rusty Harold and W. Scott Means: XML In a Nutshell, 3rd Edition,
O’Reilly & Associates, Sebastopol, CA, 2001. ISBN: 0-596-00764-7. List
Price: $39.95. The best compact all-around reference on XML and key
applications available in print.

� Steven Holzner: Inside XML, Pearson Education, Boston, MA, 2000. ISBN:
0-7357-1020-1. List Price: $49.99. A great all-around reference on XML and
key applications, leavened not only with great examples, but also with
implementation considerations and details.

� Erik T. Ray and Christopher R. Maden: Learning XML, 2nd Edition,
O’Reilly & Associates, Sebastopol, CA, 2003. ISBN: 0-596-00420-6. List
Price: $39.95. An excellent step-by-step guide to learning and using XML
for building basic documents.

Well, yeah, Elliotte Rusty Harold’s name does pop up a lot in our short list of
XML Great Books. Coincidence? No way! He does good work.

Studying XML for Certification
For further proof that XML is making the big time, numerous groups and orga-
nizations are starting to offer exams to warrant the knowledge and skills of
those with the moxie to take and pass such tests. Although this particular
market is still in its infancy — by which we mean we’ve not begun to see the
total range of XML certifications by any means just yet — you can already
choose among a surprising number of options to demonstrate your knowl-
edge, skills, and expertise.

Here’s a list of organizations that offer XML certification at present (at least,
ones that we can find), with pointers to more information about their pro-
grams and credentials:

� IBM’s Certified Developer program includes an XML specialization. For
more information, visit

www-1.ibm.com/certify/certs/xm_index.shtml

� Global Knowledge has created an XML Developer Certification that com-
bines training in basic XML terms, concepts, markup, and applications
with coverage of ASP or Java programming to warrant individuals who
can build XML-based systems and solutions. For more information, point
your browser to

www.globalknowledge.com/training/certification_listing.asp?PageID=
12&certid=215&country=United+States

326 Part VI: The Part of Tens

30_588451 ch21.qxd 4/15/05 9:47 AM Page 326

� Learning Tree International has yet another XML Development Certified
Professional program that covers a broad range of topics, skills, and
XML applications, supported by a collection of 3 core courses and
10 elective course topics. It’s one of the more comprehensive XML-
certification programs currently available; read more about it at

www.learningtree.com/us/cert/progs/7062.htm

� U2test, a Pakistani-based skills-and-competency-testing outfit, has an
XML exam (and certificate) available. To find out more, visit

www.u2test.com/avtestn.asp

� BrainBench offers exams on XML and XSL that are warranted by the
International Webmaster’s Association (a Web-oriented professionals’
association). For more information, check out their exam offerings under
the general heading of “Web Design and Development” at

www.brainbench.com/xml/bb/homepage.xml

By the time you read this book, more XML certifications may be offered.
To find out about certifications not in the list given here, check out general
certification resources online, such as www.gocertify.com or www.it
certmag.com.

Serious Searches Lead to Success
What we’ve presented in this chapter is only the merest suggestion of the
enormous trove of resources, publications, news, information, examples,
tutorials, and other useful XML resources available to you. Don’t forget that
the power of the Web — when viewed through your favorite search engine
(be that engine Yahoo!, Ask Jeeves, Google, AltaVista, or whatever) — can
lead you to just about any XML-related information. The sooner you start
searching, the sooner you start finding what you need. Good luck!

327Chapter 21: Ten Ultimate XML Resources

30_588451 ch21.qxd 4/15/05 9:47 AM Page 327

328 Part VI: The Part of Tens

30_588451 ch21.qxd 4/15/05 9:47 AM Page 328

Glossary

ADO (Active X Data Objects): A Microsoft interface for data objects.

aggregator: In RSS, software that filters a group of RSS feeds to create a feed
that includes items from several different feeds in the same content area.

ASCII (American Standard Code for Information Interchange): A coding
method to translate characters, such as numbers, text, and symbols, into dig-
ital form. ASCII includes only 127 characters and is only useful for English
(okay, and Latin, but nothing else really).

ATOM: A syndication format and a protocol for editing syndicated content.

attribute: In XML, a property associated with an XML element that is a named
characteristic of the element. An attribute also provides additional data
about an element.

attribute declaration: In XML Schema and DTDs, an attribute declaration is
markup that defines the name of an attribute and its properties.

attribute group: A collection of attributes in an XML Schema document.

attribute-list declaration: In DTDs, a declaration that defines the name,
datatype, and default value (if any) of each attribute associated with an
element.

axis: In XPath, an axis identifies a family relationship. For example, child,
parent, or preceding-sibling are XPath axes.

binary: A numbering system (base 2) based on the two digits 0 and 1.

bit: A 0 or a 1; the basic computer storage unit.

byte: A collection of 8 bits.

CDF (Channel Definition Format): An XML-based file format, developed by
Microsoft.

CGI (Common Gateway Interface): A standard that allows external programs
of various types to interact with Web servers, usually to provide interactive
responses or services related to user input from a browser.

31_588451 glossary.qxd 4/15/05 9:47 AM Page 329

channel: Information about organized content on an intranet or the Internet.
Channels enable Web developers to categorize and describe Web site content
and make that data available to users on demand.

character data (CDATA): In XML, a string of characters.

character entity: A string of characters that represents other characters. For
example, < and È show a string of characters (lt and Egrave)
that stand for other characters (< and È).

character set: When referring to script, a collection of values that maps to
some specific symbol set or alphabet.

child element: An element that occurs within some parent element and is
therefore part of that parent’s content model.

choice group: In XML Schema, a method that allows you to make either/
or choices between two elements, in addition to choices among several
elements.

closing tag: XML elements that contain content must begin with an opening
tag and end with a closing tag. XML syntax for a closing tag is </element-
name>, where element-name is a placeholder for the element’s name.

CML (Chemical Markup Language): An XML language with specific exten-
sions for describing molecules and compounds.

comment: An SGML markup construct that permits authors to insert docu-
mentation, notes, and remarks into documents that are ignored when an XML
document is parsed or processed. Comments begin with the markup string
<!-- and end with the markup string -->.

complex type definition: In XML Schema, a definition of an element that can
contain other elements and/or can contain attribute declarations.

component: A part that is essential to the operation of a larger system.

compositor element: In XML Schema, an element that specifies order and
occurrence constraints. XML Schema compositors include sequence,
choice, and all.

content analysis: The process of identifying the properties of a collection of
information.

content identifier: A token that can be used to uniquely identify any piece of
data or content.

330 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 330

content model: Defines the order in which components (usually, child ele-
ments, but also datatypes such as #PCDATA or #CDATA) may or must appear
within an XML document.

CSS (Cascading Style Sheets): A method of markup that allows Web develop-
ers to define how certain HTML, DHTML, or XML structural elements, such as
paragraphs and headings, should be displayed using style rules instead of
additional markup. The versions of CSS are CSS1, CSS2.1, and CSS3, with
CSS2.1 being the most recent recommendation and CSS3 under development
(as of March 2005).

CSV (comma -separated values): A format for tabular data where fields are
separated by commas.

data intensive: Describes text content that includes many additional con-
straints, such as patterns of content.

datatype declaration: In XML Schema, markup that tells the processor the
valid format for the content of an XML Schema element or attribute.

declaration: In programming languages (and metalanguages such as SGML
DTDs and XML Schema documents), a declaration is a way to identify some
kind of variable or data structure and to associate a specific name with one
or more specific attributes to indicate what kind of value or values should be
associated with that name. In DTDs, the ELEMENT declaration is associated
with a specific name, and other characteristics, to identify and describe valid
document components.

diacritical mark: An accent mark added to a letter.

DocBook: A heavy-duty DTD designed and implemented by HaL Computer
Systems and O’Reilly & Associates. DocBook is used for authoring books, arti-
cles, and manuals, particularly those of a technical nature.

document element: In XPath, the document element node is a single node
that contains the entire contents of the document except for any processing
instruction nodes or comment nodes that are children of the root node.

DOCTYPE: See document type declaration.

document prolog: The portion of an XML document or DTD that occurs at its
very beginning and defines the document’s content, and may reference exter-
nal and/or internal DTDs, XML Schemas, stylesheets, namespaces, and other
sources for context or definitions for content.

331Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 331

document type declaration: A declaration that tells the processor where a
DTD is located that may also contain additional new or custom declarations
for the particular document in which it appears. Also known as a DOCTYPE
declaration.

DOM (Document Object Model): A platform- and language-neutral program-
ming interface that allows programs and scripts to access and update the
content, structure, and style of documents in a standard way.

DOS (Disk Operating System): The original PC operating system, first intro-
duced in 1982. DOS has been largely supplanted by Microsoft Windows on
most desktops.

DSSSL (Document Style Semantics and Specification Language): A superset
of XSL. DSSSL is a document style language used primarily with SGML files.

DTD (Document Type Definition): A statement of rules that specifies which
elements (that define markup tags) and attributes (that define values associ-
ated with specific tags) are allowed in your documents.

e-commerce (electronic commerce): The exchange of money for goods and
services between businesses, or between businesses and consumers, across
the Internet or another public network.

EDI (Electronic Data Interchange): A standard for the electronic exchange of
basic business information.

element: A named section of a document that may be either the root element
or some child element that is normally defined by start and end tags that
enclose document content or an empty tag that includes no content. In the
bookstore DTD and Schema, books is the root element, and book is the ele-
ment within which individual recipes may be defined.

element content model: A way to include a specification regarding children
in element declarations. For example, you can specify that an element may
contain only child elements.

element declaration: In XML Schema and DTDs, markup that defines the
name of an element and its properties, including what child elements the ele-
ment may include.

element type: A specific — or named — element defined within an SGML DTD
or an XML Schema, such as books or title.

element type declaration: Provides a description of an element type and its
content within the DTD.

332 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 332

empty element: An element used in markup languages that does not require
a separate closing tag. In XML, an empty element is identified with a slash (/)
before the closing greater-than sign (>), as in the
 element used in
HTML and XHTML. When expressed as markup, an empty element may also
be called an empty tag.

encoding: A technical term for how many bits you use to describe characters.

entity: A named object in an SGML DTD that represents a string of charac-
ters; thus the entity &Addr; could stand for “2207 Klattenhoff Drive, Austin,
TX, 78728-5480”. Entities provide useful shorthand when they’re used to rep-
resent strings (like the preceding address) that appear in multiple or numer-
ous locations in a document.

entity declaration: Defines a named set of text information that can be refer-
enced by its name within a document or DTD. As the document or DTD is
processed, every time the entity name is encountered, it’s replaced by the set
of information associated with that name. Thus, it provides useful shorthand
for text that appears repeatedly in a document or DTD.

external parameter entity references: A string of characters that refers to
information that appears in a separate file from the DTD or document prolog
in which it appears.

external subset: A portion of a DTD that’s stored in an external file. Also
called an external DTD or an external DTD subset. Not all DTDs have external
subsets, but any XML document or DTD that references another DTD does
have an external subset.

FAQ (Frequently Asked Questions): A collection of questions and answers
related to a specific topic. FAQs are most commonly found on Internet
newsgroups.

font: A collection of bitmaps for a character set.

formatting object: In XSL, a piece of a document (which may be a single doc-
ument element or a parent element and its various children) to which some
particular formatting operation is applied. Thus, the children elements of the
books element, book, might be associated with a formatting object that pro-
duced a numbered or bulleted list when processed.

freeware: Software available for use at no charge.

FTP (File Transfer Protocol): An Internet file-transfer service based on
TCP/IP protocols. FTP provides a way to copy files to and from FTP servers
elsewhere on a network.

333Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 333

GedML (Genealogical Markup Language): An XML language used to describe
genealogical data.

general entity: An entity created in a DTD but used in an XML document; this
differs from an internal entity, which is defined in a DTD and used only in that
DTD (not in documents based on that DTD).

glyph: An individual bitmap in a font.

GUI (Graphical User Interface): As opposed to the plain text of a DOS com-
mand line, a computer interface designed for users to use a mouse (or track-
ball) to interact with (by clicking) graphics, windows, and menus to get
information.

hexadecimal: A numbering system (base 16) using the symbols 0–9 and a–f.

HTML (HyperText Markup Language): One of the document-description
markup languages used to create Web pages.

hypertext: A way of linking document locations so that clicking a particular
hypertext element takes the user’s browser from one document to another
document.

IANA (Internet Assigned Numbers Authority): An organization that oversees
IP (Internet Protocol) addresses, as well as character set numbering.

InfoPath: A visual XML forms editor, part of Office 2003.

inheritance: The result of an element (a child or sibling) having taken on the
characteristics assigned to a higher-level element (parent).

inline style: A style rule that appears within the same XML document that
contains the element to which the rule applies. This might involve writing
XSLT instructions or CSS directives in a document prolog as a separate text
block.

internal entity: In DTDs, an entity that contains the definition for its content
(or substitution value) directly within the declaration itself, instead of refer-
ring to such content within some other, external file.

internal subset: The portion of the DTD that appears within the document.
Also called an internal DTD subset or internal DTD. Not all DTDs include an
internal subset; those that refer only to external DTDs may properly be said
to contain no internal subset.

intranet: A private network within a company or organization that uses the
same protocols as the Internet but that can’t be accessed by Internet users.

334 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 334

ISO (International Organization for Standardization): The most popular
computing- and communication-standards organization. It is comprised of
standards bodies — such as ANSI, IEEE, EIA/TIA, CCITT, and so forth — from
all over the world.

ISO-Latin-1: Also known as ISO 8859-1 (the numeric equivalent), ISO-Latin-1 is
the default character set for HTML and XHTML; modern XML implementa-
tions are more likely to use the ISO 10646 character set, also known as
Unicode, but can also use ISO-Latin-1 (where Web browsers may be involved,
this can help avoid potential display difficulties).

Java: An object-oriented programming language used for Web application
development. It was created by Sun Microsystems.

JavaScript: An inline scripting language often used with HTML or XHTML
(and only infrequently with XML) to add dynamic behaviors or interactive
capabilities to Web pages and related documents.

kilobyte: Equal to 1024 bytes.

linking element: An element that contains a hyperlink. In HTML, img and a
elements are examples of linking elements.

locator: Data that identifies a resource to which a link may be made using
some kind of linking elements. Such resources may include documents, spe-
cial display formats (such as Adobe’s Portable Document Format, or PDF) or
binary files (graphical images, executable files, and so forth).

macro: A text or code script that performs an action when called, usually
used to automate repetitive activities, such as combinations of keystrokes, a
series of mouse-click sequences, or both.

markup language: A language that uses tags to label, categorize, and orga-
nize information in a specific way.

MathML (Mathematical Markup Language): An XML language that provides a
way of representing mathematical and scientific content on the Web, espe-
cially where complex formulas or arcane notation are used.

metadata: Within a document, specially defined data elements that describe
the document’s structure, content, or rendering, or that use external refer-
ences to describe these features of the document. (Metadata literally means
data about data.)

metalanguage: A language used to communicate information about language
itself. Many experts consider both SGML and XML to be metalanguages
because they are used to define other markup languages, such as HTML
and XSL.

335Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 335

MIME (Multipurpose Internet Mail Extension): Extensions that allow e-mail
messages to carry multiple types of data (such as binary, audio, video, and
graphics) as attachments. MIME types are also used to identify document
types during transfers over the Internet. XML documents are text/xml or
application/xml.

mixed content: A type of content model that permits XML elements or child
elements to contain character data.

MSXML (Microsoft XML): The Microsoft Internet Explorer XML parser.

multimedia presentation: A presentation that involves two or more forms of
media (text, audio, and video, for example).

namespace: See XML namespace.

nested: Used in XML to denote something that’s contained within something
else. For example, an element may be nested within another element —
contained within the opening and closing tags of another element.

node: Used in XML to denote a piece of a document’s tree structure, as gener-
ated when the document is parsed or processed (as according to the
Document Object Model [DOM] or some other processing model).

notation declaration: Associates a notation name with information that can
help find an interpreter of information described by the notation. Thus, to
permit an external program to handle some kind of multimedia format in an
XML file, a notation could be defined to associate the file extension .mov with
some kind of multimedia player.

numeric entity: A string of numbers that represents a character. Numeric
entities are identified by an ampersand followed by a pound sign (#). For
example, < and È show a string of numbers (60 and 200) that
stand for characters (< and È). More commonly called character entities.

OASIS (Organization for the Advancement of Structured Information
Standards): A global consortium for developing e-business standards.

object: A unit of meaning or value in a programming or markup language,
where objects have names and associated values called properties or attrib-
utes. Objects are like maps or descriptions of specific sets of values, called
object instances, in that they define a name and structure for information but
don’t define specific sets of values that follow such definitions. Only object
instances contain actual values and have some correspondence to “real
data.” Objects are also associated with specific operations or transforma-
tions called methods that create, manipulate, or destroy specific object
instances.

336 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 336

object-oriented programming: A method of programming in which data is
defined in terms of objects and where objects may be acted upon by opera-
tions called methods. In contrast to other programming techniques (such as
procedural programming, where code acts directly upon data values and
variables), objects are much more self-describing in terms of their attributes
or properties and in terms of the methods that apply to them. In many ways,
XML is an object-oriented markup technology.

occurrence indicator: A symbol, such as ?, *, and +, that’s included in a DTD
element declaration to further provide structural guidance about how ele-
ments are to be applied within a document. For example, an occurrence indi-
cator may say how many times a portion of a content model may appear
within a document.

ODBC (Open Database Connectivity): A software interface for connecting to
database management systems.

OFX (Open Financial Exchange): A specification that provides a standard
way of describing financial data and transactions in a way that banks, Web
protocols, and your personal financial software can understand.

OSF (Open Software Foundation): An industry consortium for creating stan-
dards for software engineering.

operating system: The underlying program that enables computer-system
hardware to run other applications. Macintosh, Windows, UNIX, and DOS are
common operating systems.

OWL (Web Ontology Language): A W3C specification for defining the rela-
tionships among terms as well as inference rules. For example, in the case of
phone numbers, a specific value for area code infers a particular value for
city, even though that is not a direct part of the area code data. One of the
technologies for the Semantic Web.

P3P (Platform for Privacy Preferences): A W3C specification that enables
browsers to automatically understand a Web site’s privacy practices.

Packaging/Extensions layer: In Web services, a data management or han-
dling layer primarily concerned with establishing, managing, securing, and
packaging information for exchange between service consumers and produc-
ers. See Chapter 15 for more information about the Web services model.

pagination: The process of dividing a document into pages.

parameter entity: An entity created and used within a DTD, where the value
associated with that entity occurs in an external file or definition in a way
that’s easy to change. The value of this entity may then be used to alter or
guide the processing of the document, so that one value might cause the doc-
ument to be processed for print output and another value might the docu-
ment to be displayed on a screen.

337Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 337

parent: In a content model, an element that contains one or more other ele-
ments is called a parent or parent element; the contained elements are called
children or child elements.

parsed character data: Also called PCDATA, this is text that the document
processor actually looks at.

PDF (Portable Document Format): A graphics file format created by Adobe
Acrobat. To view a PDF file, you must download Adobe Acrobat Reader or
have access to another Adobe application, such as PageMaker or Photoshop.

PICS (Platform for Internet Content Selection): A W3C specification that
uses labels to categorize Internet content, P3P was originally created to help
parents control what Internet content children could access.

POST method: A means by which users return information to a Web server
using an HTML form. Posted data returns to the server as directed by a CGI
script. Often, such data is analyzed or processed in some way by an applica-
tion that then returns a new Web page, often generated on-the-fly, to the
user’s browser.

primary key: An identifier that’s used to uniquely identify a record in a
database.

processing instruction: Similar to the prolog, a special directive in an XML
document that provides a way to send instructions to computer programs or
applications, not humans.

processor (also XML processor): A special software program that knows how
to read, interpret, and internalize the structure and contents of an XML docu-
ment. Any time that a program reads and handles an XML document, an XML
processor is involved in that activity.

property: A named value associated with a data object. For XML elements,
attributes play the same role that properties play for objects.

pull technology: Technology that enables users to retrieve information from
a Web server (using a Web browser). Servers that offer news or entertain-
ment channels may be accessed by configuring Web browsers to read and
update information at regular intervals (“pulling” those updates from the
server). Client initiation of activity represents pull technology; server initia-
tion of activity is what represents push technology, as noted in the following
definition.

push technology: Technology that initiates delivery of material from a server
to a properly equipped client (Web browser). Some kinds of software update
services (such as Windows Update, as implemented in Microsoft Windows XP
Professional) automatically deliver updates to registered clients as soon as
they become available. Also called push publishing.

338 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 338

query: A request for information. In databases, queries are often formulated
using SQL (Structured Query Language).

RDF (Resource Description Framework): A W3C specification for an XML lan-
guage and metadata model used to describe resources.

regular expression: A specific pattern for a group of characters.

RELAX NG (Regular Language for XML Next Generation): A schema lan-
guage for XML that specifies a pattern for a valid document.

reserved character: In XML, characters that can’t be used in XML documents
unless they are part of a CDATA section or unless they’re escaped with a
character entity. For example, to include a <, it must be replaced by <.
Other reserved characters in XML include >, &, ‘, and “.

resource: Any resource that can be retrieved over the Internet — for exam-
ple, a document, image, sound file, or even a list generated automatically in
response to a query.

restriction constraint: In XML Schema, a limit applied to a built-in datatype
that can be narrowed as needed.

root element: A single top-level tag that contains everything in an XML docu-
ment except the XML declaration and processing instructions.

root node: In XPath, a single node that is the root of the document tree and
contains the entire document. This is not the same as a root element. The
root node contains the document element node and can also contain pro-
cessing instruction nodes and comment nodes.

RSS: An XML language used for news feeds and Web logs (blogs). RSS stands
for Rich Site Summary, RDF Site Summary, or Really Simply Syndication,
depending on which version of RSS you’re referring to.

schema: In general, a pattern that represents the data’s model and defines
the elements (or objects), their attributes, and the relationships between the
different elements. A schema can also be a language written in XML that
defines the rules for the structure and the content of an XML document.

Schematron: A schema language for XML that uses patterns and document
trees for validating XML documents.

scripting: A simple method for including programming or processing instruc-
tions within a Web page, usually to facilitate user interaction or changing dis-
plays or behavior. See JavaScript.

339Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 339

340 XML For Dummies, 4th Edition

scripting language: A specialized language used to create sequences of
simple instructions that, when inserted into a Web page, control various ele-
ments of the page, such as the user interface, styles, and HTML markup.
JavaScript and VBScript are the primary scripting languages.

selector: In CSS, the part of a style rule that identifies the element (or ele-
ments) to which that rule applies.

semantics: The science of describing what words mean; it’s the opposite of
syntax. In XML, semantics are conveyed in various ways: through element
names, content models, and through value restrictions and occurrence
indicators.

Semantic Web: A vision of Tim Berners-Lee and the W3C for automating data
and information processing on the Web by adding semantic capabilities
(meaning) using metadata (data about data).

SGML (Standard Generalized Markup Language): A metalanguage used to
construct markup languages, such as HTML and XML.

SGML declaration: A declaration that acts separately from a DTD to provide
specific instructions to an SGML parser.

SGML parser: A text-handling program that interprets SGML markup in a doc-
ument and builds a model of the document’s structure and contents.
Normally, an SGML parser then passes that model to some other program for
further action so that it may be edited, displayed, or archived.

sibling (also sibling element): Two document elements that are both child
elements of the same parent element are sibling elements to one another.
Thus, in our bookstore XML document, title and author are siblings, and
share the same parent, book.

simple type definition: In XML Schema, a definition of an element that can
contain only text; by contrast, complex type definitions can contain simple
types, fixed values, and even parameters.

SMIL (Synchronized Multimedia Integration Language): An XML language
that allows the integration of a collection of multimedia objects that follow a
schedule, which is laid out by the developer.

SOAP (Structured Object Access Protocol): An XML-based protocol for
exchanging messages.

SQL: Either of two database-management programming languages from
Sybase and Microsoft.

SQL server: A database server that uses the Structured Query Language
(SQL) to accept requests for data access.

31_588451 glossary.qxd 4/15/05 9:47 AM Page 340

standalone: In XML, a standalone document isn’t dependent on any other
document to be complete.

style: To apply formatting instructions.

style rule: A rule in an XML document that identifies a style pattern specifies
an action that must be applied when the pattern is found. Such rules can
result from the application of CSS or by the application of XSL.

stylesheet: A file that holds the layout settings for a certain category of a doc-
ument. Stylesheets, like templates, contain settings for formatting features
such as headers and footers, tabs, margins, fonts, columns, and more.

substitution group: In XML Schema, this is a technique that allows you to
define one element that may be substituted for one or more other elements
of the same type (or derived from the same type).

SVG (Scalable Vector Graphics): An XML language for describing vector
graphics.

syntax: The rules that govern the construction of intelligible markup lan-
guage documents or markup fragments, similar to the grammar rules used in
spoken languages, such as English.

tag: In markup languages, the term tag refers to the ways in which document
elements appear within documents. They generally take one or two of the
following forms: <element-name/> (a single form for empty elements) or
<element-name> and </element-name> (opening and closing forms for
elements that contain content).

taxonomy: A hierarchical classification scheme.

TCP/IP (Transmission Control Protocol/Internet Protocol): The family of
formal rules and formats for networked communications, called protocols,
used on the Internet. This family of protocols (also known as a protocol
suite) takes its name from two of its most important members: the Internet
Protocol (IP) used to carry individuals packages of data from a sender to a
receiver, and the Transmission Control Protocol (TCP) used to provide reli-
able transport of messages between a sender and a receiver.

template: The instructions in an XSLT stylesheet that control how an element
and its content should be converted. A template identifies which element in a
document should be changed and then specifies how the element should be
changed.

text intensive: Content that does not need to be in any specific format other
than text strings.

341Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 341

Transport layer: In Web services, a layer that acts like the highway that car-
ries messages from senders to receivers across the Internet. For Web ser-
vices, the most commonly used protocol to provide this capability is the
HyperText Transfer Protocol (HTTP).

traversal: The result of clicking a link. By clicking a link, a Web browser
traverses from one resource to another.

tree: A diagram of an XML document that is constructed as the document is
processed with a structure that corresponds to the order of and relationships
among the elements that the XML document contains. The general name for
such diagrams is a parse tree; for XML documents, that name may be used, or
it may also be called the document tree. This diagram may be queried, navi-
gated, or manipulated as a way of acting upon the contents and structure of
the related document to which the diagram corresponds.

UDDI (Universal Description, Discovery, and Integration): UDDI is an XML
language used as a method for finding Web services.

Unicode character set: A 16-bit character encoding scheme, defined in
ISO/IED 10646, that encompasses standard Roman and Greek alphabets, plus
mathematical symbols; special punctuation; non-Roman alphabets, including
Hebrew, Chinese, Arabic, and Hangul; and other ideographic character sets.

UNIX: One of the most powerful multiuser operating systems around,
designed by a hacker in 1969 as an interactive timesharing operating system
to play games on.

URI (Uniform Resource Identifier): A character string that identifies the type
and location of an Internet resource.

UTF (Unicode Transformation Format): A mapping method for associating a
number with a character. The two most common UTFs are UTF-8, an 8-bit
Unicode character encoding, and UTF-16, a 16-bit Unicode character encoding.

valid: When an XML document adheres to a DTD or schema.

validating parser: A software utility that compares an XML document with a
declared DTD or XML Schema; if the document includes no violations of the
rules that a document description states, that document is said to be valid.
But if errors or violations are detected, that document is said to be invalid.

vocabulary: In XML, a set of names and definitions for XML elements, attrib-
utes, and datatypes. A vocabulary is defined in an XML Schema or a DTD.

W3C (World Wide Web Consortium): An organization that develops stan-
dards for the Web (and the Internet), including markup languages, communi-
cation protocols, and XML applications too numerous to mention.

342 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 342

Web service: Remote applications that carry out specific tasks or functions.
They can be accessed through the Web rather than being run locally on a
desktop. They allow different applications from different sources to commu-
nicate with each other by using XML.

Web standards: A group of technologies for creating and interpreting Web-
based content, includes W3C specifications as well as specifications from
other standards organizations.

well-formed document: An XML document that adheres to XML’s syntax
rules.

white space: Nonprinting characters such as spaces, tabs, carriage returns,
or line feeds.

WIDL (Web Interface Definition Language): An object-oriented, SGML-based
markup language that helps designers create powerful, intuitive, Web-based
user interfaces.

WSDL (Web Services Definition Language): An XML language used to
describe what kinds of information and services a Web service provider has
to offer.

WYSIWYG (What You See Is What You Get) interface: Any interface or appli-
cation that allows users to enter and see information as it will appear in the
final document, as opposed to an interface or application that shows markup
or other content obscuring a document’s appearance.

XDR (XML-Data Reduced): A Microsoft schema language.

XForms: A W3C specification for an XML language for creating forms.

XHTML (eXtensible HyperText Markup Language): The reformulation of
HTML 4.0 as an application of XML 1.0.

XLink (XML Linking Language): An XML language that provides a simple set
of instructions to describe the links among objects.

XML (eXtensible Markup Language): A system for defining, validating, and
sharing document formats so that they are well formed.

XML declaration: The markup at the very beginning of an XML document
that specifies which version of XML the document is written in as well as
other information. (As of this writing, declarations must refer to XML 1.0
because that’s the only version available.)

343Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 343

XML Encryption: An XML language for secure exchange of encrypted data.

XML entity: A string of characters that lets a text viewer (such as a browser)
display a symbol but prevents the viewer from interpreting the symbol as
markup. An entity often enables a viewer to represent a larger range of char-
acters than might otherwise be possible, yet keep character sets small.

XML namespace: A namespace is a vocabulary, a collection of names and def-
initions of elements, attributes, and types. A namespace declaration associ-
ates a specific namespace (vocabulary) with a document. A unique identifier
(attached through a prefix) links an XML markup element to a specific DTD or
schema. For example, in XML Schema, you add the prefix xsd or xs to an
XML Schema element to indicate that it belongs to that namespace:
<xsd:element name=”books”>.

XML notation: A form of XML markup designed to accomplish some specific
objective. Examples include the mathematical and chemical notations
supported by MathML and CML (both of which are XML applications),
respectively.

XML prolog: An XML prolog is part of an XML document and may include an
XML declaration, a DOCTYPE declaration, comments, processing instruc-
tions, and white space.

XML Query (XQuery): An XML language designed to query a collection of
XML data.

XML Schema: A W3C language that defines the rules for the structure and the
content of an XML document. The resulting document specifies the overall
structure of an XML document and identifies all the components of the XML
document, as well as how they can be validly used.

XML Schema document: A document written in the XML Schema language,
according to rules defined by the World Wide Web Consortium (W3C).

XML Signature: An XML language for digital signatures.

XPath: An XML language that describes directions for how to get from one
place in an XML document to another. XPath is used by XSLT, XPointer, and
XQuery.

XPointer: An XML application that provides a method for accessing specific
locations within a document, even though you may not have edit privileges
for that document.

344 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 344

XSL (eXtensible Stylesheet Language): An XML language that defines the
specification for an XML document’s presentation and appearance.

XSL-FO (XSL Formatting Objects): Defines how XML documents should be
displayed or converted into various forms of output, such as the Adobe
Acrobat Portable Document Format (PDF).

XSLT (XSL Transformations): An XSL conversion tool that provides a set of
rules to convert documents described by one set of elements to documents
described by another set of elements.

345Glossary

31_588451 glossary.qxd 4/15/05 9:47 AM Page 345

346 XML For Dummies, 4th Edition

31_588451 glossary.qxd 4/15/05 9:47 AM Page 346

• Symbols and
Numerics •
& (ampersand), 75, 124, 126
* (asterisk), 123
: (colon), 106
, (comma), 106, 120, 123
. (dot), 230
“ (double quotation marks), 58
= (equals sign), 175
/ (forward slash), 74, 220, 223
> (greater than sign), 74, 124
- (hyphen), 117
< (less than sign), 75, 124
| (pipe bar), 120, 122–123, 125
+ (plus sign), 123
‘ (quotation marks), 58, 124
; (semicolon), 75, 106, 126
7-bit strings, character encoding, 85
8-bit strings, character encoding, 67, 85
16-bit strings, character encoding, 85

• A •
abbreviated syntax, XPath language,

228–229
absolute value function, 232
accent marks, character encoding, 85
Access 2003 All-in-One Desk Reference For

Dummies (Alan Simpson, Margaret
Levine Young and Alison Barrow), 273

Access 2003 databases, 31
Active Server Pages (ASP), 35–36
add function, 232
Ælfred parser tool, 305
aggregation functions, 231–232
aggregators, RSS and, 286
all element, 143
Amaya browser, 307

American Standard Code for Information
Interchange (ASCII), 67, 89

ampersand (&), 75, 124, 126
AmphetaDesk RSS reader, 298
annotations, 151–152
ANY element, 120–121
anyURI datatype, 139
appearance attribute, 263
appInfo element, 151–152
applications, XML, 80
Arbortext Web site, 302
architecture, Web services, 251–252
archives, databases and, 272
ASCII (American Standard Code for

Information Interchange), 67, 89
ASP (Active Server Pages), 35–36
Assign Working XML File command (File

menu), 213
associations, information analysis

source, 36
asterisk (*), 123
attribute node

DOM (Document Object Model), 239
XPath language, 218

attribute-axis abbreviations, XPath
language, 229

attributes
appearance, 263
attribute groups, 144–145
attribute-list declaration, 123–125
CDATA, 124
content markup, 72–73
declarations, 158
defined, 16, 41
with elements, when to use, 72
encoding, 67
ENTITIES, 124
ENTITY, 124
enumerated lists, 125
HTML and XML comparisons, 50

Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 347

attributes (continued)
ID, 124
IDREF, 124
localType, 190
maxOccurs, 162
method, 264–265
minOccurs, 162
mixed, 143
name, 162
NMTOKEN, 124
NOTATION, 124
public, 150
ref, 162
select, 207–208
sourceInfo, 181
standalone, 67, 115
substitutionGroup, 189
system, 150
type, 141, 162
use, 143
well formed documents, 66
xmlns, 140

audio content, Synchronized Multimedia
Integration Language, 32

aural stylesheets, 98
author element, 291
authoring tools

discussed, 301
Epic Editor, 302
list of, 302
Turbo XML v2.4.1, 303
XMetal Author 4.5, 303
XML Spy Suite, 304

automated form design, InfoPath forms,
267–269

automatic numbering, CSS2
specification, 98

avg() function, 231

• B •
background-color element, 77
Baltic languages, ISO 8559 character

sets, 90
Barrow, Alison (Access 2003 All-in-One Desk

Reference For Dummies), 273

Beginning CSS: Cascading Style Sheets for
Web Design (Richard York), 95

Beginning Web Programming with HTML,
XHTML, and CSS (Jon Duckett), 54

binary characters, 84
bindings, Web services, 254
bits, 84
BizTalk Web site, 36
block formatting objects, 200
blogs, RSS feeds, 296–297
bookmarks, 298
boolean functions, XPath language, 226
border styles, 209
BrainBench Web site, 327
Bray, Tim (Lark parser tool), 306
browsers

Amaya, 307
Firefox, 48, 308
IE (Internet Explorer), 19, 48, 307
Mozilla, 48, 308
Netscape Navigator, 19, 48
Opera, 308–309
Safari, 48

built-in datatypes, 177
business processes

business groups and organizational
data, 36

data reuse, 29–30
data-analysis features, 30
information analysis, 34

• C •
calculated values, XForm features, 263
carriage returns, white space, 117
Cascading Style Sheets (CSS). See also

stylesheets
adding to XML, 99–101
adding to XSLT, 107
benefits of, 95
declarations, combining, 103
functions of, 98–99
inheritance, 103
punctuation rules, 105–106
referencing in HTML documents, 106
referencing in XML documents, 106

348 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 348

selector specifications, 105
simple stylesheet example, 101
style rules, 102–105
Web page design with, 96–97

Cascading Style Sheets 1 (CSS1), 97–98
Cascading Style Sheets 2 (CSS2), 98
case sensitivity

HTML (Hypertext Markup Language), 57
tags, 58
XML (Extensible Markup Language), 58

categories, content markup, 69
CBT (computer-based training), 325
CDATA attribute, 124
CDF (Channel Definition Format), 312
ceiling function, 232
cells, tables, 212
Central European languages, ISO 8559

character sets, 90
certifications, 326–327
CFML (ColdFusion Markup Language), 36
CGI (Common Gateway Interface), 261
Channel Definition Format (CDF), 312
channel element, 287–288
character encoding

accent marks, 85
binary characters, 84
character entity information, 93
character sets, 87–88
discussed, 67
8-bit strings, 85
fonts, 87
glyphs, 87
IANA (Internet Assigned Numbers

Authority), 92
internal processing, 89
ISO 8859 character sets, 90
Latin-1 entity list, 93
numeric entities, 88
Roman characters, 84
scripts, 87
7-bit strings, 85
16-bit strings, 85
special characters, 93
symbols, 93
Unicode characters, 85–86, 91–92

characters, parsed character data, 121

Chemical Markup Language (CML), 36
child elements, 70, 222
child-axis abbreviations, XPath

language, 229
choice element, 143
circular entity references, 128
Clark, James (expat parser tool), 306
classified information, 14–15
Client element, 220
closing tags, 59, 66
CML (Chemical Markup Language), 36
ColdFusion Markup Language (CFML), 36
collapse value, 145
colon (:), 106
color

attributes, when to use, 72
background-color element, 77

columns, spreadsheets, 30
comma (,), 106, 120, 123
commands

Assign Working XML File (File menu), 213
Design a Form (File menu), 267
Fill Out a Form (File menu), 269
Import (Data menu), 30
New (File menu), 170
Open (File menu), 26, 279
Preview Form (File menu), 277
Refresh (Data menu), 30
Save As (File menu), 172, 268
Save Generated Files (File menu), 213
Task Pane (View menu), 26
Templates and Add-Ins (Tools menu), 27
Toolbars (View menu), 274

comma-separated values (CSV), 24
comment node, XPath language, 219
comments
comment element, 291
correct format use, 116
rules for, 117

commercial services, Web services, 256
Common Gateway Interface (CGI), 261
comparison operators, 232
complex datatypes, 149, 183–185
complex type definitions, element

declarations, 141
compliance, documents, 67

349Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 349

components, defined, 34
computer-based training (CBT), 325
concatenation function, 232
conditional expressions, 232
constraints

datatypes, 139
maxLength, 139
minLength, 139
restriction, 149
XForm features, 263

contains function, 232
content. See also content analysis

attributes, adding, 72–73
categories and subcategories, 69
content models, schemas, 158, 161–163
data-intensive, datatypes with, 177–179
data-intensive XML, 273
defined, 11
element content models, 122–123
element definition, 69
mixed, 120–122
PICS (Platform for Internet Content

Selection), 288
relationships, mapping, 70–71
root element selection, 68–69
text-intensive, 179, 272–273
text-only, 142

content analysis. See also content
book selling business example, 37–38
data requirements, 35
data-intensive content, 39
defined, 33
document-intensive, 39
expectations, 35
goals, 38
multiple source, 34–35
record structures, 39
sample data, 34–35
testing, 42–43
text-intensive, 39
unique identifiers, 39

contentType element, 72
context node, XPath language, 220
conversion tools

DTDs to schemas, 156
HTML Tidy, 311
XPS (Extensible Programming Script), 311

copyright element, 288
count() function, 226
counters, CSS2 specification, 98
Create Dynamic Table dialog box, 212
CSS (Cascading Style Sheets). See also

stylesheets
adding to XML, 99–101
adding to XSLT, 107
benefits of, 95
declarations, combining, 103
functions of, 98–99
inheritance, 103
punctuation rules, 105–106
referencing in HTML documents, 106
referencing in XML documents, 106
selector specifications, 105
simple stylesheet example, 101
style rules, 102–105
Web page design with, 96–97

.css file extension, 76
CSS1 (Cascading Style Sheets 1), 97–98
CSS2 (Cascading Style Sheets 2), 98
CSV (comma-separated values), 24
current-group() function, 232

• D •
data

adding to spreadsheets, 30
data requirements, content analysis, 35
data structure considerations,

schemas, 159
data-analysis features, spreadsheet

use, 30
format rules, 15
legacy, 23–24
moving to XML, 23–24
organizational, 36
outputting, 16–17
reuse, 29–30

Database Management System (DBMS), 20
databases

Access 2003, 31
archives, 272
data, importing in Word 2003, 274
data-intensive XML and, 273
text-intensive XML and, 272–273

350 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 350

data-intensive content, 39, 177–179, 273
datatypes
anyURI, 139
attribute-list declaration, 124
built-in, 177
complex, 149, 183–185
constraints, 139
with data-intensive content, 177–179
datatype declaration, 148–150
date, 141, 231
dateTime, 139, 141
decimal, 139, 150, 231
defined, 138
double, 231
duration, 141
float, 231
gDay, 141
gMonth, 141
gMonthDay, 141
gYear, 141
gYearMonth, 141
integer, 139, 148
simple, 148
string, 139, 142
with text-intensive content, 179
time, 141, 231
XForm features, 263

date datatype, 141, 231
dateTime datatype, 139, 141
Daypop Web site, 297
DBMS (Database Management System), 20
decimal datatype, 139, 150, 231
declarations

attribute-list, 123–125
combining, 103
datatype, 148–150
DOCTYPE, 62–63, 115
DTDs (Document Type Definition),

112–113
element type, 119–120
entity, 125–126
notation, 113
well-formed document rules, 74
XML, 67

default value, attribute-list declaration, 125
description element, 287, 290
Description layer, Web services, 251,

254–255

Design a Form command (File menu), 267
destination node, XPath language, 220–221
development, taxonomy, 39–40
dialog boxes

Create Dynamic Table, 212
Evaluate XPath, 227–228
Insert Data, 274
Open XML (Excel), 30
Schema Settings, 170

digital signatures, 253
DigitalThink Web site, 325
Discovery layer, Web services, 251,

255–256
display element, 77
displaying documents, 26
divide function, 232
.doc file extension, 170
docs element, 288
DOCTYPE declaration, 62–63, 115
document descriptions

advantages/disadvantages, 79–80
metadata, 78–79
validation, 43–44

document element node, 239
Document Object Model. See DOM
document trees, XPath language, 217–218
Document Type Definition. See DTDs
document-intensive content, 39
documents

creating, editor techniques, 21–22
display size, HTML limitations, 50
displaying, 26
format requirements, 17–18
pagination, 31
reverse direction, 225
toggling between, 26
well-formed, 66, 74–75
XML compliant, 67

DOM (Document Object Model)
attribute node, 239
discussed, 53, 233
document element node, 239
element relationships, 238–239
processors and, 237
root node, 238
text node, 239
W3C specification, 240

351Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 351

dot (.), 230
double datatype, 231
double quotation marks (“), 58
DTDs (Document Type Definition)

attribute-list declaration, 112, 123–125
calling, 131–134
combining, 134
comments, 116–117
data validation, 15
defined, 16
DOCTYPE declaration, 115
element content models, 122–123
element type declaration, 112, 119–120
empty elements, 120–121
entity declaration, 112, 125–126
external, 132–134
grammar rules, 112
internal, 131–134
mixed content, 121–122
notation declaration, 113
predefined, 35–36
processing instructions, 117
reading, 118–119
usage rules, 111
when not to use, 113–114
when to use, 80–81, 113
white space, 117–118
XML declaration, 112

Duckett, Jon (Beginning Web Programming
with HTML, XHTML, and CSS), 54

duration datatype, 141

• E •
editing schemas, 176–177
editors

document creation, 21–22
features, 21–22
Notepad, 21
StyleVision, 210–213
TopStyle Pro, 104
Turbo XML, 21, 303
XML Pro, 21
XMLSpy, 21, 175

EFT (electronic funds transfer), 256

8-bit strings, character encoding, 67, 85
element node

DOM (Document Object Model), 239
XPath language, 218

element type declarations
complex type definitions, 141
DTDs, 112, 119–120
simple type definitions, 141

elements
all, 143
ANY, 120–121
appInfo, 151–152
with attributes, when to use, 72
author, 291
background-color, 77
channel, 287–288
child, 70, 222
choice, 143
Client, 220
comment, 291
compositor, 143
contentType, 72
copyright, 288
CSS2 specification, 98
defined, 16
defining, content markup, 69
description, 287, 290
display, 77
docs, 288
element content models, 122–123
email, 184
empty, 16
expirationDate, 290
extension, 146
font-family, 77
font-size, 77
format, 72
fractionDigits, 179
fullName, 145–146
generator, 291
global, 187
guid, 291
height, 288
image, 287–288
item, 290

352 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 352

language, 287
lastBuildDate, 288
li, 210
link, 287–288
local, 187
managingEditor, 288
margin-bottom, 77
margin-left, 77
nested, 41, 59
padding, 77
paragraph, 51–52
parent, 70
PCDATA, 192
pubDate, 288, 291
rating, 288
regular, 16
repeat, 264
repeating, 209–210
restriction, 146
root, 41, 66, 68–69
selection considerations, 181–182
sequence, 143
sibling, 70
simpleType, 146
skipDays, 288
skipHours, 288
switch, 264
tags versus, 51
td, 207–208
textInput, 288
title, 287–288
totalDigits, 179
ttl, 291
ul, 210
url, 288
webMaster, 288
width, 288
xsd:import, 186
xsl:template, 206

email element, 184
e-mail interface, Web services, 248–250
empty elements

defined, 16
DTDs (Document Type Definition),

120–121
empty tags, 56–57, 66

encoding attribute, 67
encryption

information exchange, Web services, 253
XML Encryption language, 32

end tags, 56
English languages, ISO 8559 character

sets, 90
entities

circular entity references, 128
defined, 75
entity declaration, DTDs, 112, 125–126
external, 126
general, 126–128
internal, 126
numeric entities, text encoding, 88
parameter, 126, 128–129
parsed, 130
schemas, 150
unparsed, 130

ENTITIES attribute, 124
ENTITY attribute, 124
enumerated lists, 125
Epic Editor authoring tool, 302
equals sign (=), 175
Evaluate XPath dialog box, 227–228
Excel spreadsheets, 30
expat parser tool (James Clark), 306
expectations, content analysis, 35
expirationDate element, 290
exporting forms, 29
expressions

abbreviations, 229
conditional, 232
regular, 166–167, 232
XPath language, 223

extensible format, document format
requirements, 17

Extensible Hypertext Markup Language
(XHTML), 197

Extensible Markup Language (XML)
benefits of, 53–54
business desktops and, 13
case sensitivity, 58
CSS in, 106
data and context, 12–13
data format rules, 15

353Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 353

Extensible Markup Language (XML)
(continued)

declaration, 67
document format requirements, 17–18
HTML comparisons, 50–54
information classification, 14–15
Internet Explorer file example, 19
markup, 11
moving data to, 23–24
Netscape Navigator file example, 19
output, 16–17
overview, 11
portable information use, 13
post-processing, 17
uses for, 13–17
XML prolog, 67, 114–115

Extensible Programming Script (XPS), 311
Extensible Stylesheet Language

Transformation (XSLT), 25, 31, 107, 198
Extensible Stylesheet Language (XSL), 197
extension element, 146
external DTDs, 132–134
external entities, parameter entity, 128–129
external schemas, 153–154
external stylesheets, 99, 208–209

• F •
Feedreader Web site, 298
feeds, RSS, 295–297
Feedster Web site, 297
file extensions
.css, 76
.doc, 170
.xsd, 169

File menu commands
Assign Working XML File, 213
Design a Form, 267
Fill Out a Form, 269
New, 170
Open, 26, 279
Preview From, 277
Save As, 172, 268
Save Generated Files, 213

files, saving as templates, 27

Fill Out a Form command (File menu), 269
Firefox browser, 48, 308
#FIXED value, attribute-list

declaration, 125
flexibility

HTML tasks, 49
schemas, 174

float datatype, 231
floor function, 232
fonts

character encoding, 87
font-family element, 77
font-size element, 77
size considerations, stylesheets, 99

footers, tables, 212
for loops, 232
format element, 72
formats

CDF (Channel Definition Format), 312
encoding, 86
PDF (Portable Document Format),

197, 314
RTF (Rich Text Format), 314
UTF (Unicode Transformation Format),

86, 89
formatting

data format rules, 15
document format requirements, 17–18
formatting properties, tables, 213

Formatting menu (StyleVision editor), 211
forms. See also XForms application

creating, 28
exporting, 29
HTML, 260–261
InfoPath, 28–29, 267–269
publishing online, 29
publishing to folders, 269
validation code, 28

forward slash (/), 74, 220, 223
fractionDigits element, 179
frames DOCTYPE declaration, 63
fullName element, 145–146
functions
absolute value, 232
add, 232
aggregation, 231–232

354 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 354

avg(), 231
ceiling, 232
concatenation, 232
contains, 232
count(), 226
current-group, 232
divide, 232
floor, 232
lang(), 226
length, 232
lowercase, 232
min(), 231
modulus, 232
multiply, 232
numeric, 232
pattern matching, 232
position(), 225
round(), 226
starts-with(), 226
string, 232
substring, 232
subtract, 232
uppercase, 232
user-defined, 232

• G •
gDay datatype, 141
general entity, 126–128
generator element, 291
global elements, 187
Global Knowledge Web site, 324
glyphs, character encoding, 87
gMonth datatype, 141
gMonthDay datatype, 141
goals, content analysis, 38
grammar rules, DTDs, 112
Graphic User Interface (GUI), 210
graphics

entities, 75
SVG (Scalable Vector Graphics), 32, 316
vector, 32

greater than sign (>), 74, 124
GUI (Graphic User Interface), 210
guid element, 291
gYear datatype, 141
gYearMonth datatype, 141

• H •
Harold, Elliotte Rusty

XML Bible, 3rd Edition, 219
XML: Extensible Markup Language, 325
XML In a Nutshell, 3rd Edition, 326
XML: 1.1 Bible, 325

headers, tables, 212
headings, spreadsheets, 30
height

attributes, when to use, 72
height element, 288

Holzner, Steven (Inside XML), 326
HTML (Hypertext Markup Language)

advantages of, 48, 53
case sensitivity, 57
CSS in, 106
discussed, 12
forms, 260–261
limitations, 48–49
markup tags, 47
XML comparisons, 50–54

HTML Tidy open-source program (Dave
Raggett), 62, 311

HTTP (Hypertext Transport Protocol), 252
HTTPR (reliable HTTP), 252
Hypertext Markup Language. See HTML
hyphen (-), 117

• I •
IANA (Internet Assigned Numbers

Authority), 92
ID attribute, 124
IDE (Integrated Development

Environment), 303
IDREF attribute, 124
IE (Internet Explorer), 19, 48, 307
IETF (Internet Engineering Task Force), 296
images
image element, 287–288
references, external entities, 126

#IMPLIED value, attribute-list
declaration, 125

Import command (Data menu), 30
importing data, into Word 2003, 274

355Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 355

industry groups, information analysis
source, 36

InfoPath forms
automated form design, 267–269
discussed, 28–29
reasons for, 267

information analysis
business practices and partners, 34
defined, 33
industry groups and associations, 36

information classification, 14–15
information exchange, Web services,

253–254
inheritance, CSS, 103
inline formatting objects, 200
inline styles, 99
Input pane (Evaluate XPath dialog

box), 227
Insert Data dialog box, 274
Inside XML (Steven Holzner), 325
integer datatype, 139, 148
Integrated Development Environment

(IDE), 303
internal DTDs, 131, 133
internal entities

general entities, 126
parameter entity, 128–129

internal processing, character encoding, 89
International Organization for

Standardization (ISO), 88, 90
Internet Assigned Numbers Authority

(IANA), 92
Internet Engineering Task Force (IETF), 296
Internet Explorer (IE), 19, 48, 307
Internet resources (Web sites)

Arbortext, 302
BizTalk, 36
BrainBench, 327
Daypop, 297
DigitalThink, 325
Feedreader, 298
Feedster, 297
Global Knowledge, 324
Schematron, 233
SkillBuilders, 324

SmartForce, 325
SOAPMethods, 257
Syndic8, 297
Unicode, 86, 93
U2test, 327
World Internet Usage, 83
XMethods, 257
XML software, 76
Zope, 319
Zveno, 324
Zvon, 322

Internet (Web) Services
architecture, 251–252
bindings, 254
commercial services, 256
Description layer, 251, 254–255
digital signatures, 253
Discovery layer, 251, 255–256
EFT (electronic funds transfer), 256
e-mail interface, 248–250
information exchange, 253–254
messages, moving, 252–253
Packaging/Extensions layer, 251, 253–254
resources, 257
service consumers, 247
service providers, 247
SOAP (Simple Object Access Protocol),

32, 252–253
transport layer, 252–253
UDDI (Universal Description, Discovery,

and Integration), 256
Internet user statistics, 83
ISO (International Organization for

Standardization), 88, 90
item element, 290

• J •
JAXM (Java API for XML Messaging), 310
JAXP (Java API for XML processing), 310
JAXR (Java API for XML Registries), 310
JAX-RPC (Java API for XML-based Remote

Procedure Call), 310

356 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 356

• K •
keys, record structures, 39

• L •
language
lang() function, 226
language element, 287

Lark parser tool (Tim Bray), 306
lastBuildDate element, 288
Latin-1 entity list, character encoding, 93
layers, Web services

Description layer, 251, 254–255
Discovery layer, 251, 255–256
Packaging/Extensions layer, 251, 253–254
Transport layer, 252–253

layout formatting objects, 200
Learning XML, 2nd Edition (Erik T. Ray and

Christopher R. Maden), 326
legacy data, 23–24
length function, 232
less than sign (<), 75, 124
li element, 210
line feeds, white space, 117
link elements, 106, 287–288
list formatting objects, 200
local elements, 187
localType attribute, 190
location steps, XPath language, 221–222
location value, 189
lowercase
lowercase function, 232
tag sensitivity, 58

• M •
Maden, Christopher R. (Learning XML, 2nd

Edition), 326
mailing lists, Unicode characters, 87
managingEditor element, 288
MapForce software product, 304
margin-bottom element, 77
margin-left element, 77
marking up content

attributes, adding, 72–73
categories and subcategories, 69

element definition, 69
relationships, mapping, 70–71
root element selection, 68–69

markup tags, 47
match value, 205
MathML (Mathematical Markup

Language), 315
maxLength constraint, 139
maxOccurs attribute, 162
Means, W. Scott (XML In a Nutshell, 3rd

Edition), 326
messages, Web services, 252–253
meta tag, 206
metadata

document descriptions, 78–79
RSS and, 291

metalanguage, 16
method attribute, 264–265
Microsoft XML (MSXML), 240
MIME (Multipurpose Internet Mail

Exchange), 255, 296
min() function, 231
minLength constraint, 139
minOccurs attribute, 162
mixed attribute, 143
mixed content, 120–122
modulus function, 232
Mozilla browser, 48, 308
MSXML (Microsoft XML), 240
multimedia

external entities, 126
SMIL (Synchronized Multimedia

Integration Language), 32
multiple source content analysis, 34–35
multiply function, 232
Multipurpose Internet Mail Exchange

(MIME), 255, 296

• N •
names

attribute-list declaration, 124
elements, 124
name attribute, 162
named values, record structures, 39

357Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 357

namespaces
defined, 63
discussed, 185
namespace node, XPath language,

218–219
prefixes and, 140
target, 187
vocabularies and, 186
xmlns attribute, 140

nested elements, 41, 59
nested tags, 57
Netscape Navigator browser, 19, 48
New command (File menu), 170
news resources, 323–324
NMTOKEN attribute, 124
nodes, XPath language, 218–220, 226
non-ASCII character support, 75
nonprinting characters, white space, 117
nonproprietary format, document format

requirements, 17
Nordic languages, ISO 8859 character

sets, 90
notation

declaration, 113
NOTATION attribute, 124
parsed entities, 130
schemas, 150

Notepad editor, 21
null value, 225
numbers

data-intensive content, 178–179
number functions, XPath language, 226
numbering, CSS2 specification, 98
numeric functions, 232

• O •
OASIS (Organization for the Advancement of

Structured Information Standards), 36
OCDB (Open Database Connectivity), 311
OFX (Open Financial Exchange), 35–36
OMA (Open Mobile Alliance), 315
online forms, publishing, 29
Open command (File menu), 26, 279
Open Database Connectivity (OCDB), 311

Open Financial Exchange (OFX), 35–36
open format, document format

requirements, 17
Open Mobile Alliance (OMA), 315
Open Software Foundation (OSF), 291
Open System Interconnection (OSI), 252
Open XML dialog box (Excel), 30
Opera browser, 308–309
operators, 232
Organization for the Advancement of

Structured Information Standards
(OASIS), 36

organizational data, 36
organized values, record structures, 39
OSF (Open Software Foundation), 291
OSI (Open System Interconnection), 252
out-of-line formatting objects, 200
outputting data, 16–17
OWL (Web Ontology Language), 295

• P •
Packaging/Extensions layer, Web services,

251, 253–254
padding element, 77
padding style information, 209
page break support, CSS2 specification, 98
pagination, 31, 200
paragraph element, 51–52
parameter entity, 126, 128–129
parent elements, 70
parsed character data, 121
parsed entities, 130
parser tools

Ælfred, 305
discussed, 304
expat, 306
Lark, 306
Xerces, 310
XML C Library for Gnome, 309

partners, information analysis, 34
patterns

pattern matching functions, 232
transformations, 205–207

PCDATA element, 192

358 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 358

PDF (Portable Document Format), 197, 314
PICS (Platform for Internet Content

Selection), 288
pipe bar (|), 120, 122–123, 125
Platform for Privacy Preferences (P3P), 264
plus sign (+), 123
Portable Document Format (PDF), 197, 314
position() function, 225
post-processing, 17
predefined DTDs and schemas, 35–36
predicates, 221, 229
prefixes, namespaces and, 140
preserve value, 145
Preview Form command (File menu), 277
processing instructions

DTDs (Document Type Definition), 117
processing instruction node, XPath

language, 219
stylesheets, 73
XML documents, 242–243

processors, DOM and, 237
programming constructs, XPath

language, 232
properties

CSS (Cascading Style Sheets), 76–77
XForms application, 261–263

P3P (Platform for Privacy Preferences), 264
pubDate element, 288, 291
public attribute, 150
publishing forms

to folders, 269
online, 29

punctuation, CSS style rules, 105–106

• Q •
quotation marks (‘), 58, 124

• R •
Raggett, Dave (HTML Tidy open-source

program), 62, 311
rating element, 288

Ray, Erik T. (Learning XML,
2nd Edition), 326

RDF (Resource Definition Framework),
312, 316

readers, RSS, 298
reading DTDs, 118–119
read-only workbooks, Excel

spreadsheets, 30
Really Simple Syndication (RSS)

aggregators and, 286
feeds, 295–297
metadata, 291
overview, 285
readers, 298
registration, 286
RSS 0.91 version, 287–289
RSS 0.92 version, 290
RSS 0.93 version, 290
RSS 0.94 version, 290
RSS 1.0 version, 291–295
RSS 2.0 version, 290–291
RSS 2.01 version, 290–291

Real-Time Evaluate options (Evaluate
XPath dialog box), 227

record structures, content analysis, 39
ref attribute, 162
Refresh command (Data menu), 30
registration, RSS, 286
regular elements, 16
regular expressions, 166–167, 232
relationships, content markup, 70–71
RELAX NG (Regular Language for XML Next

Generation), 137
reliable HTTP (HTTPR), 252
remote procedure calls (RPCs), 253
repeat element, 264
repeating elements, 209–210
replace value, 145
repositories, schema, 36–37
#REQUIRED value, attribute-list

declaration, 125
required values, XForm features, 263
reserved characters, text node, XPath

language, 219

359Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 359

Resource Definition Framework (RDF),
312, 316

resources
news and information, 323–324
training options, 324–325
Web services, 257
XPath language, 233

restriction element, 146
Results pane (Evaluate XPath dialog

box), 227
retrieval, information classification, 15
reuse

data, 29–30
schemas, 136

reverse direction, XPath language, 225
Rich Text Format (RTF), 314
Roman characters, character encoding, 84
root elements

content markup, 68–69
discussed, 41
well formed documents, 66

root node
DOM (Document Object Model), 238
XPath language, 218–219

round() function, 226
RPCs (remote procedure calls), 253
RSS (Really Simple Syndication)

aggregators and, 286
feeds, 295–297
metadata, 291
overview, 285
readers, 298
registration, 286
RSS 0.91 version, 287–289
RSS 0.92 version, 290
RSS 0.93 version, 290
RSS 0.94 version, 290
RSS 1.0 version, 291–295
RSS 2.0 version, 290–291
RSS 2.01 version, 290–291

RTF (Rich Text Format), 314

• S •
Safari browser, 48
sample data, content analysis, 34–35

Save As command (File menu), 172, 268
Save Generated Files command (File

menu), 213
saving files as templates, 27
SAX (Simple API for XML), 309
Scalable Vector Graphics (SVG), 32, 316
Schema Settings dialog box, 170
schemas

annotations, 151–152
attribute declaration, 137, 143, 158
attribute groups, 144–145
BizTalk Web site, 36
compositor elements, 143
content models, 158, 161–163
conversion tools, 156
data structure considerations, 159
datatypes, 138–139
defined, 16, 135
document structures, 141–145
editing, 176–177
element declaration, 137, 158
entities, 150
external, 153–154
flexibility control, 174
notations, 150
predefined, 35–36
referencing in XML documents, 153
repositories, 36–37
reusing, 136
simple schema creation, 168–169
testing, 156
uses for, 138
valid documents, 135
validation, 155–156
when to use, 80–81, 152–153
white space and, 145–147
in Word 2003, 170–172
W3C recommendation, 155
XDR (XML-Data Reduced) schema

language, 137
XML prolog, 139–141
XSDs (XML Schema Definitions), 141

Schematron Web site, 233
scripts, character encoding, 87
search engines, XML benefits, 53
searches, information classification, 15

360 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 360

select attribute, 207–208
selectors, CSS statements, 102
semicolon (;), 75, 106, 126
sequence element, 143
service consumers, Web services, 247
service providers, Web services, 247
7-bit strings, character encoding, 85
SGML (Standard Generalized Markup

Language), 12, 302
sibling elements, 70
Simple API for XML (SAX), 309
simple datatypes, 148
Simple Mail Transfer Protocol (SMTP), 252
Simple Object Access Protocol (SOAP), 32,

252–253, 318
simple stylesheet example, 99–101
simple type definitions, element

declarations, 141
simpleType element, 146
Simpson, Alan (Access 2003 All-in-One Desk

Reference For Dummies), 273
sites. See Web sites
16-bit strings, character encoding, 85
size, attributes, 72
SkillBuilders Web site, 324
skipDays element, 288
skipHours element, 288
SmartForce Web site, 325
SMIL (Synchronized Multimedia Integration

Language), 32, 308, 316
SMTP (Simple Mail Transfer Protocol), 252
SOAP (Simple Object Access Protocol), 32,

252–253, 318
SOAPMethods Web site, 257
software support, Unicode characters, 91
sound clips, entities, 75
sourceInfo attribute, 181
spaces

between element names, 105
white space, 117

special characters, character encoding, 93
spreadsheets, 30
SQL (Structured Query Language), 311
standalone attribute, 67, 115
Standard Generalized Markup Language

(SGML), 12, 302

start tags, 56
starts-with() function, 226
statements, CSS style rules, 102
statistics, Internet users, 83
strict DOCTYPE declaration, 62
strings

defined, 220
string datatype, 139, 142
string functions, XPath language, 226, 232

Structured Query Language (SQL), 311
styles

defined, 12
inline, 99

stylesheets. See also CSS
attaching to XML files, 77
aural, 98
creating, 210–214
defined, 12
external, 99
font size considerations, 99
inline, 99
processing instructions, 73
types, 13
user-defined, 99
XSL (Extensible Stylesheet Language),

201–202
XSLT (Extensible Stylesheet Language

Transformation), 25, 31
StyleVision editor, 210–213
subcategories

content markup, 69
taxonomy development, 40

submission options, XForms application,
264–266

substitutionGroup attribute, 189
substring functions, 232
subtract function, 232
SVG (Scalable Vector Graphics), 32, 316
switch element, 264
symbols, character encoding, 93
Synchronized Multimedia Integration

Language (SMIL), 32, 308, 316
Syndic8 Web site, 297
syntax, defined, 16
system attribute, 150

361Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 361

• T •
tables

cells, 212
Create Dynamic Table dialog box, 212
formatting objects, 200
formatting properties, 213
headers and footers, 212
table styles, CSS2 specification, 98

tabs, white space, 117
tags

case sensitivity, 58
closing, 59, 66
defined, 16
elements versus, 51
empty, 56–57
end, 56
HTML and XML comparisons, 50
information classification, 15
markup, 47
meta, 206
nested, 57
start, 56
well-formed document rules, 75

target namespaces, 187
task panes, XML Structure, 26
taxonomy

business practices and partners, 34
content analysis, 33–35
development, 39–40
information analysis, 33–34
predefined DTDs and schemas, 35–36
subcategories, 40
testing techniques, 41–43

TCP/IP (Transmission Control
Protocol/Internet Protocol), 252

td element, 207–208
templates

creating, in Word 2003, 172
saving files as, 27
transformations, 205

Templates and Add-Ins command (Tools
menu), 27

testing
content analysis, 42–43
schema validity, 156
taxonomy, 41–43

text
conversions, to Unicode characters, 92
text-intensive content, 39, 179, 272–273
text-only content, 142

text editors, 21–22
text encoding, numeric entities, 88
text node

DOM (Document Model Object), 239
XPath language, 219

textInput element, 288
time datatype, 141, 231
title element, 287–288
Toolbars command (View menu), 274
Tools menu commands, Templates and

Add-Ins, 27
TopStyle Pro editor, 104
totalDigits element, 179
training options, resources, 324–325
transformations

patterns, 205–207
templates, 205

transitional DOCTYPE declaration, 62
Transmission Control Protocol/Internet

Protocol (TCP/IP), 252
Transport layer, Web services, 252–253
true value, 143
ttl element, 291
Turbo XML editor

discussed, 21
Turbo XML v2.5.1 authoring tool, 303

Turkish symbols, ISO 8559 character
sets, 90

type attribute, 141, 162

• U •
UCS (Universal Character Set), 86, 89
UDDI (Universal Description, Discovery,

and Integration), 256, 318
ul element, 210
Unicode characters

encoded text, 92
mailing lists, 87
maximum amounts, 86
overview, 85
software support, 91
text conversion into, 92
Unicode Web site, 86, 93

362 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 362

Unicode Consortium (The Unicode
Standard, Version 4.0), 87, 93

Unicode Transformation Format (UTF),
86, 89

Uniform Resource Identifiers (URIs), 115
Uniform Resource Locators (URLs), 292
Uniform Resource Name (URN), 292
unique identifiers, record structures, 39
Universal Character Set (UCS), 86, 89
Universal Description, Discovery, and

Integration (UDDI), 256, 318
unparsed entities, 130
updates, XML benefits, 53
uppercase function, 232
URIs (Uniform Resource Identifiers), 115
url element, 288
URLs (Uniform Resource Locators), 292
URN (Uniform Resource Name), 292
use attribute, 143
user-defined functions, 232
user-defined stylesheets, 99
UTF (Unicode Transformation Format),

86, 89
U2test Web site, 327

• V •
validation

defined, 16, 65
document descriptions, 43–44
form-validation code, 28
internal DTDs, 133
schemas, 135, 155–156

value constraints, XForm features, 263
VBScript scripting language, 233
vector graphics, 32
Veillard, Daniel (XML C Library for Gnome

parser), 309
version specification, XPath language,

215–216
vertical alignment style information, 209
video content, Synchronized Multimedia

Integration Language, 32

View menu commands
Task Pane, 26
Toolbars, 274

vocabularies, namespaces and, 186

• W •
Wagner, Richard (XSLT For Dummies), 201
WAP (Wireless Application Protocol), 315
Web Ontology Language (OWL), 295
Web page design, with CSS, 96–97
Web services

architecture, 251–252
bindings, 254
commercial services, 256
Description layer, 251, 254–255
digital signatures, 253
Discovery layer, 251, 255–256
EFT (electronic funds transfer), 256
e-mail interface, 248–250
information exchange, 253–254
messages, moving, 252–253
Packaging/Extensions layer, 251, 253–254
resources, 257
service consumers, 247
service providers, 247
SOAP (Simple Object Access Protocol),

32, 252–253
transport layer, 252–253
UDDI (Universal Description, Discovery,

and Integration), 256
Web Services Description Language

(WSDL), 254–255, 318
Web sites

Arbortext, 302
BizTalk, 36
BrainBench, 327
Daypop, 297
DigitalThink, 325
Feedreader, 298
Feedster, 297
Global Knowledge, 324
Schematron, 233
SkillBuilders, 324

363Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 363

Web sites (continued)
SmartForce, 325
SOAPMethods, 257
Syndic8, 297
Unicode, 86, 93
U2test, 327
World Internet Usage, 83
XMethods, 257
XML software, 76
Zope, 319
Zveno, 324
Zvon, 322

webMaster element, 288
well-formed documents, 66, 74–75
Western European languages, ISO 8859

character sets, 90
What You See Is What You Get (WYSIWYG),

28, 50
white space

DTDs and, 117–118
schemas and, 145–147

width element, 288
Wireless Application Protocol (WAP), 315
WML (Wireless Markup Language), 314–315
Word 2003

creating templates in, 172
database information, importing, 274
schemas in, 170–172

World Internet Usage Web site, 83
WSDL (Web Services Description

Language), 254–255, 318
W3C (Worldwide Web Consortium)

discussed, 47
DOM recommendation, 240
schema recommendation, 155

WYSIWYG (What You See Is What You Get),
28, 50

• X •
XDR (XML-Data Reduced) schema

language, 137
Xerces parsing tool, 310
XForms application. See also forms

discussed, 32
properties, 261–263

reasons for, 261
submission options, 264–266

XHTML (Extensible Hypertext Markup
Language), 197

XLink (XML Linking) specification, 31, 200
XMetal Author 4.5 authoring tool, 303
XMethods Web site, 257
XML Bible, 3rd Edition (Elliotte Rusty

Harold), 219
XML C Library for Gnome parser (Daniel

Veillard), 309
XML: Extensible Markup Language (Elliotte

Rusty Harold), 325
XML Encryption language, 32
XML (Extensible Markup Language)

benefits of, 53–54
business desktops and, 13
case sensitivity, 58
CSS in, 106
data and context, 12–13
data format rules, 15
declaration, 67
document format requirements, 17–18
HTML comparisons, 50–54
information classification, 14–15
Internet Explorer file example, 19
markup, 11
moving data to, 23–24
Netscape Navigator file example, 19
output, 16–17
overview, 11
portable information use, 13
post-processing, 17
uses for, 13–17
XML prolog, 67, 114–115

XML In a Nutshell, 3rd Edition (Elliotte
Rusty Harold and W. Scott Means), 326

XML Linking (XLink) specification, 31, 200
XML: 1.1 Bible (Elliotte Rusty Harold), 325
XML Path. See XPath language
XML Pro editor, 21
XML Query (XQuery) language, 216, 318
XML Schema Definitions (XSDs), 141
XML Signature language, 32
XML software Web site, 76
XML Spy Suite authoring tool, 304

364 XML For Dummies, 4th Edition

32_588451 bindex.qxd 4/15/05 12:08 AM Page 364

XML Structure task pane, 26
XML-Data Reduced (XDR) schema

language, 137
XML-enabled Web pages, 24
xmlns attribute, 140
XMLSpy editor, 21, 175
XPath (XML Path) language

abbreviated syntax, 228–229
aggregation functions, 231–232
attribute-axis abbreviations, 229
boolean functions, 226
child-axis abbreviations, 229
content node, 220
destination node, 220–221
discussed, 199–200
document trees, 217–218
Evaluate XPath dialog box, 227–228
expression abbreviations, 229
expression examples, 223
location steps, 221–222
new features, 231–233
node set functions, 226
null value, 225
number functions, 226
predicate abbreviations, 229
programming constructs, 232
resources, 233
reverse direction, 225
string functions, 226
user-defined functions, 232
version specification, 215–216

XPointer language, 31
XPS (Extensible Programming Script), 311
XQuery (XML Query) language, 216, 318
.xsd file extension, 169
xsd:import element, 186
XSDs (XML Schema Definitions), 141
XSL (Extensible Stylesheet Language), 197
XSL-FO (XSL-Formatting Objects), 31,

200–201
XSLT (Extensible Stylesheet Language

Transformation), 25, 31, 107, 198
XSLT For Dummies (Richard Wagner), 201
xsl:template element, 206

• Y •
yes value, 67, 115
York, Richard (Beginning CSS: Cascading

Style Sheets for Web Design), 95
Young, Margaret Levine (Access 2003 All-in-

One Desk Reference For Dummies), 273

• Z •
Zope Web site, 319
Zveno Web site, 324
Zvon Web site, 322

365Index

32_588451 bindex.qxd 4/15/05 12:08 AM Page 365

