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Preface

The last two decennia have witnessed many advances in the area of software
development. The advent of object-oriented programming languages and modelling
languages such as Unified Modeling Language (UML) has increased our ability
as developers to design and realize large and enterprise-wide software systems.
However, software engineering, as a discipline seems to be lacking in its sup-
port for reference models that can be used in order to help developers create new
systems quickly and efficiently. The software development process is still a very
context-sensitive and idiosyncratic process. Whereas disciplines such as chemical
engineering and mathematics have developed domain models for a range of prob-
lems, the IT industry is in general lacking in such models. Software development
tends to be a very personal experience and in many cases how a system is to be
developed is a product of a single person’s insights. This is a potentially dangerous
state of affairs because there is no guarantee that the resulting model reflects the
problem domain well.

This book introduces a number of so-called models (we call them domain archi-
tectures) that act as ‘cookie-cutters’ or reference models for more specific real-life
applications. Working with domain architectures demands a shift in thinking because
when designing a new software system we try to categorize it as an instance sys-
tem of one or more domain architectures. Having done that we can reuse and
specialize the requirements, viewpoints and generic architecture to the specific sys-
tems. This results in massive reuse at the architectural and design levels while the
risk of failure is reduced because the reference models in this book are based in
real-life applications and experience. They have been used on real projects with
real customers.

The reference models can and should be used in much the same way as people
reason about the world around them. This is the Ausubel subsumption theory: when
developing software systems we relate new knowledge to relevant concepts and
propositions we already know.
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PART I

Background and
fundamentals





1 Introducing and motivating
domain architectures

‘Architecture is born, not made—must consistently grow from within to what-
ever it becomes. Such forms as it takes must be spontaneous generation of
materials, building methods and purpose.’

Frank Lloyd Wright

1.1 WHAT IS THIS BOOK?

This book describes how to analyse large enterprise systems. In particular, we define
a process that maps high-level business concerns and business processes to artefacts
in the Unified Modelling Language (UML). This is one of the first books that
explicitly links the business world with the IT world. We achieve this end by first
of all providing the reader with a number of ready-made reference models that
he or she can use as a basis for specific applications. These reference models are
called domain architectures in this book. Second, and just as important, we adopt,
adapt and (hopefully) improve current understanding on how software systems are
analysed and designed. In particular, our interest is in creating flexible and main-
tainable software systems using proven technology. We document the products of
our endeavours using the visual notation in UML. This adds to the usability of
our process because UML is a de facto standard and we shall use it as a universal
communication language.

A domain architecture is a reference model for a set of applications sharing simi-
lar functionality, behaviour and structure. It describes the essential features in some
business domain. In this book we introduce five major domain architecture types.
These types describe recurring themes in software development. We could loosely
define a domain architecture as a pattern that describes structure, functionality and
behaviour in the earliest stages of the software lifecycle. We discuss generic archi-
tectures for management information, process control, access control, manufacturing
and tracking systems. We devote a chapter to each of these five architecture types.
Specific instances of these architectures occur in real-life software development
projects and we describe a number of such instances in this book.
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Our domain architectures are models in the so-called problem domain (roughly
speaking, the domain of the sponsor and user of the system) while design and system
patterns are models for the solution domain (the domain of the object-oriented
analyst and designer). Domain architectures fill the gap between the business and
the IT worlds. In short, we provide the reader with a set of documented reference
models that he or she can specialize to produce analysis artefacts for specific instance
systems. We devote six chapters to show how this specialization works; each chapter
deals with a well-known application.

1.2 WHY HAVE WE WRITTEN THIS BOOK?

The main reason for writing this book was to describe and document a number of
recurring patterns and models that we have discovered in software projects. These
models describe a set of applications having similar structure, functionality and
behaviour. Each model is documented in handbook form and the reader can use
the handbook to ‘clone’ specific applications. We are primarily interested in large
enterprise systems because we have seen that traditional object-oriented technology
is not suitable as the driving force for systems of this magnitude. The old maxim
of ‘looking for the objects and the rest will take care of itself’ is not applicable
in these situations, in my opinion. It becomes very difficult to manage the object
networks that result from this approach. Furthermore, it would seem that the levels of
reusability with the object paradigm are quite low; we are interested in reusability at
system and architecture level. For example, a system that we have already analysed
and designed can be used as a first approximation to some new system that we
suspect is similar to it in some way.

Another reason for writing this book is that we wish to integrate the world of
business processing modelling, requirements analysis and UML into a coherent
whole. In particular, we create a well-defined and hopefully seamless path that
maps high-level requirements and business concerns to analysis artefacts such as
class diagrams, interaction diagrams and other artefacts in UML. We are not aware
of such a process in the literature. This is why we have created the Datasim Devel-
opment Process (DDP) that does provide a step-by-step plan to get you to the UML
finish line. The DDP describes the following phases: business processing modelling,
architecture, requirements analysis, object-oriented analysis in UML and design. It
is a lightweight process and can be used by novice developers. We give an intro-
duction to the DDP in Chapter 3. Each of these topics is discussed in this book with
the exception of design.

Finally, we have written this book because we wish to improve the communication
lines between customers and developer.
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1.3 FOR WHOM IS THIS BOOK INTENDED?

This book is aimed at software architects, (structured and object-oriented) analysts
and other software specialists who are involved with the creation of stable architec-
tures for medium and large systems. We describe a step-by-step process that takes
the system goals and business processes and maps them to a software architecture
consisting of a network of interrelated systems and classes. We describe how to
decompose the systems into subsystems and classes. To this end, we use a subset
of the UML syntax that is sufficiently rich to allow a detailed design. Thus, this
book is also suitable for those developers who analyse and document systems using
UML and who wish to integrate them with the ‘Gang of Four’ (GOF) and system
(POSA) patterns. In general, this book focuses on that part of the software lifecycle
between business process modelling and object-oriented analysis and it provides a
stable architectural framework on which to place customer requirements.

This book is also of interest to analysts who are involved in requirements determi-
nation activities and who need to align functional and non-functional requirements
with architectural models.

1.4 WHY SHOULD I READ THIS BOOK?

We think that this is one of the first books that attempts to use UML for large
enterprise systems. It provides the reader with tools, concepts and advice on how to
map the business world to the IT world. We use standards wherever possible, such
as UML, standard architectures, business process modelling and patterns. We also
improve these standards whenever necessary.

This book should help you produce stable, understandable and high-quality soft-
ware systems. New key features that we see as important are:

• A defined software process from A to Z
• Integration of proven technology with our software process
• Ready-made reference models that you can use in projects
• Using the UML artefacts in a predictable and usable way
• Reference models that are based on real-world experience
• Software development as a continuous improvement process.

1.5 WHAT IS A DOMAIN ARCHITECTURE, REALLY?

A domain architecture is a reference model for a range of applications that share
similar structure, functionality and behaviour. It is not an application as such but
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Business Process Modelling
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Figure 1.1 Taxonomy of domain architectures.

is in fact a meta model that describes how more specific instance systems (‘real
applications for real customers’) are created. A domain architecture subsumes much
of the current techniques in software development and is positioned between a
number of other methods as shown in Figure 1.1. This diagram should help the
reader position domain architecture in the galaxy of methods. For a discussion of
the methods in Figure 1.1 and how they have influenced our work, we refer to
Appendix 3 at the end of this book. We thus see that our work and results are
positioned between the problem domain and the solution domain. Once you have
determined in which domain architecture type (or types) your application falls,
you can then use the ready-made templates to map the business artefacts to UML
artefacts. You have a foot in both camps, as it were. This can’t be a bad thing.

We discuss five basic forms and one ‘composite’ form in this book:

• MIS (Management Information Systems): Produce high-level and consolidated
decision-support data and reports based on transaction data from various inde-
pendent sources.

• PCS (Process Control Systems): Monitor and control values of certain variables
that must satisfy certain constraints.

• RAT (Resource Allocation and Tracking) systems: Monitor a request or some other
entity in a system. The request is registered, resources are assigned to it, and its
status in time and space is monitored.

• MAN (Manufacturing) systems: Create finished products and services from raw
materials.

• ACS (Access Control Systems): Allow access to passive objects from active sub-
jects. They are similar to security systems.

• LCM (Lifecycle Model): A ‘composite’ model that describes the full lifecycle of
an entity; an aggregate of MAN, RAT and MIS models.
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We realize that some of the above names may be confusing to some readers, or
that readers may infer some wrong conclusions based on those names. For example,
the author once spoke to a software engineer who developed reporting functionality
in the telecom industry. For example, the system to be developed should create
invoices at different levels. The author suggested analysing the system as a MIS
category. The response from the engineer was ‘Oh no, my system is technical!’.

In order to fit domain architectures in a hierarchy that improves understandability
and discovery we create a semantic network model as shown in Figure 1.2. This
is an application of well-known techniques in cognitive psychology (Eysenck and
Keane 2000). There are three main categories:

• Superordinate level (level 1): This is a high level of abstraction in a conceptual
hierarchy and corresponds to a very general type. In our case we have cate-
gories for object creation, aligning objects in some structure, and modelling object
behaviour. The basic assumption is that these three categories model the lifecycle
of any object in any phase of the software lifecycle.

• Subordinate level (level 3): This is the lowest level in the conceptual hierarchy
and contains specific objects and systems. This is, for example, where all the
specific applications that we discuss in Part III of this book are to be found.

• Basic level (level 2): This is an intermediate level of abstraction in the conceptual
hierarchy and fits between the superordinate and subordinate levels. This is the
level where the current domain architecture types are placed.

The reader can use the hierarchy in Figure 1.2 as a navigational aid. For example, he
or she can try to place a system to be developed as a subordinate level system under
a more general basic level category. For example, a system that produces invoices

Domain
Architecture

Object Creational
Systems

Object Alignment
Systems

Object Behavioural
Systems

MAN
GOF

Creational
RAT

GOF
Structural

Reporting
System ACS

GOF
Behavioural

BGS HDS ELS MIS PCS. . . . . .

LEVEL 1

LEVEL 2

LEVEL 3

Composite

*

Figure 1.2 Hierarchy of patterns and reference models.
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on mobile telephone usage is seen as an instance of an Object Reporting System.
This can be refined by modelling the system as an instance of a MIS category.

The domain architecture types are fully documented in Part II. The documentation
style is similar to how the patterns community document their design and system
patterns (see GOF 1995, POSA 1996). The structure is roughly as follows (‘DA’
stands for Domain Architecture):

• Motivation section
— Background to DA and its history
— Motivational examples (one small example, one larger example)
— The general applicability of the DA

• Functional modelling, architecture and structure
— The goals, processes and activities for the DA
— Context diagram, system discovery and system decomposition

• Behavioural modelling
— Stakeholders and their viewpoints
— Requirements and use cases

• Object-Oriented Analysis (OOA)
— Class architecture UML classes in the DA
— Use cases (and possibly sequence diagrams)

• Extensions to the DA
— Specializations of the DA
— Using the DA with other systems (as client, server, collaborator).

Each of the artefacts in the above list is documented using UML whenever possible.

1.6 THE DATASIM DEVELOPMENT PROCESS (DDP)

This book would not be complete if we did not pay some attention to the actual
process of mapping high-level concepts and requirements to lower-level artefacts
that we use in UML. We describe a step-by-step constructive process that actually
shows you how to do this. This topic is discussed in Chapter 3. In particular, we
develop processes for the following important phases:

• Architecture discovery and decomposition
• Requirements analysis
• Object-oriented analysis.

Furthermore, we discuss the integration problems when we wish to align the artefacts
of the different phases. We note that it is possible to use the DDP as described here
without having to refer to domain architectures at all! This makes the book useful
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for those readers who do not have the time to study the domain architectures in
detail but who will still want to use a solid software process.

A full treatment of project management issues for DDP is outside the scope of
this book.

1.7 THE STRUCTURE OF THIS BOOK

This book consists of four main parts and 18 chapters. In Part I (Chapters 1–4)
we motivate domain architectures by describing what they are and how to use and
document them and by giving examples. In Part II we discuss and document the six
basic forms of domain architecture. We discuss these categories in Chapters 5–10.
Each chapter in this part is documented using a standard template structure. Part III
analyses six instance systems of the domain architecture types from Part II and
these instances are described in Chapters 11–16. The cases are well known in the
software literature or have been distilled from real-life software projects in the
past. Finally, Part IV contains two chapters that summarize the similarities and
differences between the different domain architecture types and how to use them in
your software projects.

The chapters in Parts II and III have been written in handbook form. We have
written several chapters and appendices to help the reader understand the rationale
behind the structure of the book.

An important feature in this book is that we resurrect information models that
have been used for many years to help systems analysts design software systems
and we have dressed them in a more object-oriented suit. In this way we hope to
save these useful models for future applications.

How do we use this book? We attempt to answer this question by posing a number
of standard questions that we hope will encompass those that readers might ask,
and then directing the reader to the most appropriate chapters:

• Question: Where can I find a summary of domain architectures and their instance
systems?
Answer: Chapter 2.

• Question: Where are domain architectures and UML artefacts documented?
Answer: Chapter 4.

• Question: Where are domain architectures and their instances documented in
detail?
Answer: Parts II and III of this book. Furthermore, Chapter 17 summarizes the
domain architectures and the client/server relationships between them and their
instance systems.

• Question: How do I start?
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Answer: Chapter 18 discusses the different ways of tackling software projects.
We develop a number of practical techniques to help you get up to speed.

• Question: Does this book help me to develop interviewing skills?
Answer: Yes. Please read Appendix 1.

1.8 WHAT THIS BOOK DOES NOT COVER

First, this book is not a UML tutorial and we assume that the reader has experience
of UML syntax. Second, this book is not concerned with design issues or design
patterns, although the artefacts can be mapped to the GOF and POSA patterns. This
topic is beyond the scope of this book.

Finally, this book does not deal with component technology, although it is possible
to first model domain architectures using this technology and then create systems
in which the component and object technologies dovetail. We thus see the object
paradigm evolving into something to adapt to the realities of the modern software
development environment.



2 Domain architecture
catalogue

‘Any problem in geometry can easily be reduced to such terms that a knowledge
of the lengths of certain straight lines is sufficient for its construction. Just as
arithmetic consists of only four or five operations, namely, addition, subtraction,
multiplication, division and the extraction of roots . . . so in geometry, to find
required lines it is merely necessary to add or subtract other lines.’

René Descartes, The Geometry

2.1 INTRODUCTION AND OBJECTIVES

This chapter summarizes the major domain architectures that we discuss in this
book as well as several instance systems in each category. It has been included
mainly for reference purposes and it may be skipped on a first reading. The added
value of this chapter is that the reader can use it as a kind of Yellow Pages to
help find applications that are similar to his or her current applications. This topic
will be further developed in Chapter 18 when we develop some guidelines to help
us discover the structure and functionality of an application by comparing it with
known applications. This is called analogical reasoning.

In short, this chapter is a quick reference to the domains and instance systems in
this book. It is not meant to be read from start to finish but gathers all the domain
architectures and their instances in one place for perusal and reference.

We assemble all the domain architectures, their instances and exercises in one
place. This is where you can begin before you consult the chapters in Parts II and
III because your specific application will hopefully be analogous to one or more
categories or instances. You can use this chapter as you would a real catalogue,
namely by browsing until you come across something that interests you.

One of the assumptions in this book is that each new application is similar to an
instance of some domain architecture (or category as we shall sometimes call it).
In order to help the reader determine which category is ‘best’ we have introduced
domain architectures and their instances. A domain architecture encapsulates the
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assumption that all applications in a given domain have a central description that
then stands for all of them. An application is a member of the category if there is a
good correspondence between its attributes and that of the more general architecture.
For example, we suggest that the following applications are good prototypes for their
respective domain architecture types:

• Manpower Control (MPC) is a prototype for MIS
• Home Heating System (HHS) is a prototype for PCS
• Order Realization System (ORS) is a prototype for RAT
• A compiler is a prototype for MAN
• The Reference Monitor model is a prototype for ACS
• The Product Lifecycle Model (LCM) is a prototype for lifecycle and composite

models.

We note that the domain architectures themselves may be used as prototypes for
new systems. The disadvantage is that it may not be possible to fit your application
to a prototype. Then we must resort to the so-called exemplar-based view. Rather
than working from an abstraction of the central tendency of all the instances of
a category, people simply make use of particular instances or exemplars of the
category (Eysenck and Keane 2000). For example, some exemplars in the RAT
category are:

• Help Desk System (HDS)
• Order Realization System (ORS)
• Call handling systems.

People relate to instance systems more quickly than to abstract reference models.
However, you have a choice! Basically, we choose between one representative
application and several exemplars as the target when using analogical reasoning
to help us discover the architecture and behaviour of the system under discussion
(SUD). A prototype approach assumes that there is a single ‘best’ system that is
representative of all other systems in the same category, while the exemplar-based
view contradicts this assumption. Instead, we need several instance systems to help
us discover system structure and behaviour. We discuss prototypes and exemplars
in more detail in Chapter 18.

In order to focus on the problem at hand we attempt to define the major defining
features of a system or domain architecture type. We reduce the scope by focusing
on the initial business and analysis phases of the software lifecycle. To this end, we
think that the following set will provide a good starting point:

• C1: What are the main goals of a system?
• C2: What are the main core processes and key systems?
• C3: What are external stakeholder systems and their viewpoints?
• C4: What are the most important use cases?
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For point C3 we are using the term ‘viewpoint’ as defined in Sommerville and
Sawyer 1997, for example. This is a term that we use in the very early stages of
the software lifecycle to denote perspectives taken by different system stakeholder
groups. We give a fuller definition in Chapter 3.

Note that these questions are mainly of relevance during the early analysis phases.
Unfortunately, these are the problems that tend to get glossed over in large systems
in the rush to UML nirvana.

Answers to Questions C1 to C4 should be forthcoming as soon as possible and
before commencing with object-oriented analysis. The risks are great if you gloss
over or ‘fudge’ these issues.

2.2 MANAGEMENT INFORMATION SYSTEMS (MIS) (CHAPTER 5)

Management Information Systems produce decision-support information that can
be used as input to other systems such as data mining, statistical analysis and
executive information systems. The motivation and vocabulary for MIS date from
the 1960s and 1970s (see Section 5.2 for a description) and we have subsumed the
corresponding models under an object-oriented framework. The core process is to
produce decision-support information based on low-level or transaction input data
from various sources. The output is presented in various ways. The main activities
in the core process are:

• Register, validate and create basic transaction objects
• Consolidate and aggregate transaction objects
• Present, dispatch and report on consolidated data.

The MIS category subsumes many industrial, technical and administrative applica-
tions. The word ‘management’ should not be interpreted as just being of relevance
to business domains. It has a broader scope.

We now give a brief discussion of the MIS instances in this book. These are
useful for reference purposes.

1. Simple Digital Watch (SDW) (Section 5.3.1)
SDW accepts pulses (one pulse every second). The pulses are buffered until the
number of pulses reaches 60. Then the current time (in hours and minutes) is
(re)calculated and the new time is displayed on an output panel. SDW can be
configured on a 12-hour or 24-hour time regime.

SDW contains a panel consisting of two buttons for setting the time. We see
the current version of SDW as an instance of MIS for a number of reasons. First,
low-level data (seconds) is registered and merged to high-level data (time, that is
hours and minutes). Second, we need different kinds of merging and consolidation
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algorithms to create this high-level data. Finally, this data is displayed on a LED
and is in fact decision-support information (for example, it’s time to get up!).

2. Instrumentation and control systems (Section 5.3.2)
This technical problem occurs in many industrial applications. Nonetheless, it can
still be modelled as a MIS instance. All instrumentation and control systems convert
physical quantities and display the converted information on a recording device
or recorder. The recorder stores the results of the measurements. The difference
between a recorder and a display is that the former produces a permanent (persistent)
record while the latter shows the results in volatile form. In general, we use a
database system to store results permanently while displays can be implemented by
some kind of light-emitting diode (LED) display or a graphics screen.

3. Noise control engineering (Section 5.10.1)
This is another technical example of MIS. In this case we imagine a petrochemical
plant consisting of various noise-producing equipment. The equipment is grouped
into various areas, clusters and assemblies. The system calculates noise levels (in
decibels) in the petrochemical plant and the main goal is to produce high-level
decision information for health inspectors and local authorities. Typing reporting
functions are:

• What are the noise levels at various distances from the plant?
• What are the noise levels caused by various assemblies?
• Compare actual noise levels with levels allowed by the law.

4. Reporting activities in the ‘Rent-a-machine’ system (Section 10.3.1)
This system is an instance of a lifecycle model (LCM) and its core process is
the tracking of a customer request from A to Z. The lifecycle system has the
following subsystems:

• Reservation: create the basic customer order (MAN instance)
• Contracting: create a binding contract between the customer and garden centre

(RAT instance)
• Reporting: marketing and sales information on rented equipment (MIS instance).

This last system is an instance of a MIS because we are interested in monitoring
the status of each rented machine. Some typical questions to be answered are:

• Report on the usage levels for a given group of machines
• How many machines need repair?
• What is the garden centre’s profit in the last six months?
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5. Manpower Control (MPC) system (Chapter 11)
An engineering company works on projects for internal and external customers.
A project represents the sequence of activities that are executed by the different
departments. The project is deemed to be complete when each activity has been
completed. An employee works on several activities in a project and is allocated a
certain number of hours and other resources for each activity. Each department has
its own area of expertise.

Departments are grouped into divisions. Customers are the sponsors of exter-
nal projects. The resources (in this case hours) are allocated to departments and
employees on a project basis.

A system needs to be built that registers, validates and monitors project resource
usage (in this case man-hours). In particular, the following requirements must be
supported in the system:

• MPC processes transaction data (resource usage) once per period (e.g. per month)
• Resource utilization must be monitored
• Status reporting capabilities must be available to stakeholders.

We model this problem as a MIS instance because we wish to monitor project status.
We could have modelled this as an instance of RAT (a kind of time-tracking) but
the fit may be less clear. For example, RAT does not say much about high-level
reporting and consolidation algorithms, while MIS does.

6. Portfolio management
A financial instrument (or instrument for short) is an entity that can be traded in
the marketplace. Examples of instruments are cash, equities, equity options, index
options, bonds and futures (see Jarrow and Turnbull 1996). We can create MIS
systems for a given instrument type, for example:

• Calculate the value of the instrument
• Get the instrument history (historic prices of a selected instrument).

Thus, we can monitor instrument behaviour using a MIS, albeit at the level of a
single instrument. You could also model it using a RAT, in which case you have a
competing solution.

A portfolio is a set of instruments. We now wish to monitor the performance of the
portfolio so that we can generate an optimal return on the portfolio. In particular, we
wish to calculate a strategy of buys and sells and we achieve this by using simulation
techniques, for example using the Monte Carlo method (see Wilmott 1998).

The main reporting functions in a portfolio system are:

• Get portfolio history (display the historic values in a graph)
• Calculate performance (sum performance of instruments in portfolio)
• Calculate the Value At Risk (VAR) of the portfolio.

Some other examples of MIS applications are discussed in Section 5.10.
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2.3 PROCESS CONTROL SYSTEMS (PCS) (CHAPTER 6)

Process Control Systems model differences between the scheduled and actual values
of certain attributes and variables in a system. The main objective is to keep these
two sets of values within close proximity to each other. The system monitors the
values and corrective or control action is taken if the values drift too much away from
each other. Process control systems are well understood and we discuss the basic
model and its variants in Sections 6.4 (reference model and main components) and
6.4.2 (control engineering). We subsume these models under a domain architecture
that we call PCS. The core process in PCS is the activation of actuators that ensure
that the system returns to equilibrium. The main concurrent activities are:

• Monitor disturbances and other changes in the system’s environment
• Activate actuators to bring the system to a steady state
• Monitor and control the life of the system (for example, via an operator panel).

As we shall see in Chapter 6, we map each activity to a subsystem that contains
the necessary structure, functionality and behaviour to approximate the correspond-
ing activity.

Process Control Systems occur in many industrial, real-time and business domains.
In fact, any application where part of the problem is to monitor and control dis-
parities between actual and ideal values of some variable will almost certainly be a
candidate for one or more PCS instance systems.

1. Water level control (Section 6.3.1)
The water level in a tank must be monitored and controlled. If the water level is
too high we open a valve to let the water escape, while if the level is too low we
close the valve and start a pump motor that consequently delivers water to the tank
in order to increase the level.

2. Bioreactor (Section 6.3.2)
This problem is similar to the previous problem. Instead of monitoring water level
the bioreactor system monitors and controls the temperature of the water (or other
liquid) in the tank. An example of a bioreactor system is a sewage plant.

Real applications monitor several variables such as temperature, pressure, pH level
and percentage of oxygen in the liquid. We then speak of a multi-parameter problem.

3. Barrier options (Section 6.3.3)
In this case we are interested in situations where stock price fluctuates between
critical ‘barrier’ values. Upper and lower barriers may be defined and stock value is
measured against these scheduled values. For example, a so-called knock-out option
becomes worthless if its underlying stock value reaches the barrier value.
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Whereas a plain option is unconstrained, a barrier option is constrained by the
predefined barrier values of the stock. Control action is executed when these bar-
riers are reached, thus confirming that we are indeed looking at an instance of the
PCS category.

4. Control engineering (Section 6.4.2)
This is a specialized discipline and it is concerned (among other things) with the def-
inition of models that ensure that a system behaves in a certain way. We distinguish
between open, closed, feedback and feedforward systems.

You can skip this section on a first reading. It may not be to everybody’s taste.

5. Complexity of object-oriented applications
Systems built using objects and classes tend to become more complex and difficult
to maintain as time goes on. In particular, classes may have associations with several
other classes. The more relationships a class has with other classes, the less under-
standable and maintainable this class becomes. In order to redress this problem, we
can define a number of so-called software metrics, define target values for them and
describe the problem of defining the resulting system as an instance of the PCS
category. For example, we could define an upper threshold value for the number
of attributes in a class; a warning message is sent to the software risk manager if
this value is exceeded. Of course, risk and quality managers are interested in risks
and potential calamities. Modelling their world using PCS systems may not be a
bad idea after all because these systems inform the managers when things start to
go wrong.

6. Home Heating System (HHS) (Chapter 12)
This system is a prototype for the PCS category. It is a standard benchmark case in
the software literature. Our approach to the HHS is unique, in our opinion. Some
of the issues that we address in a comprehensive manner are:

• Integration of HHS with process-control terminology (from Chapter 6)
• Benchmark previous analyses of HHS (Booch, Hatley and Pirbhai)
• Thorough description of behaviour with use cases
• Integration of the PAC model with use cases.

Furthermore, we have used HHS as a reference model for new systems. We can
employ a form of analogical reasoning to ‘morph’ HHS into the current system under
discussion. This is easier than approaching the analysis of HHS using traditional
object-oriented technology and its related methods such as using nouns for classes,
CRC cards and so on. Our approach is better because we have decomposed HHS
into loosely coupled systems and each system encapsulates a difficult and volatile
design decision. Furthermore, we have integrated this approach with the object
paradigm.
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2.4 RESOURCE ALLOCATION AND TRACKING (RAT)
SYSTEMS (CHAPTER 7)

The main added value of the RAT category is that it provides us with a model for
registering and tracking entities in a system. It must be possible to query the status
of the entity at all times. The primary input to RAT systems is some kind of request.
The core process produces status information and the main activities are:

• Register and verify the request
• Assign resources to execute the request
• Monitor the status of the request and present this to stakeholders.

RAT systems occur in many industrial and business applications and we consider
the RAT category to be one of the most important categories in our repertoire. We
now summarize the specific RAT instances that are discussed in this book.

1. Help Desk System (HDS) (Section 7.3.1)
This is a good prototypical instance of a RAT category and it contains enough infor-
mation to allow us to generalize it to other applications. We discuss the viewpoints
and requirements of a number of stakeholder groups. Furthermore, we create a con-
text diagram for HDS that is able to support stakeholder requirements and that can
be used as a prototype for other applications in the same category.

2. Discrete manufacturing (Section 7.3.2)
This real-life problem discusses the process of trimming and forming computer
chips once they have been manufactured. To this end, pallets of chips are loaded
into a machine, the chips are trimmed and formed and finally unloaded. There is a
clear tracking metaphor in this problem.

3. Tracking systems in financial risk management (Section 7.11)
This is a large system in general but there is a strong tracking element and this is
modelled as a number of ‘layered’ RAT systems. One layer tracks real-time market
data, the next layer tracks individual portfolios, while the highest-level layer tracks
all portfolios in an organization.

4. Elevator Control System (Chapter 13)
We devote a chapter to this problem. We discuss how the RAT category is a good fit
to this problem. We analyse the problem as three loosely coupled RAT instances, one
for elevator reservation (by would-be passengers), the second for elevator utilization
(by passengers) and finally a RAT system that is responsible for the actual scheduling
and dispatching of physical elevators.
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A thorough discussion of goals, processes, stakeholders and requirements is given
in this chapter and we document these artefacts using the standard templates as
discussed in Chapter 4.

5. Order Realization System (ORS) (Chapter 14)
This is a RAT instance that is embedded in a Lifecycle Model (LCM). We create
the context diagram for ORS in order to reduce scope and risk. Furthermore, we
show how to construct a PAC model for ORS and we integrate this model with
the requirements and use cases. We also discover a number of critical classes in
ORS and we document them using UML. Finally, we discuss how ORS should be
designed and we place particular emphasis on database design and how the software
components actually communicate.

6. Rent-a-machine (Section 10.3)
This is an application from the retail industry. We wish to track the whereabouts of
a machine that is rented from a garden centre.

2.5 MANUFACTURING (MAN) SYSTEMS (CHAPTER 8)

This category defines applications where there is a clear idea of creating products
and services. In general, a MAN instance creates a product from raw materials. This
is the core process and its activities are:

• Process and check raw materials
• Convert raw materials to ‘half-products’
• Package and dispatch half-products.

There is a clear idea of procuring raw materials, designing a product based on these
materials and packaging the product for different kinds of customers. We are not
interested in tracking the manufacturing process as such (this is done by a RAT
system), nor in historical information concerning the product (this is done by a
MIS system). We could say that a MAN is a MIS or a RAT without memory; in
other words, we create a product but we have no historical data on it and we do
not know how, when or by whom it was created. Of course, complementary RAT
and MIS systems will be needed in real applications if we do wish to model these
requirements.

The MAN category is needed by other applications because we must first create
objects before we can do something with them.

1. Reference models in manufacturing domains (Section 8.2)
Models for manufacturing processes are well known in the literature. We use these
models to describe and document the MAN category. We note that there are many
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flows in MAN systems, for example material, cost and information flows. We must
model these flows.

2. Compiler construction (Section 8.3.1)
This is probably the prototypical MAN instance. Compiler models are well docu-
mented in the literature.

3. Graphics and CAD applications (Section 8.3.2)
These are applications that create entities that are then displayed on a screen.
The raw input data is usually an ASCII or binary file that describes graphics
objects.

4. Human memory models (Section 8.3.3)
These are models that describe how long-term memory works and how we remember
events based on sensory perception. We see this problem as a MAN instance because
we are interested in how long-term memory is created and stored.

5. Rent-a-machine (Section 10.3)
This is a lifecycle model and it has an ‘embedded’ MAN component. In this case
we create a basic request object. This object will then be assigned to resources in
an upstream RAT system.

6. Tracking plastic manufacturing processes (Section 16.3)
This is a lifecycle model and it has an ‘embedded’ MAN component. In this case we
create a basic request object. This object will then be assigned to certain resources
in an upstream RAT system.

We note that there are many similarities between this problem and Rent-a-machine;
in the latter case we are tracking rented machines while in the former case we are
tracking a customer request for a supply of processed plastic film.

2.6 ACCESS CONTROL SYSTEMS (ACS) (CHAPTER 9)

This class of applications includes security systems and systems where controlled
access to valuable resources must be defined. These systems are well understood
because there are many reference models for them. There are two main processes
in ACS systems:

• Authorization: securely identifying principals
• Authentication: controlling which principals can execute which operations on

which resources.
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The main activities in the Authentication process are:

• Accept a request from a subject to gain access to an object
• Check whether access is allowed
• If successful, execute the request on behalf of the subject.

ACS systems are ‘helper’ systems for other applications because they realize require-
ments such as Security (a sub-characteristic of Functionality) and to a lesser extent
Reliability.

1. The Reference Monitor model (Section 9.3.1)
This can be seen as the original model for this class of problems. We can learn a
lot about ACS systems by looking at the model and its corresponding architecture.
We have modified this model to suit an object-oriented context. In particular, we
have mapped the architecture in the Reference Monitor model to a context diagram
in ACS.

2. Security issues in Web applications (Section 9.10.1)
Here we give a short description of some modern versions of the Reference Mon-
itor model from Section 9.3.1, including role-based access mechanisms that we
conveniently document by an UML class diagram.

3. The proxy design pattern as a special ACS system (Section 9.10.2)
We subsume the well-known proxy pattern under the ACS banner. In particular, the
different kinds of proxy as described in POSA 1996 are discussed in relation to the
ISO 9126 quality characteristics.

4. Drink Vending Machine (Chapter 15)
A classic! This problem is discussed in many books on software development. We
model the problem as an instance of ACS and we show how our solution compares
well to the somewhat ad hoc approaches taken to analyse this problem. Just looking
for the objects is no longer good enough!

2.7 LIFECYCLE AND COMPOSITE MODELS (CHAPTER 10)

The systems in this category have three components, namely a MAN instance, a RAT
instance and a MIS instance. Lifecycle Models (LCM) are very important because
most real-life applications are in fact composed of multiple lifecycle models.

Many reference models exist for this class of applications. These models have
been standardized and institutionalized in mature disciplines such as retail, manu-
facturing, marketing and oil (where the author got the model).
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1. Product lifecycle in general (Section 10.2)
This is a general discussion of the lifecycle model for any kind of product. The reader
should consult technical marketing literature to understand just how organizations
view this problem.

2. Rent-a-machine (Section 10.3)
This problem discusses the lifetime of a request from a customer to rent a machine
at a garden centre. We sketch the core processes in this system as well as the
context diagram and main activities in each subsystem. Special emphasis is paid to
how customer-defined features (which are always a bit fuzzy) are mapped to more
concrete requirements.

3. Order Processing System (OPS) (Chapter 14)
This is a large chapter that discusses a lifecycle model that tracks a request or
order from the moment that it is created to when it is completed and archived. We
concentrate on the structure of the subsystems and the different kinds of stakeholders
that have their own specific viewpoints on the system.

4. Plastics extrusion (Chapter 16)
This chapter describe how we have applied the LCM to an industrial application,
namely the production of plastic film. We pay attention to defining robust context
diagrams and black-box interfaces between the systems and components in this
problem. Some design topics are introduced to show the reader how the artefacts
from the DDP map to design patterns. Special emphasis is paid to how user-defined
features (which are always a bit fuzzy) are mapped to more concrete requirements.



3 Software lifecycle and
Datasim Development
Process (DDP)

‘There should be as many types of house as there are types of people, and as
many differentiations of the types as there are different people.’

Frank Lloyd Wright

3.1 INTRODUCTION AND OBJECTIVES

This chapter is a summary of the underlying software process that we use when
developing applications using UML and domain architectures. We are really in the
realms of project management and a full treatment is outside the scope of this
book. The Datasim Development Process (DDP) is minimalist in the sense that we
employ those artefacts in UML that we need for the task at hand. It can be seen as
a competitor to the heavyweight Unified Process (UP) that is used for large UML
projects. UP is fine if your organization is large and has a lot of resources to set
up a UP-based application. In general, the author has found UP to be less suitable
for many applications and organizations. This is not to say that the method or the
organization is wrong. What we are saying is that the ‘mix’ is not optimal.

In this chapter we define and elaborate the concept of software lifecycle and how
it relates to domain architectures. We have developed a software process called
DDP (Datasim Development Process) that describes and documents this software
lifecycle. DDP is a lightweight process in the sense that it can be used for software
projects and does not introduce too much overhead. We see DDP as an alternative to
the Rational Unified Process, RUP (see Kruchten 1999 for an introduction to RUP).

In general, a software system is born when a list of system needs and wants is
drawn up. Then high-level features are transformed to more detailed specifications
and eventually to a working system. This is the core process and we describe it as
a network of related activities. Each activity produces artefacts based on input from
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other activities. In this chapter we document this process by describing what these
activities are precisely, what the intermediate and final artefacts are and how domain
architectures are related to them. This will be important when we document domain
architectures and their instance systems in Parts II and III of this book, respectively.
This chapter will give the rationale for why and how we have documented domain
architectures.

Is it possible to use this book without using domain architectures? The answer is
yes because we have developed a defined process that transforms high-level features
into a set of UML artefacts. This chapter describes this process. We assume that the
reader is conversant with UML.

This chapter discusses the following issues. In section 3.2 we give an overview
of the software lifecycle in the DDP and the main activities and artefacts that we
need to understand in order to appreciate the intent of domain architectures. In
Section 3.3 we reduce the scope by focusing on that part of the software lifecycle
that we discuss in detail in this book. Section 3.4 is an overview of high-level busi-
ness modelling, while Section 3.5 discusses a defined process for object-oriented
analysis (OOA) in UML.

3.2 THE SOFTWARE LIFECYCLE

In this section we take a high-level view of the software process by viewing it as a
workflow system. The process is shown in Figure 3.1 as a UML activity diagram.

CRS

Process

Requirements

System
Architecture

UML Artefacts

DD

BPM

FI

RD

AD

OOA

Product Manager

Business Modeller

Requirements Analyst

Architect

OO Analyst

Designer

Figure 3.1 DDP software process.
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The process has a Customer Requirements Specification (CRS) as input and a set
of analysis products (documented as UML diagrams) as output. In general, the CRS
contains a list of features that the system should provide and the analysis products
include artefacts such as UML class diagrams, interaction diagrams, statechart dia-
grams and activity diagrams that describe the conceptual design of the system. The
main activities are:

• Feature Identification (FI)
• Business Processes Modelling (BPM)
• Requirements Determination (RD)
• Architecture Discovery (AD)
• Object-Oriented Analysis (OOA)
• Detailed Design (DD).

Please note that this activity diagram does not include design, implementation or
deployment. Furthermore, the precise details of each activity in Figure 3.1 do not
concern us yet. The most important conclusion at this stage is that there are several
activities that collaborate to create the final product.

The main responsibilities of each activity are:

• FI: Produce an initial list of system features and high-level requirements
• BPM: Find the goals and main business processes in the system
• RD: Find the system stakeholders, their viewpoints and requirements
• AD: Create a context diagram or ‘super’ system map
• OOA: Map the output of RD and AD to UML artefacts
• DD: Create design blueprints and patterns (outside the scope of this book).

The boxes in Figure 3.1 are in fact placeholders and they can be expanded to show
their inner object structure.

3.3 REDUCING THE SCOPE

It is not possible or desirable to discuss all the activities from Figure 3.1 in a book of
this size. We list the activities again and we state to what extent they are discussed
in this book:

• FI: Not discussed in any great detail
• BPM: Very important in this book
• RD: Main concepts explained: integrated into the software process
• AD: Very important in this book
• OOA: Main concepts explained: integrated into the software process
• DD: Not discussed in this book.
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We thus see that the focus is on structural and functional elements; for example, in
BPM we concentrate on scoping the system by determining what its neighbouring
systems are and we also describe how information flows between the systems. Fur-
thermore, the products from BPM will be elaborated and sharpened in AD and it is in
this latter phase that we lay the foundation for an object-oriented analysis. Of course,
we must also pay attention to requirements if we wish to model the behaviour in the
system. Much has been written on the subject of behavioural modelling for object-
oriented systems. We content ourselves by using known results and then aligning
them with our architectural models. This is not a book on requirements determina-
tion although we use the results of other authors (see, for example, Sommerville
and Sawyer 1997).

We give a number of definitions in order to make things as unambiguous
as possible.

Definition 3.1: Software development process. This is a set of procedures, policies
and patterns that a software architect or analyst uses to produce software artefacts.

Referring to Figure 3.1, the current software development process creates UML
artefacts (paper models of a given problem) based on the Customer Requirements
Specification (CRS) (see below). Thus, the input to the software process is a CRS
and the delivered product must be UML artefacts. The process has a number of
major activities and produces several intermediate artefacts that are of interest to
various (developer) stakeholder groups.

We first define the work products in Figure 3.1 and then the activities that use
these products.

Definition 3.2: Customer Requirements Specification (CRS). This is a description
of the main features that the system to be developed should have. Normally, the
product manager creates a CRS document after initial discussions with the customer
and the sponsor of the software project.

Feature Identification (FI) is the activity that maps the experience of initial cus-
tomer interviews to a CRS. A discussion of this activity is outside the scope of
this book.

Definition 3.3: Processes. A process (or business process) is a set of activities that
achieve a specific result for a given stakeholder group. There are three main types
of process: first, a core process produces results for stakeholders external to the
system; second, a supporting process produces results that are visible to internal
stakeholders; and finally a management process is an enabler for core and supporting
process. It does not produce tangible results as such but it provides the ‘go/nogo’
for these other processes. Business process modellers are responsible for creating
the Process artefacts.

Business Process Modelling (BPM) is the activity that maps a CRS to the artefacts
in the Processes product.
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Definition 3.4: Requirements. A requirement is a statement of some capability that
the system must deliver without actually stating how to achieve it. It can also be a
capability needed by the user to solve a problem to achieve an objective. Finally,
a requirement can be a capability that must be possessed by the system in order to
satisfy a contract, standard, specification or other formally imposed documentation.

The Requirements artefacts consist of a description of all the stakeholders, view-
points, requirements and use cases in the system. Requirements Determination (RD)
is the activity that maps the CRS and Processes artefacts to Requirements arte-
facts.

Definition 3.5: System architecture. This is a description of the structure of the
system that realizes the core, supporting and management processes. Each process
will be mapped to a system while the inter-process relationships will be mapped to
logical connectors and interfaces between the corresponding systems.

Architecture Discovery (AD) is the activity that maps the Processes artefacts to
the System Architecture artefacts.

Definition 3.6: UML artefacts. These are the end products of the work in this book.
They contain enough detail to be used as input to a Detailed Design (DD) activity.

Object-Oriented Analysis (OOA) is the activity that maps Systems Architecture
and Requirements artefacts to UML artefacts.

We now list those stakeholders that are involved with each activity in Figure 3.1.
It is important to note that these stakeholders are roles; a person can play dif-
ferent, multiple roles at any given moment in time and a role can be played by
different persons:

• Product manager (PM): create a CRS
• Business modeller (BM): create Processes from a CRS
• Requirements Analyst (RA): create Requirements from Processes and CRS
• Software Architect (SA): create System Architecture from Processes
• Object Analyst (OA): create UML artefacts from Systems Architecture and

Processes.

We summarize the software lifecycle by showing two concept maps for the high-
level activities and detailed activities that we are concerned with in Figures 3.2
and 3.3, respectively. In general, a concept map is a kind of semantic network
that depicts concepts in a given domain as nodes while the edges connecting the
nodes are structural relationships such as generalization/specialization, association
and aggregation. A good introduction to concept maps and the concept mapping
process is given in Novak and Gowin 1985. The present author used concept
maps in the past as a simpler variant of UML and OMT class diagrams (see
Duffy 1995).
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3.4 THE REQUIREMENTS/ARCHITECTURE PHASE IN DETAIL

Figure 3.4 shows the activity diagram for the Requirements process. It consists of
three activities. First, Registration transforms the CRS into a super-system map
that contains the systems corresponding to the core, supporting and management
processes. We must discover and document the viewpoints in a given system. These
are then aligned in activity Assignment with the systems already found. Finally,
activity Presentation transforms these aligned systems to use cases in UML.

A more detailed view of this activity diagram is given in Figure 3.5 and shows
the steps and intermediate products in the core process:

1. Use the CRS to determine the goals in the system.
2. Each goal is realized by several core processes.
3. Map each core process to a system. Decompose each system into its subsystems.
4. Use the CRS to determine the viewpoints in the system.
5. Determine stakeholders and viewpoints.
6. Map viewpoints to requirements. For example, we can discover requirements

using the questions in the Inquiry Cycle model (see Appendix 1).
7. A given requirement is realized by several use cases.

Integrated SystemsSystems

Assignment PresentationRegistration

Use CasesCRS Viewpoints

Chapters 5, 6 Chapter 7

Chapters 1 - 3

Chapter 4 Chapter 4

Figure 3.4 Activity diagram for requirements phase.
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Figure 3.5 Detailed activity diagram for requirements phase.

The next two steps are optional. Both steps are concerned with the alignment of
structure and functionality, albeit at different levels:

8. Align viewpoints and core processes. This is an N:N relationship in general.
9. Align requirements and (sub) systems. The ideal multiplicity between require-

ments and (sub) systems is N:1 because this tactic promotes loose coupling
between the systems.

The postcondition is that all requirements artefacts have been created. We can now
begin with analysis.

We have described steps 1–9 above in a sequential fashion. We hasten to add that
you do not have to execute them in the given order. You may skip certain activities
if they do not add enough value to the artefacts.

3.5 THE OBJECT-ORIENTED ANALYSIS PROCESS

Figure 3.6 shows the activity diagram for the Analysis phase. It consists of three
activities. First, Registration transforms the systems corresponding to the core,
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Figure 3.6 Activity diagram for analysis phase.

supporting and management processes to several Presentation–Abstraction–Control
(PAC) models (for more on PAC, see Appendix 2). These models are then aligned in
activity Assignment with the use cases already found. Finally, activity Presentation
transforms the system specifications to classes, class relationships and statecharts.

A more detailed view of this activity diagram is given in Figure 3.7 and shows
the steps and intermediate products in the core process:

1. The high-level system architecture (the context) is mapped to one or more
detailed architectural models (for example, PAC model or a Layers pattern).
We may be able to discover some candidates for Boundary, Entity and Control
classes here. Life is easier if you are able to categorize the systems in the context
diagram as instances of one or more domain architectures. (This latter activity is
an optimization step.)

2. We map each use case to sequence diagrams. The participating objects are found
from step 1. In general, look for the nouns in the use case text as these will
be candidates for classes. For example, you could use concept-mapping tech-
niques here (see Duffy 1995). Sequence diagrams may also lead to new objects
and classes.

3. We create a ‘precise’ UML model using aggregation, association and general-
ization relationships. Care must be taken with validation efforts, in particular
checking the consistency of classes and sequence diagrams.



32 Software lifecycle and Datasim Development Process (DDP)

Structure Behaviour

Requirements

Use Case

Integration

UML Products (Analysis)

System Decomposition

Module Diagrams

1

PAC model

P
A

C

C
A

P

Sequence Diagrams

Statecharts

Object Interfaces

2

3 4

6 6

5

Figure 3.7 Detailed activity diagram for analysis phase.
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4. Find the input and output messages for each object from the sequence diagrams
in which this object plays a role. A possible optimization step is to standardize
message names and to define object interfaces using already found interfaces and
protocols. Collaboration diagrams are useful in this regard.

5. Create (nested) Harel statecharts for each object based on the input from step 4.
(Harel charts represent and model an object’s run-time attributes.) This is an
optional step; it may be ‘overkill’ for certain types of applications.

6. Integrate the structural sub-processes. In particular, we discover object operations
and the corresponding design-time and run-time attributes.

The postcondition is that all analysis artefacts (such as classes, their attributes
and operations and inter-class relationships) have been created. We can now begin
with design.

We have used the above process during training courses in order to integrate the
different notations in UML into a coherent whole.

We have described steps 1–6 above in a sequential fashion. We hasten to add that
you do not have to execute them in the given order. You may skip certain activities
if they do not add enough value to the artefacts.

3.6 PROJECT CULTURES AND DDP

The DDP advocates an incremental approach to software development with domain
architectures and UML playing the unifying roles. We shall discuss the risks involved
in real-life projects. In particular, we introduce the concept of an organization’s
project style and how it relates to the artefacts in the various phases of the software
lifecycle. For example, some styles are focused on documentation while others tend
to be obsessed with performance. A good discussion can be found in Booch 1996
where five different project cultures have been identified:

• Calendar-driven
• Requirements-driven
• Documentation-driven
• Quality-driven
• Architecture-driven.

We discuss each of these styles in some detail in this section. First, we define what
each style is and we give some possible reasons why organizations use such a style.
Second, we describe what the consequences of using the style are.
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3.6.1 Calendar-driven projects

Calendar-driven projects are projects that are driven by an obsessive focus on sched-
ule. The development team moves from one milestone to the next and all decisions
are based on short-term expediencies. Some organizations use this style in an attempt
to satisfy the customer. The objective is to show the customer some new function-
ality. Little attention is paid to niceties such as process and product improvement,
documentation and creating a stable architecture for future requirements enhance-
ments. The consequences of using this approach are:

• It will not lead to a sustainable business solution.
• The long-term cost of ownership is (very) high.
• It has a high social cost (morale, burn-out).
• The project is driven by short-term expediencies.

It is advisable to look closely at projects that are managed in this way; in particular,
the code that has been written should be retired and not given a lease of life longer
than a year or two! Experience has shown that it is very difficult to maintain and
extend such code. Remember the friendly hint: it takes a lot of money to create
bad products!

3.6.2 Requirements-driven projects

This style is driven by the system requirements (or features, as they are some-
times called) and in particular by the system’s outwardly observable behaviour. The
focus is mainly on functional requirements (because they are observable) and in
this respect non-functional requirements such as scalability, portability and main-
tainability (ISO 9126 characteristics) tend to be forgotten or given a low priority.
All decisions are based on the local needs of each requirement and completeness is
much more important than other issues such as schedule, for example. The project
schedule is allowed to slip as long as the requirement is realized. This style may
not be so bad for stable requirements or requirements that do not change. However,
the style is highly sensitive to requirements perturbation effects; a slight change to
a requirement may signal disaster for the stability of the system. The consequences
of using this approach are:

• There is little motivation to deal with the ISO 9126 ‘ility’ quality requirements.
• Lack of stable architecture: systems are built on shifting sand.
• Each requirement tends to be mapped to one or more physical components.
• It is unsuitable for problems with ‘emerging’ requirements (that is, requirements

that arise when the project has already started).
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A number of organizations have attempted to apply this style to object-oriented
software systems (with disastrous results). Finally, it is not always possible to define
at the outset of a project what all the system requirements are or will be; some
emerge as we gain more insights into how the system really works. This is neither
good nor bad. You cannot avoid or pretend that this eventuality will never happen by
writing a watertight contract wherein all the requirements are embedded in cement.

Some features associated with this style are:

• Some developers believe that there is a 1:1 correspondence between a requirement
and a user screen.

• This style does promote requirements traceability (this is advantageous).
• It is useful for disposable/throwaway applications.
• It is not for long-term projects.

Finally, it is surprising how many organizations still use this style. This may be
for largely historical reasons, because many of those who create and document
requirements had their training in the 1970s and 1980s.

3.6.3 Documentation-driven style

This is a common style that can be found in many organizations, for example gov-
ernment, defence and large commercial organizations. It can be seen as a degenerate
form of the requirements-driven style and the focus is on producing documentation
before the next deadline. The real work has to stop at some time before the deadline
because it is at this time that developers have to down tools and get down to writing
documentation! At this moment in the software development process there are more
writers than programmers in the organization. The big challenge is to determine
which documentation to produce next. This unhappy state of affairs is caused by
management (who in general do not know and sometimes do not want to know
what the software process is). They force programmers to produce documentation
so that they can control the situation. Another misguided vision is that managers
have been led to believe that CASE tools for UML are a must for every project
because, as they have been told, CASE tools increase productivity, programmer hap-
piness, and the general well-being of the organization. The consequences of using
this approach are:

• Development work ceases when nearing a deadline.
• The customer never reads the document anyway!
• Documentation costs may be higher than the software costs.
• This style is a sign of management weakness and insecurity.

If your project is in this category, look out! On the other hand, writing documentation
is good but it should not be the driver in the project.
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3.6.4 Quality-driven style

This style has its own obsessions. In this case, the obsessions tend to be quantifiable
measures for characteristics such as performance, reliability and security. Some
examples are:

• Less than one second of down-time per year
• Mean time between failures (MTBF) is 100,000 years
• Five percent efficiency improvement
• Response time of five seconds.

The focus on these measures is poison for the other ISO 9126 characteristics such
as portability, maintainability and scalability. In some cases it is absolutely essential
that a project satisfies its quality requirements and measures. For example, there can
be no compromise on human safety in an avionics software project. However, some
developers are obsessed with performance in all cases. The consequences of using
this approach are:

• The wrong things are sometimes optimized.
• Redirecting the system to a new focus may be extremely painful.
• All emphasis is on throughput.
• Understandability and changeability will suffer.

Some features of this style are that documentation is usually very prolific, appli-
cations are brittle and optimization is local, which is to say that some components
are optimized while others are not. The style tends to lead to a conservative
mindset; no changes or modifications will take place if they adversely affect the
quality measures.

3.6.5 Architecture-driven style

This is a relatively mature form of project style. The focus is on creating a frame-
work that satisfies all hard requirements and the requirements corresponding to the
core processes. On the other hand, the framework should be resilient enough to
accommodate new requirements. This style attempts to mitigate the shortcomings
of the requirements-driven style. When compared to the calendar-driven style, the
current style tends to optimize for the long term.

Completeness is addressed because users can experiment with different versions
of the system; the style lends itself to incremental and iterative development. As
Booch notes, ‘completeness is in the mind of the end user’, and we should not be
surprised if new requirements emerge as time goes on. A useful tactic is to use the
current style as a stable baseline structure that supports new system requirements.
The consequences of using optimization in the long term are:
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• Immediate time-to-market considerations can still be addressed (there is always
an increment available).

• It supports the construction of adaptable frameworks.
• The frameworks are tuned to suit customer requirements.

We now discuss how to actually realize a stable architecture-driven style using
domain architectures in combination with the Datasim Development Process.

3.6.6 Process-driven style and the DDP

It would seem that the architecture-driven style is the most stable and robust style
for object-oriented development. But is it optimal and should it be replaced by
more flexible solutions? Before we propose a solution, we examine a number of
the (implicit) assumptions underlying the architecture-driven style. First of all, by
‘architecture’ we invariably mean the architecture as perceived by the software
development team. It is not necessarily the way customers view their organization.
It is common to hear IT people speak in terms of the following kinds of (software)
architectures when referring to customer systems (Shaw and Garlan 1996):

• Layered architecture
• Blackboards and repositories
• ModelViewController architecture
• Client–server architecture
• Two-tier and three-tier models.

We must realize that these architectures describe the topology of the systems in
the solution domain. There is no guarantee that this topology is flexible enough to
support existing and future customer needs and wishes. The sad news, however,
is that many software projects start their life when a senior developer proposes
one or more of the above architectures and uses them as the ‘driver’ for all future
development activities.

The two main risks associated with blind faith in software architectures are:

• There is no guarantee that the software architecture is a ‘good’ approximation of
the problem architecture (traceability problem).

• The software architecture will need to change if the hard requirements change.

The first risk is caused by the development team’s failure to align the software
with the problem domain. In particular, an implicit assumption is that a plaus-
ible software architecture will probably be a good approximation to the current
problem. We call this developer risk. The second risk has to do with so-called
requirements volatility; this means that requirements can change. For example, our
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software architecture style was motivated by the vital hard requirements, but what
happens to the architecture if any one of the following situations should occur?

• The hard requirement is no longer a requirement.
• The hard requirement is relaxed (for example, less stringent constraints).
• New and higher priority requirements need to be supported.
• The hard requirement becomes ‘even more hard’.

Each of these scenarios can occur. The main source of risk in this case is the require-
ment itself. In general, requirements originate from a stakeholder and thus represent
a specific view of the system. Creating an architecture based on requirements alone
will lead to specific and brittle solutions. Processes, on the other hand, are more
stable than requirements and less likely to change. This is because processes (espe-
cially core processes) are realizations of system goals and these tend to be less
volatile than stakeholder-based requirements. The rate of change of a requirement
is many times greater than the rate of change of processes or even goals.

We conclude this section with a summary of the advantages of choosing for a
process-based business architecture:

• We have defined a strategy in this book to help us create process architectures
for a wide range of problems (see, in particular, Parts II and III).

• Examining architectures from a process viewpoint leads to stable systems in
general; creating architectures based on hard requirements will not necessarily
lead to software systems that are future-proof. Even worse, this approach could
lead to systems that do not realize core processes.

• There is a good chance that a smooth mapping can be found between the process
architecture and its software equivalent. Traditional approaches tend to equate
architecture with software architecture. An example of the latter is the original
4+1 View Model of Architecture (see Kruchten 1999). This model may have
its uses but it is not suitable for modelling the business domain, in the author’s
opinion, for the simple reason that the vocabulary and jargon are different from
what a customer is used to. One of the challenges for the Object Management
Group, in the author’s opinion, is to define domain architectures and software
architectures, the differences between them and the mappings between them.

3.7 SUMMARY AND CONCLUSIONS

We have given an overview of the software lifecycle according to the Datasim
Development Process (DDP). The main activities, artefacts and workflow are dis-
cussed. We pay special attention to the mapping of business processes to a stable
architecture that is subsequently mapped to UML artefacts.
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DDP is not really new but it is based on common sense, experience and a wish
to make the software development process easier rather than more complicated. IT
people sometimes have the tendency to make things more difficult than need be.

The DDP may be used either in conjunction with domain architecture descriptions
and documentation or as a stand-alone process that we describe in a step-by-
step fashion. We have created a lightweight and customizable process for object-
oriented analysis.

One last remark: we have modelled the processes in Figures 3.4 and 3.6 as
instances of the Resource Allocation and Tracking (RAT) domain architecture type.
This is because we see software development as a tracking problem, in this case
tracking the life of software artefacts as they progress from one software phase to
the next.





4 Fundamental concepts and
documentation issues

‘Just the place for a Snark! I have said it twice.
That alone should encourage the crew.

Just the place for a Snark! I have said it thrice.
What I tell you three times is true.’

Lewis Carroll, The Hunting of the Snark

4.1 INTRODUCTION AND OBJECTIVES

This important chapter introduces a number of key concepts and definitions and
also discusses how we document domain architectures and their instance systems.
In particular, we introduce the following topics:

• The structure of a domain architecture description
• The ISO 9126 quality characteristics
• How to document architectural and analysis artefacts.

In short, this chapter lays the foundations for the other chapters in this book and
should be read carefully. We have tried to be as clear and accurate as possible.

A UML model for the structure of a domain architecture is shown in Figure 4.1
while the ISO 9126 product quality taxonomy is shown in Figure 4.2. A nice project
would be to write a database system that could store the different artefacts in these
figures as well as the relationships between them. In this way we could generate
documentation automatically (including chapters in books!).

Continuing, this chapter defines and documents the following key artefacts:

• Goals and core processes
• Stakeholders and viewpoints
• Requirements and how to document them
• Use cases and how to document them.
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Figure 4.1 Documenting a domain architecture.
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Figure 4.2 Domain architectures and ISO 9126.

This chapter describes the rationale for the chapters in Part II (domain architectures)
and Part III (specific applications). In particular, Part II introduces the five basic
forms (MIS, PCS, RAT, MAN and ACS) as well as one composite type, the Lifecycle
Model (LCM). Part III discusses a number of well-known problems. We base our
style of documentation on how the design patterns movement document design and
architectural patterns (GOF 1995, POSA 1996).

We give guidelines and templates to show how to document the artefacts in the
DDP. The reader can use the results in this book in three different ways: by studying
definitions (in this chapter), by examining classes of applications (Part II), and by
delving into specific and detailed examples (Part III).
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4.2 HOW WE DOCUMENT DOMAIN ARCHITECTURES

Chapters 5–10 describe and document the domain architectures in this book. Each
chapter is structured in the same way in order to promote understandability. We
structure the chapters in Part II using the following template structure:

Introduction and objectives: A general section that introduces the domain architec-
ture and discusses its role in the software development process.

Background and history: This section discusses how the domain architecture was
born, which reference models from other sources influenced it, and its relevance to
object-oriented software development.

Motivational examples: In general we take two examples, one small and compact
and the other larger in scope, in order to show the applicability of the model in a
specific context. We give technical and administrative examples in general, although
this distinction is rather artificial, in the author’s opinion.

Reference models from the past for the given domain architecture: We draw on
experience from the past as a source of inspiration. In particular, we use well-
known models for process control, management information, manufacturing and
access control to help us construct object-oriented models. This process is called
analogical reasoning : comparing our current problem with a problem that we have
already solved and documented. Successful models from the pre-OO era help us
structure our domain architectures.

General applicability of the domain architecture: Having given a number of
examples, we now need to describe the applicability of the domain architecture
in general. We describe the situations where the architecture can be applied. The
reader consults this section to determine whether the checklist questions and answers
fit into her current problem.

Goals, processes and activities: This section describes the main reasons for the
architecture, the objectives and goals. It also describes the main business processes
that realize the goals. Finally, we apply UML activity diagrams to describe the
information flow in the business processes. Emerging classes and class architecture
can be discovered from these activity diagrams.

Context diagram and system decomposition: We describe the system under discus-
sion (SUD) as a black box that is surrounded, as it were, by other systems that
cooperate with it to ensure that its goals can be achieved. The discovery of the
context diagram in real applications is very important because it is a foundation
for the discovery of other artefacts such as stakeholders, viewpoints, requirements
and contractual interfaces between SUD and its satellite systems. Furthermore, it is
an indispensable tool for project managers and risk managers who must determine
project size and risk. Once the context diagram has been found, we decompose the
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SUD into subsystems using the information flow as criterion. Further decomposition
inevitably leads to classes and objects.

Stakeholders, viewpoints and requirements: In this section we list the major stake-
holder and actor groups who receive services from the SUD, deliver services to the
SUD or collaborate with the SUD in some way. Once we have made an inventory
of these groups we can then start thinking about their viewpoints and requirements.
To this end, we consider the ISO 9126 characteristics and sub-characteristics as
good candidates for viewpoint discovery: Functionality, Reliability, Usability, Effi-
ciency, Maintainability and Portability. We note that five of these characteristics
are non-functional and we address these up-front in the early stages of the soft-
ware development lifecycle. Traditional object-oriented technology tends to focus
on functional requirements; in particular, use cases take this approach. For example,
how do you create a use case for an efficient system? To answer the question, one
way is to transform non-functional requirements to functional requirements that are
subsequently realized by use cases.

Use cases: We document those use cases corresponding to the core processes in the
category. We use the standard use case template structure (see Section 4.9) whenever
possible. We have not documented the use cases corresponding to supporting and
management processes, although you should probably do so in real projects. There
has been a lot of hype concerning use cases in the past. We see them as useful tools
for making requirements more explicit.

UML class architecture: In general, we employ the Presentation–Abstraction–
Control (PAC) pattern to help us decompose the SUD into loosely coupled classes
and objects. PAC is not the only model that we could have used and there are other
candidates. We identify Boundary, Entity and Control classes.

Specializations of the domain architecture: This short section gives some examples
of special sub-categories of the domain architecture. A general classification is
an open problem at the moment of writing. In general, we specialize a domain
architecture to produce ‘real’ systems as discussed in Chapters 11–16.

Using the domain architecture with other systems: Enterprise systems are usually a
network of interconnected systems, each system being an instance of one or more
domain architecture types. In this section we give some clues as to how the domain
architecture under discussion fits into such a network.

4.3 CHARACTERISTICS OF ISO 9126 AND ITS RELATIONSHIP WITH
DOMAIN ARCHITECTURES

We wish to model system behaviour at a higher level of abstraction than is pos-
sible with use cases and UML actors. To this end, viewpoint-oriented requirements
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analysis is a suitable solution to the problem. A viewpoint is a perspective taken
by a group of stakeholders. Discovering viewpoints and stakeholders can be a time-
consuming task and we may run the risk of overlooking vital stakeholders and view-
points. There is some hope if we can identify a set of standard viewpoints that can
be applied in each new project. To this end, we propose the ISO 9126 as a candidate.

The ISO 9126 standard (see Kitchenham and Pfleeger 1996) is a description of
a set of characteristics that measures the quality of software products. It consists
of six orthogonal quality characteristics that describe how good a product is. We
discuss them because they are very useful in all phases of the software development
lifecycle (in particular, business modelling and even during design) and not just
in the more solution-dependent stages such as design, coding and maintenance. In
fact, many managers think in terms of these characteristics, albeit implicitly. The
relevance of ISO 9126 to this chapter is that it can be used as ‘testers’ or attention
grabbers to determine whether they are possible candidates for goals, viewpoints
and requirements. Furthermore, each characteristic has several sub-characteristics.
The six characteristics are:

• Functionality
• Reliability
• Usability
• Efficiency
• Maintainability
• Portability

Functionality refers to the capability of a system (in fact, the software that imple-
ments the system) to satisfy user needs. These needs may be explicitly stated but
they can also be implicit. This characteristic has five sub-characteristics:

• Suitability: has to do with functions for specified tasks and their appropriateness
for their tasks.

• Accuracy: has to do with the problem of producing correct and agreed results or
the agreed effect.

• Interoperability: has to do with the ability to interact with other systems. An
important proviso is that the systems are predefined.

• Compliance: refers to whether the system adheres to standards and conventions
such as regulations, domain-related standards and the law.

• Security: has to do with the ability of the system to prevent unauthorized access,
whether it be deliberate or accidental.

Reliability is concerned with how a system maintains a given level of performance
over some given period of time. We must also state the conditions under which the
system performs. This characteristic has three sub-characteristics:

• Maturity: has to do with the frequency of failure in the system. Most failures are
caused by so-called faults.
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• Fault tolerance: refers to the ability of the system to maintain a specified level
of performance. We must specify the duration of time for which that level is
to be maintained. Disturbances compromise this level of performance. These
disturbances are caused by software faults and bad interfaces, for example.

• Recoverability: refers to the capability to re-establish previous levels of perfor-
mance. For example, we could consider the time and effort it takes to recover
information and data after a system crash.

Usability refers to the effort that is needed in order to ‘use’ an application or system.
Of course, there are many kinds of users of a system and each has a definition of
usability. For example, there are both direct and indirect users of the system. It
is important to define what developers, managers and users of the software mean
by usability. This characteristic has three sub-characteristics:

• Understandability: the effort needed to recognize logical concepts and their appli-
cability.

• Learnability: the effort needed to learn the application, for example how often
the user manual is consulted.

• Operability: the effort for operation and operational control, for example backup
and file management.

Efficiency refers to the level of performance and the amount of resources needed to
achieve the performance. This characteristic has two sub-characteristics:

• Time behaviour: this is related to response and processing times.
• Resource behaviour: has to do with the amount of resources needed to perform

functions. This sub-characteristic is also concerned with how long the resources
are held while performing the functions.

Maintainability refers to the effort needed to make specified modifications. These
modifications may include corrections, improvements or adaptation. In general, mod-
ifications are caused by changes in the environment and by changes to requirements
and functionality. This characteristic has four sub-characteristics:

• Analysability: the effort needed for diagnosis or deficiency detection. We wish
to detect the causes of failure in this case and to identify parts of the system
requiring modification.

• Changeability: related to the effort that is needed for modification, fault removal
or environmental change.

• Stability: the risk of unexpected effect of modification. This is the sub-
characteristic that gives managers and project leaders nightmares. Traditional
object-oriented software projects tend to suffer from this problem because of their
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inherent bottom-up approach. The end-result is a tightly coupled set of object
networks that can lead to huge maintenance problems.

• Testability: the effort that is needed to validate the modified software or the effort
that is needed to test it.

Portability refers to the ability of software in a system to be transferred from one
environment to another environment. This includes organizational, hardware and
software environments. This characteristic has four sub-characteristics:

• Adaptability: the opportunity for adaptation of software to different specified
environments. This implies that no other actions should be applied or changes
made.

• Installability: the effort needed to install software in a specified environment.
• Conformance: whether software adheres to standards or conventions.
• Replaceability: the opportunity and effort of using software in place of other soft-

ware in the same environment. This sub-characteristic may also include attributes
of both installability and adaptability.

We give one example here of the interaction between ISO 9126 and domain architec-
tures. We create a matrix comparing the characteristics and architectures. The entries
in the rows and columns tell us that there is a weak (triangle), medium (circle) or
strong relationship (filled circle). By this we mean that a given characteristic may
or may not be important in a given category. For example, in Figure 4.2 we have
placed a ‘strong’ relationship between the MIS category and Functionality because
in MIS applications there is a default requirement for Suitability, Accuracy, Interop-
erability, Compliance and Security (of course, defaults may be overruled if they are
not applicable in a particular situation). This observation is based on (the author’s)
experience with MIS systems but another reader may have different experiences.
You can create and populate your own matrices. However, the advantage of actually
filling in the matrix is that it forces us to define the relationships and we can there-
after defend our decisions. It also acts as a so-called ‘attention director’ and it helps
you remain focused. Just deciding to think about it improves your understanding.

ISO 9126 is concerned mainly with product quality and should not be confused
with the ISO 9001 and CMM standards that are primarily concerned with process
quality. Having a good process does not necessarily mean that your product is good
(or vice versa). Second, it is possible to quantify ISO 9126 in the sense that metrics
can be selected to rate and assess the quality of a product. A metric in ISO 9126
leads to rating levels such as values that are acceptable or unacceptable. This topic
is beyond the scope of this book but metrics are well established in the Quality
Function Deployment (QFD) technique that is used in the automobile industry (for
a good introduction to QFD, see Cohen 1995).

What comes after viewpoints? A viewpoint can be seen as a stakeholder’s expec-
tation concerning the system to be delivered. A requirement, on the other hand,
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is a concrete statement of what the system should do. For example, Security is a
viewpoint taken by the system administrators in a computer environment, while
a requirement could be that all users must enter a password when they log into
a system. In general, we see that viewpoints are less tangible than requirements.
We use the techniques in the Inquiry Cycle model (see Appendix 1) to generate
requirements from viewpoints. In particular, we use the ‘how to realize?’ and ‘what
kinds of?’ questions to deduce requirements from viewpoints.

Each chapter in Part II discusses stakeholder viewpoints based on ISO 9126.

4.4 DOCUMENTING HIGH-LEVEL ARTEFACTS

This book deals with the structural, functional and behavioural views in software
development. We begin with business process modelling and end when we are in a
position to document artefacts using UML notation.

When you read the chapters in Parts II and III you will notice that the artefacts
are documented in a standard fashion. This documentation is in both textual and
visual forms. In fact, a good way to learn how to document is to study the chapters
in Parts II and III.

In the following sections we give pointers to several chapters in Part III where
the reader can find more information.

4.5 GOALS AND CORE PROCESSES

A good source for these artefacts is Chapter 13 (Elevator Control System). Here we
describe two major goals and the core processes that realize them. In general, the
description of a goal artefact consists of the following fields:

• Name and ID of goal
• Short description
• Detailed description
• Value to the organization if the goal is realized
• In what sense is the goal strategic?
• Sub-goals
• The related system.

By filling in these fields you are forced to think hard about why you are developing
a system and what the added value is to the organization.

We discover the business processes by applying the Inquiry Cycle model (Appen-
dix 1), in particular the ‘how to’ and ‘what kinds of’ questions.

Having discovered a business process, we wish to eliminate any misunderstanding
by ‘framing the process’ (as described in Sharp and McDermott 2001; incidentally,
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this book is an excellent introduction to workflow modelling). This means that we
describe the process using a number of attributes. These are:

• The name of the process (using the verb–noun format)
• The event that initiates the process (including a description of input to the process)
• The products/services that the process delivers and the customer who benefits

from these products and services
• Enumeration of between three and six activities that make up the process
• Actors and stakeholders who play a role in the process
• Related processes.

An optional addition is to include information on how the current process works
and how it will be adapted in future releases:

• Assessment of current process performance (the ‘As-Is’ process)
• Performance objectives of the new process (the ‘Should-Be’ process).

In this book we describe a business process using the following fields:

• Name and ID of process
• Process category (core, supporting, management)
• Short description
• Detailed description
• Major input and output
• Related goals
• Processes that the current process depends on.

See Figure 4.3 for a meta model.
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Figure 4.3 Generic model for goals, processes and activities.
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4.6 SYSTEM CONTEXT

This is a visual representation of the system under discussion in relation to its
satellite systems. This diagram is vital and we must create it as soon as possible in the
software lifecycle. Each chapter in Parts II and III has one or more context diagrams.

4.7 STAKEHOLDERS AND VIEWPOINTS

Chapters 13 (Elevator Control System) and 14 (Order Processing System) are good
sources for these artefacts.

In general, we describe a stakeholder as a human or non-human entity that directly
or indirectly benefits from the fact that we are building a system. In other words,
stakeholders can be the external systems that appear in context diagrams. When
analysing systems we must take account of the fact that new stakeholders and
stakeholder groups may need to be modelled in the future. A special subclass of
stakeholders is the class of so-called actors; these are the stakeholders that directly
interface with the current system. The Actor concept is standard in UML and has
gained wide acceptance. However, we must remember that there are non-actor stake-
holders whose requirements must be elicited and analysed, otherwise we will not
have a complete system! A good example of a non-actor stakeholder is the law.
Some examples of stakeholders are:

• End-users, managers and planners
• Engineers and domain experts
• Business processes and related documentation
• Customers, suppliers and external regulators
• Government regulations
• Physical and mathematical models and laws.

In general, we say that stakeholders are all those entities (human and non-human)
that have to do with the processes and activities in the organization’s supply and
value chains. Furthermore, we model not only the external stakeholder groups but
also the ‘internal’ groups of stakeholders who actually perform activities on behalf
of external customers. For example, in an order processing system in a bank, we
have stakeholders in the Front Office, Middle Office and Back Office departments
(see Section 14.4). They also have requirements and they wish to interact with the
current system in a particular way.

In order to manage complexity we group stakeholders into categories. How this
is done will depend on the context. We find it useful to partition stakeholders into
the following categories (see Sommerville and Sawyer 1997):
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• Internal stakeholders (those people who work in the company)
• External stakeholders (external systems in context diagram)
• Domain stakeholders.

Having identified and classified the stakeholders for a system, we need to discover
what services they receive from the current system or alternatively what services they
offer it. To this end, we introduce the concept of a viewpoint. The use of viewpoints
in requirements determination allows us to overcome some of the shortcomings that
have been experienced in a number of projects. Viewpoints reflect the fact that there
are many different ways of viewing a system. These views correspond to so-called
perspectives. Each perspective represents a partial specification that describes what
one particular stakeholder group expects from the system. Alternative synonyms for
the viewpoints concept are:

• Interest in some aspect of the system
• Information processing entity
• Service recipients
• Formal partial specifications.

We can define viewpoint categories (see Sommerville and Sawyer 1997):

• Interactor viewpoint
• Stakeholder viewpoint
• Domain viewpoint.

An interactor viewpoint corresponds to the people and equipment that directly inter-
act with the current system. In fact, these are external systems that play the roles of
clients, servers or collaborators. These are essentially the actor systems in UML. A
stakeholder viewpoint has to do with stakeholders that benefit from the system in
some way. The benefit may be indirect and this type of viewpoint tends to be forgot-
ten in some requirements determination approaches. Finally, domain stakeholders
correspond to enterprise, organizational and domain information. Such viewpoints
are applicable to multiple systems and correspond to constraints in many cases.
Domain viewpoints lead to non-functional requirements and cannot be assigned to
one particular stakeholder. Some examples of constraints are:

• Physical (for example, network performance, propagation time in optical cables)
• Human (e.g. average operator error rate)
• Laws (local, national and international)
• Regulations (e.g. traceable manufacturing process)
• Standards (e.g. the STEP interoperability standard for CAD/CAM systems).

These examples are specific instances of the ISO 9126 characteristics.
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Why should we use viewpoints in the first place? For small systems it is probably
not necessary to find viewpoints; in such cases, an ad hoc use case analysis may
be sufficient. However, it is the author’s opinion that viewpoints are necessary for
enterprise systems if we wish to avoid ‘use case explosion,’ by which we mean that
as a system evolves we are confronted with new use cases that must be integrated
with the current system. In short, we use viewpoints for the following reasons:

• They present a view of one part of the system.
• They allow us to collect requirements from different perspectives.
• They aid in the structuring of requirements elicitation and analysis processes.
• They aid in the structuring and loose coupling of requirements descriptions (e.g.

devoting one section or chapter to each viewpoint).
• They promote traceability (each viewpoint is associated with some stakeholder

and each viewpoint is realized by several requirements).

See Figure 4.4 for a meta model.

4.7.1 Documenting viewpoints

It is important to describe each viewpoint as accurately as possible. We propose a
standard template format consisting of the following fields (based on Sommerville
and Sawyer 1997):

• The name of the viewpoint
• The focus of the viewpoint
• The associated business concerns and goals
• The corresponding requirements
• The source (where the viewpoint comes from).

We discuss what we mean by ‘focus’ (the other fields should be fairly obvious). The
focus is an explicit statement of the scope of the viewpoint and represents its defining
characteristics. No two viewpoints have the same focus but the foci may unfortu-
nately overlap and this leads to inconsistency problems and can be an indication of
potential requirements conflicts. Some examples of viewpoint focus are:

• User requirements
• Call charging and communication security imposed by a telecom regulator
• Electrical constraints imposed on system hardware components
• Safe transportation of goods and people (e.g. elevator in a building).
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4.8 DOCUMENTING REQUIREMENTS

Describing and documenting system requirements is an important part of the duties
of a requirements analyst. In fact, each requirement will be mapped to more concrete
entities such as use cases, sequence diagrams and service interfaces during the later
stages of the software lifecycle. In this section we give a proposal for documenting
requirements. The fields are placeholders that describe what the requirement is,
why it is needed, what the risks are, and so on. The fields in the requirements
description are:

• Name of the requirement and its unique ID
• Related viewpoints (each requirement is a realization or an ‘actualization’ of

a viewpoint)
• Description of the requirement
• Rationale (why the requirement is needed, its reason for existence)
• Source of the requirement (which stakeholders wish to see the requirement imple-

mented)
• Customer Importance Rating (how important it is for the customer to have this

requirement implemented)
• Risk factor (how difficult—technically/politically—it is to introduce the require-

ment into the organization)
• Quantitative description of the requirement.

The last field (quantitative description) is especially useful for non-functional require-
ments (NFRs) and constraints. Examples of NFRs are:

• Response time of five seconds
• Efficiency improvement of 10%.

With NFRs you should always be specific; speak in numbers and the bottom line,
as it were.

4.9 DEFINING AND DOCUMENTING USE CASES

We now review use cases.

A use case is a description of a single interaction session between a system and its external
actor systems. A use case is initiated by an external event and the use case completes when
the last event is sent to or received from an external system. It also describes the actions that
are executed after the first event triggers and before the last event triggers.
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Formalizing things a bit, we propose a template for use case descriptions. The fields
in the template are:

• Use case name and ID
• The actors systems that are involved in the use case
• The preconditions
• A description of the use case in terms of the actions to be executed
• The exceptions to the normal sequence of actions
• The postconditions.

We shall see numerous examples of how the template is filled in later chapters.
We have added two non-standard fields to the template because they improve trace-
ability:

• The related requirement (a requirement is ‘realized’ by several use cases)
• The other concurrent activities that may be taking place while the use case

is executing.

We give many examples of use cases in Part III.

4.10 SUMMARY AND CONCLUSIONS

We have given an overview of how we have documented domain architectures, their
instance systems and the related artefacts. We have created a UML meta model for
the different artefacts and their relationships in Figures 4.3 and 4.4. These diagrams
could be used as input to a software system to manage the artefacts in these diagrams
(for example, by analysing and designing the problems as multiple lifecycle models).

APPENDIX 4.1: A CRITICAL LOOK AT USE CASES

We give a short overview of some of the author’s experiences with use cases. As
often happens in many walks of life, short-term hype and high expectations about
a new product or concept tend to be replaced by a more sober view in the medium
and long term (remember Internet, .com hype and the Information Superhighway?).
Use cases are no exception to this rule, in the author’s opinion.

Viewing the world from the perspective of use case diagrams can engender the
following work processes and assumptions:

• Actors are usually depicted as humans and stick-like figures (who interact with the
system using graphical user interface objects such as dialog boxes). Of course, we



56 Fundamental concepts and documentation issues

can use stereotypes in UML to describe actors if the ‘stick people’ representation
is not to your liking.

• Applying use cases by looking at low-level actors means that we can never be
sure that all requirements have been discovered.

• The current approach is contrary to the concept of core process and multi-
disciplinary workflow. Use case diagrams give no indication of how products
and information actually flow.

• There are several non-standard extensions to use cases in the literature in order to
model large and volatile systems. Current literature is vague on scaling use cases.

• Use cases are suitable for functional requirements (for example, ‘create an order’)
but are of little use in their current form when we wish to model non-functional
requirements, for example reliability, maintainability and usability. Of course,
there are techniques for transforming non-functional requirements to functional
requirements. For example, you could use the standard questions from the Inquiry
Cycle model (see Appendix 1) to generate functional requirements. In particular,
the ‘how to’ and ‘what kinds of’ questions are particularly useful in this regard.

• Use cases result in bottom-up work practices and habits if we don’t watch out.
The end-result is a web of tightly coupled classes in a system that becomes more
and more difficult to modify and maintain as time goes by.

• Use case diagrams are not scalable and impart little useful information. The author
prefers context diagrams because they are well established and in fact are better
front-ends to UML than use case diagrams.

Although we are sceptical about the applicability and scalability of use cases
in the early stages of the software lifecycle, they do have their uses. However,
compared with requirements (which are general and always true), use cases view
a system from a very specific and restricted perspective. We see their usefulness
during the conceptual and detailed design phases, in particular:

• They are invaluable for software testers who can validate and verify against them.
• They can be mapped to objects and messages when we create UML sequence

diagrams during conceptual design (object-oriented analysis).
• They can be used as a communication medium between developers and users/

sponsors if they are documented and presented in a decent way. This last remark
implies that the use case should be documented in user terms and not in terms
of how the developer is going to implement the use case.



PART II

Domain architectures
(meta models)





5 Management Information
Systems (MIS)

‘The next process is the customer; never send defective parts to those in the
following process.’

Kaoru Ishiwaza

5.1 INTRODUCTION AND OBJECTIVES

This chapter discusses applications that we group under the name Management
Information Systems (MIS). This is a well-known reference model and has been
used since the 1970s. All applications in this class collect low-level data from
various sources and then consolidate the data to produce high-level reports and
decision-support information.

If we had to state the essential characteristic of MIS we would state the following:
the core process in all MIS applications is the production of high-level and accurate
information that is presented to a given group of stakeholders.

A word of caution: the word ‘management’ refers to the general problem of man-
aging information in some physical or simulated world. We do not suggest that the
MIS category is applicable only to business or administrative applications. In fact,
whether an application is an instance of MIS is determined more by the data itself
than why or how the data was produced and which stakeholders are interested in
that data. To this end, the examples in this chapter and in this book reflect both
industrial and administrative Management Information Systems.

5.2 BACKGROUND AND HISTORY

We discuss MIS systems based on the traditional IT view from the 1970s. This view
is the basis for an object-oriented solution in later sections. In general, a management
information system (MIS) consists of the following components (see Figure 5.1):
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Figure 5.1 The components of a MIS.

• Permanent Database: this is the database of master and consolidated records that
are updated on a periodic basis.

• Transaction Database: the database of ‘transient’ or transaction records.
• Merge Mechanism: a process for merging transaction records with master records.

In general, transaction processing consists of matching transaction records against
master records and merging, accumulating, replacing or deleting information from
the permanent database. In general, we shall need algorithms to help us create
master records.

• Source: the source containing ‘raw’ data that is transformed into transaction enti-
ties.

• A set of human–computer interfaces to enter and modify transaction data. These
interfaces also allow users and user groups to create reports. Operational, tactical
and strategic user interfaces will be created.

Referring to Figure 5.1 again, we note that the Transaction Database contains
records that have been processed from Source. The incoming data from Source may
be incomplete, incorrect or not relevant to the current system. This incorrect data
is saved in a special error log database and exception reports will be created. The
Permanent Database contains historical data and information pertaining to the or-
ganization as a whole. Data in this database has been aggregated at different ‘levels’
in the organization by the application of various merging algorithms. The Permanent
Database is similar to a Data Warehouse that contains different kinds of corporate
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data. This data is usually highly structured and could play the role of source system
for Decision Support Systems (DSS) and other data mining applications.

We can classify the data in MIS systems into three main groups, namely opera-
tional, tactical and strategic data. Operational data is created from the data entering
the system from Source (in Figure 5.1) and is created, validated and modified by
Front Office stakeholders (see Section 14.4). Tactical data, on the other hand, refers
to data that is of interest to Middle Office stakeholders. Finally, strategic data is
created from tactical data by applying aggregation rules and algorithms. This data
is of interest to stakeholders such as planners, procurement officers and fund-raising
departments.

We can discover requirements and use cases from these processes. In general, the
most important business concerns are to maintain master records in the most current
state and to retain historical information on transaction lifecycle.

An important activity for requirements and data analysts is to define and docu-
ment the lifecycle of operational, tactical and strategic data and the relationships
between the data. This is a topic to be addressed during requirements elicitation and
requirements analysis.

5.3 MOTIVATIONAL EXAMPLES

In order to motivate what a MIS domain architecture is, we give two examples.
The first (toy) example illustrates a number of concepts. It also helps the reader to
understand MIS systems. The second example is large and complex and gives an
indication of the possibilities in general.

We discuss a real-life administrative example in Chapter 11, namely resource
tracking with the Manpower Control (MPC) system.

5.3.1 Simple Digital Watch (SDW)

This is a ‘toy’ example that can be generalized to non-trivial applications. We discuss
a model for a digital watch system. When viewed as a black box, SDW receives
pulses from an external clock. Pulses arrive every second. The time is displayed
in hour:minute format, for example on a light-emitting diode (LED) device. It is
possible to change the time by using two special buttons: the A button allows the
user to switch modes and the B button increments hours or minutes. It is possible
to define the type of watch, for example whether the watch is a 24-hour or a
12-hour watch.

SDW is an example of a MIS category because it displays information in a form
that the user can understand. Furthermore, the user can take action based on the
output that the SDW produces.
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The core process is to display the current time in the current time zone. The time
should be accurate. The main activities in the core process are:

• A1: Accept pulses, convert pulses to minutes
• A2: Add a new minute to the current time (using an algorithm)
• A3: Display the new current time.

We paraphrase the core process as follows:

When the SDW is turned on for the first time, the current time is initialized to 00:00 (midnight)
and SDW starts accepting pulses (one pulse per second). When 60 pulses have been processed
we know that a minute has elapsed. Then the first minute is added to the current time; the new
time is 00:01. This time is then displayed on the light-emitting device (LED). The counter that
represents the number of accepted pulses is then initialized to zero and the process starts all
over again.

There are a number of supporting and management processes in the SDW system:

• Start SDW
• Set the time to a new value
• Change the time zone
• Choose a new display type (analogue instead of digital)
• Define special times and their associated actions (e.g. wake-up call)
• Use a stopwatch facility in SDW
• Shut down SDW
• Choose a 12-hour or 24-hour clock.

The reader might like to describe these processes using text and activity diagrams.

5.3.2 Instrumentation and control systems
This section is quite technical and may be skipped on a first reading. Strangely
enough, however, understanding this problem helps us gain insights into other MIS
systems. Nonetheless, it is a MIS instance because it has the same context, core
process and activities, even though the jargon may be a bit strange for some readers
who are not familiar with this specific domain.

The general situation is described as follows: a physical quantity from some
device is converted to another form and then displayed on a recording device. We
are thus in the domain of instrumentation and in this case we document problems
in this domain by a three-block diagram as shown in Figure 5.2. This represents a
measuring system. The functional elements are:

• Transducer
• Signal conditioner
• Recorder (or indicator)
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Figure 5.2 Block diagram of a basic measuring system.
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Figure 5.3 Representation of a typical transducer.

The transducer is an energy converter. It receives the physical quantity being mea-
sured (sometimes called the measurand) and converts it into some other physical
variable. In general a transducer can be further decomposed into a sensing element
and a conversion or control element. An example is shown in Figure 5.3.

Most recorders have a transducing element as their input followed by some further
signal processing. The recorder is the component that provides the results or products
of the measurement. The difference between a recorder and a display is that the
former produces a permanent record of the signal while the display unit does not.

The reader might like to consider whether this example is really a MIS instance
by finding parallels between the entities (activities and objects) in Figure 5.1 and in
this section. In this way we can determine whether the MIS category is a good fit
for instrumentation and control systems.

5.4 GENERAL APPLICABILITY

The MIS category is applicable in situations where stakeholders are interested in
receiving high-level information. This information represents filtered and consoli-
dated data. Based on this data, it is possible to gain insights into how an organization
is functioning and to make decisions.

We give a list of some keywords and special terms that arise when discussing MIS
systems. As analyst, you should actively listen to customers and other stakeholders
because the vocabulary that they use will give you hints on how to develop a system.

• Transaction data, consolidated/aggregated/merged data
• Master records, data warehouse
• Multi-dimensional data (data is seen as a point in N-dimensional space)
• Reporting options (ad hoc, periodic, summary, exceptional)
• Scheduled versus used resources
• Data mining and ‘drilling’ in the multi-dimensional database
• Capacity planning, trending, moving averages
• ‘What-if’ and sensitivity analysis scenarios.
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This list can be used as a check to determine whether stakeholders use the above
jargon and vocabulary.

5.5 GOALS, PROCESSES AND ACTIVITIES

The main goals and business concerns in this category are to provide (senior)
management and other decision-makers with information concerning the status of
resources in some physical or simulated environment. The information should be
accurate and usable. The main core process produces this decision information by
aggregating low-level, ‘noisy’ and possibly incorrect data from various sources. The
main activities in the core process are:

• A1: Register and validate incoming data from different sources
• A2: Merge data into higher-level information
• A3: Report and present information to decision-makers.

The core process and its activities are shown in a ‘combined’ activity diagram in
Figure 5.4. Each activity (Registration, Merging and Reporting) connects input to

Transaction Data

Transaction
Objects

Registration Merging Reporting

High-Level
Objects

Figure 5.4 Combined activity diagram for a MIS.
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output. Each rectangular box is a cohesive unit and contains objects. For the moment
it suffices to describe each data type in Figure 5.4 as a one-liner:

• Transaction Data: noisy transaction data from various sources
• Transaction Objects: correct and validated transaction objects
• High-level Objects: merged, aggregated or consolidated data
• Decision-support Data: various presentations of consolidated data.

In general, these entities are documented as networks of classes where the nodes in
the networks are classes and the node edges are modelled by association, aggregation
and generalization relationships in UML. This is where traditional object-oriented
analysis begins life: find the domain classes and application classes and create UML
class diagrams using them.

5.6 CONTEXT DIAGRAM AND SYSTEM DECOMPOSITION

The context diagram for a MIS category is shown in Figure 5.5. The Transaction
Database is the source of all primary input data. This data must be checked for
completeness and against organizational rules (these rules are defined in the Or-
ganization system). Basic transaction objects are created from the transaction data.
The DSS Systems (Sink) are the recipients of the high-level data and other infor-
mation. These client systems use this information for capacity planning activities,

MIS

Reference/Schedule
System

Sink
(DSS/Historical

Information)

Organization

Permanent
Database

(consolidated data)

Transaction
Database

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

Figure 5.5 MIS environment (context diagram).
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goal setting and statistical analyses. The Reference/Schedule System is a collab-
orator system that contains target (scheduled) values for each kind of transaction
data that enters the system. This system advises MIS on what the scheduled values
should be (it is usually a RAT instance in its own right because it is interested in
resource allocation issues). The Permanent Database contains consolidated data for
both actual and scheduled values. We sometimes use the synonym Data Warehouse
instead of Permanent Database when it suits us. It contains multi-dimensional data.
Finally, the Organization system classifies the data that enters the MIS system. For
example, it has data models that describe the functional units and stakeholder groups
in an organization and the relationships between them.

System decomposition in MIS is based on the activity diagram for the core process
as in Figure 5.4. In this case we discover three main subsystems:

• Registration: accept and process transaction data
• Merging: create and store high-level data
• Reporting: presentation options.

The top-level MIS system is an aggregation containing these three subsystems. We
summarize the responsibilities of the subsystems as follows.

The responsibilities of Registration are:

• Determine whether it is allowed to process transaction data
• Process transaction data (from different sources)
• Check for invalid data
• Create a log file of invalid data
• Operational reports.

The responsibilities of Merging are:

• Determine which transaction objects may be merged with the permanent database
• Merge, replace, delete information from the permanent database
• Create a log file of invalid information
• The facility to modify accumulated information (under access control restrictions)
• Reports (for example, medium-term and department-level status reports).

The responsibilities of Reporting are:

• Trending analysis using the Permanent Database (e.g. project post-mortems)
• Contingency planning: early warning of impending disasters or bottlenecks
• Decision-support functionality.

We now describe the information flow between MIS and its satellite systems as
shown in Figure 5.5.
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1. Accept and create transaction data.
2. Classify transaction data: create transaction objects.
3. Check transaction objects against schedules.
4. Update the permanent database system.
5. Notify interested clients that reporting is possible.
6. Create reports and decision-support information.

Each of the above flows has a sender and a receiver. We are not yet concerned
with how or when these activities are realized. This will be discussed in Section 5.8
when we discuss the UML analysis classes.

A good way to visualize the above flow between the systems in the context
diagram is by using collaboration and sequence diagrams.

5.7 STAKEHOLDERS, VIEWPOINTS AND REQUIREMENTS

In general, there are three main stakeholder groups. Each group has its own view-
points and requirements. There is a close relationship between the context diagram
and stakeholders because in general we can state that each stakeholder group is
represented by a system. The three main stakeholder categories are:

• Operational group
• Tactical group
• Strategic group.

Each group has its own specific duties and activities. The responsibility of the
Operational group is to process incoming transaction data. The Tactical group is
responsible for defining threshold values and resource usage status. Finally, the
Strategic group is responsible for the interpretation of the high-level output from
the MIS system and for taking decisions based on that output.

Some specific stakeholders in the above categories are as follows.

• Operational group
— Front-office data operators
— Suppliers (where transaction data originates)
— Customer liaison personnel and contacts

• Tactical group
— Line managers
— Department heads
— ‘Medium-term’ planners (interested in events in coming weeks)
— Business rules
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• Strategic group
— ‘Long-term’ planners, project leaders (interested in events in coming years)
— Senior management
— Customers
— Shareholders.

Each stakeholder group has its own viewpoints. In particular, individual stakeholders
in a given group will share the same viewpoints. We use the ISO 9126 characteris-
tics as viewpoint candidates in the MIS category. We cannot say in general whether
a given characteristic is important because each specific system is different and
stakeholders may or may not find the characteristic important. However, we should
examine each characteristic in turn and determine whether it is relevant to a given
stakeholder. To this end, we could create an ‘importance matrix’ with rows repre-
senting stakeholders and columns representing the ISO 9126 characteristics (or their
sub-characteristics). The matrix entries contain the level of importance of a given
characteristic to a given stakeholder; normally, we use the QFD values high, medium
or low. We give an example in Figure 5.6. The default values are for guidance only
and you may find that they are not applicable in your particular situation. Cells
containing no value indicate either that we are not sure whether the characteristic
is relevant to a stakeholder or that it is definitely not relevant. In either case, the
requirements analyst should clarify why no value was given. By all means, replace
or modify the values in Figure 5.6 with your own values if it is appropriate for your
specific application! We thus use Figure 5.6 as a guide during requirements analysis.

Having discovered the main viewpoints, we attempt to find the most important
requirements and use cases in MIS systems. In general, those viewpoints that are
most important for a given stakeholder group will lead to the high-priority require-
ments and eventually the architecturally important use cases. We can apply the
Inquiry Cycle model questions to discover requirements from the viewpoints. Let
us take an example from Figure 5.6, the viewpoint ‘Reliability’ as seen by the
Operational group. The main questions and some answers are:

• What does Reliability mean for the Operational group?
— That no data gets lost
— That the program does not crash

Functionality Reliability Usability Efficiency Maintainability Portability

Operational

Tactical

Strategic

Figure 5.6 Stakeholder viewpoints.
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— That we can recover from the consequences of incorrectly entered data (for
example, using some kind of rollback operation)

• What kinds of Reliability?
— Reliability of the MIS system environment in general
— Reliability of transaction data
— Reliability of communication with other systems and stakeholders

• How to achieve Reliability?
— Save and restore procedures
— Input validation and filtering
— Standard communication protocols and formats.

Each answer is a potential requirement that should be elaborated by the requirements
analyst during Requirements Elicitation. It is possible to discover more requirements
by examining all the viewpoints for all stakeholder groups.

5.8 UML CLASSES

We describe the class architecture of MIS systems. The UML class diagram is shown
in Figure 5.7. Each subsystem has three layers. We have attempted to standardize
the names of the different layers. The most important names to standardize are the
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Figure 5.7 UML analysis classes for MIS.



70 Management Information Systems (MIS)

Control and Boundary objects because these are the objects that communicate with
other subsystems. We describe each of the layers in Figure 5.7, beginning with the
Boundary layer. We distinguish between those Boundary objects that communicate
with the server and collaborator systems on the one hand (namely Acceptor, Viewer
and Dispatcher) and the Boundary objects in the World Interface layer that com-
municate with client systems of the current MIS system on the other hand. The
responsibilities of the Boundary layers (including their relationships with the exter-
nal stakeholder systems) are:

• Acceptor
— Processes and filters incoming transaction data
— Communicates with Transaction Database, Organization and Reference sys-

tems
— Provides data to Transaction layer
— Acknowledgements to Transaction Database

• Viewer
— Provides UI functionality for consolidated lifecycle data
— Communicates with Transaction Database, Organization and Reference sys-

tems (so that data can be consolidated)
• Dispatcher

— Sends formatted consolidated data to external client systems
— Some UI functionality to (pre)view consolidated data

• World Interface
— Sends high-level formatted data to external client systems
— User and remote interfaces for the presentation of high-level data.

There are four Entity layers in this problem. We distinguish between Entity classes
that are specific to a subsystem (Transaction, High-Level Data and Formatter) and
those objects in the top-level agent in Figure 5.7. The discovery and documenta-
tion of these objects (and the corresponding classes) belongs to the object-oriented
analysis phase of the software lifecycle. We discuss this model in more detail in
the case of a specific application in Chapter 11, namely the Manpower Control
(MPC) system.

5.9 USE CASES

We have shown how to discover requirements in Section 5.7. Another application
of the Inquiry Cycle model allows us to deduce use cases for MIS systems. For
example, we can apply the ‘how to’, ‘what kinds of’ and ‘what if’ questions. Let us
examine two requirements from Section 5.7, namely ‘R1: Save and restore proce-
dures’ and ‘R2: Input validation and filtering’. We recall that these were realizations
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of the Reliability viewpoint. The first requirement, R1, can be realized by several
technology-independent use cases:

• Save transaction data to permanent store
• Restore transaction data from permanent store
• Save incomplete transaction data to permanent store
• Restore incomplete transaction from permanent store.

The second requirement, R2, has the following use case realizations:

• Filter out incomplete transaction data
• Validate transaction data
• Create transaction objects.

We can discover more use cases for all the requirements by applying the standard
Inquiry Cycle model questions.

In general, it is possible to discover ‘strategic’ use cases for a system by asking
ourselves how we would realize the core processes in a system. These are the so-
called ‘architecturally important use cases’ (see Jacobson et al 1999 where this term
is introduced). This form of serendipity is not just restricted to MIS applications
but it is a pattern: each core process leads to a number of very important use cases.
In the case of MIS, we have seen that the core process has to do with the produc-
tion of decision-support information and that it has three main activities, namely
Registration, Merging and Reporting. A dedicated use case realizes each activity.
Furthermore, each use case is decomposed into more manageable and system-bound
sub-use cases. For example, the use case ‘Register Transaction Data’ realizes the
Registration activity and has sub-use cases:

• Accept and filter incoming transaction data
• Validate and create basic transaction entities (objects)
• Dispatch and notify clients of transaction entity creation.

These use cases can (and should) be documented using the standard use case tem-
plate.

5.10 SPECIALIZATIONS OF MIS SYSTEMS

The MIS category models applications that process low-level data and transforms it
into high-level decision information. Is it possible to refine the classification to get
specializations of MIS? The answer is yes but we are still faced with the problem of
how to cluster sets of applications into more specific MIS categories. Our suggestion
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at the moment of writing is to create MIS sub-categories based on major business
domains, for example:

• C1: Telecommunications (e.g. call handling systems)
• C2: Financial Engineering (e.g. sell/hold/buy an option on stock)
• C3: Logistics, Marketing and Sales (e.g. report on sales of products)
• C4: Engineering of all kinds (e.g. Finite Element Method (FEM) and other sim-

ulation programs)
• C5: Resource, Project, Risk, Quality and Facility Management environments.

Of course, only parts of the above domains and applications in these domains that
model high-level data will be MIS instances. Life is more complex than just hoping
that you can cram everything into one system.

Chapter 11 deals with an instance system in the category MIS::C5, namely a
system that monitors the resource usage in engineering projects. This is achieved
by creating reports that show how used hours fare when compared with the initially
scheduled hours.

The next subsection deals with an instance application in the MIS::C4 category.
This is a simulation application that calculates noise levels in petrochemical plants
and its main goal is to produce high-level decision information for health inspectors
and local authorities.

5.10.1 Example: Noise control engineering

We give an example of a (somewhat) technical instance of a MIS category. We
do this for two main reasons; first, to show that the MIS type can be applied
to industrial and scientific applications, and second, to improve understandability
of such applications by associating them with the defining characteristics of the
MIS category.

We are interested in developing a software system that models the amount of
noise produced in an industrial plant (for example, a chemical plant) consisting of
motors, pumps, compressors and other noise-producing equipment. It is important
to know what the noise levels will be in order to protect the hearing facility of site
workers and those people who live and work in the vicinity of the industrial plant.
Temporary loss of hearing sensitivity may occur if people are exposed to intense
noise for a few hours. Recovery usually occurs after a sufficiently long rest. Even
more seriously, it is possible that those exposed to intense occupational noise during
the working day for a matter of years will not be able to recover before the next
exposure. Permanent ear damage results and is indicated by dullness of hearing and
tinnitus (a kind of high-pitched ringing in the ears).

The system to be built is called the Acoustics Data Lists (ADL) system and the
main goal is to ensure the safety of those people who are in close proximity to the
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industrial plant. In particular, we wish to produce permanent reports and real-time
displays depicting noise levels at the plant. The plant is partitioned into a number
of units (for example, a boiler room) and each unit consists of specific equipment.
This partition allows us to create reports at different levels. For example, we can
determine what the noise levels are for the plant as a whole, while it is possible
to execute ‘what-if’ scenarios by calculating the noise contribution of a specific
unit in the plant. Speaking mathematically, we wish to calculate the sound power
levels (SPL) of each piece of equipment. SPL is a measure of the sound pressure
emanating from a source and impinging on the human ear. SPL values are measured
in decibels (dB). Noise is caused by sound radiation and emanates from the surface
of vibrating machines. The region close to a machine is called the near sound field,
while further away from the machine (in the so-called far field) the contributions
from the different sources coalesce smoothly; in this case the effect is to produce
sound that seems to come from a single source.

Who are the stakeholders in this system? Obviously, the people who work or
live in the vicinity of the industrial plant are the most important group. Their main
viewpoint is safety and everything must be done to ensure that they do not suffer
temporary or permanent ear damage. The other stakeholders are:

• The law/lawyers and doctors: all plants must subscribe to standard noise legis-
lation. Failure to do so results in court cases, litigation tribunals and other legal
proceedings.

• Noise engineers: engineers who are able to determine what the SPL levels are in
a plant and how to reduce these levels.

• Architects, acoustic consultants and layout planners: specialists who design a
plant.

Some important requirements in ADL are:

• SPL reports for plant, units and equipment
• Reduction of noise to a given level
• Prohibition of noise increase without consent
• Standards and certification
• ‘What-if’ scenarios and their related requirements; for example, what if a new

piece of equipment is added to the plant?

We conclude this section with a discussion of the context for ADL. It is a spe-
cialization of the context diagram for a general MIS category as already shown
in Figure 5.5. We discuss each external stakeholder system in turn. The Transac-
tion Database in this case consists of multiple sound level meters. It consists of a
microphone, amplifier and a meter. The microphone converts sound pressure waves
into electrical voltage fluctuations that are amplified and that operate the meter. The
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Schedule System describes the target noise level values. The Organization System
contains the description of the physical entities in ADL, for example a plant consists
of units and a unit consists of various pieces of equipment. It also contains informa-
tion on operating characteristics for each piece of equipment. The Data Warehouse
System contains multi-dimensional data pertaining to the system. For example, this
system contains historical SPL data on each piece of equipment (for example, near
field and far field regions). Finally, the Sink System is responsible for the presen-
tation of SPL data in different formats. Each stakeholder group will have its own
presentation requirements.

We have not discussed the precise mathematical details of the algorithms for the
calculation of SPLs. These, however, correspond to the merging and conversion
algorithms in the MIS category.

We now summarize how the context diagram in Figure 5.5 is specialized for the
current problem by looking for the similarities between the ADL and its fitting by
a MIS category:

• Transaction Database ↔ Sound level meters
• Organization ↔ Operating characteristics of physical equipment
• Permanent Database ↔ Data for equipment usage
• Reference/Schedule ↔ Target/acceptable noise levels
• Sink ↔ SPL presentation information
• Algorithms ↔ Algorithms that calculate noise levels

We see that fitting this problem to a MIS category is feasible. You can apply a
similar form of analogical reasoning to your own applications.

For an introduction to the mathematics of acoustics and noise we refer the reader
to Kinsler et al (1982) and Smith et al (1985).

5.11 USING MIS SYSTEMS WITH OTHER SYSTEMS

It is possible to build large systems by combining MIS instances and instances of
other domain categories. This general statement must be made more precise. To this
end, we discuss some possible scenarios:

• S1: MIS as a client, server or collaborator of some other system
• S2: Typical relationships between MIS and other domain architecture types
• S3: How viewpoints and requirements lead to new satellite systems.

Scenario S1 is concerned with the issue of linking a MIS system with some other
system. We need to know why, when and how this linking takes place. The main
reason for the linkage can be ascribed to three main relationships:
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1. The MIS is a client of another system and receives its transaction data from it.
2. The MIS is a server system for some other system. For example, the Acoustics

Data Lists system that we discussed in Section 5.10.1 is a MIS instance. We could
define a new client system (of the PCS type) that ‘listens’ to ADL for noise levels
above a certain threshold value and warns an operator if such a value has been
exceeded. The operator can then take action by warning personnel at the plant,
for example. Thus, the PCS system is a client of ADL.

3. A MIS system can act as a collaborator or reference system for other systems
that need data and information from it. For example, a decision support system
could consult a MIS system by tapping in on the consolidated data in the Data
Warehouse System.

Scenario S2 has to do with some emerging patterns that arise when modelling
large systems. Some general guidelines and patterns can be documented based on
the author’s current (and incomplete) knowledge. We give some typical examples:

• A PCS system sends data to a MIS system for trending and aggregation
• A MIS system sends ‘escalation’ data to a PCS system
• A RAT system sends tracking data for a resource or entity to a MIS system
• A MAN system produces transaction data and sends it to a MIS system
• An ACS system is a front-end system to a MIS system (authentication, security)
• MAN, RAT and MIS systems are aggregated to form a lifecycle category.

A good way to see how systems interoperate with a MIS system is to examine
the latter system’s context diagram. We should then ask ourselves the question: in
which domain category does each satellite system in Figure 5.5 belong?

Scenario S3 deals with how viewpoints and requirements can lead to new satel-
lite systems. Let us take an example to show what we mean. Suppose that senior
management has the viewpoint ‘Security’ (in particular, the security of data and
programs). To this end, they wish all access to the MIS system to be secure. Some
users have read and write access to transaction data (the front office), others can
view consolidated data (but may not modify it) while others (the ‘super users’) have
full access to all data in the MIS system. Then, this viewpoint forces us to create
one or more front-end ACS systems that users must log into before they can use
the data and programs in the MIS system. In general, we use the ISO 9126 quality
characteristics as good candidates for viewpoints and we give some indications on
how new satellite systems emerge as soon as we demand that a MIS system should
‘support’ a given viewpoint. This viewpoint will generate new requirements. Some
general rules in the context of MIS are:

• Functionality
— Accurate algorithms for data consolidation



76 Management Information Systems (MIS)

— Ability of MIS system to interoperate with other systems
— Front-end security systems to MIS system

• Reliability
— Recoverability from system crashes
— Ensuring that all consolidated data is stored and made persistent
— Fault-tolerant transaction processing; transaction rollback

• Efficiency
— New systems to monitor core processes
— Efficient algorithms
— Efficient data mining procedures and access to multi-dimensional data
— Throughput and performance measures

• Usability
— External systems have easy access to the MIS systems
— On-line help systems and repositories
— Ontologies (domain vocabularies) and knowledge bases

• Maintainability
— Ability to adapt to new customer requirements
— Ability to adapt to new types of data (operational, tactical and strategic)

• Portability
— Adapting the MIS system for new customers (e.g. monitoring disk space

instead of used hours)
— Adapting the MIS system so that it works under Linux (as well as Windows).

The topics and issues in this section could form the basis for a more detailed
discussion on how systems are formed, how they evolve and how new user require-
ments affect the stability of such systems.

5.12 SUMMARY AND CONCLUSIONS

We have discussed a class of applications that describes how low-level data is com-
bined to produce meaningful decision-support information. This is for the benefit
of those stakeholders who must make decisions concerning the progress in some
business endeavour. The main focus is on producing high-level reports and presen-
tations that show how a given plan or schedule is actually progressing; basically,
MIS systems answer the question ‘how well are we doing?’. It is hard to conceive
of a problem domain (whether industrial or administrative) where MIS systems are
not needed. Management Information Systems are ubiquitous.

A quick and efficient way to check whether your current application is an instance
of MIS is if you can align your context diagrams and core processing with Fig-
ures 5.1, 5.4 and 5.5. In this way you can check your assumptions.



6 Process Control Systems
(PCS)

‘We have tried to demonstrate by these examples that it is almost always incor-
rect to begin the decomposition of a system into modules on the basis of a
flowchart. We propose instead that one begins with a list of difficult design
decisions or design decisions which are likely to change. Each module is then
designed to hide such decisions from the others.’

David Parnas

6.1 INTRODUCTION AND OBJECTIVES

This chapter examines a class of applications that we group in the category of
Process Control Systems (PCS). Such systems monitor and control the values of cer-
tain variables. Application areas include engineering and industrial control systems,
control systems in the human body, management control, and modelling financial
derivative products. The name of the category should not suggest that it is only
applicable to technical applications.

This chapter describes the essential dimensions of process control systems. First,
we give some examples to motivate the PCS category and we note that PCS is
applicable not only to industrial systems but to any situation (real or virtual) where
certain processes need to be monitored and controlled. Second, we discuss process
control systems from the well-established viewpoint described in the engineering
literature. Finally, we map this body of knowledge to a domain architecture.

This chapter develops a domain architecture that closely approximates the domain
of process control applications. We shall show how to capture the essential elements
in these applications by structural and behavioural models. We separate concerns
by partitioning such problems into more manageable and simpler sub-problems. In
particular, we decompose these into three major subject areas; first, the Delivery
agent that is responsible for providing services; then, the Regulator agent that senses
changes in the environment; and finally, the Control agent that is responsible for
all interaction with humans and operators. We hide difficult and volatile design
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decisions in these agents and we ensure that the agents communicate via narrow
interfaces. This approach is in keeping with the ‘information hiding’ principle: hide
difficult design decisions in well-defined subsystems.

6.2 BACKGROUND AND HISTORY

Process control systems have been around for a long time. Many automated indus-
trial systems implement some kind of process control mechanism. In the software
process arena, we mention the early work of Hatley and Pirbhai (1988). This is a
method for analysing real-time systems using structured analysis techniques. This
has been successful in a number of projects but it lacks an Information Model, thus
making it difficult to apply in a number of cases. The present author was influenced
by the method in the early days of the object paradigm because many of his cus-
tomers were making the paradigm shift from structured analysis to object technology
(we give a short overview of the Hatley–Pirbhai method in Appendix 3 and how
it has influenced the author’s thinking). To this end, it was important to compare
the two approaches in order to make the transition to objects easier. In fact, the
Home Heating System (HHS) problem that we analyse in Chapter 12 was the first
proof-of-concept application that the author used to show how the two approaches
compare. The HHS problem is one of the problems in Hatley and Pirbhai (1988),
although in the author’s opinion it is not worked out in enough detail to be useful
to the developer. The HHS problem is analysed in Chapter 12 according to the
Datasim Development Process (DDP) and its solution can be used as a model for
other applications in the same domain.

Thinking and talking about HHS and other applications in the same category
eventually led us to discover a common theme running through them. In particular,
we succeeded in constructing a generic model that subsumed HHS and other process
control applications. Finally, we managed to construct a generic PAC model for
process control applications after having studied the discussion of the PAC model
(see Appendix 2 for an introduction to PAC).

6.3 MOTIVATIONAL EXAMPLES

We discuss three model problems to motivate process control systems. All three
examples are concerned with monitoring the values of certain variables, for example
water level, asset price, room temperature and so on. The values are scheduled or
constrained in some way and to this end we speak of actual and scheduled values
(we use codes AV and SV, respectively). Some examples of constraints are:

• AV should not be larger (smaller) than SV
• AV must be larger (smaller) than SV
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• AV lies in an SV range, that is sv low ⇐ av ⇐ sv high
• AV must be a value in some SV sequence {sv1, sv2, . . .}
• Some combination of the above constraints.

Once an actual value has broken its threshold value we are forced to take action in
order to address this disturbance. To this end, we define actuators in the systems
that are activated to bring the system back into equilibrium. Some examples of
actuators are:

• Motors that produce warm water when the temperature in a room reaches a
low value

• Turn off a pump when the water level in a tank reaches a high limit
• Turn on a pump when the water level reaches a low limit
• Inform the portfolio manager when a financial option ceases to have any value.

We discuss these examples in the next three subsections.

6.3.1 Simple water level control

This example is taken from Leveson (1995), pages 346–350. Let us consider a
program to monitor and control the water levels in a tank, as shown in Figure 6.1.
The water levels are called High (U) and Low (L). The objective is to ensure that
the actual water level is always in the closed range [L, U]. The values L and U are
called setpoints and they are configurable. The actual water level is measured by
one or more sensors or other measuring devices. The tank is also coupled to pumps
that drain water from the tank and that inject water into the tank.

In order to describe the workings of this model we document it using a statechart
(see Harel and Politi 2000, Rumbaugh 1999). To this end, we view the tank as being
in one of three mutually exclusive states at any one moment in time:

• LowLevel: the actual water level is below L
• HighLevel: the actual water level is beyond U
• OKLevel: the actual water level is in the range [L, U].

There are a number of major events that cause the tank to transition from one state
to another state:

• A low reading occurs
• A high reading occurs
• Reading at setpoint I (level drops from HighLevel to OKLevel)
• Reading at setpoint II (level rises from LowLevel to OKLevel).
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Figure 6.1 Highest-level statechart of a water level control.

Each of these events triggers a response. For example, if a low reading occurs
we must activate the pump so that it starts injecting water into the tank. The
responses are officially called actions and can be seen in Figure 6.1 because they
are closely associated with their corresponding transitions. The basic syntax is
<transition>/<action> in general as documented in the standard UML documen-
tation (see Rumbaugh 1999).

6.3.2 Bioreactor

This is similar to the previous example in the sense that we are modelling parameters
that have to do with a tank. In the current case we are interested in monitoring and
controlling the temperature of the liquid in the tank. The temperature should be
in a certain range [L, U] at all times. All setpoint values must be saved to disk
(flash memory in this case) if the operator changes them. Furthermore, if the actual
temperature (the so-called process value) changes and if the new value is above



Motivational examples 81

Temperature
Sensor

Temperature

Cool Unit Heat Unit

Temperature

Time

Figure 6.2 Model for bioreactor system.

or below the reference value, an actuator (cooling unit or heating unit) will be
activated to restore equilibrium (see Figure 6.2). In general, real bioreactor systems
model multi-parameter environments. Typical parameters are water level, oxygen
concentration, pH level, flow rate and so on.

6.3.3 Barrier options

An option is a so-called financial derivative (see Hull 1993). There are two kinds
of option. In the first, a call option gives the holder the right to buy the underlying
asset by a certain date for a certain price. For example, an asset could be a share.
A put option gives the holder the right to sell the underlying asset by a certain date
for a certain price. The price in the contract is called the strike price or exercise
price that we denote by X. The date in the contract is known as the expiry date,
maturity or exercise date. American options can be exercised at any time up to
maturity while European options can only be exercised at maturity.

There are two sides to every option contract. First, there is the investor who has
taken the long position, by which we mean that he or she has bought the option.
On the other hand we have the investor who has taken the short position, that is the
person who has sold or written the contract. The writer of the option receives cash
up-front but has potential liabilities later. To this end, we define the payoff as the
amount of money to be made at maturity. In principle, the payoff is between zero
and plus infinity for the long position while it is potentially minus infinity for the
short position. This means that the writer is exposed.

The above option types are called plain or vanilla options. This is in contrast to
so-called exotic options where the payoff is somewhat more complicated. Exotic
options are designed to suit particular needs in the market. For example, barrier
options are options where the payoff depends on whether the underlying asset’s
price reaches a certain level during a certain period of time before the expiry date
(Haug 1998). Barrier options are the most popular of the exotic options. There are



82 Process Control Systems (PCS)

two kinds of barrier that are defined as a particular value of the underlying asset
(whose value we denote by H):

• In barrier: this is reached when the asset price S hits the barrier H before maturity.
In other words, if S never hits H before maturity then the payout is zero.

• Out barrier: this is similar to a plain option except that the option is knocked
out or becomes worthless if the asset price S hits the barrier H before expiration.

A schematic representation of barrier options is given in Figure 6.3. Figure 6.3(c)
is an example of a so-called double barrier option. This is an option that is knocked
in or out if the underlying asset touches a lower boundary L or upper boundary U,
prior to maturity.

Why do we consider the study of barrier options as falling under a process control
category? We use this model because we are interested in exceptional situations (the
so-called knock-out and knock-in events) and we are interested in tracking the value
of the underlying asset price from the current time to the maturity time T (which
is some time into the future). In general we are not interested in knowing the asset
values if they remain within certain bounds. It is only when a barrier is reached that
we need to carry out certain actions. To this end, we are really only interested in

time

price

out in

Single barrier, up

(a) (b)

time

price

out in

Single barrier, down

(c)

time

price

out in

double barrier

out in

Figure 6.3 Options and barriers.
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Figure 6.4 Time-dependent setpoint values.

exceptional data, whereas Management Information Systems (MIS) are interested
in all kinds of data.

A second reason for choosing this example is to show that the realm of process
control systems is not limited just to physical systems such as home heating systems
and avionics control systems, but that instances of PCS arise in any world where
‘actualized’ data drifts too far away from ‘scheduled’ data. For example, we hope
that asset price does not reach a barrier value, but if it does we must take action.

A remark: the three examples just given were based on constant values for U
and L. In other words, we assumed that the values of U and L do not change with
respect to time (they are called time-independent). This is a major simplification;
in general U and L are actually functions of time, U = U(t) and L = L(t). In fact,
these functions may even be discontinuous. A generic graph of these functions is
given in Figure 6.4.

6.4 REFERENCE MODELS FOR PROCESS CONTROL SYSTEMS

This section is a technical introduction to the essentials of process control systems.
We introduce the most important terms and concepts. Thus, this section can be seen
as an overview of process control for those readers who are new to the subject.

6.4.1 Basic components and variables

A process control system consists of a set of components that work together to
achieve a common objective or purpose. In this case we can identify four major
types of components:

• Process
• Sensors
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• Actuators
• Controller.

Before we discuss each of these components in more detail, we need to introduce
the types of information or data in process control systems. In general, all vari-
ables are called process variables. Several specific kinds of process variable can be
distinguished:

• Manipulated variables (reference values)
• Controlled variables (actual values)
• Input and output variables
• Setpoints.

A manipulated variable is one whose value may be changed by the controller. This
is an analogue or digital device used to implement the so-called control function.
This control function helps ensure that the system goals are achieved even though
disturbances take place in the system. A controlled variable is a process variable
that the system is intended to control. An input variable is a process variable that
measures an input to the process. A special kind of input variable is the input to the
system itself, while a special kind of output variable is the output from the system.
Finally, a setpoint is the desired value for a controlled variable.

Having defined the types of variables in a process control system we are now in
a position to discuss each of its components in more detail. The general setting is
shown in Figure 6.5. The process is responsible for converting input materials (of
various kinds) to products with specific properties by performing operations on the
inputs and on intermediate products (see Shaw and Garlan 1996). The behaviour
of the process is monitored through the controlled variables and controlled by the
manipulated variables. In some cases it is possible to define a mathematical function
that describes the process, but in general the process is highly non-linear and other
techniques must be used to define the process. Typically, we employ linear and
quadratic optimization techniques, fuzzy logic and generic algorithms techniques.
Sensors monitor the actual behaviour of the process by measuring the controlled
variables. Examples of sensors and their controlled variables are:

• A thermometer that measures the current temperature in a solvent in a bioreactor
• A temperature sensor that measures the current temperature in a room
• A barometric altimeter that measures aircraft altitude.

Actuators are devices that are used to manipulate the behaviour of the process. Actu-
ators physically execute commands in order to change the manipulated variables.
Examples of actuators and their corresponding manipulated variables are:

• A valve that controls the flow of fluid
• A physical unit that delivers hot or cold air.



Reference models for Process Control Systems 85

Process
FP

Output
O

Input
I

Command Signal
C

Disturbances
D

System Input
IS

System Output
OS

Manipulated
Variables VM

Controlled
Variables VC

Process
FA

Process
FS

Process
FC

Figure 6.5 Basic process control model.

As already mentioned, the controller is an analogue or digital device that is used
to implement the control function. The process is influenced by internal conditions,
through the manipulated variables and by disturbances that are not subject to adjust-
ment and control by the controller.

The general control problem (see Leveson and Heimdahl 1994) is to adjust the
manipulated variables in order to achieve the system goals despite disturbances.

We summarize each of the above components and the relationships with variables
by introducing some mathematical notation. We adopt the following symbols (as
shown in Figure 6.5):

• IS: input to the system
• OS: output from the system
• D: disturbances
• t: time variable
• VC: controlled variable
• VM: manipulated variable
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• I: output from the sensor (or input to the controller)
• O: output from the controller (or input to the actuators)
• C: commands to the controller.

The goal in a process control system is to maintain a particular relationship or
function over time (t) between the system input (IS) and system output (OS) in the
face of disturbances (D). We describe the process by the so-called process function
that is defined by the mapping whose input is the vector (VM, IS, D, t) and whose
output is (OS, VC). The other functions and their output are now described:

• Sensor function: (VC, t) → I
• Actuator function: (O, t) → VM

• Controller function: (I, C, t) → O

One of the objectives in this chapter is to approximate the domain model in this
chapter by the PCS domain architecture type.

6.4.2 Control engineering fundamentals

Many engineering and industrial systems include aspects of control systems at some
point. This is the domain of control engineering and it can be broadly defined as
being concerned with ensuring that systems behave in a desired way. This section
may be skipped on a first reading without much loss in continuity.

We discuss the mechanics of how the process is actually realized. There are a
number of possibilities, some of which we discuss (see, for example, Shaw and
Garlan 1996, Pallu de la Barriere 1967):

• Open-loop system
• Closed-loop system
• Feedback control system
• Feedforward control system.

An open-loop system is one in which information about process variables is not
used to adjust the system. There is one major entry point and one major exit point.
A closed-loop system is one in which information about process variables is used to
manipulate other process variables in order to compensate for variations in process
variables and operating conditions. A feedback control system measures a controlled
variable and this result is used to manipulate one or more other process variables.
Finally, a feedforward control system has the property that some process variables
are measured and anticipated disturbances are compensated for. However, the system
does not wait for changes in the control variables to be visible.
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Figure 6.6 Types of control in process model.

Referring to Figure 6.6, we see that the system S has input denoted by c(t) in all
cases and output denoted by s(t). Let us assume for the moment that we insert an
‘upstream’ system E whose output is c(t) and suppose that e(t) is a given quantity.
We wish the system E to calculate or determine c(t) so that s(t) is as close as
possible to e(t) in some sense. For the open-loop case there is only one entry e(t)
to E. In the case of a closed-loop system, however, we see that E has inputs e(t)
and s(t). In this latter case we say that it constitutes a servo system. In both cases
E is called a control system and the quantity c(t) is called the control.

A special case of a closed-loop system is that of an error-correction system as
shown graphically in the third case in Figure 6.6. Consider the situation where two
systems A and B have respective inputs e(t) and s(t). We compare their outputs by
a so-called differential system and the difference is used as input to a third system
C whose output is given by the function c(t). Again, c(t) is input to system S. We
say that A is called the anticipation system, C is called the compensation system
and B is called the feedback system.

A good example of a feedforward control system is to be found in the neural
network literature (see Hecht-Nielson 1990). We give an example of a so-called
linear associator. This is a system whose input is an n-dimensional vector x. The
output is a vector z that is derived from the input vector by the formula

z = Wx
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Figure 6.7 Feedforward associative network.

where W is an m × n weight matrix. Thus, each component of the vector z is a
linear combination of the x input signals and the output vector is created in a single
feedforward pass. This is shown in Figure 6.7.

Summarizing, feedback control uses information about the current state of the
process in order to generate corrective actions; the process develops some unde-
sired characteristics that must be corrected. Feedforward control, on the other hand,
attempts to anticipate undesired changes in the process and then issues commands
to prevent them. We shall see in this and later chapters how the above concepts are
mapped to a domain architecture in which all the requirements have been realized.
In this way we hope to align the software solution as closely as possible with the
entities and requirements from the problem domain.

6.5 GENERAL APPLICABILITY

In general, we apply the PCS category in situations where we are interested in mon-
itoring exceptional and possibly undesirable situations. We could say that ‘no news
is good news’; when some variable reaches a limit we must take corrective action.
We give a list of some keywords and special terms that arise when discussing PCS
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systems. As analyst, you should actively listen to customers and other stakeholders
because the vocabulary that they use will give hints on how to develop a system:

• Actuators, sensors, control panels
• Monitoring and control applications
• Monitored and control variables
• Setpoint values, process values
• Safety systems
• High reliability, availability and performance
• State machines
• Watchdog systems (themselves instances of the PCS category)
• Real-time and historical data; ‘out-of-bounds’ data
• Trending and capacity planning
• Security systems: monitoring unexpected and unusual behaviour
• Safety; alerts and alert procedures.

The PCS category is appropriate in organizations in the process control and embed-
ded software worlds, for example. In a real enterprise application we should expect
to discover several PCS instances that monitor and control various aspects of the
application.

The categories PCS and MIS are not the same but they are closely related. MIS
systems are concerned with comparing actual and scheduled values of a given vari-
able irrespective of their values, whereas PCS systems are essentially only interested
in situations where the actual values ‘drift’ too far away from the scheduled val-
ues. Furthermore, PCS systems can model real-time behaviour of single objects
while MIS systems model past and present behaviour of clustered objects. Once the
threshold value has been reached in PCS systems we must take corrective action
by activating actuators. In general, the scheduled values needed in PCS systems are
under the control of one or more RAT instance systems while the actual values
could be created in MAN instances, for example.

6.6 GOALS, PROCESSES AND ACTIVITIES

We have seen that the goal of a process control system is to maintain a partic-
ular relationship or function over time between the input to the system and the
output from the system in the face of disturbances in the process. These relation-
ships involve fundamental chemical, thermal, mechanical, aerodynamic or other
laws (Leveson and Heimdahl 1994). For example, in a Home Heating System the
goal is to produce a feeling of well-being as experienced by the inhabitants of a
house; the room temperature (and other parameters such as humidity) should not be
too high or too low, but just right.
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The distinction between goals and core processes can be confusing for software
developers, especially for those who work in real-time and embedded environments.
IT is important to discriminate between ‘what’, ‘how’ and ‘when’. The goals in PCS
systems correspond to ‘what’ (for example, keep the temperature at the right level)
while the core process corresponds to ‘how’ (for example, burn fossil fuel). Finally,
the ‘when’ issues correspond to events such as sensors sensing that the values
of certain variables have changed. In order to avoid confusion we advocate the
following steps in the analysis process:

• Determine the goals (what and why)
• Determine the core processes (how)
• Determine the events in the system (when; these will be modelled as use cases).

Having cleared up these misunderstandings, we now discuss the core processes
in PCS systems. In general, core process P1 consists of three (essentially concur-
rent) activities:

• P1.1: Activate and start actuators
• P1.2: Monitor the status in the system: is there equilibrium?
• P1.3: Present the status to clients.

We shall see a concrete example of this in Chapter 12 where we analyse the Home
Heating System (HHS).

6.7 CONTEXT DIAGRAM AND SYSTEM DECOMPOSITION

The generic context diagram for the PCS category is shown in Figure 6.8. The
SUD and the stakeholder systems must cooperate to realize the goals, namely to
ensure that a certain condition is valid at all times. The stakeholder systems in PCS
systems are:

• Environment (sensors): These systems monitor the actual behaviour of the process
by measuring the controlled variables. Examples of sensors are thermometers,
barometers and real-time data feeds.

• Actuators: These systems manipulate the behaviour of the process. The actuators
physically execute commands issued by the controller in order to change the
manipulated variables. Examples of actuators are valves, humans (who can modify
the manipulated variables via a dialog box, for example), furnaces, solar panel
and mass flow controllers.

• Sink: The ultimate recipients of status information concerning the process.
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Figure 6.8 PCS environment.

• MIS: Management systems that monitor the current PCS system in some way.
These are clients of PCS. Some responsibilities of these systems are:
— Downloading setpoint and configuration data to PCS
— Uploading real-time from PCS for historical and trending analysis
— Monitoring exceptional and unusual behaviour in PCS and its hardware-based

external systems.

We notice that the controller entity from the process control reference model is not
present in Figure 6.8. We do not model it explicitly in this case, but tacitly assume
that it is implemented in the SUD itself. This may be a restriction in practice and
it may be necessary to include a new stakeholder system that delivers controller
functionality.

6.7.1 Decomposition strategies

In order to decompose a system into loosely coupled subsystems we must deter-
mine what the primary input is. There are two candidate solutions and scenarios
in general:

• Type 1: The input requests from users, operators and the environment
• Type 2: The raw materials input.

We must determine which input is primary and which type is secondary. Having
determined the primary input and knowing what the system output is, we must
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determine how the former is transformed to the latter. This is achieved in the usual
way by transforming the input to output in a series of steps and delegating the
responsibilities to a number of subsystems. We can document the workflow using
UML activity diagrams.

6.7.1.1 Workflow decomposition model
In the case of PCS applications that use raw materials as primary input we identify
three subsystems as shown in Figure 6.9. First, Delivery is responsible for pro-
cessing raw materials and transforming them into internal materials that are then
distributed by Regulator. Regulator produces half-products that are subsequently
packaged and presented to the appropriate stakeholder actors. Notice the names that
we have chosen and the reasons why they have been chosen: Delivery is responsible
for the transformation of raw materials (this is why it contains actuators), Regula-
tor is responsible for the process and represents the ‘brains’ of the system (this is
why it contains sensors that monitor changes in the environment), while Control
contains operator panels that allow human actors to determine what the system is
doing and when to start and stop it. In short, Delivery is responsible for opera-
tional activities (what has to be done), Regulator is responsible for tactical activities
(how and why something has to be done) and Control is responsible for strategic
activities (when something has to be done). We have already noted that primary
input is through Delivery while secondary input is through Control and sometimes
through Regulator.

PCSSYS

Delivery Regulator Control

(operational)

- Actuators

(tactical)

- Sensors
- Controller

(strategic)

- Operator panel

Figure 6.9 Initial system decomposition.



Context diagram and system decomposition 93

6.7.1.2 A ‘tracking’ decomposition model
The second choice for PCS applications is to model them as RAT systems as shown
in Figure 6.10. In this case the primary input is a customer request and the output
is the status of that request (for example, status can take the form of a finished
product). The flow of information is more important in this case than raw material
flow, which is why the model in Figure 6.10 is slightly different from the model in
Figure 6.9 on a number of counts:

• The names and responsibilities of the subsystems
• The satellite systems communicating with the current system.

The model in Figure 6.10 is based on the way in which the customer request
‘travels’ in the system. First, subsystem Registration processes and validates the
customer request in order to classify it. This classification problem is the respons-
ibility of KnowledgeBase. Once the request has been checked and validated it is then
admitted to the Assignment subsystem whose responsibility is to allocate physical
resources that are needed to realize the customer request. The Assignment subsys-
tem knows about the status of a request at all times and this fact can be dispatched
to Presentation. We note that Assignment communicates with the satellite system
ResourceAllocator whose responsibility is to allocate physical resources.

Summarizing, discovering subsystems by using a process or tracking model is
acceptable as long as the responsibilities of each subsystem are well defined and if

PCSSYS

Assignment Presentation

OperatorSysResourceAllocatorKnowledgeBase

Registration

Figure 6.10 System decomposition based on RAT paradigm.
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they hide difficult design decisions. However, you should choose the category that
best fits the vocabulary and jargon of your current project.

6.7.1.3 Detailed decomposition and layering
Once the main subsystems have been identified (as in Figures 6.9 and 6.10) we
must determine how each subsystem produces output from input. In this section we
achieve this by three generic activities:

• Read and check input
• Create entities of interest
• Dispatch and notify.

Each subsystem is levelled into three layers and each layer is given the responsibil-
ity for one of the above activities. Reading and checking of external information is
realized by so-called Boundary layers or objects as shown in Figure 6.11. The enti-
ties that contain the data of interest in the given subsystem live in the Entity layer
while notification and dispatching to other subsystems is achieved in the Control
layer. The general situation is shown in Figure 6.12 corresponding to an elabo-
ration of the model in Figure 6.9. Notice that the subsystem names in Figure 6.9
have now been mapped to the control layer names in the elaborated model. The
Boundary layer entities such as Actuators, Sensors and Panel are the components
that communicate with external actors. The Entity layer objects are more diffi-
cult to find but in general they contain the static and dynamic data of interest in
the system.

PCSSYS

Physical
User

Physical
Actuators

Physical
Sensors

Figure 6.11 Initial context diagram.
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Figure 6.12 Populating layers by objects.

Referring to Figure 6.12, we note the following:

• ServiceProvider has knowledge of capacity in the subsystem. Capacity is closely
related to load. Load is defined as the rate at which the system requests a particular
service while capacity refers to the ability to handle the rate. We distinguish
between two types of capacity. The rate at which sensors produce data and send
it to the system is called the input capacity, while output capacity is defined as
the rate at which actuators can accept and react to data from the system. We note
that ServiceProvider is aware of both input and output capacity. Output overload
occurs if sensors generate inputs at a faster rate than the output environments
can ‘absorb’ process inputs (see Leveson 1995). We model load and capacity in
UML by creating classes and class relationships.

• EntityOfInterest: the entity whose behaviour we wish to monitor and control.
For example, in the Home Heating System (Chapter 12) this would be the Room
abstraction (we wish the temperature to stay within given limits).

• Multiplexer/Demultiplexer: this layer is responsible for the translation and for-
matting of commands in both directions (operator actions translated to internal
commands and translation of internal messages to display options on the opera-
tor panel).
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Figure 6.13 Populating layers by objects (RAT paradigm).

We now discuss system levelling in the case where we have chosen to model the
problem using customer requests as primary input as already seen in Figure 6.10. In
other words, we model the problem as a Resource Allocation and Tracking (RAT)
instance system to determine how good the fit to reality is. The basic objective is
to track the movements of a request in the system. The basic model is shown in
Figure 6.13. Again, the control objects are ‘free’ because of the subsystem names
in Figure 6.10, while the boundary objects can be discovered from Figure 6.10 by
examining the external actor system. The entity layers are populated by a Request
entity in different phases of its life.

6.8 STAKEHOLDERS, VIEWPOINTS AND REQUIREMENTS

The main stakeholders are found from the context diagram. They are:

• Actuators
• Sensors
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• Operator
• Management.

Each of these groups has its own viewpoints and perspectives. Reliability at all
levels (hardware, data) is important because PCS systems are usually found in
‘difficult’ environments where certain non-functional requirements are important. In
particular, safety is an important attribute in many cases (see Leveson 1995). For
the operators, Usability is essential. Many developers may be dismayed by the fact
that Functionality and Efficiency may not be important for many applications in the
process control domain.

Process control and real-time applications are special in the sense that they have
special requirements. These have to do with safety and reliability issues because pro-
cess control applications that break down or malfunction can cause serious economic
and/or human injury. Before we introduce the main requirements for Process Con-
trol Systems we need to introduce a number of definitions. Most of the discussion
in this section is based on the comprehensive and well-documented information in
Leveson 1995 (in particular Chapter 15 of that book). We discuss the main require-
ments associated with process control applications. The reader may use them as a
baseline for his or her own applications. We discuss several requirements. These
could be relevant to specific PCS applications.

6.8.1 Input and output variable completeness

The inputs and outputs correspond to the information that sensors provide to the
system (the controlled variables) and the commands that the system provides to the
actuators (to change the manipulated variables), respectively. It is vital that these
variables and commands are rigorously defined in the requirements document.

Some major rules concerning input and output variables are:

1. All information from the sensors should be used somewhere in the specification.
2. Legal output values that are never produced should be checked for potential

specification incompleteness.

This requirement has to do mainly with Conformance and Compliance in ISO 9126.

6.8.2 Robustness criteria

A robust system is one that detects and responds in an appropriate manner to vio-
lations to the assumption that all parts of the system are functioning in a certain
way. For robustness to be true, the events that trigger state change must satisfy the
following conditions (see again Leveson 1995):
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1. Every state must have a transition defined for each possible input.
2. The logical OR of the conditions on every transition out of any state must form

a tautology. This means that one and only one transition is ‘fired’ or is actually
active when the conditions on all transitions are evaluated.

3. Every state must have a software transition defined in case there is no input for
a given period of time (a timeout).

These conditions deserve some explanation. Condition 1 states that there is a one-to-
one correspondence between transitions and their corresponding inputs. Condition 2
refers to a tautology and this is by definition a logically complete expression. To
take an example, suppose that t1, t2 and t3 are three transitions out of a certain
state. Then the tautology states that one and only one of the transitions is triggered
based on some external event. Condition 3 states that it is not possible to remain in
a state for longer than a given period of time.

We now introduce the concept of robust data structures. In order to motivate
this concept we first define reliability and redundancy. Reliability is defined as the
probability that a piece of equipment or component will perform its intended function
satisfactorily for a prescribed time and under stipulated environmental conditions.
Redundancy, on the other hand, involves deliberate duplication to improve reli-
ability. A robust data structure uses redundancy in the structure or data to allow
reconstruction if the data structure is corrupted.

This requirement has to do mainly with Reliability in ISO 9126 and is particularly
relevant to the Delivery (new actuators) and Regulator (setpoint integrity) agents.

6.8.3 Timing

Timing problems are often a cause of run-time errors. There are two main timing
assumptions that are essential in the requirements specifications of triggers, namely
timing intervals and capacity (load).

As far as timing intervals are concerned, a timing specification should be associ-
ated with each event. In general we note the following rule:

All inputs must be fully bounded in time and the proper behaviour specified in case the limits
are violated or an expected input does not arrive.

In general we must define time limits on external events (that is events originating
from outside actor systems). The first limit is a lower bound on the time of arrival
and the second limit is an upper bound on the interval in which the input is to be
accepted. Of course, the exceptions to these constraints must also be documented.
The exceptions are:

• Inputs that arrive outside the time interval
• Non-existence of an input during a given time interval.
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In other words, the robustness criteria will ensure that behaviour is specified in case
the time limits are violated.

It is possible to partition the system state space into two mutually exclusive states,
namely normal and overloaded. The required response to an input will be different
in each state and both cases must be specified.

Overloading is caused not so much by human operators or slow system com-
ponents but more often by malfunctions that cause spurious, excessive inputs.
Robustness demands that we specify how to handle excessive inputs and that we
specify a load limit for such inputs as a means of detecting possible external mal-
functions. The general rule is:

A minimum and maximum load assumption must be specified for every interrupt-signalled
event whose arrival rate is not dominated (limited) by another type of event.

If interrupts cannot be disabled on a given port then we run the risk that we will
run out of CPU resources. The follow-on rule is:

The response to excessive inputs (violations of load assumptions) must be specified.

The main requirements for dealing with overload are (see Leveson 1995):

1. Requirements to give a warning message.
2. Requirements to generate outputs to tell external systems to ‘slow down’.
3. Requirements to lock out interrupt signals for the overloaded channels.
4. Requirements to produce outputs that have either reduced accuracy or reduced

response time. In general, these are requirements that allow the system to continue
to cope with the higher load.

5. Requirements that allow the system to work in degraded mode (e.g. reduce the
functionality of the software) or shut the system down.

These requirements can be mapped to use cases and designed using patterns (GOF
1995, POSA 1996).

We can conclude with the following general rule:

If the desired response to an overload condition is performance degradation then the specified
degradation should be graceful and operators should be informed.

It is important to specify the conditions under which a system returns to normal
processing mode after it has entered a degraded state. It is also important that the
system does not attempt to return to normal mode too quickly.

This requirement has to do mainly with Efficiency in ISO 9126 and is particularly
relevant to the Delivery (the load on actuators) and Regulator (the load on algorithms
and sensors) agents.
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6.8.4 Human–Computer Interface (HCI) criteria

HCI requirements specifications should include the following attention points:

1. Specification of the events to be queued.
2. Specification of the type and number of queues to be provided, for example alert

queues and routine queues.
3. Ordering scheme within a given queue, for example based on priority, time

or arrival.
4. Operator notification mechanism for items that are inserted into a queue.
5. Operator review and disposal of commands for queue entries.
6. Deletion of entries in a queue.

These requirements should be realized by the system under consideration. This is
usually done in the design phase of the software lifecycle.

The requirements in this subsection have to do mainly with Usability and Effi-
ciency in ISO 9126 and are particularly relevant to the Control agent (this contains
the operator’s panel).

6.8.5 State completeness

This requirement corresponds to the high-level partition of the system into two
disjoint modes, namely normal and non-normal processing modes. We include
some rules:

1. The system and software must start in a safe state.
2. All system and local variables must be properly initialized upon start-up.

There are two kinds of start-up. The first kind is when the system is initially started
after a complete process shutdown. The second kind is when the system has been
started after it has been temporarily off-line but the process has continued under
manual control. Of course, the system clock, system and local variables must be
initialized.

Another important requirement is how long the system should wait until the first
event arrives. Furthermore, there should be some finite limit on how long the system
waits for input before it tries alternative strategies, for example alerting an operator.

Finally, normal-processing states should be divided into substates (as can be
modelled by statecharts). We conclude with the rule:

There must be a response specified for the arrival of an input in any state, including indeter-
minate states.
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We shall see how the requirements in this subsection are realized by statecharts in
Chapter 12.

The requirements in this subsection have to do mainly with Functionality in ISO
9126 and are relevant to all subsystems.

6.8.6 Data age requirement

This requirement has to do with how long data remains valid. In other words, we
speak about data obsolescence. It is vital that control decisions are based on the data
from the current state of the system and not on obsolete information. For example,
even if nothing happens in a system and even if the program is idle, it is still
possible that the real world in which the program is embedded may not be still.

In general we demand that input and output be bounded in time. The basic rule is:

All inputs used in specifying output events must be properly limited in the time for which they
can be used (data age). Output commands that may not be able to be executed immediately
must be limited in the time for which they are valid.

Data age requirements may be applicable to human–computer interface action
sequences, for example how a given operator action remains valid.

6.9 UML CLASSES

The initial system decomposition for the PCS category is shown in Figure 6.9. First
of all, the four agents and their responsibilities are as follows.

• Delivery: produces actuator output to redress disturbances in the process; this is
the operational system.

• Regulator: monitors the environment and determines whether actuators must be
activated; this is the tactical system. This system contains sensors and local
actuators.

• Control: presents the process status here. This system is termed strategic because
all major input and output decisions take place here.

• PCS Top-level: the façade interface system to external client systems. This
systems sends information to, and receives information from, high-level
client systems.

Each agent is further decomposed into layers as in Figure 6.12. The Boundary
layers communicate with the corresponding physical units in the external stakeholder
systems, while the Control layers are motivated (as always) from the activities in
the core process. The Entity layer deserves some attention now. In the Delivery
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agent, it is called Service Provider and this is a virtual machine (decision-hiding in
the Parnas (1972) sense) to the physical actuators. It knows the service capacity that
it can deliver to the process and it knows the status of pending requests. The entity
layer in the Regulator agent contains the entities that we are actually modelling,
for example:

• Rooms (in a home heating system)
• Medium (in a bioreactor)
• Barrier option (in a portfolio management system)
• Aircraft (aircraft avoidance system, see Leveson and Heimdahl 1994).

Finally, the entity layer in the Control agent contains ‘formatter’ objects that are
in fact two-way converters between internal data and commands and external data
and commands.

6.10 USE CASES

Many process control applications share the same requirements. In order to make
things concrete, we draw up a list of the most important use cases in a system.
A use case is an interaction session between the system and its actors. We need
criteria that help us partition system behaviour into independent use cases. One
possible strategy is to partition time into three time domains and we determine the
appropriate use cases in each domain:

• Start-up (the power-up option)
• Steady-state
• Shutdown.

The start-up mode is concerned with getting the system up and running and contains
the following main use cases:

• U0.1: Start system and wait for physical units to respond
• U0.2: Download configuration information and data
• U0.3: Enter normal or degraded operating modes.

Some special use cases and variations in this area are:

• Start system after a failure (variation on U0.1)
• Enter emergency mode (variation on U0.3)
• Enter rescue mode (variation on U0.3).
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Emergency mode is entered when a vital physical unit fails to function. Rescue
mode is entered when some piece of hardware fails and the system simulates its
behaviour in software.

Once the system is up and running we are in a position to examine the so-called
steady state use cases. These are concerned with the interactions between the system
and the different stakeholders, such as:

• Users and operators
• Customers
• Suppliers
• Other systems (for example, Watchdog systems).

We list the main use cases associated with these stakeholders:

• U1.1: Enter semi-manual mode
• U1.2: Change system’s configuration data in some way
• U1.3: Environmental disturbance takes place
• U1.4: Send information to Customers
• U1.5: Receive raw materials from Suppliers
• U1.6: Communicate with external systems.

Of course, these use cases represent a very small subset of all the use cases in
real-life Process Control Systems. Finally, we wish to describe what happens when
the system shuts down:

• U2.1: Shutdown under normal circumstances
• U2.2: Emergency shutdown.

These use cases are to be found in all process control applications and they can
be used by the reader as basic building blocks for his or her own applications.
For example, we shall describe and document the use cases for the Home Heating
System (HHS) in Chapter 12 based on this generic use case set.

There are many ways of discovering use cases in PCS applications:

• Serendipity and ad hoc approaches (chance discovery)
• Event–response lists as in structured analysis and traditional OO approaches
• By investigating how SUD interacts with its external stakeholder systems.

The first two options are used quite a lot and unfortunately lead to unmanageable
systems. The third option is more structured and this is the technique that we use
in Chapter 12 to discover and document use cases from the Home Heating System
problem. In general, the last approach is not incorrect as such but we wish to
subsume it under a more general paradigm. To this end, we use some ideas from
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agent theory (see Wooldridge 2002) to help us generate (as it were) a reasonably
complete set of use cases for this category. Incidentally, there is no reason why we
could not apply the ideas to the other categories in this book! In general, agents are
autonomous, active objects with the ability to negotiate, cooperate and react to the
environment. Agents have the following capabilities:

• Reactivity: Agents can sense their environment and respond in a timely fashion
to changes that occur in it in order to satisfy their design objectives.

• Proactiveness: Agents are able to exhibit goal-directed behaviour by taking the
initiative in order to satisfy their design objectives.

• Social ability: Agents are capable of interacting with other agents (and possibly
humans) in order to satisfy their design objectives.

We could get the impression that agent technology is a somewhat richer and deeper
paradigm than that based on objects. In fact, this would be a valid conclusion. The
reason that we introduce agents here is that we apply agent communication protocols
to help us find a large number of use cases, possibly a larger set than is possible
with the object paradigm and use case technology. In particular, we discuss some
so-called performatives that describe how agents interact. We give a list of some
of them (for more, see the website www.fipa.org, the Foundation for Intelligent
Physical Agents):

• Call for Proposal (cfp): This performative initiates negotiation between agents.
An action must be carried out in this case. For example, the SUD could send a
broadcast message to its external stakeholder systems (that is, physical units) to
activate them in order to bring the SUD into standby mode.

• Proposal: This performative allows an agent to make a proposal to another agent,
for example in response to a previous cfp message that was previously sent out.
An example in a PCS environment is when actuators propose to supply the SUD
with services when needed.

• Request: A fundamental performative that allows an agent to request another
agent to perform some action. For example, the SUD could ask an actuator
to provide heat, or the operator system could ask the sensors for the current
temperature readings.

• Inform: A basic mechanism for communicating information. The content of the
performative is a statement and the idea is that the sender wants the receiver to
believe something. For example, a sensor could inform a room that the current
temperature has changed.

• Confirm: Allows the sender of the message to confirm the truth of the content
to the recipient where, before sending the message, the sender believes that the
recipient is unsure about the truth or otherwise of the content. For example, we
may introduce a new sensor to measure humidity in a room and we may wish to
check whether a room knows what humidity is in the first place.
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• Subscribe: The sender wants to be notified whenever something relating to the
system changes. For example, the SUD may be interested in knowing when sensor
readings change.

Having determined the useful protocols in PCS systems, we could use the questions
in the Inquiry Cycle model to generate new use cases.

6.11 SPECIALIZATIONS OF PCS SYSTEMS

The PCS category can be applied to many types of problem, not just industrial
applications. There is no unique way of clustering these systems because there are
so many dimensions along which we can classify:

• Time: hard real-time (microseconds response), soft (seconds response)
• Domain: discrete and continuous process control, embedded systems, financial

and business applications
• Data that is monitored: real-time, medium-term and historical data.

A full discussion is beyond the scope of this book. To the best of my knowledge,
it is an open problem at the moment of writing.

6.11.1 Multi-level architectures

Real-life manufacturing and process control applications consist of many systems.
Thus, the context diagram in Figure 6.8 needs to be extended in some way in
order to accommodate the requirements from different stakeholders. To this end, we
need to develop systems that interface with the current process control system. One
possible configuration is shown in Figure 6.14. In this case we identify a number
of systems:

• PCS: the process control system under discussion (the SUD).
• Watchdog: this system receives messages from PCS on a periodic or some other

basis. If a service occurs too late or out of sequence, the watchdog takes corrective
action such as reset, shutdown, alarming or some other elaborate error recovery
mechanism (Douglass 1998). Watchdogs can be implemented in either hardware
or software. An example of a watchdog is one that is woken up periodically
and that performs Built-In Test (BIT) suites, for example CRC checks on the
executable code. This system can be modelled as a process-control system.

• MIS: management information systems that receive transaction information from
PCS. The different kinds of transaction data are used as input for trending, statis-
tics gathering, cost control and material usage.
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Figure 6.14 Multi-level Process Control System.

• Primary Suppliers: the systems that represent the source of all raw materials input
to PCS.

• Primary Customers: the systems that receive the products or services from PCS.

6.12 USING PCS SYSTEMS WITH OTHER SYSTEMS

PCS systems can be described as the ‘policemen’ systems in the domain architecture
galaxy. In this sense they can be viewed as clients of other systems. In particular,
they monitor critical attributes in other systems, for example:

• Scheduled and actual values in management systems (MIS systems)
• Monitor breaches in service level agreements (RAT systems)
• Breaches in security; security violations (ACS systems)
• Errors in manufacturing processes (MAN systems).

Furthermore, a PCS system could itself be server to other systems, for example:

• Multiple PCS instance systems that send data to a MIS system
• A PCS instance that is a client of another PCS instance (for example, ‘watchdog

watching another watchdog’)
• A RAT instance that tracks errors and events in a PCS instance.
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There are many applications where the process control model can be successfully
applied. In fact, any application that needs to monitor the difference between refer-
ence and actual data is a candidate. Thus, the PCS model finds applications in the
following diverse domains:

• Industrial process control
• Manufacturing (MAN category)
• Management Information Systems (MIS category)
• Resource Allocation and Tracking systems (RAT category)
• Process simulation of real-life environments (see Garrido 1998).

Various possible topological relationships are defined between a PCS application and
one of the above types. The first possibility is that the PCS system communicates
with another satellite system of a given type. Some examples can be seen from
Figure 6.14:

• Transaction data is sent from PCS to a MIS system
• Finished products are sent to Customers system (this could be a MAN category)
• ‘Keep-alive’ messages are sent to a Watchdog system.

The second possibility is that the PCS application is itself a satellite system associ-
ated with another system. Examples are:

• Monitoring resource usage overrun in an engineering project (see Chapter 11)
• Monitoring ‘out-of-band’ behaviour of shares on the stock exchange
• Monitoring escalated calls in a help desk application (see Section 7.3.1).

Figure 6.14 gives an example; the Watchdog system is of PCS type and monitors
certain critical attributes of the ‘base’ PCS system.

6.13 SUMMARY AND CONCLUSIONS

This chapter introduced the features common to Process Control Systems. In par-
ticular, we introduced the most important entities and concepts in this domain and
we then mapped these into the so-called process control (PCS) category. We also
discussed the main requirements that are associated with such systems and we drew
up a list of useful requirements and use cases for analysts when embarking on such
applications. We paid some attention to non-functional requirements and the class
architecture in PCS systems.

This chapter drew heavily from various sources and adapted the information
in those sources to domain architectures for process control applications. The
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critical sections that help us determine whether a system is a PCS instance are
Sections 6.5 and 6.8. The context diagram in Figure 6.8 is also a vital artefact
to consult.

APPENDIX 6.1: MESSAGE PATTERNS IN PROCESS CONTROL
SYSTEMS

We conclude this chapter with a discussion of the types of messages that are
exchanged between a PCS system and its satellite systems (in fact, the discussion
and conclusions are also applicable to other domain categories). This is an impor-
tant aspect of process control systems, because we are interested in determining
whether congestion problems are occurring or whether the hardware has died or is
not functioning according to its normal operational pattern. Furthermore, we can
define arrival patterns. There are different ways to describe congestion, for example
in terms of the queueing time of messages from other satellite systems or in terms
of the free and busy periods in the PCS system itself. In order to predict one or
more of these quantities we must specify the following attributes:

• The arrival pattern: the average rate of arrival of messages and the statistical
pattern of the arrivals.

• The service mechanism: this has to do with when service is available, how many
messages can be serviced at a time and how long the service takes. The latter
aspect is modelled by a statistical distribution of service time.

• The queue discipline: this is the method by which a message is selected for service
out of all those awaiting service. For example, the simplest queue discipline
consists of serving customers in order of arrival. This is also called FIFO (first-in,
first-out) service regime.

The main patterns that we discuss are as follows.

• Completely random arrivals: In this case the arrivals are completely random.
Random messages may have an average rate that represents the computed average
frequency. In general, the arrival of a message does not affect the probability of
the arrival of the next message. The Poisson statistical distribution usually models
random messages.

• Regular or periodic arrivals: Periodic messages are characterized by a period
with which the messages arrive and by so-called jitter that is defined as the
variation around the period with which messages actually arrive. The uniform
random process models this variation.

• General independent arrivals: This arrival pattern is a generalization of the pre-
vious two patterns. In this case the intervals between the arrivals of successive
messages are random variables.
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• Regular arrivals with unpunctuality: This is the case in which messages should
arrive at equally spaced intervals but are unpunctual. If the degree of unpunctuality
is small compared with the arrival interval then its effect is unimportant. However,
if the dispersion is large, the system behaves as a completely random one.

• Aggregated arrivals: This is the case in which messages arrive in groups of vary-
ing sizes.

• Complex deterministic arrivals: In the above cases we assumed that the irregu-
larity in arrivals is statistical in character and is described as a random variable. In
some cases, however, this irregularity is produced by a complex recurring pattern.
An example is in a semi-automatic machine that requires unloading every 10 min-
utes, reloading with new raw materials every 5 minutes and general adjustment
every 6 minutes (see Cox 1974).

• Discrete-time arrivals: In this case the irregular pattern of arrivals is represented
by a series in which arrivals can occur only at a discrete set of time instants.
This case is closely related to the aggregated arrivals case. The arrival instants
are equally spaced and the number of arrivals per instant is 0 or 1.

Non-stationary arrival patterns

The above arrival patterns are called stationary because the probability structure
does not change with time. In some cases, however, the structure does change and
this leads to so-called non-stationary arrival patterns. A good example is that of a
telephone exchange in which the arrival pattern is completely random at a rate that
varies smoothly with the time of day.

• Arrivals correlated with other aspects of the system: In this case the rate of arrival
of messages is correlated with other properties of the system, for example the
number of messages awaiting service. Another example is the case of a queue
at a supermarket in which customers may be either deterred or attracted by the
presence of a long queue of other customers. Another example is in an industrial
process where the arrival of new messages may be cut off as soon as the number
of unserved messages reaches a critical value.

• Arrivals in a continuous flow: We have assumed until now that messages arrive
as discrete entities and that their arrival takes place at well-defined (albeit random
in some cases) instants in time. In this case, however, we model message arrivals
as a continuous flow. An example is the arrival of fluid in a storage system.
The arrival is described by a continuous time-series obtained by plotting rate
against time.

Having discussed the specifics of message arrival, we now discuss how messages
are processed. This is called the service mechanism. The three defining attributes
of such a mechanism are:
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• Service time
• Capacity of system
• Availability of the service.

The service time is defined as the time that is needed to serve or process a
message. In most cases we assume that the service times of the different mes-
sages are independent random variables with the same probability distribution. In
some other more complicated cases the messages may be of different types.

The capacity of the system is defined as the number of customers that can be
served at any one time. For example, the capacity of a one-server queue is 1 while
the capacity of an m-server queue is m.

We now discuss some statistical models that describe service time:

• Constant service time
• Exponential service time.

In the first case we assume that the service time is constant. This model works well
in some cases (for example, problems with irregular arrival patterns) but it is an
ideal situation. The second model is described by an exponential probability density
function. For example, this function models the duration of telephone calls well:
here we have a large number of customers requiring fairly short service while a
small number of customers will require longer service.

Relevant background information on the above topics is to be found in Garrido
(1998), Saaty (1961) and Cox (1974). Having detailed knowledge about message
arrival and service time can help us understand performance, congestion and other
non-functional issues associated with the analysis of Process Control Systems.



7 Resource Allocation and
Tracking (RAT) systems

‘Communicator: a personal communication device contained within the insignia
badge worn by Starfleet personnel. Communicators also emit a signal that can
be used to locate the person wearing the badge. The feature provides a Starship’s
transporter system with the means for determining exact coordinates, which are
necessary for transporting personnel from one location to another.’

7.1 INTRODUCTION AND OBJECTIVES

We introduce a class of applications that occur in many business, financial and
industrial domains. In this case we model the flow of information, objects or other
entities from the moment these entities enter the system to the moment that they are
no longer needed. The word ‘Tracking’ is in the title because we wish to locate the
entities at all times. The word ‘Allocation’ is used because resources are needed if
we wish to move entities from one place to another.

Applications in the RAT category abound both in the real world and in the OO
literature. Some specific applications include:

• Warehouse Management System (WMS, Jacobson et al 1993)
• ECO Tank Loading System (Coleman et al 1994, Duffy 1995)
• Elevator Control System (Yourdon and Argila 1996).

There are many more. These applications have been analysed in the past using the
implicit assumption that one should look for the objects in the systems using CRC
card techniques, for example. Our approach is to determine the core processes, map
them to subsystems and ‘populate’ each subsystem with objects by using a Layers
or PAC pattern, for example.

This book analyses two RAT instances in detail, namely the Order Realization
System (Chapter 14) and Elevator Control System (Chapter 13).
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7.2 BACKGROUND AND HISTORY

The RAT category models workflow or supply chain applications (Sharp and McDer-
mott 2001, Gattorna and Walters 1996). In general, these systems are well understood
and much has been written about them. It is hard to think of any human endeavour
where such systems are not needed. Some examples where the RAT model plays
an important role are:

• Distribution of physical goods from one location to another location
• Insurance and banking applications (for example, loan processing)
• Tracking of instrumentation information (for example, signals from satellites)
• Tracking of the information flow in organizations
• Transportation systems (for example, Starfleet personnel)
• Integrated logistics systems.

All workflow applications have a number of common characteristics. First, they are
concerned with the registration of information and with tracking that information in
physical or simulated environments. Second, it is possible to determine the status of
information while it is in the environment and which stakeholders are responsible
for performing activities pertaining to that information. Finally, information may be
removed from the system.

One of the best ways to learn what RAT entails is to study one of its instances
in greater detail.

7.3 MOTIVATIONAL EXAMPLES

Our first example of a RAT instance is a Help Desk System (HDS). The core process
in this case is to resolve customer problems within a given period of time and to
inform the customer of the resolution status. The main activities are:

1. To register and classify the customer request and create a call entity and assign
a priority to it.

2. To assign the call to a specialist or group of specialists who should resolve and
close the call within a given time period.

3. To report on the status.

Thus, the most important questions for the customer are who is working on my
problem and how long will it now take to resolve the problem? Calls that are
not resolved on time should be escalated to the Service Level Manager (SLM)
system that will then take corrective action. The basic context diagram is shown
in Figure 7.1. We now discuss how to resolve a problem by discussing the core
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Figure 7.1 Context for Help Desk System.

process in relation to the systems in Figure 7.1 (we denote the systems by Roman
numerals because they are easier to read than text):

1. HDS processes request data from system I.
2. The request data is verified against system II.
3. Once data has been verified, we create a basic call object.
4. The call object is assigned to a specialist resource in system III.
5. The status of the assigned call is dispatched to external systems IV.
6. Optionally, service level management systems V are informed of the request.

We speak of a contract (‘resolve the problem within a certain period of time’) and
this is why system V is needed. In particular, Service Level Agreements (SLAs) are
defined in this system.

We now give two specific instances of the RAT category. The first problem
describes a traditional help desk environment and it was this problem that helped
the author formalize the RAT model. The second example is more technical and
describes a model that tracks the tooling and trimming of computer chips.

7.3.1 Help Desk System (HDS)

We now discuss a special case of the Help Desk System discussed at the beginning of
this section. To this end, the public transport authority in a medium-sized European
city wishes to improve its processes and it has decided to develop a new Help Desk
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System (HDS). The core process in HDS is to solve user problems. Each problem
should be assigned to a specialist or group of specialists who resolve the problem
as soon as possible and then report back to the customer or their contact person.
The new system should improve service levels, both within the main office in the
centre of the city and in the local transport offices.

The most important stakeholder groups that are involved with the new system and
their relationships are shown as a concept map in Figure 7.2. This map displays the
major stakeholder groups as ellipses and the structural relationships between them
as edges. We see that there are three major stakeholder categories:

• Users: the stakeholders (for example, end-users) who work with the computer
systems. Each office has one representative called the application manager (APM)
who is responsible for promoting the interests of the different user groups. In
particular, the application manager is responsible for registering problems with the
Helpdesk. The Helpdesk is responsible for further processing of these problems.
The Helpdesk also provides feedback to the application manager.

• Service Groups: those stakeholders that interact with the Helpdesk. The three
main groups are Helpdesk, Product Specialist (PS) and Computer Facilities (CF).
The PS group is responsible for the solution of a customer problem. It may call
on other groups to help it solve a problem.

• Service Level Groups: the stakeholders who are responsible for service level
agreements, management and security. First, Service Level Management (SLM)
is responsible for the creation and maintenance of contracts with user groups.
The Security Manager (SM) is a role that can be played by a person or group of
persons and its responsibility is to ensure the integrity of data and programs at all
times. ‘Integrity’ includes issues such as privacy, access to historical information
and disaster plans.

Service Level
Environment

Users
Service Level

Group

concerns
concerns

Service Groups

PSHelpdeskAPM CF

System

SLM SM

concerns

represents

registers
supports

reports

monitors monitors

problem

has has has
problem

status

Figure 7.2 Concept map for Help Desk System.
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There are also Service Level Rules: handbooks and standard procedures that
describe each application. They contain the following sections:

• Reliability issues (availability, planning and organization)
• Budgeting (estimation, maintenance costs)
• Support (Helpdesk, Product Specialist and Computer Facilities)
• Version control (production, acceptance and development versions of the software)
• Security and access control policies
• Application replacement and disaster plans.

Notice that Service Level Rules are not human stakeholders! These tend to be
forgotten in some object-oriented projects.

Agreements between customers and service groups are documented in Service
Level Agreements (SLAs). In particular, the SLA must contain information on what
to do in the following extreme situations: the services of the computer centre are no
longer available; an application can no longer access its database; and the computer
that hosts an application is malfunctioning.

In order to satisfy the above requirements we propose the initial context diagram
as shown in Figure 7.2. Here we see that HDS cooperates with a number of satellite
systems. These systems realize the core process that describes how a problem is
first registered and then solved. The main satellite systems and their responsibilities
are as follows:

• Source: the system where problems originate.
• Problem database: a knowledge base containing historical information on prob-

lems, types of problem, source of problems and how to solve these problems.
• SLM: the system that contains information concerning service level agreements

between customers and service level management groups.
• Specialist system: contains information about the specialists who resolve and

solve problems and what their availability is. This system is an instance of the
RAT category and its main responsibility is to ensure that calls and problems are
assigned to specialists.

• Sink: the ultimate client systems.

7.3.2 Discrete manufacturing

We describe a class of problems that we group under the name ‘discrete manu-
facturing’. This general term refers to those applications that are concerned with
the loading of discrete items and objects, processing them in some way and finally
removing them from the system by an offloading mechanism. We thus see that this
is a useful and important sub-category of RAT because many business and industrial
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organizations must develop software systems for problems in this category. Specific
examples in the literature and in real-life applications are:

• Package router control problem (see Jackson 2001)
• Elevator control system (Yourdon and Argila 1996)
• Warehouse management system (Jacobson et al 1993)
• Egg-sorting machines
• Semiconductor chip tooling machines (the example in this section)
• The Communicator device in Star Trek.

These applications have a number of common features. We model them as RAT
systems because we are interested in tracking the status of objects in time and
space. By ‘time’ we mean that it must be possible to state how long production will
last and by ‘space’ we mean that we must know where an item or object is.

We motivate the discrete manufacturing sub-category by describing one of its
instances, namely a semiconductor tooling problem. In particular, we describe the
man–machine interface (MMI) aspects of this problem. This means that we are not
tracking the physical hardware objects as such but rather the representation of those
objects in a graphical user interface environment. A short description of the problem
(we call it MMISYS) is as follows:

Pallets containing (half-product) semiconductor chips are loaded into the machine. The chips
are taken from the pallets and sent to a tooling machine where they are tested, trimmed and
formed. Finally, the finished products are offloaded and placed in special containers to be
subsequently transported to other systems.

We show the context diagram for MMISYS in Figure 7.3. The Loader systems are
responsible for loading the pallets that contain the chips while the OffLoader systems
are responsible for removing the chips once they have been tooled. The PressUnit
systems are responsible for the actual tooling and testing of the chips. These three
external stakeholder systems are essential for the proper functioning of MMISYS.
There are two more systems that also have a role to play. First, the Tracker system
is an instance of a Process Control System (PCS) and is a kind of ‘watchdog’
system that monitors and controls abnormal behaviour. Second, the Host system is
an instance of MIS and is responsible for the configuration of MMISYS and the
creation of management reports. The Host is usually a bridge to some Enterprise
Resource Planning (ERP) package.

We see a clear ‘load/process/offload’ metaphor in this example. Many applications
are in fact specific cases of this metaphor and once we realize this our life as analyst
becomes much easier. For example, the well-known elevator or lift control system
(Yourdon and Argila 1996) could be compared with MMISYS. There are many
similarities to be explored. In particular, we could adopt the naive view that an
elevator control system is the same as MMISYS and then explore the consequences
of this assumption. We give some parallels between the two systems:
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Figure 7.3 MMISYS context diagram.

• People are ‘loaded’ into an elevator (Loader)
• People are transported to a destination (by the equivalent of PressUnit)
• People leave the lift when it arrives at its destination (OffLoader)
• Security management is watching for faults (Tracker system)
• Usage statistics gathering (Host system).

Once we have convinced ourselves of the general similarities between the two
systems, we can then start the task of ‘transferring’ our knowledge of MMISYS
to help us with an analysis of the new ‘target’ system (in this case the Elevator
Control System).

7.4 GENERAL APPLICABILITY

The RAT category is useful for applications where there are clear transportation
and tracking patterns. We give a list of some keywords and special terms that arise
when discussing RAT systems. As analyst, you should actively listen to customers
and other stakeholders because the vocabulary that they use will give hints on how
to develop a system:

• People, places, things, time
• Transportation of goods and information
• Help desk features: customers and service providers
• Status of requests at all times (in space and time, as it were)
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• Who is working on the request?
• Where is the request?
• When should the request be resolved or closed?

This list can be used as a check to determine whether stakeholders use the above
jargon and vocabulary. We are usually interested in a single request or a tightly
coupled cluster of requests when using the RAT model. Grouping loosely coupled
groups of requests is a matter for MIS systems.

7.5 GOALS, PROCESSES AND ACTIVITIES

The main goal of each RAT instance is to track an entity. The core process P1 is
responsible for the production of status information concerning the ‘whereabouts’
(in the broadest sense of the word) of objects from the moment they enter the system
to when they leave it. The input can take many forms but must contain information
pertaining to the following attributes:

• The sender of the request
• The kind of request (so that the internal stakeholders know what to do with it)
• Other relevant attributes (for example, constraints and annotations).

The main activities in P1 are:

• P1.1: Registration (this produces an internal Request entity)
• P1.2: Assignment (allocates resources to fulfil the request)
• P1.3: Presentation (dispatches request status information to subscribed clients).

Summarizing, the major information entities in the RAT category are:

• Request data: raw data from various sources
• Request: basic entity that must be tracked in the system
• Assigned request: information concerning actions to be taken on the request
• Status information: presentation to authorized stakeholders of relevant informa-

tion concerning request status.

These entities are modelled as UML class diagrams. This aspect will be examined
in Section 7.8.

7.6 CONTEXT DIAGRAM AND SYSTEM DECOMPOSITION

In general, a context diagram should contain all the systems that realize all core,
supporting and management processes in a system. In the case of the RAT category,
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Figure 7.4 RAT context environment.

we are interested in tracking the journey of a request from the moment it enters
the system to when it leaves it (or when it is not needed). To this end, we depict
the generic context diagram for the RAT category in Figure 7.4. The main satellite
systems and their responsibilities are as follows:

• Requestor Systems (Source): the systems containing all basic request information.
This information can be in various formats and has various arrival rates. For
example, information arrival can be deterministic (at specified times) or stochastic
(random). See the Appendix to Chapter 6 for a discussion of message patterns.

• Customer Systems (Sink): the systems that benefit from the RAT system. In par-
ticular, these are the systems that receive strategic information concerning the
status of the request. Such information should be available to these recipients at
all times.

• Classifier Systems: the systems that determine the category of an incoming
request. These systems are adaptive knowledge bases and they contain historical
information about the kinds of requests that entered the system in the past and
which request categories are known to, and accepted by, the system.

• Service Level (Environment): the management systems (usually of MIS and PCS
type) that monitor and control RAT. The number of systems and their respons-
ibilities is infinite in general, but we can give certain guidelines:
— Historical information about all orders in RAT (both present and past)
— Systems that track exceptional situations and predict impending capacity prob-

lems (over-capacity and under-capacity)
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— Systems that monitor service levels and ‘quality of service’ aspects in the
system

— Systems for cost, information and control flow in RAT.
• Physical Resource Systems: the systems that are responsible for the lifecycle

of the physical resources that are needed to execute the request. These may
be RAT systems in their own right. For example, they may track the flow of
physical resources, while the SUD is also a RAT system that tracks the information
concerning the request that the ultimate clients see. In this way we see a form of
patterning that we term ‘multi-levelled’ RAT systems.

• Internal Stakeholder Systems: a special group of systems. These systems are
optional. For example, we could create three internal stakeholder systems, one
for each major group in the organization:
— Front Office: the ability to create and modify requests
— Middle Office: assigning resources to requests
— Back Office: grouping orders into clusters; notifying client systems of order

status.
We now decompose the SUD into its subsystems. They are called Registration,
Assignment and Presentation. Their responsibilities are:

• Registration
— Accept request data from different sources
— Create and validate basic request objects
— Notify other systems of request creation status

• Assignment
— Allocate resources that ‘realize’ the request
— Schedule the request using different policies and strategies
— Notify other systems of request allocation status

• Presentation
— Format request status information
— Gather and group requests for further dispatching
— Notify interested clients of new formatted information.

7.7 STAKEHOLDERS, VIEWPOINTS AND REQUIREMENTS

It is possible to discover the main stakeholder groups in a RAT category by exam-
ining the context diagram in Figure 7.4. These are:

• Requestors: systems that send requests to RAT
• Sink: systems that receive status information
• Classifiers: systems that filter, classify and categorize requests
• Physical Resources: systems that allocate resources to resolve the request
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• Internal Stakeholders: persons and functional units that are involved with the
request in some way

• Environment: client and collaborator systems that monitor and control RAT in
some way.

Each stakeholder group has its own specific viewpoints. The ‘default’ and possibly
most important viewpoints are Reliability and Efficiency. Of course, the other ISO
9126 characteristics may be important in specific RAT instances.

It is interesting to examine the sub-characteristic Time Efficiency in more detail.
In particular, we examine time in more detail by asking the question ‘what kinds
of time?’. In the case of workflow systems the answer is as follows (see Sharp and
McDermott 2001):

• Cycle time: the total elapsed time, measured from the moment when a request
enters the system to when it leaves it. This is the time measure that is most
obvious to the customer.

• Work time: the time that the activities that execute the requests are worked on.
In practice, activities are sometimes idle or waiting for other activities to finish
and for this reason cycle time and work time are not the same.

• Time worked: concerned with the actual hours of work expanded on the request.
Sometimes more than one person is working on a request at one time. Thus, time
worked is not the same as work time!

• Idle time: refers to when an activity or process is not doing anything (it is
waiting).

• Transit time: the time spent in transit between activities or steps. For example,
work or goods may be moved from one location to another location. The move-
ment does not add any value to the workflow.

• Queue time: the time that a request is waiting on a critical resource; the request
is ready for processing but it is waiting for resources from another activity to
reach it.

• Setup time: the time required for a resource to switch from one type of task
to another.

Depending on the application, you may need to monitor some or all of these
times. In particular, scheduled values (upper limits and lower limits) need to be
defined. Other dimensions could be space (the location of requests in some physical
or simulated world) and who is responsible for requests.

7.8 UML CLASSES

The PAC model for RAT is shown in Figure 7.5. The Control and Entity layers have
been found from the corresponding system responsibilities while the Entity layers
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are found from the activity diagrams in the core process. Finally, the Boundary
layers deserve some attention. The objects and partitions in these layers are found
from the context diagram in Figure 7.4. The rationale for placing boundary objects
in a given subsystem is as follows:

• The subsystem Registration communicates with the external stakeholder systems
Source and Classifier (hence the presence of the Boundary objects B1 and B2).

• The subsystem Assignment communicates with the external stakeholder system
PhysicalResource (hence the presence of the Boundary object B3). In some cases
this subsystem may communicate with the Classifier system (object B2).

• The subsystem Presentation communicates with the external stakeholder system
Sink (hence the presence of the Boundary objects B4).

An interesting design/analysis decision is to determine where to place the Boundary
objects B5 and B6 that communicate with the Internal Stakeholder systems and
the Environment systems. In Figure 7.5 we place these in the top-level subsystem
(in the Boundary layer) because these systems have access to the RAT system as
a whole and not just to its subsystems. This is a direct application of informa-
tion hiding techniques: a client has a limited number of access points to server
systems.
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7.9 USE CASES

The most important use cases are deduced from the core processes in RAT. One
particularly important use case is the one that describes the tracking of a request in
the system. This is an enterprise-wide use case and we call it:

• U1: Process request data from A–Z.

A summary of the main actions in this use case now follows. These are described
as a collaboration diagram as shown in Figure 7.6:

• Read request data
• Check validity of data (classify)
• Create basic request object
• Notify other systems of new request object
• Assign resources for request
• Notify other systems of assignment (collaborator systems, tactical)
• Prepare for dispatching of request status
• Notify other systems of new status (client/customer systems, strategic).
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Figure 7.6 Computational model in RAT.
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In order to make things more tractable, we partition U1 into three smaller use cases
as follows:

• U1.1: Create basic request entities
• U1.2: Assign and schedule resources for a request entity
• U1.3: Present information on request status.

We do not document these use cases according to the standard template; however, in
Chapters 13 (Elevator Control System) and 14 (Order Processing System) we give
several examples of how to document use cases in RAT instances.

We describe the scope of the use cases by describing their preconditions and
postconditions. Furthermore, we associate each use case with one specific subsystem
in Figure 7.5.

• U1.1 (associated with subsystem Registration)
Preconditions: System operational and accepting requests
Postconditions: Basic request object created and waiting for further processing

• U1.2 (associated with subsystem Assignment)
Preconditions: System operational and there are requests to be processed
Postconditions: Request object assigned and waiting for further processing

• U1.3 (associated with subsystem Presentation)
Preconditions: System operational and it is time to notify clients of request status
Postconditions: Request status has been dispatched and is waiting for
further processing.

The collaboration diagram that describes the flow in these use cases is shown in
Figure 7.6.

7.10 SPECIALIZATIONS OF RAT SYSTEMS

We classify RAT systems as follows:

• Call handling systems (concerned with information tracking and customer
requests)

• Transportation systems (tracking of physical goods in an environment)
• Discrete and continuous batch systems (chip trimming, plastics production).

We discuss three instances of the RAT category in this book. First, in Chapter 13
we analyse the Elevator Control System (ELS) that models the transportation of
passengers in an elevator. This is a technical RAT system. Second, Chapter 14
analyses a business problem called Order Processing System (OPS). Finally, in
Chapter 16 we analyse a Lifecycle model for a plastics manufacturing system. One
of its subsystems is an instance of RAT and this subsystem tracks the flow of molten
plastic on its way to becoming plastic film.
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7.11 USING RAT SYSTEMS WITH OTHER SYSTEMS

Once an entity has been created (in a MAN category, for example), it can be tracked
using a RAT category. In this sense we can say that a RAT category is a client of
some MAN category. Furthermore, since RAT systems track single entities or groups
of entities we need to have some ways of reporting on the status of tracked entities.
To this end, we see that RAT systems can deliver ‘transaction data’ to MIS systems
for further processing.

Finally, many systems can be modelled as ‘multi-levelled’ RAT systems. To take
an example, let us consider the case of a large investment bank. There are various
levels of tracking as can be seen in Figure 7.7. At the ‘lowest’ level we are interested
in tracking changes in market variables such as share prices, volatility, short-term
interest rates and other events such as international crises, fluctuations in oil prices
and so on. In financial terms, we can say that this layer contains basic market
realities. At the second level, we have a number of trading systems. Traders trade in
financial instruments such as options, bonds, shares and swaps. These instruments
are bought, sold and consolidated into portfolios. Changes in market variables will
cause the portfolios in the trading systems to be adjusted. At the next level, we have
the Value At Risk (VAR) systems, risk sensitivity analysis and hedging analysis
applications (see Dowd 1998); these are responsible for determining how exposed
a certain portfolio is and what risks a trader is taking. VAR can be defined as the
maximum likely loss of a trader’s portfolios. Finally, all VAR systems should report
to a Regulator system that tracks the absolute risk in an organization. The systems in

Regulator
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Trader2Trader1 Trader3

Real Time Feed Market Prices
Market

Trader

VAR Manager

Regulators

. . .

. . . . . .

. . .

Figure 7.7 Multi-levelled RAT system.
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Figure 7.7 are essentially RAT instances. Each system operates on its own specific
request types.

The layered systems in Figure 7.7 are interdependent. The systems in the market
layer provide data to the Trader layer. Finally, the VAR layer uses the information
and data provided by the lower layers. This layer will be populated by various
management and decision support systems.

Finally, a special RAT system is one that registers major events in other systems.

7.12 SUMMARY AND CONCLUSIONS

We have analysed a class of problems that are related to workflow and supply chain
metaphors. We use the term RAT (Resource Allocation and Tracking) to describe
those applications that register requests from outside sources, assign resources to
resolve request and inform interested client systems of the status. The main activities
in the core processes are request registration, resource assignment and presenta-
tion of request status. The RAT category is probably the most important and most
ubiquitous of all the domain categories that we discuss in this book. RAT instances
are subsystems in larger real-life systems.

A good way to determine whether your current problem can be fitted by the
RAT category is to examine the Help Desk System in this chapter and look for the
similarities.
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systems

‘The holodeck uses two main computer subsystems, the holographic imagery
subsystem and the matter-conversion subsystem, to create remarkably sophisti-
cated simulation programs.’

8.1 INTRODUCTION AND OBJECTIVES

This chapter introduces a class of applications that have one thing in common: they
all create products or services from basic raw materials. It does not matter whether
the products are physical or represent information about other entities. In general, all
manufacturing applications process raw materials and convert them to half-products.
These half-products are then converted and formatted to suit individual stakeholder
needs. The end-result is a product delivered to them.

Many applications create objects and entities and the MAN category describes
this process. Some possible worlds where the model is applicable are:

• Natural or artificial
• Real or conceptual (virtual)
• Static or dynamic
• Deterministic or stochastic (probabilistic)
• Control (cybernetic) or non-control
• Rigid or flexible.

There are several issues that we address when analysing MAN instances. First, the
type and format of raw data that enters the system (the input) as well as the type
and format of the data that the system produces (the output) need to be documented.
Furthermore, we must describe the type and format of the internal objects and half-
products. Second, the algorithms that convert internal objects to finished products
are usually complex, difficult and time-consuming to realize. Finally, the role of
the manufacturing system in a larger context needs to be examined. This is because
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manufacturing systems deliver goods and services to other systems (for example,
management, tracking or process control systems). The interfaces and the corre-
sponding data standards that arise due to the interaction between the manufacturing
systems and its satellites need to be defined.

8.2 BACKGROUND AND HISTORY

In this section we discuss the essentials of manufacturing processes. The term ‘man-
ufacture’ appeared in 1622 as a translation from the Latin manu factum (made
by hand). The emphasis was on making tangible things. The definition has been
extended to include manufacturing, construction and public utility generation.

There are three major flows in any manufacturing process (see Hitomi 1996):

1. Flow of materials (material flow): the conversion of raw materials into products.
This is sometimes called technical production.

2. Flow of information (information flow): the planning and control of production.
3. Flow of cost (cost flow): the economics of production.

Associated with each flow are processes, activities and stakeholder groups. The con-
ceptual schema for a manufacturing process is shown in Figure 8.1. The material

Planning

Information

Workshop

Control Information

Control

ProductsRaw Materials

Flow of Cost

(MAN System)

Figure 8.1 Flows in manufacturing processes.
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flow has to do with the utilization of resources of production (such as money, materi-
als, manpower and information) in order to produce the product. This flow represents
a core process (it connects input to output) and the corresponding activities are:

• Procurement (receives raw materials from suppliers)
• Production (produces products from an inventory of raw materials)
• Distribution (distributes commodities to the market)
• Sales (sell commodities to consumers).

This is a standard generic model and it can be specialized to many specific domain
and applications.

The information flow represents the management function in the manufacturing
process and models the planning and control functions. It is a market-based process
in the sense that it must grasp the market needs and reflect those needs in the
production process (Hitomi 1996). Planning is defined as the selection of a future
course of action and is realized by activities that produce products in a workshop.
The information flow is the driving force in the production process.

The cost flow is concerned with how the production process adds value at each
stage of that process. Costs are involved in each activity of the production process.

A common approach to system design is the so-called hierarchical method. The
essence of this method is to vertically arrange and integrate subsystems, each
of which is responsible for tactical planning and control, whereas there is one
highest-level system that is responsible for strategic planning. We show these rela-
tionships in Figure 8.2. The highest-level subsystem makes strategic decisions that
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Figure 8.2 Combining manufacturing and management systems.
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restrict the operations of the lower-level subsystems. These subsystems report to the
highest-level subsystem. The relationship with domain architecture is clear: each
subsystem can be analysed as a MAN category, for example.

In general, the created products are quite complex and are typically aggregates
or composite entities. In some cases the finished product consists of a number of
complex parts. Each complex part consists of piece parts (or units). Finally, a unit
is built from workpieces. A workpiece is essentially a raw material. The structure
of a finished product is shown in Figure 8.3 as a UML class diagram (in fact, a
three-level aggregate object).

8.3 MOTIVATIONAL EXAMPLES

We introduce and motivate three examples to help the reader gain insight into the
manufacturing model and why it is important in software development.

8.3.1 Compiler theory

A good example of a manufacturing model can be found in the area of software
compilers. A compiler is a program that accepts a source file and produces a
target program that then runs in a given computer environment. The first com-
mercial compilers were built in the early 1950s. Some well-known examples are
the compilers for Fortran and Cobol. It has been estimated that the first Fortran
compiler took almost 40 man-years to write, whereas nowadays university under-
graduate students are able to write a compiler in the space of a few months.
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The reason for this increase in productivity is that compiler theory is now well
developed.

A compiler takes a source program as input and produces as output an equivalent
sequence of machine instructions (Aho and Ullman 1977). Because this is a com-
plex process, compiler builders partition the compilation process into a number of
activities, or phases as they are called. A phase is the same as an activity in UML
because it takes as input one representation of the source program and produces as
output another representation. The activity diagram for the compilation process is
shown in Figure 8.4. The main activities are:

• Lexical analysis: the phase (also called the scanner) that is responsible for sep-
arating characters in the source program and grouping them. These groups are
called tokens and they usually represent keywords. The output is thus a stream
or tree of tokens.

• Syntax analysis: the syntax analyser (or parser) groups tokens into syntactic struc-
tures called expressions. These expressions are then combined to form statements.
The output from the parser is a so-called parse tree.

• Intermediate code generator: creates a stream of simple structures. It is possible
to produce many kinds of intermediate code. This code can be seen as a kind of
machine-independent assembly code (or p-code) because it does not specify the
registers for each operation.

• Optimization: this phase optimizes the intermediate code so that it runs faster or
uses less space and memory. It produces the same output as the intermediate code
generator but the code runs faster, for example.
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Code
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OptimizationLexical
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Syntax
Analysis

Intermediate
Code

Generator
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Intermediate
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Figure 8.4 Phases of a compiler.
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• Generator: this is the phase that produces the final object code that will run on
the target machine. We decide on memory locations for data and we select the
registers in which each computation is to be done.

There are two other issues that we must deal with that are not depicted in
Figure 8.4. First, symbol table management or bookkeeping keeps track of the
names used by the program and records information about each name. Second,
we need to support error handling. This is invoked whenever a flaw is detected
in the source program. Both error handling and symbol table management interact
with all phases of the compiler. Figure 8.4 suggests that the process is sequential
and it is indeed possible to implement a compiler as a batch sequential program.
However, modern compilers employ an improved architectural style called a central
shared representation (Shaw and Garlan 1996).

The compiler analogy is very useful and we can use it as a baseline architecture
for many kinds of dataflow applications. The added value of using compiler theory
as a model for our applications is that it serves as a general metaphor in many
situations where data in one format is transformed to data in some other format.
Examples are:

• Encoding and decoding of information
• Binding data in GUI dialog boxes with the corresponding data in relational

database tables
• Formatting data and displaying it on various output media
• ‘Import’ and ‘export’ routines from and to external programs (for example, Excel)
• Creating software objects in an object-oriented language (GOF 1995).

8.3.2 Graphics applications

We introduce and document a simplified model for an interactive application that
processes information from an ASCII file and produces a display on some output
medium. We give the current toy problem a name—we call it Business Graphics
System (BGS)—and we view this problem as a specialization of the compiler
problem in Section 8.3.1.

The goal is to process an ASCII input file containing numeric data and transform
it so that the generated information can be presented on the user’s screen using
the GDI (Graphics Device Interface) driver. It must be possible to display both pie
charts and line diagrams (by ‘toggling’ between each choice using radio buttons, for
example). The context diagram, system decomposition and logical PAC model for
BGS are shown in Figure 8.5. The source data is situated in a ‘disk’ actor system
and in this version we assume that the ASCII file contain CSV (comma-separated
variable) data in array form; for example, the array data (100, 200, 100) will produce
a pie chart with three slices (one slice is 180 degrees while the other two slices
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Figure 8.5 Business Graphics System (BGS).

represent 90 degrees). The products of BGS are sent to GDI driver software (GDI
is a set of application programming interfaces (API) that allows programmers to
create device-independent applications in a Windows environment). Furthermore,
the Menu actor system allows us to toggle between different display representations
such as line graphs, bar charts and pie charts. The core process is to display data
and we realize it by three major activities:

• Preprocessing (produce a parse tree from the source data)
• Conversion (map the parse tree to device-independent graphics objects)
• Postprocessing (create device-dependent displays from the device-independent

graphics).

We have chosen the names ‘Pre/PostProcessing’ for historical and personal rea-
sons. Many manufacturing applications such as Finite Element Methods (FEM) and
Computer Aided Design and Manufacturing (CAD/CAM) use the same terminology.

Since BGS is a specialization of a compiler program, we can ask ourselves what
the parse tree (internal objects) and optimized code (half-products) are. For the case
in which the source data contains CSV data we conclude that the internal data
objects are entities such as arrays, lists and other recursive collections. The half-
products consist of recursive representations of the charts that will be displayed in
GDI. These half-products can be described as ‘device-independent graphics objects’
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Figure 8.6 ‘Half product’ in BGS.

and they should be modelled as UML class diagrams. For example, a bar chart is
shown as a UML class diagram in Figure 8.6. A bar chart consists essentially of an
axis and a list of data that is represented as rectangles. Finally, it is the responsibility
of the PostProcessing subsystem to accept a bar chart in ‘neutral’ form, format it
and then display it on the appropriate output medium.

We have included the sequence diagrams that depict how to realize these activities
in Figures 8.7, 8.8 and 8.9. The diagrams help to motivate the information flow in
the system at a conceptual level.

8.3.3 Human memory models

The following example is taken from cognitive psychology. To this end, we discuss
a model for human memory that is based on the so-called information process
paradigm. The reason that we see this problem as a MAN instance is that there is a
clear process of converting one kind of information (namely real-world perceptions)
into a permanent record of these perceptions (long-term memory). The mind is
classified as a set of processes that store and process information about the individual
and the world that she or he inhabits (Lee and Pranja 1995, Gross and McIlveen
1995). There are several attention points that we need to address:

• Encoding: the process of taking information about the world and converting it
to memory
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• Storage: the way in which information is represented in the brain
• Retrieval: how information is made available to people.

The memory information processing model is shown in Figure 8.10. This is a
highly simplified model but it is useful because it captures some important features
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of memory. The Sensory Registration holds information that has just entered the
cognitive system. Examples are sounds and images. This is information that is in a
‘raw state’ and it usually consists of electrical signals. These signals are then con-
verted into complex patterns and objects in the brain. The short-term memory (STM)
store can typically hold seven chunks of information and represents information
that is forgotten within 6–10 seconds (see Miller 1956). However, a process called
rehearsal can extend the lifetime of information. This is the process of repeating the
contents of the short-term store repeatedly in one’s head. The long-term memory
(LTM) store represents a large storehouse of information in which memories are
stored in a relatively permanent way. There seems to be no limit to the amount
of information that can be stored in LTM. There are two kinds of organizations
in LTM. First, personal or episodic information is stored in chronological order.
Events are linked to when and where they occurred. Second, factual or semantic
information is stored in semantic categories. Each category contains concepts with
similar or associated meanings and these are stored together in the LTM. Human
memory models could be used as a useful metaphor for software-based information
processing systems, especially shared-memory models.

8.4 GENERAL APPLICABILITY

The MAN category is applicable when there is a clear case of tangible (or intangible)
products and services being produced from raw materials. This category models
both physical and virtual worlds and we must view ‘manufacturing’ in the broadest
sense of the word. For example, an insurance company could apply the model to
‘manufacture’ insurance policies and portfolio contracts.

We give a list of some keywords and special terms that arise when discussing
MAN systems. As analyst, you should actively listen to customers and other stake-
holders because the vocabulary that they use will give hints on how to develop
a system.

• Raw materials, stock control, inventory
• Half-products, bill of materials
• Finished products and services
• Resources and objects that are needed for other systems
• Information, product and cost flows.

The workflow models in this category suggest a sequence of activities, with each
activity producing added value to the next activities in the ‘value chain’. In general,
the format and representation mismatch between raw materials and finished product
is harmonized by these activities.
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8.5 GOALS, PROCESSES AND ACTIVITIES

In general we state that the major goal of MAN systems is to produce products, ser-
vices or information that is used by other client and collaborator systems. The input
to the core process is raw data having a defined format and the output represents
products that are used by client systems. The activities are:

• PreProcessing: accept and validate raw data (produces internal objects)
• Conversion: create half-products from internal objects
• PostProcessing: manufacture products and services to satisfy customer needs.

8.6 CONTEXT DIAGRAM AND SYSTEM DECOMPOSITION

The context diagram for the MAN category is shown in Figure 8.11. Together
with its satellite systems, a manufacturing application can achieve its goals, namely
produce products and/or services from raw materials. There are five major satel-
lite types:

• Source: where the raw materials come from
• Token System: classifies and validates incoming raw materials
• Resources: contains resources that are needed in order to manufacture the product
• Management: systems that monitor and control the manufacturing process
• Sink: the ultimate recipients of the finished products.

MAN

Management
(costs, . . .)

New Data
(Objects)

Basic Data

'Token' System

Source

Resources

Sink

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Figure 8.11 MAN environment.
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The Source systems may be external legacy systems and different input format
types will be supported by the manufacturing system. Of course, it is important that
knowledge of these formats does not percolate throughout the system if we wish to
avoid a maintenance nightmare. Again, different output formats are possible. The
Resources systems hold all resources and spare parts that are needed to support the
main manufacturing process. We note that the Management systems in the context
diagram may belong to the MIS or PCS categories. In the first case the manufacturing
system sends transaction data to the MIS systems for consolidation and reporting,
while in the second case the PCS systems receive high-level interrupts and other
‘push’ alerts via their sensor interfaces and are thus the ‘watchdog’ or control
systems for the manufacturing system. Finally, the Token systems are responsible
for the creation of basic building blocks from the raw materials and for validating
these raw materials.

We describe the information flow between the current manufacturing system and
its actor systems while referring to Figure 8.11:

1. The raw materials are processed.
2. The information in the raw materials is classified and validated.
3. Resources are allocated (this is sometimes called stock control).
4. Management systems (e.g. costs, planning) are informed of the status of the

manufacturing process.
5. Sink systems are notified of the status of the final product.

A MAN system is decomposed into three loosely-coupled subsystems: first, the
Preprocessing subsystem accepts raw materials and produces internal building blocks
and parts; second, the Conversion subsystem produces half-products from the inter-
nal objects; and finally the PostProcessing subsystem creates finished products
and services.

8.7 STAKEHOLDERS, VIEWPOINTS AND REQUIREMENTS

We give a short description of the main stakeholders that are involved in MAN
systems, how they view these systems and what their major viewpoints and require-
ments are.

8.7.1 Stakeholders and viewpoints

The main stakeholders are:

• Customers: client systems that receive the products and services
• Suppliers: systems that provide the SUD with raw materials
• Management: systems that monitor and control the flow in the MAN system
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• Quality control: systems that check and validate raw data and Supplier quality
• Stock control: resource pools from which the MAN system acquires resources.

Each group has its own special business concerns and viewpoints. These will drive
the requirements determination process. Some examples of viewpoints that we based
on ISO 9126 are:

• Customers
— Suitability of product
— Accuracy of product
— Usability of product

• Suppliers
— Reliability
— Interoperability
— Stability

• Management
— Efficiency of manufacturing process
— Security
— Reliability of manufacturing process

• Quality control
— Suitability and accuracy of raw materials
— Training of manufacturing personnel
— Conformance and compliance standards

• Stock control
— Resource efficiency (just-in-time stock)
— Time efficiency
— Interoperability with other systems.

It is important for the requirements analyst to determine how the stakeholders view
the system. Consciously or unconsciously, a stakeholder has expectations about
what kind of system she or he would like to have. It is the analyst’s job to make
these expectations explicit and to describe them as requirements and use case. For
example, we can map these viewpoints to requirements and then to use cases using
the Inquiry Cycle model.

Failing to discover the most important viewpoints in the system will lead us to a
system that does not satisfy the needs of certain stakeholder groups.

8.7.2 Requirements

Recall that the goal of MAN systems is to produce products, services and infor-
mation for other client systems. We can qualify this statement by insisting that the
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product should satisfy certain functional and non-functional requirements. Some
examples are:

• Accuracy: The system should produce correct and expected products.
• Security: It should not be possible to compromise the integrity of the data or

products.
• Interoperability: The system can receive data from Source systems and send data

to Sink systems by the use of predefined standards and protocols, for example
XML.

• Fault-tolerance: high up-time and low MTBF (mean time between failure).
• Recoverability: rollback and the ability to recover from disasters.
• Time efficiency: The system should create the products as effectively and as effi-

ciently as possible.
• Resource efficiency: The system should create products with the least amount of

waste and with optimal use of available resources.
• Usability: The system should be easy to understand, learn and operate.
• Analysability: The system should have the ability to execute diagnostic proce-

dures that pinpoint bottlenecks in the manufacturing process.
• Stability: Local changes to the system structure or functionality have local impact.
• Portability: The system should be able to modify the manufacturing process to

suit new hardware, customer and software configurations.

The list can be used as input to discussions between the requirements analyst (RA)
and the customers of the system. The RA can apply the Inquiry Cycle model (see
Appendix 1) to discover requirements and use cases for specific MAN instances. Let
us take an example: resource efficiency. We ask the question ‘What kinds of resource
efficiency?’. Possible answers are ‘raw material efficiency’, ‘human efficiency’ and
‘machine efficiency’. These newly-discovered requirements are made very tangible
by asking ‘how to’ questions. For example, we could ask the question ‘How to
realize machine efficiency?’. Answers will allow us to define procedures and use
cases that realize this requirement.

The Inquiry Cycle model questions can be applied to the other ISO 9126 charac-
teristics.

8.8 UML CLASSES

This section describes the PAC model for the MAN category. The architecture is
shown in Figure 8.12 and we already know that the system has been decomposed
into operational, tactical and strategic subsystems, namely PreProcessing, Conver-
sion and PostProcessing. These subsystems are then mapped to a PAC model. The
introduction of objects in the entity and boundary layers will tell us how to real-
ize the responsibilities of each subsystem. Each layer is populated by a network
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or graph of objects. UML class diagrams document this network. The classes are
discovered by elaborating the use cases for the particular MAN instance.

We paraphrase how the objects and object layers in Figure 8.12 realize the core
process in a MAN category: ‘The Acceptor reads, interprets and validates the data
from the Source system. Then basic internal objects are created and other systems are
notified of this event. The Conversion is requested (for example, through Preview)
to convert the newly created internal objects into half-products. Finally, these half-
products are formatted and edited to suit the needs of external client systems. The
Dispatcher layer is responsible for communication with these clients.’

8.9 USE CASES

It is impossible to document all use cases for a MAN category because each MAN
instance is context dependent. However, it is possible to give general guidelines
and list those use cases that are common to all MAN instances. These use cases
are the realizations of core, supporting and management processes. Of course, the
core process is what the customer is interested in: ‘produce a product from raw
materials’. The corresponding use case U1 describes how this is to be achieved. Its
sub-use cases are:

• U1.1: Create basic building blocks (subsystem PreProcessing)
• U1.2: Produce half-products (subsystem Conversion)
• U1.3: Package, manufacture and dispatch product (subsystem PostProcessing).
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By examining the context diagram in Figure 8.11 and by documenting the sub-use
cases we are able to discover a number of actions in each use case:

• U1.1.1: Read data from Source system
• U1.1.2: Check, validate and create internal objects
• U1.1.3: Notify other systems.

• U1.2.1: Process conversion request
• U1.2.2: Execute conversion algorithm
• U1.2.3: Notify other systems.

• U1.3.1: Start dispatching request
• U1.3.2: Format and transform internal representation
• U1.3.3: Notify and dispatch.

In general, use case U1.2.2 is complex and time-consuming because it is here
that we must develop algorithms that convert internal data to half-product data.
Furthermore, even more difficult is the problem of ensuring that these algorithms
satisfy non-functional requirements such as Reliability, Efficiency and Portability.
Project managers beware! The realization of use case U1.2.2 can consume much of
the project budget.

Each of the above-mentioned use cases has variants and exceptions which in turn
lead to new use cases. This is an attention point when you analyse applications in
the MAN category.

Finally, management systems monitor the performance of MAN applications (see
Figure 8.11 again) and will have their own set of use cases. For example, we can
create a MIS satellite system that monitors the costs in the MAN system. Most of
these have to do with normal and exceptional reporting concerning the processes in
MAN. For this reason, it is a good idea to view these systems as instances of MIS
and PCS categories. The resulting interaction between the current systems and its
satellites is a rich source of use cases.

8.10 SPECIALIZATIONS OF MAN SYSTEMS

The MAN category is not restricted to physical production and manufacturing sys-
tems. In fact, anything that is created from simpler ‘materials’ and adds value to
some stakeholder group can be viewed as an instance of the MAN category.

A rough classification of MAN applications is:

• Manufacturing of tangible and physical products
• Simulation of real-life situations (CAD/CAM, graphics and visualization)
• Manufacturing of service-related products.
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Domain-specific examples can be given but they tend to be very complex and not
relevant to some readers. For example, a system to create financial derivative objects
(such as options, swaps and portfolios) may not be very interesting to a mechanical
engineer. The conceptual distance between the two application types may be too
great, even though there are many similarities between the two applications.

8.11 USING MAN SYSTEMS WITH OTHER SYSTEMS

We note that the Management systems in the context diagram (see Figure 8.11) can
belong to the MIS and PCS categories. In the first case the manufacturing systems
send transaction data to the MIS systems for consolidation and reporting, while in
the second case the PCS systems receive high-level interrupts and other ‘push’ alerts
via their sensor interfaces.

It is possible to build large systems by combining MAN instances and instances
of other domain categories. To this end, we discuss some possible scenarios:

• S1: MAN as a client, server or collaborator of some other system
• S2: Typical relationships between MAN and other domain architecture types
• S3: How viewpoints and requirements lead to new satellite systems.

Instances of the MAN category typically play the role of sources (servers) to other
systems. These objects ‘enter’ other systems. For example, a common pattern is
when a system consists of a number of subsystems, one of which is a MAN system.
We see this in Lifecycle models, for example; these consist of MAN, RAT and MIS
system. The MAN system creates the basic objects that are then tracked by the RAT
system. Of course, it is then possible to create reports for groups of objects in the
MIS system.

8.12 SUMMARY AND CONCLUSIONS

We have discussed a class of applications that we group under the name of the
Manufacturing (MAN) category. The major process in all instances of this category
is to create products and services from raw materials. It is possible to use this model
in many software projects and its applicability is not limited to ‘strict’ manufacturing
systems (although it is of use here as well). In fact, objects need to be created in
many applications and the MAN category model should be used as a baseline
model. A good way to learn MAN systems is to study how compilers are built or
how CAD/CAM systems are designed. After all, much of the early research and
emerging object products had to do with graphics applications.
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Instances of MAN systems are used by other systems. This is because products
from MAN systems are tracked, monitored and controlled by instances of other
domain categories.

The most critical question to ask is: does my system involve the manufacture of
entities that are used by other systems? If the answer is yes, you can be fairly sure
that you can model the system as an instance of MAN systems. Otherwise, you
should continue with your investigations.





9 Access Control Systems
(ACS)

‘To learn meaningfully, individuals must choose to relate new knowledge to
relevant concepts and propositions they already know.’

Joseph Novak

9.1 INTRODUCTION AND OBJECTIVES

In this chapter we describe applications that are concerned with the problem of
accessing entities, objects and resources using well-defined access policies and pro-
cedures. Many real-life systems and applications are concerned with this kind of
problem and to this end we establish a general framework for all existing and future
systems in this category. In particular, we benchmark the well-known Reference
Monitor model that was devised to model security and access control policies in
mainframe and minicomputer systems.

There are many situations where the ACS category can be found. Usually, it is
a satellite system of some other system but it is important enough to be studied in
its own right. We give some well-known examples of this category:

• Drink vending machines
• Automated teller machines
• Gambling machines
• The Reference Monitor model in operating system theory
• Systems that model access to entities (in the widest sense of the word)
• Interactively accessing database information
• Security systems in general.

In fact, the Reference Monitor model will be used as the motivator for ACS.
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9.2 BACKGROUND AND HISTORY

Access control systems are very common. As we shall see, standard reference mod-
els were developed in the 1960s that describe how to analyse and design secure
computer systems.

We show how to construct a general model. This model will subsume many
specific examples and test cases that we encounter in textbooks and real-life appli-
cations.

9.3 MOTIVATIONAL EXAMPLES

We give a non-trivial example in this section. This is the famous Reference Mon-
itor model that describes secure computer systems. The model is almost 50 years
old and we also discuss how it has evolved to accommodate developments since
its inception.

9.3.1 The Reference Monitor model

The background for the category in this section is research that was carried out
in the 1960s on how to achieve security in multi-user computer systems. Initial
attempts were chaotic and development work was aimed at finding all the things
that could go wrong with the system’s security and then attempting to resolve
these problems one at a time. Researchers soon realized that the best way to solve
these problems was to create a basic model for a secure computer system. To
this end, the so-called Reference Monitor model was born and it has been used
with success in several operating systems, for example VAX/VMS from Digital
Equipment Corporation (DEC). (Incidentally, the author was a system manager at
a large oil and gas company during the 1980s and this is where he gained hands-on
experience in this area.) For more information on this model, see DEC (1988). We
describe a computer system in terms of a number of generic entities as shown in
Figure 9.1 and the relationships between them. The main actor systems are Subjects,
Objects, Authorization Database, Audit Trail and Reference Monitor Mechanism.
We now describe each actor and its role in the model.

• Subjects: These are active entities that gain access to information on behalf of
people. When a user logs in to VMS, the user provides a user name and pass-
word. The password serves as an authentication that is known only to the user
and to VMS. Once a process has been created, VMS assigns a so-called User
Identification Code (or UIC) and this corresponds to the name of the user who
created the process. Furthermore, the UIC identifies the user’s membership in a
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Authorization Database

Reference MonitorSubjects Objects

Security Audit

Figure 9.1 Reference Monitor diagram.

group. This group could correspond to the user’s department, project or function,
for example.

• Objects: Objects are passive repositories of information and they must be pro-
tected in VMS:
— Files
— Directories
— Logical names
— Disk volumes
— Network objects
— Mailboxes
— Queues.
VMS protects these objects from unauthorized access and provides several mech-
anisms for their controlled sharing.

• Authorization Database: Each subject’s authorization credentials that are needed
to gain access to an object are stored in an authorization database. Different
objects are shared with different levels of access and are subject to a so-called
UIC-based protection. This type of protection specifies whether access to an object
is allowed or denied depending on the subject that is attempting to access it. For
example, access can be defined in terms of the owner of the object, in terms of
the other members in the same UIC group as the owner, or in terms of all users
in all groups. For example, we could define protection levels in such a way that
all users in the same UIC group have read and execute access to an object while
users outside the group have no access whatsoever. It is possible to augment
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UIC-based protection by sharing objects using access control lists (ACLs). An
ACL describes which users or groups of users are allowed or denied access to
objects in the VMS system.

• Audit Trail (also known as Security Audit): It should be possible to audit classes
of events. It is important to monitor events such as successful and unsuccessful
attempts to gain access to sensitive objects. For example, a terminal can be des-
ignated as a security alarm console where all auditable alarms are displayed. The
audit trail mechanism allows security managers to record many kinds of events.

• Reference Monitor Mechanism: This mechanism enforces security rules and
should satisfy the following requirements:
— It mediates every attempt by a subject to gain access to an object.
— It provides a tamperproof database and audit trail that are fully protected from

unauthorized access.
— It should be small, simple and well structured, thus promoting its effectiveness

in enforcing security requirements.
The main responsibilities of the Reference Monitor mechanism are authorization
of subjects, granting subjects access to objects according to the database require-
ments (called authentication) and recording events in the audit trail (if the audit
trail feature is enabled). We note that it is possible in VMS to grant a user the
authority to modify or subvert the Reference Monitor mechanism. For example, a
process with the BYPASS privilege can gain access to any object in VMS without
having to refer to the authorization database.

Each user in the system has a unique UIC assigned to it by the system manager.
A UIC in alphanumeric format consists of a user name and optionally a group name,
for example:

[member]
[group, member]

It is also possible to specify a UIC in numeric format, for example [100, 3] which
specifies user 3 in group 100. The UIC is translated to a 32-bit numeric key that is
kept in a so-called system rights database.

We define protection levels for an object by using the command language in
VMS. For example, the following code defines access to file ‘myfile.dat’:

SET PROTECTION = (OWN: RWED, GROUP: RE, WORLD: R) myfile.dat

This statement says that the owner has read, write, execute and delete privileges for
‘myfile.dat’ while the group in which the owner belongs has read and execute
privileges. Finally, all other users (the world) have read privilege only.

ACLs consist of access control list entries (ACEs) that grant or deny access to a
particular system object. Each ACE specifies a user or group of users and the type
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of access permitted. The authorization database is often represented as an access
matrix and this lists subjects as rows and objects as columns (the matrix is often a
sparse matrix, that is one that has few non-null entries). Each matrix entry represents
the access that one subject has to one object. An example of such a matrix is given
in Figure 9.2. The asterisk ‘*’ is used to denote access to the object; different kinds
of access are possible, such as READ, WRITE and EXECUTE. Blank entries state
that there is no access to the object from the given subject.

If we break up an access matrix by rows we arrive at a so-called capability-based
system. This means that each subject carries a list of the objects that it can access.
It is of course also possible to break up the matrix by columns and in this case we
get a listing of all the subjects for each object. This is called an authority-based
system. Each column describes who has access to a given object.

Objects U V W x

Subjects

A * *

B *

C *

Figure 9.2 Example of an access matrix.

Authorization Database

Network Reference
Monitor

Subject
A Computer Node

Object
A Computer Node

Audit Trail

Figure 9.3 Reference Monitor in a network.
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Finally, Figure 9.3 represents the Reference Monitor in a network. In this case
subjects and objects are in different address spaces. This makes security issues all
the more difficult. This subject is outside the scope of the current book. For more
on designing such systems, please consult POSA (1996) and Schmidt et al (2000).

9.4 GENERAL APPLICABILITY

The ACS category is useful when we wish to protect other systems from unau-
thorized access. It is typically a front-end ‘proxy’ to other systems. We give a list
of some keywords and special terms that arise when analysing ACS systems. As
analyst, you should actively listen to customers and other stakeholders because the
vocabulary that they use will give hints on how to develop a system:

• Customer access to certain resources in certain ways
• Authorization issues (who is authorized to do what)
• Authentication (check customer credentials when he or she tries to access

resources)
• Security levels
• Normal users and ‘super’ users
• Audit trails
• Security viewpoint (in ISO 9126)
• Availability (a kind of Reliability in ISO 9126).

This list can be used as a check to determine whether stakeholders use the above
jargon and vocabulary. They will give hints regarding the applicability of the ACS
model to your current application.

9.5 GOALS, PROCESSES AND ACTIVITIES

The main goal of this category is customer service because all instances of the
category have to do with providing access to valuable resources. In order to convince
ourselves of this fact, just think of the different kinds of ACS systems:

• All kinds of product vending machines
• Automated teller machines (ATM)
• All kinds of systems that access databases using batch and interactive interfaces
• Gambling machines (for example, ‘one-arm bandits’ and fruit machines)
• Local (batch, interactive) and remote access to software and hardware objects in

a computer network.
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There may be several associated sub-goals such as security, availability (of product
and resources), reliability and usability. The most important stakeholder in an ACS
category is the beneficiary of the products and services that the system delivers.
Thus, we are not far wrong if we state that the core process is responsible for the
delivery of products based on some kind of customer request:

The Core Process (P1) in ACS is responsible for the delivery of products and services to
authorized customers.

The main activities in this process are:

• P1.1: Process customer request
• P1.2: Check customer credentials and product availability
• P1.3: Commit customer request.

Activity P1.1 produces an internal representation of a customer request that is
checked by P1.2 (in fact, this is a kind of proxy). If the customer credentials are
good and if the product is available, P1.2 sends a commit request to P1.3. Finally,
P1.3 is responsible for delivering the products to the customer.

It is interesting and useful to think of the activities in P1 as follows: P1.1 is respon-
sible for strategic issues such as interfacing with the customer, P1.2 is responsible
for tactical issues such as checking product availability and customer credentials,
while P1.3 is responsible for operational issues such as actions that have to do with
product availability status and the actual delivery of products. These categories
will be explored in an example when we introduce and analyse the Drink Vending
Machine (DVM) in Chapter 15.

9.6 CONTEXT DIAGRAM AND SYSTEM DECOMPOSITION

The context diagram for ACS is based on the Reference Monitor model and we
show it in Figure 9.4. We include the generic boundary objects for completeness,
as we will need them when we create the corresponding PAC model. The main
stakeholder systems are:

• ACS: the system to be modelled
• Source: the system where customer requests originate
• Authentication system: Checks customer credentials
• Resource system: the physical location of products and services
• Sink: the ultimate client systems
• MIS: various management systems (for example, Audit Trail systems).
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Figure 9.4 Context diagram for Access Control System.

Each instance of ACS will have a different interpretation of these responsibilities.
To take an example, in the case of a gambling machine (fruit machine) in a casino,
we interpret these responsibilities as follows:

• ACS: the system that models the gambling machine
• Source: the buttons on the front panel of the gambling machine
• Authentication system: the coin unit
• Resource: the product is the number of points that you can win
• Sink: alarm bells, flashing lights that indicate that you have won the jackpot
• MIS: audits of customer behaviour and other resource monitoring information.

We now decompose ACS into its constituent subsystems. This is based on the core
process and its activities as seen in Section 9.5. The main subsystems are:

• Source: responsible for product lifecycle (operational)
• Transaction Centre: responsible for customer and product validation (tactical)
• Interface: responsible for interactions with the customer.

9.7 STAKEHOLDERS, VIEWPOINTS AND REQUIREMENTS

As can be seen from Figure 9.4, each system falls under the responsibility of a
stakeholder or group of stakeholders. We discuss these as humans in this case:



Use cases 155

• Customers: responsible for using the ACS system, entering commands and being
informed of the status of a transaction. A customer can play the roles of selector
(selecting a product) or receiver (receiving the products or goods).

• System administration/access mangers: determine which customers have access
to which products and services. These managers are responsible for the life of
the authorization database.

• Product systems: the systems that receive commands from the ACS system.
• Various management groups, for example category managers (who are interested

in knowing how well a product is selling), security managers and legislative bodies.

As with MIS systems, we could partition stakeholders into operational, tactical and
strategic groups.

We now discuss the viewpoints taken by each stakeholder group. Customers
are usually interested in Functionality, especially Accuracy and Suitability. System
administrators and managers are interested in Security and Compliance. Finally, cat-
egory and product managers are interested in Reliability (no down-time), Efficiency
(time and resource efficiency) and Availability (a kind of Reliability)

9.8 UML CLASSES

The PAC model for the ACS category is shown in Figure 9.5. This picture is self-
documenting, especially if we view it from the perspective of the context diagram
(which determines the location of the Boundary objects) and the activity diagram for
the core process (which determines the location of the Control objects). The most
important Entity layer is Session as it is here that transactions are born, updated
and committed.

9.9 USE CASES

The high priority and most critical use cases are deduced from the corresponding
core processes. For each process we are able to discover a large number of use
cases that realize it. The requirements analyst should be able to discover these use
cases by using the questions from the Inquiry Cycle model.

The main use case is the realization of the core process P1 that we discussed
in Section 9.5. We call it U1 ‘Execute customer request’ and it has the following
sub-use cases:

• U1.1: Process customer request
• U1.2: Check customer credentials and product availability
• U1.3: Commit customer request.
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Figure 9.5 PAC model for ACS.

It is possible to document U1 and its sub-use cases using the standard template mech-
anism. We leave this as an exercise; however, we show the most important details:

• U1: Execute customer request
Precondition: Product system idle, operational and accepting requests
Description:
— U1.1: Process customer request
— U1.2: Check customer credentials and product availability
— U1.3: Commit customer request
Postcondition: Product delivered and product system reverts to idle mode

• U1.1: Process customer request
Precondition: Product system idle, operational and accepting requests
Description:
— Read customer request data
— Check and validate request data; create basic request
— Notify ACS that a new pending request has arrived
Postcondition: System waiting for request to be committed

• U1.2: Check customer credentials and product availability
Precondition: System waiting for request to be committed
Description:
— Check customer credentials
— Check product availability
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— Send request to Resource (product) system
Postcondition: Request commitment pending

• U1.3: Commit customer request
Precondition: Request commitment pending
Description:
— Execute request
— Commit and close transaction
— Notify client systems of transaction status
Postcondition: Product delivered and product system reverts to idle mode.

9.10 SPECIALIZATIONS OF ACS

We discuss two specific specializations of the ACS category. The first example
concerns the development of security models for distributed applications and the
second example discusses how the well-known design pattern called Proxy (GOF
1995, POSA 1996, Schmidt et al 2000) can be subsumed under the ACS category.

9.10.1 Security models for Web-based applications

An interesting extension to the Reference Monitor model is to define security models
for Web-based applications (see Joshi et al 2001). As always, the goal is to protect
information systems from unauthorized access. In particular, we can list the main
sub-goals:

• Confidentiality (secrecy)
• Integrity
• Availability
• Accountability
• Assurance.

Our interest in this section is in describing several models that address the access
control requirements of distributed systems:

• Direct access control (DAC)
• Mandatory access control (MAC)
• Role-based access control (RBAC).

The first two models are traditional while the latter model is new. We now discuss
each model in some detail.
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• DAC: All subjects and objects are defined in much the same way as in the
Reference Monitor model. Subjects that are owners of objects may grant or revoke
access rights on those objects to other subjects. DAC policies are the most widely
used in Web applications. The disadvantage is that they do not provide good
security. An extension to DAC is the Dynamically Typed Access Control (DTAC)
model in which no distinction is made between subjects and objects. DTAC is
suitable for dynamic environments where the roles of subject and object change
on a regular basis. The approach in DTAC is to group entities into types, thus
making administration easier.

• MAC: All subjects and objects are classified based on predefined sensitivity lev-
els. A goal of MAC is to control information flow so that confidentiality and
security of information can be ensured. This property is absent in DAC. For
example, it is not possible for low-integrity information to flow to high-integrity
objects. In general, we are interested in multi-level classifications of information
that are enforced by a service provider. This provider distinguishes among users
and the type of information being accessed.

• RBAC: This is a generalization of traditional models and is based on role mod-
elling. A role represents organizational responsibilities and functions and is defined
independently of the physical subjects which play that role. The role-based model
directly supports arbitrary, organization-specific security policies. Security admin-
istration is simplified because the number of roles is usually much less than the
number of subjects in an organization. The UML diagram in Figure 9.6 shows the
relationship between Subject, Roles and Objects. We see that it is possible for a
subject to dynamically switch roles. The advantages of RBAC are:

— Flexibility
— Policy neutrality
— Good support for security management and administration
— A natural mechanism for addressing the security issues associated the execu-

tion of tasks and workflows
— Ease of deployment over the Internet.

Role
{abstract}

File

*

Web Service

access to*Subject
{abstract}

*

Person Group

Object
{abstract}

Manager DBA

*

category

Figure 9.6 UML model for role-based access policies.
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9.10.2 Access control during design: the Proxy pattern

We now discuss a special case of an ACS category that occurs during the design
and implementation phases of the software lifecycle. This is the so-called Proxy
pattern. The Proxy pattern makes the clients of a component communicate with a
representative rather than the original component itself (GOF 1995, POSA 1996).
There are many reasons for the introduction of this ambassador or ‘go-between’.
In general, the proxy is used to shield the client in some way from the original
component. We first discuss how to implement a simple variant of the Proxy pattern
in an object-oriented language (GOF 1995) and we then discuss several extensions
that are needed for large systems (POSA 1996). To start, let us assume that a class
called MySource implements a certain service called service_request(). We
allow clients the possibility to call this function indirectly. To this end, we create
a new class Proxy that has a reference to MySource and implements the function
service_request(). Both classes are subclassed from an abstract class Source

that declares service_request() as an abstract function (as in Java) or as a
pure virtual function (as in C++). The UML class diagram is shown in Figure 9.7.
The client accesses the Proxy class and this class then forwards the request to
the original component as shown in the sequence diagram in Figure 9.8. We note
that a preprocess() function is executed before the request is forwarded and
a postprocess() function is executed after the request has been forwarded. The
reader will notice that we have included a timing constraint in the sequence diagram
in Figure 9.8 and this is needed in cases when the original component MySource
is not responding or has crashed.

Buschmann has identified a number of proxies that can be used in conjunction
with other systems. We are interested in using these proxies with domain categories
and their instances. In all cases we speak of a client system C that wishes to access

MySourceProxy

Source
      {abstract}

refers  to

1 1
Client <<uses>>

service-request(); service-request();

service-request()=0;

Figure 9.7 Proxy class structure.
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Figure 9.8 Sequence diagram for proxy pattern.

the services of some other system S. We introduce an instance of an ACS between
the two systems. Requests from system C to S are intercepted by the ACS system.
The ACS system decides what is to be done with the request. There are various
kinds of proxies depending on what the software requirements are:

• Remote proxy: Clients or remote components are shielded from the idiosyncrasies
of network addresses and interprocess communication (IPC) protocols, such as
sockets. The proxy encapsulates and maintains the physical location of the original
component. There are three options concerning the address space of client and
original component:
— Client and original are in the same address space
— Client and original are in different address spaces in the same machine
— Client and original are in different address spaces in different machines.
For the first case we do not need a proxy as such but we could use the Gamma
proxy as shown in Figures 9.7 and 9.8. For communication between components
in different machines we need to define information such as machine ID, port ID
(or process number) and an object ID.

• Protection proxy: This proxy protects the original component from unauthorized
access. To this end, the proxy must check the access rights of each client by some
kind of authentication process.
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• Cache proxy: This is a component that is able to hold temporary data in some
special data area. Of course, we must develop a strategy to model the lifecycle
of this temporary data, that is its creation, access to it, its refresh policy and the
policy for destroying the data (after a certain time-out period). In particular, we
must pay attention to the following issues (POSA 1996):
— What object creates the cache data and how is the cache data created?
— How to free up space for new entries (develop a strategy)?
— ‘Cache invalidation’: how to update distributed cache data when the original

component changes (ensuring that data is up-to-date)?
• Synchronization proxy: This controls multiple simultaneous client access to an

object. It is possible to control the number of clients that access the original
component by defining semaphores or mutexes; furthermore, we can distinguish
between read and write actions. For example, we can construct a proxy for single
write and multiple reads.

• Counting proxy: This is a technique for automatic deletion of objects when they
are no longer needed. It is sometimes called reference counting. This technique
is to be found in Microsoft’s COM/DCOM technology, for example.

• Virtual proxy (lazy construction): This is used when a client wishes to access
objects from secondary storage, for example a hard disk. The client does not
know whether the data is in main storage or in secondary storage. The data is
loaded from the hard disk when first accessed; it is then loaded into memory after
which time it is no longer necessary to use the data from the hard disk.

• Firewall proxy: This is a proxy that is needed in a secure network environment.
A firewall machine is placed between the system to be accessed and potential
clients. This is sometimes called a proxy server.

We conclude this section with some remarks on the Proxy pattern:

1. We have subsumed design-level proxies under the ACS category. Each type of
proxy is an instance of the ACS category and it can be analysed just like any
other system.

2. It is an easy task to model single and mixed-mode proxies using the PAC model.
For example, we could create a proxy that is both caching and remote.

3. The rationale for using this proxy. Our thesis is that the appropriate proxy is a
realization of one or more ISO 9126 characteristics. See Figure 9.9. For example,
all proxies protect the original component from direct access and hence they
promote Security (note that Security is a sub-characteristic of Functionality!).

4. Our approach subsumes other patterns that use proxy, for example the For-
warder–Receiver pattern (see POSA 1996). In general this pattern allows two
systems on different machines to communicate with each other, not directly but
through so-called forwarders and receivers that are essentially instances of the
ACS category. See Figure 9.10 for a sketch.
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Figure 9.9 Proxy type and quality characteristics.
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Figure 9.10 High-level view of the Forwarder–Receiver pattern.

9.11 USING ACS WITH OTHER SYSTEMS

The ACS category is used mainly as a ‘buffer’ system between client and server
systems. Its main function is to screen and filter information and data. It is a common
model in many application areas.



10Lifecycle and composite
models

‘riverrun, past Eve and Adam’s, from swerve of shore to bend of bay, brings us
by a commodious vicus of recirculation back to Howth Castle and Environs.’

James Joyce Finnegans Wake

‘When tackling a problem, try to decompose it into simpler sub-problems.’
George Polya

10.1 INTRODUCTION AND OBJECTIVES

Real applications are more complex than the five basic types that we have discussed
in the previous chapters. In fact, most applications will be composed from a number
of these basic types. In particular, we focus in this chapter on one special case; we
call it the Lifecycle Model (LCM) and it consists of manufacturing (MAN), tracking
(RAT) and management (MIS) parts.

We recall that we discussed the ‘big five’ building block categories:

• MAN (manufacture products/services/goods from raw materials)
• RAT (track products/objects in space and time)
• MIS (produce high-level information from low-level transaction data)
• PCS (monitor and control exceptional situations in some real or artificial world)
• ACS (control and restrict access to objects or information).

We give a provisional definition of what LCM is:

A lifecycle category models an entity from the moment it is created to when it is no longer
needed or used in a system.

In fact, the Lifecycle category is an aggregation of MAN, RAT and MIS categories.
First, the MAN category creates objects from raw materials, then the RAT category
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assigns these to resources and the MIS category produces reports that describe how
the objects behave and function in the multi-dimensional world in which they live.

Lifecycle models abound in all phases of the business and software lifecycles.
Business people speak in terms of product and customer lifecycles and designers talk
about C++ object lifecycle patterns (see GOF 1995). There are many similarities.
Furthermore, the concept of lifecycle models is particularly strong in the retail
industry and in marketing circles. Our interest in this chapter is to show how to
model the lifecycle of any entity by using the Lifecycle category.

10.2 BACKGROUND AND HISTORY

One motivation for the Lifecycle category comes from the retail industry (Gattorna
and Walters 1996). In this domain we are interested in product lifecycle models.
There are four major phases or stages in the life of a product:

• Product introduction
• Product growth
• Product maturity
• Product decline.

During product introduction the product is available to innovator groups that will
account for the success or failure of the product. Costs are not unimportant but
they are viewed less rigorously than in later phases of the product lifecycle. The
growth stage is characterized by the introduction of distribution channels as demand
grows. Availability and delivery reliability are important during this stage in order
to ensure sustained growth. As the maturity stage is reached, sales volumes are
high and competition is intense. Furthermore, new means of maintaining margins
must be investigated. For example, third-party distribution service companies may
be seconded, thus maintaining cost-effectiveness. During the decline stage both
product and distribution characteristics are rationalized. Customers usually become
highly price sensitive and this means that margins may be seriously affected unless
the logistics activity is reviewed.

10.3 MOTIVATIONAL EXAMPLE: THE RENT-A-MACHINE SYSTEM

We now give an example of a lifecycle model. This is a discussion of a problem
in the retail (non-food) domain and we show how high-level and ‘patchy’ customer
requirements are integrated into a lifecycle system. Once this model has been con-
structed we will be in a position to improve our understanding of the problem and
to help the customer focus on the essential issues (in this case the core processes).
In this particular case we have seen that some stakeholders tend to concentrate on
exceptions and secondary requirements while losing sight of the main workflow.
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A large garden centre on the outskirts of the city sells and rents machines (such
as lawn mowers, saws and other hardware). It has been decided to automate the
rental activities in the centre. The system is called RAM (Rent-a-machine system).
To this end, the requirements analyst has carried out a number of interviews with
domain experts and customers. To make a long story short, it has been determined
that the main goal is to provide customer service. The core process is to accept
customer requests (for example, a customer may wish to rent a lawn mower and an
electric saw during the first week of July). Reports, invoices and other management
information must be produced. Figure 10.1 is the product manager’s impression of
the workflow in the system and a chart that shows the reporting functionality that
is to be produced. We paraphrase the core process as follows:

The objective is to rent a machine, use it for a given number of days or weeks and then return
it to the garden centre. To this end, the customer usually reserves the machine by telephone or
by Internet. Then the customer travels to the garden centre to pick up the machine. A contract
is drawn up (including an insurance policy). The customer returns the machine when it is no
longer needed. It is inspected for any possible damage. The contract is signed off.

We develop a lifecycle model for this problem. There are three major processes:

• P1: Create (basic) Reservation object (Manufacturing system)
• P2: Create (committed) Contract object (Tracking system)
• P3: Create Machine usage (transaction) object (MIS system).

Contract ObjectReservation
Object

RAM

Contracting ReportingReservation

noisemachine type dates

request
reports

1 2

Number of rented machines

Number needing repair

Number in stock

time

number of machines

Figure 10.1 The product manager’s impression of the workflow after first meeting with
the customer.
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The input for P1 is customer request data (type of machine and when customer
wishes to rent the machine); the output from P1 is a basic reservation that is also
input for P2. Process P2 then determines whether it is possible to rent the machine
and, if successful, draws up a contract (including insurance policy, terms of use and
operating manual). The customer collects the machine that he or she then uses for
a given period of time.

The input for P3 takes place when the customer returns the machine. The input
is validated and the machine is checked to determine whether it has been used
according to the contract in process P2. For example, the machine may have been
damaged while in use by the customer. A report is made and the deal is closed. The
data is placed in the DataWarehouse.

The processes P1, P2 and P3 are realized by three domain categories of a
given type, namely P1 is realized by a MAN category, P2 by a RAT category
and P3 by a MIS category. The context diagrams for these systems are given in
Figures 10.2, 10.3 and 10.4 and are in fact the instantiations of the correspond-
ing context diagrams for the MAN, RAT and MIS categories as discussed in
earlier chapters.

The high-level activities in process P1 are:

• P1.1: Create basic request object (type of machine only)
• P1.2: Reserve the machine for a period of time (in machine database)
• P1.3: Create reservation object and notify interested parties.

The high-level activities in process P2 are:

• P2.1: Create basic contract object
• P2.2: Physically assign the machine to the contract (it’s a deal!)
• P2.3: Notify interested parties of new assigned contract object.

Reservation

. .
 .

. .
 .

. .
 .

. .
 .

Stock (physical supply)Machine Type
Source

Contracting
Systems

MIS

. .
 .

(MAN)

reservation

Machine Date

Figure 10.2 Context diagram: manufacture of reservation objects.
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Figure 10.3 Context diagram: creating a contract.
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Figure 10.4 Context diagram: closing the contract.

The high-level activities in process P3 are:

• P3.1: Create basic transaction object (when customer brings back machine)
• P3.2: Calculate and merge the data (compare used and scheduled resource usage)
• P3.3: Create a report (including extra costs, damage reports, etc.).
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Let’s have a look at the use cases for process P1:

• U1.1: Create basic request object (type of machine only)
• U1.2: Reserve the machine for a period of time (in machine database)
• U1.3: Create reservation object and notify interested parties.

It is a good idea if the requirements analyst documents these use cases using the
standard template document structure. The task is made easier because the customer
has provided the requirements analyst with a list of requirements and features. These
are essentially actions in the corresponding use case description. To show what we
mean we give the list of features for process P2 (Create Contract):

• F1: When collecting a machine, find the corresponding reservation object.
• F2: Create a unique contract number.
• F3: Check whether there are special things to be noted (machine damaged in

some way).
• F4: Other possible accessories to be rented as well (for example, protective

goggles).
• F5: It is possible to insure the machine.
• F6: It may be necessary to place a down payment.
• F7: Create contract and calculate amount due.
• F8: Payment type (credit card, cash, cheque) and discount schemes.
• F9: Print the contract.
• F10: Print the manual and ‘how to use’ guidelines.

Many customers think in terms of features. There are many dangers in this point-
to-point way of thinking, the main one being that we run the risk that features and
not requirements will be implemented in this system. It is the job of the requirements
analyst to assimilate them into use cases. In the initial stages, we should concentrate
on those use cases and features that have to do directly with the most important
processes in the system.

10.4 GENERAL APPLICABILITY

The Lifecycle Model (LCM) is suitable for systems that model entities for their entire
life. The basic scenarios are always the same: create an entity, assign resources to
it, track it in time and space and produce long-term and historical decision-support
information on individual entities and groups of related entities. Most organizations
will need several LCM systems. This is because product development is a multi-
layered process in general; complex products are built from simpler products and
each product is potentially the end-result of a LCM system. A simplified example
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Figure 10.5 Multi-levelled LCM system.

is shown in Figure 10.5. In this case, the Master system controls and monitors a
number of first-level lifecycle systems, each of which may be coupled to second-
level and possibly ‘simpler’ lifecycle systems. Such a topology is to be found in
production companies such as the automotive and process industries.

We give a list of some keywords and special terms that arise when discussing LCM
systems. As analyst, you should actively listen to customers and other stakeholders
because the vocabulary that they use will give hints on how to develop a system.

• The full product lifecycle from A to Z
• Use when you feel that your problem is a combination of the ‘big five’ categories
• Use when operational (manufacturing), tactical (tracking and distribution) and

strategic (long-term management) viewpoints play a role.

The final remark deserves comment. Let us suppose that you have developed a
system that tracks the status of individual orders in a furniture factory (this will be
a RAT instance) and let us suppose that the system is up and running. As always
happens with good software, management now wants to have reporting function-
ality and links to popular programs such as Excel. In many cases the knee-jerk
reaction is to reanimate the system source code, add new member functions to the
Entity classes, add new Boundary classes and carry out other duties in order to
satisfy the new requirements. The end-result is spaghetti! What we should have
done was to leave the tracking system intact, add a new satellite system (of the
MIS category) and define the interfaces and client–server relationships between the
RAT and MIS systems. This is achieved by another round of requirements analysis.
The advantage is that we still end up with a maintainable system that adheres to
loose coupling and strong cohesion principles. Furthermore, we arrive at a config-
uration in which each system has clearly defined and standardized interfaces with
other systems.
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An important dimension in Lifecycle models is time. It is important at the outset
to determine when life starts and when life ends, so to speak. For example, what
do we do when an order in an Order Processing System has been closed? There are
various answers depending on the requirements, for example:

• Physically remove the order from the system.
• Archive and store the order for a number of years.
• ‘Reanimate’ old orders at some later date.

Each option must be examined and a thorough analysis will lead to new viewpoints,
use cases and satellite systems.

10.5 GOALS, PROCESSES AND ACTIVITIES

In general we can state that the goal of a Lifecycle category is to have full knowledge
of an entity. The activity diagram for the LCM category is shown in Figure 10.6.
The primary input is a request for a new product or entity. The primary output
is decision-support information concerning the product. There are three main sub-
processes, each of which corresponds to a basic domain category. It is important to
determine what the internal products and half-products are.

Commitments
EntitiesBasic Entities

LCM

RAT MISMAN

Decision
Support DataRequest

(half-products)(internal products)

Figure 10.6 Activity diagram for Lifecycle Model (LCM).
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Figure 10.7 Context diagram for Lifecycle Model (LCM).

10.6 CONTEXT DIAGRAM AND SYSTEM DECOMPOSITION

The simplified context diagram for this category is shown in Figure 10.7. We have
shown the main satellite systems. The two most important systems are Source and
Decision Support, which are the systems where basic requests come from and where
decision-support information is sent to, respectively. The Resource Systems are
where suppliers’ raw materials and other resources are stored. Finally, Management
Systems is a general name for those client systems that represent various stakehold-
ers such as the Law, Regulations, Planning, Service Level Management and Quality
Management. Each specific instance of LCM will have its own set.

10.7 STAKEHOLDERS, VIEWPOINTS AND REQUIREMENTS

This is a short section because much of what can be said is deduced from the fact that
LCM’s stakeholders are the union of the stakeholders from the corresponding MAN,
RAT and MIS systems. In particular, functional and non-functional requirements
need to be specified. The main bottlenecks have to do with the interfaces between
MAN and RAT systems on the one hand, and the interfaces between RAT and MIS
systems on the other hand. We give some guidelines and hints; a full list is beyond
the scope of this chapter and the ISO 9126 characteristics should be examined when
you embark on a real-world project.
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• Interoperability: We must define a suitable ontology or language that each sub-
system understands. For example, the structure and semantics of products must
be known to each subsystem in LCM.

• Reliability: Product information, resources and product status information must
be available at all times.

• Efficiency: Efficient and effective throughput in the system is important. This
includes performance measurement (for example, the total order cycle time for
an order in an order processing lifecycle system).

• Usability: How easy is it for stakeholders to learn the system and how easy is it
for them to communicate with other stakeholders?

• Portability: Is it possible to adapt the system to new kinds of products, require-
ments and stakeholder groups?

• Maintainability: How stable is the system when new modifications are intro-
duced? How long does it take before the system becomes unmaintainable? Does
a minor modification take three days or three weeks to implement?

10.8 UML CLASSES

Since LCM is composed of three simpler categories we can describe its UML
structure as in Figure 10.8. (We do not show the UML analysis classes for the

World Interface

Management Data

LCM-Control

World Interface World Interface World Interface

. . . (MAN) . . . (RAT) . . . (MIS)

B

E

C

Figure 10.8 UML analysis for LCM top-level detail.
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sub-categories because they have been described in other chapters.) We see that the
LCM can cooperate with its own client systems via its World Interface while it is
itself a client of MAN, RAT and MIS. We see, however, that the Control layer in
LCM communicates with the Boundary layers of its components. We could build
a PAC model for the LCM category whereby only Boundary layers communicate
with each other but we have not yet examined all consequences of this approach.
It is important to remember that Figure 10.8 is a logical model and that it may be
modified during the design and implementation phases of the software lifecycle.
The structure in the solution domain does not necessarily have to be the same as
the structure in the problem domain.

10.9 USE CASES

It is very easy to find the most important use cases by examining the core processes.
We define them as follows:

• U1: Create Basic Objects
• U2: Create Committed Objects
• U3: Provide decision-support data.

Each of these should be documented in the usual fashion. However, we do specify
here the preconditions and postconditions of each use case because they partition
the functionality nicely and they represent milestones in the system. For U1 these
conditions are:

• Pre: Manufacturing system is operational and accepting requests.
• Post: Basic object has been created and is waiting for further processing.

For U2 the conditions are:

• Pre: Tracking system is operational and accepting assignment requests.
• Post: Basic objects have been assigned (‘committed objects’).

Finally, the conditions for U3 are:

• Pre: Management system is operational and accepting usage data.
• Post: Usage data has been consolidated and reporting is possible.

This is a boon for analysts; we now know the scope of each use case. The rest is
a question of filling in the details. But be warned: there is still a lot of work to do!
The good news is that you have a better idea of the scope of that work.
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10.10 SPECIALIZATIONS OF LCM

The motivation for the Lifecycle category in this chapter came from the oil, gas
and process industries where the concept of product and project lifecycles has been
standardized and institutionalized. There are clearly defined phases for product feas-
ibility, product initialization, monitoring and ending the life of a product. In fact, the
management system that we present in Chapter 11 (the Manpower Control (MPC)
System) is part of a large lifecycle project in the process industry.

Lifecycle models are found in well-established disciplines such as the retail indus-
try, process industry and banking. Here we speak about the lifecycle of orders,
products, customers and raw materials.

The software industry is peculiarly lacking in high-level lifecycle models. A
notable exception can be found in the patterns movement where much thought has
gone into developing models to help developers create flexible and reusable software
systems. Much more work needs to be done. The Lifecycle model can be applied
to almost any concept or entity that you can think about! The main questions to
ask are:

• How, when and where are the entities created?
• What happens to the entities after they are created?
• How do we monitor these entities?
• When and how do the entities ‘disappear’ from the system?

10.11 USING LCM SYSTEMS WITH OTHER SYSTEMS

An LCM is related to other systems in several ways that are described by the
following scenarios:

• S1: It is a client of another system
• S2: It is a server of another system
• S3: It collaborates with one or more other systems.

Scenario S1 is quite common, seeing the importance of LCM. In particular, it is
a client of its MAN, RAT and MIS subsystems. On the other hand, scenario S2
describes the situation in which LCM supports other systems. For example, referring
to Figure 10.5 we see that the ‘Master’ system is a client of several LCM systems;
for example, it could be a system that monitors these systems (it is then an instance
of a MIS category). Finally, multiple LCMs may cooperate to solve a given problem.
Each LCM system has its own area of expertise and cooperates with its ‘colleague’
systems to solve a given problem.



Summary and conclusions 175

10.12 SUMMARY AND CONCLUSIONS

We have introduced and discussed an important class of applications that are des-
cribed as lifecycle models. A lifecycle model describes what the life of an entity is
from the moment of inception to when it is no longer needed in a system. Many
software projects fall into this category but unfortunately are not always designed
with this simple assumption in mind. This leads to large, monolithic systems that
are difficult to maintain and understand. The Lifecycle category, as described in
this chapter, avoids this problem by partitioning a system into simpler subsystems.
Each subsystem has well-defined responsibilities (the three subsystems belong to
the categories MAN, RAT and MIS). To this end, we hope that we have made a
positive contribution to our field. We finish with a quote from George Polya, the
famous Hungarian mathematician: when tackling a problem, try to decompose it
into simpler sub-problems.
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11Project resource
management system:
Manpower Control (MPC)
system

‘Trying to find the solution, we may repeatedly change our point of view, our
way of looking at the problem. We have to shift our position again and again.
Our conception of the problem is likely to be rather incomplete when we start
the work; our outlook is different when we have made some progress; it is again
different when we have almost obtained the solution.’

George Polya

11.1 INTRODUCTION AND OBJECTIVES

This chapter analyses an instance of the MIS category. We call it the Manpower Con-
trol (MPC) system and it provides planners, cost controllers and project leaders with
decision-support information concerning resource usage in engineering projects. In
particular, it provides them with reports in the form of charts. These charts com-
pare the number of hours that various organizational units have spent on the project
with the corresponding scheduled hours. Our aim is to show how the artefacts from
Chapter 5 are instantiated. The topics in this chapter are:

• Scoping MPC by defining its context diagram
• Documenting the major use cases by the standard use case template
• Producing sequence diagrams to visualize the most difficult use cases
• Discovering and documenting UML analysis classes.

Once this high-level analysis has been completed we will be in a position to start on
detailed design issues, prototypes and proof-of-concept (POC) tests. Furthermore,
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the initial conceptual analysis in this chapter produces a stable architecture for
a fully-fledged production system that can evolve as new user requirements and
features emerge. Once you understand how to analyse MPC systems you can use
your knowledge to examine other MIS systems in industrial, administrative and
financial application domains. Some examples are:

• Monitoring disk space usage in a large computer network
• Remote monitoring of heart patients and patients with pacemakers
• Monitoring the complexity of object-oriented software designs and code
• Monitoring the value of a financial portfolio (shares, options, bonds)
• Monitoring resources in engineering projects (this chapter).

These applications have one thing in common: they are systems that monitor what
is going on in some physical or simulated world and they produce data and infor-
mation that allow experts to make decisions on future action. For example, if certain
financial instruments (for example IBM stock) decrease in value, a high-level report
will be generated advising the owner of a portfolio to sell the shares or buy certain
options to cover his or her risks.

11.2 DESCRIPTION AND SCOPE OF PROBLEM

We describe the problem to be analysed as follows. An engineering company works
on projects for internal and external customers. A project represents the sequence
of activities that are executed by departments and the project is deemed to be
complete when each activity has been completed. A project has a start date and
duration. A project can be an internal project or an external project. An employee
works on several activities in a project and is allocated a certain number of hours
and other resources for each activity. Each department has its own area of expertise
(for example, steel design, mechanical engineering). Departments are grouped into
divisions and a given division may sponsor a number of internal projects. Companies
are the sponsors of external projects. The resources (in this case hours) are allocated
to departments and employees on a project basis.

An employee belongs to one department. In principle, the employee’s department
is the cost centre for the employee’s resource usage. A system needs to be built that
registers, validates and monitors basis project resource usage (in this case hours)
on a regular basis. In particular, the following requirements must be supported in
the system:

• MPC processes transaction data once per period (e.g. per month).
• Resource utilization must be monitored.
• Status reporting capabilities must be available to stakeholders.

This is how many software systems are born, namely from an initial feature list.
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11.3 CORE PROCESSING AND CONTEXT DIAGRAM

Since MPC is an instance of a MIS category the core process is concerned with
the transformation of low-level transaction data into decision-support information.
The transaction data in this case consists of the hours that each employee in the
organization has consumed on each project for each working period. A period in
this case can be a month, one-thirteenth of a year (each period lasting four weeks)
or even a week. Each employee is a member of a department and a department is
part of a division. Each employee is allocated a number of hours each month. For
example, employee ‘Jack’ has worked 120 hours on project ABC in period 10 and
has a schedule of 140 hours. This means that he has worked 20 hours less than what
was scheduled. We now describe the kinds of reports that should be produced:

• Bar charts of used hours and scheduled hours in a given time frame
• ‘S curves’ of the cumulative hours (used, scheduled) up to the current period.

These reports are produced at department, division and project levels. To this end,
the transaction data must be registered, validated and merged. It is then formatted
and presented in Excel, for example. The activity diagram is shown in Figure 11.1.
The internal objects (Validated Hours) represent the used hours and scheduled hours
for each employee per period per project, while the half-products (Department
Hours and other consolidated hours) represent the used and scheduled hours at

Used Hours
per Employee Excel Reporter

Department
Hours

Validated
Hours

MPC

Merging ReportingRegistration

Figure 11.1 UML model activity diagram for Manpower Control.
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organizational levels (such as department and division). The actions in the Regis-
tration activity are:

• Accept and process transaction data
• Validate the data (for example, check that the employee is allowed to ‘book’

hours on the given project)
• Notify other subsystems that the new transaction object has been created.

The actions in the Merging activity are:

• Process all the pending employee-level used hours
• Merge these objects to department and division levels
• Notify other subsystems that the new high-level objects have been created.

The merging algorithm makes use of the fact that each employee belongs to a given
department and that a department belongs to a division. Finally, the actions in the
Reporting activity are:

• Select the type of report or information to be displayed
• ‘Format’ the information to make it compatible with specific output media (for

example, Excel or Oracle)
• Send and dispatch the formatted information to the specific output devices.

MPC

Source
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Reference
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...
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Schedules

Used Resources

Output
(Reporting)

Employees
(Resources)

Customer
Input
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Figure 11.2 Context diagram for MPC problem.
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The context diagram for MPC is shown in Figure 11.2 and is a special case of
the context diagram for a MIS category. We have extended the diagram some-
what to include boundary layer objects because all communication between MPC
and its actor systems takes place through them. We now discuss the roles of these
systems. First, Source is the system that contains ‘raw’ transaction data; Org con-
tains the information that describes the structure of the organization (for example,
that an employee belongs to a department) while Reference contains project-related
information including employee and department resource schedules. Thus, all basic
project information is to be found in the Reference system. The Sink systems are the
external hardware and software systems such as Excel and Oracle. Finally, the Used
Resources system contains the store of permanent data including data at employee,
department and division levels. It is similar to a data warehouse and it represents
the ‘long-term memory’ (LTM) in MPC.

11.4 REQUIREMENTS AND USE CASE ANALYSIS

We now discuss the requirements for the MPC system. We concentrate on those
requirements that realize the core process. This is not to say that the other functional
and non-functional requirements are not important. However, we describe those
requirements and use cases that help the reader understand MPC. The objective in
this section is to demonstrate how to document use cases using the standard template
mechanism and to align each use case with one system or subsystem in the MPC
environment.

11.4.1 Functional requirements and use cases

The core process in MPC is to produce high-level information showing scheduled
and used hours in an engineering project. The main activities are:

• A1: Process incoming transaction data
• A2: Merge and consolidate validated transaction information
• A3: Dispatch and notify clients of new consolidated information

The strategy to define use cases is as follows: first, the core process is realized by
a use case (we call it U1) while the activities A1, A2 and A3 are realized by three
‘lower-level’ use cases that we call U1.1, U1.2 and U1.3.

We now document these use cases using the standard template mechanism. The
descriptions tend to be minimal but accurate. Of course, use case documentation in
real-life projects is (and should be) more comprehensive. The reader should keep
in mind that these use cases are played out between the systems in Figure 11.2.
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Use Case Name: Process Periodic Transaction Data (U1)
Actors: Source, MPC, Org, Reference, Used Resources, Sink
Preconditions: System is operational and accepting incoming transaction data.
Description of actions: The transaction data is processed, checked and validated.
Then ‘basic’ transaction objects are created. The data must be complete and consis-
tent with the constraints defined in the systems Org and Reference (valid employee,
project and so on). The validated transaction data is then aggregated to department
and division levels. Enterprise-wide business rules describe this process. Once the
aggregation processes have been executed we notify interested client systems that
reporting and datamining activities can begin.

We decompose U1 into three loosely coupled sub-use cases:
— Create Basic Transaction Objects (U1.1)
— Create High-level Data (U1.2)
— Notify and Dispatch to Client Systems (U1.3)
Exceptions: It is possible to give a detailed description of what can go wrong at
this level but we defer these exceptions to U1.1, U1.2 and U1.3. For the moment,
we note the major exceptions:
— Unable to process the transaction job (no dispatching to client systems)
— Part of the transaction job has been successful (and thus another part has been

unsuccessful)
Postconditions: The transaction data has been processed. Client systems may now
use the newly processed information.

We note that use case U1 brings the system from one state (as represented by the
preconditions) to another state (as represented by the postconditions).

We now document the sub-use cases of U1. The reader can note that these use
cases are ‘played out’ in one particular subsystem of MPC.

Use Case Name: Create Basic Transaction Objects (U1.1)
Actors: Source, MPC::Registration, Org, Reference, Used Resources, MPC::
Merging
Preconditions: System is operational and accepting incoming transaction data.
Description of actions: This use case is concerned with the processing of low-level
external transaction data. The objective is to produce valid transaction objects at
employee level. The main actions are (1) read and accept the external transaction
data, (2) check and validate the data, (3) create transaction objects, and (4) notify
interested systems (for example, MPC::Merging) that new objects have been created.
Exceptions:
— Source containing the transaction data is invalid (e.g. bad timestamp)
— Data is incomplete (e.g. missing field values)
— Employee is unknown (checked by Org)
— Combination Employee/Project is not correct or not allowed
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The last exception has many variations; for example, the employee is not allowed
to work on the project or the employee has spent more used hours (or less!) than
were scheduled for the current period.
Postconditions: Basic transaction objects have been created and the merging algo-
rithms may be executed; MPC::Merging has been notified.

Use Case Name: Create High-level Data (U1.2)
Actors: MPC::Registration, MPC::Merging, Org, Reference, Used Resources,
MPC::Reporting
Preconditions: There is new transaction information waiting to be merged and it is
allowed to execute merging activities at this moment in time.
Description of actions: The transaction objects from use case U1.1 contain data
pertaining to individual employees and their resource profile (used and scheduled
hours) for each period and project. For the purposes of high-level reporting we need
to aggregate this data in different ways. We give some examples:
— Aggregate hours to department level (call it U1.1.1)
— Aggregate hours to division level (call it U1.1.2)
— Aggregate hours to project and multi-project levels (call it U1.1.3)
— Notify MPC::Reporting that it can produce reports
It is necessary to aggregate hours for each period during the life of a project and in
some cases we wish to create reports based on the cumulative number of hours up
to the current period.

Each of the use cases U1.1.1, U1.1.2 and U1.1.3 should be documented in general,
but we concentrate on U1.1.1 for convenience only. We describe the corresponding
algorithm by using a kind of mathematical shorthand. The objective is to aggregate
used and scheduled hours for one department up to and including the current period.
To this end, we define the following variables:
— The current period number, n
— The previous period, n − 1
— The current employee, e
— The current department, d
— The current project, p
We describe how to achieve the following:
— Calculate the hours for a department for the current period
— Calculate the cumulative hours for a department for the current period
The respective formulae are:
— DeptHours(n, p, d) = Sum(for all e in d) EmployeeHours(n, p, e)
— DeptCumHours(n, p, d) = DeptCumHours(n−1, p, d) + DeptHours (n, p, d)
The notation ‘Sum (all e in d)’ denotes that we iterate over all employees ‘e’ in the
given department ‘d’.
Exceptions: The main exceptions are:
— A given department is not known
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— A given department is not ‘authorized’ for a given project
— There is a discrepancy between a department’s used and scheduled hours
— Unable to merge data
Postconditions: High-level data has been created and interested client systems have
been notified; MPC::Reporting has been notified.

Use case U1.2 is the ‘meat’ in this application and it should be elaborated by using
sequence diagrams in order to make clear what is taking place.

Use Case Name: Notify and Dispatch to Client Systems (U1.3)
Actors: MPC::Reporting, Used Resources, Sink, MPC::Merging
Preconditions: None. Future versions of MPC will require some form of authenti-
cation procedure. However, output data may not be accurate.
Description of actions: There are various possibilities. First, it may suffice to notify
client systems that high-level information is available and where the clients can
access this information. Second, MPC may send copies of the information to inter-
ested clients. The main steps in this case are:
— Determine what high-level information to send and to whom
— Format and package the information (travel request)
— Send the formatted information to the client systems
Exceptions:
— Unable to format information for dispatching
— Unable to notify interested client systems
Postconditions: Dispatching is complete and client systems have been notified of
new high-level information; Sink systems have been notified.

It is a good idea to have a close look at each of these use cases as they represent
our vision on how to couple use cases and structure. In particular, we can see the
following emerging patterns:

• Use cases can be decomposed into smaller, loosely coupled use cases
• Use cases are closely aligned with one (sub)system (tight cohesion)
• A use case’s postcondition ‘dovetails’ with its successor’s precondition.

11.4.2 Non-functional requirements

The use cases in Section 11.4.1 are realizations of so-called functional require-
ments. Functional requirements are the easiest kinds of requirements to discover and
document, especially when you talk to users of systems. However, non-functional
requirements are just as important as functional requirements and in some cases
(for example, in safety critical applications) even more important. Unfortunately,
non-functional requirements tend to fall between the cracks in many projects. As
far as MPC is concerned, we can use the ISO 9126 characteristics as a starting
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point for a discussion of non-functional requirements (NFRs). NFRs are certainly
important to managers, planners and senior personnel. We have a look at some of
the ISO 9126 characteristics and we give some examples.

• Reliability
— All transaction and high-level data can be recovered (rollback)
— Mean time between failure (MTBF) is known

• Efficiency
— Efficient merging algorithms (in both time and resource usage)
— Efficient throughput in system
— System performance

• Usability
— Users find it easy to enter and retrieve data
— Users learn how to use the system within two weeks
— The project manager can easily configure a new project.

Since these are NFRs it is not possible to describe them directly by use cases.
However, they can be made functional by introducing new systems, objects and
use cases. For example, in order to monitor system performance we create a client
system that receives information from MPC on a regular basis so that it can decide
whether MPC is performing well. The two systems will communicate through their
boundary objects. We thus arrive at a situation whereby the two systems exchange
messages and these messages are the seeds for new use cases, in particular due to
the fact that two systems cooperate to solve a given problem.

11.5 VALIDATING USE CASES

Sequence diagrams are very useful for reviewing use cases and validating the class
diagrams in systems. In general, we map each use case to one or more sequence
diagrams. To this end, we depict the initial PAC model in MPC based on the corre-
sponding model for the MIS category. Its context diagram is shown in Figure 11.2.
Thus, we have shown what the boundary objects are and it is through these objects
that information enters and leaves the system. If we examine the PAC model in
Figure 11.3 we see that the Entity layers contain objects that are needed in the
respective subsystems:

• Basic Objects layer: employee-based transaction objects (from U1.1)
• High-level Objects layer: department-level data (from U1.2)
• Router layer: filtered and formatted data for dispatching (from U1.3).

We restrict our attention to showing how use cases U1.1 and U1.2 are mapped
to sequence diagrams. These are shown in Figures 11.4 and 11.5, respectively. We
concentrate on the ‘ideal’ flow in the sequence diagrams; in other words, we have
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Figure 11.3 PAC model (including boundary objects) for MPC.
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Figure 11.5 Sequence diagram for use case U1.2.

made no provisions for handling exceptions and the ‘what-if’ questions that arise
when analysing the corresponding use cases. When extending and improving the
sequence diagrams, we need to take care of the following problems:

• Timeouts and quality of service problems (for example, U1.1 fails to give a final
‘notify’ signal)

• Branching (if-else logic) in the case that U1.1 cannot find project or employee
information

• Creation of new ‘logging’ systems to hold partially created transaction objects.

Attention to these and other exceptional situations will allow us to create improved
and more robust sequence diagrams and hence make the transition to design more
predictable and accurate.

11.6 CLASS ARCHITECTURE

We discuss and document the UML class diagrams for MPC. In particular, we look
at the major actor systems in the context diagram in Figure 11.2. First, we define
the responsibilities of the different systems:
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• Org: contains information about the different organizational units
• Reference: project definition and project resource scheduling data
• UsedResources: information on the used hours for each organizational unit.

We discuss Reference first. This is a combination of Manufacturing (MAN) and
Resource Allocation (RAT) categories because we must initialize the project and
the tasks in it while we must model how project activities or tasks are allocated
to resources, how tasks are related to each other and what the constraints are on
individual tasks. To this end, Figure 11.6 depicts the class diagram for project-related
classes such as Task, Milestone (a Task with duration zero), Task Group, Project
and MultiProject (this represents a unified group of projects). Each TaskType has a
Calendar that describes when hours can be used. For example, a Standard Calendar
is used when we model normal working hours. Figure 11.7 depicts the classes in the

Task Type
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Task Group
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Project MultiProject
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*
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Figure 11.6 Task hierarchy.
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Figure 11.7 Task allocation and constraints.
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RAT part of the Reference system and is concerned with allocation and scheduling
activities for each TaskType. We note that Figure 11.7 is slightly more general than is
needed for the current version of MPC because it has facilities for modelling various
kinds of resources and not just used hours. Associated with each TaskType are zero
or more constraints, for example ‘ASAP’ (as soon as possible) which states that the
task should start as soon as is feasibly possible. Finally, we can define relationships

OrgUnit
{abstract}

Employee

belongs to
*

Department Division

part of
*Employee Department Division

1 . . * 1

Figure 11.8 Classes in Org satellite system.
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Figure 11.9 Classes that model UsedResources.
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between tasks by using recursive (unary) association classes such as:

• FS (Finish to Start): task 2 should start as soon as task 1 finishes
• FF (Finish to Finish): task 2 should finish as soon as task 1 finishes, etc.

We now turn our attention to Org. This is the system that contains project-
independent information about the different organizational units in the MPC envi-
ronment and the corresponding structural relationships between them. This is shown
in Figure 11.8. Finally, the classes in the UsedResources system are shown in
Figure 11.9. We make a distinction between periodic used and scheduled hours
and cumulative used and scheduled hours.

It goes without saying that the classes in Figures 11.8 and 11.9 should be pop-
ulated by attributes and operations. Examining the messages and parameters in
the sequence diagrams for MPC leads to these artefacts. What is important at this
moment is that we have discovered the major classes and their relationships.

11.7 GENERALIZATIONS

We generalize MPC to support new resource types. This is an induction process but
it should be relatively easy to do because we now have a solid basis on which to
extend the class structure in MPC. Put simply, we have a basis on which to abstract.
Typical examples are:

• Monitoring of cost flow in a software project
• Monitoring disk space usage in a computer network
• Monitoring the performance of a financial portfolio
• Systems for performance measuring.

11.8 SUMMARY AND CONCLUSIONS

We have carried out an analysis of a real-life application that monitors used hours in
an engineering project. The used hours are compared with the scheduled hours, and
reports and other presentations are created to show how well the project is doing
at employee, department and division levels. It is even possible to create reports at
project and multi-project levels.

Since data creation, validation and consolidation play a vital role in MPC, we have
concentrated on the aspects of UML that help us understand how to realize these
objectives. In particular, the use cases and the corresponding sequence diagrams are
given centre stage, as are the UML class diagrams.

MPC can be generalized and ‘morphed’ to other systems that monitor general
resources. The critical artefacts to look for when modelling a system as a MIS
instance is the kind of data in the activity diagram relating to the core process, the
merging algorithms and Figure 11.2.
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‘Central heating systems have three parts: the heating plant where fuel is con-
verted into heat, a distribution system for delivering heat to where it is needed,
and controls to regulate when it operates.’

Apogee Residential and Energy Systems (commercial) brochure

12.1 INTRODUCTION AND OBJECTIVES

The objective in this chapter is to analyse an instance of the PCS category using
object-oriented techniques. The problem is called the Home Heating System (HHS)
and it has been studied in textbooks using both structured and object paradigms (see,
for example, Hatley and Pirbhai 1988, Booch 1991 and more recently Jackson 2001).

If we examine the above quotation from the Apogee organization we see that the
problem domain is characterized by three major systems each of which has its own
responsibilities. Each system cooperates with the other systems in order to satisfy
the goals. This decomposition of the problem suits us fine because we immediately
have decomposition in term of responsibilities and not in terms of low-level objects,
for example. Furthermore, each system hides certain difficult design decisions. In
keeping with the Parnas axiom:

We have tried to demonstrate by these examples that it is almost always incorrect to begin
the decomposition of a system into modules on the basis of a flowchart. We propose instead
that one begins with a list of difficult design decisions or design decisions which are likely to
change. Each module is then designed to hide such decisions from the others.

The author started using HHS as a model problem in 1992. The approach was
rather ad hoc and much attention was paid to finding the objects in the domain.
Some time later we discovered commonality between HHS and other applications
in the process control category from which we were able to generalize them and
subsume them under a more general model. This is how the PCS domain architec-
ture emerged.
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The main focus is on the following issues:

• Creating a PAC model for HHS
• Discovering and documenting use cases
• Integrating use cases and the PAC model
• Creating statechart models for the objects in HHS.

Once created, the reader can decide whether the solution is understandable and
extendible and what the benefits of the approach are when compared with top-
down structured techniques (Hatley and Pirbhai 1988) and traditional object models
(see Booch 1991).

A special feature in this chapter is that the main use cases for HHS are documented
using the standard template format, and we show how to validate these use cases
using a high-level statechart.

12.2 BACKGROUND AND HISTORY

The Home Heating System (HHS) has an interesting history. We describe two
approaches to the problem: one uses structured analysis while the second uses
traditional object-oriented technology.

12.2.1 Hatley–Pirbhai

The Hatley–Pirbhai method analyses HHS by first describing the problem in text
and then moving on to a so-called Requirements Model. The Requirements Model is
a list of features or high-level requirements that HHS must satisfy. Once the require-
ments model has been completed, Hatley and Pirbhai create Data Flow Diagrams
(DFDs) and Control Flow Diagrams (CFDs) that describe the data and control in
HHS, respectively (for an overview of this method, see Appendix 3). Finally, we
create a state machine that describes the lifetime of the HHS when viewed as
an entity.

The author has been influenced by this method because his customers were using
the method in the 1990s to analyse real-time and process-control systems. The
Hatley–Pirbhai method is not object-oriented and the author attempted to extend
the method to align with object-oriented models. Some shortcomings of the Hat-
ley–Pirbhai method are:

• The informal requirements and features in the Requirements Model can be inter-
preted in different ways. It was not structured and the mixing of optative and
indicative moods (as described in Jackson 2001, page 295) makes the text diffi-
cult to understand. We resolve this problem by structuring the requirements model
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according to the guidelines in this book. In particular, partitioning the problem
into well-defined use cases adds to understandability.

• Data flow and control flow are described in separate diagrams. This makes inte-
gration of these two models difficult to realize in practice. Furthermore, it is not
clear when to stop with process decomposition. We resolve these problems by
combining data and control flows in a single sequence diagram.

• The Hatley–Pirbhai method does not support an Information Model; this makes
it difficult to align with the object-oriented way of thinking.

• The mapping to architecture and design is weak. In fact, the Architectural Inter-
connect Diagram (AID) as shown in Figure 12.1 is in essence the same model
as the PAC model for the HHS except that the AID describes the hardware and
software interfacing between the subsystems. The AID can be described as a
diagram that describes the physical partitioning of the system into its component
parts, the information flow between these components and how this information
flows from one component to another component.

Notwithstanding the above problems, the author used this method as a basis
for new improved models. We have used HHS since 1992 as a typical example
of a process control system in courses and development work. Initial production
prototypes using C++, design pattern and traditional object-oriented technology were
developed in 1995. At the time of writing we now model HHS and other similar
applications as instances of a Process Control System (PCS).

We shall see that analysing and designing an instance of PCS is reduced to ‘filling
in the blanks’, as it were. This means that structural, functional and behavioural
templates are in place and it is more or less a question of instantiating their contents
by the classes and use cases for the current problem (SUD).

Master
Switch

Home
Heating

Controller

Temperature
Sensors

Abnormal
Status

Indicator

Furnaces

master bus

sensor bus

controller bus

Figure 12.1 Architectural Interconnect Diagram (AID) for Home Heating System.
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12.2.2 The Booch approach

Grady Booch (1991) describes HHS in some detail. He takes an object-oriented
approach by first looking for the tangible entities in the given domain. He then con-
structs an object model. The dynamics in the systems are modelled by the external
events to which HHS must respond. These events help us define the boundaries of
the system. Traditional ‘flat’ state machines (STDs) are used to model object state.
Some of the problems in this approach are:

• The approach is bottom-up in the sense that Booch discovers the main objects
in the problem domain and then determines what the behaviour of these objects
should be. This approach was quite common in the early days of the object-
oriented paradigm when people thought that it was enough to find the objects and
then everything else would follow (‘objects for the picking’).

• Traditional state machines (State Transition Diagrams, STDs) are used to model
object state. The essence of the corresponding STD in Booch (1991) is given
in Figure 12.2 for the Regulator object. Each state can have a name as well as
a number.

Finally, an account of the HHS is given in Jackson (2001) where attention is given
to its context diagram. This defines the boundaries between the system and the
external stakeholder systems. The approach in the Jackson method is very close in
spirit to that taken in this chapter, especially at the context level.

12.3 DESCRIPTION OF PROBLEM

In general, a heating system converts fuel or other energy form into heat. The
conversion takes place in one or more locations and the heat is then distributed
throughout the living space.

Gas-fired heating systems generate heat in either a furnace or a boiler. A furnace
heats air that is blown through air ducts and delivered to rooms through registers or
grills. A boiler heats water to steam that then circulates through pipes to radiators.

The block diagram for HHS (taken from Booch 1991) is given in Figure 12.3.
We can use this diagram as a basis for initial discussions with the sponsor of the
project in order to discover requirements and use cases.

12.4 GOALS, PROCESSES AND CONTEXT

Since HHS is an instance of PCS, the basic goal or objective is to maintain a
particular relationship or function over time between the input to the system and the
output from the system in the face of disturbances in the process. In this particular
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User Interface

Timer

Room (x)
occupancy

sensors

Furnace

Room (x)
Temperature

Sensors

Room (x) Water
Valves

Heat-Flow
Regulator

Time

Sensor state

Motor Speed
Fuel-Flow Status
Combustion Status
Water Temperature

Blower Motor Signal
Oil Valve Signal

Ignition Signal

Valve Control

Temperature

Heat Switch
Desired Temperature

Fault Reset

Fuel-Flow Status
Combustion Status
Furnace Status

Heat . . .

Heat

Figure 12.3 Home Heating System block diagram.

case we qualify this statement by saying that the goal is to ensure that the (current)
temperature in the rooms remains between predefined levels. How do we achieve
this goal? The answer is by burning enough fuel! This physical process corresponds
to the core process in HHS and this core process has three activities:

• A1: Burn oil to produce warm water (the Delivery activity)
• A2: Distribute warm water to the rooms that need it (the Regulator activity)
• A3: Inform the operator of the status of the warming process (the Control activity).

A simple example of a home heating system is shown in Figure 12.4. The boiler
(or furnace) contains warm water that is circulated to terminal units (or radiators).
These radiators are situated in the rooms. Each terminal unit has a modulating valve;
the valve opens when the room needs heat and closes when heat is not needed. In
general, warm water is distributed to the room and circulates back to the boiler to be
reheated. Based on this discussion and Figure 12.3, we depict the context diagram
for HHS in Figure 12.5. This contains the following external stakeholder systems:

• Physical Actuators: the systems representing boilers, furnaces and their com-
ponents.

• Physical Sensors (synonym Environment): the systems containing sensors (they
measure the current temperature in the rooms).
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terminal unit

boiler

pump motor

supply
return flow

modulating valve

Figure 12.4 Two-pipe reverse–return circuit.

Management
Systems

(settings)

(operations)
B3

B1

B5 B2

HHS

(environment)

B4

Operator
Systems

Physical
Sensors

Scheduling

Physical
Actuators

Figure 12.5 Context diagram for HHS.

• Scheduling: the systems that define the set point and other attribute values of the
entities in HHS (for example, the reference temperature in the Room class). This
is a RAT system.

• Operator Systems (synonym Operations): the systems that allow the owner to
start and stop the system as well as receiving status readings.
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• Management Systems: usually instances of MIS (or to a lesser extent, PCS); for
example, we could define a system that models trending and historical behaviour
in the rooms.

We have shown the Boundary objects that communicate with the external stake-
holder systems in Figure 12.5. These will be needed when we construct the PAC
model for HHS.

12.5 SYSTEM DECOMPOSITION AND PAC MODEL

Since HHS is an instance of the PCS category it is relatively easy to produce
a PAC model for it based on the context diagram in Figure 6.8 (in Chapter 6).
The current diagram is shown in Figure 12.6. We have documented the Boundary
objects by name and by number. Notice that the responsibilities of each agent (such
as Delivery, Regulator and Control) determine where the Boundary objects should
be placed. In other words, each Boundary object plays its part in helping to realize
the responsibilities of its corresponding agent. Similar remarks hold for the Entity
and Control objects, of course. In general, the responsibilities of the agents are:

• Delivery: provide heating services
• Regulator: distribution of heat to living areas (for example, a Room)
• Control: strategic input and output operations.

HHS

Delivery

Service
Provider

Furnace

Regulator

Room

Sensor Unit
Valve

Control

Formatter

Operator
Panel

B1

B4

B3
B2
B5

Figure 12.6 PAC for Home Heating System, version 1.
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In general, Boundary objects are service providers to Entity objects while these
latter objects communicate with the Control objects. The Boundary objects are:

• Furnace: provides heat (in the form of warm water) (boundary object B1)
• SensorUnit: tells us what the state of the environment is (B2)
• OperatorPanel: Input/output devices that control the system (B3)
• Management systems (B4)
• Scheduling systems (B5).

The Entity objects represent the abstractions of interest in this problem. First, Ser-
viceProvider is a virtual machine that informs clients how much heat is available
and what the current service levels are. The Room class models everything that we
need to know about a room, such as:

• The name of the room (for example, ‘living room’)
• The setpoint values (reference temperature) and occupancy pattern
• The sensors in the room (the association between Room and SensorUnit).

Finally, the Control objects are the virtual machines to the other agents. These
objects’ interfaces should be so generic that other agents cannot peek into each
other’s internal structures. For example, clients can communicate with Regulator
but they have no knowledge of what is going on behind the walls of this black box.
All access is by means of standardized interfaces.

12.6 VIEWPOINTS AND REQUIREMENTS ANALYSIS

The main viewpoints in this case are Reliability and Functionality. Some require-
ments are:

• R1: The ability to control the operational life of the HHS system (Functionality)
• R2: Alarm and escalation management (Reliability).

We now discuss the requirements for each of the stakeholder systems in Figure 12.5.
We look first at Management Systems. There are two specific systems in this group
called ‘Management System’. First, the data is aggregated to produce trending infor-
mation and historical records. The main viewpoints are Functionality, Reliability and
Efficiency. The major requirements are:

• R3: Save critical data to persistent storage
• R4: Compute trends
• R5: Monitor resource utilization.
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Second, personal settings and preferences are defined in Pattern and are down-
loadable to HHS. The main viewpoints are Efficiency and Functionality and the
requirements are:

• R6: Must be possible to customize HHS
• R7: Calibrate HHS to take account of owner’s living pattern.

HHS is the source system that sends low-level transaction data to Management
System.

Physical Actuators are the systems that actually transform resources into energy.
For example, a furnace burns kerosene and uses the generated energy to produce
warm water that is distributed to the rooms in the home. The main viewpoints are
Reliability and Efficiency. The resulting requirements are:

• R10: Heating units must be reliable
• R11: Efficient use of energy.

Lastly, Physical Sensors (synonym Environment) are the systems (usually sensors)
that monitor the environment in which HHS operates. The main viewpoint is Reli-
ability. The main requirement is:

• R12: Reliable sensor information.

12.7 USE CASES

We now realize the requirements from Section 12.6 by use cases. By definition,
requirements are general and are always true while use cases represent specific
interaction sessions in the system.

In this chapter we discover the use cases based on the events in the system. In
this sense our approach is similar to the approach taken in Booch (1991) and the
so-called event–response list as discussed in Umphress and March (1991). This
technique is useful for small and medium-sized systems (HHS is a medium-sized
system). Each event–response pair serves as a functional description of how one
or more objects behave. For example, the use cases to be described shortly are
discovered using events and responses. To take an example, if we press the start
button (an event) the response will be a use case to turn heat on (in this case UC2).

We review the main use cases and we shall then document them using the standard
template format.

We have discovered the following use cases by examining the different events in
the system in chronological order. Other strategies are of course possible but they
are not discussed here.
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We summarize the main use cases in HHS for convenience:

• UC1: Bring HHS to Standby Mode
• UC2: Turn Heat On
• UC3: Turn Heat Off
• UC4: General Change in Environment (during normal operational mode)

— UC4.1: Change in Reference Temperature
— UC4.2: Change in Actual Temperature
— UC4.3: Download Owner Preferences
— UC4.4: Owner enters Room (leaves Room)

• UC5: Fuel Flow Abnormality occurs
• UC6: Hardware Abnormality occurs
• UC7: Reset System
• UC8: Upload Data to Management System
• UC9: Shutdown System
• UC10: System reaches Equilibrium
• UC11: Activation of Heating Units
• UC12: Deactivation of Heating Units.

All of the above use cases (with the exception of UC11 and UC12 which are played
out in the Delivery agent) are termed system-level use cases because they affect
all entities in HHS. Also, use case UC4 is a generalization of use cases UC4.1
to UC4.4.

Use Case Name and ID: Bring HHS to Standby Mode (‘Power up’) UC1.
Precondition: System is Off.
Short Description: The system is ‘cold-booted’. This means that the system’s hard-
ware and peripheral systems are activated.
Detailed Description: The master switch is pressed. The system investigates what
its peripheral hardware is, what resources it needs and what is available. The system
is ready for service provision when all resources and hardware have been enabled.
Exceptions: Hardware and resource availability problems. We enumerate specific
exceptions (based on the actors in the context diagram), for example:
— Not enough oil supply
— Actuator system not functioning properly (boiler/furnace system)
— Sensors defective
— System unable to arrive in Idle mode (timeout problems).
Postconditions: System in Idle mode and ready for startup or shutdown command.

Use Case Name and ID: Turn Heat On (Start HHS) UC2.
Precondition: System is Idle.
Short Description: The command is given to start heating the home.
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Detailed Description: The start/stop button in the operator’s panel is toggled. It is
activated if the system is not in the cool-off period. The system checks the rooms
in the home to determine whether they need heat. The heating units are activated if
any room in the home needs heat.
Exceptions:
— Defect hardware due to previous malfunction
— System malfunction during startup process
— Oil supply depletion when starting.
Postconditions: System is Enabled and is ready for ‘steady-state’ commands.
Remarks: This use case represents the only service that is offered by HHS.

Use Case Name and ID: Turn Heat Off (Stop HHS) UC3.
Precondition: System is Enabled.
Short Description: The command is given to stop heating the home.
Detailed Description: The start/stop button in the operator’s panel is toggled. All
hardware systems and resources are notified. This use case corresponds to a ‘grace-
ful’ shutdown.
Exceptions:
— System unable to shut down (e.g. timeout problems)
— Hardware problems during shutdown.
Postcondition: System is Idle.
Remarks: This use cases implies that it is possible to stop the system at any time.

Use cases UC4.1, UC4.2, UC4.3 and UC4.4 are concerned with changes in the
environment and document what should be done when such changes occur. We
document UC4.1 but not UC4.2, UC4.3 and UC4.4 because they are similar. We
leave them as an exercise for the reader. Each of the above use cases refers to a
single room.

Use Case Name and ID: Change the Reference Temperature UC4.1.
Precondition: System is Enabled.
Short Description: This use case describes what should happen when a room’s
reference temperature changes.
Detailed Description:
— Value changed in thermostat
— Check in room if action is needed
— Room requests heat services.
Exceptions: No action needed if the reference and actual values do not drift too far
apart; this is the so-called delta value.
Postconditions: System is (still) Enabled and waiting to reach equilibrium state.
Remarks: This use case represents a disturbance to the system.

We have examined use cases UC4.1 to UC4.4 and see that there is much common-
ality between them. In general, a disturbance occurs in the environment and this is
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made known to a Room that then calculates what should be done next. We embody
this common behaviour in the following more general use case.

Use Case Name and ID: General Change in the Environment UC4.
Precondition: System is Enabled.
Short Description: This use case describes what should happen when a room is
affected by some change in the external environment.
Detailed Description:
— Value changed in the Environment (physical sensor unit)
— Check in room if action is needed
— Request heat services.
Exceptions: No action needed (not really an exception as such).
Postconditions: System is Enabled and waiting to reach equilibrium state.

Use Case Name and ID: Fuel Flow Abnormality occurs UC5.
Preconditions: System is Enabled and no hardware errors.
Short Description: This use case describes what happens when the oil supply in
HHS becomes depleted.
Detailed Description:
— Value changed in fuel flow indicator
— Heating units informed of change
— Operations notified of fault.
Exceptions: Not applicable.
Postconditions: System is in abort mode (soft failure) and waiting on repair (reset)
actions.
Remarks: Once the oil supply has been replenished it is possible to start heating
again (use case UC2).

Use Case Name and ID: Hardware Abnormality occurs UC6.
Preconditions: System is Enabled and no hardware errors.
Short Description: This use case describes what happens when the combustion sen-
sor in HHS is not functioning or the motor is defective.
Detailed Description:
— Hardware problem discovered
— Inform Operations.
Exceptions: None at this moment in time.
Postconditions: System is in abort mode and waiting on repair (reset) actions.
Remarks: It should be possible to amalgamate UC6 and UC5 into a single, more
general use case.

Use Case Name and ID: Reset System UC7.
Precondition: System is in abort mode.
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Short Description: This use case describes the actions to be taken in order to start
up HHS after a hardware fault has been repaired or fuel has been replenished.
Detailed Description:
— Reset button pressed
— Determine what parts of system need to be repaired
— Configure new hardware and settings.
Exceptions:
— Unable to repair
— Timeout problems
— Attempting to reset in the cool-down period.
Postcondition: System is brought to Idle mode.

Use Case Name and ID: Upload Data to Management System UC8.
Precondition: System is Enabled.
Short Description: This use case describes the periodic uploading of transaction data
from HHS to the Reporting system. Attention points are the frequency of uploading,
what to upload and how uploading is triggered. In general, it is possible to upload
operating data such as the temperature in the rooms and energy usage.
Detailed Description:
— New transaction data arrives/is produced in HHS
— Dispatch data to Management Systems.
Exceptions: Data is not being produced or data is incorrect.
Postcondition: System is Enabled.
Remarks: A detailed analysis and design of the data interfacing and interoperability
between it and HHS needs to be carried out. Another use case will be needed to
configure HHS so that it delivers the necessary data to Reporting. Data is reinitialized
after uploading.

Use Case Name and ID: Major Shutdown of System UC9.
Precondition: System is Enabled.
Short Description: This use case describes the actions when the HHS is to be taken
out of service.
Detailed Description:
— Press master ON/OFF switch
— Wait for pending requests to complete
— Notify external systems of request (all units must be shut down).
Exceptions: Unable to shut down (for example, HHS is in the cool-down period).
Postcondition: System is Off.
Remarks: UC9 is the shutdown equivalent of UC1.

Use Case Name and ID: System reaches Equilibrium UC10.
Precondition: System is Enabled.
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Short Description: This use case describes the actions to be taken after the rooms
in the home have reached their desired temperatures.
Detailed Description:
— Desired temperature is reached
— Stop physical actuator
— Inform Operations of new status
— Shut down physical actuator.
Exceptions:
— System does not reach equilibrium before the deadline (timeout)
— Defective hardware.
Postconditions: System is Enabled and Idle.
Remarks: UC10 resolves the disturbances induced by use case UC4 and its spe-
cial cases.

Use Case Name and ID: Deactivation of Heating Units UC12.
Precondition: Heating Unit is active.
Short Description: This use case describes the actions that are taken when the
heating unit is deactivated. It involves deactivation of various hardware components
in the unit.
Detailed Description: The main actions are:
— Close oil valve
— Wait for valve to close
— Stop the motor control
— Wait for ACK from motor control
— Deactivate igniter
— Wait for ACK from igniter
— Inform clients that heating unit has been deactivated.
Exceptions:
— Motor control acknowledges with a hardware error
— Timeout while waiting on motor control
— No ACK from igniter.
Postcondition: Heating unit is deactivated.
Remarks: The time needed to stop the motor in the motor control is 5 minutes while
the time to close a valve is 5 seconds. A motor cannot be started again while it is
in this ‘cool-off’ mode.

Use case UC11, Activation of Heating Units, is the converse of UC12.

12.8 VALIDATION EFFORTS

The use cases must be aligned with the PAC model in Figure 12.6. The objective is
to discover and document object interfaces. In this section we concentrate on Room
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Figure 12.7 Change in environment (UC4).
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Figure 12.8 Room is informed of availability of warm water.
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as an example. We focus on UC4 and the role that Room plays in relation to it. In
general, the Room requests heat (Figure 12.7) if the delta value is beyond a certain
threshold and an acknowledgement is given at some later stage (Figure 12.8). This
leads to the initial list of input and output methods:

• delta (property): something has changed in the environment
• warmACK: Room is informed of warm water

• heat: Room requests heat
• open: Room opens its valve

‘Mirror images’ of Figures 12.7 and 12.8 can be created for the cases in which
Room requests that no more heat be delivered and its corresponding acknowledge-
ment (we call these ‘noheat’ and nowarmACK, respectively).

Having found Room’s input and output functions we group these into interfaces.
An example is

interface IRequest
{

// input methods
delta(Property)

// output methods
heat
noheat

}

interface IResponse
{

// input methods
warmACK
nowarmACK

// output methods (commands to Room’s valve)
open
close

}

It is possible to create a sequence diagram for UC4.4 that describes the owner’s
coming and going. The reader may like to try this as an exercise.

12.9 CREATING STATECHARTS

Having created the interfaces for Room (this is the syntax part) we now embark
on the job of defining the corresponding semantics. To this end, we create several
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statecharts that model the dynamic behaviour of Room. In keeping with experi-
ence in this specific area (see Selic et al 1994, Chapter 13) we model Room as
an entity object that is separated from its hardware interfaces. Furthermore, we
model it by two orthogonal states called OccupyState and WarmingState as shown
in Figure 12.9. Notice the presence of stub states (vertical bars) which when zoomed
into lead to the states in Figures 12.10 and 12.11.

RoomState

OccupyState WarmingState

Occupied

 NotOccupied

noarrive/delta(T2)

arrive/delta(T1)

Needs

NONeeds

[!X]/noheat

[X]/heat

delta (T)

Figure 12.9 Room top-level state.

Needs

Wait

Warming

warmACK/OpenValve

NoNeeds

Wait

NoWarming

nowarmACK/
CloseValve

Figure 12.10 Substates of Warming state.
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NotOccupied

Expected

NotExpected

Expect/delta (T3)

noExpect/delta (T4)

Figure 12.11 Details of NotOccupied state.

The reader might like to compare the present results with the traditional STDs
for the Room class in Booch (1991). In the latter case Booch identifies six top-
level states:

• NeedsHeat and Occupied
• NeedsHeat and Not Expected
• NeedsHeat and Expected

• NoNeedsHeat and Occupied
• NoNeedsHeat and Not Expected
• NoNeedsHeat and Expected

There are in total 15 transitions between these states. The McCabe complexity metric
in this case gives us a value of 10; the state machine is difficult to maintain.

How do we design objects and their corresponding statecharts? The design pat-
terns literature has a lot to say about this problem. First, a Room (when viewed as
a component) realizes a number of interfaces (such as IRequest, for example). This
is the syntax part only. The semantics of the interface is realized by a statechart.
Now, Gamma (in GOF 1995) describes how to design a statechart using the State
pattern and the problem of implementing interfaces is easily done in languages such
as C# and Java. The design is documented in UML as in Figure 12.12.
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Figure 12.12 High-level design of Room class.
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Figure 12.13 Generalizing Entity and Boundary classes.

12.10 GENERALIZATION EFFORTS

We discuss in short some of the new requirements that may arise in future versions
of HHS. We cannot describe all possibilities but we mention a few:



Summary and conclusions 213

• HHS for Rooms, Homes and Streets
• Different kinds of heating units (for example, solar panels).

Not only do we have to create new classes and class hierarchies but also new use
cases will need to be discovered and documented. In the first case we envisage the
class diagrams as in Figure 12.13. Of course, the PAC model in Figure 12.6 must
be changed to reflect the fact that we are no longer working with hard-coded Room
and Furnace classes.

12.11 SUMMARY AND CONCLUSIONS

We have analysed a soft real-time problem using UML. This is the Home Heating
System problem that is well known in the literature and has been discussed using
both structured analysis (Hatley–Pirbhai) and traditional object-oriented technol-
ogy (Booch).

We have modelled HHS as an instance of a PCS category, thus effectively giving
us its PAC model for free. Furthermore, we modelled the dynamics in the problem
by use cases that are then validated by sequence diagrams. Finally, we have shown
by means of an example (the Room class) how to create and design statecharts
based on the output from the corresponding sequence diagrams.

HHS can be used as a model problem for other applications in the same category.
It is our experience that a proof-of-concept (POC) model will be up and running
in a matter of weeks if you can discover the analogies between HHS and your
current problem.





13Elevator Control System
(ELS)

‘Everything is possible if you wish hard enough.’
Peter Pan

13.1 INTRODUCTION AND OBJECTIVES

This chapter analyses the well-known Elevator Control System (ELS) as described
in Yourdon and Argila (1996). We adopt a top-down approach, moving from goals
to core processes and eventually to requirements and use cases. There is a strong
emphasis on requirements analysis in this chapter. Furthermore, we decompose ELS
(as a system) into its subsystems.

We have found it necessary to do justice to the problem of documenting ELS in
terms of stakeholders, viewpoints, requirements and use cases on the one hand and
processes, systems and the PAC model on the other hand. Furthermore, we show
that the approach taken in this chapter is more robust and less fragile than other
object-oriented approaches.

This chapter is structured as follows: in Section 13.2 we introduce ELS as an
instance of the RAT category by defining its context diagram. Section 13.3 describes
the hardware objects in ELS based on the text in Yourdon and Argila (1996).
Section 13.4 describes the goals and core processes in ELS while Section 13.5 doc-
uments the major stakeholders. In Section 13.6 we document several requirements.
Having described high-level functionality in the system we then direct our attention
to decomposing ELS into subsystems and PAC models in Sections 13.7 and 13.8.
Finally, Section 13.9 discusses a number of important use cases in ELS, including
the documentation of exceptional use cases.

The added value of this chapter in our opinion is that we analyse a well-known
application by first examining the problem, its core processes and major require-
ments and then mapping these to the objects and classes. In this way we produce
artefacts that are more adaptable and maintainable than an arbitrary set of classes
that we hope will somehow satisfy the requirements. We have in a sense eliminated
some of the risk inherent in traditional object-oriented applications.
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13.2 DOMAIN CATEGORIES AND ELS

ELS is an instance of a Resource Allocation and Tracking (RAT) category. ELS
processes customer requests, allocates resources to realize those requests and mon-
itors the status of requests at all times. In this sense it is in the same category as
some other systems such as:

• Helpdesk System in a computer department (customer problem tracking)
• Order Processing System in the manufacturing industry and business domains

(order tracking)
• Customer Request System (customer course request tracking).

Using these systems as guidelines we can construct the basic context diagram for
ELS as shown in Figure 13.1. The main external systems are:

• ELS: the system under discussion (SUD).
• Source: mainly customer groups (passengers and would-be passengers) who wish

to travel between floors in a building.
• Sink: This system contains functionality that displays the status of a customer

request.
• Knowledge Base (KB): the management system that determines which floors are

accessible to customers and what services are on offer.

ELS

Knowledge Base
(KB)

Sink

Physical Resources

Source

Escalation

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

Figure 13.1 Context diagram for ELS environment.
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• Physical Resources: This system contains all the hardware pertaining to the phys-
ical units in the system. For example, this system contains the UP, DOWN and
STOP motors as described in Yourdon and Argila (1996). This is a separate
system that is to be analysed and designed.

• Escalation (ESC): This is the system that is responsible for ensuring safety in
the ELS system. It is also responsible for service level agreements (SLAs).

We concentrate on the ELS system in this document and not its satellite systems.
However, in real-life situations it may also be necessary to analyse the other systems
that interface with ELS. Each of these is an instance of some domain category. In
this particular case, we have an idea about each of the ‘satellite’ systems of ELS
(again, see Figure 13.1):

• Source can be an Access Control System (ACS); in this case access to the
system is via humans. Furthermore, all customer requests need to be validated
and checked.

• Sink could be a Manufacturing (MAN) or Management Information System (MIS)
because internal commands and information are converted to some other format.

• Knowledge Base is an instance of a Management Information System (MIS)
because this is where all configuration data and historical information are stored.

• Physical Resources is a RAT system because this is where the customer request
is assigned to a physical elevator (this is a common pattern where one RAT
system cooperates with another RAT system). This system is responsible for the
allocation of physical resources that satisfy the needs of the ‘higher-level’ logical
requests from the ELS system.

• Escalation is primarily an instance of a Process Control System (PCS). It monitors
exceptional and abnormal situations in the system.

Knowing the reasons why ELS is an instance of a RAT category gives us insights
into its functional and non-functional requirements. Furthermore, we are able to
reason about its structure because the decomposition of any instance of a RAT
category is well known at this stage.

13.3 A TRADITIONAL OBJECT-ORIENTED REQUIREMENT
SPECIFICATION

We develop ELS as a system to schedule and control a number of elevators in
a building. The elevators transport people from one floor to another. Sketches of
the exterior and the interior of the elevator are shown in Figures 13.2 and 13.3,
respectively (taken from Yourdon and Argila 1996).
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Figure 13.2 ELS: view from floor (outside).
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Figure 13.3 ELS: view from elevator (inside).
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Major goals in ELS are efficiency and customer safety. Elevators do not change
direction of travel until the passengers travelling in them have reached their desti-
nation. The system has no knowledge of passenger boarding and exits. An elevator
that is filled to capacity should not respond to a new summons request (there is an
‘overweight’ sensor for each elevator).

We now describe the major hardware entities in ELS (many of them will later be
modelled as boundary objects in UML and/or external actor systems). It is useful
to refer to Figures 13.2 and 13.3 when reading the text below.

1. Summons buttons
Each floor has a panel containing two summons buttons. One button is for the ‘up’
direction while the other button is for the ‘down’ direction. The ground floor has
no ‘down’ button while the top floor has no ‘up’ button. Would-be passengers press
these buttons in order to summon an elevator. It is the responsibility of the scheduler
to summon a particular elevator. The summons buttons can be illuminated.

2. Summons button lights
The illumination of a button tells the passenger(s) that the system has taken note
of the request. Further interrupts caused by additional pressing of the button are
ignored. The light in the button is turned off as soon as an elevator arrives at
the floor.

3. Arrival lights
The interior of each elevator is furnished with a panel consisting of illuminable
indicators. Each indicator corresponds to a floor. The panel tells the passengers
which elevators will be visited. The indicator is illuminated when the elevator arrives
at the floor and the indicator is extinguished when it leaves the floor. There are also
arrival lamps on each floor.

4. Floor sensors
Each floor has a floor sensor switch for each elevator shaft. When an elevator is
within eight inches of a floor a wheel on the elevator closes the switch for that floor.
The system knows what the floor number is corresponding to the generated interrupt.

5. Destination button
The interior of each elevator is furnished with a panel consisting of an array of
buttons, one button for each destination floor. These buttons may be illuminated.

6. Destination button lights
When a passenger presses a button the panel sends an interrupt to the computer.
The illumination of the button notifies the passenger that the system has taken note
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of the request and prevents further interrupts caused by additional pressing of the
button. The button panel is turned off when the elevator stops at a floor.

7. Elevator motor controls
There are three motors (UP, DOWN, STOP). The elevator mechanism does not
obey any unsafe or inappropriate commands. The computer issues a stop command
when the elevator is within eight inches of a floor (in which case the floor switch is
closed). The elevator is ‘levelled’, opens its door and then closes it. Open and close
commands are ignored until the conditions for movement are met. Each elevator’s
panel contains a stop button. Its purpose is to hold the elevator at a floor with its
door open when the elevator is currently stopped at a floor. An emergency stop
switch stops and holds the elevator at the next floor that it reaches irrespective of
the scheduling. The red switch may optionally turn on an audible alarm.

13.4 RE-ENGINEERING ELS: GOALS AND PROCESSES

Traditional object-oriented approaches to ELS tend to search for objects and classes
and from these they create class diagrams and use cases. This approach leads to
brittle systems. This chapter takes a completely different approach, namely by start-
ing with goals and core processes.

There are two main goals or business concerns. The first goal is efficient transport
of passengers from one floor to another in a building and the second goal is safety.
There may be some other (hidden) goals but we conclude that Efficiency and Safety
are the two most important ones at this moment. We now describe these goals in
detail using the standard template structure.

Goal name and ID: Efficiency (ID is G1)

Short description: This goal is concerned with the efficient transportation of people
in a building. Delay times should be reduced to a minimum.
Detailed description: One of the main reasons for the installation of ELS is to trans-
port people between the different floors in a building. This saves people having to
use stairs and it allows less mobile people to get to their destination in the building.
The energy that is needed to power the elevator system should be used in an optimal
way. To this end, elevators should be on ‘standby’ during non-peak hours.
Value to the organization if goal is achieved: In a building with many floors and
different companies, personnel are transported as quickly as possible to their desti-
nation. In what sense is the goal strategic? The realization of this goal ensures the
proper functioning of a modern building. In particular, it is important that customers
are given the level of service that they require.
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Possible sub-goals: Transport efficiency, waiting time efficiency, energy usage effi-
ciency.
Related system: ELS (this goal applies to the current system).

Goal name and ID: Safety (ID is G2)

Short description: Passenger safety should be guaranteed at all times.
Detailed description: The safety of passengers and would-be passengers is impor-
tant. Loss of life must be avoided at all costs and ELS should be designed in such a
way that it does not endanger the well-being of passengers. Furthermore, ELS should
conform to the standards and procedures as laid out by the appropriate regulatory
authorities.
Value to the organization if goal is achieved: Realization ensures that the system
functions according to the regulations. Non-conformance entails disciplinary action
from regulators. Lawsuits will follow if passengers are injured. In what sense is the
goal strategic? It concerns passenger safety. It is in every stakeholder’s interest that
no accidents occur.
Possible sub-goals: Safety of those already in a building.
Related system: ELS (this goal applies to the current system).

The main core processes have to do with the actual transportation of people from
one floor to another and with ensuring their safety at all times. These processes
realize the goals in ELS:

• P1: Elevator Reservation (passengers embark and disembark)
• P2: Elevator Utilization (transport passengers to their destination)
• P3: Elevator Safety (safety of passengers)
• P4: Elevator Efficiency.

We see these as core processes because they are visible to customers and other
important stakeholders. We now document each process using the standard tem-
plate structure.

Process name and ID: Elevator Reservation (ID is P1)

Process category: Core.
Short description: Would-be passengers make it known that they want to use the
services of an elevator. It is not possible to reserve a specific elevator. Instead, a
would-be passenger indicates whether she or he wishes to travel ‘up’ or ‘down’
from a given floor. In this case an elevator will be scheduled to travel to the floor
where the summons request originated.
Detailed description: A would-be passenger wishes to use the services of an eleva-
tor. The passenger must identify himself or herself in some way. Validation checks
are carried out to determine whether the request can be fulfilled. Once the request
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has been accepted an elevator will be scheduled. The would-be passenger is kept
informed of the whereabouts of the elevator, for example by deploying arrival panels
above the elevator door. The elevator arrives and the door opens.
Major input and output: Input is a request, output is the status of a request.
Related goals: G1 (Efficiency) and G2 (Safety).
Possible core processes that process depends on: There is a relationship with core
process P2 because would-be passengers may interact with disembarking passengers.

Process name and ID: Elevator Utilization (ID is P2)

Process category: Core.
Short description: An occupant of an elevator makes known his or her wish to
travel to a certain floor.
Detailed description: An occupant (passenger) wishes to use the services of an
elevator. The passenger makes known which floor she or he wishes to travel to.
Validation checks are carried out to determine whether the request can be fulfilled.
The passenger is kept informed of the whereabouts of the elevator. The elevator
arrives, the door opens and the passenger may disembark.
Major input and output: Input is the elevator sensing that a passenger has embarked.
Output is the current position of the elevator and in particular the intervening floors
that are visited.
Related goals: G1 (Efficiency) and G2 (Safety).
Possible core processes that process depends on: Process P1.

Process name and ID: Elevator Safety (ID is P3)

Process category: Core.
Short description: All disturbances and changes to the system must be monitored.
Preventive and corrective action is needed to ensure safety of passengers at all times.
Detailed description: The ELS system must ensure the safety of passengers at all
times. No loss to life or limb may occur. All changes to the system must be registered
and monitored for possible breaches of safety. Possible breaches can occur when
passengers are embarking or disembarking or while they are in the elevator.
Major input and output: Input is represented by change in the system state. Output
can be a return to a normal state, a warning message or an alert message. In other
words, input is a change request and output is some kind of status message.
Related goal: G2 (Safety).
Possible core processes that process depends on: Closely related to processes P1
and P2. If P1 and P2 are not present then there is no need to implement P3.

Process name and ID: Elevator Efficiency (ID is P4)

Process category: Core. This process is realized by the Physical Resources system
that interfaces with the system ELS (see context diagram, Figure 13.1)
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Short description: This process is responsible for handling all requests from would-
be passengers and passengers. The output is some kind of status.
Detailed description: Process P4 is responsible for elevator scheduling and dis-
patching. The current kinds of requests are:
— Summons request (reserve some elevator)
— Destination request (travel to a given floor).
Summons requests contain information concerning the source of the request (on
which floor the summons button was pressed) and the desired direction of travel
(up, down). Process P4 attempts to satisfy this request by scheduling an elevator.
Once an elevator has arrived at a floor it is then possible to select a destination
floor, assuming that the floor is in the elevator’s ‘trajectory’ path. To give a specific
example, if an elevator is travelling in the ‘up’ direction and the elevator is currently
at the sixth floor then requests from the seventh floor and higher will be honoured
while requests to travel from floors one to five will be ignored. The customer is
mainly interested in queue time (how long he or she must wait for an elevator) and
transport time (the time between embarking and disembarking, for example).
Major input and output: Input is some kind of request (originating from process P1
or P2). Output is the current status of a request.
Related goal: G1 (Efficiency).
Possible core processes that process depends on: Processes P1 and P2.

13.5 STAKEHOLDERS AND THEIR REQUIREMENTS

We introduce the most important groups of people and systems that benefit directly
or indirectly from ELS. We do not discuss viewpoints in this chapter due to space
considerations. Instead, we introduce the most important stakeholders and their spe-
cific requirements.

Stakeholder name and ID: Customers (would-be passengers and passengers)
(ID is ST1)

Stakeholder type: Interactor (because they interact directly with ELS).
Short description: The persons who wish to avail of the services that ELS offers.
Detailed description: ELS is a system that transports persons from one floor to
another in a building. Each customer group has its own ways of interacting with
the system, for example:
— Reserving an elevator
— Receiving feedback on request status
— The ability to send alarms and help messages to the external world
— Efficient transportation to a given destination.
Typical activities and jobs: Typically, customers interact directly with the system
and receive status messages on elevator scheduling and dispatching progress.
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Possible sub-categories: It is possible to create specializations based on how cus-
tomers interact with the system. Furthermore, we can group passengers based on
the type of access to a floor or an elevator that they use. We note that the group of
would-be passengers is not necessarily the same as the set of passengers. In some
situations it is possible for an elevator to visit a floor at regular intervals, in which
case no summons buttons are needed.
Relationships with other stakeholder groups: Not applicable in this version.

Stakeholder name and ID: Elevator Mechanism (ID is ST2)

Stakeholder type: Interactor (this is the system that represents the allocated physical
resources in the system).
Short description: This is the stakeholder that actually realizes the customer requests.
It is the physical motor system in this version of ELS. This stakeholder is synonymous
with the Physical Resources actor in the context diagram in Figure 13.1. This is a
RAT instance in its own right.
Detailed description: This stakeholder is responsible for scheduling all customer
requests (would-be passengers and passengers). For example, it is possible to send
an elevator to a given floor and it is able to place a destination request in the
‘attention list’ of a reserved elevator. We speak of two related issues here:
— Elevator scheduling
— Elevator dispatching.
We define scheduling as reserving an elevator and sending it to a given floor to pick
up a would-be passenger, while dispatching is defined as transporting a passenger
to a given floor.
Typical activities and jobs: The responsibilities of this stakeholder are to provide
would-be passengers and passengers with a service (in this case by transporting
them as efficiently and safely as possible to their destinations).
Possible sub-categories: Not applicable in this version.
Relationships with other stakeholder groups: Customers.

Stakeholder name and ID: Notification Mechanism (ID is ST3)

Stakeholder type: Stakeholder.
Short description: This is the system that informs would-be passengers and passen-
gers of the initial status of a given request. This stakeholder is synonymous with
the Knowledge Base (KB) actor in the context diagram in Figure 13.1.
Detailed description: It must be possible to determine the status of a request at all
times. Typical examples are:
— Is it allowed to travel from a floor?
— Can I travel to a given destination?
Typical activities and jobs: The main responsibility of this stakeholder lies in con-
figuring ELS to define what the ‘access paths’ are in the building. For example, we
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define which floors are accessible from other floors, which floors are ‘off-limits’
and so on.
Possible sub-categories: Notification mechanism outside elevator; notification mech-
anism inside elevator.
Relationships with other stakeholder groups: There is a relationship between the
Customer groups (passengers and would-be passengers) and this group because
customers are informed about the status of a request via this mechanism.

Stakeholder name and ID: Safety and Service Level Management (ID is ST5)

Stakeholder type: Domain. This is a domain stakeholder group because ELS is an
application where human safety is all-important. Hence ELS must comply with all
rules and regulations concerning safety.
Short description: ELS must comply with all safety rules and regulations.
Detailed description: The owners must abide by the rules as laid out by agencies
and governments concerning passenger safety. Safety is defined as freedom from
accidents or losses.
Typical activities and jobs: Service Level Management (SLM) is responsible for
the safety of would-be passengers and passengers. For example, an overweight
sensor is situated in each elevator and this sets a limit on the maximum number of
passengers that may be in the elevator at any given time. Furthermore, the interior
of each elevator contains a stop button and an emergency stop button. Finally, it
should be possible to ‘audit’ the elevators on a regular basis, for example a REM
(Remote Elevator Monitoring) system.
Possible sub-categories: This group can be subdivided into the group that is con-
cerned with customer safety and the group that is responsible for customer service
(quality of service issues).
Relationships with other stakeholder groups: Customers.

13.6 REQUIREMENTS

The most important requirements have to do with the Customers and Service Level
Management stakeholder groups:

• R1: Efficient Embarkation and Disembarkation
• R2: Safe Embarkation
• R3: Efficient Arrival at Destination
• R4: Safe Arrival at Destination
• R5: Efficient Scheduling and Dispatching of an Elevator.

We document R1, R2 and R3 in this section. Not all fields in a requirements descrip-
tion have been filled in this version of ELS. In these cases we have used the
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term ‘Not applicable’. Furthermore, we consider each requirement to have a high
risk factor because this is a new domain for the IT team charged with developing
the system.

Requirement name and ID: Efficient Embarkation (ID is R1)

Short description: Since there are many would-be passengers and passengers using
the elevators, it is important to schedule the elevators in such a way that as many
passengers as possible can embark and disembark as efficiently as possible. For
example, each floor could be provided with two doors, one for embarking passengers
and the other for disembarking passengers.
Detailed description: It must be possible for would-be passengers to summon an
elevator and be assured that an elevator will arrive. For example, it should be
possible to determine whether a request can be honoured. Furthermore, it should
be possible to determine the status of an elevator request. Finally, once an elevator
arrives at a floor it should be possible to embark as quickly as possible.
Rationale: The ELS system will be installed in buildings with many floors. Passen-
gers wish to get to their destination as efficiently and as safely as possible.
Source: Service Level Management (SLM) and Customers.
Customer importance (priority): Medium.
Risk factor: High.
Quantitative description of requirement: The most important system attribute is Per-
formance with metrics ‘number of passengers transported per hour’ and ‘response
time for user input’. Values can be assigned to these metrics.
Possible sub-requirements: Not applicable in this version.

Requirement name and ID: Safe Embarkation (ID is R2)

Short description: The safety of would-be passengers and passengers is of paramount
importance at all times. ELS should be designed in such a way that nothing can happen
to injure passengers. If something does go wrong passengers should be able to alert
the central security service (for example, by the use of an emergency button). In
general it should be difficult to get into a hazardous state and it should be easy to
return to a safe state (Leveson 1995).
Detailed description: ELS should be designed in such a way that the safety of
would-be passengers is assured at all times. Each elevator should be configured and
designed in such a way that the safety of would-be passengers is not compromised.
For example, a limit to the maximum number of passengers could be defined for each
elevator (by using overweight sensors). Furthermore, an elevator should be inactive
until all doors have been closed. This is to ensure that a would-be passenger does not
get stuck in a door. Providing separate doors for embarkation and disembarkation
can enhance safety.
Rationale: Safety is all-important.
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Source: Service Level Management (SLM) and Customers.
Customer importance (priority): High.
Risk factor: High.
Quantitative description of requirement: The most important system attribute is
Reliability with metrics ‘mean time to failure’ and ‘rate of occurrence of failure’.
Values should be assigned to these metrics.
Possible sub-requirements: Not applicable in this version.

Requirement name and ID: Efficient Arrival at Destination (ID is R3)

Short description: It is important to schedule the elevators in such a way that as
many passengers as possible are transported to their destination as quickly and
efficiently as possible.
Detailed description: If an elevator has no passengers or would-be passengers then
it parks on the last floor that it visited. An elevator should not reverse its direction
of travel until all its passengers who want to travel in the ‘current direction’ have
reached their destination.
Rationale: Customers become annoyed and frustrated when it takes too long to get
to their destination.
Source: Service Level Management (SLM) and Customers.
Customer importance (priority): High.
Risk factor: High.
Quantitative description of requirement: The most important system attribute cor-
responding to this requirement is performance of the elevator. This attribute has
corresponding metrics ‘number of transported passengers per hour’ and ‘response
time to passenger input’ (how long it takes to get to destination).
Possible sub-requirements: Not applicable in this version.

As an exercise, the reader might like to document requirements R4 and R5 using
the above structure.

13.7 SYSTEM DECOMPOSITION OF ELS

ELS can be modelled as one or more instances of a Resource Allocation and Track-
ing (RAT) system. We now address the problem of decomposing it into subsystems.
There are a number of possibilities, two of which are:

• Option 1: Treat ELS as a basic RAT category
• Option 2: Decompose ELS into two loosely coupled RAT systems.

Option 1 demands that we decompose ELS into three subsystems that we call
Registration, Assignment and Presentation. All requests (whether they be elevator
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ELS

Registration Assignment Monitoring

Figure 13.4 System decomposition of ELS (option 1).

summons requests or destination requests) enter the system via Registration (see
Figure 13.4), the requests are assigned to physical resources in Assignment and the
status of all requests is shown in Presentation. Option 2 is based on a separation of
concerns strategy, the assumption that ELS is really a combination of two simpler
and more or less independent systems belonging to the RAT category. One system
is responsible for elevator summons requests while the other is responsible for floor
destination requests. System RES (Request Elevator System) registers and resolves
requests for would-be passengers, while RDS (Request Destination System) registers
and resolves requests for passengers who are already in an elevator. The structural
decomposition of ELS in terms of RES, RDS and their respective subsystems is
shown in Figure 13.5. Notice the similarities between RES and RDS; each is an
instance of a RAT category.

We now summarize what we think are the advantages and disadvantages of the two
options. We benchmark each option against two ISO 9126 quality characteristics,
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Figure 13.5 System decomposition of ELS (option 2).
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namely Maintainability and Functionality. The first characteristic is concerned with
the stability of the system when modifications take place and how easy it is to
effect these changes, while Functionality refers to how a system supports stated and
implied needs. The latter characteristic also has to do with how easy it is to ‘extend’
and ‘contract’ functionality.

Option 1 clusters the functionality for both elevator summoning and passenger
transportation into one system. No distinction is made between a request for an
elevator and a transportation request to travel to a given floor. This has the advantage
that functionality is grouped around three logical subsystems (instead of six as with
option 2) and to this end we say that option 1 results in a tightly coupled system. The
main disadvantage is understandability, especially when different teams work on the
system. For example, confusion may arise when we start to discuss the concept of
a request: one group may be thinking about elevator summons requests while the
other group consider a request as being a request to transport a passenger to a given
floor (floor destination request).

The main advantage of option 2 is that concerns are separated: subsystem RES
is responsible for dispatching an elevator to a given floor while RDS is responsible
for transporting a passenger to a given floor. Each subsystem can be independently
planned, analysed and designed. Furthermore, changes and extensions to one sub-
system have little or no impact on the other subsystem. The main disadvantage
is that the two subsystems must be integrated at some stage and it is then that
performance, interfacing and reliability problems may arise.

We choose between options 1 and 2 by how they address each ISO 9126 view-
point. We give a plus or minus to each option. Of course, there is a certain
amount of subjectivity involved, but we have created the matrix based on the
judgements of several independent experts. The matrix is shown in Figure 13.6.
Based on these results, we choose option 2 as the preferred architecture for this
problem. This is the option that will be discussed in more detail in the next two
subsections.

Option 1 Option 2

Functionality − +

Reliability + +

Usability − _

Efficiency ++ +−

Maintainability − _

Portability − ++

Figure 13.6 Making high-level design decisions in ELS.
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13.8 PAC DECOMPOSITION OF ELS

Since the subsystems RES (Request Elevator System) and RDS (Request Destination
System) are both of RAT category, it is possible to create an initial PAC model for
them. In keeping with the RAT philosophy we know that the control objects are
called Registration, Assignment and Presentation in both cases.

For the subsystem RES the responsibilities of these control objects are (see
Figures 13.7 and 13.8):

• Registration: accept and register a validated elevator summons request
• Assignment: allocate an elevator for the current request
• Presentation: notify interested parties of request status.

For RDS the control objects are:

• Registration: accept and register a validated floor destination request
• Assignment: allocate a plan for the current request
• Presentation: notify interested parties of request status.

We now deal with the boundary objects in RES and RDS. For RES the boundary
objects and their responsibilities are:

• Summons panel (floor object): allows would-be passengers to select an elevator
• Elevator requestor: interfaces with external Physical Resources system
• Door actuator and alarm bell.

RES

Registration

Request

Summons Panel

Assignment

Assigned Request

Elevator Requestor

Presentation

Router

Door Actuator

C

E

B

Figure 13.7 PAC model for RES.
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RDS

Registration

Request

Destination Panel

Assignment

Assigned Request

Elevator Requestor

Presentation

Router

Alarm Bell

C

E

B

Figure 13.8 PAC model for RDS.

For RDS the boundary objects and their responsibilities are:

• Destination panel: allows a passenger to select one or more destinations
• Elevator requestor: interfaces with Physical Resources system
• Door actuator and alarm bell.

It now remains to discuss the Entity objects in each subsystem. This is not always
easy to do at this stage of the analysis because it is easier to discover them, their
attributes and methods during OOA. However, we give some idea here of their
names and responsibilities. The Entity objects for RES are:

• (Summons) Request: contains information on source and direction of request
• Assigned request: request receives the attention of some elevator
• Router: translates internal commands to external commands (and vice versa).

The Entity objects for RDS are:

• (Destination) Request: contains information on destination floor
• Assigned request: request commits an elevator to a floor
• Router: translates internal commands to external commands (and vice versa).

One of the activities during object-oriented analysis is to add more detail to these
Entity objects.
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The PAC models for RES and RDS are shown in Figures 13.7 and 13.8 res-
pectively.

13.9 MAJOR USE CASES

We describe several use cases in order to gain insight into the generic requirements
from Section 13.6. For completeness we document both normal and exceptional
cases according to the UML standard.

13.9.1 Normal use cases

The normal use cases are:

• U1: Customer requests an elevator
• U2: Customer wishes to travel to some floor
• U3: Schedule an elevator
• U4: Dispatch an elevator.

We now describe use cases U1 and U3. The reader might like to document U2 and
U4 along similar lines.

Use case name and ID: Customer requests an elevator (ID is U1)

Associated requirement: R1 (Efficient Embarkation) and R2 (Safe Embarkation);
R5 (Efficient Scheduling).
Actors in use case: Would-be passengers and passengers in the elevator.
Preconditions: ELS system is operational.
Short description: The would-be passenger summons an elevator (up or down) from
the current floor. The elevator arrives and the floor door opens.
Detailed description: An elevator is summoned by pressing one of the buttons in the
summons panel. This request is validated to determine whether it is allowed to use
the elevator from the current floor. The summons button light becomes illuminated
if the request is satisfied. We note that the ‘up’ button does not function at the
top floor while the ‘down’ button does not function at the ‘ground’ floor (in fact,
they may even be absent). It is not possible to summon a particular elevator; the
scheduler (Physical Resources actor) selects the most suitable elevator that satisfies
the customer request. This is determined by the scheduling algorithms in the system.
The would-be passenger can see which elevator will arrive and where it is at any
given moment by examining the arrival panel that is situated above each door.
When the elevator arrives the door opens for a number of seconds and customers
can embark and disembark. Some floors have one door while others have two doors.
Some floors have no elevator doors.
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Exceptions:
— Not possible to use elevator from this floor
— Summons button does not respond to request
— Door fails to open
— Summons panel has already been pressed: this new request is ignored because

a similar request is already pending.
Other concurrent activities: Other passengers are issuing destination requests while
yet others may have pressed stop buttons or emergency stop buttons. Other would-be
passengers may be trying to access the same elevator.
Postconditions: Door has been opened and waiting for embarkation.

Use case name and ID: Schedule an elevator (ID is U3)

Associated requirement: R5 (Efficient Scheduling).
Actors in use case: Physical Resources.
Preconditions: Current floor not in attention list of any elevator.
Short description: A request originates from a floor. A would-be passenger hails
an elevator.
Detailed description: A request originates from a given floor. This is realized by
pressing the summons button (up or down direction). The request is modelled as the
source of the request (that is, from which floor the request came) and the desired
direction of travel. This information is sent to the Physical Resources actor that then
attempts to place the request in its ‘attention list’. Once this has been realized the
summons button light will be illuminated.
Exceptions:
— Unable to schedule an elevator
— Elevator already scheduled.
Other concurrent activities: Other would-be passengers are summoning the same
elevator; passengers are travelling to their destinations.
Postconditions: Current floor in attention list of some elevator.

13.9.2 Exceptional use cases

We now document several abnormal or exceptional use cases. They represent sit-
uations that should not occur but seeing that safety is a major goal of ELS we
document them using the standard template mechanism.

Use case name and ID: Elevator becomes dangerous (because of overweight)
(ID is U5)

Associated requirement: R2 (Safe Embarkation).
Actors in use case: Would-be passengers, passengers.
Preconditions: Elevator door has been opened.
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Short description: The elevator becomes dangerous if too many people are in an
elevator. Each elevator has a maximum number of passengers that it is allowed
to carry.
Detailed description: For safety reasons, each elevator is provided with an over-
weight sensor that measures the weight of the total number of passengers in it at
any moment in time. As soon as a would-be passenger embarks and just before the
elevator door closes, the total weight in the elevator is measured. If this value is
above a certain threshold the elevator door will not close, the elevator will not move
and a continuous alarm will be sounded indefinitely until one or more passengers
disembark. A message should be sent to the Service Level Management group if
the overweight situation persists for too long.
Exceptions:
— Overweight situation takes too long to rectify.
Other concurrent activities: Would-be passengers are requesting the elevator.
Postconditions: Door remains open and elevator is temporarily disabled.

Use case name and ID: Passenger registers alarm situation (ID is U6)

Associated requirement: R2 (Safe Embarkation), R4 (Safe Arrival at Destination).
Actors in use case: Passengers, Service Level Management.
Preconditions: None.
Short description: A passenger presses the emergency stop button. This is a sig-
nal that something is wrong and help should be sent to the elevator as soon as
possible.
Detailed description: Each elevator is provided with an emergency stop button. If a
passenger presses the emergency stop button the elevator stops at the next floor in its
trajectory. When the elevator arrives the door is opened automatically and all further
requests are ignored. An alert message is sent to the Service Level Management
group who should send someone to investigate the problem. The door remains open
until reset.
Exceptions: Not applicable.
Other concurrent activities: Would-be passengers are requesting the services of the
current elevator.
Postconditions: Passenger alert message has been registered with Service Level
Management.

Use case name and ID: Elevator malfunctions in some way (ID is U7)

Associated requirement: R2 (Safe Embarkation), R4 (Safe Arrival at Destination).
Actors in use case: Hardware in system (actors in context diagram).
Preconditions: None.
Short description: A piece of hardware ceases to function properly. The Service
Level Management group should be notified.



Appendix: Definitions 235

Detailed description: It is important that the hardware in the ELS system functions
according to the specifications. In particular, all vital physical units should function
properly. The most important hardware consists of the following:
— The physical units in the elevator (motor, vital sensors)
— Summons and destination panels
— Arrival panels (interior and exterior).
One way to realize this use case is to deploy a Watchdog system (see Douglass
1998). Such a system receives messages from ELS on a periodic or sequence-
key basis. If messages arrive too late or out or sequence the Watchdog takes some
corrective action. This action might be a reset, a system shutdown, an alarm message
or even some more elaborate recovery procedure.
Exceptions: Not applicable.
Other concurrent activities: Customers have requested or are requesting services of
the elevator. Other passengers may be pressing stop buttons, emergency stop buttons
or the red button.
Postconditions: ELS enters degraded or in failure mode.

In general, as discussed in Leveson (1995), the feasibility of building effective fail-
safe protection systems depends on the existence of a safe state to which the system
can be brought and the availability of early warning. A general design rule is that
hazardous states should be difficult to get into while the procedures for switching
to safe states should be simple.

13.10 SUMMARY AND CONCLUSIONS

We have carried out an analysis of a well-known problem in the literature: the Eleva-
tor Control System (ELS). Several authors have examined this problem from various
perspectives. We distance ourselves from traditional object-oriented approaches
because we think that they are inappropriate in this context. The main problem
is that describing a problem domain such as ELS in terms of hardware and data
objects in the initial stages of analysis will lead to brittle systems, that is systems
with low Usability, Functionality, Maintainability and Portability levels.

APPENDIX 13.1: DEFINITIONS

We define the most important concepts and terms in ELS. The emphasis is on the
nouns in the documentation. It is important that all stakeholders are clear on what
these concepts really mean, hence the reason for definitions.
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Accessible floor: A floor that may be travelled to by a passenger. It may also refer
to the floor from which a would-be passenger may travel.
Customer: Those people and groups of people who use the services of the ELS.
Customers include would-be passengers and passengers.
Delay time: The time it takes for an elevator to arrive at a given floor after a
summons button has been pressed. There are various kinds of delay in ELS, for
example the times would-be passengers must wait on an elevator and the time it
takes to close an elevator door.
Destination request: Request to travel to a given floor (called the destination).
Efficiency: A general term referring to how well ELS is functioning in terms of
energy usage, delay times and transportation times.
Elevator: The machinery that transports passengers from one floor to another floor.
An elevator has attributes such as serial number, date of installation, maximum
number of passengers allowed in it and so on.
Elevator direction: The direction in which an elevator is currently travelling.
Possibilities are up, down and ‘none’ (elevator is stationary).
Elevator dispatching: Sending an elevator to a given floor after the elevator has
been summoned.
Floor: That part of a building where customers embark and disembark. Elevators
stop at floors. A floor is furnished with summons panels and a number of doors.
Passenger: Those people and groups of people who wish to travel to a given floor
or destination.
Request: A general term to describe how customers interact with ELS and what
kinds of service they expect from it.
Request scheduling: The action that involves reserving an elevator in order to satisfy
a summons request from a person.
Request time: The time needed to satisfy a given request. This is a generic term.
For example, it could refer to the time it takes to hail an elevator after the summons
button has been pressed. Request time is similar to delay time.
Scheduler: A general name to denote algorithms in the Physical Resources sys-
tem. These algorithms ensure that elevators are reserved and that passengers are
transported to their destinations.
Would-be passenger: A person or group of persons who summons an elevator.



14Order Processing Systems
(OPS)

‘In many companies, cross-functional situations are perceived as conflicts and
are addressed from the standpoint of conflict resolution rather than problem
solving. The lack of predetermined criteria for solving cross-functional problems
and the jealously guarded “turf” make the job all the more difficult.’

Masaki Imai, Kaizen, The Key to Japan’s Competitive Success

14.1 INTRODUCTION AND OBJECTIVES

This chapter analyses an order-tracking system. Before we go into details, let us
describe the organization in which this system will operate. The organization is the
sum total of all processes and activities that take place at Datasim Education, a
company that develops software products (including training courses, customized
software toolkits using object-oriented, component and agent technologies). The
Datasim organization has three core processes:

• Order Processing System (OPS)
• Product Profile System (PPS)
• Customer Profile System (CPS).

Each of these systems is an instance of a Lifecycle Model (LCM, see Chapter 10).
The organization interfaces with three major actor systems:

• Customers: Organizations that avail themselves of the products and services that
Datasim provides. Typical examples are IT system houses, software development
companies and companies that design and manufacture products.

• Suppliers: Organizations that deliver products and services to Datasim. Typical
examples are catering and cleaning services, computer and software manufactur-
ers, accountants, and companies offering facilities (for example, office space).
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• Environment: This is a kind of ‘catch all’ group and includes systems such as
the tax office, competitors, market forces and the law. It could also include cul-
tural norms and values and process documentation. This is the group of indirect
stakeholders.

We focus on the system OPS in order to reduce the scope. This lifecycle model
is responsible for everything that happens to a customer request from the moment
it enters the supply chain to the time that it is no longer used. OPS is a composite
of three domain architecture types:

• Order Creation System (OCS) (Manufacturing)
• Order Realization System (ORS) (Resource Allocation and Tracking)
• Order Management System (OMS) (Management Information System).

We reduce the scope even further in this chapter by examining ORS in detail. We
shall describe OCS and OMS by their context diagrams and main requirements. The
high-priority and high-risk system for us is ORS. Reducing the scope even further,
we concentrate on a number of important issues:

• A Customer Requirements Specification (CRS)
• Inventory of the major stakeholders and requirements in ORS
• The use cases that implement the core process
• The major class diagrams
• Hints and tips for the designers of ORS.

Once we have discussed these topics we can justifiably say that we understand the
problem at a high level, that many risks have been identified and mitigated and that
we, as requirements analysts, UML analysts and architects, are in position to hand
over the artefacts to the designers and developers.

The OPS system is a good prototype example of a data-intensive application;
data is created, stored and accessed by different stakeholders and much of the
functionality in such applications is geared to producing suitable user interfaces to
business data and business logic. Thus, OPS can be used as a baseline example
for similar applications. In fact, order processing is fundamental to many organ-
izations and tends to be the first object-oriented test case that these organizations
undertake.

In Section 14.2 we list the main features that OPS should provide. In Section 14.3
we describe the lifecycle model for OPS by describing its context diagram and
interfaces to its external systems. Section 14.4 introduces the behavioural elements
in OPS by introducing stakeholders and their corresponding requirements. The class
architecture is discussed in Section 14.5 and to this end we describe it as a set of
PAC models. Having produced analysis artefacts we have thought it appropriate to
pay some attention to the design of OPS, in particular to how we model the lifecycle
of data in the system. This is discussed in Sections 14.6 to 14.8.
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14.2 CUSTOMER REQUIREMENTS SPECIFICATION (CRS):
THE PRODUCT MANAGEMENT VISION OF OPS

This section describes the Customer Requirements Specification (CRS) for the OPS
system. Datasim is a company that provides software services and to this end the
product management group has come up with a number of features that the new
order processing system should support. In particular, they have seen how the current
system works and they have come up with the following list of features that the
new system should have:

1. Efficient flow of information, materials and funds from initial customer request
through to request closure and archiving.

2. Higher usability levels, in particular user-friendly input screens and report-
generating facilities. The Front Office works with Commercial Off-The-Shelf
(COTS) software such as Word and Excel and there should be some provision
for automatic coupling between OPS and these software packages.

3. OPS should be an ‘open’ system in the sense that it interoperates with other
systems in the Datasim organization.

4. Provision for escalation policies and procedures. This is needed by the service
level management group who need to know where things are going wrong before
they actually get out of hand.

5. Senior management has placed restrictions on the budget: the first production
system must be ready in a year’s time and a team of three staff must implement
the system. These personnel have other duties and not all personnel will be
involved full-time on the project.

6. An up-to-date and accurate customer database including product-buying history,
customer request and statistical information concerning critical attributes.

7. Interdepartmental communication improvement. In particular, once a request has
been registered it should be accessible to all relevant departments. By ‘rele-
vant’ we mean those stakeholders in the Datasim organization who schedule the
request, allocate resources and have contact with customers and suppliers. In
general, traceability is important.

8. The new OPS system should benchmark similar allocation and tracking systems
in other disciplines, for example Federal Express, DHL or similar organizations
(Bogan and English 1994). We should learn from the best in class and not reinvent
the wheel.

14.2.1 Business concerns and stakeholders’ viewpoints

Senior management has a number of goals and objectives for OPS. There is a wish
to improve efficiency, shorten cycle times and have accurate information concerning
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orders, products, customers and suppliers. To this end, the requirements analyst has
discovered three major business concerns:

• Accuracy
• Responsiveness to customer wishes
• Usability.

Accuracy has to do with the quality of the information in the OPS system. In this
case it refers to the usefulness of the data in the system. For example, a customer
database in which 95% of the information is accurate and up-to-date will be more
useful and less wasteful of resources than a database in which only 60% of the
information is accurate. Responsiveness relates to the speed with which customer
requests are processed. Usability refers to how long it takes for Front Office per-
sonnel to learn how to use the system. These are the most important concerns
because their realization will lead to improved performance and higher customer
satisfaction levels.

The sub-concerns for each of these concerns can be discovered by using the
Inquiry Cycle model (see Potts et al 1994 and Appendix 1 of this book). In this
case we can pose the question ‘what-kinds of’:

• What kinds of accuracy?
— C1: Accurate and up-to-date customer profile information
— C2: Accurate and up-to-date product profile information
— C3: Accurate stock control
— C4: Accurate information concerning customer orders

• What kinds of responsiveness?
— C5: Performance measures of customer request resolution
— C6: Efficient escalation procedures

• What kinds of usability?
— C7: Audit trail of customer requests
— C8: Logical build-up of user input screens.

Each of these sub-concerns can be decomposed into viewpoints and we eventually
arrive at the level of requirements. These issues are of fundamental importance and
the requirements analyst should ensure that these requirements are realized.

14.3 OPS AS A LIFECYCLE MODEL

The OPS system is an instance of a Lifecycle Model (LCM) because we are inter-
ested in tracking a customer request from the moment the request enters the system to
when the corresponding order is closed. The scope is well defined. We already know
from Chapter 10 that there are three major systems in Lifecycle Models, namely
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a Manufacturing (MAN) system that creates the basic objects to be processed, a
Resource and Tracking (RAT) system that allocates resources for these objects, and
a Management Information System (MIS) that monitors the status of the objects
and clusters of objects. We have already seen that the OPS system has subsystems
Order Creation System (OCS), Order Realization System (ORS) and Order Man-
agement System (OMS). OCS creates basic order entities, ORS assigns resources
to fulfil the order, while OMS allows high-level management reports to be created
and dispatched to interested parties. Thus, OPS is responsible for everything that
happens to an order. Of course, orders have to do with customers, products and
other environmental factors and to this end we must construct a suitable context
diagram if we are to make clear what OPS expects as a client, what it delivers
as a server and how it collaborates with other systems. The context is shown in
Figure 14.1 where we have explicitly shown the three systems of OPS, the external
stakeholder systems and some (though not all) of the boundary objects that give an

Customer
Systems

External Client
Systems

Product
Systems

...

...

...

OPS

Request
Systems

...

OMS

ORS

OCS Suppliers

...

Figure 14.1 Context diagram for OPS.
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indication of how OCS, ORS and OMS communicate with the outside world. The
major external systems in this version of OPS are:

• Request Systems: systems that send basic request data to OPS
• Product Systems: systems that are responsible for product lifecycles
• Customer Systems: systems that contain information about customers
• External Client Systems: other systems that benefit from OPS in some way
• Supplier Systems: systems that consume resources, and produce products

and services.

Examples of client systems that benefit from OPS are invoicing, archiving
and decision-support systems that need multi-dimensional information pertaining
to orders.

We need to consider how data enters the OPS systems, how it is processed and
how it is transferred to other systems.

We have drawn connecting lines between OCS, ORS and OMS in Figure 14.1.
The lines mean that one system is related to another one in some way. Their precise
meaning will become clearer as we progress in this chapter. Having understood the
high-level environment of OPS, we now zoom into each of its subsystems in the
next three subsections.

14.3.1 Order Creation System (OCS)

OCS is an instance of a MAN category and its main responsibility is to create basic
request entities. These are not fully-fledged orders because we do not yet know
if the request can be satisfied (this is ORS’s job). The extended context diagram
is shown in Figure 14.2. We call it an extended diagram because we show the
boundary objects that communicate with OCS’s external systems.

We motivate the roles of OCS and its external systems by noting the activities
that realize the core process ‘Create Request Entity’:

• Accept request data (via B1)
• Check and validate request data (via B2); is it a valid request?
• Notify MIS of new request data (via B3)
• Allocate resources for request (via B4)
• Notify and dispatch (via B5), for example to ORS.

These are the main activities that realize the core process. We shall see how to find
the subsystems and UML analysis objects in OCS in Section 14.5.

The reader might like to compare Figure 14.2 with the context diagram for the
MAN (Figure 8.11) category to persuade herself or himself that OCS is indeed an
instance of MAN. See Chapter 8 for more details.
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Figure 14.2 Context diagram for OCS.

14.3.2 Order Realization System (ORS)

This is an instance of a RAT category and its main responsibility is to create orders
and allocate resources in order to realize them. In particular, it checks the requests
from OCS by first identifying the sender of the request, in this case a customer who
wishes to request services or purchase products, and second by checking whether
Datasim can actually execute or realize the order. Examples of constraints could
be price, time to deliver, customer credit rating, quality and other non-functional
requirements. The context diagram is shown in Figure 14.3.

We motivate the roles of ORS and its external systems by noting the activities
that realize the core process ‘Create Order Entity’:

• Accept order data (via B1)
• Check and validate order data (via B2); it is a valid customer?
• Notify MIS (possibly) of new order (via B3)
• Allocate resources for order (via B4)
• Notify and dispatch (via B5), for example to OMS.

ORS schedules each order and it will be the responsibility of OMS to determine
whether the order planning and scheduling has been realized.



244 Order Processing Systems (OPS)

ORSOrder
Creation
Systems

Resources

Management
Systems

Order
Classifier

(Customer)

...

...

...

...

order data

order
(RAT)

B3

B2

B4

B5

MIS

...

B1

(Suppliers)

Figure 14.3 Context diagram for ORS.

The reader might like to compare Figure 14.3 with the context diagram for the
RAT (Figure 7.4) category to persuade herself or himself that ORS is indeed an
instance of RAT. See Chapter 7 for more details.

14.3.3 Order Management System (OMS)

This is a Management Information System (MIS) and is concerned with order
fulfilment after orders have been scheduled. In particular, we are interested in con-
solidating orders in different ways, for example:

• All orders for a given customer/region/city
• All orders that were created in a given month
• Outstanding and unfulfilled orders.

In fact, OMS is similar to the Manpower Control (MPC) system and it is a good
idea to use MPC as a baseline architecture for OMS. We can compare the two sys-
tems based on functionality, structure and behaviour. Figure 14.4 shows the context
diagram for OMS.

We motivate the roles of OMS and its external systems by noting the activities
that realize the core process ‘Create Decision Support Information’:
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Figure 14.4 Context diagram for OMS.

• Accept transaction data (via B1)
• Classify transaction data (via B2); in which group does it belong?
• Notify Reference of new transactions (via B3)
• Consolidate transaction data and store in a data warehouse (via B4)
• Notify and dispatch (via B5) to external client systems.

The reader might like to compare Figure 14.4 with the context diagram for the MIS
(Figure 5.5) category to persuade herself or himself that OCS is indeed an instance
of MIS. See Chapter 5 for more details.

14.4 BEHAVIOURAL ASPECTS

We now discuss the stakeholders, viewpoints and requirements for OPS. We classify
stakeholders by using a three-level scheme:

• Internal stakeholder groups
• External stakeholder groups
• Domain stakeholders.
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The first group represents all those personnel within the Datasim organization that
are involved in processing customer requests. We further subdivide the internal
group into three categories:

• The Front Office
• The Middle Office
• The Back Office.

We now discuss these three internal groups in more detail.

14.4.1 Front Office

The Front Office is concerned with those activities that have to do with initial
contact with the customer. The Back Office is involved in ensuring that customer
requests are realized. The Middle Office is the bridge between the two other groups
and is concerned with those issues that have a direct bearing on the products and
the quality of products and services that the customer requires.

The stakeholders in the Front Office group are those in daily contact with cus-
tomers. Their main duties are as follows.

• Operational level
— Registering customer requests
— Forwarding requests to appropriate support personnel
— Keeping the customer database up-to-date

• Tactical level
— Providing feedback to customers on request performance
— Creating an infrastructure for effective communication
— Market research on new prospects, leads and customers

• Strategic level
— Defining policies and procedures
— Customer satisfaction levels and service level management (SLM)
— Defining new customer groups, services and products.

The Front Office is dependent on the Middle Office and Back Office and when
something goes wrong it is the Front Office that is responsible for escalation policies
and procedures.

14.4.2 Back Office

The Back Office is responsible for functions such as human resource management
and procurement of goods. The main roles of each sub-group are:

• Operational level
— Ensuring availability of resources and supplies
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— Feedback to the Middle Office
— Distribution of resources that are related to a customer request

• Tactical level
— Contact with suppliers and quality of service issues
— Resource planning and scheduling
— Line management functions

• Strategic level
— Category management (new products and raw materials)
— Organizational cost control management
— Financial planning.

The Operational group is responsible for the smooth running of the organization
while the Tactical group is responsible for ensuring that all resources are ordered,
delivered and consumed. Finally, the Strategic group is responsible for the overall
financial health of the organization in the medium and long terms.

14.4.3 Middle Office

The Middle Office is populated by the stakeholders that have intimate knowledge
about the products and services that the organization offers. These are key stake-
holders because without them there is no product to sell.

• Operational level
— Training and pre-sales activities
— Product deployment
— Provide feedback on product acceptance

• Tactical level
— Product development
— Benchmarking competitors’ products
— Skills improvement

• Strategic level
— New business opportunities and new products
— Benchmarking competitors’ products
— Provide feedback to upper management.

14.4.4 External groups

The external groups represent those persons and organizations that interact directly
and indirectly with Datasim:

• Customers: those organizations that receive services or products from Datasim.
• Suppliers: those organizations that provide services, products and raw materials

to Datasim.



248 Order Processing Systems (OPS)

• Regulators: those organizations that audit the services, products and processes in
the Datasim organization.

In general, each group can be further classified according to how they relate
to customers. In particular, we define three sub-categories based on the type of
information that the group wishes to see:

• Operational (daily duties, ensuring that customer requests are satisfied)
• Tactical (short-term duties, ability to adapt to new events)
• Strategic (long-term planning and goals of the organization).

We give a summary of the main information flows:

• From OPS to customer
— Response to a request
— Direct mailing
— Special actions

• From customer to OPS
— Information request
— Product request
— Other feedback

• From OPS to supplier
— Order resources (resource request)
— Define new policies

• From supplier to OPS
— Request status
— New resources announced

• From OPS to regulators and other external client systems
— Status of product/customer delivery
— Quality assurance
— Financial and accounting information

• From regulators to OPS
— Audits
— Information requests.

14.5 COLLECTING REQUIREMENTS FROM MULTIPLE
STAKEHOLDER VIEWPOINTS

We concentrate on ORS in this subsection. Once the different stakeholder groups
have been found, the next step is to determine the requirements of each group. In
other words, we elicit the requirements by examining the ORS system from the
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perspective of each of these groups. This approach has the advantage that we can
focus on one group at a time without being distracted by the requirements from other
groups. In general, the requirements from the internal and external groups can be
found by interviewing the key stakeholders, while a large number of requirements
in ORS can be found due to the fact that ORS is a RAT instance (see Chapter 7).
In this chapter we concentrate on a subset of stakeholder requirements. We discuss
the following stakeholder groups:

• S1: The Front Office Operational Group
• S2: The RAT Group in the Domain group
• S3: The Back Office Operations Group.

These groups have been chosen (for the purpose of this chapter only) because they
have the highest priority and are closely aligned to the critical business processes
that ORS must support.

After interviewing the stakeholders in each of the groups S1, S2 and S3 we man-
aged to arrive at a preliminary list of requirements for each group. We stress that the
list is not complete and there may be conflicts, overlaps and other problems asso-
ciated with the resulting requirements. These activities are part of the requirement
analyst’s duties and are outside the scope of this book (for more on these topics,
see Sommerville and Sawyer 1997). We settle for the following requirements:

• The Front Office Operational Group
— R1: User-friendly registration of a customer order
— R2: Accessing customer and customer category information
— R3: Automatic generation of customer reports and letters
— R4: Accessing order data

• The RAT Group in the Domain group
— R1: Scheduling a customer request
— R2: Knowing the status of a request at all times
— R3: Escalation procedures and rerouting policies
— R4: Efficient throughput in system

• The Back Office Operations Group
— R1: Stock Control status
— R2: Capacity planning (what to order, when to order and from whom).

14.5.1 Critical use cases

In order to reduce the scope even more, we concentrate on the most important use
cases. In particular, we adopt the strategy of first searching for those use cases that
are closely related to the core and supporting processes. The main core processes
will suggest architecturally important use cases:
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• OCS: Create basic request entities (use case U1)
• ORS: Create order planning and scheduling (use case U2)
• OMS: Create high-level decision-support information on orders (use case U3).

Note that each use case is tightly coupled to a subsystem and loosely coupled to
other use cases. In fact, the postcondition of one use case in many applications is
the precondition of another use case! This avoids overlap and promotes understand-
ability. We decompose U1, U2 and U3 into lower-level use cases and we assign
each new use case to a subsystem of OCS, ORS or OMS. This assignment may
not always be possible. These sub-use cases are realizations of the activities in each
core process:

• U1.1: Create embryonic request entity (in OCS::Preprocessing)
• U1.2: Create internal request entity (in OCS::Conversion)
• U1.3: Dispatch and format internal request entity (in OCS::Postprocessing)

• U2.1: Create basic order entity (in ORS::Registration)
• U2.2: Schedule order and assign resources (in ORS::Assignment)
• U2.3: Dispatch and display order status information (in ORS::Presentation)

• U3.1: Create basic transaction object (in OMS::Registration)
• U3.2: Consolidate transaction objects (in OMS::Merging)
• U3.3: Dispatch and display decision support information (in OMS::Reporting).

It is possible to document each of these use cases using the standard UML template
structure. We give one worked example in Appendix 14.1 of this chapter, namely
U2 as well as its sub-use cases U2.1, U2.2 and U2.3.

14.6 CLASS ARCHITECTURE

We now ‘zoom’ into the internal structure of the OCS, ORS and OMS systems, as it
were. We create PAC models for each one. This is a relatively straightforward pro-
cess at this stage because the models have been thoroughly explained in Chapters 8
(for MAN), 7 (for RAT) and 5 (for MIS).

14.6.1 Class models and diagrams

Figure 14.5 shows the PAC model for OCS. The boundary objects and systems
have already been found from the corresponding context diagram in Figure 14.2.
The names in the control layers are standard and have been reused from the resulting
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Figure 14.7 PAC model for OMS.

domain category. The entity layers deserve attention and must support the following
classes and corresponding class associations:

• A request has a sender
• A request has attributes
• A request belongs to a certain category
• A request can be part of another request.

We can document these as UML class diagrams.
Figure 14.6 shows the PAC model for ORS. The boundary objects and systems

have already been found from the corresponding context diagram in Figure 14.3.
The names in the control layers are standard and have been reused from the RAT
domain category. The class diagrams will be similar to those in OCS. Appendix
14.2 gives a simplified class diagram example for the ORS system.

Figure 14.7 shows the PAC model for OMS. The boundary objects and systems
have already been found from the corresponding context diagram in Figure 14.4.
The names in the control layers are standard and have been reused from the RAT
category. The PAC model is shown in Figure 14.7.

14.7 DESIGN GUIDELINES FOR OPS

It is intuitively obvious that data and data management will be the life-blood in
OPS. The data in the system must be accurate, up-to-date and secure. In particular,
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we must understand detailed design issues and propose a strategy for their imple-
mentation using standard design patterns, for example. The following discussion
pertains to all kinds of UML analysis objects in principle, but the most important
category is the set of Entity objects because they are the objects that contain the
persistent data in the system. The main use cases for these objects are suggested by
applying the Lifecycle Model to Entity objects:

• Creating Entity objects from different data sources
• Structuring Entity objects so that they become part of a class model
• Saving Entity objects to data stores.

There is a myriad of questions that we can ask concerning these three major action
points. For example, we can apply the Inquiry Cycle model (see Appendix 1) to
gain insights into the design problems that arise. Some questions are:

• What is a data store?
• What kinds of data stores are there?
• What is the relationship between Entity objects and data stores?
• What is the relationship between Boundary objects and data stores?
• What is the relationship between the Boundary and Entity objects?
• How are Entity objects created, structured and made persistent?

To this end, the rule is that we must add new external actor systems that will contain
the data in the systems. Here we think specifically of real-world relational database
systems (such as Oracle and SQL/Server), object-oriented databases, disk files, flash
memory and other proprietary formats. Each new external data store will have its
own specific service interfaces whereby it can (and must!) be accessed from our
PAC model. In particular, we design new Boundary objects (one for each specific
physical data store). A generic example is shown in Figure 14.8 where each PAC
agent communicates with its own specific data store. This gives us the freedom to
work in a heterogeneous database environment, but this level of flexibility comes
at a price and may be overkill in many real-life situations. An alternative is shown
in Figure 14.9 where we now have only two external physical data stores.

A good introduction to the design of data-intensive applications by using reusable
design patterns is given in Fowler et al 2003.

14.7.1 Data patterns

We now define what we mean by the data and Entity object lifecycle in relation
to design. First of all, the data that resides in the Entity layer is stored in external
databases and is brought into the system by special Boundary objects as already seen
from Figures 14.8 and 14.9. These objects can have various synonyms depending
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on which particular database technology you are using. For example, Microsoft uses
the term ‘data objects’ for those Boundary objects that save data to, and restore data
from, commercial database systems such as Oracle, SQL Server and Access.

Incidentally, the Client/Server model can be viewed as a special case of the
software architecture that is described in this section. In other words, our model
subsumes C/S and other models. For example, the PAC model can be viewed as
a more flexible and understandable alternative to the somewhat outdated Model-
View-Controller (MVC) pattern (see POSA 1996).

Once we have determined how external data enters and leaves the system we
must now determine where this data is to reside. This is usually in the Entity layer
and objects will need to be created and the relationships with other objects will be
defined. For example, the Entity layer consists of a graph of object associations,
aggregations and other UML-based relationships. Finally, once the structure of the
Entity layer (and, of course, other layers in general) is determined we must decide
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how the different objects and layers communicate with each other. In other words,
we must decide how to design and implement the messages in the sequence dia-
grams. Even more crucial to the discussion is how a receiver object acquires data
from a sender object (the data is to be found as the parameter fields in the message).
The options are:

• The sender sends the data to the receiver (push model)
• The receiver actively pools the sender object (pull model).

Which option to use in a particular situation depends on the application’s functional
and non-functional requirements. These requirements are to be found in the Software
Requirements Specification (SRS) in general.

Summarizing this section, we see that there are three main issues involved with
data management during design, namely:

• Creational patterns
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• Structural patterns
• Behavioural patterns.

The specific requirements in an SRS will determine which specific design patterns
(e.g. from GOF 1995 or POSA 1996) to use.

Examining Figures 14.8 and 14.9 again we must now decide how the different
agents in OPS communicate with each other. We sketch a number of alternatives.
This so-called design dimension is concerned with whether communication between
objects occurs using shared state (in this the external data stores), events or both.
The options (see Shaw and Garlan 1996 for a more extensive treatment of design
dimensions for interactive applications) are:

1. Events: No shared data (all communication relies on events).
2. Pure state: Shared data (objects must repeatedly inspect state variables to

detect change).
3. State with hints: Shared state but the receiver is informed of changes. Hints

correspond to signals from a sender object to a receiver object.
4. State plus events: Both shared data and events are used (events deliver informa-

tion not available from state monitoring).

The current application is best modelled as a repository system so the first option
is not useful (this is more applicable to process control and event-driven systems).
We use option 2 or 3 when creating an initial prototype.

We qualify the remark on option 3 by stating that we separate control flows and
data flow; control flow is via the top-level mediator ORS while data flow occurs
via the boundary layers to external database systems. These two flows should not
be mixed, otherwise we shall inherit a system that is difficult to maintain and
to understand.

14.8 FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS
AND THEIR REALIZATION

We have already introduced the ISO 9126 characteristics in some detail in this book.
We now use the six characteristics as baseline software requirements. Experience
has shown that the characteristics subsume many of the software design decisions
that confront IT development teams. Having determined which characteristics to
investigate we show how to realize them using the famous Design Patterns (see
GOF 1995).



Functional and non-functional requirements and their realization 257

14.8.1 ISO 9126 revisited

We now discuss the ISO 9126 characteristics and their applicability to the PAC
models in OPS. The question is: is a given ISO 9126 characteristic an issue in the
current design and if so where does it affect the structure of the PAC model?

1. Functionality: Security and Interoperability are important. In the first case we
must define groups of users and how these users access the data in the system,
what data they are allowed to read, write and modify. In fact, we must define
access control policies and the security viewpoint would suggest a front-end
Access Control System (ACS) to OPS. For Interoperability we must define uni-
versal message names and data formats between the Boundary objects in OPS
and the outside world, for example using XML (Extensible Markup Language).
The data in the systems should always be up to date and hence Accuracy will
play a role. We see opportunities for application of XML as a standard for data
interoperability.

2. Reliability: It is doubtful whether fault tolerance is absolutely necessary but
recoverability in the form of database restore and transaction rollback are
important.

3. Efficiency: This is a relevant characteristic, particularly in the context of a hybrid
object/relational database world. For example, instead of converting table records
into objects, we might consider working directly with record sets and cursors
without going through the process of mapping them to a list or array of objects
in the Entity layer. In some cases you may decide to keep the Entity layer
empty and do all data processing via the boundary layer to the external database
system. This improves performance, especially when working with composite
objects.

4. Portability: This has mainly to do with the Boundary layer. This layer is pop-
ulated by user interfaces ‘screens’, data objects (that communicate with the
physical data stores), and other hardware interface entities (for example, hard-
ware drivers). Portable database systems are in abundance, for example ODBC
(Object Database Connectivity) and JDBC (the Java equivalent of ODBC), and
in the last resort you can always make your own portable drivers using the Bridge
design pattern (see GOF 1995).

5. Usability: In the case of user interfaces, we imagine that OPS should function
with several variants (see Shaw and Garlan 1996):
(a) Command language (artificial, symbolic language)
(b) Natural language (based on a subset of English)
(c) Menu selection (select from a group of alternative menu items)
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(d) Form filling (entry of values from a given set of variables)
(e) Direct manipulation (direct graphical representation).
For example, the Front Office stakeholders could be provided with options (c) and
(d) while planners and more advanced users (for example, those in the Middle
and Back Offices) could use options (a) and (b) for advanced searching and
query manipulation. Finally, senior management and other novice computer users
could be provided with eye-catching options for direct manipulation via icons.
The above five options promote Understandability, Learnability and Operability
(the three sub-characteristics of Usability).

6. Maintainability: We get this one almost for free, especially since we have decom-
posed the systems into loosely coupled subsystems. An extra condition is that
the system interfaces are generic and ‘pluggable’. To this end, we advise using
component technology to implement these interfaces.

14.9 DATABASE REPOSITORY: AN ARCHITECTURAL STYLE
FOR DATA-DRIVEN SYSTEMS

We design and implement the databases in OPS by using the so-called ‘Database
Repository’ architectural style as advocated in Shaw and Garlan 1996. In the current
situation we design OPS as a set of agents or systems that access a global repository
as shown in Figure 14.10. It has been shown that this style is useful for a broad
class of problems. Each external system should be able to access the data in the
database. In particular, we wish to know which systems are the ‘owners’ of the data

Database

OCS ORS

CPSOMS PPS

Figure 14.10 ‘Database Repository’ architectural style.
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in the repository, which systems are able to read data and which systems have no
access to the data. Examples are:

• PPS is the owner of the product database
• CPS is the owner of the customer database
• OPS is the owner of the order database (in particular, OCS, ORS and OMS).

An owner system is responsible for the complete lifecycle of its data.
The access control policies must be defined at stakeholder level. In particular,

different users may be assigned different access rights to the data. This is an analysis
project in its own right and it could be modelled as several Access Control Systems
(ACS). For example, the Front Office and Back Office groups have read access but
no write access to the product database.

14.10 SUMMARY AND CONCLUSIONS

We have analysed and designed an order processing system. We have modeled it
as a lifecycle model and have concentrated on the tracking part of the system. In
particular, we have identified the major stakeholder groups, their requirements and
the corresponding use cases. Furthermore, we have paid special attention to the
class architecture in the system and we have given guidelines on how to design and
implement the architecture as a database repository system.

The OPS system can be used as a reference model for other applications in the
same domain architecture. Typical examples are call handling systems, helpdesk sys-
tems, material, products and entity registration, resource allocation and monitoring.

APPENDIX 14.1: DOCUMENTING USE CASES

We now document use case U2.

Name and Identifier: Process a new Customer Request from beginning to end, U2.
Preconditions: Order is new (i.e. it has not already been registered).
Description: This use case affects all departments in the organization. The Front
Office registers the customer request. When the information has been validated it is
dispatched for scheduling to the Middle and Back Offices. These are responsible for
checking whether the order is feasible. In particular, the stakeholders in these groups
assign and reserve resources. Once these have been taken care of, the Front Office
will be in a position to inform the customer about the status of the order. From this
description we can decompose use case U2 into three lower-level use cases:
— U2.1: Register the customer order
— U2.2: Schedule the customer order
— U2.3: Inform customer of order status.
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Exceptions:
— Unable to dispatch order
— Timeout problems (service level agreements).
The first exception refers to the fact that it was not possible to satisfy the cus-
tomer order, for example not enough resources are available or customer input is
incomplete. The second exception refers to the fact that no response concerning the
order has been given within some given period of time. For example, service level
management policies demand that all customer orders should be addressed within
three days of their entry into the OPS system.
Other concurrent activities: Other orders for the current customer are being entered.
New orders are contending for the same resources.
Postconditions: The customer order has been dispatched to the customer. The sys-
tem is waiting on possible feedback from the customer.

We now document use cases U2.1, U2.2 and U2.3.

Name and Identifier: Register a customer order, U2.1.
Preconditions: This is a new order.
Description: The input data from the customer is entered into the system. Cus-
tomer profile information is checked to determine whether the customer exists and
whether there are any special considerations to be taken into account. The order is
checked against the product and service offerings to determine whether there are
any restrictions.
Exceptions:
— Register an existing order
— Customer input is incomplete
— Customer does not exist
— Timeout problems (takes too long to process registration order)
— Unable to dispatch order for scheduling.
Other concurrent activities: Other related orders are being processed. It is possible
that the customer order belongs to a group of logically related orders.
Postconditions: The customer order has been registered and can now be scheduled.

Name and Identifier: Schedule a customer order, U2.2.
Preconditions: Customer order information has been registered.
Description: This is the phase in which an attempt is made to satisfy the customer
order by checking whether the product is available. If the product is available we
must determine what resources need to be allocated in order to distribute the product
to the customer. Some of the activities in this use case are:
— U2.2.1: Register the product
— U2.2.2: Store the order
— U2.2.3: Check whether the current order can be merged with other orders from

the same customers.
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This is one of the most important use cases because it is here that many of the
business processes and business rules are defined.
Exceptions:
— Timeout problems (takes too long to schedule order)
— Unable to dispatch order for scheduling
— Customer order information has arrived after expiry date.
The last exception is concerned with the problem of attempting to schedule a cus-
tomer order that has arrived too late. We shall either reject the order or execute
some emergency procedures to ensure that the order can be scheduled.
Other concurrent activities: Other related orders are being scheduled. Other orders
from the same customers are being registered and other orders are being dispatched
and transported to the customer.
Postconditions: The customer order has been scheduled.

Name and Identifier: Inform customer of order status, U2.3.
Preconditions: The product and its related resources are in stock and ready for
distribution.
Description: The status information (including distribution and transportation infor-
mation) is edited and formatted. Different stakeholders will be notified of the order
status. Some possible examples are:
— ‘Snail mail’ and e-mail confirmation
— Write status information to historical database (for data warehousing)
— Coupling with financial and accounting systems.
Exceptions:
— Incomplete dispatching details (e.g. unknown contact person)
— Timeout problems (takes too long to dispatch order status).
Other concurrent activities: Other related orders are being scheduled. Other related
orders are in the dispatching phase.
Postconditions: The customer order has been dispatched to the customer. The sys-
tem is waiting on possible feedback from the customer.

APPENDIX 14.2: SOME UML CLASS DIAGRAMS

We give one example of how to document the Entity objects in the ORS system
using UML. The classes are placeholders for attributes. The classes will be ‘glued
together’ by the associations that are found from the actions in the use cases. The
classes and their associations can be discovered from each subsystem in ORS:

• Subsystem Registration
— A company is the sender of an order
— An order concerns a product
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Figure 14.11 Class model in ORS.

— An order may consist of order items
• Subsystem Assignment

— An order uses resources
— An order belongs to some category

• Subsystem Monitoring
— An order is dispatched to an external system.

The UML class diagram is shown in Figure 14.11. In real life this diagram would
be much more comprehensive but the underlying issues will be the same as in
the present example. However, this is the level where CRC cards can be used to
discover classes and document the relationships between them.



15Drink Vending Machine
(DVM)

‘The specification by itself, whether verbal or written, whether a page of text or
a thousand pages, can never express all that is required.’

Dr W. Edwards Deming

15.1 INTRODUCTION AND OBJECTIVES

In this chapter we create a stable and extendible PAC model for an interactive
system that dispenses products (for example, cans of soft drink) to customers. It is
a medium-sized system and we focus on class-level structures and architectures that
are flexible enough to support future and unpredictable requirements. The system
is called Drink Vending Machine (DVM) and is modelled as an instance of an ACS
category. In general, real-life systems are a combination of MAN, RAT, MIS and
ACS instances and we shall discuss this in Section 15.7. For the moment, however,
we reduce the scope in order to concentrate on the man–machine and user-interface
aspects in the system. Thus, our wish is to construct a UML model that can be
modified to support new hardware, software and customer environments. The ISO
9126 characteristics of interest in this application are Functionality, Usability and
Maintainability. The main stakeholders are Customer and Vendor.

There are relatively few use cases in this problem because we focus on the
customer. This has advantages because it reduces the scope of the problem since
we are interested in documenting the classes and their relationships in UML using
the following modelling techniques:

• Aggregation
• Composite aggregations and nested objects
• Associations
• Generalization of Boundary, Entity and Control classes.

Once this has been done and when each class’s attributes and operations have been
discovered, we can commence with the design of DVM.
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Some readers may think that DVM is a toy problem but it can be used as a
baseline application for other Access Control Systems such as:

• Coffee machines
• The well-known ATM problem
• Petrol pump system (Coleman et al 1994)
• Interactive database systems
• All sorts of gambling machines.

Furthermore, it is instructive to analyse DVM in some detail because it serves as
an excellent model to help novice analysts learn how to document a problem using
the visual techniques that UML offers.

15.2 DESCRIPTION OF PROBLEM

The Drink Vending Machine (DVM) is a well-known problem (see Hatley and
Pirbhai 1988) in the literature and has been used in both object-oriented and non-
object-oriented literature as a test case. The problem is understandable to most
readers and at the same time challenging enough to analyse. Furthermore, we can
generalize DVM to other applications and domains. In fact, we know that it is an
instance system of the ACS domain architecture type (see Chapter 9). Those readers
who develop interactive applications will hopefully find the solution of DVM to be
useful because there are many similarities between the features of DVM and those
of other interactive applications.

We came across the DVM problem in Hatley and Pirbhai (1988) where it was
analysed and designed using structured analysis techniques. We include the original
list of ad hoc features from that book:

• F1: Accept objects (candidate coins) from the customer in payment for purchase.
• F2: Check for slugs (not real coins), for example by validating size, weight,

thickness and serrated edges.
• F3: Accept euros only.
• F4: The system cannot be tricked by conniving people.
• F5: The customer should be able to select a product.
• F6: Check product availability: if not available, return coins to customer.
• F7: Products may change from time to time.
• F8: Return the customer’s payment on request if she or he decides not to go

through with the transaction.
• F9: Dispense product if it is available and enough coins have been inserted.
• F10: Return the correct change if the amount deposited is greater than the prod-

uct price.
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• F11: Disable the product selection after the product has been dispensed and until
the next validated coin is received.

• F12: Make deposited coins available for change.

The danger of using features to drive the software process is that they sidestep a
decent requirements analysis. Use of features leads to brittle and inflexible systems
in general.

15.2.1 Scope and span of problem

In order to model the DVM as a system we must define what we are modelling in
order to avoid ‘creeping featuritis’. To this end, we try to identify all the variable
factors or dimensions in this problem. For example, the dimension that represents
the selection type that is used to choose a specific product has the following options:

• Touchscreen
• Buttons
• Command line
• Batch input
• Remote input (for example, Web services).

Each source of volatility represents an opportunity for development work and is
at the same time a source of risk. For these reasons we must keep our eye on
the ball. We examine the context diagram in Figure 15.1 to determine the sources
of volatility:

• Selection systems (for example, different kinds of input devices)
• Enabling systems (coin units, pin units and other hardware)
• Product supply systems (cans of beer, coffee, hot meals, etc.)
• MIS systems (all kinds of clients of DVM).

Furthermore, another dimension is represented by how the customers interact with
the system. We must take the following issues into consideration:

• Which products a given customer is allowed to purchase
• How the customer selects products
• How products are dispensed
• How a transaction is committed.

The reader might like to compare Figure 15.1 with the context diagram for the ACS
category in order to determine whether the fit is good.



266 Drink Vending Machine (DVM)

DVM

Selection
System

. .
 .

Coin Unit
System

. .
 .

Product
Supply
System

. .
 .

MIS

. .
 .

(version 2)

B2

B3

B4

B1

Figure 15.1 DVM (initial) context diagram.

15.3 GOALS, PROCESSES AND CONTEXT

The main goal is to allow authorized customers to use the services of a drink
vending machine. There are a number of secondary goals but they do not concern
us in this chapter. The most important viewpoints for the customer are Usability and
Accuracy, while the drink vendor is usually interested in Efficiency (sell as much as
possible), Reliability (in particular, fault tolerance) and Security (remember feature
F4 concerning conniving people).

The context diagram for DVM in Figure 15.1 is deduced from the corresponding
context for the ACS domain category. Here we see that DVM (when viewed as a
black-box system) has a number of satellite systems that cooperate with it to satisfy
its core, supporting and management processes:

• Selection Systems: These systems allow active subjects (in this case customers) to
select drinks. These systems are strategic and have input and output functionality.

• Product Supply Systems: These systems contain the passive objects (in this case
cans of drink). In general, these systems are instances of the MAN category
because they need to be created and/or replenished at regular intervals. Product
Supply dispenses drink to customers. We may wish to provide services in the
form of coffee and hot meals in the future.
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• Coin Unit Systems: Specializations of authentication systems; if the customers
insert a sufficient number of valid coins they may be served by the drink machine.
Otherwise, the DVM will remain disabled and/or refuse to dispense drink.

• MIS: These systems are client systems of DVM. They monitor DVM or are
interested in receiving transaction information from DVM, for example at what
times of day drink is sold, which drinks are selling well and so on. In general,
these client systems are instances of the PCS and MIS categories.

The core process is described as an activity diagram involving the different stake-
holders in Figure 15.2. We also describe the activities in textual form:

1. Selection system requests a drink; check the choice.
2. DVM checks product status.
3. DVM checks amount of inserted coins.
4. Determine whether transaction can be committed.
5. Eject change in Coin Unit.
6. Dispense drink in Product Supply.

The activity diagram contains two examples of forking and merging. First, to check
the customer request we ensure that the customer has inserted enough valid coins
and that the desired product is in stock. Second, during the commitment phase the
product is dispensed and the change is ejected. Finally, once the transaction has
been committed an acknowledgement is sent to the Selection System.

Select
Choice

Check
Coins

Check
Product

Check
Choice

Inform

Commit

Eject
Coins

Dispense
Product

Done

Selection
System

Coin Unit System

DVM

Product Supply
System

MIS

Show

1

2

3

4

5

6

Figure 15.2 Activity diagram for core process in DVM.
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15.4 USE CASES

We model two high-priority use cases in some detail in this section. These are use
cases that directly affect the customer of the system and are in fact realizations of
the activities in the core process. The use cases are called:

• U1: Authenticate the customer (by inserting coins)
• U2: Select a drink (by means of a selection panel).

Use case U1 is concerned with the enabling of the machine before a drink is selected
while use case U2 describes how the customer selects a drink.

Use case name and ID: Customer Authentication, U1.
Actors in use case: DVM, Coin Unit system, Selection system.
Preconditions: System is in Disabled mode; the peripheral actors systems are oper-
ational and the system is waiting for authentication.
Short description: Valid coins are inserted into the Coin Unit. The first valid coin
enables the system (including the Selection system).
Detailed description: It is possible to authenticate the customer by inserting one
or more coins. The first valid coin enables the system and from this moment it is
possible (in principle) to select a drink. The customer may insert more coins if he
or she wishes.
Exceptions:
— Invalid coin inserted
— Hardware breakdown during coin insertion
— Customer cancels authentication process.
Other concurrent activities: Not applicable in this version since this is a single-
user system. In future versions multiple users may wish to simultaneously access
products. Furthermore, a maintenance engineer may need to inspect the machine on a
regular basis. This will lead to new satellite systems in the future and (unfortunately)
more opportunities for use case conflicts.
Postconditions: System is now in Enabled mode; this means that it is now possible
to select a drink.

Use case name and ID: Select Product, U2.
Actors in use case: DVM, Selection system, Coin Unit System, Product Supply
system.
Preconditions: System is in Enabled mode.
Short description: The customer selects the drink. The system checks to determine
whether the transaction can be committed. The change (if any) is ejected and the
drink is dispensed.
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Detailed description: We give a detailed description of the actions that are exe-
cuted in order to dispense a drink. The description is suitable as input for sequence
diagrams and helps in the discovery of exceptions.
1. Selection system requests a drink.
2. DVM checks product status.
3. DVM checks amount of inserted coins.
4. Determine whether transaction can be committed (enough inserted coins).
5. Eject change in Coin Unit.
6. Dispense drink in Product Supply.
7. Return to disabled mode.
Exceptions: We examine what can go wrong at each stage (action) in the use case:
• Problems with Product Supply

— Product Supply malfunctioning
— Desired product not available in Product Supply (low capacity)

• Problems with Coin Unit
— Coin Unit malfunctioning
— Low capacity in Coin Unit (not enough change)
— Overcapacity in Coin Unit

• Problems with carrying out Transaction
— Not able to carry out Transaction (insufficient funds entered)
— Transaction fails to commit (some kind of timeout)

• Problems with completing Transaction
— Problems with Coin Supply

• Coin Unit malfunctioning
• Unable to return change

— Problems with Product Supply
• Product Supply malfunctioning
• Unable to dispense product.

Other concurrent activities: Not applicable in this version of the software. See
remarks in the corresponding field in use case U1.
Postconditions: Drink and change (funds) have been dispensed; system reverts to
Disabled mode.

15.5 CREATING AN INITIAL PAC MODEL

The initial PAC model for this problem is shown in Figure 15.3. Each layer is a
composite black box and that is the reason why the multiplicities of associations
between the components in each agent are 1:1. Furthermore, we model the top-level
mediator object DVM as a single entity. In other words, DVM contains boundary,
entity and control functionality. Thus, we analyse and design the mediator as a
single monolithic class in this version of DVM.
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Figure 15.3 PAC model for DVM problem.

We model the relationship between the top-level DVM object and its agents as an
assembly parts relationship (see POSA 1996). The multiplicity is 1:1. Strictly speak-
ing, this is a composition because the lifetimes of DVM and its agents are coincident.

We couple the context diagram and the PAC model for this problem by aligning
the Boundary objects from Figure 15.1 with Figure 15.3. Furthermore, we rename
the generic names B1, B2 and B3 so that developers can understand them. We note
that each Boundary object adds value to the agent of which it is a part. For example,
CoinUnit (B2) helps us to enable the transactions in the (transaction) Centre agent.
In general, deciding where to place Boundary objects is an iterative process: do not
be surprised if you do not get it right on the first or second attempt!

15.6 CLASS STRUCTURE

We describe some of the classes in Figure 15.3 as UML diagrams. Other classes,
notably the Entity and Control layers, will be modelled as black boxes. We describe
the following Boundary classes:

• DispenseUnit
• CoinUnit
• Panel.



Interaction diagrams and interface discovery 271
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Figure 15.4 Structure of Boundary objects in DVM.

These objects communicate with the external stakeholder systems. The structure of
the three Boundary classes is shown in Figure 15.4. Notice that DrinkUnit and Coin-
Unit are multi-levelled aggregate objects. This approach promotes maintainability
and information hiding.

15.7 INTERACTION DIAGRAMS AND INTERFACE DISCOVERY

UML supports visual techniques that display how objects interact. They are called
interaction diagrams and the specific variants are called sequence diagrams and
collaboration diagrams. We shall show how these two techniques complement each
other to help the analyst understand the event flow between the different objects in
DVM. The main attention points in this section are:

• Mapping use cases to sequence diagrams
• Prioritizing sequence diagrams (external and internal, variants and exceptions)
• Taking maintainability issues into consideration
• Creating collaboration diagrams (see Rumbaugh 1999)
• Optimization (discovering object interfaces).

15.7.1 Sequence diagrams

We first concentrate on use case U1 (Authentication) and we create the correspond-
ing sequence diagrams based on the initial external events that enter the system.
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The main sub-use cases and the corresponding sequence diagrams are:

• U1.1: Insert coin into CoinUnit (Figure 15.5)
• U1.2: Enable transactions to be carried out (Figure 15.6)
• U1.3: Notify appropriate clients that system is ready (Figure 15.7).

:Acceptor

insert

[ok] update

:Panel :CoinUnit

initialize

:LED

notify

enable

Figure 15.5 Enable transaction by inserting coin.

:CoinUnit

initialize

:Transaction :Transaction
Centre

notify-enable

notify

accept

Figure 15.6 Inform Transaction Centre of Enable.
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:Control

request-enable

:Router :Panel

status

notify-enable

enable

Figure 15.7 Notify Control System of Enable.

Our assumption is that all external events enter via a Whole’s part, for example
in Figure 15.5 where the first external message ‘insert’ is sensed by Acceptor. In
this figure we see the sequence of messages in the CoinUnit. A similar relationship
exists between the Acceptor (fingers) and the CoinUnit (brain).

Once U1 has completed we will be in a position to select a product. However,
we may insert more coins (and more may be needed). In this case we show the
sequence diagram in Figure 15.8. Notice that no messages percolate to the Entity
layer in this case (why?).

Another variant is the cancel option. It is possible to cancel the transaction in
which case the customer will receive his or her money back (see feature F8 in
Section 15.2). The customer can press the cancel button in CoinUnit as shown in
Figure 15.9. Notice that the coins are ejected (via the message ‘button-pressed’ to
the Panel) and the transaction is aborted.

We now discuss use case U2 (Select Product). The sub-use cases are:

• U2.1: Choose product
• U2.2: Commit transaction.

The sequence diagrams corresponding to U2.1 are shown in Figures 15.10 and 15.11
and are played out in the Control agent. The sequence diagrams for U2.2 are to be
seen in Figures 15.12 to 15.15.



274 Drink Vending Machine (DVM)
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Figure 15.8 Insert more coins.
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Figure 15.9 Return coins to customer.
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Figure 15.10 Choose a particular drink.
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Figure 15.11 Request to dispense a product.
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Figure 15.12 Commit transaction.
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Figure 15.13 Check availability of Source system.
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Figure 15.14 Dispense drink.
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Figure 15.15 End transaction.
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Figure 15.16 Extended Drink Vending Machine.

15.8 SUMMARY AND CONCLUSIONS

We have analysed a model problem that can be used and adapted to many dif-
ferent applications. We have shown how to analyse this problem using UML class
diagrams, sequence diagrams and collaboration diagrams. We have created an under-
standable, portable and maintainable product. The approach represents an improve-
ment on ad hoc strategies.

In general, product vending machines are complex things and a simple ACS
instance is not enough. In fact, it is a composite system consisting of the following
instance systems as shown in the sketch in Figure 15.16:

• System B (MAN): produces the products
• System C (RAT): tracks the manufacturing process
• System A (ACS): user interface system to the product
• System D (MIS): monitoring and management system
• System E (PCS): monitors and controls threshold and exceptional values in the

manufacturing system B.

This context diagram can be used as input to a requirements engineering study.

APPENDIX 15.1: COLLABORATION DIAGRAMS IN A NUTSHELL

A collaboration diagram (CD) is similar to a UML class diagram but instead of defin-
ing structural relationships between the classes we display inter-object interaction
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by the use of sequence numbers. Thus, each message is assigned a number that tells
what its order is in the list of messages in the use case.

The main components in a CD are:

• Named objects
• The relationships between objects (message-passing)
• Messages.

Each message can have the following attributes:

• Its sequence number (its number in the pecking order)
• Its identifier (usually its name)
• The message direction (from sender to receiver)
• Preconditions (must be true if the message is to be executed)
• Role names
• Message qualifiers (for example, message parameters)
• Guard conditions.

Some examples of messages are:

2: send(p, r): retValue
23: query(A) [isOK()]

The first message has sequence number 2, is called send(), has two parameters
and the return value is placed behind the colon. The second message has a guard
condition in the form of the Boolean function isOK(). If this function evaluates to
true then the body of the function query()will execute.

In considering whether we should use sequence diagrams (SDs) or collabora-
tion diagrams (CDs), both are concerned with the same basic information, namely
creating a visual representation of a use case. In this book, we can use SDs and
CDs to depict object interactions at four different levels, namely:

• When it is not clear how a use case is documented
• When we are not sure whether the use case is accurate or complete
• When we wish to validate the structural integrity of class diagrams and PAC

models
• When we wish to discover object interfaces.

A sequence diagram is a two-dimensional graph where the horizontal axis represents
the objects that participate in the corresponding use case while the vertical axis
represents time. A SD focuses on the sequence of messages that are discovered
from the corresponding activities in the use case, while a CD focuses on the static
structure of collaborating objects in the use case. In other words, when you view
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Figure 15.17 Drink Vending Machine collaboration diagram.

a CD you can see the structure of, and the relationships between, the participating
objects as well as the sequence of messages between those objects. SDs, on the
other hand, display the messages between objects but do not display the structural
relationships between them. It is in theory possible to break the Information Hiding
principle in an SD by sending a message between objects whose classes have no
structural relationship. Some common errors in sequence diagrams are:

• Entity objects that communicate with external stakeholder systems
• Boundary objects that communicate with Control objects
• Control objects that communicate with external stakeholder systems
• Some people tend to create complex sequence diagrams.

We have brought the sequence diagrams together to produce the collaboration dia-
gram in Figure 15.17 for the DVM problem. We have left out the details of how
we arrived at this diagram; it was an iterative process.



16Multi-tasking lifecycle
applications

‘We may consider ourselves lucky when, trying to solve a problem, we succeed
in discovering a simpler analogous problem.’

George Polya

16.1 INTRODUCTION AND OBJECTIVES

This chapter discusses an instance of a Lifecycle Model (LCM, see Chapter 10).
The application is quite technical but what it produces is well known: plastic. We
describe how raw materials (in the form of coloured plastic pellets) are melted
to produce a liquid that is then inserted into a bubbling chamber. The bubbling
chamber produces half-products in the form of film. This film is trimmed and then
transported to a winder.

There are many analogies to be found between the current problem and lifecycle
models for other kinds of entities. Thus, the reader can use this as a ‘baseline’
system for other systems.

The emphasis in this chapter is on showing how a large and somewhat intractable
problem can be decomposed into simpler sub-problems. As is always the case in
this book, we motivate our choice of decomposition by looking at the workflow
in the system. In other words, we describe the production process in the language
of the customer. The specific system in this chapter (we call it the Plastics Extru-
sion System, PES) is concerned with the realization of customer batch jobs. For
example, a customer may have a request to produce a number of metres of film
of a certain width, thickness, colour and quality. PES processes this request by
producing an amount of processed film that the customer wants. We attempt to
provide some insights into how this is achieved. To this end, we include a number
of sections that describe the application lifecycle, starting with a high-level descrip-
tion of the problem and finally describing which architectural and design patterns
satisfy the software requirements for PES. Section 16.2 is an introduction to plas-
tics manufacturing. In Section 16.3 we review some of the features that the system



282 Multi-tasking lifecycle applications

should support and we also introduce the main system stakeholders as they will
be the sources of all major requirements in the system. Section 16.4 deals with the
problem of finding the context diagram for PES. We also motivate why PES is an
instance of a Lifecycle Model. In particular, we define the scope and span of each
of its subsystems in the system:

• Blending (MAN instance): produces ‘physical’ products from batch jobs
• Extrusion (RAT instance): produces the ‘finished’ product from physical products
• Reporting (MIS instance): produces reports and presentation information at var-

ious levels of detail.

These systems will be examined in some detail and in order to reduce the scope we
pay particular attention to the Extrusion subsystem as an example of how UML and
software patterns can be effectively used to produce design blueprints. Sections 16.5
to 16.7 introduce the problem of designing PES and how to apply software patterns
from the handbooks by Schmidt et al (2000), Buschmann et al (POSA 1996) and
Gamma et al (GOF 1995) to produce a flexible and maintainable software system.

We have included an appendix that introduces the topics of multi-tasking appli-
cations and generic models for such applications. This appendix may be skipped
without loss of continuity.

16.2 THE PROBLEM DOMAIN

The problem in this chapter is an instance of a Lifecycle Model (LCM) that describes
how to produce plastic film.

16.2.1 General description of problem

We summarize the essence of PES as follows: plastic pellets of different colours
and qualities are fed into a blending machine that then mixes the pellets using the
force of gravity. The pellets are fed into an extruder where they are melted. Once
the plastic pellets have been melted the molten plastic is injected into a bubbling
chamber. The bubbling chamber produces raw plastic. The plastic is then trimmed,
rolled up and finally transported to a nearby warehouse for storage. The product is
now ready for distribution. The manufacturing process must be carefully monitored
and controlled to ensure that the final product satisfies customer and regulatory
standards (for example, the US Food and Drug Administration). It should also be
possible to produce management reports using Excel and other software tools.

A rough sketch (artist’s impression) of the physical PES environment is shown in
Figure 16.1. It consists of a number of key components. First, blenders mix plastic
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Figure 16.1 Physical layout of extruder system (simplified).

pellets of differing quality using the power of gravity. The pellet mix is then fed
into several extruders where it is warmed to form molten plastic. The molten plastic
is injected into a so-called bubbling chamber where a chemical process takes place
and where ‘half-products’ (unfinished plastic film) are produced. Special sensors
measure the width of the plastic that is then trimmed. Finally, a winder system rolls
the finished product that is then removed from the system. Management reporting
is also possible.

We model PES as a Lifecycle Model because we see clear elements of manu-
facturing, tracking and management functionality. To this end, Figure 16.2 shows
the high-level activity diagram for this problem. The primary output consists of
high-level reports on what the PES has produced; in particular, this output contains
historical, real-time and exceptional reporting information. The primary input is a
batch request order from a customer (usually a company). The format of this input
should be well documented and contains information pertaining to how much plastic
the customer wants and what its quality should be.

Looking at Figure 16.1 helps us to identify three major processes in PES:

• Blending: mix and blend ‘raw’ plastic pellets
• Extrusion: produce molten plastic
• Reporting: report on the status of current production job.

The objects in the activity diagram in Figure 16.2 should be mentioned. Physical
Products describes the pellet mix while Usage Information is another name for the
amount of molten plastic that has been produced by the Extrusion process.
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16.2.2 System stakeholders

The context diagram for PES is shown in Figure 16.3. It shows PES as a ‘black
box’ that is surrounded by its satellite systems. The main systems are those that are
hardware-related, for example Blending, Extrusion and Winding. Of course, there
are other less obvious stakeholders such as the Customer (where the batch request
originates) and the Environment (this is needed because we must keep a record of
all production jobs). Finally, we will need to take into account the fact that the
PES will be controlled and monitored by operators and to this end we must develop
interactive user interfaces to the system. These are usually ACS instances. We will
also need one or more instances of the PCS category to monitor and control the
real-time production process.

16.3 SYSTEM FEATURES

Strictly speaking, a full requirements analysis should be carried out for PES but in
practice the development team has to be content with a list of product ‘features’
that customers (and managers) wish to see. This is a far from ideal situation and
many projects have failed because this approach leads to highly fragile systems. On
the other hand, we must accept this fact and we try to localize each feature in one
subsystem of PES. We must live with these risks and try to mitigate them.

The product manager and salesperson have interviewed the customer and have
arrived at a list of major features that the system should offer. The most important
features are:

• F1: Gravimetric control of the blending process
• F2: Gravimetric blending
• F3: Width control (width of plastic)
• F4: Thickness control and profiling (of plastic)
• F6: Temperature control of molten plastic in extruder barrel
• F10: Power monitoring in the extruder
• F16: Long-term storage of production variables and data
• F18: Waste reporting.

Notice that some features have been left out in order to keep the problem manageable
for the sake of this chapter. The relationships are shown in Figure 16.4. For example,
feature F6 is concerned with the monitoring and control of the molten plastic in the
Extrusion subsystem.
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Figure 16.4 Requirements and subsystems for PES.

16.4 SYSTEM ARCHITECTURE

Since PES is an instance of a Lifecycle Model we document it in UML as an
aggregation as shown in Figure 16.5. We thus have a centralized control model.
Furthermore, we model each component as a ‘black box’. To this end, we model each
component ‘from the outside to the inside’ by defining its context diagram. These
diagrams are shown in Figures 16.6, 16.7 and 16.8 for the three major subsystems.
Note that the Boundary objects have been explicitly modelled because they are the
interfaces to and from the other external systems and they can be designed and
implemented using the concurrent and network patterns due to Dr Douglas Schmidt
(see Schmidt et al 2000). In particular, we show how to extend the PAC model to
accommodate multi-threading producer–consumer applications.

PES

Blending Extrusion Reporting

Figure 16.5 UML class model.
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We do not explain the responsibilities of the different satellite systems in
Figures 16.6, 16.7 and 16.8. The names should indicate what each satellite system
does and the reader should consult the context diagrams in Chapters 8 (MAN), 7
(RAT) and 5 (MIS) and compare them with these specific instances in PES.
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16.4.1 The PAC models

The PAC models for the subsystems in PES are shown in Figures 16.9, 16.10
and 16.11. The reader can note how the boundary objects that we have depicted
in the context diagrams have been incorporated into the Boundary layers in each
subsystem. The reader should also verify that the ‘correct’ boundary objects have
been placed in the appropriate agent. In order to reduce the scope, we now deal
with the Extrusion subsystem as shown in Figure 16.10 in more detail. We defend
its system decomposition by appealing to activity diagrams. The internal objects
correspond to some kind of request object while the half-products correspond to
molten plastic that has been ‘assigned’ to one or more extruders.

It is possible to create UML diagrams for all classes that appear in the layers
in Figure 16.10. To this end, we discuss the structure of the Boundary layer in the
Extrusion subsystem. This is in fact the layer that contains the extruders (logical
boundary objects!). The UML class structure is shown in Figure 16.12. Here we see
that each extruder is decomposed into a number of zones. A zone consists of several
temperature controllers. This is needed because we wish to satisfy feature F6.
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Figure 16.10 PAC model for Extrusion.
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16.5 DESIGN ISSUES: OVERVIEW

Most of the discussion in this chapter has been devoted to conceptual analysis and
high-level architectural issues in PES. Not all details have been filled in. We feel
that the time has come to devote some attention to design issues. We know that
the mapping of a PAC model to the design pattern of GOF (1995) is feasible and
it is quite easy to realize once you know the rules. Our concern in this chapter,
however, is to describe the design of multi-threaded and multi-tasking applica-
tions. To this end, we give an introduction to threading and we introduce several
common threading models in the appendix to this chapter. Continuing, we apply
Dr Schmidt’s patterns to synchronizing communication between systems. Particu-
lar attention will be paid to showing how these patterns are integrated with the
PAC model.

16.6 THE PROOF OF THE PUDDING: ENTER THE ACE LIBRARY

The Adaptive Communication Environment (ACE) is the brainchild of Dr Douglas
Schmidt and is a library of C++ classes that allow developers to create portable, effi-
cient and usable distributed and networked-based software applications. The library
is based on network and communication patterns (see Schmidt et al 2000, Schmidt
and Huston 2002). The library consists of a number of frameworks:

• Event multiplexing and dispatching framework
• Connection establishment/service initialization framework
• Concurrency framework
• Service configuration framework
• Streams framework.

A complete discussion of these frameworks is beyond the scope of this book. The
main relevance of the ACE library to this chapter is that the library supports
active objects that communicate over a computer network. This is needed when
two instances of a domain architecture communicate with each other via the active
objects in their respective Boundary layers.

Objects in the object-oriented paradigm are passive by default. When an object’s
method is called it is run in some other thread, but an active object has several
threads and these threads are used to execute the active object’s methods. To this
end, ACE defines the class ACE_Task and your own active classes should be derived
from it. ACE defines communication mechanisms between tasks. The model is
based on Hewitt’s Actors model (see Agha 1986). A task (in ACE) has one or
more threads and an underlying message queue through which tasks communicate.
Messages are ‘enqueued’ and ‘dequeued’ as shown in Figure 16.13. Thus, we see
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underlying threads

underlying message queue

[enqueue][dequeue]

putq (insert)getq() (extract)

Figure 16.13 Tasks in ACE.

that clients of the task class do not need to know about the underlying thread
structure.

Our interest is in defining a communication channel between a client and a server,
for example between instances of domain architectures as shown in Figure 16.14.
This involves the creation of new active objects in the Boundary layers of the
respective systems. To this end, we must introduce some new concepts and patterns
(see Schmidt et al 2000):

• The Reactor pattern
• The Acceptor and Connector pattern
• The steps in creating and using a task.

The intent of the Reactor pattern is to demultiplex and dispatch service requests to
an application from one or more distributed clients. The advantage of the pattern
is that it can handle different types of events in one API (Application Program-
ming Interface). The Acceptor and Connector pattern deals with the problem of
communication between a client and a server. Its main use is to decouple connec-
tion establishment from the services that are performed after the connection has
been established. In ACE, the connection establishment is achieved using sockets
or some other InterProcess Communication (IPC) mechanism. The Acceptor com-
ponent in this pattern is situated in the server and is used for passive connection
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Figure 16.14 Using ACE with domain categories.

establishment and handling of connections after establishment from the Connector
(that is situated on the client). The Connector component is responsible for active
connection establishment and also for connection handling after establishment.

Having given a bird’s-eye view of some ACE patterns, we must deal with them
in more detail as preparation to their application to the plastics extrusion problem.
The Acceptor component encapsulates the BSD accept() function in the base class
ACE_Acceptor. This is a factory class and your specific acceptor class should be
derived from it. Instances of this class listen for clients that wish to establish a
connection. You must create your own service handler by deriving from the class
ACE_Svc_Handler. The Connector component encapsulates a BSD connect()

function call and you should create your own connection class by deriving it from
ACE_Connector.

16.7 THE CHALLENGE: APPLYING THE ACE LIBRARY
IN THE EXTRUSION APPLICATION

We have created a prototype, proof-of-concept (POC) solution to test the following
assumptions:

• Is it possible to use ACE libraries in a distributed application?
• Is it possible to integrate ACE and domain architectures?
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The answer to both questions is yes. We have found that the ACE library is easy
to use once you have understood the API function details. To answer the sec-
ond question, it is just a matter of defining ACE_Task instances in the respective
Boundary layers.

The test case in this section can be used in many situations. The basic problem
is to send data from several instances of a domain architecture (for example, PCS
or RAT systems) to a central system (typically, an instance of a MIS system).

The following discussion is rather complex and may be skipped without loss
of continuity.

The UML class diagram for the component that sends readings (in this case
the Boiler object) is shown in Figure 16.15. Here we see our own implementa-
tions of the classes ACE_Task (active object) and ACE_Method_Object (this class
encapsulates methods or commands in objects). This is achieved by subclassing.
StatusLogger is the most important class in this diagram and it is responsible for
the entire logging process.

We deploy a Visitor pattern to send parameters to the logger class. The structure
is extensible and it is possible to extend the Visitor hierarchy to handle spreadsheet
output, for example. The Active Object pattern is implemented by placing command
objects in a queue. These commands are then retrieved and executed by another
thread, the svc() method.

The central management component environment is depicted in Figure 16.16. We
identify two main tasks. First, the UDPListener object runs in its own threads and
listens for UDP broadcasts from (Boiler) clients using an ACE_SOCK_Dgram object.
Once it receives some data it replies using another ACE_SOCK_Dgram object. This
enables the client to determine the IP address of the central management component
and further communication will be based on that address. The second task is called
DataProducer and this also runs in a separate thread. This class, in conjunction
with its ‘helper’ classes, is responsible for receiving data from clients. The incom-
ing data will then be sent to a dialog box called CCentralObserverDlg. A visual
example of such a dialog box is shown in Figure 16.17. This has been created using
Microsoft Foundation Class (MFC) technology. It contains a list view that displays
the temperature-related parameters for each connected client.

Going back to Figure 16.16, we use the Acceptor–Connector pattern to receive
data from clients. The ClientAcceptor task listens for clients that wish to establish
a connection. Once the connection has been established a ConnectionHandler

object is created that has the responsibility for handling the connection. An instance
of ConnectionHandler is created for each connected client. All connections are
processing using multiplexing.
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16.8 SUMMARY AND CONCLUSIONS

We have given an introduction to the problem of analysing and designing a large,
distributed, real-time application. We have included it because it shows how to
decompose a system into loosely coupled subsystems where each subsystem is
responsible for one specific and well-defined task. The system is an instance of a
Lifecycle Model (LCM) and we scope the system and its subsystems by defining
context diagrams and corresponding Boundary objects. Having analysed the prob-
lem domain we must devise a strategy for designing the solution to the problem. To
this end, we introduced the concepts of multi-threading, multi-tasking and the ACE
library. Finally, we gave an example of how the ACE library and domain architec-
tures can be integrated. This is an area of future research and holds great promise,
in the author’s opinion: mapping reusable architectures in the problem domain to
patterns in the solution domain.

APPENDIX 16.1: AN INTRODUCTION TO MULTI-THREADING

This book is concerned with the discovery and documentation of high-level archi-
tectures that can be seamlessly integrated with the UML artefacts. In general, we
are not concerned with design issues because we are more interested in the problem.
The design topic is outside the scope of this book. We make an exception in this
chapter because here we are interested in how objects and systems communicate
with each other. In particular, we model objects and systems as active entities. To
this end, we need to introduce the topics of multi-threading and multi-tasking.

A thread is a unit of execution in a (software) process and represents a sequence
of CPU instructions. It has a specific structure consisting of registers, stacks and
private storage areas. In general, a software process will have one or more threads.
Each thread is assigned a time slice (or quantum) in which it may use a portion
of CPU time. When the time slice expires the thread goes back to sleep. In fact, a
thread may find itself in different mutually exclusive states:

• Ready: The thread is able to run and is waiting for the processor to give it a
time slice.

• Running: The thread is currently running and executing its tasks.
• Blocked: The thread is not running (because it is waiting on a resource to

be freed).
• Terminated: The thread has served its function and is no longer available.

We describe a thread by a Lifecycle Model. One possibility is to document it by
means of a Harel statechart (Harel and Politi 2000) as in Figure 16.18. As soon as
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ThreadState

Ready

Terminated

Blocked

Running
cancel

wait for resource

preempt
schedule

wait satisfied

new destroy

do: run

{after quantum}

Figure 16.18 The life of a thread.

a thread is created it goes into Ready mode and it remains in that state until the
processor makes it active, after which time it is in the Running state.

There is only one running thread on a uniprocessor machine while true multi-
threading is achieved on multi-processor machines: each processor has a thread
assigned to it. The latter case allows us to achieve true parallelism. In other words,
each processor executes independently of the other processors. Concurrency, on the
other hand, is the illusion of parallelism because it does not imply that operations
execute simultaneously. For example, it is possible to define a concurrent solu-
tion on a uniprocessor machine while parallel applications are only possible on
multi-processor machines. A complication with threaded applications is that mul-
tiple threads may compete for resources and unexpected things may occur unless
we take precautions. The main concern is thread safety and we must ensure that
multiple threads do not simultaneously compete for the same resources. In par-
ticular, we must ensure that code operates safely in multiple threads and we say
that existing code must be made thread-safe. Two major problems are called dead-
lock and race condition. A deadlock occurs when two threads are waiting on each
other to free resources. Both threads are in their respective Blocked states and a
program will ‘hang’ if such a situation occurs. Another problem is the infamous
race condition problem. This situation occurs when two or more threads share data.
Race conditions occur when two use cases are attempting to access the shared data
concurrently. The main problem is one of synchronization: the value of the data
depends on unpredictable timing factors. Let us give an example in a standard ATM
application and let us suppose that two customers wish to simultaneously withdraw
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Thread 1 Thread 2 Balance

(Withdraw $50) (Withdraw $50)
Time read balance: $125 $125

read balance: $125 $125
set balance: $:(125-50) $75

set balance: $(125-50) $75
give out cash: $50 $75

give out cash: $50 $75

Figure 16.19 Race condition: what happens when two customers simultaneously with-
drawn $50 from the same account?

$50 from a single account that initially has a balance of $125. The operations that
each customer carries out (see Figure 16.19) are:

• Operation 1: Read balance ($125)
• Operation 2: Set new balance ($75 = $125 − $50)
• Operation 3: Dispense cash.

As can be seen in Figure 16.19 the operations are ‘interleaved’ between the two
customers, thus leading to unpredictable results.

In order to resolve deadlocks and race conditions we must define some syn-
chronization mechanisms. The main objective is to eliminate all race conditions and
avoid deadlock while at the same time ensuring that there is no performance degra-
dation caused by the introduction of these mechanisms. The main mechanisms are
as follows.

• Mutex: a synchronization mechanism that controls access to data. Use of a mutex
ensures integrity of a shared resource because only one thread can access the
mutex at any given time.

• Critical section: a mechanism that provides exclusive access to a code path. The
code in the path modifies data in general and we thus see that use of a critical
section is an indirect way of protecting shared data. Only one process can execute
a critical section at any one time.

• Condition variable: a mechanism that allows a thread to wait until it is safe to
proceed. Its main use is in the synchronization of threads.

• Semaphore: a special kind of mutex which can be seen as a synchronization
primitive in concurrent environments.

Novice developers sometimes think that a multi-threaded application is more effi-
cient than a single-threaded equivalent. This is not necessarily so. In fact, on
single-processor machines a multi-threaded application may perform less well than
a single-threaded one because of context switching.
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We are unable to give a detailed account here of synchronization mechanisms. For
an account, see Nichols et al (1996) or any good book on operating systems theory.

We now give an introduction to threading models. In particular, we discuss how
these techniques are used to define a number of generic models for multi-threaded
applications. Our wish is to integrate them with domain architectures and with the
Schmidt patterns. Before we can do this we need to address a number of impor-
tant issues:

• How an application delegates work to its threads
• How threads communicate
• How to integrate threads and object technology.

In short, we wish to structure and document a threaded solution to a problem. The
major models (see Nichols et al 1996) are:

• The Boss/Worker model
• The Peer model
• The Pipeline model.

In the Boss/Worker model (also known as Master–Slave, see POSA 1996) one boss
thread accepts input for the program and then passes specific tasks to one or more
worker threads. The boss is responsible for each worker’s lifecycle. In general, its
responsibilities are:

• Creation/destruction of worker threads (either dynamically or from a pool of
threads)

• Assigning tasks to workers
• Optionally, waiting for tasks in the slaves to finish
• The boss loops/listens if there are no input requests.

An example of this model is shown in Figure 16.20 while a possible application
to the PAC model is given in Figure 16.21. In this latter case we see that all the
Control components are multi-threaded while the top-level component plays the role
of boss and the other control components play the role of workers.

A variant of the Boss/Worker model is called the Peer model. In this case the boss
places tasks in a queue. Workers periodically check the queue and take tasks from
it. The situation is similar to a manager/secretary relationship in a business environ-
ment. The peers work independently as shown in Figure 16.22. An application to
the PAC model is shown in Figure 16.23 in which we display three active objects
in a Boundary layer; each object is responsible for getting input from the external
stakeholder systems in its own way and then sending it on to the ‘data objects’ in
the entity layer. We must be careful with possible race conditions because this is
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Figure 16.20 The Boss/Worker model.

B

E

C

C

E

B

Boss Thread

Worker Threads

Figure 16.21 Creation of worker thread in PAC.
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Figure 16.22 The Peer (Work Crew) model.
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Figure 16.23 The Peer model in PAC.
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INPUT Stream
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Figure 16.24 The Pipeline model.
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Figure 16.25 The Pipeline model in PAC (e.g. image processing).
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Blending Extrusion Reporting

Figure 16.26 The Pipeline model for the PES application.

where problems occur when Entity objects are simultaneously updated by different
Boundary and Control objects.

The last model that we discuss in this section is called the Pipeline model. In this
case we divide a tasks into steps. The tasks are then performed in sequence. The
work in each step is based on the input from the ‘previous’ step and the steps are
designed to work in parallel. A good example of where this model can be applied
is in an image scanning application (this is an instance of a MAN application). We
have three subsystems, each of which is implemented by a thread (we call them A,
B and C). The major/primary input is an image array and the major output is a report
displaying decision-support information. The threads carry out the following duties:

• Thread A: process the image array and produce a processed image
• Thread B: search the processed image for patterns
• Thread C: collect and aggregate patterns in order to produce decision-support

information.

We give an example of the pipeline model in Figure 16.24 while a possible appli-
cation to PAC is given in Figure 16.25. In this case each agent is modelled as a
thread in the pipeline. Finally, Figure 16.26 gives an example of the model for the
plastics extrusion application. Notice the absence of the top-level mediator stage in
this case.
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17Summary of domain
architectures

‘All models are wrong, some are useful.’
Dr W. Edwards Deming

17.1 INTRODUCTION AND OBJECTIVES

We have written two short chapters in Part IV to help readers find their way in this
book. The chapters are appropriately devoid of detailed analyses and you can read
them without getting bogged down in architectural details. Instead, they provide
guidelines and pointers on using the book. Furthermore, they bring a number of
results and conclusions together in one place.

This chapter summarizes the essential features of the different domain architec-
tures (see also Figure 1.2). We gather all relevant information in order to help the
reader get a correct and high-level impression of what each domain architecture
is and what its applications to software development are. Chapter 18 is a practi-
cal guide to using domain architectures because it deals with issues that software
developers are confronted with in their working lives, which is how to start on a
project. In other words, Chapter 18 can be viewed as one possible entry point into
the world of domain architectures.

In general, you may need to iterate a number of times before you calibrate a system
with the most suitable domain architecture(s). There is no golden or infallible rule
that states that one architecture is optimal for a given application. We must remember
that we have developed models of the real worlds and that they focus on certain
aspects while neglecting others.

In this chapter we shall use the word ‘object’ in a generic sense to denote some-
thing that has structure and contents. It is something with sharp boundaries. In
some cases we shall use the synonym entity, information or data when it is more
appropriate to do so.
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17.2 OBJECT CREATIONAL SYSTEMS (OCS)

The instances in this category all share the feature that objects are created from basic
input information. This is the overriding concern and focus. Once these objects have
been created they will be used by other systems in various ways. In other words, the
roles that the newly created objects play will be determined by the client systems
that use them. The main sub-category in OCS is MAN (Manufacturing System).

Object Creational Systems, their specializations and instances are fundamental
because they produce data and information for other client systems. What actually
happens depends on the particular situation as shown in Figure 17.1 where we have
shown how MAN systems work as servers to other domain architecture instances:

• MAN to MAN (pardon the pun): a MAN instance system delivers smaller objects
to another MAN instance that in its turn uses these objects as half-products to
create even more complex objects. For example, a client MAN system may get
half-products from several source MAN systems. The MAN server objects play
the role of half-product or product objects.

• MAN to RAT: in this case an object is created by a MAN system and then
presented to a RAT system for verification, scheduling and resource allocation.
In this case we can speak of request objects that must be processed and tracked
by the RAT system. The objects will contain information such as the sender of
the objects, the type of request, the ultimate receiver of the request and so on.

• MAN to MIS: a MAN system creates objects that play the role of transactional
objects. Such objects contain information about low-level system resource usage.

MAN RAT MIS PCS ACS

MAN

Scheduled
Request

Server

Complex
Object

Authenticated
Object

Aligned
Object

High-Level
Object

Modified
Object

Access
Request

Sensor
Data

Transaction
Objects

Half-
Products

Clients

Figure 17.1 Manufacturing system as ‘server’ to other DA ‘clients’.
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By low-level we mean that the objects describe which stakeholders use which
resources. In general, these transactional objects contain multi-dimensional data
that will be consolidated and merged by the MIS system.

• MAN to PCS: a PCS system monitors exceptional situations. In this particular
client–server relationship the MAN system plays the role of the sensors that send
information to the PCS system to notify it that a setting or value has changed. In
this case the objects contain actual values of some entity that the PCS system is
monitoring and controlling. In this case we speak of sensor-valued objects.

• MAN to ACS: in this case the MAN system creates request or command objects
that are then delivered to ACS for processing.

In general, relationships between the systems in Figure 17.1 are many-to-many; a
system can be a server to several clients while a system may be a client of several
other systems. We must determine the precise multiplicity for our own specific
applications.

17.3 OBJECT ALIGNMENT SYSTEMS (OAS)

The main focus with Object Alignment Systems is to associate objects that have
just been created (for example) with objects in other systems. Since object-oriented
systems are essentially networks of associations and links between objects, we see
this category as the ‘glue’ that binds objects together.

The main sub-category in OAS at the moment of writing is RAT (Resource
Allocation and Tracking). Other special cases (for analysis and design objects) are
the GOF structural patterns and the POSA system patterns. We are thinking in
particular of the patterns called Composite, Bridge, Decorator, Proxy, Façade and
Whole–Part.

RAT systems create objects that can be used as input to instances of other domain
architectures. Figure 17.2 shows the relationships:

• RAT to Object Reporting Systems: a status-based object is defined as a request
object whose coordinates in time and space have been annotated as well as the
resource objects that have been assigned to it. Status-based objects (SBOs) are
usually low-level in the sense that they have to do with simple organizational units
(such as people, a department and suchlike). For MIS systems, the SBOs play
the role of transaction objects and SBOs will be consolidated into higher-level
objects, while for PCS systems the SBOs will be similar to sensor data.

• RAT to MAN: the output from a RAT system can play the role of raw data for
a MAN system. This raw data will be converted to some new product or service.

• RAT to RAT: a RAT system can send data to another RAT system. The client
system can track requests at a higher level of abstraction or granularity. We have
given some examples in Chapter 7, Section 7.11.
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MIS PCS MAN RAT ACS
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Complex
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Modified
Object

Product/
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Modified
Request
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Request

Raw
Data

Status-
based
Object

Transaction
Objects

Figure 17.2 RAT system as ‘server’ to other DA ‘clients’.

• RAT to ACS: this is a common pattern. A RAT system produces a request that
is authenticated by an ACS system that then gives a go/no-go response to its
client systems.

17.4 OBJECT BEHAVIOURAL SYSTEMS (OBS)

In contrast to RAT systems (where we are assigning objects to other objects), in
this case we are modelling interactions and functionality in systems. Some sce-
narios can be generated by considering the ISO 9126 characteristics and their
sub-characteristics again:

• Suitability: extending the functionality of a system
• Accuracy: ensuring that information is correct and up-to-date
• Security: ensuring that only authorized users have access to a system or part of

a system.

In general, the systems in this category are concerned mainly with functionality,
whether it is adding functionality to a system or restricting the functionality or
operational capabilities of a system in some way.

17.4.1 MIS
These are systems that produce high-level decision-support and reporting informa-
tion based on algorithms that aggregate or consolidate lower-level transaction data.
MIS systems play the role of server as shown in Figure 17.3.
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MAN RAT MIS PCS ACS

MIS

Request Transaction
Object
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Data

Settings
Request

Raw
Data
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System

Figure 17.3 MIS system as ‘server’ to other DA ‘clients’.

• MIS to MAN: the high-level data from a MIS system is seen as raw data for
a MAN system. This scenario is possible in principle. For example, the MAN
instance could be some kind of graphics compiler that converts the high-level
data to a new product.

• MIS to RAT: high-level information may be seen as request data to a RAT system.
This information can be assigned to resources, scheduled and tracked.

• MIS to MIS: a MIS system may receive information from a number of MIS
server systems that play the role of systems that produce transaction data (albeit
at a high level) for the client MIS system.

• MIS to PCS: high-level data may represent some kind of sensor data that is
input to a PCS system. The latter system must decide what to do (the control
part of PCS) once it has received this out-of-bounds data. Further, more MIS and
PCS systems may cooperate as follows: a MIS sends configuration and download
information to a PCS system.

• MIS to ACS: high-level data that is destined for a system is first filtered by an
ACS system.

17.4.2 PCS

PCS systems monitor and control critical system parameters. If the value of a param-
eter reaches a certain critical level some action is executed in order to redress this
aberration. PCS systems play the role of server as shown in Figure 17.4.
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Figure 17.4 PCS system as ‘server’ to other DA ‘clients’.

• PCS to MAN: PCS systems can send real-time sensor data or historical/static
configuration data to a MAN system. In this case these data types play the role
of the raw data that MAN needs in order to create products and services.

• PCS to RAT: PCS can send a request to a RAT system because it needs some
resource.

• PCS to MIS: this is a common situation. For example, several PCS systems send
their sensor data or configuration data (these data types will then play the role of
transaction data) to a MIS system for consolidation and high-level reporting.

• PCS to PCS: this is the ‘watchdog monitoring and controlling the watchdog’
option in which the server PCS system is the provider of sensor data.

• PCS to ACS: PCS systems may send commands or requests to other systems but
we wish these commands to be screened and authenticated.

17.4.3 ACS

ACS systems restrict access to certain resources. In general, an ACS can be a
front-end system to an instance of some other domain architecture as shown in
Figure 17.5. In general, we place an ACS system between a client system and a
server for a number of reasons (by the way, these are generalizations of the different
kinds of Proxy pattern in POSA 1996):

• Remote ACS: Client and server systems are in different address spaces or use
different data formats. In this case the ACS system encapsulates and maintains
information on the locations of server systems. In general, we could create one
ACS system per server.

• Protection ACS: We protect the server system from unauthorized clients. This is
a special case of the Reference Monitor model in Chapter 9.
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Figure 17.5 ACS system as a ‘front-end’ to other DA systems.

• Cache ACS: Multiple client systems can share results from remote servers. In this
case we must extend the basic ACS system with an external stakeholder system
that temporarily holds results.

• Synchronizing ACS: We can synchronize multiple simultaneous accesses to a
server system using this specialization of ACS. This option allows multiple simul-
taneous client accesses. Only one client can access the server system at any one
time.

Other kinds of ACS (proxy) systems are discussed in POSA (1996).

17.5 KEEPING THE DOMAIN ARCHITECTURES DISTINCT
AND ORTHOGONAL

In Section 17.4 we discussed how instances of domain architectures cooperate in a
kind of client–server environment. We now must discuss how to discriminate one
domain architecture from another and to ensure that a specific domain architecture
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does not fade away or get lost in some higher-level category. After all, the domain
architectures are very similar but not the same (an apple is similar to a pear, an
orange is similar to a mandarin, but there are differences).

The distinction between the different architectural types can become a bit blurred
unless we are eternally vigilant! It is easy to become confused and it may be very
difficult to make a choice (which is sometimes even more frustrating than having
just one choice or no choice at all!). In order to be sure how to choose the most
appropriate pattern, we have provided a number of differences between pairs of
domain architectures. At least you will know that your application is not an instance
of some domain architecture (this will save you a lot of time). For a start, we recall:

• MAN systems create objects.
• RAT systems allocate/assign objects to other objects (resources).
• MIS systems produce reports for objects containing multi-dimensional data.
• PCS systems monitor and control objects by comparing their values with prede-

fined settings.
• ACS systems do not do much as such; instead they contain authorization informa-

tion concerning which principals have which kind of access to which resources.

These one-liners should be consulted before you start digging deeper.

17.5.1 MAN versus RAT

A MAN system creates objects while a RAT system assigns objects to some other
objects that play the role of resources. MAN systems are usually not interested in
tracking the life of an object through the system (although there may be exceptions
to this rule) whereas RAT systems model what happened to an object, who did what
with the object and where the object can be found in space and time.

MAN systems do not usually monitor service-level agreements, response time and
other performance issues. The jargon is not in the vocabulary while RAT systems
do have this embodied in their context diagram.

The information in Figures 17.1 to 17.5 could be used as input to finding new
requirements. In general, instances of certain domain architectures exchange infor-
mation on a client–server basis. We can then start investigating what the different
viewpoints are in this regard. For example, taking the client–server relationship
between PCS and MIS in Figure 17.1 in which MIS sends real-time sensor data and
scheduled set-point data to PCS, we could examine the following viewpoints (for
example ISO 9126) and corresponding stakeholders in relation to that data:

• Reliability of the data
• Functionality (accuracy, security)
• Efficiency (time and resource).
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We can then determine how to find new system requirements (the Inquiry Cycle
model may be useful here).

17.5.2 MAN versus MIS

At a superficial level, MIS systems create high-level and consolidated objects. How-
ever, once created they can never be changed (famous last words . . .) and they are
then stored in a so-called data warehouse. Furthermore, MIS are concerned with the
comparison of target values of objects with actual values and they produce reports
based on these values at various levels of detail. Furthermore, MIS systems allow
users to drill down in the data warehouse by using queries. Using this kind of jargon
and vocabulary for MAN systems would be out of place.

MIS and MAN systems employ algorithms that convert input to output. In the
former case the emphasis is on producing multi-dimensional data for querying pur-
poses, while in the latter case the algorithms are concerned with the creation of a
product or service that will be used somewhere else.

In short, MAN systems create objects and send them on their way while MIS
systems store long-term information pertaining to objects at various levels of detail.

17.5.3 MAN versus PCS

PCS systems do not create objects as such; they monitor the actual values of some
attributes in those objects. If the actual values drift too far away from so-called
scheduled values (or set-point values as they are called) the PCS system will attempt
to activate some actuators in order to redress the imbalance.

17.5.4 MAN versus ACS

ACS systems do not create objects as such but they restrict the kinds and number
of objects that may access other server systems. MAN systems create objects, ACS
systems define or restrict access to those objects.

17.5.5 RAT versus MIS

MIS systems are concerned with different kinds of data at different levels of granu-
larity while RAT systems tend to track more fine-grained objects in a system. There
is no real concern in RAT with consolidation issues; these would be taken care
of by a client MIS system (see Figure 17.2 again). For example, we might like to
create a report of all outstanding orders for the last month. This functionality should
be placed in the MIS system and not in the RAT system, otherwise we will get a
bloated system in no time.
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17.5.6 RAT versus PCS

These categories are similar in the sense that they monitor objects in a system.
RAT systems monitor objects as they ‘flow’ in a system, as it were, and historical
information is gathered on which actors created or modified the object, where the
object is and other relevant information. PCS systems, on the other hand, are less
dynamic in the sense that we are not interested in tracking objects as they move
in multi-dimensional space, but we are interested in monitoring critical values of
certain attributes. This is called exception management, a feature that we do not see
with RAT systems.

17.5.7 RAT versus ACS

RAT systems are silent on access control issues and are not responsible for defining
which subjects or principals have which kind of access to which objects. This is of
course the speciality of ACS systems.

17.5.8 MIS versus PCS

There is a lot of commonality between these types. In fact, we can view them
as specializations of a general Object Reporting System category. Both describe,
document and report the status of the information in systems. In particular, MIS
creates all kinds of reports (ad hoc, periodic) at all levels of granularity. These
reports include both normal and exceptional cases. PCS systems, on the other
hand, tend to produce reports only when something goes wrong (is about to go
wrong, in other words an impending major event in the system). Furthermore, PCS
systems tend to be small but of course we could have a park/farm (composite) of
such systems.

There is one last major difference: MIS systems are good at monitoring informa-
tion and objects while PCS systems’ responsibilities have to do with both monitoring
and control. When an exceptional event occurs in a PCS system it performs an
algorithm to activate an actuator that brings the system back to equilibrium again.

17.5.9 MIS and PCS versus ACS

Both MIS and PCS are specializations of Object Reporting Systems. They are con-
cerned with delivering decision-support information to client systems. ACS systems
may have basic reporting facilities but this feature is not the main concern.
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17.6 SUMMARY AND CONCLUSIONS

In this chapter we have given a summary of domain architectures from two main
perspectives:

• How instances of domain architectures cooperate in client–server settings
• Comparing and contrasting pairs of domain architecture types.

This discussion should help you appreciate the real differences between the different
types and how they complement each other. Once we have achieved this level of
understanding we shall be in a better position to apply them to real-life applications.
This is the subject of Chapter 18.





18Using domain architectures
and analogical reasoning

18.1 INTRODUCTION AND OBJECTIVES

In this chapter we develop a number of techniques that help the reader use domain
architectures in real-life applications. Our basic assumption and starting point is that
we are embarking on a real application whose architecture and requirements must be
discovered. Instead of using trial and error methods, serendipity or word-of-mouth
experience, we try to formalize the thought process somewhat. In particular, we use
domain architectures as a stepping-stone to helping the reader understand the system
under discussion (SUD). The author has developed formalisms for documenting
domain architectures and their instance systems. The assumption is that they describe
a range of real-life applications and we document their essential features using
UML notation. We have attempted to apply a number of techniques, from cognitive
psychology to the process of classifying the SUD as an instance of some domain
architecture, or even comparing it with some other instance system that we (or
others) have developed in the past.

This chapter discusses the following topics:

• How to fit the SUD into the most appropriate domain architecture(s)
• Focusing on essential system features as a way of understanding the SUD
• Using domain architectures to instantiate specific SUDs
• Using the best example (prototype) of a domain architecture in order to understand

the SUD
• Using several exemplars in order to understand the SUD.

We stress that there are other ways to solve problems and that the above choices
are not exhaustive and may not be suitable in all cases. All we can say is: try it!
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In order to keep both feet on the ground, we give a summary of the advantages
and disadvantages of the different approaches that help us gain an understanding of
the software development process.

18.2 IN WHICH DOMAIN ARCHITECTURE DOES MY APPLICATION
BELONG? THE BIRD-WATCHING METHOD

The bird-watching method is a technique for spotting birds of a given species by
making a deliberate attempt to look for certain features. We learn to recognize the
characteristics of the different species. In our case we equate a bird with the system
under discussion (SUD) and the species with one or more domain architectures. See
Figure 18.1. Our first attention-director method is a technique for determining the
most suitable domain architecture for the SUD. First of all, we must enumerate the
essential characteristics of the different categories and these will play the role of a
set of destinations, as it were. We try to arrive at one destination by examining the
SUD and placing it in that category (or categories) that fits the SUD best. In order
to reduce the scope, we define a number of key identifiers:

• I: the vocabulary and jargon used
• II: the core process and information flow

MIS

RAT

PCS

MAN

ACS

option calculator

MPC

ATM

DVM (Drink)

Figure 18.1 Bird-watching method.
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• III: the major viewpoints in the system
• IV: Activities and algorithms

We now give the contents of the above identifiers for each domain architecture:

• MIS (see Section 5.4 for more detailed attention directors):
— I: Decision-support information, consolidation and reporting
— II: Create reports: transaction data, consolidated data
— III: Functionality (accuracy, interoperability)
— IV: Data mining and data drilling; merging.

• PCS (see Section 6.5 for more detailed attention directors):
— I: Process control jargon (setpoints, process value)
— II: Sensor readings, actuator output, exceptional management
— III: Reliability, efficiency, safety
— IV: Control algorithms, actuator algorithms.

• RAT (see Section 7.4 for more detailed attention directors):
— I: Tracking, traceability
— II: Request data, display of request status
— III: Accuracy, usability
— IV: Scheduling and planning of requests/activities.

• MAN (see Section 8.4 for more detailed attention directors):
— I: Raw materials, half-products, products and services
— II: Raw data, finished products
— III: Efficiency, suitability
— IV: Preprocessing, conversion, postprocessing.

• ACS (see Section 9.4 for more detailed attention directors):
— I: Authorization, authentication, secure access
— II: Access request, status of request
— III: Security, usability
— IV: Checking user credentials.

• LCM (see Section 10.4 for more detailed attention directors):
— I: The word ‘Lifecycle’ (occurs in business world)
— II: New ideas transformed into long-term products
— III: Traceability, performance and reporting
— IV: Creation, scheduling and reporting.

In general, you are embarking on a new system and you wish to determine which
category is the best fit. You can create a decision table by giving each category a
score. Even fuzzy numbers based on your intuition are allowed (the so-called first
impression) and the results should steer you in the right direction. The Quality Func-
tion Deployment (QFD) method uses this approach and there is a lot of spreadsheet
software available to support the decision-making process.
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Real-life applications are usually a combination of all of the above categories. In
particular, you should apply the technique in this section to the SUD and its external
stakeholder systems.

Once you know which category your application belongs to, you can then start
exploring more specific and focused questions.

18.3 FOCUSING ON ESSENTIAL SYSTEM FEATURES:
THE FRAMEWORK METHOD

The framework method is an attempt to define a framework for the deliberate oper-
ation of thinking. We draw up a sequence of boxes where each box is an attention
area. We fill each box by thinking about the problem or situation in the terms defined
by the box. For example, we use this method to think about domain categories by
choosing boxes with the following contents:

• Context diagram
• Core process
• Stakeholders
• System and subsystems.

Each box holds our attention on a specific thinking task. The added value of this
method is that we direct our thinking to just one area at a time instead of trying
to cover all areas at once. The general picture is sketched in Figure 18.2(a). Each
box can be elaborated and other boxes in Figure 18.2(b) suggest this. These boxes
represent ‘further thinking’. In other words, we can elaborate in depth and in breadth
and there is also room for discussions on alternatives (Plan A, Plan B). As such,
the boxes do not have any value except just to hold attention for a while. In this
way we hope to carry out one particular thinking activity. The end-result is less
confusion, with each aspect of the problem getting some attention.

Having devoted some time to one particular aspect of SUD (for example, its core
processes or context diagram) helps us in a better understanding of it and we get
insights into other aspects. For example, the author nearly always focuses on the
following issues during initial customer interviews:

• The core process (what does the system really do?)
• Context diagrams
• The interfaces between SUD and the external stakeholder systems.

In this way the interview remains focused and we know what is to be done after
completion of the interview (which usually takes between two and three hours).
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Figure 18.2 The framework method.

In general, you can apply the framework method to all structural and behavioural
artefacts of the software lifecycle process. See Chapter 3 for details.

18.4 THE DEFINING-ATTRIBUTE VIEW

This view is based on the assumption that the meaning of a domain architecture can
be captured by an all-encompassing list of attributes. These attributes are atomic
units or primitives that are the basic building blocks of a category. Each attribute is
necessary and all of them are jointly sufficient for an instance system to be identified
as a member of the category. This is tantamount to saying that a domain architecture
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is sufficient for discovering the essential properties for any SUD (something which I
do not believe, because there is no universal model for all systems; some modicum
of humility is in order).

Things are very clear-cut; what is and what is not a member of the category is
clearly defined and there are clear boundaries between members and non-members
of the category. Furthermore, all members are equally representative of the category.
Finally, when categories are organized in a hierarchy then the defining attributes
of a more specific concept (for example, Drink Vending Machine) in relation to
the more general superordinate concept (for example, ACS category) include all
the defining attributes of the superordinate. In practical terms, this approach allows
us to find the structure and behaviour of SUD by specializing and instancing the
artefacts in the corresponding category. For example, ACS systems allow authorized
principals to securely access resources (or objects). Specializing this to the Drink
Vending Machine problem, we execute the following specialization activities:

• Principals map to customers
• Resources map to physical cans of lemonade/cola
• Authorization database maps to coin unit
• Authentication is realized through coin insertion.

Another example from Chapter 5 is the Acoustic Data List (ADL) system where
we specialize the external stakeholder system from the more general MIS category
to ADL:

• Transaction Database = sound level meters
• Organization = operating characteristics of physical equipment
• Permanent Database = data for equipment usage
• Reference/Schedule = target/acceptable noise levels
• Sink = SPL presentation information
• Algorithms = algorithms that calculate noise levels.

We can apply this specialization process to any artefact for any domain architecture.

18.4.1 Advantages and disadvantages

All models are wrong; some are useful. The defining-attribute view is based on
semantic network theory and it has been suggested that humans reason by linking
more concrete concepts to more general ones and vice versa. In this book we have
already created a hierarchy of domain architectures and their instance systems in
Chapter 1 (see Figure 1.2). In general, the evidence against the defining-attribute
view outweighs that in favour of it (Eysenck and Keane 2000). Basically, general
concepts are unstable and highly context-sensitive. For example, in Chapter 13 we
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modelled the Elevator Control System as primarily an instance of a RAT category
even though it would have been better to have modelled it as a PCS system. That’s
life! We gain experience by experimenting with hypotheses and modifying our
assumptions as new experimental evidence is gathered.

Some other weaknesses are:

• We cannot be sure that we have found essential defining attributes that describe
a domain architecture or its instance systems.

• We have five basic domain architectures in this book: are there others and, if so,
how do we discover them?

Summarizing, I see some truth in the statement that breaking down a domain archi-
tecture into its necessary and sufficient attributes is fundamentally ill-conceived.
The defining-attribute is rampant in the object-oriented paradigm: we create classes
having very sharp attributes and functions and then we create instances of those
classes. This assumption needs revision, in the author’s opinion.

18.5 THE PROTOTYPE VIEW

In this section we assume that we wish to find the structure and behaviour of SUD.
We may or may not yet have determined in which domain category it fits. Of course,
if we already know that it is an instance of, let’s say, a MIS category then our life
becomes easier.

The Prototype view is based on the idea that each domain architecture has an
instance system that is the best example of the architecture because its properties
exemplify the essential characteristics of the category. There is no defining set of
necessary and sufficient attributes that determines membership in the category. There
may be necessary attributes but they are not jointly sufficient. Category boundaries
are fuzzy or unclear; what is and is not a member of the category is ill-defined or
some instances may slip into the wrong category. For example, we see in hindsight
that the Elevator Control System in Chapter 13 should have been modelled as an
instance of PCS rather than as a RAT instance.

Instances of a domain architecture may be ranged in terms of their typicality,
that is there is a typicality gradient that characterizes the differential typicality of
instances in the category (Eysenck and Keane 2000). For example, in the MIS
category we grade some instance systems as follows:

• Manpower Control (MPC) system (highest score)
• Acoustic Data List
• Heart Monitoring System
• Simple Digital Watch (lowest score, least typical).
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Thus, we choose MPC as being the most typical example in the category and this
will be our prototype instance. When you are working on a new SUD you can
determine its membership in MIS by the similarity of objects and other artefacts to
the category’s prototype, in this case MPC. The tactic is to use MPC’s artefacts to
discover or improve the corresponding artefacts in SUD. Some prime examples are:

• The context diagram
• The subsystems and layered classes
• Stakeholders and viewpoints
• Use cases.

It is possible that a new ‘best’ prototype will come along in the future to displace
the current prototype MPC system.

For the other domain architectures we consider the following instance systems to
be prototypes:

• Home Heating System is prototype for PCS.
• Help Desk System is prototype for RAT.
• The Reference Monitor is prototype for ACS.
• Plastic film production is prototype for Lifecycle Model (LCM).

The reader may notice that we do not have a prototype for the MAN (Manufacturing)
category. We do have some typical exemplars, but we cannot give an example of a
system that is typical of the category. We have to be happy with these exemplars
and use them to help us find the essentials of SUD.

18.5.1 Advantages and disadvantages

There is a lot of positive evidence to support the prototype account of categorization.
There seems to be a universality in people’s categorization of certain systems and
the structure of categories of systems. It would seem that these categories have a
prototype structure. There are a number of disadvantages of this view:

• Not all domain architectures have a prototype (for example, we do not really
have a prototype for MAN). This is probably due to the fact that there is endless
flexibility in the membership of domain architectures.

• People seem to know about the relations between attributes, rather than the
attributes themselves.

• Why do we group instances in one category and not in another? The prototype
view provides no guidance in this regard because similarity is responsible for cat-
egory cohesion. Similarity is not the only mechanism because we form categories,
not by basing them on shared attributes but which are nonetheless coherent. For
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example, in some cultures animals are grouped into clean (for example, fish and
grasshoppers) and unclean (for example, pigs and rats).

18.6 THE EXEMPLAR-BASED VIEW

This view is based on the assumption that a domain architecture is made up of a col-
lection of instances or exemplars rather than an abstract description of these instances
as already discussed in Sections 18.4 and 18.5. Instances are grouped together rela-
tive to some similarity metric. In this book we group systems by their core processes
and the kind of information that they produce:

• MIS: Reports
• PCS: Correction data and exceptional reports
• MAN: Products and services
• RAT: Display status of tracked entities
• ACS: Secure access to resources
• LCM: Entity lifecycle.

All instance systems in a given category have the same core process (however, we
must admit that we are stretching the definition at times). For example, the category
RAT has the following exemplars:

• Help Desk System (highest score)
• Order Registration System
• Rent-a-Machine (tracking part)
• Discrete Manufacturing
• Call Forwarding
• Risk Tracking
• Elevator Control (lowest score, really a PCS instance).

Figure 18.3 summarizes some stakeholder systems for the following instance
systems:

• MPC: Manpower Control System
• SDW: Simple Digital Watch
• HMS: Heart Monitoring System
• ADL: Acoustic Data Lists.

The artefacts are:

• Source: the system where basic input data comes from
• Sink: the client recipient system



330 Using domain architectures and analogical reasoning

MPC SDW HMS ADL

Source Used Hours
Pulse from

satellite
Patient's

characteristics
Noise from
Equipment

Sink Reports LED
Doctors
Screen

Noise Level
DB

DWH
Dept. +

Proj. Data
Hours +
Minutes

Patient
History

Historical info
on Plant

KB
Verify
User ?

Patient
Profile

Plant
Layout

Figure 18.3 Some stakeholder systems for MPC, SDW, HMS and ADL.

• DWH: data warehouse system containing historical data
• KB: knowledge database that classifies incoming data.

You can use the results in Figure 18.1 to help you think about new instance systems.
Notice that the author is not sure about the kind of data in the KB for the SDW
application!

18.6.1 Advantages and disadvantages

The main advantage of the exemplar-based view is that there are several instance
systems to choose from when trying to discover the attributes of SUD. This could
be called the ‘safety in numbers’ option; if one instance is not a good example then
try another one, for example:

• A penguin is an example of a bird.
• A robin is a better example of a bird.

For example, I find the Help Desk System is a better example of a RAT instance
than the Elevator Control System, the reason being that I am more familiar with the
former system.

The exemplar-based view also preserves correlational information between
instances of a category that the prototype view does not. It has also been shown
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that people use such knowledge in category learning and classification. In normal
language, this amounts to saying that we learn by doing lots of examples.

Some of the disadvantages of the exemplar-based view are:

• Like the Prototype view, this view depends on similarity; it does not cope easily
with class inclusion questions. For example, sometimes people think in terms of
general concepts rather than specific exemplars, as in the truth of the statements
‘All birds are creatures’.

• The exemplar-based view has no good account of how abstract knowledge comes
into being.

18.7 SUMMARY AND CONCLUSIONS

We have given an introduction to a number of practical techniques to help us inte-
grate domain architectures with the software development process. In a sense we
have encapsulated knowledge about classes of applications and we have documented
the knowledge using UML notation whenever possible. Domain architectures pro-
vide the substrate upon which you can build and understand your own applications.
The main techniques are:

• Defining-attribute view
• Prototype view
• Exemplar-based view.

An introduction to bird-watching and the other techniques in this chapter are given
in de Bono (1976).

APPENDIX 18.1: ANALOGICAL REASONING AND LEARNING
BY ANALOGY

Much thinking is done by analogy. For example, when we face a situation we try
to recall a similar situation from the past. Some specific examples are:

• We learn about resistors by thinking about water pipes
• We learn how to fly by thinking about how birds do it
• We study law by examining law cases from the past
• We (should) analyse software systems by looking for similar systems.

A number of authors have developed a so-called theory of analogy (see Hall 1989,
Winston 1980) and we discuss some of their main findings in the hope that they can
be applied to the work in this book, in particular in our quest to locate and apply
domain architectures. Winston (1980) distinguishes between learning and reasoning.
On the one hand, learning takes places when analogy is used to generate a constraint
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description in one domain, given a constraint description in another. For example,
we learn Ohm’s law by studying water hammer flows in pipes. Lifecycle models for
a hardware rental company can be constructed by using our knowledge of a plastics
extrusion manufacturing and tracking system.

Reasoning takes place when analogy is used to answer questions about one sit-
uation, given another situation that is supposed to be a so-called precedent. For
example, we can answer questions about a system that monitors disk space usage in
a large computer network environment by comparing it with the Manpower Control
(MPC) system that monitors man-hours in engineering projects.

We now discuss some aspects of a system to support analogical learning and we
give some examples such as the Automated Teller Machine (ATM) and the Drink
Vending Machine (DVM). We have constructed a concept map and initial UML
class diagrams and let us suppose that we wish to analyse DVM by using ATM as
a precedent (in the Winston sense). The most important aspects are:

1. Importance-dominated matching: We discover similarity between two situations
by finding the best possible match according to what is important in the situations
as exhibited by the situations themselves. The assumption in this case is that if
two situations are similar in some respects then they must also be similar in other
respects. We must place the situations in correspondence. Of course, the two
situations will not be the same in all respects. Thus, we will have a combination
of paired and unpaired entities. What is the best way to match two situations in
general? This is a very difficult question and to reduce the scope we concentrate
on the ATM and DVM applications, for example:
— Compare the viewpoints of ATM and DVM (functional, structural,

behavioural)
— Compare similarities of the phases of ATM and DVM (for example, analysis)
— Compare the ISO 9126 characteristics of ATM and DVM.
In general, we can compare ATM software space to determine whether there are
similarities in the DVM software space. For example, it is fairly clear that both
DVM and ATM have similar authentication units and use cases!

2. Analogy-driven constraint learning: This has to do with how a constraint or
fact as a by-product of a mapping in one part of a situation in a well-understood
domain (such as ATM) can be learned for the new unknown domain. For example,
in the ATM problem the customer may enter an incorrect password at most three
times, after which the ATM machine is temporarily disabled and the pin card is
not returned. Similar security constraints should also hold for the DVM problem.
In this way we gain a better understanding of DVM.

3. Analogy-driven reasoning: This type of reasoning asks whether a particular rela-
tionship holds. Specifically, causes found in a remembered (or documented!)
situation can supply suggestive precedents.

4. Classification-exploiting hypothesizing: This is the problem of searching in short-
term or long-term memory (or documentation in a handbook!) for situations that
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are likely to be similar to a new, given situation. Of course, we must find the
documented situation that is most relevant to the situation under discussion. We
assume that the documented situations will involve the same sorts of things as
the new one. There are two mechanisms for searching through a network of
possibilities:
— SIMILAR-TO mechanism
— A-KIND-OF mechanism.
For example, a coin unit in the DVM problem is SIMILAR-TO the pin unit in an
ATM machine. Furthermore, both units are KIND-OF Authorization Database in
an ACS category. Finally, both ATM and DVM at the highest level are themselves
KIND-OF ACS systems.

We note that the above mechanisms can be applied at any level, in contrast to the
conclusions in Winston (1980) where the mechanisms are not scalable, due to the
fact that many people begin the thinking process at the lowest level (in our case,
the object or class level). A shift in emphasis is obviously needed. So why not start
reasoning at the highest level? The measure of the similarity between DVM and
ATM can be defined in the following set notation:

SIMILARITY(DVM,ATM)=f(DVM
⋃

ATM)-f(DVM-ATM)-f(ATM-DVM)

Here, the function f counts the number of occurrences, the symbol f(DVM
⋃

ATM)

denotes the number of features in ATM and DVM combined, while f(ATM-DVM)

denotes the number of features in ATM and not in DVM. A ‘feature’ in this case
could be a value of any artefact.

We conclude this section with an introduction to computational approaches to
analogy (see Hall 1989). Hall proposes a conceptual framework that includes the
following processes:

1. Recognition: Given a target (unknown) problem, find a candidate analogous
source. For example, if I asked you to develop a cruise control system for an
automobile, which source system would you use?

2. Elaboration: This is an analogical mapping between the source system and the
target problems, including so-called analogical inferences.

3. Evaluation of the mapping and inferences in some context of use, including
justification, repair, or extension of the mapping. This aspect could be part of
the requirements elicitation phase, for example. The requirements analyst must
learn the similarities and differences between target and source problems.

4. Consolidation of the outcome of the analogy. The added value is that the results
can be used in other contexts. For example, having developed the DVM system
we may come to the conclusion that the ACS category is in need of an update.
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1 The Inquiry Cycle and
related cognitive
techniques

‘We do not know what will happen in the future, but our ignorance is not total.
The degree to which we can make useful statements about the future differs from
case to case. In this context we identify three categories of uncertainty . . . risks,
structural uncertainties and unknowables.’

Kees van der Heijden

A1.1 INTRODUCTION AND OBJECTIVES

This appendix introduces a number of simple but effective techniques that help the
software development team gain insights into customer requirements. The techniques
are applicable in all phases of the software development lifecycle. In fact, they are
highly effective during design because this is the phase where many implicit and
sometime false assumptions lurk.

This appendix develops several techniques to help software people gain a good
understanding of what the customer wants, how to ask probing questions and how
to handle changes in requirements. To this end, we introduce the so-called Inquiry
Cycle model that was developed in Potts et al (1994) and which we see as an
extremely valuable tool for the IT stakeholders. The model describes the require-
ments lifecycle and uses a number of questions that help improve communication
between the customer and the IT staff. The added value of the model is that it reduces
risk and improves communication between the stakeholders that are involved in the
software project. This can’t be a bad thing.
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A1.2 BACKGROUND AND HISTORY

The object-oriented paradigm has been around for more than 30 years. The early
years were characterized by looking for objects and classes in the problem domain
and then attempting to ‘glue’ these together into some form of semantic network. The
techniques for object discovery were very primitive indeed: search the requirements
document for nouns and these will be the objects and classes that you are looking for
(see Rumbaugh et al 1991). There are two mains risk here. First, large and enterprise
systems may have thousands of classes (eventually!) and the simple approach will
fail to scale up. Second, the discovered classes may not be correct because the person
looking for the classes is not a domain expert or may not be the best person to do the
job (for whatever reason). Classes are context-sensitive and different developers will
create different structures for the same concept. These problems may be alleviated
somewhat if we adopt a more top-down and predictable course of action (as is done
in this book) and develop a number of interviewing techniques before we jump
into the low-level details of objects and classes. We use the techniques in many
of the book’s chapters and they represent a bridge between the customer’s mental
model and the model that is being used by the IT specialist. The gap needs to be
bridged if we are to avoid misunderstandings and improve communication between
the different stakeholders.

A1.3 AN INTRODUCTION TO THE INQUIRY CYCLE MODEL

The Inquiry Cycle model is a dynamic hypertext model that captures information
concerning requirements during the requirements elicitation process. It supports
inquiry and scrutiny so everyone knows what information is missing and what
assumptions are pending (see Potts et al 1994).

The model works as follows. First, a stakeholder writes down proposed require-
ments in the Documentation phase. It can be an informal wish or need or it could be
documented by using use case templates. Second, in the Discussion phase certain
stakeholders challenge the proposed requirements by attaching annotations to them
in the hypertext models. As we shall see in Section A1.4, part of this process is the
application of specific questions. Finally, in the Evolution phase the stakeholders
attach change requests to the requirements on the basis of the discussion with other
stakeholders. The requirements are refined when the changes are approved.

A1.3.1 Requirements documentation

The Inquiry Cycle model can be used in situations where a requirements document is
in place as well as in situations where the document is absent. In this latter case the
model provides a systematic and incremental process for writing such a document.
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A1.3.2 Requirements discussion

The three main elements in this phase are:

• Questions
• Answers
• Reasons.

Most discussions start because a stakeholder has a question concerning a requirement
(Questions). Then some other stakeholder will describe a solution to the problem
posed in the question (Answers). A question can generate many answers and each
answer may lead to another round of questions. The advantage of answers is that they
provide stakeholders with a better understanding of the requirements. It also helps
them to come to terms with the fact that requirements may be ambiguous, missing
or inconsistent. Finally, the Reasons element has to do with the justifications for the
answers. These justifications must be made explicit as they may not be obvious to all
stakeholders or, even worse, may represent implicit knowledge. There are various
approaches for setting up and conducting requirements discussions; for example,
they can take place gradually and informally or in discrete bursts associated with
formal review procedures. These issues are outside the scope of this book.

A1.3.3 Requirements evolution

Having completed the requirements discussion we must then make a commitment
to either freeze a requirement or change it in some way. Freezing suggests that
the requirement will not be changed (at least, not yet). To be able to change a
requirement, a so-called change request must be created and should be traced back
to a discussion. We should include a description of why the change is needed.

What kinds of changes to requirements do we see during evolution? There are
three basic types: mutation, restriction and editorial. A mutation request calls for
a change or addition to the requirements. The system changes once a mutation
request emerges. A restriction request, on the other hand, calls for a change to
the requirements document, usually in the form of a clarification of the text or a
definition. In this way, we remove potential ambiguities and the system is further
constrained. However, the system has not been changed and the original intent
remains intact. An editorial request is a proposal to reword or rewrite a requirement
or part of a requirement.

A final remark on stakeholders: they often make assumptions during elicitation.
This means that they tend to answer a tacit question about requirements without
articulating the question. They seldom justify their assumptions and they often fail to
consider alternatives. The requirements analyst should flag all assumptions carefully
and should attempt to justify these assumptions.
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A1.4 USING THE RIGHT QUESTIONS

The Inquiry Cycle model makes use of a number of questions that are posed during
requirements elicitation. These questions trigger discussions. The questions are:

• What-is?
• How-to?
• Who?
• What-kinds-of?
• When?
• Relationship
• What-if?
• Follow-on.

What-is questions request more information about a requirement; we resolve the
question by giving a definition. Definitions are usually found in a glossary in require-
ments documents. Some examples of ‘what-is’ questions are:

• What is an order?
• What is a panel on a screen?
• What is a validation procedure?

How-to questions ask how some activity, action or use case is to be performed. These
questions arise mainly from core processes, requirements and generic scenarios.
For example, applying this question to business processes leads to activities and
activity diagrams. Some examples of ‘how-to’ questions are:

• How to create an order?
• How to cancel the action?
• How to change from idle to active modes (state)?

Who questions request confirmation about which stakeholders are responsible for
a given action or requirement. Resolution is forthcoming by use case analysis and
activity modelling. Some examples of ‘who’ questions are:

• Who creates and modifies the order?
• Who is responsible for source input data?
• Who monitors the system?

Answers to this type of question ensure that new satellite systems must be created
and analysed. For example, the answer to the question ‘who monitors the system?’
might lead us to deduce that a watchdog system (an instance of the PCS category)
should be created. This system monitors all hardware in the current system.
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What-kinds-of questions request refinement of some concept. Stakeholders do
not usually state what kinds of concepts they work with; they tend to cluster spe-
cializations under a more generic and encompassing concept. Some examples of
‘what-kinds-of’ questions are:

• What kinds of order?
• What kinds of input data and output information?
• What kinds of ‘Create user friendly input mechanisms’?

When questions have to do with the timing constraints on an event or action. Some
examples of ‘when’ questions are:

• When is an order created?
• When does input data arrive at the system boundary?
• When is primary output information created?

Relationship questions ask how one requirement is related to another requirement.
This discovery may then lead to new constraints between the requirements. For
example, two requirements may have positive, negative or zero correlation. By
negative correlation we mean that the realization of one requirement will prob-
ably ensure that the other requirement will not be realized. Other possible types of
relationships between requirements are:

• Requirements overlap (Sommerville and Sawyer 1997)
• Order of requirements execution (for project management).

Some examples of ‘relationship’ questions are:

• What is the relationship between an order and a product?
• What is the relationship between requirement R1 and requirement R2?
• What is the relationship between the current system and its satellite systems?
• What is the relationship between system X and system Y?
• What is the relationship between artefact X and artefact Y?

What-if questions allow us to discover things that can go wrong in an activity,
action or use case. Pursuing this type of question leads to insights into apparently
unrelated system features. Some examples of ‘what-if’ questions are:

• What if the order is not processed on time?
• What if the core process is not performing as expected?
• What if we get ‘risky’ requirements from the analysts?
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Follow-on questions originate from other pending questions. A special case is when
one question generalizes another one. This has the advantage that we can accommo-
date initial stakeholder questions by subsuming them under more general questions.
Some examples of ‘follow-on’ questions are now given. We group them so that you
see the original question and then its follow-on equivalents:

• When is an order created?
• What is the lifecycle of an order?

• How to create an order?
• What are the actions to be taken on an order? (first follow-on)
• Describe the lifecycle of an order object (second follow-on)

• What is an order?
• Are you interested in modelling other entities besides orders?

• What is an order?
• Is the order a specialization or a generalization of some other concept?

There is no limit to the number of follow-on questions that you can conjure up. The
answers will be invaluable.

A1.4.1 General applicability

The model in this chapter is very general and can be applied in many situations.
For example, it can be used during the following phases of the software lifecycle:

• Business processing
• Requirements and Architectural modelling
• Analysis
• Design.

Furthermore, the generic question types can be applied to the entities and artefacts in
each phase. For example, let us suppose that we are designing software for the Drink
Vending Machine that is documented in Chapter 15 and let us focus on identifying
the most volatile hardware, software and customer environments for this problem.
To this end, we could pose the following questions and we focus on the specific
details of the units that enable the machine:

• What is a coin unit?
• What kinds of coin unit?
• How to operate a coin unit?
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• Lifecycle of a coin unit? (follow-on question)
• What is an enabling unit, for example a pin unit?
• What is the relationship between a pin unit and a coin unit?
• What if the coin unit is not functioning?
• How to repair a coin unit?
• What other kinds of enabling unit are there?
• Who is responsible for a coin unit?
• Who is responsible for an enabling unit?
• When is the coin unit used?

And so on. As you can see, the list of questions is infinite. These questions will
keep your IT department going for years. Of course, many of the questions may be
trivial so that answers to them are either obvious or easy to give.

A1.5 THE LEARNING LOOP

It is important to ask the right questions and this demands a lot of effort. Unfor-
tunately, many people are better at talking than listening. Some people have the
answer to the problem before the problem has been understood or posed.

When applying the techniques in the Inquiry Cycle model we should realize
that experience and insight are gained incrementally. In particular, the different
stakeholders must learn from interviews. To this end, we give a brief discussion
of the Kolb ‘learning loop’ (see van der Heijden 1996). It is a never-ending loop
and the main phases are shown in Figure A1.1. The loop starts at the top and is
traversed in a clockwise direction. We discuss each phase.

• Concrete experiences: We learn from concrete experiences, for example our last
software project.

• Observation and reflection: We reflect on our experiences. In particular, we tend
to compare what we have made in relation to other software projects, for example.
The end result of this reflection phase is the discovery and awareness of new
patterns and trends in events that we did not see before. As stated by van der
Heijden, reflection ‘is related to our ability to differentiate between our existing
mental model and perception of a different reality’. Domain categories fit into
this context because we compare each new system to be developed with other
systems. We discussed this topic in Chapter 18.

• Formation of abstract concepts and theories: We develop new theories on how
our ideas need to change as a result of observations and our own reflection. We
integrate the old mental model with the new reality to form a new theory.

• Testing the implications of the theory in the new situation: We use the theories to
plan new steps and develop new systems. We test the implications of our theory
by taking actions in new situations.
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Concrete
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Observation and
Reflection

Formation of Abstract
Concepts and

Theories

Testing Theory in
New Situations

Figure A1.1 The Kolb ‘learning loop’.

The added value of the Kolb model is that it describes how people improve at
what they are doing by doing, thinking, integrating and testing. Then the loop
begins again.

A1.6 SUMMARY AND CONCLUSIONS

We have introduced a number of techniques that help IT stakeholders gain insight
into customer requirements and thus help them produce better requirements docu-
mentation and eventually software products. They might even help you to become
a better requirements analyst. In particular, we presented a list of eight types of
questions that can be applied again and again:

• What-is?
• How-to?
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• Who?
• What-kinds-of?
• When?
• Relationship
• What-if?
• Follow-on.

The best way to learn how to apply these questions is to use them in real projects
with real customers.





Appendix

2 The Presentation–
Abstraction–Control (PAC)
pattern

‘Indeed, a culture always defines its pattern of events by referring to the names
of the physical elements of space which are “standard” in that culture.’

Christopher Alexander, The Timeless Way of Building

A2.1 INTRODUCTION AND OBJECTIVES

In this appendix we introduce the Presentation–Abstraction–Control (PAC) pattern
(POSA 1996, Bass et al 1998). This is a model that allows developers to decom-
pose a hierarchical system into more specialized subsystems (or agents as they are
sometimes called). Our main interest in PAC is that we use it to produce a stable
architecture for our UML-based applications. The model is particularly useful dur-
ing the analysis phase of the software lifecycle where classes and objects emerge
as entities that realize system requirements and use cases. In fact, we consider the
discovery and construction of a stable architecture to be a precondition for require-
ments and use case analysis. What we are saying is that use cases play a supporting
role during analysis and design. The tactic in this book is to set up a strawman PAC
model and then improve it using use cases. This is an iterative process in general.
The PAC model forms the substrate on which we place the use cases, as it were.

It would seem that the PAC model is not so well known in mainstream UML
software development. This is unfortunate because its use resolves a number of
usability and maintainability problems that the author has encountered with tra-
ditional object-oriented projects.

The structure of this appendix is as follows: in Section A2.2 we give an introduc-
tion to the origins of the model and why we are using it. Section A2.3 discusses sev-
eral strategies for actually decomposing a system into subsystems. This is important
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because we all agree that decomposition is a good thing but we must develop a
repeatable process that tells us how to decompose an arbitrary system into loosely
coupled subsystems. Section A2.4 discusses how we have applied PAC to docu-
ment the structure of domain architectures and their instance systems. Numerous
examples have been given in Parts II and III of the book. In Section A2.5 we note
the relationship between PAC and UML, in particular how Boundary, Entity and
Control classes are integrated into the PAC model. This is a vital section because it
provides us with a framework on which to hang a number of UML artefacts (such
as use cases and sequence diagrams, for example).

A2.2 MOTIVATION AND BACKGROUND

In this section we motivate why we use PAC and how it subsumes traditional
OO thinking. We are not replacing object technology by a new paradigm but we
augment it with some high-level paradigms and techniques. There is a severe lack
of good and proven design models that we can use in mainstream object-oriented
technology.

The PAC model was originally documented in Coutaz (1987) and subsequently
elaborated in POSA (1996). It was invented for large, distributed interactive systems
that consist of multiple cooperating agents. Agents specialized in human–computer
interaction accept user input and display data. Other agents are responsible for
the functionality in the system while others are concerned with error handling and
communication with other systems and agents. There is a clear separation of con-
cerns because each agent is specialized for a certain task. It is possible to support
horizontal and vertical decomposition with the PAC model.

The reasons for applying the PAC model are described in POSA (1996):

• Agents often maintain their own state and data. However, they must be able to
interoperate with other agents.

• Interactive agents must provide their own interface and their respective
human–computer interactions may differ. Some users interact by means of a
keyboard, while others may interact using a pointing device.

• Systems change over time and it is important that volatile elements are hidden
from other agents. This requirement is another facet of the Information Hiding
principle (David Parnas).

We must take the above forces into account when developing large systems.
An agent has three components in general:

• Presentation [P ] component: provides the visible behaviour of the agents. This
component is for both input and output.
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• Abstraction [A] component: maintains the data model and has functionality for
accessing this data.

• Control [C ] component: connects the Presentation and Abstraction components.
It is a kind of mediator. Agents communicate via their control components.

In this book we use a variation of PAC. In this case we use a layered pattern where
C communicates with A, and A with P, but there is no link between P and C. This
fact should be noted when reading this book because the examples will deploy this
particular layering regime.

We mention that objects populate these components. Thus, changes in the object
interface or class structure in a given layer should not adversely affect the stability
of a layer. This is a good thing because classes and objects tend to change during
the life of a software project. The following section attempts to explain why.

A2.2.1 A short history of objects

Classes have their origins in philosophy, logic and cognitive psychology (Eysenck
and Keane 2000). In particular, the theory of concepts has been an important influ-
ence on the development of the object paradigm. There are a number of theories,
one of which is the defining-attribute view. This view was developed and elaborated
by the German logician Frege (Frege 1952). Frege maintained that a concept can be
characterized by a set of defining attributes or semantic features. He distinguished
between a concept’s intension and extension. The intension of a concept consists of
the set of attributes that determine what it is to be a member of the concept. This
idea is similar to a class in class-based object-oriented languages. The extension of a
concept is the set of entities that are members of the concept. This idea corresponds
to class instances or objects. Some features of the defining-attribute view are:

• The meaning of a concept is captured by its defining attributes.
• Attributes are atomic building blocks for concepts.
• Attributes are necessary and sufficient for defining members of a concept.
• There is no doubt about whether an entity is in the concept; there are clear-cut

boundaries between members and non-members of the concept.
• All members of the concept are equally representative of the concept; we cannot

say that one member is more typical of the concept than another member.
• When concepts are organized in a hierarchy the defining attributes of the more

specific concept (for example, a sparrow) include all the attributes of the super-
ordinate concept (in this case, bird).

These features are implemented in many class-based object-oriented languages such
as C++, Java and C#. Looking back in hindsight (which is always easy), the author
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concludes that these assumptions are too restrictive for certain classes of applica-
tion. There are other object-oriented languages where there is no class concept.
Instead, if we wish to create an object we must clone or copy it from an exist-
ing prototype object. The Self language is one example of a so-called classless
object-oriented language.

A2.2.2 Subsuming object orientation in a broader context

Objects and classes are fine-grained structures in general. A large system may have
hundreds or even thousands of classes (and be a cognitive nightmare at that!). Look-
ing for these entities in the earliest stages of the software lifecycle will invariably
lead to huge understandability and maintenance problems. Unfortunately, this mind-
set is still highly prevalent in the literature. It has been proved in other disciplines
that controlling complexity should be a goal when embarking on new projects.

Our standpoint is that objects are useful during design but they are not so useful
as a technique for helping us to decompose a system (and a system is not some
kind of ‘large’ object) into loosely coupled subsystems.

A2.3 DECOMPOSITION STRATEGIES

A system is an entity having structure, behaviour and rules. Eventually, the sys-
tems that we discover will be mapped to, or realized by, entities such as objects,
components and other data-holding modules with well-defined functionality.

Our approach uses both structural and functional decomposition. We speak about
the even more generic term: problem decomposition. This book attacks the twin
problems of structural decomposition and functional decomposition. We show how
to carry out these activities; furthermore, we show how to integrate these two view-
points. The same idea can be found in Jackson (2001) where Michael Jackson
describes his problem frames in terms of frame concerns. A frame concern addresses
both requirements and domain issues (see Appendix 3 for a discussion of frames
and their relationships with domain architectures). The requirements are mapped to
use cases while the domain description will be mapped to class diagrams and other
artefacts in UML. Our aim is to discover the main systems in a given problem, the
relationships between them and how systems are decomposed into smaller, more
cohesive and loosely coupled subsystems. Before we address these issues we first
of all enumerate some possible system configurations that crop up again and again
when analysing large systems (see Figure A2.1):

• Hierarchical systems
• Collaborating systems
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Collaborating (Network)

Hierarchical (Tree)

Common Environment (Ring/Hub)
Layered (List)

Figure A2.1 Common topologies.

• Common environment systems
• Layered systems
• Combinations of the above four topology types.

Figure A2.1 depicts some examples of such topologies. Each ellipse represents a
system (which may itself be decomposed into other subsystems based on a given
topology). The lines connecting the systems indicate that the systems are related to
each other in some way. In the early phases of the software lifecycle it is sufficient
to know that there is something going on between the systems although we are not
sure yet what the exact relationship is.

How do we create or discover a topology for a problem? First of all, we start
with a fundamental axiom:

Axiom 1: Each business process is realized by a system

This tactic is a good first shot for finding the main systems in the SUD (system
under discussion). The core business processes will be mapped to ‘key’ systems
while supporting and management processes will be mapped to ‘satellite’ systems.
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A2.3.1 System decomposition and activity diagrams

We have already stated that each discovered process is mapped to a system. Whether
the process is core, supporting or management is irrelevant at the moment. Since
the processes depend on each other in some way, this implies that the corresponding
systems also depend on each other, mainly due to the fact that one system is a client,
server or collaborator system of another system. We already know that a given pro-
cess is realized by activities. In a sense we can view the process as being partitioned
into loosely coupled parts (in this case the activities). The main question that we
pose is: can we use the activity diagrams as catalysts for subsystem discovery? In
general, we try to discover the subsystems by letting them be the realizations of the
major activities in the corresponding process.

There is no magic formula for transforming activity diagrams to subsystems. The
quality of the end-result depends on the ‘activity granularity’, by which we mean
the number of activities in the activity diagram (and to a lesser extent the amount
of coupling between the activities). Of course, an activity diagram containing 40
activities is difficult to understand and to maintain, and this may be caused by
the fact that there are too many low-level activities or that the activity diagram
is modelling a large process. In the former case we could decide to merge some
activities into bigger ones, and in the latter case we should have a critical look
at the business processes in the system again. In general, we see that there is a
many-to-many relationship between activities and subsystems. The ideal situation
is to model each activity in an activity diagram by a single subsystem. In the case
of domain architectures we propose the following axiom:

Axiom 2: Each activity in a process in a given domain architecture is mapped
to a subsystem

This axiom has been verified in practical applications and is one of the cornerstones
of our development process. Examples are given in Part II.

A2.3.2 System decomposition and context diagrams

In general, real problems have several core, supporting and management processes.
Based on Axioms 1 and 2 we should then get a context diagram where each resulting
system can be seen. This is shown by an example in Figure A2.2 where the enclosing
system S consists of key systems S1, S2 and S3 and satellite systems S7 and S8.
It is impossible to model this composite system in one go, so it is advisable to
reduce the scale by examining one system at a time. For example, we could analyse
the systems that have the highest customer importance or those systems that are
the most difficult to realize (for example, because these are technically difficult or
there are organizational or political impediments). For example, we could decide to
model systems S1 and S2 first. In this case we would need to produce new context
diagrams as shown in Figure A2.3 and the whole process would begin again! One



Decomposition strategies 351

S4

S5

S1

S3

S7

S8

S

S6

S2

Figure A2.2 Scoping context diagram.
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Figure A2.3 Reducing the scope.



352 The Presentation–Abstraction–Control (PAC) pattern

of the advantages of this approach is that we can adopt a divide-and-conquer tactic:
each system is modelled as a separate entity and is loosely coupled with other
systems. It is also advantageous if the contracts and interfaces between the different
systems are defined as early as possible.

A2.4 PAC AND OBJECT-ORIENTED ANALYSIS

We stated that systems were related to each other but nothing was said on how these
relationships are realized. We now need to address a number of action points:

• A1: The internal structure of systems and subsystems
• A2: How systems actually communicate with each other
• A3: Structuring networks of systems
• A4: The mapping of systems to objects and components.

Action point A1 is concerned with how systems are populated by components. A
component is any entity containing data and functionality. We shall see that three
types of components populate each system when we use UML.

Action point A2 is concerned with the problem of how systems ‘know’ about each
other and through which ‘channels’ they communicate. To this end, we introduce the
notion of boundary components (or receptionists as they are called in Agha 1986).
These are the only components in a system that are free to communicate with the
outside world. See Figure A2.4 for an example. In Agha’s Actor theory the set

System 1
(sender) Internal Structure

receptionist

receptionist

System 2

Figure A2.4 Motivating boundary components.
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of receptionists may be constantly changing since real systems are dynamically
evolving. However, a discussion of how this is realized is outside the scope of
this book. If no receptionist is declared for a system then it cannot initially receive
messages from external systems. In this book we shall use the term Boundary
component instead of the term receptionist because of its acceptance in UML.

Action point A3 is concerned with the problem of configuring a system and its
external stakeholder systems by introducing the Boundary components that glue
them together. An example is shown in Figure A2.5 for the Manpower Control
(MPC) system. MPC is the system under discussion and it communicates with its
clients, collaborators and servers by means of Boundary components. This approach
increases modularity and hides environmental details from MPC. This is why the
Boundary components are sometimes called environment-hiding components: they
accept messages from the outside world and translate them into internally recog-
nizable data and commands. We can refine Figure A2.5 by realizing that MPC has
three subsystems (remember that MPC is an instance of a MIS category). Here’s
the rub: can we align Boundary components B1 to B5 with a specific subsystem
of MPC, thus increasing cohesion and promoting loose coupling? The answer is
yes! This is because each subsystem has its own responsibilities and must interact
with the external subsystems as well as the top-level MPC system. The refinement
is shown in Figure A2.6. We describe Boundary components B1 to B4 as ‘local’
(because they operate at subsystem level) and these objects provide services to the
current system. On the other hand, we place B5 at top (highest-level mediator) level
and this is a ‘global’ component because it is in a sense the receptionist to MPC’s
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. . 
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Organization

. . 
.
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Figure A2.5 Revised context diagram.
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Figure A2.6 Cohesion and Boundary components.
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Figure A2.7 Including Control object.

client systems. Thus, the best place to put it is at the top level. This tactic promotes
loose coupling. Action point A3 subsumes the problem of structuring the SUD in
terms of its subsystems. Then we cannot use Boundary components because by
definition they are communication objects with the external stakeholder systems. To
this end, we introduce a new type of component specifically for this purpose. This
is the class of Control components. An example is shown in Figure A2.7. We name
these components by using numbers because we do not wish to start thinking about
human-readable names, at least not just yet.

So what have we achieved? We have found how a system communicates with
its internal and external systems. There is just one more component type (the so-
called Entity components) to discover and then we are finished. We discuss Entity
components in Section A2.4.1.

Finally, action point A4 is concerned with the problem of realizing Bound-
ary, Control and Entity components using object-oriented and component-oriented
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Figure A2.8 Structural relationships between Boundary, Control and Entity components.

techniques. This is the subject of object-oriented analysis (OOA) and component-
oriented analysis (COA), respectively.

A2.4.1 Entity classes

Boundary and Control components have already been introduced. Now is the time to
decide where the long-lived data in a system resides. Enter the Entity components!
Once we have discovered and documented these components we can then safely
conclude that a system’s internal structure has been determined. The next problem
is to define the structural relationships between the layers. There are two options as
shown in Figure A2.8. Option 1 depicts the Control layer as a Mediator between the
Entity and Boundary layers while Option 2 produces a strict layered regime. Option
1 has been found useful for interactive applications (for example, Web applications)
while Option 2 is a common mini-architecture for process control and embedded
applications.

Together, the Boundary, Control and Entity components are called Analysis
classes in UML. They were originally used by Ivar Jacobson in his OOSE method-
ology but they also appear in the work of other researchers, for example at Carnegie
Mellon University (Bass et al 1998) and the Presentation–Abstraction–Control
(PAC) model (see POSA 1996).

A2.5 THE RELATIONSHIP BETWEEN PAC AND UML

Having discussed the three UML analysis classes we now move on to discussing
how they are used in larger patterns. The idea behind PAC (see Losavio and Mattes
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Figure A2.9 Generic class model for a domain architecture.

2000) is that a system can be hierarchically decomposed into a collection of so-called
agents. Each agent has its own data and user interface and is able to communicate
with both the outside world and other (internal) agents in the system. Thus, each
agent has three components:

• Presentation (P): input/output from and to the outside world
• Abstraction (A): entities containing long-lived data of interest in the system
• Control (C): internal communicators with other agents.

We thus see that these three components are in principle the same as the Bound-
ary–Entity–Control (BEC) components in UML. Which terms you should use
depend on the context. However, I have not seen any guidelines in the UML lit-
erature on how to partition a system into BEC agents, while there is literature
available on how to partition a system into PAC agents. By the way, the discussion
on PAC in POSA (1996) adopts Option 1 in Figure A2.8 when defining the rela-
tionships between the agents’ components. I sometimes favour Option 2 because
many systems are layered, especially real-time (RT) systems.

How do we document a PAC model using UML notation? The answer is very
easy to give. We assume for the moment that we are documenting instances of a
domain architecture, for example the MPC application. In this case each agent is
composed of three components and the relationships between them are described as
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UML associations. The top-level agent plays the role of the Whole with respect to
its subsystems and hence is modelled as a UML aggregation. This is documented
in Figure A2.9 (strictly speaking, we should have described the associations using
text, but we have not done this so as not to clutter the diagram).

A2.6 SUMMARY AND CONCLUSIONS

We have presented a medium-grained architectural pattern that forms the bridge
between business modelling (in particular, business processes and activities) and
UML artefacts. The original PAC model was motivated by the goals of modifiability
and scalability. There is a clear separation between presentation and application and
each PAC agent is decomposed into three components.

PAC is seen as the next-generation Model–View–Controller (MVC) model
(see Bass et al 1998, POSA 1996). There is no reason why you must use this
model as long as you don’t end up with a graph of entangled objects. PAC, like all
good patterns, lets you separate concerns. It is a means to an end.

Of course, there are many other models in circulation. We have chosen PAC
because of its appealing properties for OO projects.





Appendix

3 Relationships with other
models and methodologies

‘For the Words are these; That all true Believers shall break their Eggs at
the convenient End; and which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or at least in the Power of the
chief Magistrate to determine.’

Jonathan Swift

‘Every good quality is noxious if unmixed.’
Ralph Waldo Emerson

A3.1 INTRODUCTION

Domain architectures are new because they are reference models that we apply and
use in the early stages of the software lifecycle. To my knowledge, no one has come
up yet with a set of reusable architectures for UML applications. The offerings are
unfortunately a bit thin on the ground. We are interested in modelling the problem
domain and we try to disregard design and implementation details in this book
(at least, for the moment). Thus, we do not include discussions of the following
design issues:

• The detailed structure of subsystems
• How data is created, accessed and stored in databases
• How systems and subsystems communicate
• Multi-threading and multi-tasking issues
• System design or detailed design (POSA 1996, GOF 1995).

We exclude these attention points in this book for two reasons. First, we are inter-
ested in defining a stable model that we can show to business users. In other words,
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we do our best to use the same vocabulary as our business customers. Second, there
are a number of good books that do deal with the above design issues.

We now discuss several architectural and design styles that have influenced the
current work.

A3.2 INFORMATION HIDING AND THE WORK OF DAVID PARNAS

It has been clear for some time that decomposing a system into subsystems is a
good mechanism for improving the flexibility and comprehensibility of a system
and shortening the development lifetime (Parnas 1972). Each subsystem forms a
separate and independent entity or module. Taken together, the subsystems cooperate
to fulfil the system requirements. Parnas introduced the term modularization and
this corresponds to several partial specifications of a given problem. Of course,
these partial specifications must be integrated to realize the responsibilities of the
main system.

Some of the features and advantages of modules according to Parnas are:

1. A module can be written with little knowledge of the code in another module.
2. Modules can be reassembled and replaced without reassembly of the whole

system.
3. On a management level, separate stakeholder groups work on each module with

little need for communication.
4. Maintainability—it should be possible to make major changes in a module with-

out needing a change in other modules.
5. Understandability—it should be possible to study one module at a time inde-

pendently of the other modules.

Accepting the fact that decomposition is a good thing, we must determine what
criteria to use when decomposing a system into modules. In other words, what is
the driving force behind a system decomposition? To answer this question, a Key
Word In Context (KWIC) reference case is examined (see Parnas 1972, Shaw and
Garlan 1996 pages 33–39). The KWIC program accepts an ordered set of lines; each
line consists of an ordered set of words and each word consists of an ordered set of
characters. Parnas advocated a decomposition into modules where each module has
knowledge of a design decision that it hides from other modules. Module interfaces
or definitions are chosen to reveal as little as possible about the inner workings of
the module.

Although Parnas discussed code-level modules in his article, the conclusions are
valid for other artefacts. For example, in this book we decompose all kinds of
artefacts into more specialized and more tangible ones. Typical examples are:

• Decompose a process into activities
• Decompose a system into subsystems
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• Decompose a subsystem into layers of objects
• Decompose a requirement into sub-requirements.

In fact, we can decompose the structural, functional and behavioural artefacts from
Chapter 3 in this way and we use the Inquiry Cycle model (Appendix 1) to ask the
right questions.

As in Parnas’s original paper, the Datasim Development Process has the main
advantage that the whole system can be well designed because all involved stake-
holders understand it. On the other hand, traditional object-oriented class diagrams
can be very difficult to understand because they contain many classes and many
relationships between them. For example, the Elevator Control System (ECS) case
in Yourdon and Argila (1996) has an initial list of about 90 candidate classes!
There is no clustering or levelling in this approach, with the result that it is difficult
to understand the structure of the system. We show in Part III how to construct
class diagrams based on a decent decomposition of the ECS system. Each sub-
system hides details from other subsystems, thus making it easier to look at each
subsystem separately.

A3.3 THE RUMMLER–BRACHE APPROACH

The Rummler–Brache approach is a method for analysing and documenting the
main business processes in a system or organization (see Rummler and Brache
1995). In contrast to traditional functional unit level processes (typically, processes
at department level) the authors are concerned with how work gets done in an
organization. Furthermore, Rummler and Brache view an organization as an organ-
ism that collaborates and communicates with its environment. The relationships are
shown in a so-called super-system map (this is the business person’s terminology
for what IT folk call the context diagram).

We take our initial definition of business process from Sharp and McDermott
(2001):

A business process is a collection of work tasks, initiated in response to an event, that achieves
a specific result for the customer.

The end result of a process might be a physical product or service. It could also be
some piece of information. The result is in all cases a deliverable that some customer
sees as being valuable. A customer could even be some other process in a network of
processes! Thus, a process clearly indicates a result or end state. The customer is the
entity that benefits from the process’s output. The customer may be internal to the
current organization or could be some unit external to it. In this book we model the
process as a collection of activities (also known as steps or tasks). A single person
or actor usually executes an activity; in some cases several actors could execute
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it. The activities are interrelated in the sense that they have compatible inputs and
outputs. These activities are interdependent. Finally, each process is triggered by
some event in the system. Thus, the process is ‘inactive’ if no triggering event
takes place. In a sense we see the event and the process’s products as bounding the
process. We distinguish between those processes whose deliverables are visible to
external customers and those that are not visible to external customers. The main
types are:

• Core processes
• Supporting processes
• Management processes.

This classification is based on Rummler and Brache (1995) and has major con-
sequences for the way we view systems and system development. It helps the
separation of concerns, keeps us focused on the essential issues and provides a
basis for analysis using UML. A core process is one whose deliverables are visible
to external customers and it usually spans the whole organization because several
functional units are involved in its execution. A supporting process is similar to a
core process but its deliverables are for the benefit of internal functional units and
customers. Thus, the deliverables are not visible to external customers; however,
supporting processes are essential for effective management. Finally, management
processes provide support for core or support processes. They do not provide deliv-
erables as such but they are the ‘enablers’ for other processes.

The two elements, namely business processes and the super-system map, form the
starting point for the Architecture Discovery (AD). In particular, the super-system
map is the forerunner of the context diagram that defines the boundaries of a system
and its relationship with its neighbouring systems. Furthermore, core processes are
mapped to ‘key’ systems while supporting and management processes are mapped to
collaborating systems. In short, the business processes drive the architectural discov-
ery and decomposition activities. Compare this to current object-oriented thinking;
there is no equivalent in the author’s opinion.

Summarizing, business processes and the super-system map are essential input to
our software process. We have seen in the past that attempting an object-oriented
analysis can lead to less than optimal results (see Coleman et al 1994, Duffy 1995,
where we examined the Petrol Station problem; both solutions adopt an object-
centred approach, although in Duffy 1995 there is an attempt to decompose the
problem into two loosely coupled subsystems that are populated by objects).

An excellent introduction to process and workflow modelling for software systems
is given in Sharp and McDermott (2001). The book contains many examples of how
to model systems using process maps (similar to UML activity diagrams) and it
also contains a chapter on how to implement processes and process maps using use
cases. The assumption here is that use cases are more specific than the corresponding
process maps that they describe.
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A3.4 MICHAEL JACKSON’S PROBLEM FRAMES

Michael Jackson has introduced the idea of a problem frame in his excellent book
(see Jackson 2001). A problem frame is defined as

. . . a kind of pattern. It defines an intuitively identifiable problem class in terms of its context
and the characteristics of its domains, interfaces and requirements.

Some of the reasons why we are interested in problem frames in the present
book are:

• They provide us with ideas on how to document domain architectures.
• They are based on a small set of very generic concepts.
• They provide reference models for classes of applications.

In general terms, we say that the concern of a problem frame captures the fun-
damental criteria of successful analysis for problems that fit that frame. Quot-
ing Jackson, the frame ‘specifies what descriptions are needed, and how they
must fit together to give a convincing argument that the problem has been fully
understood and analysed’. Jackson has identified five basic reusable frames and
these can be considered as being instances of a problem frame model. The five
forms are:

• Required behaviour: some part of the physical world whose behaviour must be
controlled until some conditions are satisfied. An example of such a system is a
Home Heating System (see Chapter 12).

• Commanded behaviour: the physical world is controlled by the actions of an
operator. An example is the sluice gate problem (Jackson 2001); this problem is
a model of a simple irrigation system.

• Information display: systems where we need constant information about the real
world. The information must be presented in the required place in the required
form. An example is a one-way traffic light system.

• Simple workpiece: a tool to allow users to control and edit text or graphics objects
on a screen. The objects can subsequently be copied, printed or transformed in
some way. An example is a CAD (Computer Aided Design) application.

• Transformation: computer-readable input files whose data must be transformed to
give certain required output files. The output data must be in a particular format.
An example of such a frame is any management information system, for example
the MPC system that we analyse in Part III of this book.

These five basic frame types can be seen as special subcategories of the domain
architectures because the latter are more general, in structure, functionality and
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behaviour. For example, we propose the following generalization/specialization rela-
tionships:

• Required behaviour is a subcategory of PCS (Process Control).
• Commanded behaviour is a subcategory of ACS (Access Control).
• Information display is a subcategory of MIS (Management Information).
• Simple workpiece is a subcategory of RAT (Resource Allocation and Tracking).
• Transformation is a subcategory of MAN (Manufacturing).

We see that (at face value at least) there is a one-to-one correspondence between
the basic frame types and our five domain architecture types. It is possible to com-
pose domain architectures into large assemblies such as Lifecycle Models (LCM)
and even multi-LCM models. These models are discussed in Parts II and III of this
book. In a similar vein, Jackson (2001) discusses his composite frames and in gen-
eral advocates decomposing a problem into simple subproblems that fit recognized
simple frames. Each subproblem has both its own frame concerns as well as fresh
composition concerns that merge because of the fact that the subproblems must
interface with each other.

Jackson (2001) has some remarks and conclusions on the usefulness (or otherwise)
of problem frames and how we should use them. The same conclusions could also
hold for domain architectures:

• Problem frames are a way of classifying software development problems.
• They provide a structure for capturing your growing experience and knowledge.
• They help you anticipate the concerns that you must eventually address and put

them into context.
• They provide a guide to problem decomposition.

Finally, we can say something about the granularity of a problem frame; it is bigger
than that of a class or a GOF design pattern (see GOF 1995) but smaller than any
realistic problem. However, a problem frame is big enough to represent a significant
portion of the whole problem.

Moving to domain architectures, we shall see that each one can be instantiated
to produce a non-trivial system as the chapters in Part III show. Furthermore, the
‘concerns’ of a domain architecture are documented in a standard manner. As with
problem frames, these concerns show what needs to be done in a given situation.

A3.5 THE HATLEY–PIRBHAI METHOD

This was a popular method for analysing real-time systems in the 1990s but its use
has diminished somewhat in the last few years. This is a multi-perspective approach
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that combines data flow decomposition with model components constructed in
control- and information-space (see Hatley and Pirbhai 1988). The authors take
a hierarchical and iterative view of systems development. In particular, they capture
system requirements by viewing a system from three major perspectives:

• The process (functional) model
• The control (state) model
• The information (data) model.

The Data Flow Diagram (DFD) is the primary tool for depicting functional require-
ments in the Hatley–Pirbhai method. It partitions the requirement into compo-
nent processes or functions. These functions are connected by data flows to form
a network.

The second view is called the control model and describes the circumstances
under which the processes from the process model are performed. The control
model examines the events in a system and is documented using finite state (FS)
machines. Finally, information modelling is the third perspective and is not docu-
mented in Hatley and Pirbhai (1988).

We have been influenced by the Hatley–Pirbhai approach in a number of ways.
First, it discusses the so-called context process consisting of a single process, termi-
nators (entities outside the context of the system) and data flows. Second, the main
process is decomposed or levelled into subprocesses, thus promoting separation of
concerns. Summarizing, the usefulness of this method for us is the realization that the
context diagrams, data flow and architecture are important when analysing systems.

A3.6 THE GARLAN AND SHAW ARCHITECTURAL STYLES

An architectural style (or idiom or pattern) is a description of an architecture of
a specific system as a collection of computational components together with a
description of the interactions among these components, the so-called connectors
(see Shaw and Garlan 1996). Examples of components are databases, layers, fil-
ters and clients. Examples of connectors are procedure calls, event broadcasts and
database protocols. Shaw and Garlan propose several common architectural styles:

• Dataflow systems: for example, batch sequential, pipes and filters
• Call-and-return systems: object-oriented systems, hierarchical layers, main pro-

gram and subroutine
• Data-centred systems (repositories): databases, hypertext systems, blackboards
• Independent components: communicating processes, event systems
• Virtual machines: interpreters, rule-based systems.
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These styles are in fact reference models that we apply in the detailed design stage
of the software lifecycle. They are discussed in some detail in Shaw and Garlan
(1996) and a more detailed account of a number of these styles can be found
in POSA (1996) where they are documented in handbook form.

There is little overlap between our domain architectures and architectural styles
because the former are mainly concerned with the problem domain (the ‘what’)
while the latter is mainly concerned with the solution domain (the ‘how’). It is
of course very interesting to discuss how to transform a domain architecture (or
an instance thereof) to an architectural style and what the criteria are for such a
transformation, but such an endeavour is outside the scope of this book.

A3.7 SYSTEM AND DESIGN PATTERNS

We position the famous system and design patterns of GOF and POSA (see POSA
1996, GOF 1995). The patterns in POSA are concerned mainly with large-scale
system design while the GOF patterns are more finely grained and are concerned
with class-level patterns. For example, POSA describes how to design large systems
in terms of large-grained patterns such as:

• Presentation–Abstraction–Control (PAC)
• Layers
• Blackboard
• Model–View–Controller
• Pipes and Filters
• Microkernel
• Proxy
• Publisher–Subscriber.

The GOF patterns are concerned with the lifecycle of software objects (recall that
objects are instances of classes) and the patterns can be clustered into three categories
(including some specific patterns):

• Creational patterns: flexible ways of creating objects
— Abstract Factory (creating instances from a class hierarchy)
— Factory method (creating instances of a given class)
— Prototype (creating objects as ‘clones’ of some typical object).

• Structural patterns: defining relationships between objects
— Composite: recursive aggregates and tree structures
— Proxy: indirect access to a resource via a ‘go-between’ object
— Bridge: separate a class from its various implementations
— Façade: create a unified interface to a logical grouping of objects
— Adapter: convert the interface of one class into that of another class.
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• Behavioural: how objects send messages to each other
— Visitor: extend the functionality of a class hierarchy (non-intrusively)
— State: implement a Harel statechart (see Rumbaugh 1999)
— Strategy: create flexible, interchangeable algorithms for object methods
— Observer: define synchronizing procedures between objects
— Mediator: define a single communication ‘hub’ in a star of objects
— Command: encapsulate a function as an object.

It is important to describe the relationship between domain architectures and the
other approaches to software development.

We remark that the GOF patterns can be viewed as a special case of a Lifecycle
Model (LCM) because we are interested in object lifetime; the main phases are the
creation of an object in memory (MAN), placing the object in some structure (RAT)
and then monitoring how the object interacts with other objects (MIS). We discuss
the lifecycle category topic in Part II.

A3.8 THE UNIFIED MODELLING LANGUAGE (UML)

UML is a de facto standard for documenting object-oriented systems and can be
used in all phases of the software lifecycle. Without a common standard it would
be very difficult to communicate with developers. We assume that the reader has
knowledge of UML syntax, in particular the following:

• Class diagrams that use generalization, association and aggregation relationships
• Interaction diagrams (sequence and collaboration diagrams)
• Statecharts (originally due to David Harel)
• Use cases (whatever version!).

We show how to integrate these artefacts into our software process in Chapter 4.

A3.9 VIEWPOINT-BASED REQUIREMENTS ENGINEERING

Although this book is primarily about architecture, we have found it necessary
to devote some attention to the behavioural aspects of a system; in this case we
discuss how system requirements (both functional and non-functional) are captured,
documented and mapped to UML. Of course, we cannot escape use cases because
they have become so popular as a mechanism and medium for discussing and
documenting system behaviour. In spite of their perceived benefits, we claim that
they are not suitable for describing large system behaviour. At the risk of initiating
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an anti-use case campaign, we note some of the major shortcomings that we have
seen during recent years:

• There is no precise definition of a use case in the literature.
• A use case is a specific interaction sequence with the system, not a general

requirement; a use case is not a requirement.
• Use cases describe functional requirements only.
• Use cases tend to be closely aligned with objects and classes.
• Business users do not understand use cases; these people are more at home with

business processes and activity modelling.
• Technically oriented developers usually create use cases; their jargon is not nec-

essarily that of the customer, an unfortunate state of affairs if it happens in
your project.

Notwithstanding their shortcomings, use cases do have their place in the behavioural
value chain but then during the later stages of the software development lifecycle.
In order to align them with business thinking we adopt an approach that stems from
the computer science community (see Somerville and Sawyer 1997). To this end, we
introduce a number of new concepts that are not (yet) in the official UML standard:

• Business concerns
• Viewpoints and stakeholders
• Requirements.

A business concern is an abstract high-level goal that must be satisfied if the system
is to make a contribution to the organization that is paying for it. In other words, the
system must contribute to the key concerns of the business. We make these concerns
explicit. This avoids misunderstanding between sponsors and developers. Examples
of business concerns are customer service, system reliability and cost (by the way,
how do you create a use case for cost?). A stakeholder is any human or non-human
entity that is directly or indirectly involved with, or receives some benefit from,
the system. A viewpoint is a difficult concept when met for the first time. It can
be defined as an expectation of system behaviour as perceived by some stakeholder
group. As such, a viewpoint is a partial system specification. For example, in a
safety-critical system, reliability is the viewpoint taken by the law, safety regulators
and other organizations. It must be stressed that a business concern is not the same
as a viewpoint.

A requirement is a statement of what system behaviour should be without speci-
fying how to realize that behaviour. Some other complementary definitions are:

• Capability that the system must deliver
• Capability needed by the user to solve a problem in order to achieve an objective
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• Capability that must be met or possessed by a system to satisfy a contract,
standard, specification or other formally imposed documentation.

Finally, a use case is a description of an interaction between the system and its
stakeholders. It can be seen as the realization of a requirement.

In general, the chain Business Concern → Viewpoint → Requirement → Use
Case is our way of mapping high-level system behaviour to more familiar and more
specific use cases.
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4 The ‘Hello World’ example:
the Simple Digital Watch
(SDW)

‘What we have to learn, we learn by doing.’
Aristotle

A4.1 INTRODUCTION

We examine a very simple test case in this appendix to show how the Datasim
Development Process works, what the artefacts are and how they are documented.
The other examples in this book (in Parts II and III) are similar; they just contain
more detailed information and they take longer to read and understand than the
problem here.

The source code for this problem (C++ and COM versions) can be found on the
Datasim website www.datasim.nl.

We recommend that the reader browse through the sections in this appendix in
order to get a first impression of our approach to software development and how
it subsumes traditional object-oriented analysis approach. We discover the objects
and classes late in the game.

We defend why we see SDW as an instance system of MIS in Chapter 18.

A4.2 FEATURES AND DESCRIPTION OF PROBLEM

The problem is easy to understand and is well known in the literature (see Rumbaugh
et al 1991 where it was used as an example to show how statecharts work). The
description of the problem goes as follows:

SDW accepts pulses (one pulse every second). The pulses are buffered until the number of
pulses reaches 60. Then the current time (in hours and minutes) is (re)calculated and the new
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time is displayed on an output panel. SDW can be configured on a 12-hour or 24-hour time
regime. The SDW contains a panel consisting of two buttons for setting the time.

This is the kind of description that you see in marketing brochures as Customer
Requirements Specifications (CRS). The requirements analyst must now map this
to a form that can be used by UML analysts.

A4.3 GOALS AND PROCESSES

The main goal is to provide a service to the stakeholders who are the major clients
of the SDW system (somewhere inside SDW we will create a Watch class that ticks
away and displays the correct time every minute). The main processes are:

• Core process: Display time as needed
• Supporting process: Set time.

The core process is the most important one, of course; you buy a watch not to set
the time but to be informed of what the time is!

The top-level activity diagrams for these processes are shown in Figures A4.1
and A4.2, respectively. It is clear what the input to and output from each process
is. The expanded activity diagram for the core process is shown in Figure A4.3. We
identify three main activities:

• Registration: collect pulses and carry on incrementing until a minute has gone by
• Merging: add a new minute to the current time; current time is updated
• Reporting: display new current time on a suitable medium.

Thus, we see that the three activities cooperate in order to realize the core process.

Pulse Time
DisplaySDW Process Core

Figure A4.1 Core process in SDW.

User
Request

Time
DisplaySDW Process Support

Figure A4.2 Supporting process in SDW.
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Pulse

Registration Merging Reporting

Time Display

Minutes Time

Figure A4.3 Activity diagram for core process.

A4.4 STAKEHOLDERS, VIEWPOINTS AND REQUIREMENTS

The main stakeholder is the person (usually the owner) who wishes to use the
services of SDW. In this case it should be possible to read the time (usually on
some kind of LED) and there must also be some means by which the owner can
set a new time. There are other possible stakeholders, of course; for example, the
system that is the source of pulses is a stakeholder. We concentrate on the owner
stakeholder in this appendix.

The main viewpoints (ISO 9126 characteristics and sub-characteristics) taken by
the owner are:

• Accuracy: the displayed time should produce the desired results and effect
• Usability: the system should be easy to operate and to understand
• Reliability: fault-tolerance. The mean-time-to-failure (MTTF) should be quanti-

fied.

These viewpoints will determine what the requirements and use cases will be.

A4.5 CONTEXT DIAGRAM AND SYSTEM DECOMPOSITION

The context diagram is shown in Figure A4.4. There are five stakeholder systems:

• SDW: the system that we are modelling (the ‘SUD’)
• Pulse Source: the system where pulses come from (one per second)
• Menu: the system that allows the owner to set and change the time
• Data Warehouse: the system that ‘stores’ the current time in the form <hours>::

<minutes>
• LED: the systems that display the current time in the appropriate format.



374 The ‘Hello World’ example: the Simple Digital Watch

LED

Pulse
Source Menu Data

Warehouse

B4

. . .

SDW

B1
B2

B3

Figure A4.4 Context diagram for SDW.

It is possible to document the information and event flow between SDW and its
external stakeholder systems by using system-level sequence diagrams or even col-
laboration diagrams (Rumbaugh 1999).

In keeping with the approach in this book we decompose SDW into three subsys-
tems as shown in Figure A4.5. Subsystem ‘Registration’ is responsible for producing
minutes, ‘Merging’ produces time and ‘Reporting’ displays the time.

SDW

Registration Merging Reporting

Figure A4.5 System decomposition in SDW.
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A4.6 USE CASES

The main use cases correspond to the core and supporting processes in this problem.
Recall that the core processes are:

• Core process: Display time as needed
• Supporting process: Set time.

The use cases corresponding to these processes are:

• U1: Update watch in continuous mode
• U2: Set a new time.

We document U1 according to the standard use case template.

Use case name and ID: Display time as needed, U1.
Actors involved: All external systems except Menu.
Precondition: SDW is in operational mode and is accepting pulses.
Description: Pulses enter the system. When the number of pulses reaches 60 (this
means that a minute has elapsed) a new time is calculated based on a 12-hour or
24-hour clock. Then the time is displayed on the LED.
Exceptions:
— Pulses arrive out of synchronization (drift)
— Pulse source breaks down
— LED breaks down.
Postcondition: SDW has been updated and new value displayed. Waiting for next
bout of pulses.

In general, we map each use case to one or more sequence diagrams where we
discover objects and messages. These objects help to build up the class architecture
that we discuss in Section A4.7.

A4.7 UML CLASSES

We advocate loose external coupling and strong internal cohesion and to this end
we see the Presentation–Abstraction–Control (PAC) pattern as a viable model for
object-oriented systems. The initial model is shown in Figure A4.6 where each
subsystem in Figure A4.5 has been fine-tuned in order to tell us how its respons-
ibility is realized.

A4.8 STATECHARTS

In principle, each object in the analysis can have a statechart. We take one example,
namely the Watch that is the Entity object in the Merging subsystem in Figure A4.6.
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Figure A4.6 Class architecture in SDW.
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Figure A4.7 Statechart for Watch Entity Object.
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Its input and output methods have been found from the corresponding use cases
and sequence:

• Method toggle: switch modes (for example, from Display to SetHours and
so on)

• Method increment: increment hours or minutes (depending on mode)
• Output method notify(time): notify other objects that a new time has been

calculated.

The corresponding statechart is shown in Figure A4.7.





Appendix

5 Using domain architectures:
seven good habits

We have written this appendix in order to give the reader some tips and guidelines on
using and applying domain architectures. There are a number of similarities between
the way we document domain architectures and the way that the authors of design
patterns (see, for example, GOF 1995) present their work. In fact, GOF’s book was
the motivator for the structure of the chapters in Parts II and III of this book.

We adapt the guidelines in Vlissides 1996 (which uses the steps in Covey 1994)
to understand, learn and apply domain architectures to real-life projects.

Habit 1: Taking time to reflect
It is important to take time off to reflect on what you have done, to distance yourself
from your work and to examine it from a different perspective. How often do we
see programmers hacking a solution only to realize that the solution is incorrect
or sub-optimal? Instead, we should take time off to reflect on our progress. Some
tips are:

• Jot down your experiences; you can incorporate them into your pattern documen-
tation later.

• Your experience accumulates if you document your experiences.
• Look at as many systems as you can, for example systems designed by other

people.
• Be on the lookout for novel design solutions.

Habit 2: Adhering to a structure
This book documents domain architectures in a structured and consistent way.
Our approach describes large-grained systems as opposed to the GOF patterns
that are fine-grained and describe class-level interactions. It is interesting to note
that the patterns movement was influenced by the work of Christopher Alexander
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(see Alexander et al 1977, Alexander 1979), an architect and founder of the pat-
terns movement. The analogies between architectural structures, the relationships
between these structures and the events that take place in them may have been the
catalyst to the software patterns movement.

Some tips and observations are:

• We need to decide what structure to use when documenting or categorizing.
• Consistent structure leads uniformly to patterns and categories.
• Less structure means more prose (not acceptable for comparison and reference

purposes).

Habit 3: Being concrete early

It is always a good idea to give a concrete example when introducing a new theory
or concept. Mathematicians do it all the time. They constantly switch between the
instance and meta levels. Many articles and chapters in mathematics books have the
following structure:

• Definition of some new concepts
• Examples of the concepts
• Lemmas (preparatory results relating to new concepts)
• Propositions and theorems concerning the concepts
• Corollaries (‘spin-off’ conclusions based on theorems)
• Exercises.

In this book we give numerous concrete examples of domain architectures; in general
we give two examples of each one. The advantage of providing examples is that
they give the reader a frame of reference for the general problem and its solution.
Some tips and remarks are:

• Use lots of examples and counter-examples.
• Be concrete even when you are being abstract.
• Even the most abstract sections may contain examples.
• Be honest: don’t forget the potential pitfalls of the categories.

It is important to realize that the categories in this book cannot solve all problems.
Some readers may have problems that do not fit seamlessly into the models. There
may be several reasons for this, one of which is that the reader’s current problem is
an instance of some new category that is not in our basic repertoire of architectural
types. For example, we have no reference model for decision-support systems or
similar problems in Artificial Intelligence (AI) or sub-disciplines thereof.
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Habit 4: Keeping patterns distinct and complementary
It is important to distinguish between the different domain categories. If the cat-
egories look the same then it will be very confusing. The most important and
fundamental classifier or ‘separator’ for a domain category is the type of informa-
tion that it produces. The reader can use the following initial separation mechanisms
to classify applications:

• MIS: produce decision-support information from transaction data.
• MAN: create products and services from raw materials.
• RAT: track requests in time and space.
• PCS: satisfy certain conditions at all times.
• ACS: provide authorized subjects with access to objects/resources.
• LCM: track an entity from its birth to its demise.

These one-liners could be seen as the equivalents of the Intents section in GOF
(1995). This section describes the reasons for existence of the pattern or category.
Some final remarks are:

• Categories should not overlap (either in scope or in purpose).
• Categories are orthogonal and work synergistically.
• Don’t worry if two categories have similar context diagrams and architecture.

Habit 5: Presenting effectively
The quality of your categories is determined by how well you present them. We
must take typesetting, layout and writing style into consideration. Categories are
complicated enough to deserve a decent presentation. Some hints are:

• The best way to learn is to have a go at writing.
• Break up long sentences and paragraphs.
• Use everyday words and make your story sound natural.

One of the greatest challenges for any author is describing and documenting domain
categories in a way that is accessible to others.

Habit 6: Iterating tirelessly
You never get it right first time. Or the second time. The chances are better that you
get it right on the third attempt. According to John Vlissides (1996) you won’t even
get it right the first ten times. This is just another form of continuous improvement
or Kaizen (see Imai 1986). Some remarks are in order:

• Pattern writing is an on-going and iterative process.
• Patterns do not exist in isolation; they affect one another.
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Habit 7: Collecting and incorporating feedback
Finally, ‘the proof of the pudding is in the eating’. Categories and patterns are
written for others to use and to apply in their own applications. To this end, it is
important to monitor how others tackle the problem of applying the categories to
real-life situations. In the present author’s experience the most difficult activities for
our students and customers seem to revolve around the following common themes:

• What is the core process? (There may be more than one!)
• What is the scope and span of the problem?
• Can I explain the essence of the problem without getting bogged down in low-

level and irrelevant details?

Programmers and developers tend to be solution-oriented and tend to think and talk
in terms of the solution to a problem rather than the problem itself. This can be
very confusing (and annoying!) for customers. What we advise is: when you are
talking to the customer concentrate on his particular problem and avoid IT jargon
as much as possible.

We conclude with some remarks:

• Be prepared for feedback; even negative feedback can represent new requirements
and suggestions for improvement!

• Not everyone needs to be a pattern or category writer.
• There will be many more category users than writers.
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