
UML V1.3 alpha R5 March 1999 6-1

Object Constraint Language 6

This chapter introduces and defines the Object Constraint Language (OCL), a formal
language to express side-effect-free constraints. Users of the Unified Modeling
Language and other languages can use OCL to specify constraints and other
expressions attached to their models.

Contents

6.1 Overview 6-3
6.2 Introduction 6-4
6.3 Connection with the UML Metamodel 6-5
6.4 Basic Values and Types 6-7
6.5 Objects and Properties 6-10
6.6 Collection Operations 6-19
6.7 The Standard OCL Package 6-24
6.8 Predefined OCL Types 6-25
6.9 Grammar for OCL 6-45

6-2 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

UML V1.3 alpha R5 March 1999 6-3

6.1 Overview

6Object Constraint Language

6.1 Overview

This chapter introduces and defines the Object Constraint Language (OCL), a formal language
to express side-effect-free constraints. Users of the Unified Modeling Language and other
languages can use OCL to specify constraints and other expressions attached to their models.

OCL is used in the UML Semantics chapter to specify the well-formedness rules of the UML
metamodel. Each well-formedness rule in the static semantics chapters in the UML Semantics
section contains an OCL expression, which is an invariant for the involved class. The grammar
for OCL is specified at the end of this chapter. A parser generated from this grammar has
correctly parsed all the constraints in the UML Semantics section, a process which improved
the correctness of the specifications for OCL and UML.

6.1.1 Why OCL?

In object-oriented modeling a graphical model, like a class model, is not enough for a precise
and unambiguous specification. There is a need to describe additional constraints about the
objects in the model. Such constraints are often described in natural language. Practice has
shown that this will always result in ambiguities. In order to write unambiguous constraints, so-
called formal languages have been developed. The disadvantage of traditional formal languages
is that they are usable to persons with a string mathematical background, but difficult for the
average business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to read and
write. It has been developed as a business modeling language within the IBM Insurance
division, and has its roots in the Syntropy method.

OCL is a pure expression language; therefore, an OCL expression is guaranteed to be without
side effect. It cannot change anything in the model. This means that the state of the system will
never change because of an OCL expression, even though an OCL expression can be used to
specify a state change (e.g., in a post-condition). All values for all objects, including all links,
will not change. Whenever an OCL expression is evaluated, it simply delivers a value.

OCL is not a programming language; therefore, it is not possible to write program logic or flow
control in OCL. You cannot invoke processes or activate non-query operations within OCL.
Because OCL is a modeling language in the first place, not everything in it is promised to be
directly executable.

OCL is a typed language, so each OCL expression has a type. In a correct OCL expression, all
types used must be type conformant. For example, you cannot compare an Integer with a String.
Types within OCL can be any kind of Classifier within UML.

As a modeling language, all implementation issues are out of scope and cannot be expressed in
OCL. Each OCL expression is conceptually atomic. The state of the objects in the system
cannot change during evaluation.

6-4 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

6.1.2 Where to Use OCL

OCL can be used for a number of different purposes:

• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes

• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• As a navigation language

• To specify constraints on operations

Within the UML Semantics chapter, OCL is used in the well-formedness rules as invariants on
the meta-classes in the abstract syntax. In several places, it is also used to define ‘additional’
operations which are used in the well-formedness rules.

6.2 Introduction

6.2.1 Legend

Text written in the courier typeface as shown below is an OCL expression.

'This is an OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre and post
denote the stereotypes, respectively «invariant», «precondition», and «postcondition», of the
constraint. The actual OCL expression comes after the colon.

context TypeName inv :

'this is an OCL expression with stereotype <<invariant>> in the

context of TypeName' = 'another string'

In the examples. the keywords of OCL are written in boldface in this document. The boldface
has no formal meaning, but is used to make the expressions more readable in this document.
OCL expressions are written using ASCII characters only.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

6.2.2 Example Class Diagram

The diagram below is used in the examples in this document.

UML V1.3 alpha R5 March 1999 6-5

6.3 Connection with the UML Metamodel

Figure 6-1 Class Diagram Example

6.3 Connection with the UML Metamodel

6.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OCL
expression, the reserved word self is used to refer to the contextual instance. For instance, if the
context is Company, then self refers to an instance of Company.

6.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specified through a so-called
context declaration at the beginning of an OCL expression. The context declaration of the
constraints in the following sections is shown.

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : enum{ male, female}

income (Date) : Integer

Job

title : String
startDate : Date
salary : Integer

Marriage

place : STring
date : Date

managedCompanies

0..*manager

employer

0..*

Company

name : String
numberOfEmployees : Integer

stockPrice()
employee

0..*

wife

0..1

husband 0..1

Bank

0..*

0..*0..*

0..1

0..1

accountNumber : Integer

0..1

accountNumber : Integer

0..1

customer

6-6 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to
connect it to its contextual element, there is no need for an explicit context declaration in the
test of the constraint. The context declaration is optional.

6.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped with
«invariant». When the Invariant is associated with a Classifier, the latter is called a type in this
document. The expression then is an invariant of the type and must be true for all instances of
that type at any time.

If the context is Company, then in the expression:

self.numberOfEmployees > 50

self is an instance of type Company. We can see self as the object from where we start the
expression.

The type of the contextual instance of an OCL expression, which is part of an Invariant, is
written with the context keyword, followed by the name of the type as follows. The label inv:
declares the constraint to be an «invariant» constraint.

context Company inv :

self.numberOfEmployees > 50

In most cases, self can be left out because the context is clear, as in the above examples.

As an alternative for self, a different name can be defined playing the part of self:

context c : Company inv :

c.numberOfEmployees > 50

This is identical to the previous example using self.

Optionally, the name of the constraint may be written after the inv keyword. In the following
example the name of the constraint is enoughEmployees. In the UML metamodel name is an
attribute of the metaclass Constraint, inherited from ModelElement.

context c : Company inv enoughEmployees:

c.numberOfEmployees > 50

6.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to
«precondition» and «postcondition» stereotypes of Constraint associated with an Operation or
Method. The contextual instance self then is an instance of the type which owns the operation
or method as a feature. The context declaration in OCL uses the context keyword, followed by
the type and operation declaration. The stereotype of constraint is shown by putting the labels
‘pre:’ and ‘post:’ before the actual Preconditions and Postconditions

context Typename::operationName(param1 : Type1, ...): ReturnType

pre : parameter1 > ...

UML V1.3 alpha R5 March 1999 6-7

6.4 Basic Values and Types

post : result = ...

The name self can be used in the expression referring to the object on which the operation was
called. The reserved word result denotes the result of the operation, if there is one. The names
of the parameters (param1) can also be used in the OCL expression. In the example diagram,
we can write:

context Person::income(d : Date) : Integer

post : result = 5000

6.3.5 General Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass Expression
or one of its subtypes. In that case, the semantics section describes the meaning of the
expression.

6.4 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all time. These
predefined value types are independent of any object model and part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. Some basic types used in the
examples in this document, with corresponding examples of their values, are shown in
Table 6-1.

Table 6-1 Basic types

OCL defines a number of operations on the predefined types. Table 6-2 gives some examples of
the operations on the predefined types. See “Predefined OCL Types” on page 6-25 for a
complete list of all operations.

type values

Boolean true, false

Integer 1, -5, 2, 34, 26524, ...

Real 1.5, 3.14, ...

String 'To be or not to be...'

type operations

Integer *, +, -, /, abs

Real *, +, -, /, floor

Boolean and, or, xor, not, implies, if-
then-else

String toUpper, concat

6-8 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

Table 6-2 Operations on predefined types

The complete list of operations provided for each type is described at the end of this chapter.
Collection, Set, Bag and Sequence are basic types as well. Their specifics will be described in
the upcoming sections.

6.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of classifiers
(types/classes, ...), their features and associations, and their generalizations. All classifiers from
the UML model are types in the OCL expressions that are attached to the model.

6.4.2 Enumeration Types

As shown in the example diagram, new enumeration types can be defined in a model by using:

enum{ value1, value2, value3 }

The values of the enumeration (value1, ...) can be used within expressions.

As there might be a name conflict with attribute names being equal to enumeration values, the
usage of an enumeration value is expressed syntactically with an additional # symbol in front of
the value:

#value1

The type of an enumeration attribute is Enumeration, with restrictions on the values for the
attribute.

6.4.3 Let statement

Sometimes a sub-expression is used more than once in a constraint. The let statement allows
one to define a variable which can be used in the constraint.

context Person inv :

let income : Integer = self.job.salary.sum in

if isUnemployed then

income < 100

else

income >= 100

endif

6.4.4 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy. This
hierarchy determines conformance of the different types to each other. You cannot, for example,
compare an Integer with a Boolean or a String.

UML V1.3 alpha R5 March 1999 6-9

6.4 Basic Values and Types

An OCL expression in which all the types conform is a valid expression. An OCL expression in
which the types don’t conform is an invalid expression. It contains a type conformance error. A
type type1 conforms to a type type2 when an instance of type1 can be substituted at each place
where an instance of type2 is expected. The type conformance rules for types in the class
diagrams are simple.

• Each type conforms to each of its supertypes.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3,
then type1 conforms to type3.

The effect of this is that a type conforms to its supertype, and all the supertypes above. The type
conformance rules for the value types are listed in Table 6-3.

Table 6-3 Type conformance rules

The conformance relation between the collection types only holds if they are collections of
element types that conform to each other. See “Collection Type Hierarchy and Type
Conformance Rules” on page 6-18 for the complete conformance rules for collections.

Table 6-4 provides examples of valid and invalid expressions.

Table 6-4 Valid expressions

6.4.5 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on a subtype
of the current known type of the object. Because the property is not defined on the current
known type, this results in a type conformance error.

Type
Conforms to/Is
subtype of

Set Collection

Sequence Collection

Bag Collection

Integer Real

OCL expression valid? error

1 + 2 * 34 yes

1 + 'motorcycle' no type Integer does not conform to type
String

23 * false no type Integer does not conform to Boolean

12 + 13.5 yes

6-10 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

When it is certain that the actual type of the object is the subtype, the object can be re-typed
using the operation oclAsType(OclType). This operation results in the same object, but the
known type is the argument OclType. When there is an object object of type Type1 and Type2 is
another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtype; therefore, in the example, Type2 must be
a subtype of Type1.

If the actual type of the object is not a subtype of the type to which it is re-typed, the expression
is undefined (see “Undefined Values” on page 6-10).

6.4.6 Precedence Rules

The precedence order for the operations in OCL is:

• dot and arrow operations have highest precedence

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’ and ‘=’

Parenthesis ‘(’ and ‘)’ can be used to change precedence.

6.4.7 Comment

Comments in OCL are written following two succesive dashes (minus signs). Everything
immediately following the two dashes up to and including the end of line is part of the
comment. For example:

-- this is a comment

6.4.8 Undefined Values

Whenever an OCL expression is being evaluated, there is a possibility that one or more of the
queries in the expression are undefined. If this is the case, then the complete expression will be
undefined.

There are two exceptions to this for the boolean operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

UML V1.3 alpha R5 March 1999 6-11

6.5 Objects and Properties

The above two rules are valid irrespective of the order of the arguments and the above rules are
valid whether or not the value of the other sub-expression is known.

6.5 Objects and Properties

OCL expressions can refer to types, classes, interfaces, associations (acting as types) and
datatypes. Also all attributes, association-ends, methods, and operations without side-effects
that are defined on these types, etc. can be used. In a class model, an operation or method is
defined to be side-effect-free if the isQuery attribute of the operations is true. For the purpose
of this document, we will refer to attributes, association-ends, and side-effect-free methods and
operations as being properties. A property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

6.5.1 Properties

The value of a property on an object that is defined in a class diagram is specified by a dot
followed by the name of the property.

context AType inv :

self.property

If self is a reference to an object, then self.property is the value of the property property on self.

6.5.2 Properties: Attributes

For example, the age of a Person is written as self.age:

context Person inv :

self.age > 0

The value of the subexpression self.age is the value of the age attribute on the particular
instance of Person identified by self. The type of this subexpression is the type of the attribute
age, which is the basic type Integer.

Using attributes, and operations defined on the basic value types, we can express calculations
etc. over the class model. For example, a business rule might be “the age of a Person is always
greater than zero.” This can be stated as shown in the invariant above.

6.5.3 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an income
expressed as a function of the date. This operation would be accessed as follows, for a Person
aPerson and a date aDate:

aPerson.income(aDate)

6-12 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

The operation itself could be defined by a postcondition constraint. This is a constraint that is
stereotyped as «postcondition». The object that is returned by the operation can be referred to
by result. It takes the following form:

context Person::income (d: Date) : Integer

post : result = age * 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the
definition may be recursive) as long as the recursion is not infinite. The type of result is the
return type of the operation, which is Integer in the above example.

To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty
argument list are mandatory:

context Company inv :

self.stockPrice() > 0

6.5.4 Properties: Association Ends and Navigation

Starting from a specific object, we can navigate an association on the class diagram to refer to
other objects and their properties. To do so, we navigate the association by using the opposite
association-end:

object.rolename

The value of this expression is the set of objects on the other side of the rolename association.
If the multiplicity of the association-end has a maximum of one (“0..1” or “1”), then the value
of this expression is an object. In the example class diagram, when we start in the context of a
Company (i.e., self is an instance of Company), we can write:

context Company

inv : self.manager.isUnemployed = false

inv : self.employee->notEmpty

In the first invariant self.manager is a Person, because the multiplicity of the association is one.
In the second invariant self.employee will evaluate in a Set of Persons. By default, navigation
will result in a Set. When the association on the Class Diagram is adorned with {ordered}, the
navigation results in a Sequence.

Collections, like Sets, Bags, and Sequences are predefined types in OCL. They have a large
number of predefined operations on them. A property of the collection itself is accessed by
using an arrow ‘->’ followed by the name of the property. The following example is in the
context of a person:

context Person inv :

self.employer->size < 3

This applies the size property on the Set self.employer, which results in the number of
employers of the Person self.

context Person inv :

self.employer->isEmpty

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of
employers is empty and false otherwise.

UML V1.3 alpha R5 March 1999 6-13

6.5 Objects and Properties

Missing Rolenames

Whenever a rolename is missing at one of the ends of an association, the name of the type at the
association end, starting with a lowercase character, is used as the rolename. If this results in an
ambiguity, the rolename is mandatory. This is the case with unnamed rolenames in reflexive
associations. If the rolename is ambiguous, then it cannot be used in OCL.

Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the role manager is one, self.manager is an object of type Person.
Such a single object can be used as a Set as well. It then behaves as if it is a Set containing the
single object. The usage as a set is done through the arrow followed by a property of Set. This
is shown in the following example:

context Company inv :

self.manager->size = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access the size
property on Set. This expression evaluates to true

context Company inv :

self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the foo
property on the Set. This expression is incorrect, because foo is not a defined property of Set.

context Company inv :

self.manager.age> 40

The sub-expression self.manager is used as a Person, because the dot is used to access the age
property of Person.

In the case of an optional (0..1 multiplicity) association, this is especially useful to check
whether there is an object or not when navigating the association. In the example we can write:

context Person inv :

self.wife->notEmpty implies self.wife.sex = #female

Combining Properties

Properties can be combined to make more complicated expressions. An important rule is that an
OCL expression always evaluates to a specific object of a specific type. After obtaining a result,
one can always apply another property to the result to get a new result value. Therefore, each
OCL expression can be read and evaluated left-to-right.

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18

context Person inv :

self.wife->notEmpty implies self.wife.age >= 18 and

self.husband->notEmpty implies self.husband.age >= 18

[2] a company has at most 50 employees

6-14 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

context Company inv :

self.employee->size <= 50

6.5.5 Navigation to Association Types

To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot
and the name of the association class starting with a lowercase character:

context Person inv :

self.job.salary->sum > 12000

The sub-expression self.job evaluates to a Set of all the jobs a person has with the companies
that are his/her employer. In the case of an association class, there is no explicit rolename in the
class diagram. The name job used in this navigation is the name of the association class starting
with a lowercase character, similar to the way described in the section “Missing Rolenames”
above. The expression self.job.salary is a bag of integers, containing all salaries for all jobs.

6.5.6 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the
association. This is done using the dot-notation and the role-names at the association-ends.

context Job

inv :

self.employer.numberOfEmployees >= 1

inv :

self.employee.age > 21

Navigation from an association class to one of the objects on the association will always deliver
exactly one object. This is a result of the definition of AssociationClass. Therefore, the result of
this navigation is exactly one object, although it can be used as a Set using the arrow (->).

6.5.7 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the other end
of the association. To navigate them, we can add the values for the qualifiers to the navigation.
This is done using square brackets, following the role-name. It is permissible to leave out the
qualifier values, in which case the result will be all objects at the other end of the association.

context Bank inv :

self.customer

This results in a Set(Person) containing all customers of the Bank.

context Bank inv :

self.customer[8764423]

This results in one Person, having accountnumber 8764423.

UML V1.3 alpha R5 March 1999 6-15

6.5 Objects and Properties

If there is more than one qualifier attribute, the values are separated by commas, in the order
which is specified in the UML class model. It is not permissible to partially specify the qualifier
attribute values.

6.5.8 Using Pathnames for Packages

Within UML, different types are organized in packages. OCL provides a way of explicitly
referring to types in other packages by using a package-pathname prefix. The syntax is a
package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within packages:

Packagename1::Packagename2::Typename

6.5.9 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed
using the oclAsType() operation. Whenever we have a class B as a subtype of class A, and a
property p1 of both A and B, we can write:

context B inv :

self.oclAsType(A).p1 -- accesses the p1 property defined in A

self.B::p1 -- accesses the p1 property defined in B

Figure 6-2 shows an example where such a construct is needed.

Figure 6-2 Accessing Overridden Properties Example

In this model fragment there is an ambiguity with the OCL expression on Dependency:

context Dependency inv :

self.source <> self

....

Dep en de n cy

ta rg et

s our c e
*

*

M od elE lem en t

N ote
v alu e: U n in t erp re te d

6-16 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

This can either mean normal association navigation, which is inherited from ModelElement, or
it might also mean navigation through the dotted line as an association class. Both possible
navigations use the same role-name, so this is always ambiguous. Using oclAsType() we can
distinguish between them with:

context Dependency inv :

self.Dependency::source

inv :

self.oclAsType(ModelElement).source

6.5.10 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These are:

oclType : OclType

oclIsTypeOf(t : OclType) : Boolean

oclIsKindOf(t : OclType) : Boolean

oclIsInState(s : Enumeration) : Boolean

oclIsNew : Boolean

oclAsType(t : OclType) : instance of OclType

The property oclType results in the type of an object. For example, the expression

context Person inv :

self.oclType = Person

results in true, because self.oclType results in Person. The type of this is OclType, a predefined
type within the OCL language.

The operation isTypeOf results in true if the type of self and t are the same. For example:

context Person

inv : self.oclIsTypeOf(Person) -- is true

inv : self.oclIsTypeOf(Company) -- is false

The above property deals with the direct type of an object. The oclIsKindOf property
determines whether t is either the direct type or one of the supertypes of an object.

The operation oclInState results in true if the object is in the state s.

The operation oclIsNew evaluates to true if, used in a postcondition, the object is created during
performing the operation. I.e. it didn’t exist at precondition time.

6.5.11 Features on Types Themselves

All properties discussed until now in OCL are properties on instances of classes. The types are
either predefined in OCL or defined in the class model. In OCL, it is also possible to use
features defined on the types/classes themselves. These are, for example, the class-scoped
features defined in the class model. Furthermore, several features are predefined on each type.

UML V1.3 alpha R5 March 1999 6-17

6.5 Objects and Properties

A predefined feature on each type is allInstances, which results in the Set of all instances in
existence at the specific time of the type. If we want to make sure that all instances of Person
have unique names, we can write:

context Person inv :

Person.allInstances->forAll(p1, p2 |

 p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances is the set of all persons and is of type Set(Person).

NB: The use of allInstances is considered dangerous (String.allInstances....) an its use is
discouraged. For specific uses of allInstances special operations are available.

6.5.12 Collections

Single navigation results in a Set, combined navigations in a Bag, and navigation over
associations adorned with {ordered} results in a Sequence. Therefore, the collection types play
an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of
predefined operations to enable the OCL expression author (the modeler) to manipulate
collections. Consistent with the definition of OCL as an expression language, collection
operations never change collections; isQuery is always true. They may result in a collection, but
rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL
distinguishes three different collection types: Set, Sequence, and Bag. A Set is the mathematical
set. It does not contain duplicate elements. A Bag is like a set, which may contain duplicates
(i.e., the same element may be in a bag twice or more). A Sequence is like a Bag in which the
elements are ordered. Both Bags and Sets have no order defined on them. Sets, Sequences, and
Bags can be specified by a literal in OCL. Curly brackets surround the elements of the
collection, elements in the collection are written within, separated by commas. The type of the
collection is written before the curly brackets:

Set { 1 , 2 , 5 , 88 }

Set { 'apple' , 'orange', 'strawberry' }

A Sequence:

Sequence { 1, 3, 45, 2, 3 }

Sequence { 'ape', 'nut' }

A bag:

Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to
create them. The elements inside the curly brackets can be replaced by an interval specification,
which consists of two expressions of type Integer, Int-expr1 and Int-expr2, separated by ‘..’.
This denotes all the Integers between the values of Int-expr1 and Int-expr2, including the values
of Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

6-18 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

-- are both identical to

Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described at the end of this chapter.

Collections can be specified by a literal, as described above. The only other way to get a
collection is by navigation. To be more precise, the only way to get a Set, Sequence, or Bag is:

1. a literal, this will result in a Set, Sequence, or Bag:

 Set {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Bag {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

 Company

 self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)

6.5.13 Collections of Collections

Within OCL, all Collections of Collections are flattened automatically; therefore, the following
two expressions have the same value:

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }

Set{ 1, 2, 3, 4, 5, 6 }

6.5.14 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in “Let statement” on page 6-8, the following rules
hold for all types, including the collection types:

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

 Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2.

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3,
then Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle) conforms to Set(Transport)

Set(Bicycle) conforms to Collection(Bicycle)

Set(Bicycle) conforms to Collection(Transport)

UML V1.3 alpha R5 March 1999 6-19

6.5 Objects and Properties

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are
both subtypes of Collection(Bicycle) at the same level in the hierarchy.

6.5.15 Previous Values in Postconditions

As stated in “Pre- and Postconditions” on page 6-6, OCL can be used to specify pre- and post-
conditions on Operations and Methods in UML. In a postcondition, the expression can refer to
two sets of values for each property of an object:

• the value of a property at the start of the operation or method

• the value of a property upon completion of the operation or method

The value of a property in a postcondition is the value upon completion of the operation. To
refer to the value of a property at the start of the operation, one has to postfix the property name
with thesymbol ‘@’ followed by the keyword ‘pre’:

context Person::birthdayHappens()

post : age = age@pre + 1

The property age refers to the property of the instance of Person on which executes the
operation. The property age@pre refers to the value of the property age of the Person that
executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the
parameters.

context Company::hireEmployee(p : Person)

post : employees = employees@pre->including(p) and

 stockprice() = stockprice@pre() + 10

The above operation can also be specified by a post and pre condition together:

context Company::hireEmployee(p : Person)

pre : not employee->includes(p)

post : employees->includes(p) and

 stockprice() = stockprice@pre() + 10

When the pre-value of a property evaluates to an object, all further properties that are accessed
of this object are the new values (upon completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x

 -- and then the new value of c of x.

a.b@pre.c@pre -- takes the old value of property b of a, say x

 -- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition. Asking
for a current property of an object that has been destroyed during execution of the operation
results in Undefined. Also, referring to the previous value of an object that has been created
during execution of the operation results in Undefined.

6-20 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

6.6 Collection Operations

OCL defines many operations on the collection types. These operations are specifically meant
to enable a flexible and powerful way of projecting new collections from existing ones. The
different constructs are described in the following sections.

6.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations delivers a collection, while we are
interested only in a special subset of the collection. OCL has special constructs to specify a
selection from a specific collection. These are the select and reject operations. The select
specifies a subset of a collection. A select is an operation on a collection and is specified using
the arrow-syntax:

collection->select(...)

The parameter of select has a special syntax that enables one to specify which elements of the
collection we want to select. There are three different forms, of which the simplest one is:

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection for which the boolean-
expression evaluates to true. To find the result of this expression, for each element in collection
the expression boolean-expression is evaluated. If this evaluates to true, the element is included
in the result collection, otherwise not. As an example, the following OCL expression specifies
that the collection of all the employees older than 50 years is not empty:

context Company inv :

self.employee->select(age > 50)->notEmpty

The self.employee is of type Set(Person). The select takes each person from self.employee and
evaluates age > 50 for this person. If this results in true, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument is the
element of the collection on which the select is invoked. Thus the age property is taken in the
context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you can
only refer to properties of them. To enable to refer to the persons themselves, there is a more
general syntax for the select expression:

collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates over the collection
and the boolean-expression-with-v is evaluated for each v. The v is a reference to the object
from the collection and can be used to refer to the objects themselves from the collection. The
two examples below are identical:

context Company inv :

self.employee->select(age > 50)->notEmpty

context Company inv :

self.employee->select(p | p.age > 50)->notEmpty

UML V1.3 alpha R5 March 1999 6-21

6.6 Collection Operations

The result of the complete select is the collection of persons p for which the p.age > 50
evaluates to True. This amounts to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be given. The
select now is written as:

collection->select(v : Type | boolean-expression-with-v)

The meaning of this is that the objects in collection must be of type Type. The next example is
identical to the previous examples:

context Company inv :

self.employee.select(p : Person | p.age > 50)->notEmpty

The compete select syntax now looks like one of:

collection->select(v : Type | boolean-expression-with-v)

collection->select(v | boolean-expression-with-v)

collection->select(boolean-expression)

The reject operation is identical to the select operation, but with reject we get the subset of all
the elements of the collection for which the expression evaluates to False. The reject syntax is
identical to the select syntax:

collection->reject(v : Type | boolean-expression-with-v)

collection->reject(v | boolean-expression-with-v)

collection->reject(boolean-expression)

As an example, specify that the collection of all the employees who are not married is empty:

context Company inv :

self.employee->reject(isMarried)->isEmpty

The reject operation is available in OCL for convenience, because each reject can be restated as
a select with the negated expression. Therefore, the following two expressions are identical:

Collection->reject(v : Type | boolean-expression-with-v)

collection->select(v : Type | not (boolean-expression-with-v))

6.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a sub-
collection of the original collection. When we want to specify a collection which is derived
from some other collection, but which contains different objects from the original collection
(i.e., it is not a sub-collection), we can use a collect operation. The collect operation uses the
same syntax as the select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)

collection->collect(v | expression-with-v)

collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.

6-22 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

An example: specify the collection of birthDates for all employees in the context of a company.
This can be written in the context of a Company object as one of:

self.employee->collect(birthDate)

self.employee->collect(person | person.birthDate)

self.employee->collect(person : Person | person.birthDate)

An important issue here is that the resulting collection is not a Set, but a Bag. When more than
one employee has the same value for birthDate, this value will be an element of the resulting
Bag more than once. The Bag resulting from the collect operation always has the same size as
the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following
expression results in the Set of different birthDates from all employees of a Company:

self.employee->collect(birthDate)->asSet

Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand notation for the
collect that makes the OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will automatically be
interpreted as a collect over the members of the collection with the specified property.

For any propertyname that is defined as a property on the objects in a collection, the following
two expressions are identical:

collection.propertyname

collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname(par1, par2, ...)

collection->collect(propertyname(par1, par2, ...)

6.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation in OCL
allows specifying a Boolean expression, which must hold for all objects in a collection:

collection->forAll(v : Type | boolean-expression-with-v)

collection->forAll(v | boolean-expression-with-v)

collection->forAll(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v
is true for all elements of collection. If the boolean-expression-with-v is false for one or more v
in collection, then the complete expression evaluates to false. For example, in the context of a
company:

UML V1.3 alpha R5 March 1999 6-23

6.6 Collection Operations

context Company inv :

self.employee->forAll(forename = 'Jack')

inv :

self.employee->forAll(p | p.forename = 'Jack')

inv :

self.employee->forAll(p : Person | p.forename = 'Jack')

These invariants evaluate to true if the forename feature of each employee is equal to ‘Jack.’

The forAll operation has an extended variant in which more then one iterator is used. Both
iterators will iterate over the complete collection. Effectively this is a forAll on the Cartesian
product of the collection with itself.

context Company inv :

self.employee->forAll(e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

context Company inv :

self.employee->forAll(Person e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is
semantically equivalent to:

context Company inv :

self.employee->forAll(e1 | self.employee->forAll (e2 |

 e1 <> e2 implies e1.forename <> e2.forename)))

6.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for which a
constraint holds. The exists operation in OCL allows you to specify a boolean expression which
must hold for at least one object in a collection:

collection->exists(v : Type | boolean-expression-with-v)

collection->exists(v | boolean-expression-with-v)

collection->exists(boolean-expression)

This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is
true for at least one element of collection. If the boolean-expression-with-v is false for all v in
collection, then the complete expression evaluates to false. For example, in the context of a
company:

context Company inv :

self.employee->exists(forename = 'Jack')

context Company inv :

self.employee->exists(p | p.forename = 'Jack')

context Company inv :

self.employee->exists(p : Person | p.forename = 'Jack')

6-24 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

These expressions evaluate to true if the forename feature of at least one employee is equal to
‘Jack.’

6.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject,
select, forAll, exists, collect, elect can all be described in terms of iterate.

An accumulation builds one value by iterating over a collection.

collection->iterate(elem : Type; acc : Type = <expression> |

expression-with-elem-and-acc)

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the
accumulator. The accumulator gets an initial value <expression>.

When the iterate is evaluated, elem iterates over the collection and the expression-with-elem-
and-acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its
value is assigned to acc. In this way, the value of acc is built up during the iteration of the
collection. The collect operation described in terms of iterate will look like:

collection->collect(x : T | x.property)

-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)

{

 acc = value;

 for(Enumeration e = collection.elements() ; e.hasMoreElements();
){

 elem = e.nextElement();

 acc = <expression-with-elem-and-acc>

 }

}

Althoug the Java pseudo code uses a ‘next element’, the iterate operation is defined for each
colection type and the order of the iteration through the elements in the collection is not
defined.

6.7 The Standard OCL Package

Each UML model that uses OCL constraints contains a predefined standard package called
“UML_OCL”. This package is used by default in all other packages in the model to evaluate
OCL expressions.

To extend the predefined OCL types, a modeler should define a separate package. The standard
OCL package can be imported, and each OCL type can be extended with new features.

UML V1.3 alpha R5 March 1999 6-25

6.8 Predefined OCL Types

To specify that a package used the predefined OCL types from a user dfined package instead of
the standard package, the using package must define a Dependency with stereotype <<OCL
Types>> to the package which defines the extended OCL types.

A constraint on the user defined OCL package is that as a minimum all predefined OCL types
with all of their features must be defined. The user defined package must be a proper extension
to the standard OCL package.

6.8 Predefined OCL Types

This section contains all standard types defined within OCL, including all the properties defined
on those types. Its signature and a description of its semantics define each property. Within the
description, the reserved word ‘result’ is used to refer to the value that results from evaluating
the property. In several places, post conditions are used to describe properties of the result.
When there is more than one postcondition, all postconditions must be true.

6.8.1 Basic Types

The basic types used are Integer, Real, String, and Boolean. They are supplemented with
OclExpression, OclType, and OclAny.

OclType

All types defined in a UML model, or pre-defined within OCL, have a type. This type is an
instance of the OCL type called OclType. Access to this type allows the modeler limited access
to the meta-level of the model. This can be useful for advanced modelers.

Properties of OclType, where the instance of OclType is called type.

type.name : String

The name of type.

type.attributes : Set(String)

The set of names of the attributes of type, as they are defined in the model.

type.associationEnds : Set(String)

The set of names of the navigable associationEnds of type, as they are defined in the
model.

6-26 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

OclAny

Within the OCL context, the type OclAny is the supertype of all types in the model and the
basic predefined OCL type. The predefined OCL Collection types are not subtypes of OclAny.
Properties of OclAny are available on each object in all OCL expressions.

All classes in a UML model inherit all properties defined on OclAny. To avoid name conflicts
between properties in the model and the properties inherited from OclAny, all names on the
properties of OclAny start with ‘ocl.’ Although theoretically there may still be name conflicts,
they can be avoided. One can also use the oclAsType() operation to explicitly refer to the
OclAny properties.

Properties of OclAny, where the instance of OclAny is called object.

type.operations : Set(String)

The set of names of the operations of type, as they are defined in the model.

type.supertypes : Set(OclType)

The set of all direct supertypes of type.
post: type.allSupertypes->includesAll(result)

type.allSupertypes : Set(OclType)

The transitive closure of the set of all supertypes of type.

type.allInstances : Set(type)

The set of all instances of type and all its subtypes in existence at the moment in
time that the expression is evaluated.

object = (object2 : OclAny) : Boolean

True if object is the same object as object2.

object <> (object2 : OclAny) : Boolean

True if object is a different object from object2.
post: result = not (object = object2)

UML V1.3 alpha R5 March 1999 6-27

6.8 Predefined OCL Types

object.oclType : OclType

The type of the object.

object.oclIsKindOf(type : OclType) : Boolean

True if type is a supertype (transitive) of the type of object.
post: result = type.allSuperTypes->includes(object.oclType) or
 type = object->oclType

object.oclIsTypeOf(type : OclType) : Boolean

True if type is equal to the type of object.
post: result = (object.oclType = type)

object.oclAsType(type : OclType) : type

Results in object, but of known type type.
Results in Undefined if the actual type of object is not type or one of its subtypes.
pre : object.oclIsKindOf(type)
post: result = object
post: result.oclIsKindOf(type)

6-28 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

OclExpression

Each OCL expression itself is an object in the context of OCL. The type of the expression is
OclExpression. This type and its properties are used to define the semantics of properties that
take an expression as one of their parameters: select, collect, forAll, etc.

An OclExpression includes the optional iterator variable and type and the optional accumulator
variable and type.

Properties of OclExpression, where the instance of OclExpression is called expression.

Real

The OCL type Real represents the mathematical concept of real. Note that Integer is a subclass
of Real, so for each parameter of type Real, you can use an integer as the actual parameter.

Properties of Real, where the instance of Real is called r.

object.oclInState(state : State) : Boolean

Results in true if object is in the state state, otherwise results in false. The
Enumeration argument is an enumeration of all state names in the statemachine
corresponding with the class of object.

object.oclIsNew : Boolean

Can only be used in a postcondition.
Evaluates to true if the object is created during performing the operation.
I.e. it didn’t exist at precondition time.

expression.evaluationType : OclType

The type of the object that results from evaluating expression.

r = (r2 : Real) : Boolean

True if r is equal to r2.

r + (r1 : Real) : Real

The value of the addition of r and r1.

UML V1.3 alpha R5 March 1999 6-29

6.8 Predefined OCL Types

r - (r1 : Real) : Real

The value of the subtraction of r1 from r.

r * (r1 : Real) : Real

The value of the multiplication of r and r1.

r * (r1 : Real) : Real

The value of r divided by r1.

r.abs : Real

The absolute value of r.
post: if r < 0 then result = - r else result = r endif

r.floor : Integer

The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.max(r2 : Real) : Real

The maximum of r and r2.
post: if r >= r2 then result = r else result = r2 endif

r.min(r2 : Real) : Real

The minimum of r and r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean

True if r1 is less than r2.

6-30 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

Integer

The OCL type Integer represents the mathematical concept of integer.

Properties of Integer, where the instance of Integer is called i.

r > (r2 : Real) : Boolean

True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean

True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)

r >= (r2 : Real) : Boolean

True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

i = (i2 : Integer) : Boolean

True if i is equal to i2.

i + (i2 : Integer) : Integer

The value of the addition of i and i2.

i + (r1 : Real) : Real

The value of the addition of i and r1.

i - (i2 : Integer) : Integer

The value of the subtraction of i2 from i.

UML V1.3 alpha R5 March 1999 6-31

6.8 Predefined OCL Types

i - (r1 : Real) : Real

The value of the subtraction of r1 from i.

i * (i2 : Integer) : Integer

The value of the multiplication of i and i2.

i * (r1 : Real) : Real

The value of the multiplication of i and r1.

i / (i2 : Integer) : Real

The value of i divided by i2.

i / (r1 : Real) : Real

The value of i divided by r1.

i.abs : Integer

The absolute value of i.
post: if i < 0 then result = - i else result = i endif

i.div(i2 : Integer) : Integer

The number of times that i2 fits completely within i.
post: result * i2 <= i
post: result * (i2 + 1) > i

i.mod(i2 : Integer) : Integer

The result is i modulo i2.
post: result = i - (i.div(i2) * i2)

6-32 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

String

The OCL type String represents ASCII strings.

Properties of String, where the instance of String is called string.

i.max(i2 : Integer) : Integer

The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer

The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

string = (string2 : String) : Boolean

True if string and string2 contain the same characters, in the same order.

string.size : Integer

The number of characters in string.

string.concat(string2 : String) : String

The concatenation of string and string2.
post: result.size = string.size + string2.size
post: result.substring(1, string.size) = string
post: result.substring(string.size + 1, string2.size) = string2

string.toUpper : String

The value of string with all lowercase characters converted to uppercase characters.
post: result.size = string.size

string.toLower : String

The value of string with all uppercase characters converted to lowercase characters.
post: result.size = string.size

string.substring(lower : Integer, upper : Integer) : String

The sub-string of string starting at character number lower, up to and including
character number upper.

UML V1.3 alpha R5 March 1999 6-33

6.8 Predefined OCL Types

Boolean

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

b = (b2 : Boolean) : Boolean

Equal if b is the same as b2.

b or (b2 : Boolean) : Boolean

True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean

True if either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean

True if both b1 and b2 are true.

not b : Boolean

True if b is false.
post: if b then result = false else result = true endif

b implies (b2 : Boolean) : Boolean

True if b is false, or if b is true and b2 is true.
post: (not b) or (b and b2)

if b then (expression1 : OclExpression)

else (expression2 : OclExpression) endif : expression1.evaluationType

If b is true, the result is the value of evaluating expression1; otherwise, result is the
value of evaluating expression2.

6-34 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

Enumeration

The OCL type Enumeration represents the enumerations defined in an UML model.

Features of Enumeration, the instance of Enumeration is called enumeration.

6.8.2 Collection-Related Typed

The following sections define the properties on collections (i.e., these properties are available
on Set, Bag, and Sequence). As defined in this section, each collection type is actually a
template with one parameter. ‘T’ denotes the parameter. A real collection type is created by
substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

Collection

Collection is the abstract supertype of all collection types in OCL. Each occurrence of an object
in a collection is called an element. If an object occurs twice in a collection, there are two
elements. This section defines the properties on Collections that have identical semantics for all
collection subtypes. Some properties may be defined with the subtype as well, which means
that there is an additional postcondition or a more specialized return value.

The definition of several common properties is different for each subtype. These properties are
not mentioned in this section.

Properties of Collection, where the instance of Collection is called collection.

enumeration = (enumeration2 : Boolean) : Boolean

Equal if enumeration is the same as enumeration2.

enumeration <> (enumeration2 : Boolean) : Boolean

Equal if enumeration is not the same as enumeration2.
post: result = not (enumeration = enumeration2)

collection->size : Integer

The number of elements in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

collection->includes(object : OclAny) : Boolean

True if object is an element of collection, false otherwise.
post: result = (collection->count(object) > 0)

UML V1.3 alpha R5 March 1999 6-35

6.8 Predefined OCL Types

collection->excludes(object : OclAny) : Boolean

True if object is not an element of collection, false otherwise.
post: result = (collection->count(object) = 0)

collection->count(object : OclAny) : Integer

The number of times that object occurs in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 |
 if elem = object then acc + 1 else acc endif)

collection->includesAll(c2 : Collection(T)) : Boolean

Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

collection->excludesAll(c2 : Collection(T)) : Boolean

Does collection contain none of the elements of c2 ?
post: result = c2->forAll(elem | collection->excludes(elem))

collection->isEmpty : Boolean

Is collection the empty collection?
post: result = (collection->size = 0)

collection->notEmpty : Boolean

Is collection not the empty collection?
post: result = (collection->size <> 0)

collection->sum : T

The addition of all elements in collection. Elements must be of a type supporting
addition (Integer and Real)

post: result = collection->iterate(elem; acc : T = 0 |
 acc + elem)

6-36 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

collection->exists(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for at least one element in collection.

post: result = collection->iterate(elem; acc : Boolean = false |
 acc or expr)

collection->forAll(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for each element in collection; otherwise, result
is false.

post: result = collection->iterate(elem; acc : Boolean = true |
 acc and expr)

collection->isUnique(expr : OclExpression) : Boolean

Results in true if expr evaluates to a different value for each element in collection;
otherwise, result is false.

post: result = collection->collect(expr)->forAll(e1, e2 | e1 <> e2)

collection->sortedBy(expr : OclExpression) : Boolean

Results in the Sequence containing all elements of collection. The element for which
expr has the lowest value comes first, and so on. The type of the expr expression must
have the < operation defined. The < operation must be transitive i.e. if a < b and b < c
then a < c.

post:

collection->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the collection. See “Iterate Operation” on page 6-24 for a complete
description. This is the basic collection operation with which the other collection
operations can be described.

UML V1.3 alpha R5 March 1999 6-37

6.8 Predefined OCL Types

Set

The Set is the mathematical set. It contains elements without duplicates. Features of Set, the
instance of Set is called set.

set->union(set2 : Set(T)) : Set(T)

The union of set and set2.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) or set2->includes(elem)

set->union(bag : Bag(T)) : Bag(T)

The union of set and bag.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 set->count(elem) + bag->count(elem))

set = (set2 : Set(T)) : Boolean

Evaluates to true if set and set2 contain the same elements.

post: result = T.allInstances->forAll(elem |
 set->includes(elem) = set2->includes(elem))

set->intersection(set2 : Set(T)) : Set(T)

The intersection of set and set2 (i.e, the set of all elements that are in both set and
set2).

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) and set2->includes(elem))

set->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag.
post: result = set->intersection(bag->asSet)

6-38 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

set – (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) and not set2-
 >includes(elem))

set->including(object : T) : Set(T)

The set containing all elements of set plus object.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) or (elem = object))

set->excluding(object : T) : Set(T)

The set containing all elements of set without object.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) and not(elem = object))

set->symmetricDifference(set2 : Set(T)) : Set(T)

The sets containing all the elements that are in set or set2, but not in both.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) xor set2->includes(elem))

set->select(expr : OclExpression) : Set(T)

The subset of set for which expr is true.

post: result = set->iterate(elem; acc : Set(T) = Set{} |
 if expr then acc->including(elem) else acc endif)

UML V1.3 alpha R5 March 1999 6-39

6.8 Predefined OCL Types

Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of a bag
many times. There is no ordering defined on the elements in a bag.

set->reject(expr : OclExpression) : Set(T)

The subset of set for which expr is false.
post: result = set->select(not expr)

set->collect(expression : OclExpression) : Bag(expression.oclType)

The Bag of elements which results from applying expr to every member of set.

post: result = set->iterate(elem; acc : Bag(T) = Bag{} |
 acc->including(expr))

set->count(object : T) : Integer

The number of occurrences of object in set.
post: result <= 1

set->asSequence : Sequence(T)

A Sequence that contains all the elements from set, in undefined order.

post: T.allInstances->forAll(elem |
 result->count(elem) = set->count(elem))

set->asBag : Bag(T)

The Bag that contains all the elements from set.

post: T.allInstances->forAll(elem |
 result->count(elem) = set->count(elem))

6-40 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

Properties of Bag, where the instance of Bag is called bag.

bag = (bag2 : Bag(T)) : Boolean

True if bag and bag2 contain the same elements, the same number of times.

post: result = T.allInstances->forAll(elem |
 bag->count(elem) = bag2->count(elem))

bag->union(bag2 : Bag(T)) : Bag(T)

The union of bag and bag2.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem) + bag2->count(elem))

bag->union(set : Set(T)) : Bag(T)

The union of bag and set.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem) + set->count(elem))

bag->intersection(bag2 : Bag(T)) : Bag(T)

The intersection of bag and bag2.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem).min(bag2->count(elem)))

bag->intersection(set : Set(T)) : Set(T)

The intersection of bag and set.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem).min(set->count(elem)))

UML V1.3 alpha R5 March 1999 6-41

6.8 Predefined OCL Types

bag->including(object : T) : Bag(T)

The bag containing all elements of bag plus object.

post: T.allInstances->forAll(elem |
 if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->excluding(object : T) : Bag(T)

The bag containing all elements of bag apart from all occurrences of object.

post: T.allInstances->forAll(elem |
 if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->select(expression : OclExpression) : Bag(T)

The sub-bag of bag for which expression is true.

post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 if expr then acc->including(elem) else acc endif)

bag->reject(expression : OclExpression) : Bag(T)

The sub-bag of bag for which expression is false.
post: result = bag->select(not expr)

bag->collect(expression: OclExpression) : Bag(expression.oclType)

The Bag of elements which results from applying expression to every member of bag.

post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 acc->including(expr))

6-42 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

Sequence

A sequence is a collection where the elements are ordered. An element may be part of a
sequence more than once.

Properties of Sequence(T), where the instance of Sequence is called sequence.

bag->count(object : T) : Integer

The number of occurrences of object in bag.

bag->asSequence : Sequence(T)

A Sequence that contains all the elements from bag, in undefined order.

post: T.allInstances->forAll(elem |
 bag->count(elem) = result->count(elem))

bag->asSet : Set(T)

The Set containing all the elements from bag, with duplicates removed.

post: T.allInstances(elem |
 bag->includes(elem) = result->includes(elem))

sequence->count(object : T) : Integer

The number of occurrences of object in sequence.

sequence = (sequence2 : Sequence(T)) : Boolean

True if sequence contains the same elements as sequence2 in the same order.

post: result = Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = sequence2->at(index))
 and
 sequence->size = sequence2->size

UML V1.3 alpha R5 March 1999 6-43

6.8 Predefined OCL Types

sequence->union (sequence2 : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in sequence, followed by all elements in
sequence2.

post: result->size = sequence->size + sequence2->size
post: Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index))
post: Sequence{1..sequence2->size}->forAll(index : Integer |
 sequence2->at(index) =
 result->at(index + sequence->size)))

sequence->append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of sequence, followed by object.

post: result->size = sequence->size + 1
post: result->at(result->size) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |
 result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)

The sequence consisting of object, followed by all elements in sequence.

post: result->size = sequence->size + 1
post: result->at(1) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index + 1))

sequence->subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of sequence starting at number lower, up to and including element
number upper.

post: if sequence->size < upper then
 result = Undefined
else
 result->size = upper - lower + 1 and
 Sequence{lower..upper}->forAll(index |
 result->at(index - lower + 1) =
 sequence->at(lower + index - 1))
endif

6-44 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

sequence->at(i : Integer) : T

The i-th element of sequence.
post: i <= 0 or sequence->size < i implies result = Undefined

sequence->first : T

The first element in sequence.
post: result = sequence->at(1)

sequence->last : T

The last element in sequence.
post: result = sequence->at(sequence->size)

sequence->including(object : T) : Sequence(T)

The sequence containing all elements of sequence plus object added as the last
element.
post: result = sequence.append(object)

sequence->excluding(object : T) : Sequence(T)

The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elements is not changed.

post:result->includes(object) = false
post: result->size = sequence->size - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T)
 = Sequence{}|
 if elem = object then acc else acc->append(elem) endif)

sequence->select(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is true.

post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence{} |
 if expr then acc->including(elem) else acc endif)

UML V1.3 alpha R5 March 1999 6-45

6.9 Grammar for OCL

6.9 Grammar for OCL

This section describes the grammar for OCL expressions. An executable LL(1) version of this
grammar is available on the OCL web site. (See http://www.software.ibm.com/ad/ocl).

The grammar description uses the EBNF syntax, where “|” means a choice, “?” optionality, and
“*” means zero or more times, + means one or more times. In the description of the name,
typeName, and string, the syntax for lexical tokens from the JavaCC parser generator is used.
(See http://www.suntest.com/JavaCC.)

sequence->reject(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is false.
post: result = sequence->select(not expr)

sequence->collect(expression : OclExpression) :
 Sequence(expression.oclType)

The Sequence of elements which results from applying expression to every member of
sequence.

sequence->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the sequence. Iteration will be done from element at position 1 up until
the element at the last position following the order of the sequence.

sequence->asBag() : Bag(T)

The Bag containing all the elements from sequence, including duplicates.

post: T.allInstances->forAll(elem |
 result->count(elem) = sequence->count(elem))

sequence->asSet() : Set(T)

The Set containing all the elements from sequence, with duplicated removed.

post: T.allInstances->forAll(elem |
 result->includes(elem) = sequence->includes(elem))

6-46 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

constraint := contextDeclaration

(stereotype “:” expression)*

contextDeclaration := “context”

 (clasifierContext | operationContext)

classifierContext := <typeName>

operationContext := <typeName> “::” <name>

“(“ formalParameterList? “)”

(“:” <typeName>)?

formalParameterList := formalParameter (“;” formalParameter)*

formalParameter := <name> “:” <typeName>

stereotype := “inv” | “pre” | “post”

expression := letExpression? logicalExpression

ifExpression := "if" expression

 "then" expression

 "else" expression

 "endif"

logicalExpression := relationalExpression

 (logicalOperator
 relationalExpression)*

relationalExpression := additiveExpression

 (relationalOperator
 additiveExpression)?

additiveExpression := multiplicative Expression

 (addOperator
 multiplicativeExpression)*

multiplicativeExpressin := unaryExpression

 (multiplyOperator unaryExpression)*

unaryExpression := (unaryOperator postfixExpression)

 | postfixExpression

postfixExpression := primaryExpression (("." | "->")
 featureCall)*

primaryExpression := literalCollection

 | literal

 | pathName timeExpression? qualifier?

 featureCallParameters?

 | "(" expression ")"

 | ifExpression

featureCallParameters := "(" (declarator)?
 (actualParameterList)? ")"

letExpression := “let” <name>

(“:” pathTypeName)?

“=” expression “in”

UML V1.3 alpha R5 March 1999 6-47

6.9 Grammar for OCL

literal := <STRING> | <number> | "#" <name>

enumerationType := "enum" "{" "#" <name> ("," "#" <name>
)* "}"

simpleTypeSpecifier := pathTypeName

 | enumerationType

literalCollection := collectionKind "{"
expressionListOrRange? "}"

expressionListOrRange := expression

 (("," expression)+

 | (".." expression)

)?

featureCall := pathName timeExpression? qualifiers?

 featureCallParameters?

qualifiers := "[" actualParameterList "]"

declarator := <name> ("," <name>)*

 (":" simpleTypeSpecifier)? "|"

pathTypeName := <typeName> ("::" <typeName>)*

pathName := (<typeName> | <name>)

 ("::" (<typeName> | <name>))*

timeExpression := "@" <name>

actualParameterList := expression ("," expression)*

logicalOperator := "and" | "or" | "xor" | "implies"

collectionKind := "Set" | "Bag" | "Sequence" |
 "Collection"

relationalOperator := "=" | ">" | "<" | ">=" | "<=" | "<>"

addOperator := "+" | "-"

multiplyOperator := "*" | "/"

unaryOperator := "-" | "not"

typeName := ["A"-"Z"] (["a"-"z"] | ["0"-"9"] |

 ["A"-"Z"] | "_")*

name := ["a"-"z"] (["a"-"z"] | ["0"-"9"] |

 ["A"-"Z"] | "_")*

number := ["0"-"9"] (["0"-"9"])*

string := "'" ((~["'","\\","\n","\r"])

 | ("\\"

 (["n","t","b","r","f","\\","'","\""]

 | ["0"-"7"] (["0"-"7"])?

 | ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

)*

6-48 UML V1.3 alpha R5 March 1999

6 Object Constraint Language

 "'"

