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The precursors of object-oriented programming can be traced back to the late 1960's: Classes, inheritance
and virtual member functions were integral features of Simula67, a programming language that was
mainly used for writing event-driven simulations. When Smalltalk first appeared back in 1972, it offered
a pure object-oriented programming environment. In fact, Smalltalk defined object-oriented
programming. This style of programming was so innovative and revolutionary at the time that it took
more than a decade for it to become a standard in the software industry. Undoubtedly, the emergence of
C++ in the early '80s provided the most considerable contribution to this revolution.

The Origins of C++

In 1979, ayoung engineer at Bell (now AT&T) Labs, Bjarne Stroustrup, started to experiment with
extensions to C to make it a better tool for implementing large-scale projects. In those days, an average
project consisted of tens of thousands of lines of code (LOC).

NOTE: Today, Microsoft's Windows 2000 (formerly NT 5.0) consists of more than 30
million lines of code (and counting).

When projects leaped over the 100,000 LOC count, the shortcomings of C became noticeably
unacceptable. Efficient teamwork is based, among other things, on the capability to decouple
development phases of individual teams from one another--something that was difficult to achieve in C.

C with Classes

By adding classesto C, the resultant language -- " C with classes" -- could offer better support for
encapsulation and information hiding. A class provides a distinct separation between its internal
implementation (the part that is more likely to change) and its external interface. A class object hasa
determinate state right from its construction, and it bundles together the data and operations that
manipulate it.

Enter C++

In 1983, several modifications and extensions had already been made to C with classes. In that year, the
name "C++" was coined. Ever since then, the ++ suffix has become a synonym for object-orientation.
(Bjarne Stroustrup could have made a fortune only by registering ++ as atrademark) It was also in that
year that C++ was first used outside AT& T Labs. The number of users was doubling every few months --
and so was the number of compilers and extensions to the language.

The Late 1980s: Opening the Floodgates

Between 1985 and 1989, C++ underwent a mgjor reform. Protected members, protected inheritance,
templates, and a somewhat controversial feature called multiple inheritance were added to the language.
It was clear that C++ needed to become standardized.
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ANSI Committee Established

In 1989, the American National Standards Institution (ANS) committee for the standardization of C++
was established. The official name of the committee was X3J16, and later it was changed to J16.
Generally, standardization committees don't write a standard from scratch; rather, they adopt an existing
de facto reference, and use it as their baseline. The ANSI C committee used The C Programming
Language by Kernighan and Ritchie as a starting point. Likewise, the ANSI C++ committee used the
Annotated C++ Reference Manual (ARM) by Ellis and Stroustrup as its base document. The ARM
provided a clear and detailed starting point for the committee's work. The committee's policy was to not
rush into establishing a half-baked standard that would become obsolete in ayear or two. Instead, the
policy was to allow the demands for changes to emerge from the users of the language, the C++
community. Nonetheless, the committee also initiated extensible modifications and changes to the
language, such as runtime type information (RTTI) and the new cast notation.

Maturation

By that time, hundreds of thousands of people were using the language. C++ compilers were available
for amost every platform. New C++-based frameworks, such as MFC and OWL, had emerged. The
committee had to face enormous pressure from several directions. Some organizations were advocating
new features and extensions to the language that were borrowed from other object-oriented languages,
while other parties strove to keep it as efficient as possible. On top of this, C++ had to retain its
backward compatibility with C, including the support of eight different flavors for integral types,
cumbersome pointer syntax, structs, unions, global functions, and many other features that don't exactly
go hand in hand with object orientated programming.

International Standardization

C++ standardization was a joint international endeavor in which national standardization bodies from all
over the world were intensively involved. Thisis different from the standardization of C. C
standardization was first carried out by ANS| as an American standard and was later adopted, with some
modifications (mainly internationalization issues), as an international standard by the International
Sandardization Organization (1S0). The international venture of C++ guaranteed a worldwide
acceptance of the standard, albeit at the price of somewhat more complicated procedures. Thus, the
committee's meetings were actually joint meetings of both the ANSI working group and the I SO working
group. Officially, the ANSI working group served as an advisor to I SO. Therefore, two votes were taken
on every technical issue: an ANSI vote, to decide what the ANSI recommendation was, and a subsequent
| SO vote, to actually make the decision. Some important changes were made in order to meet the criteria
for 1SO approval, including the addition of wchar _t asabuilt-in type, the templatization of the

| ost r eamlibrary, the templatization of classst r i ng, and the introduction of the locale library,
which encapsul ates cultural-dependent differences.
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Committee Drafts And Public Review

The committee's initiatory task was to produce a draft of the standard, known as the Committee Draft
(CD). For that purpose, the committee convened three times ayear, one week at atime, in different
places of the world. Thefirst CD recelved several disapproving votes as well as many comments from

| SO. The committee resolved these technical issues and addressed the comments in the second CD. The
second CD was approved by 1SO; however, there were still 5 "nay" votes and accompanying comments.
Following the SO balloting, the CD's were made available to the public. The public review process
enabled C++ users from all over the world to comment on the proposed CD and point out contradictions
and omissions.

Feature Freeze and Finalization

After the approval of the second CD in November 1996, the committee's task was mainly to respond to
the 5 "nay" votes and the accompanying comments and turn them into "aye" votes. The resultant
document was the Final Draft International Standard, or the FDIS. At the meeting of the standardization
committee in November, 1997 at Morristown, New Jersey, the FDIS was unanimously approved. In
1998, after afew minor changes, the FDIS was approved by SO and became an international standard.
In accordance with 1SO rules, after it was approved, the Standard entered a freeze period of five years;
during this time, the only modifications that are allowed are error fixes. People who find such defects can
submit a Defect Report to the committee for consideration.

C++ as Opposed to Other Object-Oriented
Languages

C++ differs from other object-oriented languages in many ways. For instance, C++ is not aroot-based
language, nor does it operate on aruntime virtual machine. These differences significantly broaden the
domainsin which C++ can be used.

Backward Compatibility with Legacy Systems

The fact that legacy C code can be combined seamlessly with new C++ code is a mgor advantage.
Migration from C to C++ does not force you to throw away good, functional C code. Many commercial
frameworks, and even some components of the Standard Library itself, are built upon legacy C code that
Iswrapped in an object-oriented interface.

Performance

Interpreted languages allow easier code porting, albeit at the cost of significant performance overhead.
C++, on the other hand, uses the compile and link model it inherited from C. One of the goals of C++
designers has been to keep it as efficient as possible; a compile-and-link model enables very efficient
code generation and optimization. Another performance factor is the use of a garbage collector. This
feature is handy and prevents some common programming bugs; however, garbage collected languages
are disgualifies for time-critical application development, where determinacy is paramount. For that
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reason, C++ does not have a garbage collector.

Object-Orientation and Other Useful Paradigms

In addition to object-oriented programming, C++ supports other useful programming styles, including
procedural programming, object-based programming, and generic programming -- making it a
multi-paradigm, general-purpose programming language.

Procedural Programming

Procedural programming is not very popular these days. However, there are some good reasons for C++
to support this style of programming, even today.

Gradual Migration of C ProgrammersTo C++

C programmers who make their first stepsin C++ are not forced to throw all their expertise away. Many
primitives and fundamental concepts of C++ were inherited from C, including built-in operators and
fundamental types, pointers, the notion of dynamic memory allocation, header files, preprocessor, and so
on. As atransient phase, C programmers can still remain productive when the shift to C++ is made.

Bilingual Environments
C++ and C code can work together. Under certain conditions, this combination is synergetic and robust.
Machine-Generated Code

Many software tools and generators generate C code as an intermediate stage of application build. For
example, SQL queries on most relational databases are transated into C code, which isin turn compiled
and linked. There's not much point in forcing these generators to produce C++ code (athough some do
so) when the generated code is not going to be used by human programmers. Furthermore, many early
C++ compilers were not really compilers in the true meaning of the word; they are better described as
translators because they translated C++ code into intermediate C code that was later compiled and linked.
In fact, any valid C++ programs can be trandlated directly into pure C code.

Object-Oriented Programming

Thisisthe most widely used style of programming in C++. The intent of this book isto deliver useful
guidelines and rules of thumb for efficient, reliable, reusable, and easy to maintain object-oriented code.
But there is no universal consensus as to what OO really is; the definitions vary among schools,
languages, and users. Thereis, however, a consensus about a common denominator -- a combination of
encapsulation, information hiding, polymorphism, dynamic binding, and inheritance. Some maintain that
advanced object-oriented consists of generic programming support and multiple inheritance. These
concepts will be discussed in depth in the chapters that follow.
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Generic Programming

Generic programming proceeds one step beyond object-oriented programming in pursuing reusability.
Two important features of C++, templates and operator overloading, are the basis of generic
programming. STL, a collection of generic algorithms and containers, is probably the most impressive
manifestation of this paradigm.

Aim Of the Book

Thisbook isaimed at experienced C++ developers who seek a guide for enhancing their design and
programming proficiency. It discloses facts and techniques and provides a knowledge base for advanced,
Standard-compliant, and efficient use of C++. In addition, the book also explains the underlying
mechanism behind the high-level features of the language, and it explains the philosophy behind the
design and evolution of C++.

Target Audience

The target audience is intermediate and advanced level C++ devel opers who want to improve their
proficiency by acquiring new programming techniques and design idioms. On top of adding many new
features to the language, the standardization committee has deprecated several features and library
components. In this book, readers who want to develop long lasting, future-proof C++ software can find
acomprehensive list of deprecated features and their recommended alternatives.

Organization of the Book

Chapter 2, "Standard Briefing: The Latest Addendato ANSI/ISO C++," presents some of the key terms
that are used in the C++ Standard, and which are used extensively in this book. Following this, the recent
changes and extensions to C++ are described. Finally, Chapter 2 gives an overview of the deprecated
features that are listed in the Standard, and suggests standard-conforming replacements for them.

Chapter 3, "Operator Overloading," explores the benefits as well as the potential problems of operator
overloading. It discusses the restrictions that apply to operator overloading and explains how to use
conversion operators.

Chapter 4, "Special Member Functions: Default Constructor, Copy Constructor, Destructor, and
Assignment Operator,” explains the semantics of the special member functions and their rolein class
design. It also demonstrates several techniques and guidelines for an effective usage of these special
member functions.

Chapter 5, "Object-Oriented Programming and Design," provides a brief survey of the various
programming styles that are supported by C++, focusing on the principles of object-oriented design and
programming.

Chapter 6, "Exception Handling," first describes traditional error handling methods and their
disadvantages, and then presents standard exception handling. A brief historical account of the design of
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exception handling is provided and, finally, exception handling-related performance issues are discussed.

Chapter 7, "Runtime Type Information," discusses the three components of runtime type information
(RTTI), namely t ypei d, dynam c_cast andclasst ype_i nf 0. Inaddition, it explains when the
use of RTTI isnecessary. Finally, it discusses the performance overhead associated with runtime type
information.

Chapter 8, "Namespaces," elucidates the rationale behind the addition of namespaces to the language
and the problems that namespaces solve. Then it demonstrates how namespaces are used in practice, and
how they interact with other language features.

Chapter 9, "Templates," discusses various aspects of designing and implementing templates, including
class templates, function templates, and template issues that are of special concern (such as pointersto
members, virtual member functions within atemplate class, inheritance relations, and explicit
Instantiations).

Chapter 10, "STL and Generic Programming," is an introduction to the Standard Template Library and
to generic programming in general. It discusses the principles of generic programming, focusing on STL
as an exemplary framework of generic programming. This chapter also demonstrates the use of STL
components. containers, algorithms, iterators, allocators, adapters, binders, and function objects. The
most widely used STL components, st d: : vect or andst d: : stri ng, are explored in detail.

Chapter 11, "Memory Management,” explains the memory model of C++. It describes the three types of
data storage: static, automatic, and free store. This chapter also delves into the semantics of operators
newanddel et e and their underlying inplenentation.Inaddition, it demonstratesthe
use of advanced memory management techniques and guides you in avoiding common memory-rel ated
errors.

Chapter 12, "Optimizing Y our Code," is dedicated to code optimization. It provides useful guidelines
and tips for writing more efficient code, and it proceeds toward more aggressive optimization techniques
for minimizing space and accel erating runtime speed.

Chapter 13, "C Language Compatibility Issues,” demonstrates how to migrate from C to C++ and, in
particular, how to migrate from procedural programming to object-orientation. It lists the differences
between the C subset of C++ and ISO C. Finally, it delvesinto the underlying representation of C++
objects in memory and their compatibility with C structs.

Chapter 14, "Concluding Remarks and Future Directions," seals this book. It describes the principles
and guidelines in the design and evolution of C++ throughout the last two decades, and comparesit to the
evolution of other, less successful programming languages. Then it lists features that almost made it into
the Standard. Next, it discusses possible future extensions, including automated garbage collection,

object persistence, and concurrency. Other hypothetical future extensions that are described are
dynamically linked libraries, rule-based programming, and extensible member functions.

Contents
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Introduction

C++ today is very different from what it wasin 1983, when it was first named "C++". Many features have been added
to the language since then; older features have been modified, and a few features have been deprecated or removed
entirely from the language. Some of the extensions have radically changed programming styles and concepts. For
example, downcasting a base to a derived object was considered a bad and unsafe programming practice before the
standardization of Runtime Type Information. Today, downcasts are safe, and sometimes even unavoidable. The list
of extensionsincludes const member functions, exception handling, templates, new cast operators, namespaces, the
Standard Template Library, bool type, and many more. These have made C++ the powerful and robust multipurpose
programming language that it is today.

The evolution of C++ has been a continuous and progressive process, rather than a series of brusgue revolutions.
Programmers who learned C++ only three or five years ago and haven't caught up with the extensions often discover
that the language dlips through their fingers. Existing pieces of code do not compile anymore, others compile with a
plethora of compiler warnings, and the source code listings in object-oriented magazines seem substantially different
from the way they looked not so long ago. "Namespaces? never heard of these before," and "What was wrong with
C-style cast? Why shouldn't | use it anymore?* are some of the frequently asked questions in various C++ forums and
conferences.

Understanding the ANSI/ISO Standard

But even experienced C++ programmers who have kept up with changes by subscribing to newsgroups, reading
magazines and books, or exchanging emails with the company's guru might still find that the C++ nomenclature in
professional literature is sometimes unclear. The ANSI/ISO Standard is written in a succinct and technical jargon that
isjocularly called standardese -- which is anything but plain English. For instance, the One Definition Rule (article
3.2 in the Standard), which defines under what conditions separate definitions of the same entity are valid, is
explained in textbooks in a simpler -- although sometimes less accurate -- manner, when compared to the Standard
text. The use of standardese ensures the accuracy that is needed for writing compilers and checking the validity of
programs. For this purpose, the Standard defines numerous specific terms that are used extensively throughout the
volume; for instance, it distinguishes between atemplate id and a template name, whereas an average programmer
simply refersto both as templates. Familiarity with these specific termsis the key to reading and interpreting the
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Purpose and Structure of This Chapter

The purposes of this chapter are threefold. First, it presents some of the key terms that are used extensively
throughout the Standard and throughout this book, for example, undefined behavior and deprecated features. (Note
that topic-specific terms such as argument-dependent lookup and trivial constructor are presented in their relevant
chapters rather than here.) Then, the new features that have been added to C++ -- such asbool type, new typecast
operators, and mut abl e datamembers -- are discussed. Because these topics are not explained elsewhere in this
book, they are presented here in detail, along with code samples. After that comes alist of other newly added features
that are covered extensively in other chapters of the book.

These topics are presented here only briefly. The intent isto provide you with an executive summary -- a panorama of
the latest addendato the ANSI/ISO C++ Standard -- that you can use as a checklist of topics. When reading the brief
topics overview, you might come across an unfamiliar topic; in these instances, you are always referred to the chapter
that discusses the topic in further detail. Finally, thereis an overview the deprecated features and a list of suggested
replacements for them.

The Standard's Terminology

This part explains some of the key termsin the Standard that are used throughout the book. These terms appear in
italics when they are presented for the first time. Note that these definitions are not exact quotations from the
Standard; rather, they are interpretive definitions.

Arguments and Parameters

The words arguments and parameters are often used interchangeably in the literature, although the Standard makes a
clear distinction between the two. The distinction is chiefly important when discussing functions and templ ates.

Argument

An argument is one of the following: an expression in the commarseparated list that is bound by the parenthesesin a
function call; a sequence of one or more preprocessor tokens in the comma-separated list that is bound by the
parentheses in a function-like macro invocation; the operand of a throw-statement or an expression, type, or
template-name in the comma-separated list that is bound by the angle brackets in atemplate instantiation. An
argument is also called an actual parameter.

Parameter

A parameter is one of the following: an object or reference that is declared in a function declaration or definition (or
in the catch clause of an exception handler); an identifier from the comma-separated list that is bound by the
parentheses immediately following the macro name in a definition of afunction-like macro; or a template-parameter.
A parameter is aso called aformal parameter.

The following example demonstrates the difference between a parameter and an argument:

void func(int n, char * pc); //n and pc are paraneters
tenplate <class T> class A{}; //Tis a a paraneter

I nt main()

{

char c;
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char *p = &c;

func(5, p); //5 and p are arguments

A<l ong> a; //'long" is an argunent
A<char> another_a; //'char' is an argunent
return O;

}
Translation Unit

A trandlation unit contains a sequence of one or more declarations. The Standard uses the term translation unit rather
than source file because a single translation unit can be assembled from more than a single sourcefile: A sourcefile
and the header filesthat are #i ncl uded in it are asingle trangation unit.

Program

A program consists of one or more translation units that are linked together.

Well-Formed Program

A well-formed programis one that is constructed according to the Standard's syntax and semantic rules and that obeys
the One Definition Rule (explained in the following section). Anill-formed programis one that does not meet these
requirements.

lvalues and rvalues

An object is a contiguous region of storage. An Ivalueis an expression that refers to such an object. The original
definition of lvalue referred to an object that can appear on the left-hand side of an assignment. However, const
objects are lvalues that cannot be used in the left-hand side of an assignment. Similarly, an expression that can appear
in the right-hand side of an expression (but not in the left-hand side of an expression) is an rvalue. For example

#i ncl ude <string>
usi ng nanespace st d;
int& f();
voi d func()
b
Int n;
char buf[ 3];
n=5 // nis an lvalue; 5 is an rvalue
buf[0] ="a'; // buf[0] is an Ivalue, "a'" is an rval ue
string s1 ="a", s2 ="b", s3 ="c¢c"; I/
sl = [/ lvalue
s2 +s3; //s2 and s3 are lvalues that are inplicitly converted to rval ues
sl = //lvalue
string("z"); //tenporaries are rval ues
int * p=newint; //pis an Ivalue; '"newint' is an rval ue
f() =0; //a function call that returns a reference is an |val ue
sl.size(); //otherwse, a function call is an rvalue expression

a", "b", "c

are rval ues

}

An lvalue can appear in a context that requires an rvalue; in this case, the Ivalue isimplicitly converted to an rvalue.
An rvalue cannot be converted to an Ivalue. Therefore, it is possible to use every lvalue expression in the example as
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an rvalue, but not vice versa.

Behavior Types
The Standard lists several types of program behaviors, which are detailed in the following sections.
Implementation-Defined Behavior

I mplementation-defined behavior (for awell-formed program and correct data) is one that depends on the particular
implementation; it is a behavior that each implementation must document. For example, an implementation
documents the size of fundamental types, whether achar can hold negative values, and whether the stack is
unwound in the case of an uncaught exception. |mplementation-defined behavior is also called
implementation-dependent behavior.

Unspecified Behavior

Unspecified behavior (for awell-formed program and correct data) is one that depends on the particular
Implementation. The implementation is not required to document which behavior occurs (but it is allowed to do so).
For example, whether operator new calls to the Standard C library function mal | oc() isunspecified. Following is
another example: The storage type for the temporary copy of an exception object is allocated in an unspecified way
(however, it cannot be allocated on the free store).

Implementation-defined behavior and unspecified behavior are similar. Both refer to consistent behavior that is
Implementation-specific. However, unspecified behavior usually refers to the underlying mechanism of the
implementation, which users generally do not access directly. |mplementation-dependent behavior refers to language
constructs that can be used directly by users.

Undefined Behavior

Undefined behavior is one for which the Standard imposes no requirements. This definition might sound like an
understatement because undefined behavior indicates a state that generally results from an erroneous program or
erroneous data. Undefined behavior can be manifested as a runtime crash or as an unstable and unreliable program
state -- or it might even pass unnoticed. Writing to a buffer past its boundary, accessing an out-of-range array
subscript, dereferencing a dangling pointer, and other similar operations result in undefined behavior.

Conclusions

Unspecified behavior and implementation-defined behavior are consistent -- albeit nonportable -- behaviors that are
left intentionally unspecified by the C++ Standard, usually to alow efficient and simple compiler implementation on
various platforms. Conversely, undefined behavior is always undesirable and should never occur.

The One Definition Rule

A class, an enumeration, an inline function with external linkage, a class template, a nonstatic function template, a
member function template, a static data member of a class template, or a template specialization for which some
template parameters are not specified can be defined more than once in a program -- provided that each definition
appears in adifferent translation unit, and provided that the definitions meet the requirements that are detailed in the
following sections.

Token-by-Token Identity

Each definition must contain the same sequence of tokens. For example
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[Ifile fisrt.cpp
inline int C:getVal () { return 5; }
/1file sec.cpp
typedef int I;
inline |l C:getVvVal () { return5; } // violation of ODR
/1 1 and int are not identical tokens

On the other hand, white spaces and comments are immaterial:

/1file fisrt.cpp
inline int C:getVal () { return 5; }

[1file sec.cpp
inline int C:getVal () { /*conplies with the ODR*/
return 5; }

Semantic Equivalence

Each token in the identical sequences of the separate definitions has the same semantic contents. For example

[/file first.cpp

typedef int I;

infline | C:getval () { return 5; }

/1file second. cpp

t ypedef unsigned int I;

infline |l C:getval () { return5; } //error; different semantic content for |

Linkage Types

A name that refers to an object, reference, type, function, template, namespace, or value that is declared in another
scopeis said to have linkage. The linkage can be either external or internal. Otherwise, the name has no linkage.

External Linkage

A name that can be referred to from other trandlation units or from other scopes of the translation unit in which it was
defined has external linkage. Following are some examples:

void g(int n) {} //g has external |inkage

int glob; //glob has external |inkage

extern const int E MAX=1024; //E _MAX has external I|inkage
namespace N

{
int num //N :num has external |inkage
void func();// N :func has external |inkage
}
class C{}; //the nane C has external I|inkage

Internal Linkage

A name that can be referred to by names from other scopes in the trandlation unit in which it was declared, but not
from other trandation units, has internal linkage. Following are some examples:
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static void func() {} //func has internal |inkage
uni on // menbers of a non-local anonynous union have internal |inkage
{
int n;
voi d *p;
b
const int MAX=1024; //non-extern const variables have internal |inkage
typedef int |I; //typedefs have internal |inkage

Names With No Linkage

A name that can only be referred to from the scope in which it is declared has no linkage. For example

void f()
{

int a; //a has no |inkage
class B {/**/}; //a local class has no |inkage

}
Side effect

A side effect is a change in the state of the execution environment. Modifying an object, accessingavol ati |l e
object, invoking alibrary 1/0 function, and calling a function that performs any of these operations are all side effects.

Addenda

This part details the new features -- and extensions to existing features -- that have been adopted by the C++ Standard
in recent years.

New Typecast Operators

C++ dtill supports C-style cast, asin

int i = (int) 7.333;

Nonetheless, C-style cast notation is problematic for several reasons. First, the operator () isalready used
excessively in the language: in afunction call, in precedence reordering of expressions, in operator overloading, and
in other syntactic constructs. Second, C-style cast carries out different operations in different contexts -- so different
that you can hardly tell which iswhich. It can perform an innocuous standard cast, such as converting an enumvalue
toani nt ; but it can also cast two nonrelated types to one another. In addition, a C-style cast can be used to remove
theconst orvol ati | e quaifiersof an object (and in earlier stages of C++, the language was capable of
performing dynamic casts as well).

Because of these multiple meanings, the C-style cast is opaque. Sometimes it is very difficult for areader to clearly
understand the intent of the code author who uses a C-style cast operation. Consider the following example:

#i ncl ude <i ostreanr
usi ng nanespace std,;
voi d di spl ay(const unsigned char *pstr)

{
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cout <<pst r<<endl ;

}
voi d func()
{
const char * p = "a nessage"
di spl ay( (unsigned char*) p); //signed to unsigned cast is required
/1 but const is also renoved. was that
/1l intentional or a programmer's oversight?
}

The new cast operators make the programmer's intention clearer and self-documenting. In addition, they enable the
compiler to detect mistakes that cannot be detected with C-style cast. The new cast operators are intended to replace
C-style cast; C++ programmers are encouraged to use them instead of C-style cast notation. These operators are
detailed in the following sections.

static_cast

static_cast <Type> ( Expr) performswell-behaved and reasonably well-behaved casts. One of its usesisto
indicate explicitly atype conversion that is otherwise performed implicitly by the compiler.

For example

cl ass Base{};

cl ass Derived : public Base {};
voi d func( Derived * pd)

{

Base * pb = static_cast<Base *> (pd); //explicit

}

A pointer to a derived object can be automatically converted to a pointer to a public base. The use of an explicit cast
makes the programmer's intent clearer.

stati c_cast can be used to document user-defined conversion. For example

cl ass I nteger

{
public: operator int ();
3
voi d func(lnteger& integer)
{
int num= static_cast<int> (integer); //explicit
}

Narrowing conversions of numeric types can also be performed explicitly by ast at i ¢c_cast . For example

voi d func()

{
int num= 0;
short short _num = static_cast<short> (num;

}

This conversion is somewhat riskier than the previous conversions. A shor t might not represent all the values that
ani nt can hold; an explicit cast is used here, instead of an implicit conversion, to indicate that atype conversionis
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performed. Casting an integral value to an enumis also a dangerous operation because there is no guarantee that the
value of ani nt can be represented in an enum Note that in this case, an explicit cast is necessary:

voi d func()

{

enum st atus {good, bad};

int num= O;

status s = static_cast<status> (num;
}

Youcanusest ati c_cast to navigate through class hierarchies. Unlikedynam c_cast , however, it relies solely
on the information that is available at compile time -- so don't useit instead of dynam c¢_cast . Using

stati c_cast forthispurposeis safer than using C-style cast because it does not perform conversions between
nonrelated classes. For example

class A{};

class B{};

A *pa;

B* pb = static_cast<B *> (pa); //error, pointers are not related

const_cast

const _cast <T> (Expr) removesonly theconst orvol ati | e quaifiersof Expr and convertsthem to
type T. T must be the same type of Expr , except for the missing const or vol ati | e attributes. For example

#i ncl ude <i ostreanp
usi ng nanespace std;
void print(char *p) //paranmeter should have been decl ared as const; al as,

{

cout <<p;
}
void f()
{
const char nsg[] = "Hello Worl d\n";
char * p = const_cast<char *> (nsg); //renpve constness
print(p);
}

const _cast canalso convert an objecttoaconst orvol ati | e one:

voi d read(const volatile int * p);

int *p = new int;

read( const _cast<const volatile int *> (p) ); //explicit

Note that the removal of theconst qualifier of an object does not guarantee that its value can be modified; it only

guarantees that it can be used in a context that requires anon-const object. So that you understand these limitations,
the following sections examinesconst semanticsin further detail.

(f)const Semantics

There are actually two types of const : trueconst and contractual const . A trueconst object isan Ivalue that
was originaly defined asconst . For example
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const int cn =5; // true const

const std::string nsg("press any key to continue"); // true const

On the other hand, an object with contractual const quality is one that was defined without the const qualifier, but
that istreated as though it were const . For example

voi d ReadVal ue(const inté& num

{
cout<<num // num may not be nodified in ReadVal ue()
}
int main()
b
int n =0;
ReadVal ue(n); //contractual const, nis treated as if it were const
}

When atrue const variableisexplicitly cast to anon-const variable, the result of an attempt to change itsvalueis
undefined. Thisis because an implementation can store true const datain the read-only memory, and an attempt to
write to it usually triggers a hardware exception. (Using an explicit cast to remove const ness does not change the
physical memory properties of avariable.) For example

const int cnum= 0; //true const, may be stored in the machine's ROM

const int * pci = &num

Int *pi = const _cast<int*> (pci); // brute force attenpt to unconst a vari able
cout<< *pi; //OK, value of cnumis not nodified

*pi = 2; //undefined, an attenpt to nodify cnumwhich is a true const variable

On the other hand, casting away the contractual const ness of an object makes it possible to modify its value safely:

int num= 0;

const int * pci = &um // *pci is a contractual const int
int *pi = const_cast<int*> (pci); /1l get rid of contractual const
*pi = 2; [l OK, nodify nums val ue

To conclude, const _cast isused toremovetheconst orvol ati | e qualities of an object. The resultant value
can be used in a context that requiresanon-const or vol ati | e object. The cast operation is safe aslong as the
resultant value is not modified. It is possible to modify the value of the resultant object only if the original operand is
not truly const .

reinterpret_cast

rei nterpret _cast <to> (from) isusedinlow-level, unsafe conversions. r ei nt er pret _cast merely
returns alow-level reinterpretation of the bit pattern of its operand. Note, however, that r ei nt er pr et _cast
cannot alter the cv-qualification of its operand. Theuse of r ei nt er pr et _cast isdangerous and highly
non-portable -- use it sparingly. Following are examples of r ei nt er pret _cast uses.

rei nterpret cast canbeused to convert two pointers of completely nonrelated types, asin

#i ncl ude <cst di o>
voi d mem probe()

{
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l ong n = 1000000L; long *pl = &n;

unsi gned char * pc = reinterpret _cast <unsigned char *> (pl);

printf("%l % % %", pc[O0], pc[1], pc[2], pc[3]); //menory dunp
}

rei nterpret_cast cancast integersto pointers, and vice versa. For example

void *pv
int ptr

reinterpret_cast<void *> (0x00fffd);
reinterpret _cast<int> (pv);

rei nterpret cast canalso beused for conversions between different types of function pointers. The result of
using the resultant pointer to call a function with a nonmatching type is undefined.

Donotuser ei nt er pret _cast instead of st ati c_cast -- the results might be undefined. For example, using
rei nterpret_cast to navigate through the class hierarchy of a multiply-inherited object is likely to yield the
wrong result. Consider the following:

class A
{
private:

int n;
}

class B
{
private:

char c;
b

class C. public A public B
{};
void func(B * pb)
{
C *pcl
C *pc2

static_cast<C*> (pb); //correct offset adjustnent
reinterpret _cast<C:> (pb); //no offset calcul ated

}
I nt main()
{
B b;
func(&b);
}

On my machine, pcl isassigned the value 0x0064f df 0, whereas pc2 isassigned 0x0064f df 4. This
demonstrates the difference between the two cast operators. Using the information that is available at compile time,
stati c_cast convertsapointer to B to apointer to C. It does so by causing pc1 to point at the start of C by
subtracting the offset of the subobject B. On the other hand, r ei nt er pr et _cast simply assignsthe binary value
of pb to pc2, without any further adjustments; for this reason, it yields the wrong result.

dynamic_cast

In pre-standard C++, as was noted earlier, C-style cast was used to perform a dynamic cast aswell. The cast was
either static or dynamic, depending on the type of the operand. The Standardization committee, however, opposed this
approach. An expensive runtime operation that looked exactly like a static cast (that is, penalty-free) can mislead the
users. For this purpose, a new operator was introduced to the language: dynam c¢_cast (dynam c_cast is
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discussed in further detail in Chapter 7, "Runtime Type Identification"). The name and the syntax of
dynam c_cast werechosento look markedly different from C-style cast. All other new typecast operators follow
this model. Following is an example of dynam c_cast :

Derived *p = dynam c_cast<derived *> (&base); //pointer form
Derived & rd = dynam c_cast<derived &> (base); //reference form

Conclusions

The new typecasting operators are clearer and more explicit in their intended purpose. A name such as
dynam c_cast , for example, warnsits users about its incurred runtime overhead. Most importantly, though, the
new cast operators are safer because they give the compiler a chance to detect the programmer's mistakes.

Users might find the proliferation of cast operators somewhat confusing. In particular, the choice between
static_cast andrei nterpret_cast might not seemimmediately clear. How to choose? Asarule,
stati c_cast isthefirst choice. If the compiler refuses to accept it, user ei nt er pr et _cast instead.

Built-in bool Type

The built-in bool datatype was added to the Standard after consideration of several other proposals. None of these
was found satisfactory. Following is an overview some of these proposals, which isin turn followed by a discussion
of the characteristics of the bool type.

typedef Boolean

One suggestion wasto use at ypedef for a Boolean datatype:

t ypedef int bool;

However, at ypedef that relies on another built-in type of the language renders the Boolean type unusable with
some language features. For example, using it in function overloading can result in ambiguities:

voi d f(bool);

void f(int);//error, redefinition of void f(bool);

In addition, at ypedef isnot strongly-typed. Consequently, it isimpossible to ensure that only Boolean values are
assigned to it in a context that requires Boolean values.

enum Type

An alternative solution was to use an enumtype:

enum bool { fal se, true};

enuns are strongly-typed. However, the committee wanted to ensure backward compatibility with old code that used
I nt values as a Boolean data type. For example

#i ncl ude <ctype. h>
enum bool {false, true};
void f()

{

enum bool b;
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b =islower('a); //conpile tinme error, int assigned to an enum

}

Class bool

A third suggestion was to use a class such as the following:

cl ass bool
L
private:
int val;
publ i c:
operator int();

};

Such a class guarantees type uniqueness, so it can be used to overload functions and to specialize templates. In
addition, it is backward compatible with Boolean integers. There are, however, several drawbacks to the class
approach. First, users are required to #i ncl ude adedicated header and to link their programs with the compiled
code of the class. Worse yet, the conversion operator might interfere with user-defined conversion operators that are
defined in other classes. Finally, afull-blown class that defines constructors and conversion operatorsis significantly
less efficient than afundamental type. For these reasons, the Standardization committee decided to add a new built-in

type.
A Built-in Type bool

bool isanimplementation-dependent integral type that can hold either at r ue or af al se value. A standardized
Boolean type has several advantages:

« Portability -- All Standard compliant compilers support bool type. When code is ported to different
platforms, it will work as expected.

» Readability -- The use of explicit keywordssuch ast r ue, f al se, and bool isself-documenting and is more
evident than theuse of i nt values.

« TypeDistinctness-- Because bool isadistinct type, the following functions are now also distinct:

voi d f(bool b);
void f(int n);
« Performance -- Memory usage can be optimized by the implementation, which is allowed to use a single byte

to represent abool instead of ani nt . In addition, the use of a built-in type rather than a class also ensures the
highest performance.

With the introduction of thebool datatype, built-in operators were modified accordingly to work with bool values.
Thelogical operators &&, | | , and! now take bool valuesasarguments and return bool results. Similarly, the
relational operators <, >, <=, >=, ==, and ! = return bool results. In addition, i ost r eamclasses were adjusted to
support the new type.

(f)Viewing bool VariablesasLiterals

By default, i ost r eamobjectsdisplay bool variablesas0 and 1. It is possible to override the default setting by
Inserting the formatting flag bool al pha to the stream object. Subsequently, the symbolic representationsf al se
andt r ue aredisplayed instead of 0 and 1. For example

#i ncl ude <i ostreanp
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usi ng nanespace std,;
I nt main()
{
bool b = true;
cout<<b; // default setting; display 1
cout <<bool al pha; //henceforth, display '"true' and 'false' instead of 1 and O

cout <<b:; /] output: true
cout <<! b; /1l output: false
return O;

}
Exception Handling

Exception handling is used to report and handle runtime errors. Supplementary features, namely exception
specifications and function t r y blocks, were added to the Standard in recent years. The following sections provide a
brief overview of these features. (Exception handling and the supplementary features are discussed in more detail in
Chapter 6, "Exception Handling.")

Exception Specification

A function can indicate the potential exceptionsit can throw by specifying alist of these exceptions. Exception
specifications are particularly useful when users of such afunction can only view its prototype but cannot access its
source file. Following is an example of specifying an exception:

class Zerodivide{/*..*/};
int divide (int, int) throw Zerodivide); //function may throw an exception
/'l of type Zerodivide, but no other

Function try Blocks

A functiont r y block is afunction whose body consistsof at r y block and its associated handlers. A functiont ry
block enables you to catch exceptions that might be thrown by a base class constructor or by a constructor of a
member object. The original specification of exception handling did not enable users to handle exceptions thrown
from a constructor or amember initialization list locally; afunctiont r y block fixes this loophole. Following isan
example of afunctiont r y block:

class Err{};
A:.: A(const string& s) throw (Err); //allowed to throw only
/lan exception of type Err

try
str(s) //str's constructor mght throw a bad_all oc
/I exception, which violates C s exception specification
{
/'l constructor function body
}

catch (...) //we get here when an exception is thrown
//during the construction of str or C
{

throw Err(); //replace bad_alloc exception wth an Err exception
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Memory Management

The Standard now defines three different versions of operator new: plain new, not hr ow new, and placement new.
Each of these operators has an array version as well. The Standard also defines six matching types of operator
del et e that correspond the specific versions of new. Memory management and the recently added versions of new
and del et e arediscussed in further detail in Chapter 11, "Memory Management.”

Operator new Throws an Exception in Case of a Failure

In earlier stages of C++, operator new returned a NULL pointer when it failed to allocate the requested amount of
memory. The C++ standardization committee changed the specification of operator new so that it throws an exception
of typest d: : bad_al | oc, rather than returning a NULL pointer, when it fails. A program that uses operator new
directly or indirectly hasto handle a potential st d: : bad_al | oc exception. For example

void f(int size) //standard-conform ng usage of operator new
{
char *p = new char [size];
/l...use p safely
delete [] p;
return;
b
#i ncl ude <st dexcept>
#i ncl ude <i ostreanp
usi ng nanespace std;
const int BUF_SIZE = 1048576L,;
i nt main()
{
try

f (BUF_SI ZE) ;
}

catch(bad_al l oc& ex) //handl e exception thrown fromf()

{

cout <<ex. what () <<endl ;
/l...other diagnostics and renedi es

}

return -1;

}

nothrow new

The Standard also defines an exception-free version of operator new, which returns a NULL pointer in case of a
failure rather than throwing an exception. This version of new takes an additional argument named not hr ow. For
example

#i ncl ude <new>

#i ncl ude <string>

usi ng nanespace std;

void f(int size) // denonstrating nothrow new

{

char *p = new (nothrow) char [size]; //array nothrow new
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if (p == 0)
{
/l...use p
delete [] p;
}

string *pstr = new (nothrow) string; //plain nothrow new
if (pstr == 0)
{
/l...use pstr
delete [] pstr;
}

return,;

}

Placement new

An additional version of operator new enables the user to construct an object at a predetermined memory position.
Thisversion is called placement new. Following is an example of using placement new.

#i ncl ude <new>

#i ncl ude <i ostreane
usi ng nanespace std,;
voi d pl acenent ()

{
i nt *pi = new int; /I plain new
I nt *p = new (pi) int (5); [//placenment new
/[l...use p
del ete pi;
}

Constructors and Destructors

Fundamental types can beinitialized by a special constructor. In addition, the Standard also defines a pseudo
destructor for each of these types (see Chapter 4, "Special Member Functions: Default Constructor, Copy Constructor,
Destructor, and Assignment Operator").

Constructors of Fundamental Types

Variables of fundamental types can be initialized by invoking their constructor explicitly. For example

void f()
{

int n=1int(); // zero initialized
char ¢ = char(); // also zero initialized
double d = double(0.5); //other initializers are all owed

}

This language extension enables uniform treatment in templates for fundamental types and user-defined types.
Explicit Constructors

A constructor that takes a single argument is, by default, an implicit conversion operator that converts its argument to
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an object of itsclass. In order to avoid such implicit conversions, a constructor that takes one argument can be
declared expl i ci t . For example

class C

{
publ i c:
explicit C(int size); [// disallowinplicit conversion

};
Pseudo Destructors

A pseudo destructor is a syntactic construct whose sole purpose is to satisfy the need for generic algorithms and
containers. It isano-op code, and has no real effect on its object. For example

typedef int N;

void f()
{

Ni = 0;

i.N.:~N(); // pseudo destructor invocation

i =1, [// i was not affected by the invocation of the pseudo destructor
}

Local Definitions and Scoping Rules

The scoping rulesfor avariable that isdefined in af or statement were changed. Additionally, it is now possible to
define and initialize variablesinsideani f condition.

The Scope of a Local Loop Counter

C++ allows declaration of variables wherever they are needed, enabling immediate initializations. A good exampleis
aloop counter, which can be declared inside af or statement. For example

void f()
{ for (int i =0; i <10; i++) // i declared and initialized
/'l inside a for-statenent
{ cout << i <<endl; //output 0 to 9
} ?nt n=1i; //conpilation error, i not in scope

In earlier stages of C++, alocal variable declared in this way remained accessible in its enclosing block. Thiswas a
source for bugs and name hiding. Consequently, the standard has been revised to fix this|loophole, so to speak; local
variables that are created this way are inaccessible outside their f or statement. In the preceding example, the variable
I goesout of scope when the loop is exited.

Declaring Variables Inside an if Condition

Y ou can define and initialize a variable inside the condition of ani f statement. For example
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cl ass Base {/*..*/};
class Derived: public Base {/*..*/};
voi d func (Base& b)

{
if ( Derived *pd = dynam c_cast < Derived* > (&) ) //declaration
/1 inside an if-condition
{
/I dynam c_cast was successful; use pd here
return;
}//pd goes out of scope at this point
[/ otherwi se dynam c_cast failed; variable pd is not in scope
}

The advantage of declaring the pointer pd locally isobvious: It isawaysinitialized with an appropriate value, and it
isn't visible to other parts of the program that are not to use it (see Chapter 12, "Optimizing Y our Code").

Namespaces

Namespaces were the latest feature to be added to the language. Namespaces are used to prevent name conflicts and
to facilitate configuration management and version control in large-scale projects. Most of the components of the
Standard Library are grouped under namespace st d. There are three methods for injecting namespace members into
ascope: ausi ng directive, ausi ng declaration, or afully qualified name. Argument-dependent lookup, or Koenig
lookup, simplifies the use of namespaces by automating the name lookup process. Namespaces are discussed in more
detail in Chapter 8, "Namespaces.”

Templates

A template is amold from which related functions or classes are instantiated. Templates have come along way since
they were first introduced to the language in 1991. Back then, they were merely clever macros. However, the adoption
of STL required considerable extensions to this feature. An overview of these extension is provided in the following
sections. Templates are discussed in detail in Chapter 9, "Templates."

Template-Template Argument

A template can now take atemplate as an argument. For example

I nt send(const std::vector<char*>& );

int main()

{
std::vector <std::vector<char*> > nsg_que(10);
[l...fill neg_que

for (int i =0; i < 10; i++) //transmt nessages
send(nsg_queli]);
return O;

}
Default Type Arguments

Templates can have default type arguments. For example

tenplate <class T, class S = size t > class C //using a default type
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{/**/};

Member Templates

Templates can be nested; atemplate can be declared within another class or a class template. Such atemplateiscalled
amember template. Following is an example:

tenpl ate<cl ass T> class C

{
publ i c:

tenpl ate<class T2> int func(const T2&); //declaration of a nenber tenplate
/...

};

tenpl ate<cl ass T> tenpl ate<class T2> int C<T>:.:func(const T2& s) // definition

{
}

The typename Keyword

Il...

To support member templates and template inheritance, the keyword t ypenane was added to the language. By
default, the compiler assumes that a qualified name refers to anon-type. Thet ypenane keyword instructs the
compiler to supersede this default interpretation and resolve the ambiguity in favor of atypename instead.

Exported Templates

It is possible to compile atemplate definition only once, and to subsequently use only the template's declaration in
other trandlation units. To compile atemplate separately and then use its declaration, the template has to be exported.
Thisis done by preceding the template's definition with the keyword export .

The Standard Template Library

According to Bjarne Stroustrup, the most important change in C++ since 1991 is not alanguage change; it isthe
addition of the standard library. The Sandard Template Library, or STL, comprises a substantial part of the Standard
Library. STL is collection of generic containers -- such as vector, list, and stack -- and arich collection of generic
algorithms for sorting, finding, merging, and transforming these containers. Chapter 10, "STL and Generic
Programming,” is dedicated to STL.

Internationalization and Localization

The current C++ Standard is an international Standard approved by 1SO. To qualify as such, Standard C++ has been
fully internationalized. Internationalization consists of several modifications and extensions. These include the
addition of the keywordwchar _t (wchar _t wasaready definedin ISO Casat ypedef but it wasn't areserved
keyword). In addition, the standard stream and string classes have been templatized to support both narrow and wide
characters. Finally, the <l ocal e> library defines template classes and declares functions that encapsulate and
manipulate locale-related information such as monetary, numeric, and time conventions. The locale feature sets are
encapsulated in classes (or facets) that the users can extend.

Wide Character Streams

C++ provides four standard 1/0 streams that are automatically instantiated before a program's outset. They are defined
in the header <i ost r ean®:
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cin /'l standard input stream of char

cout // standard output stream of char

cerr // standard unbuffered output streamfor error nessages
clog // standard output streamfor error nessages

Each of these four streams now has a corresponding wide-character version:

wci n

wecout
wecerr
wel og

Miscellaneous

Two additional extensions were recently added to the Standard: the initialization of const st at i ¢ data members
inside the class body and the mut abl e storage specifier. Both of these extensions are discussed in the following
sections.

Initialization of const static Data Members

const st ati c datamembers of an integral type can now be initialized inside their class. In this case, the
initialization is also a definition, so no further definitions are required outside the class body. For example

#i ncl ude <string>

cl ass Buff

{

private:
static const int MAX = 512; // initialization +definition
static const char flag = "a'; // initialization +definition

static const std::string nsg; //non-integral type; nust be defined outside
//the cl ass body
/..
b

const std::string Buff::nsg = "hello";
A mutable Object Member

A const member function cannot modify the state of its object. However, auxiliary data members (flags, reference
counters) sometimes have to be modified by aconst member function. Such data members can be declared

mut abl e. A mut abl e member isnever const , evenif itsobject isconst ; therefore, it can be modified by a
const member function. The following example demonstrates the use of this feature:

cl ass Buffer
{ .
privat e:
void * data; [//raw data buffer to be transmtted on sone network
size_ t size;
mutable int crc;//used to verify that no errors occurred during transm ssion
publ i c:
int GetCrc() const;
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void Transmt() const; //conputation of crc is done here

3
void f()
{
Buf fer buffer;
[l...fill buffer with data
buffer. Transm t(); //crc can be nodified here; non-nutable nmenbers may not
}

Thereisno point in calculating the cr ¢ value every time afew more bytes are appended to buf f er . Instead, it is
computed by the member function Tr ansmi t () right before buf f er issent. However, Transmi t () isnot
supposed to modify its object's state so that it is declared asaconst member function. In order to alow assignment
of the correct cr ¢ value, the data member cr ¢ isdeclared mut abl e; hence, it can be modified by aconst member
function.

Deprecated Feature

A deprecated feature is one that the current edition of the Standard regards as normative, but that is not guaranteed to
be part of the Standard in future revisions. Again, thisis somewhat understating the intent of this definition. One of
the consequences of the evolution and standardization of a programming language is the gradual removal of
undesirable, dangerous, or redundant features and constructs. By deprecating a feature, the standardization committee
expresses the desire to have the feature removed from the language. Removing it from the language altogether is
impractical because existing code will not compile anymore. The deprecation gives the user sufficient time to replace
a deprecated feature with a Standard-endorsed feature. The Standard lists the features that are discussed in the
following sections as deprecated.

Use of an Operand of Type bool with the Postfix ++ Operator

Applying postfix ++ to avariable of type bool isstill allowed for backward compatibility with old code that uses
plaini nt or somet ypedef, asin

bool done = fal se;
whi | e(! done)
{
i f(condition)
//...do sonething
el se done++; //deprecated

}

Incrementing abool awaysyieldst r ue, regardless of the original value. However, this practice is deprecated,;
therefore, it might not be supported in the future. Remember that applying - - (decrement operator) to abool
variableisillegal.

Use of static to Declare Objects in Namespace Scope

The use of the keyword st at i ¢ to declare afunction or an object local to atrandation unit is deprecated. Instead,
use an unnamed namespace for that purpose (more on thisin Chapter 8).
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Access Declarations

The access of amember of a base class can be changed in a derived class by an access declaration. For example

class A

{
publ i c:
int k;
int I;
b
class D : public A
{

private:
A:.:l; I/ access declaration changes access of A :|l to private; deprecated
3

The use of access declarations is deprecated. Use ausi ng declaration instead:

class D : public A // using-declaration version

{
private:
using A::l; // using declaration changes the access of A:l to private

3
voi d func()
{

D d;

d.l = 0; //lerror; cannot access private nenber
}

Implicit Conversion from const to non-const Qualification for String Literals

A string literal can be implicitly converted from type pointer to const char totypepoi nter to char.
Similarly, awide string literal can be implicitly converted from type pointer toconst wchar _t to pointer to
wchar _t . For example

char *s = "abc"; //string literal inplicitly converted to non-const; deprecated

Thetype of theliteral " abc" isconst char[], buts isapointer to non-const char . Suchimplicit
conversionsfrom const tonon-const qualifications for string literals are deprecated because they might lead to the
following erroneous code:

strcpy(s, "cde"); //undefined behavi or

The preferred form s

const char *s = "abc"; // K
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Standard C Headers in the form <name.h>

For compatibility with the Standard C library, C++ still supports the naming convention of C headersin the form
<xxX. h> -- but this naming convention is now deprecated (thisis discussed in more detail in Chapter 8). For
example

#include <stdlib.h> //deprecated

Use the newer naming convention, <cxxXx>, instead:

#include <cstdlib> //COK, 'c' prefixed and ".h" omtted

Thereason for thisisthat " . h" headersinject al their names into the global namespace, whereas the newer
convention headers, <cname>, keep their names in namespace st d.

Implicit int Declarations

The default type for missing declarations such asthe followingisi nt :

static k =0; //"int' type deduced; deprecated
const ¢ =0; //'int' type deduced; deprecated

This convention is now considered deprecated. Instead, use explicit type names:

static int k =5;
const int ¢ = O;

Other Deprecated Features

The Standard deprecates some of the members of old i ost r eamclasses (article 4.6). In addition, it deprecates three
typesin the header <st r st r ean® that associate stream buffers with character array objects (article 4.7).

From a user's point of view, deprecated features are not to be used in new code because future versions of the
language will flag it as an error. In the interim period, compilers can issue awarning about its use.

Conclusions

Asyou have seen, standard C++ is quite different from what it used to be four, five, or ten years ago. Many of the
changes and modifications have been initiated by software vendors (the bool datatype, for instance). Others have
been initiated by the Standardization committee (for example, the new cast operators and STL). During the hectic
standardization process, complaints about "randomly accepted changes' on the one hand, and "missing features' on
the other hand, were often heard. However, the Standardization committee has been very thoughtful and prudent in
selecting these extensions and modifications. Fortunately, the approval of the Standard by 1SO in 1998 ensuresiits
stability for at least five years. This freeze period enables both compiler vendors and language users to digest the
current Standard and use it effectively. In doing so, one usually finds that C++ is better today than it ever was.

Contents
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Introduction

A built-in operator can be extended to support user-defined types as well. Such an extension overloads the predefined
meaning of an operator rather than overridesit. Although ordinary functions can offer the same functionality, operator
overloading provides a uniform notational convention that is clearer than the ordinary function call syntax. For
example

Monday < Tuesday; //overl oaded <
G eat er _t han( Monday, Tuesday);

The history of operator overloading can be traced back to the early days of Fortran. Fortran, the first high-level
programming language, presented the concept of operator overloading in away that was revolutionary back in the
mid-1950s. For the first time, built-in operators such as + or - could be applied to various data types: integers, real
and complex. Until then, assembly languages -- which didn't even support operator notation -- had been the only
choice for programmers. Fortran's operator overloading was limited to a fixed set of built-in data types; they could not
be extended by the programmer. Object-based programming languages offered user-defined overloaded operators. In
such languages, it is possible to associate a set of operators with a user-defined type. Object-oriented languages
usually incorporate operator overloading as well.

The capability to redefine the meaning of a built-in operator in C++ was a source of criticism. People -- mostly C
programmers making the migration to C++ -- felt that overloading an operator was as dangerous as enabling the
programmer to add, remove, or change keywords of the language. Still, notwithstanding the potential Tower of Babel
that might arise as aresult, operator overloading is one of the most fundamental features of C++ and is mandatory for
generic programming (generic programming is discussed in Chapter 10, "STL and Generic Programming."). Today,
even languages that tried to make do without operator overloading are in the process of adding this feature.

This chapter explores the benefits as well as the potentia problems of operator overloading. It also discusses the few
restrictions that apply to operator overloading. Finally, it presents conversion operators, which are a special form of
overloaded operators.

An overloaded operator is essentially afunction whose name is an operator preceded by the keyword oper at or . For
example

cl ass Book

L
private:
| ong | SBN;
publ i c:
I, ..
l ong get I SBN() const { return |SBN;}
3

bool operator < (const Book& bl, const Book& b2) // overload operator <

{
}

return bl.get ISBN() < b2.get | SBN();
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Operator Overloading Rules of Thumb

C++ enforces few restrictions on operator overloading. For instance, it does not prohibit a programmer from
overloading the operator ++ in order to perform a decrement operation on its object (to the dismay of its users, who
would instead expect operator ++ to perform an increment operation). Such misuses and puns can lead to a cryptic
coding style that is almost unintelligible. Often, the source code that contains the definition of an overloaded operator
IS not accessible to its users; therefore, overloading an operator in an unexpected, nonintuitive manner is not
recommended.

The other extreme, avoiding operator overloading altogether, is not a practical choice either because it means giving
up an important tool for data abstraction and generic programming. When you are overloading an operator to support
auser-defined type, therefore, it is recommended that you adhere to the basic semantics of the corresponding built-in
operator. In other words, an overloaded operator has the same side effects on its operands and manifests the same
interface as does the corresponding built-in operator.

Members and Nonmembers

Most of the overloaded operators can be declared either as nonstatic class members or as nonmember functions. In the
following example, the operator == is overloaded as a honstatic class member:

cl ass Date
L
private:
i nt day;
i nt nont h;
int year;
publ i c:
bool operator == (const Date & d ); // 1. menber function
3

Alternatively, it can be declared asaf r i end function (the criteriafor choosing between a member and afriend will
be discussed later in this chapter):

bool operator ==( const Date & dl, const Date& d2); // 2: nonnmenber function
cl ass Date
L
private:
i nt day;
i nt nont h;
int year;
publi c:
friend bool operator ==( const Date & dl, const Date& d2);
3

Nonetheless, the operators[ ], (), =, and - > can only be declared as nonstatic member functions; this ensures that
their first operand isan Ivalue.
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Operator's Interface

When you overload an operator, adhere to the interface of its built-in counterpart. The interface of an operator
consists of the number of operands to which it applies, whether any of these operands can be altered by the operator,
and the result that is returned by the operator. For example, consider operator ==. Its built-in version can be applied to
awide variety of fundamental types, includingi nt , bool , f | oat, and char , and to pointers. The underlying
computation process that is required for testing whether the operands of operator == are equal isan
implementation-detail. However, it can be generalized that the built-in == operator testsits left and right operands for
equality and returnsabool value asitsresult. It isimportant to note also that operator == does not modify any of its
operands; in addition, the order of the operandsisimmaterial in the case of operator ==. An overloaded operator ==
should conform to this behavior, too.

Operator Associativity

Operator == is binary and symmetrical. An overloaded version of == conforms to these qualities. It takes two
operands, which are of the same type. Indeed, one can use operator == to test the equality of two operands of distinct
fundamental types, for examplechar andi nt . However, C++ automatically appliesintegral promotion to the
operandsin this case; as aresult, the seemingly distinct types are promoted to a single common type before they are
compared. The symmetrical quality implies that an overloaded operator == isto be defined asaf r i end function
rather than a member function. So that you can see why, here's a comparison of two different versions of the same
overloaded operator ==:

cl ass Date
L
private:
i nt day;
i nt nont h;
int year;
publ i c:
Dat e() ;
bool operator == (const Date & d) const; // 1 asymretri cal
friend bool operator ==(const Date& dl, const Date& d2); //2 symetri cal
1
bool operator ==(const Date& dl, const Date& d2);

The overloaded operator == that is declared as a member function in ( 1) isinconsistent with the built-in operator ==
because it takes two arguments of different types. The compiler transforms the member operator == into the
following:

bool Date::operator == (const Date *const, const Date&) const;

Thefirst argumentisaconst t hi s pointer that pointsto aconst object (remember that t hi s isawaysa
const pointer; it pointsto aconst object when the member functionisalso const ) . The second argument isa
referenceto const Dat e. Clearly, these are two distinct types for which no standard conversion exists. On the
other hand, thef r i end version takes two arguments of the same type. There are practical implications to favoring
thef ri end version over the member function. STL algorithms rely on a symmetrical version of the overloaded
operator ==. For example, containers that store objects that do not have symmetrical operator == cannot be sorted.

Another example, built-in operator +=, which also takes two operands, modifiesits left operand but |eaves the right
operand unchanged. The interface of an overloaded += needs to reflect the fact that it modifies its object but not its
right operand. Thisisreflected by the declaration of the function parameter as const , whereas the function itself isa
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non-const member function. For example

cl ass Date
L
private:
i nt day;
i nt nont h;
int year;
publi c:
Dat e() ;
/[lbuilt-in += changes its left operand but not its right one
//the sanme behavior is maintained here
Date & operator += (const Date & d);

};

To conclude, it can be said that every overloaded operator must implement an interface that is similar to the one that
is manifested by the built-in operator. The implementer is free to define the underlying operation and hide its details --
aslong asit conformsto the interface.

Restrictions on Operator Overloading

Aswas previoudly noted, an overloaded operator is afunction that is declared with the oper at or keyword,
immediately followed by an operator id. An operator id can be one of the following:

new delete new ] del et e[ ]

+ - * / % A & | ~

| = < > += -= * = |/ = V=
A= &= |= << >> >>= <<= == I =
<= >= && | ] ++ -- - >

0O 1

In addition, the following operators can be overloaded both in their unary and binary forms:

+ - * &

Overloaded operators are inherited in the same manner as other base class functions. Note that these rules do not
apply to the assignment operator, which isimplicitly declared for aclassif it is not declared by the user. Therefore, a
base class assignment operator is always hidden by the copy assignment operator of the derived class. (The
assignment operator is discussed in Chapter 4, "Special Member Functions: Default Constructor, Copy Constructor,
Destructor, and Assignment Operator.")

Operators Can Only Be Overloaded for User-Defined Types

An overloaded operator must take at least one argument of a user-defined type (operators newand del et e arean
exception -- see Chapter 11, "Memory Management,” for more details). This rule ensures that users cannot alter the
meaning of expressions that contain only fundamental types. For example

+ j; /lalways uses built-in = and +
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Invention of New Operators Is Not Allowed

An overloaded operator extends a built-in one, so you cannot introduce new operators into the language (conversion
operators differ from ordinary overloaded operators in this respect). The following example attempts to overload the €
operator, but does not compile for that reason:

void operator @(int); //illegal, @is not a built-in operator or a type nane

Precedence and Argument Number

Neither the precedence nor the number of arguments of an operator can be altered. For example, an overloaded &&
must have exactly two arguments -- as does the built-in && operator. In addition, the precedence of an operator cannot
be altered when it is overloaded. A sequence of two or more overloaded operators, for instancet 2<t 1/t 2, is
evaluated according to the precedence rules of the built-in operators. Because the division operator ranks higher than
the less operator, the expression isalwaysinterpreted ast 2<(t 1/t 2) .

Default Parameters

Unlike ordinary functions, overloaded operators cannot declare a parameter with a default value (operator () isthe
exception to thisrule; it is discussed later).

cl ass Date

{

private:
i nt day;
i nt nont h;
int year;
publ i c:
Date & operator += (const Date & d = Date() ); //error, default argunent

b

This rule might seem arbitrary, but it captures the behavior of built-in operators, which never have default operands
either.

Operators That Cannot Be Overloaded

There are several operators that cannot be overloaded. They are characterized by the fact that they take a name, rather
than an object, as their right operand. These operators are:

« Direct member access, operator .

« Deference pointer to class member, operator . *
« Scope resolution, operator : :
« Sizeof, operator si zeof

The conditional operator ?: cannot be overloaded either.

Additionally, the new type cast operators-- st at i c_cast <>,dynam c_cast <>,rei nterpret cast <>,
and const _cast <> -- and the # and ## preprocessor tokens cannot be overloaded.
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Conversion Operators

It is not uncommon to find C++ and C code used together. For instance, legacy systems that were originally written in
C can be wrapped by an object-oriented interface. Such bilingual systems often need to support adual interface at the
same time -- one that caters to an object-oriented environment and another that catersto C environment. Classes that
implement specific numeric entities -- such as complex numbers and binary numbers -- and nibbles also tend to use
conversion operators to enable smoother interaction with fundamental types.

Strings are a classic example of the need for adua interface. A string object might have to be used in contexts that
support only null-terminated char arrays. For example

class Mystring
L
private:
char *s;
int size;
publ i c:
Mystring(const char *);

Mystring();
/...

i
#i ncl ude <cstring>

#i ncl ude "Mystring. h"
usi ng nanespace std;
int main()

{
Mystring str("hello world");
int n = strcnp(str, "Hello"); [//conpile tine error:
//str is not of type const char *
return O;

}

C++ offers an automatic means of type conversion for such cases. A conversion operator can be thought of asa
user-defined typecasting operator; it convertsits object to a different type in contexts that require that specific type.
The conversion is done automatically. For example

class Mystring /I now wi th conversi on operator
{
private:
char *s;
int size;
publi c:
Mystring();
operator const char * () {returns; } //convert Mystring to a C-string
/...
1

int n = strcnp(str, "Hello"); //OK automatic conversion of str to const char *

Conversion operators differ from ordinary overloaded operatorsin two ways. First, a conversion operator does not
have areturn value (not even voi d). The return value is deduced from the operator's name.

file:///D|/Cool Stufflold/ftp/1/1/ch03/ch03.htm (7 von 15) [12.05.2000 14:45:47]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 3 - Operator Overloading
Secondly, a conversion operator takes no arguments.

Conversion operators can convert their object to any given type, fundamental and user-defined alike:

struct DateRep //legacy C code
{
char day;
char nont h;
short year;
3
class Date // object-oriented w apper
L
private:
Dat eRep dr;
publ i c:
operator DateRep () const { return dr;} // automatic conversion to DateRep
b
extern "C' int transmt_date(DateRep); // C-based communication APl function
I nt main()
{
Dat e d;
/[l...use d
[/transmt date object as a binary streamto a renote client
int ret_stat = transmt_date; //using | egacy conmuni cati on API
return O;

}
Standard Versus User-Defined Conversions

The interaction of a user-defined conversion with a standard conversion can cause undesirable surprises and side
effects, and therefore must be used with caution. Examine the following concrete example.

A non-expl i ci t constructor that takes a single argument is also a conversion operator, which casts its argument to
an object of this class. When the compiler has to resolve an overloaded function call, it takes into consideration such
user-defined conversionsin addition to the standard ones. For example

cl ass Numeric

L
private:
float f;
publi c:
Nuneric(float ff): f(ff) {} //constructor is also a float-to-Nuneric
/'l conversion operator
3

void f(Nuneric);

Nuneric num(0.05);

f(5.f); [//OK calls void f(Nuneric). Nuneric's constructor
[/ converts argunent to a Nuneric object

'Suppose you add, at alater stage, another overloaded version of f () :
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void f (double);

Now the same function call resolves differently:

f(5.f); // now calls f(double), not f(Numeric)

Thisisbecausef | oat ispromoted to doubl e automatically in order to match an overloaded function signature.
Thisis a standard type conversion. On the other hand, the conversion of f | oat to Numer i c isauser-defined
conversion. User-defined conversions rank lower than standard conversions -in overload resolution; as aresult, the
function call resolves differently.

Because of this phenomenon and others, conversion operators have been severely criticized. Some programming
schools ban their usage altogether. However, conversion operators are a valuable -- and sometimes inevitable -- tool
for bridging between dual interfaces, as you have seen.

Postfix and Prefix Operators

For primitive types, C++ distinguishes between ++x; and x++; aswell asbetween - - x; and x- - ; . Under some
circumstances, objects have to distinguish between prefix and postfix overloaded operators as well (for example, as an
optimization measure. See Chapter 12, "Optimizing Y our Code"). Postfix operators are declared with adummy i nt
argument, whereas their prefix counterparts take no arguments. For example

cl ass Date

{
publ i c:
Dat e& operator++(); //prefix
Dat e& operator--(); //prefix
Dat e& operator++(int unused); //postfix
Dat e& operator--(int unused); //postfix
1
void f()
{
Date d, di;

dl = ++d;//prefix: first increnent d and then assign to dl
dl = d++; //postfix; first assign, increnment d afterwards

}
Using Function Call Syntax

An overloaded operator call is merely "syntactic sugar" for an ordinary function call. Y ou can use the explicit
function call instead of the operator syntax as follows:

bool operator==(const Date& dl, const Date& d2);

void f()

{
Date d, di;
bool equal;

dl. operator++(0); // equivalent to: dl++;
dl.operator++(); // equivalent to: ++di;
equal = operator==(d, dl);// equivalent to: d==di;
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Date&(Date::*pnf) (); //pointer to nenber function
pnf = & Date:: operator ++;
}

Consistent Operator Overloading

Whenever you overload operators such as + or - , it might become necessary to support the corresponding += and - =
operators aswell. The compiler does not do that for you automatically. Consider the following example:

cl ass Date

{
publ i c:
Dat e& operator + (const Date& d); //note: operator += not defined
1
Date d1, d2;

dl = dl1 + d2; //fine; uses overloaded + and default assignnent operator
dl += d2; //conpile tine error: 'no user defined operator += for class Date'

Theoretically, the compiler could synthesize a compound operator += by combing the assignment operator and the
overloaded + operator so that the expressiond1l += d2; isautomatically expanded intod1l = d1+d2;.
However, thisis undesirable because the automatic expansion might be less efficient than a user-defined version of
the operator. An automated version creates a temporary object, whereas a user-defined version can avoid it.
Moreover, it is not difficult to think of situationsin which aclass has an overloaded operator +, but does not have
operator += intentionally.

Returning Objects by Value

For the sake of efficiency, large objects are usually passed to -- or returned from -- afunction by reference or by their
address. There are, however, afew circumstances in which the best choiceis still to return an object by value.
Operator + isan example of this situation. It has to return aresult object, but it cannot modify any of its operands. The
seemingly natural choiceisto allocate the result object on the free store and return its address. Nevertheless, thisis
not such a good idea. Dynamic memory allocation is significantly slower than local storage. It also might fail and
throw an exception, which then has to be caught and handled. Even worse, this solution is error prone because it is
unclear who is responsible for deleting this object -- the creator or the user?

Another solution isto use a static object and return it by reference. For example

cl ass Year
L
private:
int year;
publ i c:
Year(int y = 0) : year(y) {}
Year & operator + (const Year& other) const; //returns a reference to
/la |local static Year
int getYear() const;
void setYear(int y);
1
Year & Year::operator + (const Year& other) const

{
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static Year result;
result = Year(this->getYear() + other.getYear() );
return result;

}

Static objects solve the ownership problem, but they are still problematic: On each invocation of the overloaded
operator, the same instance of the static object is being modified and returned to the caller. The same object can be
returned by reference to several more users, who do not know that they are holding a shared instance that has just
been modified behind their back.

Finally, the safest and most efficient solution is still to return the result object by value:

cl ass Year
L
private:
int year;
publ i c:
Year(int y = 0) : year(y) {}
Year operator + (const Year& other) const; //return Year object by val ue
i nt getYear() const;
voi d setYear(int y);

3
Year Year::operator + (const Year& other) const
{
return Year(this->getYear() + other.getYear() );
}

Multiple Overloading

Overloaded operators obey the rules of function overloading. Therefore, it is possible to overload an operator more
than once. When is it useful ? Consider the following Mont h class and its associated operator ==:

class Month
L

private:

int m

publ i c:

Month(int m= 0);
1
bool operator == (const Month& ml, const Month &m);

It is possible to use the overloaded operator == to compare aplaini nt value and aMont h object due to the implicit
conversion of i nt to Mont h. For example

void f()
{
int n =7;
Mont h June(6);
bool sane =
(June == n); //calls bool operator == (const Mnthé& nml, const Mnth &m);
}
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Thisworksfine, but it i'sinefficient: The argument n isfirst converted to atemporary Mont h object, which isthen
compared with the object June. Y ou can avoid the unnecessary construction of atemporary object by defining
additional overloaded versions of operator ==:

bool operator == (int m const Mnth& nonth);
bool operator == (const Month& nonth, int nm;
Consequently, the expresson June == n will now invoke the following overloaded operator:
bool operator == (const Month& nmonth, int m;

This overloaded version does not create atemporary object, so it's more efficient. The same performance
considerations led the C++ Standardization committee to define three distinct versions of operator == for
std: :string (seeChapter 10, ""STL and Generic Programming"") and other classes of the Standard Library.'

Overloading Operators for Other User-Defined types

Y ou can overload an operator for enumtypes as well. For example, it may be useful to overload operators such as ++
and - - so that they can iterate through the enumerator values of a given enumtype. You can do it like this:

#i ncl ude <i ostreanr
usi ng nanespace std;
enum Days
{
Monday,
Tuesday,
Wednesday,
Thur sday,
Fri day,
Sat ur day,
Sunday
¥
Days& operator++(Days& d, int) // postfix ++

if (d == Sunday)
return d = Monday; //rollover

int tenp d; //convert to an int
return d stati c_cast<Days> (++tenp);
}
I nt main()
{

Days day = Monday;
for (;;) //display days as integers

{
cout << day <<endl;
day++;
I f (day == Sunday)
br eak;
}
return O;
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}

If you prefer to view the enumeratorsin their symbolic representation rather than as integers, you can overload the
operator << aswell:

ostream& operat or<<(ostrean& os, Days d) //display Days in synbolic form
{

swi tch
{
case Monday:

return os<<"Monday";
case Tuesday:

return os<<"Tuesday";
case Wednesday:

return os<<"Wednesday";
case Thursday:

return os<<"Thursady";
case Friday:

return os<<"Friday";
case Saturday:

return os<<"Satrurday";
case Sunday:

return os<<"Sunday";
defaul t:

return os<<"Unknown";

}
}

Overloading the Subscripts Operator

For various classes that contain arrays of elements, it's handy to overload the subscript operator to access asingle
element. Remember always to define two versions of the subscript operator: aconst version and anon-const
version. For example

class Ptr_collection
{
private :

void **ptr_array,

int el ements;
publ i c:

Ptr _collection() {}

/...

void * operator [] (int index) { return ptr_array[index];}

const void * operator [] (int index) const { return ptr_array[index];}

b
void f(const Ptr_collection & pointers)
{
const void *p = pointers[0]; //calls const version of operator []
if ( p==20)
return;
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el se

{
/l...use p
}
}

Function Objects

A function object isimplemented as a class that contains an overloaded version of the function call operator. An
instance of such a class can be used just like a function. Ordinary functions can have any number of arguments;
therefore, operator () isexceptional among other operators because it can have an arbitrary number of parameters. In
addition, it can have default arguments. In the following example, afunction object implements a generic increment
function:

#i ncl ude <i ostreanp
usi ng nanespace std;
cl ass i ncrenent

{
/la generic increnent function
public : tenplate < class T > T operator() (T t) const { return ++t;}
1
void f(int n, const increnenté& incr)
{
cout << incr(n); //output 1
int  main()
L
int i = 0;
i ncrement incr;
f(i, incr);
return O;
}

Conclusions

The concept of operator overloading is neither new nor C++ exclusive. It is one of the most fundamental facilities for
implementing abstract data types and compound classes. In many ways, overloaded operatorsin C++ behave like
ordinary member functions: They are inherited, they can be overloaded more than once, and they can be declared as
either nonstatic members or as nonmember functions. However, several restrictions apply to overloaded operators. An
overloaded operator has a fixed number of parameters, and it cannot have default arguments. In addition, the
associativity and the precedence of an operator cannot be altered. Built-in operators have an interface, consisting of
the number of operands to which the operator can be applied, whether the operator modifies any of its operands, and
result that is returned by the operator. When you are overloading an operator, it is recommended that you conform to
its built-in interface.

Conversion operators are a special type of overloaded operators. They differ from ordinary overloaded operatorsin
two respects. They do not have areturn value and they do not take any arguments.
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Introduction

Objects are the fundamental unit of abstraction in object-oriented programming. An object, in the broader sense, isa
region of memory storage. Class objects have properties that are determined when the object is created. Conceptually,
every class object has four special member functions: default constructor, copy constructor, assignment operator, and
destructor. If these members are not explicitly declared by the programmer, the implementation implicitly declares them.
This chapter surveys the semantics of the special member functions and their role in class design and implementation.
This chapter also examines several techniques and guidelines for effective usage of the special member functions.

Constructors

A constructor is used to initialize an object. A default constructor is one that can be invoked without any arguments. If
there is no user-declared constructor for aclass, and if the class does not contain const or reference data members, the
implementation implicitly declares a default constructor for it.

An implicitly-declared default constructor isani nl i ne publ i ¢ member of its class; it performs the initialization
operations that are needed by the implementation to create an object of thistype. Note, however, that these operations do
not involve initialization of user-declared data members or allocation of memory from the free store. For example

class C
{
private:

int n;

char *p;
public:

virtual ~C() {}
H
void f()

{
}

The programmer did not declare a constructor in class C -- an implicit default constructor was declared and defined by
the implementation in order to create an instance of class Cin the line numbered 1. The synthesized constructor does not
initialize the data members n and p, nor does it allocate memory for the latter. These data members have an
indeterminate value after obj has been constructed.

Cobj; // 1 inplicitly-defined constructor is invoked
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This is because the synthesized default constructor performs only the initialization operations that are required by the
implementation -- not the programmer -- to construct an object. In this case, Cis apolymorphic class. An object of this
type contains a pointer to the virtual function table of its class. The virtual pointer isinitialized by the implicitly-defined
constructor.

Other implementation-required operations that are performed by implicitly-defined constructors are the invocation of a
base class constructor and the invocation of the constructor of embedded objects. The implementation does not declare a
constructor for aclassif the programmer has defined one. For example

class C
{
private:
int n;
char *p;
public:
a() : n(0), p(NuLL) {}
virtual ~C() {}
1
void f2()

{
}

Now the data members of the object obj are initialized because the user-defined constructor was invoked to create it.
Note, however, that the user-defined constructor only initializes the data members n and p. Obviously, the virtual pointer
must have been initialized as well -- otherwise, the program will be ill-formed. But when did the initialization of the
virtual pointer take place? The compiler augments the user-defined constructor with additional code, which isinserted
into the constructor's body before any user-written code, and performs the necessary initialization of the virtual pointer.

Cobj; [/l 1 user-defined constructor is invoked

Calling An Object's Member Function From Its Constructor

Because the virtual pointer isinitialized in the constructor before any user-written code, it is safe to call member
functions (both virtual and nonvirtual) of an object from its constructor. It is guaranteed that the invoked virtual isthe
one that is defined in the current object (or of the base class, if it has not been overridden in the current object). However,
virtual member functions of objects that are derived from the one whose constructor is executing are not called. For
example

class A
{
publ i c:
virtual void f() {}
virtual void g() {}
H
class B: public A
{
public:
void f () {} // overriding A :f()
B()
{
f() /1 calls B::f()
g(); // g() was not overriden in B, therefore calling A :g()
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b
class C. public B
{
publi c:
void f () {} //overriding B::f()

Please note that if the object's member functions refer to data members of the object, it is the '‘programmer’s
responsibility to initialize these data membersfirst -- most preferably with a member-initialization list
(member-initialization lists are discussed next). For example

class C
L
privat e:
int n;
int getn() const { cout<<n<<endl; }
publi c:
cint j) : n(j) { getn(); } //Fine: ninitialized before getn() is called
b

Trivial Constructors

Asyou have observed, compilers synthesize a default constructor for every class or struct, unless a constructor was
already defined by the user. However, in certain conditions, such a synthesized constructor is redundant:

class Enpty {}; //class has no base cl asses, virtual nenber functions
/'l or enbedded objects

struct Person

{ .

i nt age;

char name[ 20] ;

doubl e sal ary;

1

int main()

{
Enpty e;
Per son p;
p. age = 30;
return O,

}

An implementation can instantiate Enpt y and Per son objects without a constructor. In such cases, the
explicitly-declared constructor is said to be trivial, which means that the implementation does not need it in order to
create an instance of itsclass. A constructor is considered trivial when all the following hold true:

¢ lItsclass has no virtual member functions and no virtual base classes.
o All the direct base classes of the constructor's class have trivia constructors.
« All the member objectsin the constructor's class have trivial constructors.

Y ou can see that both Enpt y and Per son fulfill these conditions; therefore, each of them has atrivial constructor. The
compiler suppresses the automatic synthesis of atrivial constructor, thereby producing code that is as efficient in terms
of size and speed as that which is produced by a C compiler.
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Avoid Reduplicating Identical Pieces Of Constructors' Code

It is very common to define a class that has more than one constructor. For instance, ast r i ng class can define one
constructor that takesconst char * asan argument, another that takes an argument of typesi ze_t to indicate the
initial capacity of the string, and a default constructor.

class string
{ .
private:
char * pc;
Ssize_t capacity;
size_t length;
enum { DEFAULT_SI ZE = 32};
publi c:
string(const char * s);
string(size_t initial_capacity );
string();
/l...other nmenber functions and overl oaded operators

b

Each of the three constructors performs individual operations. Nonetheless, some identical tasks -- such as allocating
memory from the free store and initializing it, or assigning the value of capaci t y to reflect the size of the allocated
storage -- are performed in every constructor. Instead of repeating identical pieces of code in each of the constructors, it
is better to move the recurring code into a single nonpublic member function. This function is called by every
constructor. The results are shorter compilation time and easier future maintenance:

class string
L
privat e:
char * pc;
size_ t capacity;
size_t |ength;
enum { DEFAULT_SI ZE = 32};
/'l the following function is called by every user-defined constructor
void init( size t cap = DEFAULT_SI ZE);
publi c:
string(const char * s);
string(size_t initial _capacity );

string();
/l...other menber functions and overl oaded operators
1
void string::init( size_t cap)
{
pc = new char[cap];
capacity = cap;
}
string::string(const char * s)
{

size t size = strlen (s);

init(size + 1); //make roomfor null term nating character
| ength = size;

strcpy(pc, S);
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}
string::string(size_t initial _capacity )
{
init(initial _capacity);
| engt h=0;
}
string::string()
{
init();
| ength = 0;
}

Is A Default Constructor Always Necessary?

A class might have no default constructor. For example

class File
L
private:
string path;
i nt node;
publi c:
File(const string& file path, int open_node);
~File();
b

ClassFi | e has auser-defined constructor that takes two arguments. The existence of a user-defined constructor blocks
the synthesis of an implicitly-declared default constructor. Because the programmer did not define a default constructor
either, classFi | e does not have a default constructor. A class with no default constructor limitsits users to a narrower
set of allowed uses. For instance, when an array of objects is instantiated, the default constructor -- and only the default
constructor -- of each array member isinvoked. Therefore, you cannot instantiate arrays thereof unless you use a
complete initialization list:

File folder1[10]; //error, array requires default constructor
File fol der2[2] { File("f1", 1)}; //error, f2[1] still requires

//a default constructor
{ File("f1", 1), File("f2",2), File("f3",3) }; //CK,

[Ifully initialized array

Simlar difficulties arise when you attenpt to store objects that have no defaul t
constructor in STL containers: #i nclude <vector>
usi ng nanmespace std;
void f()

{

File fol der3[ 3]

vector <File> fv(10); //error, File has no default constructor
vector <File> v; //K
v.push_back(File("db.dat", 1)); // K
v.resize(10); //error, File has no default constructor
v.resize(10, File("f2",2)); // X

}

Was the lack of adefault constructor in class Fi | e intentional? Maybe. Perhaps the implementer considered an array of
Fi | e objects undesirable because each object in the array needs to somehow acquire its path and open mode. However,
the lack of a default constructor
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Imposes restrictions that are too draconian for most classes.

Eligibility For STL Containment

In order to qualify as an element in an STL container, an object must possess a copy constructor, an assignment operator,
and a destructor as public members (more on thisin Chapter 10, "STL and Generic Programming").

A default constructor is also required for certain STL container operations, as you saw in the preceding example.

Many operating systems store the filesin adirectory as alinked list of file objects. By omitting a default constructor
from Fi | e, the implementer severely compromises the capability of its users to implement afile system asa
std::list<File>.

For aclasssuch asFi | e, whose constructor must initialize its members with user-supplied values, it might still be
possible to define a default constructor. Instead of supplying the necessary path and open mode as constructor
arguments, a default constructor can read them from a sequential database file.

When Are Default Constructors Undesirable?

Still, adefault constructor can be undesirable in some cases. One such case is a singleton object. Because a singleton
object must have one and only one instance, it is recommended that you block the creation of built-in arrays and
containers of such objects by making the default constructor inaccessible. For example

#i ncl ude<stri ng>

usi ng nanmespace std;

int APl _getHandl e(); //system APl function
cl ass Application

L
private:

string nane;

i nt handl e;

Application(); // nake default constructor inaccessible
public:

explicit Application(int handle);

~Appl i cation();
1
i nt main()

Application theApp( APl _getHandle() ); //ok

Application apps[10]; //error, default constructor is inaccessible
}

Class Appl i cat i on does not have a default constructor; therefore, it isimpossible to create arrays and containers of
Appl i cat i on objects. In this case, the lack of a default constructor isintentional (other implementation details are il
required to ensure that a single instance -- and only a single instance -- of Appl i cat i on is created. However, making
the default constructor inaccessible is one of these details).

Constructors Of Fundamental Types

Fundamental typessuchaschar,i nt,andf| oat have constructors, as do user-defined types. You caninitialize a
variable by explicitly invoking its default constructor:

int main()
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{
char ¢ = char();
int n =1int ();
return O,

}

The value that is returned by the explicit invocation of the default constructor of afundamental type is equivalent to
casting O to that type. In other words,

char ¢ = char();

isequivalent to

char ¢ = char(0);

Of coursg, it is possible to initialize afundamental type with values other than O:

float f = float (0.333);
char ¢ = char ('a');

Normally, you use the shorter notation:

char ¢ = '"a';
float f = 0.333;

However, this language extension enables uniform treatment in templates for fundamental types and user-defined types.
Fundamental types that are created on the free store using the operator new can beinitialized in a similar manner:

int *pi= newint (10);
float *pf = new float (0.333);

explicit Constructors

A constructor that takes a single argument is, by default, an implicit conversion operator, which convertsits argument to
an object of its class (see aso Chapter 3, "Operator Overloading™"). Examine the following concrete example:

class string
L
private:
I nt size;
i nt capacity;
char *buff;
public:
string();
string(int size); // constructor and inplicit conversion operator
string(const char *); // constructor and inplicit conversion operator
~string();
3

Class st r i ng hasthree constructors. a default constructor, a constructor that takesi nt , and a constructor that
constructs astring fromconst char *. The second constructor is used to create an empty st r i ng object with an
initial preallocated buffer at the specified size. However, in the case of classst r i ng, the automatic conversion is
dubious. Converting ani nt into astring object doesn't make sense, although thisis exactly what this constructor does.
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Consider the following:

I nt main()

{
string s = "hello"; //OK convert a Cstring into a string object
int ns = 0;
s =1; // 1 oops, programrer intended to wite ns = 1,

In the expressions= 1; , the programmer simply mistyped the name of the variable ns, typing s instead. Normally,
the compiler detects the incompatible types and issues an error message. However, before ruling it out, the compiler first
searches for a user-defined conversion that allows this expression; indeed, it finds the constructor that takesi nt .
Consequently, the compiler interprets the expression s= 1; asif the programmer had written

s = string(1l);

Y ou might encounter asimilar problem when calling afunction that takesa st r i ng argument. The following example
can either be a cryptic coding style or smply a programmer's typographical error. However, due to the implicit
conversion constructor of classst ri ng, it will pass unnoticed:

int f(string s);
int main()

f(1); // without a an explicit constructor,
//this call is expanded into: f ( string(l) );
//was that intentional or nerely a programer's typo?

}

'In order to avoid such implicit conversions, a constructor that takes one argument needsto be declared expl i ci t :

class string

{

/...

publi c:
explicit string(int size); // block inplicit conversion
string(const char *); //inplicit conversion
~string();

3

Anexpl i cit constructor does not behave as an implicit conversion operator, which enables the compiler to catch the
typographical error thistime:

int main()

{

int ns =
s =1; // conpile time error ; this time the conpiler catches the typo

string s = "hello"; //OK, convert a C-string into a string object

}

Why aren't all constructors automatically declared expl i ci t ? Under some conditions, the automatic type conversion is
useful and well behaved. A good example of thisisthe third constructor of st r i ng:

string(const char *);
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The implicit type conversion of const char * to astring object enablesits users to write the following:

string s;
s = "Hello";

The compiler implicitly transforms this into

string s;
/ I pseudo C++ code:
s =string ("Hello"); //create a tenporary and assign it to s

On the other hand, if you declare this constructor expl i ci t , you haveto use explicit type conversion:

class string
{
/...
publi c:
explicit string(const char *);
b
int main()
L
string s;
s = string("Hello"); [//explicit conversion now required
return O;

}

Extensive amounts of legacy C++ code rely on the implicit conversion of constructors. The C++ Standardization
committee was aware of that. In order to not make existing code break, the implicit conversion was retained. However, a
new keyword, expl i ci t, wasintroduced to the languageto enable the programmer to block the implicit conversion
when it isundesirable. As arule, a constructor that can be invoked with a single argument needs to be declared

expl i ci t.When theimplicit type conversion isintentional and well behaved, the constructor can be used as an
implicit conversion operator.

Blocking Undesirable Object Instantiation

Sometimes it might be useful to disable programmers from instantiating an object of a certain class, for example, a class
that is meant to be used only as a base class for others. A pr ot ect ed constructor blocks creation of class instances, yet
it does so without disallowing derived objects' instantiation:

cl ass CommonRoot

{

pr ot ect ed:
ConmonRoot (){}//no objects of this class should be instantiated
virtual ~CommonRoot ();

b

cl ass Derived: public ComobnRoot

{

publi c:

Derived();
3
i nt main()

{
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Derived d; /'l OK, constructor of d has access to
/[l any protected nenber in its base class
ConmonRoot cr; //conpilation error: attenpt to
/|l access a protected nenber of ConmonRoot

}

The same effect of blocking instantiation of a class can be achieved by declaring pure virtual functions. However, these
add runtime and space overhead. When pure virtual functions aren't needed, you can use apr ot ect ed constructor
instead.

Using Member Initialization Lists

A constructor might have a member initialization (mem-initialization for short) list that initializes the data members of
the class. For example

cl ass Cell phone //1: nmeminit

{

privat e:
| ong nunber;
bool on;
public:
Cel | phone (long n, bool ison) : nunber(n), on(ison) {}

b

The constructor of Cel | phone can also be written as follows:

Cel | phone (long n, bool ison) //2 initialization within constructor's body

nunber = n;
on = ison;

}

Thereisno substantial difference between the two formsin the case of Cel | phone's constructor. Thisis due to the way
mem-initialization lists are processed by the compiler. The compiler scans the mem-initialization list and inserts the
initialization code into the constructor's body before any user-written code. Thus, the constructor in the first exampleis
expanded by the compiler into the constructor in the second example. Nonethel ess, the choice between using a
mem-initialization list and initialization inside the constructor's body is significant in the following four cases:

« Initialization of const members

« Initialization of reference members

« Passing arguments to a constructor of a base class or an embedded object
« Initialization of member objects

In the first three cases, amem-initialization list is mandatory; in the fourth case, it is optional. Consider the concrete
examples that are discussed in the following paragraphs.’

const Data Members

const datamembers of aclass, including const members of a base or embedded subobject, must beinitialized in a
mem-initialization list.

class All ocator
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L
private:
const int chunk_si ze;
publi c:
Al l ocator(int size) : chunk_size(size) {}
b

Reference Data Members

A reference data member must be initialized by a mem-initialization list.

cl ass Phone;
cl ass Modem

L
private:
Phone & |i ne;
public:
Modem({ Phone & In) : line(ln) {}
b

Invoking A Constructor Of A Base Or A Member Object With Arguments

When a constructor has to pass arguments to the constructor of its base class or to the constructor of an embedded object,
amem-initializer must be used.

cl ass base
L
privat e:
i nt nunt;
char * text;
publi c:
base(int nl, char * t) {numl = nl; text =1t; } //no default constructor
}
cl ass derived : public base
{
private:
char *buf;
publi c:
derived (int n, char * t) : base(n, t) //pass argunents to base constructor
{ buf = (new char[100]);}
b

Embedded Objects

Consider the following example:

#i ncl ude<stri ng>
using std::string;
cl ass Website
-
privat e:

string URL
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unsigned int IP

public:
Websi te()
{
URL = "";
IP = 0;
}
1

ClassWebsi t e has an embedded object of type st d: : st ri ng. The syntax rules of the language do not force the
usage of mem-initialization to initialize this member. However, the performance gain in choosing mem-initialization
over initialization inside the constructor's body is significant. Why? The initialization inside the constructor's body is
very inefficient because it requires the construction of the member URL ; atemporary st d: : st ri ng object isthen
constructed from thevalue" " , which isin turn assigned to URL. Finally, the temporary object has to be destroyed. The
use of amem-initialization list, on the other hand, avoids the creation and destruction of atemporary object (the
performance implications of mem-initialization lists are discussed in further detail in Chapter 12, "Optimizing Y our
Code").

""The Order Of A Mem-Initialization List Must Match The Order Of Class Member Declarations

Due to the performance difference between the two forms of initializing embedded objects, some programmers use
mem-initialization exclusively -- even for fundamental types. It isimportant to note, however, that the order of the
initialization list has to match the order of declarations within the class. Thisis because the compiler transformsthe list
so that it coincides with the order of the declaration of the class members, regardless of the order specified by the
programmer. For example

cl ass Website
{
private:
string URL; //1
unsigned int 1P, //2
publ i c:
Website() : IP(O), URL("") {} // initialized in reverse order
b

In the mem-initialization list, the programmer first initializes the member | P, and then URL, even though | P is declared
after URL. The compiler transforms the initialization list to the order of the member declarations within the class. In this
case, the reverse order is harmless. When there are dependenciesin the order of initialization list, however, this
transformation can cause unexpected surprises. For example

class string

L
privat e:
char *buff;
i nt capacity;
publi c:
explicit string(int size)
capacity(size), buff (new char [capacity]) {} undefined behavi or
b

The mem-initialization list in the constructor of st r i ng does not follow the order of declaration of st r i ng's members.
Consequently, the compiler transforms the list into
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explicit string(int size)
buff (new char [capacity]), capacity(size) {}

The member capaci t y specifies the number of bytes that new has to allocate; but it has not been initialized. The
resultsin this case are undefined. There are two ways to avert this pitfall: Change the order of member declarations so
that capaci t y isdeclared before buf f , or move the initialization of buf f into the constructor's body.

The Exception Specification Of An Implicitly-Declared Default Constructor

An implicitly-declared default constructor has an exception specification (exception specifications are discussed in
Chapter 6, ""Exception Handling""). The exception specification of an implicitly-declared default constructor contains
all the exceptions of every other special member function that the constructor invokes directly. For example

struct A

{
b

struct B

{

B() throw(); //not allowed to throw any exceptions

A(); //can throw any type of exception

siruct C: public B
{

}
struct D public A public B

[linmplicitly-declared C.:C() throw,

/[linplicitly-declared D:.:D();
3

The implicitly-declared constructor in class Cis not allowed to throw any exceptions because it directly invokes the
constructor of class B, which is not allowed to throw any exceptions either. On the other hand, the implicitly-declared
constructor in class D is allowed to throw any type of exception because it directly invokes the constructors of classes A
and B. Since the constructor of class Ais allowed to throw any type of exception, D'simplicitly-declared constructor has
amatching exception specification. In other words, D's implicitly-declared constructor alows all exceptionsif any
function that it directly invokes allows all exceptions; it allows no exceptionsif every function that it directly invokes
allows no exceptions either. Asyou will see soon, the same rules apply to the exception specifications of other
implicitly-declared special member functions.

Copy Constructor

A copy constructor is used to initialize its object with another object. A constructor of a class Cisacopy constructor if
itsfirst argument is of type C&, const C&, vol atil e C& orconst vol atil e C&, andif there are no additional
arguments or if al other arguments have default values. If there is no user-defined copy constructor for aclass, the
implementation implicitly declares one. An implicitly-declared copy constructor isani nl i ne publ i ¢ member of its
class, and it has the form

C :C(const C&);

if each base class of C has a copy constructor whose first argument is areferenceto aconst object of the base class
type, and if al the nonstatic embedded objects in C also have a copy constructor that takes areferenceto aconst object
of their type. Otherwise, the implicitly-declared copy constructor is of the following type:
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C:.C(C8);

An implicitly-declared copy constructor has an exception specification. The exception specification contains all the
exceptions that might be thrown by other specia functions that the copy constructor invokes directly.

Implicitly-Defined Copy Constructors

A copy constructor issaid to be trivial if it isimplicitly declared, if its class has no virtual member functions and no
virtual base classes, and if its entire direct base classes and embedded objects have trivial copy constructors. The
implementation implicitly defines an implicitly-declared, nontrivial copy constructor to initialize an object of its type
from a copy of an object of its type (or from one derived from it). The implicitly-defined copy constructor performs a
memberwise copy of its subobjects, asin the following example:

#i ncl ude<stri ng>
using std::string;
cl ass Website //no user-defined copy constructor
{
private:
string URL;
unsigned int IP;
public:
Website() @ IP(0), URL("""") {}
1
int main ()
{
Website sitel;
Website site2(sitel); //invoke inplicitly-defined copy constructor

}

The programmer did not declare a copy constructor for class\WWebsi t e. Because Wbsi t e has an embedded object of
typest d: : stri ng, which happens to have a user-defined copy constructor, the implementation implicitly defines a
copy constructor for class \ebsi t e and usesit to copy construct the object si t e2 from si t e1. The synthesized copy
constructor first invokes the copy constructor of st d: : st ri ng, and then performs a bitwise copying of the data
membersof si tel intosit e2.

Novices are sometimes encouraged to define the four special member functions for every class they write. As can be
seen in the case of the \ebsi t e class, not only is this unnecessary, but it is even undesirable under some conditions.
The synthesized copy constructor (and the assignment operator, as you are about to see) already do the "right thing".
They automatically invoke the constructors of base and member subobjects, they initialize the virtual pointer (if one
exists), and they perform a bitwise copying of fundamental types. In many cases, thisis exactly the programmer's
intention anyway. Furthermore, the synthesized constructor and copy constructor enable the implementation to create
code that is more efficient than user-written code because it can apply optimizations that are not always possible
otherwise.

Implementation-Required Initializations
Like ordinary constructors, copy constructors -- either implicitly-defined or user-defined -- are augmented by the

compiler, which inserts additional code into them to invoke the copy constructors of direct base classes and embedded
objects. It is guaranteed, however, that virtual base subobjects are copied only once.
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Simulating Virtual Constructors

Unlike ordinary member functions, a constructor has to know the exact type of its object at compile timein order to
construct it properly. Consequently, a constructor cannot be declared vi r t ual . Still, creating an object without
knowing its exact type is useful in certain conditions. The easiest way to simulate virtual construction is by defining a
virtual member function that returns a constructed object of its class type. For example

cl ass Browser

{
publ i c:
Browser () ;
Browser ( const Browser&);
virtual Browser* construct()
{ return new Browser; } //virtual default constructor
virtual Browser* clone()
{ return new Browser(*this); } //virtual copy constructor
virtual ~Browser();
...
b
cl ass HTMLEdi tor: public Browser
{
publ i c:
HTMLEdi tor ();
HTMLEdi tor (const HTM.Editor &);
HTMLEdi tor * construct ()
{ return new HTMLEdi tor; }//virtual default constructor
HTMLEdi tor * cl one()
{ return new HTMLEditor (*this); } //virtual copy constructor
virtual ~HTM.Editor();
...
1

The polymorphic behavior of the member functionscl one() and construct () enables-you to instantiate a new
object of the right type, without having to know the exact type of the source object.

void create (Browser& br)

{
br.view();
Browser* pbr = br.construct();
/l...use pbr and br
del et e pbr;
}

pbr isassigned a pointer to an object of the right type -- either Br owser or any class publicly derived from it. Note
that the object br does not delete the new object it has created; thisisthe user's responsibility. If it did, the lifetime of
the reproduced objects would depend on the lifetime of their originator -- which would significantly compromise the

usability of thistechnique.
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Covariance of Virtual Member Functions

The implementation of virtual constructors relies on arecent modification to C++, namely virtual functions covariance.
An overriding virtua function has to match the signature and the return type of the function it overrides. This restriction
was recently relaxed to enable the return type of an overriding virtual function to co-vary with its class type. Thus, the
return type of a public base can be changed to the type of a derived class. The covariance applies only to pointers and
references.

CAUTION: Please note that some compilers do not support virtual member functions' covariance yet.

Assighment Operator

A user-declared assignment operator of class Cis anonstatic, nontemplate member function of its class, taking exactly
one argument of type C, C&, const C&,vol atile C& orconst volatile C&

Implicitly-Defined Assignment Operator

If there is no user-defined assignment operator for a class, the implementation implicitly declares one. An
implicitly-declared assignment operator isani nl i ne publ i ¢ member of itsclass, and it has the form

C& C:.:operator=(const C&);

if each base class of C has an assignment operator whose first argument is areferenceto aconst object of base class
type, and if al the nonstatic embedded objects in C also have an assignment operator that takes areferenceto aconst
object of their type. Otherwise, the implicitly-declared assignment operator is of the following type:

C& C::operator=(C&);

An implicitly-declared assignment operator has an exception specification. The exception specification contains al the
exceptions that might be thrown by other special functions that the assignment operator invokes directly. An assignment
operator issaid to betrivial if it isimplicitly declared, if its class has no virtual member functions or virtual base classes,
and if its direct base classes and embedded objects have atrivial assignment operator.

Simulating Inheritance Of Assignment Operator

Because an assignment operator isimplicitly declared for aclassif it is not declared by the programmer, the assignment
operator of abase classis aways hidden by the assignment operator of aderived class. In order to extend -- rather than
override -- the assignment operator in aderived class, you must first invoke the assignment operator of the base
explicitly, and then add the operations that are required for the derived class. For example

class B
L
private:
char *p;
publi c:
enum {si ze = 10};
const char * Getp() const {return p;}
B() : p ( newchar [size] ) {}
B& operator = (const C& other);

if (this !'= &other)
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strcpy(p, other.Getp() );
return *this;

}
1
class D: public B
{
private:
char *q;
public:
const char * Getq() const {return q;}

D(): g ( newchar [size] ) {}
D& operator = (const D& ot her)

{
if (this !'= &other)
{
B::operator=(other); [//first invoke base's assignment operator explicitly
strcpy(q, (other.Getq())); [//add extensions here

return *this;

}
s

When Are User-Written Copy Constructors And
Assignment Operators Needed?

The synthesized copy constructor and assignment operator perform a memberwise copy. Thisis the desirable behavior
for most uses. However, it can be disastrous for classes that contain pointers, references, or handles. In such cases, you
have to define a copy constructor and assignment operator to avoid aliasing. Aliasing occurs when the same resourceis
used simultaneously by more than one object. For example

#i ncl ude <cstdi o>
usi ng nanespace std;
cl ass Docunent

L
privat e:

FI LE *pdb;
public:

Docunent (const char *filenane) {pdb = fopen(filenane, "t");}

Docunent (FILE *f =NULL) : pdb{}

~Docunent () {fclose(pdb);} //bad, no copy constructor

[/ or assignnment operator defined
1
voi d assi gn( Docunent & d)
{

Docunent tenp("letter.doc");

d =tenp; //Aiasing; both d and tenp are pointing to the sane file
}//tenp's destructor is now called and closes file while d is still using it
int main()

{

Docunent doc;
assi gn(doc);
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return O,
/1 doc now uses a file which has just been closed. disastrous
}}/ /1 OOPS! doc's destructor is now i nvoked and closes 'letter.doc' once again

Because the implementer of class Docunent did not define a copy constructor and assignment operator, the compiler
defined them implicitly. However, the synthesized copy constructor and assignment operator result in aliasing. An
attempt to open or close the same file twice yields undefined behavior. One way to solve this problem isto define an
appropriate copy constructor and assignment operator. Please note, however, that the aliasing results from the reliance on
low-level language constructs (file pointersin this case), whereas an embedded f st r eamobject can perform the
necessary checks automatically. In that case, a user-written copy constructor and assignment operator are unnecessary.
The same problem occurs when bare pointersto char are used as data membersinstead of asst ri ng objects. If you
use apointer to char rather thanst d: : stri ng inclassWebsi t e, you face an aliasing problem as well.

Implementing Copy Constructor And Assignment Operator

Another conclusion that can be drawn from the preceding example is that whenever you define a copy constructor, you
must also define the assignment operator. When you define only one of the two, the compiler creates the missing one --
but it might not work as expected.

The"Big ThreeRule" or the" Big Two Rule" ?

The famous "Big Three Rule" saysthat if aclass needs any of the Big Three member functions (copy
constructor, assignment operator, and destructor), it needs them all. Generally, thisrule refers to classes that
allocate memory from the free store. However, many other classes require only that the Big Two (copy
constructor and assignment operator) be defined by the user; the destructor, nonetheless, is not aways
required. Examine the followingexample:

cl ass Year
L
private:
int vy;
bool cached; //has the object been cached?
publi c:
/...
Year (int y);
Year (const Year & other) //cached should not be copied

{
y = other.getYear();

}

Year & operator =(const Year&other) //cached should not be copied
{
y = other.getYear();
return *this;
}
int getYear() const { returny; }
};//no destructor required for class Year

Class Year does not alocate memory from the free store, nor does it acquire any other resources during its
construction. A destructor is therefore unnecessary. However, the class needs a user-defined copy
constructor and assignment operator to ensure that the value of the member that iscached isnot copied
because it is calculated for every individual object separately.

When a user-defined copy constructor and assignment operator are needed, it isimportant to implement them in away
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that prevents self-assignment or aliasing. Usually, it is sufficient to fully implement only one of the two, and then define
the other by means of the first. For example

#i ncl ude <cstring>

usi ng nanespace std;

cl ass Person

L

private:
i nt age;
char * nane;

public:
int getAge () const { return age;}
const char * getName() const { return nane; }
/...
Person (const char * nanme = NULL, int age =0) {}
Person & operator= (const Person & other);
Person (const Personé& other);

1

Person & Person::operator= (const Person & other)

if (&ther != this) //guard fromself assignnment
{

size t len = strlen( other.getNane());

I f (strlen (getNanme() ) < len)

delete [] nane; //release current buffer
name = new char [l en+1];
}
strcpy(name, other.getNane());
age = ot her. get Age();
}

return *this;

}

Per son: : Person (const Person & other)

{

*this=other; //OK use user-defined assignnent operator is invoked

}
Blocking Object Copying

There are situations in which enabling the user to copy or assign a new value to an object is undesirable. Y ou can disable
both by explicitly declaring the assignment operator and copy constructor as pri vat e:

cl ass NoCopy
{
private:

NoCopy& operator = (const NoCopy& other) { return *this; }
NoCopy(const NoCopy& other) {/*..*/}
publi c:

NoCopy() {}
/...

file:///D|/Cool Stuff/old/ftp/1/1/ch04/ch04.htm (20 von 24) [12.05.2000 14:46:07]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - 4 - Special Mem...nstructor, Copy Constructor, Destructor, And Assignment Operator

1

void f()

{
NoCopy nc; [/ fine, default constructor call ed
NoCopy nc2(nc); [//error; attenpt to call a private copy constructor
nc2 = nc; //also a conpile tinme error; operator=1is private

}

Destructors

A destructor destroys an object of its class type. It takes no arguments and has no return type (not even voi d). const
andvol ati | e qualities are not applied on an object under destruction; therefore, destructors can be invoked for
const,vol atil e,orconst vol ati | e objects. If there is no user-defined destructor for a class, the
implementation implicitly declares one. An implicitly-declared destructor isani nl i ne publ i ¢ member of itsclass
and has an exception specification. The exception specification contains all the exceptions that might be thrown by other
special functions that the destructor invokes directly.

A destructor istrivial if it isimplicitly declared and if its entire direct base classes and embedded objects have trivial
destructors. Otherwise, the destructor is nontrivial. A destructor invokes the destructors of the direct base classes and
member objects of its class. The invocation occurs in the reverse order of their construction. All destructors are called
with their qualified name, ignoring any possible virtual overriding destructors in more derived classes. For example

#i ncl ude <i ostreanp
usi ng nanmespace std;
class A
{
publ i c:
virtual ~A() { cout<<"destroying A"<<endl;}
H
class B: public A
{
publi c:
~B() { cout<<"destroying B"<<endl;}
H

int main()
{
B b;
return O;

1
This program displays

destroying B
destroying A

This is because the compiler transforms the user-defined destructor of class B into

~B()
{
/luser-witten code bel ow
cout <<"destroyi ng B"<<endl;
/I pseudo C++ code inserted by the conpiler bel ow

file:///D|/Cool Stuff/old/ftp/1/1/ch04/ch04.htm (21 von 24) [12.05.2000 14:46:07]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - 4 - Special Mem...nstructor, Copy Constructor, Destructor, And Assignment Operator

this->A:~A(); // destructor called using its qualified nane

}

Although the destructor of class Aisvirtua, the qualified call that is inserted into the destructor of class B is resolved
statically (calling afunction with a qualified name bypasses the dynamic binding mechanism).

Explicit Destructor Invocation

Destructors are invoked implicitly in the following cases.
« For static objects at program termination

For local objects when the block in which the object is created exits

For atemporary object when the lifetime of the temporary object ends

For objects allocated on the free store using new, through the use of del et e
 During stack unwinding that results from an exception

A destructor can also be invoked explicitly. For example:

class C

{
public:

~q() {}

vé)i d destroy(C& c)
{

}

A destructor can aso be explicitly invoked from within a member function of its object:

c.C:~C(); //explicit destructor activation

voi d C::destroy()
{

}

In particular, explicit destructor invocation is necessary for objects that were created by the pl acenent new operator
(pl acenment newisdiscussed in Chapter 11, "Memory Management”).

this->C :~C();

Pseudo Destructors

Fundamental types have constructors, as you have seen. In addition, fundamental types also have a pseudo destructor. A
pseudo destructor is a syntactic construct whose sole purpose isto satisfy the need of generic algorithms and containers.
It isano-op code that has no real effect on its object. If you examine the assembly code that your compiler produces for
a pseudo destructor invocation, you might discover that the compiler ssmply ignored it. A pseudo destructor invocation is
shown in the following example:

typedef int N;
int main()
{
Ni =0;
i.N:~N(); //pseudo destructor invocation
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i =1; //i was not affected by the invocation of the pseudo destructor
return O,

}

Thevariablei isdefined and initialized. In the following statement, the pseudo destructor of the non-classtype Nis
explicitly invoked but it has no effect on its object. Like the constructors of fundamental types, pseudo destructors enable
the user to write code without having to know if adestructor actually exists for a given type.

Pure Virtual Destructors

Unlike ordinary member functions, avirtual destructor is not overridden when it is redefined in a derived class. Rather, it
is extended. The lower-most destructor first invokes the destructor of its base class; only then isit executed.
Consequently, when you try to declare a pure virtual destructor, you might encounter compilation errors, or worse -- a
runtime crash. In this respect, pure virtual destructors are exceptional among pure virtual functions -- they have to be
defined. Y ou can refrain from declaring a destructor with the pure specifier, making it only virtual. However, thisis an
unnecessary design compromise. Y ou can enjoy both worlds by forcing an interface whose members are all pure virtual,
including the destructor -- and all this without experiencing runtime crashes. How isit done?

First, the abstract class contains only a declaration of a pure virtual destructor:

class Interface

{
publi c:
virtual void Open() = 0;
virtual ~Interface() = 0O;
1

Somewhere outside the class declaration, the pure virtual destructor has to be defined as follows:

Interface::~Interface()
{} //definition of a pure virtual destructor; should always be enpty

Constructors And Destructors Should Be Minimal

When you are designing a class, remember that it might serve as abase for other subclasses. It can also be used as a
member object in alarger class. As opposed to ordinary member functions, which can be overridden or simply not
called, the base class constructor and destructor are automatically invoked. It is not a good ideato force users of a
derived and embedded object to pay for what they do not need, but are forced to accept. In other words, constructors and
destructors should contain nothing but the minimal functionality needed to construct an object and destroy it. A concrete
example can demonstrate that: A st ri ng class that supports serialization should not open/create afile in its constructor.
Such operations need to be left to a dedicated member function. When anew derived class -- suchas Shor t Stri ng,
which holds a fixed length string -- is created, its constructor is not forced to perform superfluous file 1/0 that isimposed
by the constructor of its base class.

Conclusions

The constructor, copy constructor, assignment operator, and destructor automate most of the tedium that is associated
with creating, copying, and destroying objects. The symmetry between a constructor and a destructor in C++ israre
among object-oriented programming languages, and it serves as the basis for advanced design idioms (as you will seein
the next chapter, "Object Oriented Programming and Design™).

Each C++ object possesses the four member functions, which can be declared by the programmer or declared implicitly
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by the implementation. An implicitly-declared special member function can be trivial, which means that the
implementation does not have to define it. The synthesized special member functions perform only operations that are
required by the implementation. User-written special member functions are automatically augmented by the compiler --
to ensure the proper initialization of base and embedded subobjects -- and the virtual pointer. Fundamental types have
constructors and pseudo destructors, which facilitate generic programming.

In many cases, the synthesized special member functions do the "right thing". When the default behavior is unfitted, the
programmer has to define one or more of the special functions explicitly. Often, however, the need for user-written code
derives from combining low-level data structures with a high-level interface, and might indicate a design flaw. Declaring
aconstructor expl i ci t ensuresthat it will not serve as an implicit conversion operator.

A mem-initialization list is necessary for the initialization of const and reference data members, as well asto pass
arguments to a base or embedded subobject. In al other cases, amem-initialization list is optional but can enhance
performance. Constructors and assignment operators can be used in several ways to control instantiation and copying of
objects. Destructors can be invoked explicitly. Destructors that are declared pure virtual have to be defined.

Contents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.
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Introduction

C++ isthe most widely used object-oriented programming language today. The success of C++ hasbeen a
prominent factor in making object-oriented design and programming a de facto standard in today's software
industry. Y et, unlike other object-oriented programming languages (some of them have been around for nearly 30
years), C++ does not enforce object-oriented programming -- it can be used as a"better C", as an object-based
language, or as a generic programming language. This flexibility, which is unparalleled among programming
languages, makes C++ a suitable programming language in any domain area -- real time, embedded systems, data
processing, numerical computation, graphics, artificial intelligence, or system programming.

This chapter begins with abrief survey of the various programming styles that are supported by C++. Next, you
will focus on various aspects of object-oriented design and programming.

Programming Paradigms

A programming paradigm defines the methodology of designing and implementing software, including the
building blocks of the language, the interaction between data structures and the operations applied to them,
program structure, and how problems are generally analyzed and solved. A programming language provides the
linguistic means (keywords, preprocessor directives, program structure) as well as the extra-linguistic
capabilities, namely standard libraries and programming environment, to support a specific programming
paradigm. Usually, a given programming language is targeted for a specific application domain, for example,
string manipulation, mathematical applications, simulations, Web programming and so on. C++, however, is not
confined to any specific application domain. Rather, it supports many useful programming paradigms. Now, for a
discussion of some of the most prominent programming paradigms supported in C++.

Procedural Programming

C++isasuperset of 1ISO C. Assuch, it can be used as a procedural programming language, albeit with tighter
type checking and several enhancements that improve design and coding: reference variables, inline functions,
default arguments, and bool type. Procedural programming is based on separation between functions and the
datathat they manipulate. In general, functions rely on the physical representation of the data types that they
manipulate. This dependency is one of the most problematic aspects in the maintenance and extensibility of
procedural software.

Procedural Programming Is Susceptible To Design Changes

Whenever the definition of atype changes (as aresult of porting the software to a different platform, changesin
the customer's requirement, and so on), the functions that refer to that type have to be modified accordingly. The
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oppositeis also true: When afunction is being changed, its arguments might be affected as well; for instance,
instead of passing a struct by value, it might be passed by address to optimize performance. Consider the
following:

struct Date //pack data in a conmpact struct
{
char day;
char nont h;
short vyear;
};
bool isDateValid(Date d); //pass by val ue
void getCurrentDate(Date * pdate); //changes its argunent, address needed
void initializeDate (Date* pdate); //changes its argunent, address needed

Data structures, such as Dat e, and the group of associated functions that initialize, read, and test it are very
common in software projects in which C is the predominant programming language. Now suppose that due to a
changein the design, Dat e is required to also hold the current time stamp in seconds. Consequently, achange in
the definition of Dat e is made:

struct Date
{
char day;
char nont h;
short year;
| ong seconds;
}; //now | ess conpact than before

All the functions that manipulate Dat e have to be modified to cope with change. An additional change in the
design adds one more field to store millionths of a second in order to make a unique timestamp for database
transactions. The modified Dat e is now

struct Date

{
char day;

char nonth

short vyear;

| ong seconds;
long mllionths;

b

Once more, al the functions that manipulate Dat e have to be modified to cope with the change. Thistime, even
the interface of the functions changes because Dat e now occupies at least 12 bytes. Functions that are passed a
Dat e by value are modified to accept a pointer to Dat e.

bool isDateValid(Date* pd); // pass by address for efficiency
Drawbacks of Procedural Programming

Thisexampleis not fictitious. Such frequent design changes occur in amost every software project. The budget
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and time overhead that are produced as a result can be overwhelming; indeed, they sometimes lead to the
project's discontinuation. The attempt to avoid -- or at least to minimize -- these overheads has led to the
emergence of new programming paradigms.

Procedural programming enables only alimited form of code reuse, that is, by calling afunction or using a
common user-defined data structure. Nonetheless, the tight coupling between a data structure and the functions
that manipulate it considerably narrows their reusability potential. A function that computes the square root of a
doubl e cannot be applied to a user-defined st r uct that representsaconpl ex, for example. In general,
procedural programming languages rely on static type checking, which ensures better performance than dynamic
type checking -- but it also compromises the software's extensibility.

Procedural programming languages provide a closed set of built-in data types that cannot be extended.
User-defined types are either unsupported or they are "second class citizens' in the language. The user cannot
redefine built-in operators to support them. Furthermore, the lack of abstraction and information hiding
mechanisms force users to expose the implementation details. Consider the standard C functions at of () ,

atoi (),andat ol (), which convert aC-string to doubl e, i nt, and| ong, respectively. Not only do they
force the user to pay attention to the physical data type of the return value (on most machines these days, ani nt
and al ong areidentical anyway), they also prohibit the use of other data types.

Why Procedural Programming Still Matters

In spite of its noticeable drawbacks, procedural programming is still the preferred programming paradigm in
some specific application domains, such as embedded and time critical systems. Procedural programming is also
widely used in machine generated code because code reuse, extensibility, and maintenance are immaterial in this
case. Many SQL interpreters, for example, translate the high-level SQL statementsinto C code that is then
compiled.

Procedural programming languages -- such as C, Pascal, or Fortran -- produce the most efficient machine code
among high-level programming languages. In fact, development teams that are reluctant to adopt object
orientation often point to performance degradation as the major deterring factor.

The evolution of C++ is unique among programming languages. The job of its creators might have been alot
easier had they chosen to design it from scratch, without guaranteeing backward compatibility with C. Yet this
backward compatibility is one of the its strengths: It enables organizations and programmers to benefit from C++
without having to trash hundreds of millions of lines of working C code. Furthermore, C programmers can easily
become productive in C++ even before they have fully mastered object-oriented programming.

Object-Based Programming

The limitations of procedural programming have led researchers and developers alike to find better methods of
separating implementation details from interfaces. Object-based programming enables them to create
user-defined types that behave like first class citizens. User-defined types can bundle data and meaningful
operationsin asingle entity -- aclass. Classes also support information hiding, thereby separating
implementation details such as physical representation and underlying bookkeeping from the set of servicesthat a
class provides, or itsinterface. Users of aclass are allowed to access its interface, but they cannot access its
implementation details. The separation between the implementation -- which might vary rather frequently due to
design changes, portability, and efficiency -- and the stable interface is substantial. This separation ensures that
changes in the design are localized to a single entity -- the class implementation; the class users, on the other
hand, are not affected. To assess the importance of object-based programming, examine a simple minded Dat e
class:
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cl ass Date

L
private:
char day;
char nont h;
short year;
publi c:
bool isValid();
Date getCurrent();
void initialize();
b

Object-Based Programming Localizes Changes In Implementation Details

Now suppose that you have to change the definition of Dat e to support time:

cl ass Date
{
private:
char day;
char nonth
short year;
| ong secs;
publ i c:
bool isValid();
Date getCurrent();
void initialize ();

¥

The addition of a new data member does not affect the interface of Dat e. The users of Dat e don't even know
that a new field has been added; they continue to receive the same services from the class as before. Of course,
the implementer of Dat e hasto modify the code of the member functions to reflect the change. Therefore,
Date::initialize() hastoinitialize one morefield. Still, the changeislocalized only to the definition of
Date::initialize() becauseuserscannot accessthe underlying representation of Dat e. In procedural
programming, however, users can access the data members of Dat e directly.

Abstract Data Types

Classes such as Dat e are sometimes called concrete types, or abstract data types (not to be confused with
abstract classes; see the sidebar titled "Abstract Data Types Versus Abstract Classes' later in this chapter).

These classes can meet avast variety of needs in clean and easy-to-maintain capsules that separate
implementation from interface. C++ provides the necessary mechanisms for data abstraction in the form of
classes, which bundle data with a full set of associated operations. Information hiding is achieved by means of
the pri vat e access specifier, which restricts the access to data members to class members exclusively.

Operator Overloading

In object-based languages, the user can extend the definition of a built-in operator to support a user-defined type
(operator overloading is discussed in Chapter 3, "Operator Overloading”). This feature provides a higher level of
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abstraction by rendering user-defined types a status of built-in types. For example

cl ass Date
L
private:
char day;
char nonth
short vyear;
| ong secs;
publi c:
bool operator < (const Dateé& other);
bool operator == (const Date& other);
/1...other nmenber functions

b

Characteristics of Object-Based Programming

In away, object-based programming can be thought of as a subset of object-oriented programming; that is, some
common principles are adhered to in both paradigms. Unlike object-oriented programming, however,
object-based programming does not use inheritance. Rather, each user-defined class is a self-contained entity that
is neither derived from a more general type, nor does it serve as a base for other types. The lack of inheritancein
this paradigm is not coincidental. Proponents of object-based programming claim that inheritance complicates
design, and that it might propagate bugs and deficiencies in a base class to its subclasses. Furthermore,
inheritance aso implies polymorphism, which is a source for additional design complexities. For instance, a
function that takes a base object as an argument also knows how to handle any object that is publicly derived
from that base.

Advantages of Object-Based Programming

Object-based programming overcomes most of the shortcomings of procedural programming. It localizes
changes, it decouples implementation details from the interface, and it supports user-defined types. The Standard
Library provides arich set of abstract data types, including st ri ng, conpl ex, andvect or . These classes are
designed to provide an abstraction for very specific uses, for example, character manipulations and complex
numbers arithmetic. They are not derived from amore general base class, and they are not meant to be used asa
base for other classes.

Abstract Data Types Versus Abstract Classes

The terms abstract data type and abstract class refer to two entirely different concepts, although
both of them use the word abstract due to a historical accident. An abstract data type (also called a
concrete type) is a self-contained, user-defined type that bundles data with a set of related
operations. It behaves in the same way as does a built-in type. However, it is not extensible nor does
it exhibit dynamic polymorphism. In contrast, an abstract class is anything but an abstract data type.
It isnot a data type (normally, abstract classes do not contain any data members), nor can you
Instantiate an object thereof. An abstract classis merely a skeletal interface, that specifies a set of
services or operations that other (nonabstract) classes implement. Unfortunately, the distinction
between the two conceptsis often confused. Many people erroneously use the term abstract data
type when they are actually referring to an abstract class.

Limitations of Object-Based Programming
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Obj ect-based programming is advantageous for specific uses. However, it cannot capture real-world relationships
that exist among objects. The commonality that exists among afloppy disk and a hard disk, for instance, cannot
be expressed directly in an object-based design. A hard disk and afloppy disk can both store files; they can
contain directories and subdirectories, and so on. However, the implementer has to create two distinct and
autonomous entities in this case, without sharing any common features that the two have.

Object-Oriented Programming

Object-oriented programming overcomes the limitations of object-based programming by providing the
necessary constructs for defining class hierarchies. A class hierarchy captures the commonality among similar --
and yet distinct -- types. For example, the classes Mouse and aJoyst i ck aretwo distinct entities, yet they
share many common features that can be factored out into acommon class, Poi nt i ngDevi ce, which serves
as abase class for both. Object-oriented programming is based on the foundations of object-based programming
such asinformation hiding, abstract data typing, and encapsulation. In addition, it supports inheritance,
polymorphism, and dynamic binding.

Characteristics of Object-Oriented Programming

Object-oriented programming languages differ from one another, sometimes considerably. Smalltalk
programmers who migrate to C++, for instance, find the differences between the two languages somewhat
daunting. The same can be said, of course, for C++ programmers who migrate to Smalltalk or Eiffel. However,
several common characteristics that exist in all object-oriented programming languages distinguish them from
non-obj ect-oriented ones. These characteristics are presented in the following sections.

Inheritance

Inheritance enables a derived class to reuse the functionality and interface of its base class. The advantages of
reuse are enormous: faster development time, easier maintenance, and simpler extensibility. The designer of class
hierarchies captures the generalizations and commonality that exist among related classes. The more general
operations are located in classes that appear higher in the derivation graph. Often, the design considerations are
application-specific. For instance, the classes Thesaur us and Di ct i onar y might be treated differently in an
online ordering system of a bookstore and a computerized library of the linguistics department in some
university. In the bookstore's online ordering system, the classes Thesaur us and Di ct i onar y can inherit
from acommon baseclasscalled | t em

#i ncl ude <string>
#i nclude <list>
usi ng nanespace std;
class ReviewW/*...*/};
cl ass Book
L
private:
string author;
string publisher;
string | SBN,
float list _price;
| i st<Revi ew> readers_revi ews;
publ i c:
Book() ;
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const string& getAuthor() const;
/...

b

ClassesDi ct i onary and Thesaur us are defined as follows:

class Dictionary : public Book

L
private:
I nt |anguages; //bilingual, trilingual etc.
I, ..
}
cl ass Thesaurus: public Book
{
private:
I nt no_of _entries;
/...
}

However, the computerized library of the linguistics department might use a different hierarchy:

class Library_item
{
private:
string Dewey_cl assification;
i nt copi es;
bool in_store;
bool can_be_ borrowed;
string author;
string publisher;
string | SBN,
publ i c:
Library item);
const string& getDewey classification() const;
I...
b

class Dictionary : public Library item
{
private:
I nt | anguages;
bool phonetic_transciption;
/...
b

cl ass Thesaurus: public Library item
{
private:
I nt entries;
Int century; //historical period of the |anguage, e.g., Shakespeare's era
/...
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b

These two hierarchies ook different because they serve different purposes. However, the crucial point is that the
common functionality and data are "elevated” to the base class that is extended by more specialized classes.
Introducing a new class, for example Encycl opedi a, to either the bookstore ordering system or the
computerized library of the linguistics department is much easier in an object-oriented environment. That is
because most of the functionality of the new class already existsin the base class, whatever it might be. On the
other hand, in an object-based environment, every new class has to be written from scratch.

Polymorphism

Polymorphism s the capability of different objectsto react in an individual manner to the same message.
Polymorphism iswidely used in natural languages. Consider the verb to close: It means different things when
applied to different objects. Closing a door, closing a bank account, or closing a program’'s window are all
different actions; their exact meaning depends on the object on which the action is performed. Similarly,
polymorphism in object-oriented programming means that the interpretation of a message depends on its object.
C++ has three mechanisms of static (compile-time) polymorphism: operator overloading, templates, and function
overloading.

Operator Overloading

Applying operator +=, for example, toani nt orast ri ng isinterpreted by each of these objectsin an
individual manner. Intuitively, however, you can predict what results will be, and you can find some similarities
between the two. Object-based programming languages that support operator overloading are, in alimited way,
polymorphic as well.

Templates

Avector<int>andavect or <stri ng> react differently; that is, they execute a different set of instructions
when they receive the same message. However, you can expect similar behavior (templates are discussed in detail
in Chapter 9, "Templates'). Consider the following example:

vector < int > vi; vector < string > nanes;

string nane("Bjarne");

Vi .push_back( 5 ); // add an integer at the end of the vector
names. push_back (nane); //add a string at the end of the vector

Function Overloading

Function overloading is athird form of polymorphism. In order to overload afunction, a different list of
parametersis used for each overloaded version. For example, a set of valid overloaded versions of afunction
named f () might look similar to the following:

void f(char c, int i);

void f(int i, char c); //order of paranmeters is significant
void f(string & s);
void f();

void f(int i);
void f(char c);

Note, however, that afunction that differs only by itsreturned typeisillegal in C++:
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int f(); //error; differs fromvoid f(); above only by return type
int f(float f); //fine - unique signature

Dynamic Binding

Dynamic binding takes the notion of polymorphism one step further. In dynamic binding, the meaning of a
message depends on the object that receivesit; yet, the exact type of the object can be determined only at
runtime. Virtual member functions are a good example of this. The specific version of avirtual function might
not be known at compile time. In this case, the call resolution is delayed to runtime, asin the following example:

#i ncl ude <i ostreanp
usi ng nanespace std;
cl ass base

{
public: virtual void f() { cout<< "base"<<endl;}
b
cl ass derived : public base
{
public: void f() { cout<< "derived"<<endl;} //overrides base::f
b

void identify(base & b) // the argunment can be an instance
/| of base or any object derived fromit

b.f(); //base::f or derived::f? resolution is delayed to runtine

}

//a separate translation unit

int main()

{
derived d;
identify; // argunent is an object derived from base
return O;

}

Thefunctioni dent i f y can receive any object that is publicly derived from classbase -- even objects of
subclasses that were defined after i dent i f y was compiled.

Dynamic binding has numerous advantages. In this example, it enables the user to extend the functionality of
base without having to modify i dent i fy inany way. In procedural and object-based programming, such
flexibility is nearly impossible. Furthermore, the underlying mechanism of dynamic binding is automatic. The
programmer doesn't need to implement the code for runtime lookup and dispatch of avirtual function, nor does
he or she need to check the dynamic type of the object.

Techniques Of Object-Oriented Programming

Up until now, the discussion has focused on the general characteristics of object-oriented programming and
design. This part presents C++-specific practical techniques and guidelines of object-oriented programming.

file:///D|/Cool Stuff/old/ftp/1/1/ch05/ch05.htm (10 von 29) [12.05.2000 14:46:09]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 5 - Object-Oriented Programming and Design

Class Design

Classes are the primary unit of abstraction in C++. Finding the right classes during analysis and design is perhaps
the most important phase in the lifetime of an object-oriented software system. The common guidelines for
finding classes state that a class should represent a real-world object; others maintain that nounsin natural
languages should represent classes. Thisis true to some extent, but nontrivial software projects often have classes
that exist nowhere except the programming domain. Does an exception represent a real-world object? Do
function objects (which are discussed in Chapter 10, "STL and Generic Programming") and smart pointers have
an equivaent outside the programming environment? Clearly, the relationship between real-world entities and
objectsisnot 1:1.

Finding the Classes

The process of finding the right classes is mostly derived from the functional requirements of the application
domain. That is, adesigner can decide to represent a concept as a class (rather than, for example, a member
function within a different class or aglobal function) when it serves the needs of the application. Thisis usually
done by means of CRC (Class, Responsibility, Collaboration) cards or any other method.

Common Design Mistakes with Classes

No two object-oriented languages are alike. The programming language also affects the design. Asyou learned in
Chapter 4, "Special Member Functions: Default Constructor, Copy Constructor, Destructor, and Assignment
Operator," C++ has a distinct symmetry between constructors and destructors that most other object-oriented
languages do not have. Objects in C++ can automatically clean up after themselves. C++ also enables you to
create local objects with automatic data storage. In other languages, objects can only be created on heap memory.
C++ isaso oneof just afew languages that support multiple inheritance. C++ is a strongly-typed language with
static type checking. As much as design gurus insist on separating pure design from implementation artifacts (that
is, language-specific behavior), such language-specific features do affect the overall design. But of course, design
mistakes do not result only from the interference of other languages.

Object-orientation is not a panacea. Some common pitfalls can lead to monstrous applications that need constant
maintenance, that perform unsatisfactorily, and that only eventually -- or never -- reach production. Some of
these design mistakes are easy to detect.

Gigantic Classes

There are no standardized methods for measuring the size of a class. However, many small specialized classes are
preferred to a bulky single class that contains hundreds of member functions and data members. But such bulky
classes do get written. Class st d: : st ri ng hasafat interface of more than 100 member functions; clearly, this
is an exception to the rule and, to be honest, many people consider this to be a compromise between conflicting
design approaches. Still, ordinary programs rarely use all these members. More than once I've seen programmers
extending a class with additional member functions and data members instead of using more plausible
object-oriented techniques such as subclassing. As arule, a class that exceeds a 20-30 member function count is
suspicious.

Gigantic classes are problematic for at least three reasons: Users of such classes rarely know how to use them
properly; the implementation and interface of such classes tend to undergo extensive changes and bug-fixes; and
they are not good candidates for reuse because the fat interface and intricate implementation details can fit only a
very limited usage. In asense, large classes are very similar to large functions -- they are noncohesive and
difficult to maintain.
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Exposing Implementation Details

Declaring data members with public accessis, amost without exception, a design flaw. Still, even vendors of
popular frameworks resort to this deprecated programming style. It might be tempting to use public data
members because it saves the programmer the bother of writing trivial accessors and mutators (getters and
setters, respectively). This approach cannot be recommended, however, because it results in maintenance
difficulties and it compromises the class's reliability. Users of such classes tend to rely heavily on their
implementation details; even if they normally avoid such dependencies, they might feel that the exposure of the
implementation details implies that they are not supposed to change. Sometimes there is no other choice -- the
class implementer has not defined any other method of accessing data members of a class. The process of
modifying or extending such classes becomes a maintenance nightmare. Infrastructure components, such as

Dat e or st ri ng classes, can be used dozens of times within asingle source file. It is not hard to imagine what
it islike when dozens of programmers, each producing dozens of source files, have to chase every source line
that refers to any one of these classes. Thisis exactly what caused the notorious Y ear 2000 Bug. If, on the other
hand, data members are declared pr i vat e, users cannot access them directly. When the implementation details
of the class are modified, only accessors and mutators need to be modified, but the rest of the code remains intact.

There is another danger in exposing implementation details. Due to indiscriminate access to data members and
hel per functions, users can inadvertently tamper with the object's internal data members. They might delete
memory (which is supposed to be deleted by the destructor), or they might change the value of afile handle, and
so on, with disastrous results. Therefore, it is aways a better design choice to hide implementation details of an
object.

The "Resource Acquisition Is Initialization" Idiom

Many objects of various kinds share asimilar characterization: They must be acquired by means of initialization
prior to their usage; then they can be used, and then they have to be released explicitly. Objectssuch asFi | e,
Commruni cat i onSocket , Dat abaseCur sor, Devi ceCont ext , Oper at i ngSyst em and many others
have to be opened, attached, initialized, constructed, or booted, respectively, before you can use them. When their
job is done, they have to be flushed, detached, closed, released, or logged out, respectively. A common design
mistake isto have the user request explicitly for the initialization and rel ease operations to take place. A much
better choice isto move al initialization action into the constructor and al release actions into the destructor.
Thistechniqueis called resource acquisition isinitialization (The C++ Programming Language, 3rd ed., page
365). The advantage is a simplified usage protocol. Users can start using the object right after it has been created,
without bothering with whether the object is valid or whether further arbitrary initialization actions have to be
taken. Furthermore, because the destructor also releases all its resources, users are free from that hassle too.
Please note that this technique usually requires an appropriate exception handling code to cope with exceptions
that are thrown during construction of the object.

Classes and Objects

Unlike some other object-oriented programming languages, C++ makes a clear distinction between a class, which
Is a user-defined type, and an object, which is an instance thereof. There are several features for manipulating the
state of a class rather than the state of individual objects. These features are discussed in the following sections.

Static Data Members
A static member is shared by all instances of its class. For that reason, it is sometimes termed a class variable.

Static members are useful in synchronization objects. For example, afile lock can be implemented using a
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st at i ¢ datamember. An object that istrying to access this file has to check first whether the file is being
processed by another user. If the file is available, the object turns the flag on and user can process the file safely.
Other users are not allowed to access the file until the flag is reset to false. When the object that is processing the
fileisfinished, it has to turn off the flag, enabling another object to access it.

class fil eProc

L
private:
FI LE *p;
static bool Locked,;
publ i c:
/...
bool isLocked () const;
/...
3

bool fileProc:: Locked;
Static Member Functions

A static member function in a class can access only other static members of its class.. Unlike ordinary member
functions, a static member function can be invoked even when no object instance exists. For example

cl ass stat
L
private:
int num
publi c:
stat(int n = 0) {nunmen;}
static void print() {cout <<"static nenber function" <<endl;

¥
int main()
{
stat::print(); //no object instance required
stat s(1);
s.print();//still, a static nenber function can be called from an obj ect
return O;

}

Static members are used in the following cases.

« When all other data members of an object are also static
« When the function does not depend on any other object member (like pri nt (), in the previous example)
« Asawrapper of aglobal function

A Pointer to Member Cannot Refer To a Static Member Function

Itisillegal to assign the address of a static class member to a pointer to member. However, you can take the
address of a static member function of aclass and treat it asif it were an ordinary function. For example
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class A

{
publ i c:
static void f();

b
int main()
{

void (*p) () = &A::f; [//OK, ordinary pointer to function
}

Y ou can do this because a static member function is essentially an ordinary function, which doesn't take an
implicitt hi s argument.

Defining a Class Constant

When you need a constant integer member in aclass, the easiest way to create oneisby usingaconst static
member of an integral type; unlike other st at i ¢ data members, such amember can be initialized within the
class body (see also Chapter 2, "Standard Briefing: The Latest Addendato ANSI/ISO C++"). For example

cl ass vector

L
private:
int v_size;
const static int MAX 1024; //a single MAX is shared by all vector objects
char *p;
publ i c:
vector() {p = new char[ MAX]; }
vector( int size)
{
if (size <= MAX)
p = new char|[size] ;
el se
p = new char[ MAX] ;
}
b

Designing Class Hierarchies

After identifying a set of potential classes that might be required for the application, it isimportant to correctly
identify the interactions and relationships among the classes to specify inheritance, containment, and ownership.
The design of class hierarchies, as opposed to designing concrete types, requires additional considerations that
are discussed in this section.

Private Data Members Are Preferable To Protected Ones

Data members of aclass are usualy a part of itsimplementation. They can be replaced when the interna
implementation of the classis changed; therefore, they need to be hidden from other classes. If derived classes
need to access these data members, they need to use accessor methods instead of directly accessing data members
of abase class. Consequently, no modification is required for derived classes when a change is made in the base
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class.

Here's an example:

cl ass Date
L
private:
int d, my //how a date is represented is an inplenentation detail
publi c:
int Day() const {return d; }

¥
class DateTinme : public Date
{
private:
int hthiss;
i nt m nutes;
i nt seconds;
publ i c:
[/...additional menmber functions
¥

Now assume that class Dat e is used mostly on display devices, so it has to supply some method of converting its
d,my membersinto adisplayable string. In order to enhance performance, a design modification is made: Instead
of the three integers, asingle st r i ng now holds the date representation. Had class Dat eTi e relied on the
internal implementation of Dat e, it would have had to be modified as well. But because it can access Dat e's
data members only through access methods, al that isrequired is asmall changein the Dat e: : Day() member
function. Please note that accessor methods are usually inlined anyway, so their use does not incur additional
runtime overhead.

Declaring Virtual Base Class Destructors

A base class needs to have its destructor declared vi r t ual . In doing so, you ensure that the correct destructor is
always called, even in the following case:

cl ass Base
{
private:
char *p;
publ i c:
Base() { p = new char [200]; }
~ Base () {delete [] p; } //non virtual destructor, bad
¥
cl ass Derived : public Base
{
private:
char *q;
publ i c:
Derived() { g = new char[300]; }
~Derived() { delete [] q; }
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...

}
voi d destroy (Base & b)

{
del ete &b;

int main()
{
Base *pb = new Derived(); //200 + 300 bytes allocated
/1... meddle with pb
destroy (*pb); //OOPS! only the destructor of Base is called
[/ were Base's destructor virtual, the correct destructor would be called
return O;

}
Virtual Member Functions

Virtual member functions enable subclasses to extend or override the behavior of a base class. Deciding which
members in aclass can be overridden by aderived classis not atrivial issue. A classthat overridesavi rt ual
member function is only committed to adhere to the prototype of the overridden member function -- not to its
implementation. A common mistake isto declare all member functionsasvi rt ual "justincase". Inthis
respect, C++ makes a clear-cut distinction between abstract classes that provide pure interfaces as opposed to
base classes that provide implementation as well as an interface.

Extending A Virtual Function in A Derived Class

There are cases in which you want a derived class to extend a virtual function defined in its base class rather than
override it altogether. It can be done quite easily in the following way:

cl ass shape

{

...
publ i c:

virtual void draw);

virtual void resize(int x, int y) { clearscr(); /*...*/ }};
cl ass rectangl e: public shape

{
/...
publ i c:
virtual void resize (int x, int vy)
{
shape: :resize(x, y); [/lexplicit call to the base's virtual function
//add functionality
int size = x*y;
/...
}
1

The overriding function in aderived class should invoke an overridden function of its base class using its
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fully-qualified name.
Changing Access Specification of A Virtual Function

The access specification of avi rt ual member function that is defined in a base class can be changed in a
derived class. For example

cl ass Base

{
publi c:
virtual void Say() { cout<<"Base";}
b
cl ass Derived : public Base
{

private: //access specifier changed; |egal but not a good idea
void Say() {cout <<"Derived";} // overriding Base:: Say()

};

Although thisislegal, it does not work as expected when pointers or references are used; a pointer or reference to
Base can also be assigned to any object that is publicly derived from Base:

Derived d;
Base *p = &d;
p->Say(); //OK, invokes Derived:: Say()

Because the actual binding of avirtual member function is postponed to runtime, the compiler cannot detect that
a nonpublic member function will be called; it assumesthat p pointsto an object of type Base, in which Say( )
isapublic member. Asarule, do not change the access specification of avirtual member function in aderived
class.

Virtual Member Functions Should Not Be Private

Asyou saw previoudly, it is customary to extend virtual functionsin aderived class by first invoking the base
class's version of that function; then extend it with additional functionality. This can't be done when avirtual
functionisdeclared pri vat e.

Abstract Classes and Interfaces

An abstract classis one that has at |east one pure virtual member function, that is, a non-implemented placeholder
that must be implemented by its derived class. Instances of an abstract class cannot be created becauseit is
intended to serve as a design skeleton for concrete classes that are derived from it, and not as an independent
object. See the following example:

class File //abstract class; serves as interface

{
publ i c:
int virtual open() = 0; //pure virtual
int virtual close() = 0; //pure virtual
b

class diskFile: public File
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L
private:
string fil enane;
/...
publ i c:
int open() {/*...*/}
int close () {/*...*/}
b

Use Derivation Instead of Type-Fields

Suppose that you have to implement an internationalization helper class that manages the necessary parameters of
every natural language that is currently supported by aword processor. A naive implementation might rely on
type-fields to indicate the specific language that is currently being used (for example, the interface language in
which menus are displayed).

class Fonts {/*...*/};
class Internationalization

L
private:
Lang | g; //type field
Font Rest hi sce fonts
publ i c:
enum Lang {English, Hebrew, Danish}
| nternationalization(Lang lang) : lg(lang) {};
Loadf ont s(Lang | ang);
b

Every modificationin| nt er nat i onal i zat i on affectsall its users, even when they are not supposed to be
affected. When adding support for a new language, the users of the already-supported languages have to
recompile (or download, which is worse) the new version of the class. Moreover, as time goes by and support for
new languages is added, the class becomes bigger and more difficult to maintain, and it tends to contain more
bugs. A much better design approach isto use derivation instead of type-fields. For example

class Internationalization //now a base cl ass

{
private:
Font Rest hi sce fonts
publ i c:
| nternationalization ();
virtual int Loadfonts();
virtual void SetDirectionality();
b
class English : public Internationalization
{
publ i c:

English();
Loadfonts() { fonts = Ti nesNewRoman; }
SetDirectionality(){}//do nothing; default: left to right

file:///D|/Cool Stuff/old/ftp/1/1/ch05/ch05.htm (18 von 29) [12.05.2000 14:46:09]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 5 - Object-Oriented Programming and Design

b
cl ass Hebrew : public Internationalization
{
publ i c:
Hebrew() ;
Loadfonts() { fonts = David; }
SetDirectionality() { directionality = right to left;}
b

Derivation ssimplifies class structure and localizes the changes that are associated with a specific language to its
corresponding class without affecting others.

Overloading A Member Function Across Class Boundaries

A classis anamespace. The scope for overloading a member function is confined to a class but not to its derived
classes. Sometimes the need arises to overload the same function inits class aswell asin aclass that is derived
from it. However, using an identical name in a derived class merely hides the base class's function, rather than
overloading it. Consider the following:

class B

{

publ i c:

voi d func();

b
class D: public B

{
publ i c:

void func(int n); //now hiding B::f, not overloading it
}.

D’d;
d.func();//conpilation error. B::f is invisible in d;
d.func(l); //OK, D::func takes an argunent of type int

In order to overload -- rather than hide -- a function of a base class, the function name of the base class has to be
injected explicitly into the namespace of the derived class by a using declaration. For example

class D: public B

using B::func; // inject the nane of a base nenber into the scope of D
publ i c:
void func(int n); // D now has two overl oaded versions of func()

}
D d;

d.func ( ); // XK
d.func ( 10 ); // XK
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Deciding Between Inheritance and Containment

When designing a class hierarchy, you often face a decision between inheritance, or is-a, and containment, or
has-a, relation. The choice is not always immediately apparent. Assume that you are designing aRadi o class,
and you already have the following classes implemented for you in some library: Di al and

El ectri cAppl i ance. Itisobviousthat Radi o isderived from El ect ri cAppl i ance. However, it isnot
so obvious that Radi o isalso derived from Di al . In such cases, check whether thereisalwaysal:1
relationship between the two. Do al radios have one and only one dial? They don't. A radio can have no dials at
al -- atransmitter/receiver adjusted to afixed frequency, for example. Furthermore, it might have more than one
dia -- FM and AM dials. Hence, your Radi o class needs to be designed to have Dial(s) rather than being
derived from Di al . Note that the relationship between Radi o and El ectri cAppl i ance is1:1and
corroborates the decision to derive Radi o from El ect ri cAppl i ance.

The Holds-a Relation

Ownership defines the responsibility for the creation and the destruction of an object. An object is an owner of
some other resource if and only if it has the responsibility for both constructing and destroying it. In this respect,
an object that contains another object also owns it because its constructor is responsible for the invocation of the
embedded object's constructor. Likewise, its destructor is responsible for invoking the embedded object's
destructor. Thisisthe well-known has-arelationship. A similar relationship is holds-a. It is distinguished from
has-a by one factor: ownership. A class that indirectly contains -- by means of areference or a pointer -- another
object that is constructed and destroyed independently is said to hold that object. Here's an example:

cl ass Phone {/*...*/};
class Dialer {/*...*/};
cl ass Modem

{

private:

Phone* pli ne;

D aler& dialer;
publi c:

Modem (Phone *pp, Dialer& d) : pline(pp), dialer {}
/I Phone and Di al er objects are constructed and destroyed
/'l'i ndependently of Mddem
}
void f()

{

Phone phone;

D al er dialer;

Modem noden( &hone, di al er);

/1...use nodem

}

Modemuses Phone and Di al er . However, it is not responsible for constructing or destroying them.
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Empty Classes

A classthat contains no data members and no member functionsis an empty class. For example

cl ass Pl aceHol der {};

An empty class can serve as a placeholder for a yet-to-be defined class. Imagine an interface class that servesas a
base for other classes; instead of waiting for its full implementation to be completed, it can be used thisway in
the interim. Additionally, an empty class can also be used as a means of forcing derivation relationship among
classes that are not originally descended from one base class. (Thisis abottom-up design). Finally, it can be used
as adummy argument to distinguish between overloaded versions of afunction. In fact, one of the standard
versions of operator new (see also Chapter 11, "Memory Management") uses this technique:

#i ncl ude <new>
usi ng nanespace std;
int main()
{
try
{
int *p = new int[100]; //exception-throw ng new
}
catch(bad alloc & new failure) {/*..*/}
int *p = new (nothrow) int [100]; // exception-free version of
it (p)
{1*..*}
return O;

}

Thenot hr owargument is of type not hr ow_t , which is an empty class by itself.

Using structs as A Shorthand for Public Classes

Traditionally, st r uct s serve as data aggregates. However, in C++ ast r uct can have constructors, a
destructor, and member functions -- just like a class. The only difference between the two is the default access
type: By default, aclasshas pri vat e access typeto its members and derived objects, whereasa st r uct has
publ i ¢ access. Consequently, st r uct s are sometimes used as shorthand for classes, whose members are all
publ i c. Abstract classes are agood example of classes that have all public members.

#i ncl ude <cstdi o>
usi ng nanespace std;
struct File //interface class. all nenbers are inplicitly public

{

virtual int Read() = O;
File(FILE *);
virtual ~File() = 0;
b
class TextFile: File //inplicit public inheritance; File is a struct
{
private:
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string path;
publi c:

int Flush();
int Read();
b

class UnicodeFile : TextFile //inplicit private inheritance
{
publ i c:
wchar t convert(char c);
b

Friendship

A class can grant access to its members on a selective basis bydeclaring external classes and functions as friends.
A friend has full accessto all the grantor's members, including private and protected ones. Friendship is
sometimes unjustly criticized for exposing implementation details. However, thisisradically different from
declaring data members as public because friendship enables the class to declare explicitly which clients can
access its members; in contrast, apubl i ¢ declaration provides indiscriminate access to amember. Here's an
example:

bool operator ==( const Date & dl, const Date& d2);

{
return (dl.day == d2.day) &&
(d1. nonth == d2. nonth) &&
(d1.year == d2.year);
}
class Date
{
private:
int day, nonth, year;
publ i c:
friend bool operator ==( const Date & d1, const Date& d2);
¥

Remember that friendship is not inherited, so nonpublic members of any class that is derived from Dat e are not
accessible to operator ==.

Nonpublic Inheritance

When a derived class inherits from a nonpublic base, the is-a relationship between a derived object and its
nonpublic base does not exist. For example:

cl ass Mem Manager {/*..*/};
class List: private Mem Manager {/*..*/};
void OS Register( Mem Manager & mm ;
int main()
{
List Ii;
OS Register( |li ); //conpile tinme error; conversion from

file:///D|/Cool Stuff/old/ftp/1/1/ch05/ch05.htm (22 von 29) [12.05.2000 14:46:10]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 5 - Object-Oriented Programming and Design

[/List & to Mem Manager& i s inaccessible
return O;

}

ClassLi st hasaprivate base, Mem Manager , which isresponsible for its necessary memory bookkeeping.
However, Li st isnot amemory manager by itself. Therefore, private inheritance is used to block its misuse.
Private inheritance is similar to containment. As a matter of fact, the same effect might have been achieved by
making Mem _Manager amember of classLi st . Pr ot ect ed inheritance is used in class hierarchies for
similar purposes.

Common Root Class

In many frameworks and software projects, all classes are forced to be descendants of one common root class,
which isusualy named Qbj ect . Thisdesign policy prevailsin other OO languages such as Smalltalk and Java,
whose classes are derived from class Cbj ect implicitly. However, imitating this in C++ incurs many
compromises and potential bugs. It creates artificial kinship among classes that have absolutely nothing in
common. Bjarne Stroustrup addresses the issue: "Now what is the common relationship between a smile, the
driver of my CD-ROM reader, arecording of Richard Strauss' Don Juan, aline of text, my medical records, and a
real-time clock? Placing them all in asingle hierarchy when their only shared property isthat they are
programming artifacts (they are all "objects") is of little fundamental value and can cause confusion.” (The C++
Programming Language, 3rd ed., page 732).

If you are looking for genericity, that is, if you need an algorithm/container/function that works for every data
type, you might find that templates serve you better. Moreover, acommon root design policy also forces you to
refrain from multiple inheritance entirely because any class that is derived simultaneously from two or more base
classes faces the dreadful derivation diamond problem: It embeds more than one base subobject. Finally, the
common root class usually serves as a means of implementing exception handling and RTTI, both of which are
integral parts of C++ anyway.

Forward Declarations

Consider the following common situation in which classes refer to one another:

/[1file: bank.h
cl ass Report

{
publi c:

voi d Qut put (const Account & account); // conpile time error;

/'l Account is not declared yet

}
cl ass Account
{
publi c:

void Show() {Report::Qutput(*this);}
b

An attempt to compile this header file causes compilation errors because the compiler does not recognize the
identifier Account asaclass name when class Repor t iscompiled. Even if you relocate the declaration of
class Account and placeit before class Repor t , you encounter the same problem: Repor t isreferred to from
Account . For that purpose, aforward declaration isrequired. A forward declaration instructs the compiler to
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hold off reporting such errors until the entire source file has been scanned. For example

/[1file: bank.h

class Acount; //forward decl aration

cl ass Report

{

publ i c:

voi d Qut put (const Account & account); //fine

b

cl ass Account
{
private:
Report rep;
publi c:
voi d Show() {Report::Qutput(*this);}
}

Thef or war d declaration in the beginning of the source file enables class Repor t to refer to class Account
even though its definition has not yet been seen. Note that only references and pointers can refer to a
f or war d-declared class.

Local Classes
A class can be declared inside afunction or a block. In such cases, it is not visible from anywhere else, and

instances thereof can only be created within the scope in which it is declared. This can be useful if you need to
hide an ancillary object that is not to be accessible or used anywhere else. For example

void f(const char *text)

{
class Display //local helper class; visible only in f()
{
const char *ps;
publi c:
D spl ay(const char *t) : ps(t) {}
~Di splay() { cout<<ps; }
}
D splay ucd(text); //local object of type Display
}

A local class has no linkage.

Multiple Inheritance

Multiple inheritance was introduced to C++ in 1989. It isn't an exaggeration to say that it has been the most
controversia feature ever added to C++. The opponents of multiple inheritance maintain that it adds an
unnecessary complexity to the language, that every design model that uses multiple inheritance can be modeled
with single inheritance, and that it complicates compiler writing. Of the three arguments, only the third oneis
true. Multiple inheritance is optional. Designers who fedl that they can make do without it are never forced to use
it. The added level of complexity that is ascribed to multiple inheritance is not a compelling argument either
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because the same criticism is applicable to other language features such as templates, operator overloading,
exception handling, and so on.

Multiple inheritance enables the designer to create objects that are closer to their real-world readlity. A fax modem
card is essentially a modem and afax combined in one. Similarly, af ax_nodemclassthat is publicly derived
from both f ax and nrodemrepresents the concept of afax/modem better than a single inheritance model does.
But the most compelling argument in favor of multiple inheritance is that some designs cannot be realized
without it. For example, implementing the Obser ver patternin Javais nearly impossible because Java lacks
multiple inheritance ("Javavs. C++ -- A Critical Comparison,” C++ Report, January 1997). Qbser ver isnot
the only pattern that relies on multiple inheritance -- Adapt er and Bri dge aso do (ibid.).

Using Multiple Inheritance to Conjoin Features

Derived classes can combine the functionality of several base classes simultaneously, by means of multiple
inheritance. Trying to achieve the same effect using single inheritance can be very difficult, to say the least. For
example

cl ass Persistent //abstract base class used by

{
/lall persistence-supporting objects
publ i c:
virtual void WiteQbject(void *pobj, size t sz) = 0;
virtual void* ReadObj ect(Archive & ar) = 0;
b

class Date {/*...*/};

cl ass PersistentDate: public Date, public Persistent
{ /*..*/} [/can be stored and retrieved

Virtual Inheritance

Multiple inheritance can lead to a problem known as the DDD (or dreadful diamond of derivation), as shown in
the following case:

cl ass El ectricAppliance

{

private:
i nt voltage,
int Hertz ;

publ i c:
/'l...constructor and ot her useful nethods
int getVoltage () const { return voltage; }
int getHertz() const {return Hertz; }

b

class Radio : public ElectricAppliance {/*...*/};
cl ass Tape : public ElectricAppliance {/*...*/};
cl ass Radi oTape: public Radio, public Tape { /*...*/};
int main()
{
Radi oTape rt;
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//the following statenent is a conpilation Error - anbiguous call.
/1 Two copies getVoltage() exist inrt: one from Radi o and one

/'l from Tape. Furthernore, which voltage value should be returned?
int voltage = rt.getVol tage();

return O;

}

The problemisobvious: r t isderived simultaneously from two base classes, each of which hasits own copy of
the methods and data members of El ecct ri cAppl i ance. Consequently, r t has two copies of

El ectri cAppl i ance. Thisisthe DDD. However, giving up multiple inheritance leads to a design
compromise. In such cases, where reduplication of data and methods from a common base class is undesirable,
use virtual inheritance:

class Radio : virtual public ElectricAppliance {/*...*/};
class Tape : virtual public ElectricAppliance {/*...*/};
cl ass Radi oTape: public Radio, public Tape

{/*...*1};

Now class Radi oTape containsasingleinstance of El ect ri cAppl i ance that is shared by Radi o and
Tape; therefore, there are no ambiguities and no need to give up the powerful tool of multiple inheritance.

int main()

{
Radi oTape rt;
int voltage = rt.getVoltage(); //now OK
return O;

}

How does C++ ensure that only a single instance of a virtual member exists, regardless of the number of classes
derived from it? Thisis implementation-dependent. However, all implementations currently use an additional
level of indirection to access avirtual base class, usually by means of a pointer.

/I Note: this is a sinplified description of iostream cl asses
class ostream virtual public ios { /*..*/ }

class istream virtual public ios { /*..*/ }

class iostream: public istream public ostream{ /*..*/ }

In other words, each object inthei ost r eamhierarchy has a pointer to the shared instance of thei os
subobject. The additional level of indirection has a slight performance overhead. It aso implies that the location
of virtual subobjectsisnot known at compile time; therefore, RTTI might be needed to access virtual subobjects
in some circumstances (thisis discussed further in Chapter 7, "Runtime Type Identification™).

When multiple inheritance is used, the memory layout of such an object isimplementation-dependent. The
compiler can rearrange the order of the inherited subobjects to improve memory alignment. In addition, avirtua
base can be moved to a different memory location. Therefore, when you are using multiple inheritance, do not
assume anything about the underlying memory layout of an object.

Non-virtual Multiple Inheritance

Virtual inheritance is used to avoid multiple copies of a base classin a multiply-inherited object, as you just saw.
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However, there are cases in which multiple copies of a base are needed in aderived class. In such cases, virtual
inheritance is intentionally avoided. For example, suppose you have a scrollbar class that serves as a base for two
other subclasses:

cl ass Scrol | bar
{
private:

int Xx;

int vy,
publi c:

void Scroll (units n);
I, ..
}
cl ass Horizontal Scroll bar : public Scrollbar {/*..*/};
class Vertical Scrol |l bar : public Scrollbar {/*..*/};

Now imagine awindow that has both a vertical scrollbar and a horizontal one. It can be implemented and used in
the following way:

class Multi Scrol |l Wndow. public Vertical Scroll bar,
public Horizontal Scrol | bar {/*..*/};
Mul ti Scrol | Wndow nsw;
msw. Hori zont al Scrol | bar:: Scrol | (5); /'l scroll left
msw. Vertical Scrol | bar::Scroll (12); /1...and up

The user can scroll such awindow up and down as well as left and right. For this purpose, the window object has
to have two distinct Scr ol | bar subobjects. Therefore, virtual inheritance isintentionally avoided in this case.

Choosing Distinct Names for Member Functions

When two or more classes serve as base classes in multiple inheritance, you want to choose a distinct name for
each member function in order to avoid name ambiguity. Consider the following concrete example:

cl ass Audi oStreanmer //real -time sound player
{
publ i c:
void Play();
void Stop();
¥

cl ass VideoStreamer //real-tinme video player
{

publ i c:

void Play();

voi d Stop();

b
cl ass Audi oVi sual : public Audi oStreaner, public VideoStreaner {/*...*/};
Audi oVi sual pl ayer;

pl ayer.play(); //error: AudioStreaner::play() or VideoStreaner::play() ?

One way to overcome the ambiguity is specifying the function's fully-qualified name:
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Pl ayer. Audi oStreaner::play(); //fine but tedious

However, apreferable solution is the use of distinct names for member functions in the base classes:

cl ass Audi oSt reaner
{
publ i c:

void au_Play(); };
cl ass Vi deoStreaner

{
publ i c:

void vd_Play();
};

Pl ayer.au_play(); //now distinct

Conclusions

C++ isused today in fields as diverse as embedded systems, database engines, Web engines, financial systems,
artificial intelligence, and more. This versatility can be attributed to its flexibility of programming styles,
backward compatibility with C, and the fact that it is the most efficient object-oriented programming languagein
existence.

As aprocedural programming language, C++ offers atighter type-checking than C does. It aso provides better
memory management, inline functions, default arguments, and reference variables, which make it a"better C".

Obj ect-based programming solves some of the noticeable weaknesses of procedural programming by bundling
datatypes and the set of operations that are applied to them in asingle entity. The separation of implementation
details from an interface localizes changes in the design, thereby yielding more robust and extensible software.
However, it does not support class hierarchies.

Object-oriented programming relies on encapsulation, information hiding, polymorphism, inheritance, and
dynamic binding. These features enable you to design and implement class hierarchies. The advantages of
object-oriented programming over object-based programming are faster development time, easier maintenance,
and ssimpler extensibility.

C++ supports advanced object-oriented programming features such as multiple inheritance, static and dynamic
polymorphism, and a clear-cut distinction between a class and an object. Object-oriented design begins with
locating the classes and their interrelations: inheritance, containment, and ownership. The symmetry between
constructors and destructors is the basis for useful design idioms such as"initialization is acquisition" and smart
pointers.

An additional programming paradigm that is supported in C++, generic programming, is not directly related to
object-oriented programming. In fact, it can be implemented in procedural languages as well. Nonethless, the
combination of object-oriented programming and generic programming makes C++ avery powerful language
indeed, as you will read in Chapter 10.

Contents
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Introduction

L arge software applications are built in layers. At the lowest level, you usually find library routines, API functions,
and proprietary infrastructure functions. At the highest level, there are user interface components that enable a user to,
for instance, fill out a data sheet in a spreadsheet application. Consider an ordinary flight-booking application: its
topmost layer consists of GUI components that display contents on the user's screen. These high-level components
interact with data access objects, which in turn encapsul ate database API routines. At alower level, the database AP
routines interact with the database engine. The database engine itself invokes system services that deal with low-level
hardware resources such as physical memory, file system, and security modules. In general, severe runtime errors are
detected in these lower code layers, which cannot -- or should not -- attempt to handle these errors on their own. The
handling of severe runtime errorsisthe responsibility of higher-level components. In order to handle an error,
however, higher-level components have to be informed that an error has occurred. Essentially, error handling consists
of detecting an error and notifying the software components that are in charge. These components in turn handle the
error and attempt to recover fromit.

Traditional Error Handling Methods

Inits earlier stages, C++ did not have a built-in facility for handling runtime errors. Instead, the traditional C methods
were used for that purpose. These methods can be grouped into three design policies:

« Return a status code with agreed-upon values to indicate either success or failure.
« Assign an error code to aglobal variable and have other functions examine it.
« Terminate the program altogether.

Each of these methods has significant drawbacks and limitations in an object-oriented environment. Some of them
might be totally unacceptable, particularly in large-scale applications. The following sections examine each of these
methods more closely in order to assess their inherent limitations and hazards.

Returning an Error Code

To some extent, this method can be useful in small programs in which an agreed-upon, closed set of error codes
exists, and in which arigorous policy of reporting errors and checking the returned status of a function is applied.
However, this method has some noticeable limitations; for example, neither the error types nor their enumerated
values are standardized. Thus, in one library the implementer might choose areturn value of O (meaning false,
perhaps) to indicate an error, whereas another vendor might choose 0 to indicate success and any nonzero value to
indicate an error condition. Usually, the return codes are shared in acommon header file in the form of symbolic
constants so that some commonality can be maintained throughout an application or a development team. These codes
are not standardized, however.

Needless to say, the process of combining noncompatible software libraries from different vendors or programmers
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becomes very difficult and confusing when conflicting error codes are used. Another disadvantage is that every
returned code has to be looked up and interpreted -- a tedious and costly operation. This policy requires that the return
value of every function be checked every time by every caller; failing to do so might lead to runtime disasters. When
an error code is detected, a return statement disrupts the normal execution flow and passes the error code on to the
caller. The additional code that wraps every function call (to examine the return status and decide whether to continue
normally) can easily double the size of the program and cause serious difficulties in the software's maintenance and
readability. Worse yet, returning an error value is sometimes impossible. For instance, constructors do not return
values, so they cannot use this method to report the failed construction of an object.

Turning on a Global Flag

An alternative approach for reporting runtime errorsis to use global flags, which indicate whether the last operation
ended successfully. Unlike the return code policy, this method is standardized. The C <errno.h> header file defines a
mechanism for examining and assigning the value of a global integer flag, er r no. Note that the inherent drawbacks
of this policy are not negligible. In a multithreaded environment, the error code that is assigned to er r no by one
thread can be inadvertently overwritten by another thread before the caller has had a chance to examine it. In addition,
the use of an error code instead of a more readable message is disadvantageous because the codes might not be
compatible among different environments. Finally, this method requires a well-disciplined programming style that
relies on constant checking of the current value of er r no.

The global flag policy is similar to the function return value policy: Both provide a mechanism for reporting an error,
but neither guarantees that the error is actually handled. For example, afunction that fails to open afile can indicate a
failure by assigning an appropriate value to er r no. However, it cannot prevent another function from attempting to
write into the file or closeit. Furthermore, if er r no indicates an error and the programmer detects and handlesit asis
expected, er r no still hasto be reset explicitly. A programmer might forget to do so, thereby causing other functions,
which assume that the error has not been handled, to attempt to rectify the problem -- with unpredictable results.

Terminating the Program

The most drastic method of handling a runtime error is ssmply to terminate the program immediately when a severe
error has been detected. This solution averts some of the drawbacks of the previous two methods; for example, there
Is no need for repetitive examination of the status that is returned from every function call, nor does the programmer
have to assign a global flag, test its value, and clear it in arepetitive and error-prone manner. The standard C library
has two functions that terminate a program: exi t () andabort () .exi t () can be called to indicate successful
termination of a program (asthe final statement in mai n( ) ), or it can be called in the case of aruntime error. Before
returning control to the environment, exi t () first flushes open streams and closes open files. abor t () , on the
other hand, indicates abnormal program termination. It terminates immediately, without flushing streams or closing
open files.

Critical applications cannot just halt abruptly on every occurrence of aruntime error. It would be disastrousiif alife
support machine stopped functioning just because its controller detected a division by zero; likewise, the embedded
computer that controls the automatic functions of a manned space shuttle should not halt just because it temporarily
loses communication with ground control. Similarly, applications such as the billing system of atelephone company
or abanking application cannot break down altogether whenever a runtime exception occurs. Robust, real world
applications can -- and must -- do better than that.

Program termination is problematic even for applications, such as an operating system, that are expected to abort in
the case of serious runtime errors. A function that detects the error usually does not have the necessary information to
estimate the severity of the error. A memory allocation function, for example, cannot tell whether an allocation
request has failed because the user is currently using a debugger, a Web browser, a spreadsheet, and a word processor
all at once, or because the system has become unstable due to a severe hardware fault. In the first scenario, the system
can simply display a message, requesting that the user close unnecessary applications. In the second scenario, a more
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drastic measure might be required. Under this policy, however, the allocation function simply aborts the program (the
operating system kernel, in this case), regardless of the severity of the error. Thisis hardly applicable in nontrivial
applications. Good system design has to ensure that runtime errors are detected and reported, but it also hasto ensure
aminimal level of fault tolerance.

Terminating the program might be acceptable under extreme conditions or during debugging phases. However,
abort () andexit () arenever to be used in an object-oriented environment, even during debugging, because they
are unaware of the C++ object model.

exit() and abort() Do Not Destroy Objects

An object can hold resources that are acquired by the constructor or a member function: memory allocated on the free
store, file handles, communication ports, database transaction locks, I/O devices, and so on. These resources have to
be properly released by the object that uses them when it's done. Usually, these resources are released by the
destructor. Thisdesignidiom is called resource initialization is acquisition (thisis discussed in greater detail in
Chapter 5, "Object-Oriented Program and Design”). Local objects that are created on the stack are destroyed
automatically when their block or function exits. Neither abort () nor exi t (), however, invokesthe
destructors of local objects. Therefore, an abrupt program termination caused by calling these functions can cause
irreversible damage: A database can be corrupted, files can be lost, and valuable data can evaporate. For this reason,
do not use either abor t () orexi t () inan object-oriented environment.

Enter Exception Handling

Asyou have observed, none of the traditional error handling methods of C are adequate for C++; one of the goals of
C++ was to enable better and safer large-scal e software development than is offered by C.

The designers of C++ were aware of the considerable difficulties resulting from the lack of a proper error handling
mechanism. They sought a solution that was free from all the ailments of C'straditional error handling. The suggested
mechanism was based on the automatic transfer of control to the system when an exception istriggered. The
mechanism had to be ssmple, and it had to free the programmer from the drudgery of constantly examining a global
flag or the returned value of afunction. Additionally, it had to ensure that the code sections that handle the exception
are automatically informed when an exception occurs. Finaly, it had to ensure that when an exception is not handled
locally, local objects are properly destroyed and their resources are released before the exception is propagated to a
higher handler.

In 1989, after severa years of research and a plethora of draft proposals, exception handling was added to C++. C++
is not the first language to offer structured runtime error handling support. Back in the 1960s, PL/1 offered a built-in
exception handling mechanism; Ada provided its own version of exception handling in the early 1980s, as did severdl
other languages. But none of these exception handling models fit the C++ object model and program structure.
Therefore, the proposed exception handling for C++ was unique, and it has served as a model for newer languages
that have appeared since.

Implementing an exception handling mechanism turned out to be areal challenge. The first C++ compiler, cfront, ran
on UNIX. Like many UNIX compilers, it was atrandator that first transformed C++ code into C, and then compiled
the resultant C code. Release 4.0 of cfront was supposed to include exception handling. However, the implementation
of an exception handling mechanism that met al the requirements got so complicated that the development team of
cfront 4.0 decided to abandon the project entirely after spending awhole year designing it. cfront 4.0 was never
released; however, exception handling became an integral part of Standard C++. Other compilers that started to
appear later supported it. The following section explains why it was it so difficult to implement exception handling
under cfront, and under any other compiler in general.
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The Challenges of Implementation of Exception Handling

The difficulties in implementing exception handling arise from several factors. First, the implementation must ensure
that the proper handler for a specific exception is found.

Secondly, exception objects can be polymorphic; in that case, the implementation also considers handlers of base
classes when it cannot locate a matching handler for a derived object.. This requirement implies a sort of runtime type
checking to recover the dynamic type of the exception object. Y et C++ did not have any runtime type checking
facilities whatsoever before exception handling was devel oped; these facilities had to be created from scratch for that
purpose.

As an additional complication, the implementation must invoke the destructors of all local objects that were
constructed on the path from at r y block to at hr ow expression before control passes to the appropriate handler.
This process is called stack unwinding (the stack unwinding processis discussed in further detail later in this chapter).
Because early C++ compilers translated the C++ source file into pure C and only then compiled the code into machine
code, the implementers of exception handling had to implement runtime type identification and stack unwinding in C.
Fortunately, these obstacles have all been overcome.

Applying Exception Handling

Exception handling is a flexible and sophisticated tool. It overcomes the drawbacks of C's traditional error handling
methods and it can be used to handle avariety of runtime errors. Still, exception handling, like other language
features, can easily be misused. To use this feature effectively, it isimportant to understand how the underlying
runtime machinery works and what the associated performance penalties are. The following sections delve into
exception handling internals and demonstrate how to use this tool to create robust, bulletproof applications.

CAUTION: Some of the code samplesin the following sections use new exception handling features
such as function try blocks and exception specifications. Several compilers do not support these features
yet; therefore, it is recommended that you read the technical documentation of your compiler to check
whether it fully supports exception handling.

Exception Handling Constituents

Exception handling is a mechanism for transferring control from a point in a program where an exception occursto a
matching handler. Exceptions are variables of built-in data types or class objects. The exception handling mechanism
consists of four components. at ry block, a sequence of one or more handlers associated with at ry block, at hr ow
expression, and the exception itself. Thet r y block contains code that might throw an exception. For example

try
{
int * p = new int[1000000]; //may throw std::bad alloc

}

At ry block isfollowed by a sequence of one or more cat ch statements, or handlers, each of which handles a
different type of exception. For example

try

{
int * p = newint[1000000]; //may throw std::bad alloc

/...
}
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catch(std::bad alloc& )

{
}
catch (std::bad_cast &)
{
}

A handler isinvoked only by at hr ow expression that is executed in the handler'st r y block or in functions that are
called from the handler'st r y block. A t hr ow expression consists of the keyword t hr ow and an assignment
expression. For example

try
{

throw5; // 5 is assigned to nin the follow ng catch statenent

}
catch(int n)
{
}

At hr owexpressionissimilar to ar et ur n statement. An empty throw isat hr ow statement without an operand.
For example

t hr ow,

An empty throw inside a handler indicates a rethrow, which is discussed momentarily. Otherwise, if no exception is
presently being handled, executing an empty throw callst er mi nat e() .

Stack Unwinding

When an exception is thrown, the runtime mechanism first searches for an appropriate handler in the current scope. If
such a handler does not exist,

the current scope is exited and the block that is higher in the calling chain is entered into scope. This processis
iterative: It continues until an appropriate handler has been found. An exception is considered to be handled upon its
entry to a handler. At this point, the stack has been unwound and all the local objects that were constructed on the
path from at ry block to at hr ow expression have been destroyed. In the absence of an appropriate handler, the
program terminates. Note, however, that C++ ensures proper destruction of local objects only when the thrown
exception is handled. Whether an uncaught exception causes the destruction of local objects during stack unwinding
Is implementation-dependent. To ensure that destructors of local objects are invoked in the case of an uncaught
exception, you canadd acat ch al | statement inmai n() . For example

int main()
{
try

{
Il...

catch(std: : excepti on& stdexc) /'l handl e expected exceptions

{
/...

}

catch(...) /'l ensure proper cleanup in the case of an uncaught exception
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{
}

return O;

}

The stack unwinding processis very similar to a sequence of r et ur n statements, each returning the same object to
its caller.

Passing Exception Objects to a Handler

An exception can be passed by value or by reference to its handler. The memory for the exception that is being
thrown is allocated in an unspecified way (but it is not allocated on the free store). Some implementations use a
dedicated exception stack, on which exception objects are created. When an exception is passed by reference, the
handler receives areference to the exception object that is constructed on the exception stack. Passing an exception by
reference ensures its polymorphic behavior. Exceptions that are passed by value are constructed on the stack frame of
the caller. For example

#i ncl ude <cstdio>

cl ass ExBase {/*...*/};

class Fil eEx: public ExBase {/*...*/};
void Wite(FILE *pf)

{
if (pf == NULL) throw FileEx();
/l... process pf normally
}
int main ()
{
try
{
Wite(NULL); //wll cause a FileEx exception to be thrown
}
cat ch( ExBase& exception) //catch ExBase or any object derived fromit
{
/1 di agnostics and renedi es }
}

Repeatedly copying objects that are passed by value is costly because the exception object can be constructed and
destroyed several times before a matching handler has been found. However, it occurs only when an exception is
thrown, which only happensin abnormal and -- hopefully -- rare situations. Under these circumstances, performance
considerations are secondary (exception handling performance is discussed at the end of this chapter) to maintaining
an application'sintegrity.

Exception Type Match

The type of an exception determines which handler can catch it. The matching rules for exceptions are more
restrictive than are the matching rules for function overloading. Consider the following example:

try

throw int();
}
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catch (unsigned int) //will not catch the exception fromthe previous try-bl ock

{
}

The thrown exception is of typei nt , whereas the handler expectsan unsi gned i nt . The exception handling
mechanism does not consider these to be matching types; as a result, the thrown exception is not caught. The
matching rules for exceptions allow only alimited set of conversions: For an exception E and a handler taking T or
T&, the match isvalid under one of the following conditions:

o T and E are of the sametype (const andvol at i | e specifiers areignored)
« T isan unambiguous public base class of .

If Eand T are pointers, the match isvalid if E and T are of the same type or if E points to an object that is publicly
and unambiguously derived from the class that is pointed to by T. In addition, ahandler of typearray of T or
function returning Tistransformedintopoi nter to Torpointer to function returning
T, respectively.

Exceptions as Objects

Asyou have probably noticed, the traditional convention of returning an integer as an error flag is problematic and
unsatisfactory in OOP. The C++ exception handling mechanism offers more flexibility, safety, and robustness. An
exception can be afundamental typesuch asi nt orachar *. It can be afull-fledged object as well, with data
members and member functions. Such an object can provide the exception handler with more options for recovery. A
clever exception object, for example, can have a member function that returns a detailed verbal description of the
error, instead of letting the handler to look it up in atable or afile. It can have member functions that enable the
program to recover from the runtime error after the error has been handled properly. Consider alogger class that
appends new records to an existing log file: If it fails to open the log file, it throws an exception. When it is caught by
the matching handler, the exception object can have a member function, which creates a dialog box. The operator can
choose recovery measures from the dialog box, including creation of a new log file, redirecting the logger to an
aternative file, or smply allowing the system to run without alogger.

Exception Specification

A function that might throw an exception can warn its users by specifying alist of the exceptions that it can throw.
Exception specifications are particularly useful when users of a function can view its prototype but cannot accessits
source file. Following is an example of specifying an exception:

cl ass Zerodivide{/*..*/};
int divide (int, int) throw Zerodivide); /1 function may throw an exception
/'l of type Zerodivide, but no other

If your function never throws any exceptions, it can be declared as follows:

bool equals (int, int) throw(); //no exception is thrown fromthis function

Note that a function that is declared without an exception specification such as

bool equals (int, int);

guarantees nothing about its exceptions: It might throw any exception, or it might throw no
exceptions. Exception Specifications Are Enforced At Runtime

file:///D|/Cool Stuff/old/ftp/1/1/ch06/ch06.htm (8 von 18) [12.05.2000 14:46:11]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 6 - Exception Handling
An exception specification may not be checked at compile time,

but rather at runtime. When a function attempts to throw an exception that it is not allowed to throw according to its
exception specification, the exception handling mechanism detects the violation and invokes the standard function
unexpect ed() . The default behavior of unexpect ed() istocall t er m nat e() , which terminates the
program. A violation of an exception specification is most likely abug, and should not occur -- thisis why the default
behavior is program termination. The default behavior can be atered, nonetheless, by using the function

set _unexpected().

Because exception specifications are enforced only at runtime, the compiler might deliberately ignore code that
seemingly violates exception specifications. Consider the following:

int f(); /'l no exception specification, f can throw any type of exception
void g(int j) throw) /'l g prom ses not to throw any exception at all
{
int result =f(); // if f throws an exception, g wll violate its guarantee
/Inot to throw an exception. still, this code is |egal

}

In this example, the function g( ) , which is not allowed to throw any exception, invokes the functionf () . f (),
however, isfreeto throw any exception because it has no exception specification. If f () throws an exception, it
propagates through g( ) , thereby violating g( ) 's guarantee not to throw any exception.It might seem surprising that
exception specifications are enforced only at runtime because at least some of the violations can be caught at compile
time and flagged as errors. Thisis not the case, however. There are several compelling reasons for the runtime
checking policy.. In the preceding example, f () can be alegacy C function. It isimpossible to enforce every C
function to have an exception specification. Forcing the programmer to write unnecessary t ry andcat ch(. . .)
blocksing() "justin case" isimpractical aswell -- what if the programmer knowsthat f () doesn't throw any
exception at all and the code is therefore safe? By enforcing exception specifications at runtime, C++ applies the
"trust the programmer" policy instead of forcing an unnecessary burden on both the programmer and the
implementation.

Concordance of Exception Specification

C++ requires exception specification concordance in derived classes. This means that an overriding virtual function in
aderived class has to have an exception specification that is at least as restrictive as the exception specification of the
overridden function in the base class. For example

[l various exception cl asses
cl ass BaseEx{};
cl ass DerivedEx: public BaseEx{};
class Ot herEx {};
class A
{
publ i c:
virtual void

f t hrow (BaseEXx);
virtual void g

h

|

J

()

() throw (BaseEx);
virtual void h() throw (DerivedEx);
virtual void i()

()

virtual void j

throw (DerivedEx);
t hr owm BaseEx) ;

b

class D. public A

{
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publ i c:
void f() throw (DerivedEx); //OK, DerivedEx is derived from BaseEx
class D public A

{
publi c:
void f() throw (DerivedEx); //OK DerivedEx is derived from BaseEx
void g() throw (OGherEx); //lerror; exception specification is
/[linconpatible with A's
void h() throw (DerivedEx); //OK, identical to the exception
/I specification in base
void i() throw (BaseEx); //error, BaseEx is not a DerivedEx nor is it
//derived from Deri vedEx
void j() throw (BasekEx, therEx); //error, less restrictive than the
/I specification of A :j
};
3

The same concordance restrictions apply to pointers to functions. A pointer to afunction that has an exception
specification can be assigned only to afunction that has an identical or a more restrictive exception specification. This
implies that a pointer to function that has no exception specification cannot be assigned to a function that has one.
Note, however, that an exception specification is not considered part of the function type. Therefore, you cannot
declare two distinct functions that differ only in their exception specification. For example

void f(int) throw (Y);
void f(int) throw (2); //error; redefinition of "void f(int)"'

For the same reason, declaring at ypedef that contains an exception specification is also an error:

t ypedef void (*PF) (int) throw Exception); // error

Exceptions During Object's Construction and Destruction

Constructors and destructors are invoked automatically; in addition, they cannot return values to indicate a runtime
error. Seemingly, the most plausible way of reporting runtime errors during object construction and destruction is by
throwing an exception. However, there are additional factors that you have to consider before throwing an exception
in these cases. Y ou should be particularly cautious about throwing an exception from a destructor.

Throwing Exceptions From A Destructor is Dangerous

Throwing an exception from a destructor is not recommended. The problem is that a destructor might be invoked due
to another exception as part of the stack unwinding. If a destructor that was invoked due to another exception also
throws an exception of its own, the exception handling mechanism invokest er m nat e() . If you really have to
throw an exception from a destructor, it is advisable to check first whether another uncaught exception is currently
being processed.

Checking for an Uncaught Exception

A thrown exception is considered caught when its corresponding handler has been entered (or, if such ahandler
cannot be found, when the function unexpect ed() has been invoked). In order to check whether athrown
exception is currently being processed, you can use the standard function uncaught _excepti on() (whichis
defined in the standard header <stdexcept>). For example
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class Fil eException{};
File::~File() throw (Fil eExcepti on)
{
If ( close(file _handle) != success) // failed to close current file?
{
i f (uncaught exception() == true ) // is there any uncaught exception
/ I bei ng processed currently?
return; // if so, do not throw an exception
throw Fi |l eException(); // otherwise, it is safe to throw an exception
/[l to signal an error
}

return; // success

}

Still, a better design choice is to handle exceptions within a destructor rather than et them propagate into the
program. For example

voi d cl eanup() throw (int);
class C
{
publ i c:
~();
b
C:~C)
{
try
{

cl eanup();

}
catch(int)

/I handl e the exception within the destructor

}
}

If an exception isthrown by cl eanup() , itis handled inside the destructor. Otherwise, the thrown exception will

propagate outside the destructor, and if the destructor has been invoked while unwinding the stack due to another
exception, t er m nat e() will be called.

Global Objects: Construction and Destruction

Conceptually, the construction of global objects takes place before program outset. Therefore, any exception that is
thrown from a constructor of a global object can never be caught. Thisis also true for a global object's destructor --
the destruction of a global object executes after a program's termination. Hence, an exception that is thrown from a

global object's destructor cannot be handled either.
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Advanced Exception Handling Techniques

Thesmplet r y-t hr ow-cat ch model can be extended even further to handle more complicated runtime errors. This
section discusses some of the more advanced uses of exception handling, including exception hierarchies, rethrowing
exceptions, functiont r y blocks and theaut o_pt r class.

Standard Exceptions
C++ defines a hierarchy of standard exceptions that are thrown at runtime when abnormal conditions arise. The

standard exception classes are derived from st d: : except i on (defined in the <stdexcept> header). This hierarchy
enables the application to catch these exceptionsin asingle cat ch statement:

catch (std::exception& exc)

{
/'l handl e exception of type std::exception as well as
/I any exception derived fromit
}
The standard exceptions that are thrown by built-in operators of the language are
std::bad _all oc /| by operator new
std:: bad_cast /I by operator dynam c_cast < >

std::bad_typeid [/ by operator typeid
std:: bad_exception //thrown when an exception specification of

/fafunction is violatedAll standard exceptions have provided the member function what () , which returnsaconst
char * with an implementation-dependent verbal description of the exception. Note, however, that the standard
library has an additional set of exceptions that are thrown by its components.

Exception Handlers Hierarchy

Exceptions are caught in a bottom-down hierarchy: Specific (most derived classes) exceptions are handled first,
followed by groups of exceptions (base classes), and, finally, acat ch al | handler. For example

#i ncl ude <st dexcept>
#i ncl ude <i ostreanr
usi ng nanespace std;
i nt main()
{

try

{
char * buff = new char[100000000];

[/l...use buff
}

catch(bad_al l oc& all oc_fail ure) /1l bad_alloc is
[/ derived from exception
{

cout<<"nmenory allocation failure";
/1... handl e exception thrown by operator new

}
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catch(excepti on& std_ex)

{

cout << std_ex.what () <<endl;

}

catch(...) [// exceptions that are not handl ed el sewhere are caught here

{

cout <<"unr ecogni zed excepti on"<<endl ;

}

return O;

}

Handlers of the most derived objects must appear before the handlers of base classes. Thisis because handlers are
tried in order of appearance. It is therefore possible to write handlers that are never executed, for example, by placing
ahandler for aderived class after a handler for a corresponding base class. For example

catch(std::exception& std_ex) //bad_alloc exception is always handl ed here

{

/1...handl e the exception

}
catch(std::bad alloc& alloc failure) / I unr eachabl e
{
cout<<"nmenory allocation failure";
}

Rethrowing an Exception

An exception isthrown to indicate an abnormal state. The first handle to catch the exception can try to fix the
problem. If it failsto do so, or if it only manages to perform a partial recovery, it can still rethrow the exception,
thereby letting ahigher t r y block handleit. For that purpose, t r y blocks can be nested in a hierarchical order,
enabling a rethrown exception from alower cat ch statement to be caught again. A rethrow isindicated by at hr ow
statement without an operand. For example

#i ncl ude <i ostreanr

#i ncl ude <string>
usi ng nanespace std,;
enum { SUCCESS, FAI LURE}
class File

{
public: File (const char *) {}
public: bool IsValid() const {return false; }
public: int OpenNew() const {return FAILURE, }
3

cl ass Exception {/*..*/}; //general base class for exceptions
cl ass Fil eException: public Exception

{
public: FileException(const char *p) : s(p) {}
public: const char * Error() const { return s.c_str(); }
private: string s;

1

void func(File& );

I nt main()
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{
try //outer try

{
File f ("db.dat");
func; /11
}
catch(...) /I 7
/[/this handler will catch the re-thrown exception;
/I note: the sanme exception type is required

{
cout <<"re-thrown exception caught";
}
return O;
}
void func(File & f)
{

try //inner try

if (f.Isvalid() == false )
throw Fi |l eException("db.dat"); [/ 2
}
catch(Fi |l eException &e) // 3
/1first chance to cope with the exception
{
cout<<"invalid file specification" <<fe.Error()<<endl;
i f (f.OpenNew() != SUCCESS) (5)
/[lre-throw the original exception and |let a higher handler deal with it
throw, // 6
}
}

In the preceding example, the function f unc() iscaled fromthet ry block inside mai n() (1). Thesecondtry
block insidef unc() throwsan exception of type Fi | eExcept i on (2). Thisexception is caught by thecat ch
block insidef unc() (3). Thecat ch block attempts to remedy the situation by opening a new file. This attempt

fails (5), andthe Fi | eExcept i on isrethrown (6). Finaly, the rethrown exception is caught -- thistime, by the

catch(...) blockinsdemai n() (7).

Function try Blocks

A functiont r y block is afunction whose body consistsof at r y block and its associated handlers. A functiont ry
block enables a handler to catch an exception

that is thrown during the execution of theinitializer expressions in the constructor's member initialization list or
during the execution of the constructor's body. Note, however, that unlike handlers of ordinary exceptions, the handler
of afunctiont r y block merely catches the exception -- it cannot continue the object’'s construction normally. Thisis
because the partially constructed object is destroyed as aresult of the stack unwinding. In addition, the handler of a
functiont r y block cannot execute ar et ur n statement (eventually, the handler must exit by at hr ow). What isthe
use of afunctiont r y block then? The handler enables you to throw a different exception than the one that it just
caught, thereby preventing a violation of the exception specification. For example

class X{};
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C.:C(const std::string& s) throw (X) // allowed to throw X only

try
str(s) // str's constructor mght throw a bad_al |l oc excepti on,

/1 mght violate C s exception specification

{
}

catch (...) //handle any exception thrown fromctor initializer or ctor body

{

/1l constructor function body

/...
throw X(); //replace bad_alloc exception with an exception of type X

}

In this example, ast ri ng object isfirst constructed as a member of classC. st r i ng might throw abad_al | oc
exception during its construction. The function try block catchesthebad _al | oc exception and throws instead an
exception of type X, which satisfies the exception specification of C's constructor.

Use auto_ptr<>to Avoid Memory Leaks

The Standard Library suppliesthe classtemplate aut o_pt r <> (discussed in Chapter 10, "STL and Generic
Programming"), which automatically deallocates memory that is allocated on the free store in much the same manner
aslocal objects are reclaimed in case of exiting their scope. When anaut o_pt r <> isinstantiated, it can be
initialized with a pointer to an object that is allocated on the free store. When the current scope is exited, the
destructor of theaut o_pt r <> object automatically deletes the object that isbound to it. By using aut o_pt r <>,
you can avoid memory leakage in the case of an exception. Furthermore, aut o_pt r <> can simplify programming
by sparing the bother of explicitly deleting objects that were allocated on the free store. aut o_pt r <> isdefined in
the standard <menor y> header file.

For example

#i ncl ude <nenory>

#1 ncl ude <i ostreanr

usi ng nanespace std;

cl ass Date{ public: const char * DateString(); };
void D spl ayDat e()

{
/lcreate a | ocal object of type auto_ptr<Date>
auto _ptr<Date> pd (new Date); //now pd is owned by the tenpl ate object
cout<< pd-> DateString();
//pd is automatically deleted by the destructor of auto ptr;
}

In the preceding example, theaut o_pt r <> instance, pd, can be used like an ordinary pointer to Dat e. The
overloaded operators* , - >, and & of aut o_pt r <> provide the pointer-like syntax. pd's bound obj ect is
automatically destroyed when Di spl ayDat e() exits.

Exception Handling Performance Overhead

By nature, exception handling relies heavily on runtime type checking. When an exception is thrown, the
implementation has to determine whether the exception was thrown from at r y block (an exception can be thrown
from a program section that is not enclosed within at r y block -- by operator new, for example). If indeed the
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exception was thrown from at r y block, the implementation compares the type of the exception and attempts to find
amatching handler in the current scope. If amatch isfound, control istransferred to the handler's body. Thisisthe
optimistic scenario. What if the implementation cannot find a matching handler for the exception, though, or what if
the exception was not thrown from at r y block? In such a case, the current function is unwound from the stack and
the next active function in the stack is entered. The same process is reiterated until a matching handler has been found
(at that point, all the automatic objects that were created on the path from at r y block to at hr ow expression have
been destroyed). When no matching handler can be found in the program, t er m nat e() isinvoked and the
program terminates.

Additional Runtime Type Information

The exception handling mechanism has to store additional data about the type of every exception object and every
cat ch statement in order to perform the runtime matching between an exception and its matching handler. Because
an exception can be of any type, and because it can be polymorphic as well, its dynamic type must be queried at
runtime, using runtime type information (RTTI). RTTI, imposes an additional overhead in terms of both execution
speed and program size (see Chapter 7, "Runtime Type Information”). Yet RTTI aloneis not enough. The
implementation also requires runtime code information, that is, information about the structure of each function. This
information is needed to determine whether an exception was thrown from at r y block. Thisinformation is
generated by the compiler in the following way: The compiler divides each function body into three parts. one that is
outsideat r y block with no active objects, a second part that isalso outside at r y block but that has active objects
that have to be destroyed during stack unwinding, and athird part that iswithin at r y block.

Toggling Exception Handling Support

The technicalities of exception handling implementation vary among compilers and platforms. In al of them,
however, exception handling imposes additional overhead even when no exception is ever thrown. The overhead lies
in both execution speed and program size. Some compilers enable you to toggle exception handling support. When it
is turned off, the additional data structures, lookup tables, and auxiliary code are not generated. However, turning off
exception handling israrely an option. Even if you do not use exceptions directly, you are probably using them
implicitly: Operator new, for example, might throw ast d: : bad_al | oc exception when it fails -- and so do other
built-in operators; STL containers might throw their own exceptions, and so might other functions of the Standard
Library. Code libraries that are supplied by third party vendors might use exceptions as well. Therefore, you can
safely turn off exception handling support only when you are porting pure C code into a C++ compiler. Aslong as
pure C code is used, the additional exception handling overhead is unnecessary and can be avoided.

Misuses of Exception Handling

Exception handling is not confined to errors. Some programmers might use it simply as an alternative control
structureto f or loopsor whi | e and do blocks. For example, a simple application that prompts the user to enter data
until a certain condition has been fulfilled can be (rather naively) implemented as follows:

#1 ncl ude <i ostreanp

usi ng nanespace std,;

class Exit{}; //used as exception object

I nt main()
{

int num

cout<< "enter a nunber; 99 to exit" <<endl;
try

{
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while (true) //infinitely

{
ci n>>num
if (num == 99)
throw Exit(); //exit the |oop
cout<< "you entered: " << num << "enter another nunber " <<endl;
}
}
catch (Exit& )
{
cout << "ganme over" <<endl;
}
return O;
}

In the preceding example, the programmer locates an infinite loop within atry block. Thet hr ow statement breaks
the loop and transfers control to the following cat ch statement. This style of programming is not recommended,
however. It is very inefficient due to the excess overhead of exception handling. Furthermore, it is rather verbose and
might have been much simpler and shorter had it been written with abr eak statement. In demo apps such as this
one, the difference is mostly a stylistic one. In large-scale applications, the use of exception handling as an alternative
control structure imposes a significant performance overhead.

Simple runtime errors that can be handled safely and effectively without the heavy machinery of exception handling
need to also be treated by traditional methods. For example, a password entry dialog box should not throw an
exception if the user mistyped his or her password. It is much simpler to redisplay the password entry dialog again
with an appropriate error message. On the other hand, if the user enters wrong passwords dozens of timesin arow,
this can indicate a malicious break-in attempt. In this case, an exception should be thrown. The appropriate handler
can page the system administrator and security officer.

Conclusions

The exception handling mechanism of C++ overcomes the problems associated with the traditional methods. It frees
the programmer from writing tedious code that checks the success status of every function call. Exception handling
also eliminates human mistakes. Another important advantage of exception handling is the automatic unwinding of
the stack, which ensures that local active objects are properly destroyed and their resources are released.

Implementing an exception handling mechanism was not atrivial task. The need to query the dynamic type of
exception led to the introduction of RTTI into C++. The additional overhead of exception handling derives from the
RTTI data structures, the "scaffolding” code that is generated by the compiler, and other implementation-dependent
factors. Exceptions can be grouped into categories; the standard exception classes are a good example of this. In
recent years, afew loopholes in the exception handling mechanism have been fixed. The first was the addition of
exception specifications to functions' prototypes. The second was the introduction of afunctiont r y block, which
enables the program to handle an exception that is thrown during the execution of the initializer expressionsin the
constructor's member initialization list or during the execution of the constructor's body.

Exception handling is a very powerful and flexible tool for handling runtime errors effectively. However, use it
judicioudly.

Contents
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o Virtual member functions can provide areasonable level of dynamic typing without the need for additional RTTI
support. A well-designed class hierarchy can define a meaningful operation for every virtual member function that
is declared in the base class.
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o RTTI IsApplicable to Polymorphic Objects Exclusively
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o Memory Overhead
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0 typeid Versus dynamic_cast<>
« Conclusions

Introduction

Originally, C++ did not provide standardized support for runtime type information (RTTI). Furthermore, its creators balked at
theidea of adding RTTI support for at least two reasons. First, they wanted to preserve backward compatibility with C.
Secondly, they were concerned about efficiency. Other RTTI-enabled languages, such as Smalltalk and Lisp, were
characterized by their notoriously sluggish performance. The performance penalty of dynamic type checking results from the
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relatively slow process of retrieving the object's type at runtime as well as from the additional information that the system
needs to store for every type. C++ designers wanted to preserve the efficiency of C.

Another claim against the addition of RTTI to the language was that, in many cases, the use of virtual member functions could
serve as an aternative to explicit runtime type checking. However, the addition of multiple inheritance (and consequently, of
virtual inheritance) to C++ gave overwhelming ammunition to the proponents of RTTI (multiple inheritance is discussed in
Chapter 5, "Object-Oriented Programming and Design"); it became apparent that under some circumstances, stetic type
checking and virtual functions were insufficient.

Eventually, the C++ standardization committee approved the addition of RTTI to the language. Two new operators,
dynam c_cast <>andt ypei d, wereintroduced. In addition, theclassst d: : t ype_i nf o was added to the Standard
Library.

Structure Of This Chapter

This chapter consists of three mgjor parts. The limitations of virtual functions are presented first. Then, the standard RTTI
constituents are explained and exemplified. Finaly, RTTI performance and design issues are discussed.

Making Do Without RTTI

Virtual member functions can provide areasonable level of dynamic typing without the need for additional RTTI support. A
well-designed class hierarchy can define a meaningful operation for every virtual member function that is declared in the base
class.

Suppose you have to develop afile manager application as a component of a GUI-based operating system. Thefilesin this
system are represented as icons that respond to the right click of a mouse, displaying a menu with options such as open, close,
read, and so on. The underlying implementation of the file system relies on a class hierarchy that represents files of various
types. In awell-designed class hierarchy, there is usually an abstract class serving as an interface:

class File //abstract, all nenbers are pure virtual

{
public: virtual void open() =0;
public: virtual void read() =0;
public: virtual void wite() =0;
public: virtual ~File () =0;
¥
File::~File () [//pure virtual destructor nust be defined
{}

At alower level in the hierarchy, you have a set of derived classes that implement the common interface that they inherit from
Fi | e. Each of these subclasses represents a different family of files. To ssimplify the discussion, assume that there are only
two file typesin this system: binary .exe files and text files.

class BinaryFile : public File

{

public:
void open () { OS_ execute(this); } //linplement the pure virtual function
[l...other nmenber functions

b

class TextFile : public File

{

public:

voi d open () { Activate word_processor (this); }
[1...other nmenber functions of File are inplenented here
void virtual print(); // an additional nmenber function
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The pure virtual function open() isimplemented in every derived class, according to the type of thefile. Thus, in a
Text Fi | e object, open() activates aword processor, whereas aBi nar yFi | e object invokes the operating system's API
function OS_execut e() , which in turn executes the program that is stored in the binary file.

There are several differences between abinary file and atext file. For example, atext file can be printed directly on a screen or
aprinter because it consists of a sequence of printable characters. Conversely, abinary file with an .exe extension contains a
stream of bits; it cannot be printed or displayed directly on a screen. It must be converted to atext file first, usualy by a utility
that trandlates the binary datainto their symbolic representations. (For instance, the sequence 0110010 in an executable file
can be replaced by a corresponding move esp, ebp assembly directive.) In other words, an executable file must be converted to
atext filein order to be viewed or printed. Therefore, the member function pri nt () appearsonly inclass Text Fi | e.

In this file manager, right-clicking the mouse on afile icon opens a menu of messages (options) to which the object can
respond. For that purpose, the operating system has a function that takes areferenceto aFi | e:

OhRightdick (File &file); //operating systems APl function

Obviously, no object of classFi | e can beinstantiated because Fi | e is an abstract class (see Chapter 5). However, the
function OnRi ght G i ck() can accept any object that isderived from Fi | e. When the user right-clicks on afileicon and
chooses the option Open, for instance, OnRi ght C i ck invokes the virtual member function open of its argument, and the
appropriate member function is called. For example

OnRightdick (File & file)
{

switch (nmessage)

{

/Il...

case m open:

file.open();

br eak;

}
}

So far, so good. Y ou have implemented a polymorphic class hierarchy and a function that does not depend on the dynamic
type of its argument. In this case, the language support for virtual functions was sufficient for your purposes; you did not need
any explicit runtime type information (RTTI). Well, not exactly. Y ou might have noticed the lack of file printing support. Look
at the definition of class Text Fi | e again:

class TextFile : public File

{

publ i c:
void open () { Activate_ word_processor (this); }
void virtual print();

¥

The member function pri nt () isnot apart of the common interface that isimplemented by all filesin your system. It would
be adesign error to move pri nt () to the abstract classFi | e because binary files are nonprintable and cannot define a
meaningful operation for it. Then again, OnRi ght C i ck() hasto support file printing when it handles atext file. In this
case, ordinary polymorphism in the form of virtual member functions will not do. OnRi ght Cl i ck() only knowsthat its
argument is derived from Fi | e. However, thisinformation is not sufficient to tell whether the actual object is printable.
Clearly, OnRi ght O i ck() needs more information about the dynamic type of its argument in order to properly handle file
printing. Thisiswhere the need for runtime type information arises. Before delving into the implementation of

OnRi ght A i ck(), anoverview of RTTI constituents and their role is necessary.
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RTTI constituents

The operatorst ypei d and dynam c_cast <> offer two complementary forms of accessing the runtime type information of
their operand. The operand's runtime type information itself isstored in at ype_i nf o object. This section exemplifies how
these three constituents are used.

RTTI Is Applicable to Polymorphic Objects Exclusively

It isimportant to realize that RTTI is applicable solely to polymorphic objects. A class must have at least one virtual member
function in order to have RTTI support for its objects. C++ does not offer RTTI support for non-polymorphic classes and
primitive types. This restriction is just common sense -- a fundamental type such asdoubl e or a concrete class such as

st ri ng cannot change itstype at runtime. Therefore, there is no need to detect their dynamic types because they are identical
to their static types. But there is also a practical reason for confining RTTI support to polymorphic classes exclusively, as you
will see momentarily.

Asyou probably know, every object that has at least one virtual member function also contains a special data member that is
added by the compiler (more on thisin Chapter 13, "C Language Compatibility 1ssues’). This member is a pointer to the
virtual function table. The runtime type information is stored in thistable, asisapointer toast d: : t ype_i nf o object.

Class type_info

For every distinct type, C++ instantiates a corresponding RTTI object that contains the necessary runtime type information.
The RTTI object is an instance of the standard classst d: : t ype_i nf o or an implementation-defined class derived from it.
(std:: type_infoisdefinedin the standard header <typeinfo>). Thi s object is owned by the implementation and cannot
be atered in any way by the programmer. The interface of t ype_i nf o looks similar to the following (namespaces will be
covered in Chapter 8, "Namespaces'):

namespace std { //class type_info is declared in nanespace std
class type_info
{
publ i c:
virtual ~type_info(); //type_info can serve as a base cl ass
bool operator==(const type_info& rhs ) const; // enable conparison
bool operator!=(const type info& rhs ) const; // return !( *this == rhs)
bool before(const type_info& rhs ) const; // ordering
const char* nane() const; //return a C-string containing the type's nane
private:
/|l objects of this type cannot be copied
type_info(const type_ info& rhs );
type_i nfo& operator=(const type_info& rhs);
}; //type_info
}

In general, all instances of the sametype shareasinglet ype_i nf o object. The most widely used member functions of
type_i nf o arenane() and oper at or ==. But before you can invoke these member functions, you have to access the
t ype_i nf o object itself. How isit done?

Operator typeid

Operator t ypei d takes either an object or atype name asits argument and returns amatching const type_i nf o object.
The dynamic type of an object can be examined as follows:

OnRightClick (File & file)
{
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if ( typeid( file) == typeid( TextFile ) )
{
/lreceived a TextFile object; printing should be enabl ed
}
el se
{
/I not a TextFile object, printing disabled
}

}
To understand how it works, look at the highlighted source line:

if ( typeid( file) == typeid( TextFile ) ).

Thei f statement tests whether the dynamic type of theargument f i | e isText Fi | e (thestatictypeof fil eisFi | e, of
course). The leftmost expression, t ypei d(fi | €), returnsat ype_ i nf o object that holds the necessary runtime type
information that is associated with the object f i | e. The rightmost expression, t ypei d( Text Fi | e), returnsthe type
information that is associated with class Text Fi | e. Whent ypei d isapplied to a class name rather than an object, it always
returnsat ype_i nf o object that corresponds to that class name. Asyou saw earlier, t ype_i nf o overloads the operator ==.
Therefore, thet ype_i nf o object that is returned by the leftmost t ypei d expression iscompared to thet ype_i nf o object
that is returned by the rightmost t ypei d expression. If indeed f i | e isaninstance of Text Fi | e, thei f statement evaluates
tot rue. Inthiscase, OnRi ght C i ck displays an additional optioninthemenu -- pri nt (). If, ontheother hand, fi | e is
notaText Fi | e, thei f statement evaluatestof al se, andthepri nt () optionisdisabled. Thisisall well and good, but a
t ypei d-based solution has a drawback. Suppose that you want to add support for anew type of files, for example HTML
files. What happens when the file manager application has to be extended? HTML files are essentially text files. They can be
read and printed. However, they differ from plain text filesin some respects. An open message applied to an HTML file
launches a browser rather than aword processor. In addition, HTML files have to be converted to a printable format before
they can be printed. The need to extend a system's functionality at aminimal cost is a challenge that is faced by software
developers every day. Object-oriented programming and design can facilitate the task. By subclassing Text Fi | e, you can
reuse its existing behavior and implement only the additional functionality that is required for HTML files:

class HTMLFile : public TextFile

{
voi d open () { Launch_Browser (); }
void virtual print(); [/ performthe necessary conversions to a
[lprintable format and then print file
}

Thisis, however, only half of the story. OnRi ght Cl i ck() failsbadly when it receives an object of type HTMLFi | e. Look
at it again to see why:

OhRightdick (File &file) //operating systenis APl function

{ if ( typeid( file) == typeid( TextFile ) )
{ /Iwe received a TextFile object; printing should be enabl ed
}else /1 OOPS! we get here when file is of type HTM.File
%

}

t ypei d returns the exact type information of its argument. Therefore, thei f statementin OnRi ght Cl i ck() evaluatesto
f al se whentheargumentisan HTMLFi | e. But af al se valueimpliesabinary file! Consequently, printing is disabled.
This onerous bug is likely to occur every time you add support for anew file type. Of course, you can modify

OnRi ght d i ck() sothat it performs another test:
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OhRightdick (File & file) //operating systemis APl function

{
if ( (typeid( file) == typeid( TextFile ))
|| (typeid( file) == typeid( HIMFile)) ) //check for HTM.File as well
{
/Iwe received either a TextFile or an HTM.File; printing should be enabl ed
else //it's a binary file, no print option
{
}
}

However, this solution is cumbersome and error prone. Furthermore, it imposes an unacceptable burden on the programmers
who maintain this function. Not only are they required to clutter up OnRi ght C i ck() with additional code every time a
new classisderived from Fi | e, but they also have to be on guard to detect any new class that has been derived from Fi | e
lately. Fortunately, C++ offers a much better way to handle this situation.

NOTE: Youcanuset ypei d to retrieve the type information of non-polymorphic objects and fundamental
types. However, the result refersto at ype_i nf o object that represents the static type of the operand. For
example

#i ncl ude<t ypei nf o>
#i ncl ude <i ostreane
#i ncl ude <string>
usi ng nanespace std;

typedef int I;

voi d fundanental ()

{ cout <<typeid(l).name()<<endl; //display "int'
ioid non_pol ynor phi c()

i cout <<t ypei d(string). name()<<endl ;

NOTE: Note however, that applying dynam c_cast to fundamental types or non-polymorphic classesis a
compile time error.

Operator dynamic_cast<>

Itisamistaketo allow OnRi ght Cl i ck() totake care of every conceivable classtype. In doing so, you are forced to modify
OnRi ght d i ck() any timeyou add a new file class or modify an existing class. In software design, and in object-oriented
design in particular, you want to minimize such dependencies. If you examine OnRi ght Cl i ck() closely, you can seethat it
doesn't really know whether its argument is an instance of class Text Fi | e (or of any other class, for that matter). Rather, al
it needs to know is whether itsargument isa Text Fi | e. Thereisabig difference between the two -- an object is-a

Text Fi | e if itisaninstance of class Text Fi | e or if it isan instance of any class derived from Text Fi | e. However,

t ypei d isincapable of examining the derivation hierarchy of an object. For this purpose, you have to use the operator
dynam c_cast <>.dynam c_cast <> takestwo arguments: Thefirst is atype name, and the second argument is an
object, which dynam c_cast <> attemptsto cast at runtime to the desired type. For example

dynam c_cast <TextFile & (file); //attenpt to cast file to a reference to
/1 an object of type TextFile
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If the attempted cast succeeds, either the second argument is an instance of the class name that appears as the second argument
or it isan object derived from it. The preceding dynam c_cast <> expression succeedsif fi | e isaText Fi | e. Thisis
exactly the information needed by OnRi ght Cl i ck to operate properly. But how do you know whether dynam c_cast <>
was successful ?

Pointer Cast and Reference Cast

There are two flavors of dynami ¢_cast <>. One uses pointers and the other uses references. Accordingly,

dynam c_cast <> returns a pointer or areference of the desired type when it succeeds. When dynam c_cast <> cannot
perform the cast, it returns a NULL pointer or, in the case of areference, it throws an exception of typest d: : bad_cast .
Look at the following pointer cast example:

TextFile * pTest = dynamic_cast < TextFile *> (&ile); //attenpt to cast

/[/file address to a pointer to
TextFile
if (pTest) //dynam c_cast succeeded, file is-a TextFile

{
[l use pTest

else // file is not a TextFile; pTest has a NULL val ue

{
}

C++ does not have NULL references. Therefore, when areference dynam c_cast <> fails, it throws an exception of type

st d: : bad_cast . That iswhy you aways need to place areference dynam c_cast <> expression within at r y-block and
include a suitable cat ch-statement to handle st d: : bad_cast exceptions (see also Chapter 6, "Exception Handling"). For
example

try
{ _ | | .
TextFile tf = dynam c_cast < TextFile & (file);

[luse tf safely,

}
catch (std::bad cast)
{
[/ dynam c_cast<> fail ed
}

Now you can revise OnRi ght G i ck() tohandle HTMLFi | e objects properly:

OnRightdick (File & file)
{

try

{

TextFile tenp = dynam c_cast<TextFile& (file);
//display options, including "print"
switch (nmessage)
{
case m.open
tenp.open(); [//either TextFile::open or HIMFile::open
br eak;
case mprint:
tenp.print();//either TextFile::print or HTM.File::print
br eak;
}//switch
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iltry
catch (std::bad _cast& noTextFile)
{
/Il treat file as a BinaryFile; exclude"print”
}

}/ 1 OnRightdick

Therevised version of OnRi ght C i ck() handles an object of type HTMLFi | e appropriately because an object of type
HTM_Fi | e isa Text Fi | e. When the user clicks on the open message in the file manager application, the function

OnRi ght d i ck() invokesthe member function open() of its argument, which behaves as expected because it was
overriddenin classHTMLFi | e. Likewise, when OnRi ght C i ck() detectsthat its argument isa TextFile, it displays a print
option. If the user clicks on this option, OnRi ght Cl i ck() sendsthe messagepr i nt to itsargument, which reacts as
expected.

Other Uses of dynamic_cast<>

Dynamic type casts are required in cases in which the dynamic type of an object -- rather than its static type -- is necessary to
perform the cast properly. Note that any attempt to use a static cast in these cases is either flagged as an error by the compiler,
or -- even worse -- it might result in undefined behavior at runtime.

Cross casts

A cross cast converts a multiply-inherited object to one of its secondary base classes. To demonstrate what a cross cast does,
consider the following class hierarchy:

struct A
{
int i;
virtual ~A () {} //enforce pol ynorphi sm needed for dynani c_cast
3
struct B
bool b;
¥
struct D. public A public B
{
int k;
) { b =true; i =k =0; }
¥
A *pa = new D,
B *pb = dynam c_cast<B*> pa; //cross cast; access the second base

[1of a multiply-derived object

The static type of pa is"pointer to A", whereas its dynamic type is "pointer to D'. A simplest at i ¢c_cast <> cannot convert
apointer to A into a pointer to B because A and B are unrelated (your compiler issues an error message in this case). A brute
force cast, (for exampler ei nt er pr et _cast <> or C-style cast), has disastrous results at runtime because the compiler
simply assigns pa to pb. However, the B subobject islocated at a different address within D than the A subobject. To perform
the cross cast properly, the value of pb hasto be calculated at runtime. After all, the cross cast can be done in atranslation unit
that doesn't even know that class D exists! The following program demonstrates why a dynamic cast, rather than compile-time
cast, isrequired:

int main()

{
A *pa = new D
B *pb = (B*) pa; // disastrous; pb points to the subobject Awithin d
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bool bb = pb->b; // bb has an undefined val ue
cout<< "pa: " << pa << " pb: "<<pb <<endl; // pb was not properly
/ | adj usted; pa and pb are identical

pb = dynam c_cast<B*> (pa); //cross cast; adjust pb correctly
bb= pb->b; //OK, bb is true
cout<< "pa: "<< pa << " pb: " << pb <<endl; // OK, pb was properly adjusted,;

/'l pa and pb have distinct val ues
return O;

}

The program displays two lines of output; the first shows that the memory addresses of pa and pb areidentical. The second
line shows that the memory addresses of pa and pb are different after performing a dynamic cast as required.

Downcasting From a Virtual Base

A downcast is a cast from a base to aderived object. Before the introduction of RTTI to the language, downcasts were
regarded as a bad programming practice. They were unsafe, and some even viewed the reliance on the dynamic type of an
object aviolation of object-oriented principles (see also Chapter 2, "Standard Briefing: the Latest Addendato ANSI/ISO
C++").dynam c_cast <> enables you to use safe, standardized, and simple downcasts from a virtual base to its derived
object. Look at the following example:

struct V

{

b

struct A virtual V {};
struct B: virtual V {};
struct Do A B {};

#i ncl ude <i ostreanr
usi ng nanespace std;

virtual ~V (){} //ensure pol ynorphism

int main()

{

V *pv = new D

A* pa = dynam c_cast<A*> (pv); // downcast

cout<< "pv: "<< pv << " pa: " << pa <<endl; // OK pv and pa have
/1different addresses

return O;

}

Visavirtual base for classes A and B. D is multiply-inherited from A and B. Inside mai n() , pv isdeclared as a"pointer to V*
and its dynamic typeis "pointer to D'. Here again, asin the cross cast example, the dynamic type of pv is heeded in order to
properly downcast it to apointer to A. A st ati ¢c_cast <> would be rejected by the compiler. Asyou read in Chapter 5, the
memory layout of a virtual subobject might be different from that of a nonvirtual subobject. Consequently, it isimpossible to
calculate at compile time the address of the subobject A within the object pointed to by pv. Asthe output of the program
shows, pv and pa indeed point to different memory addresses.

The Cost of Runtime Type Information

Runtime Type Information is not free. To estimate how expensiveit isin terms of performance, it isimportant to understand
how it isimplemented behind the scenes. Some of the technical details are platform-dependent. Still, the basic model that is
presented here can give you afair idea of the performance penalties of RTTI in terms of memory overhead and execution
Speed.
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Memory Overhead

Additional memory is needed to storethet ype_i nf o object of every fundamental and user-defined type. Ideally, the
implementation associatesasinglet ype_i nf o object with every distinct type. However, thisis not a requirement, and under
some circumstances -- for example, dynamically linked libraries -- it isimpossible to guarantee that only onet ype_i nf o
object per class exists. . Therefore, an implementation can create more than onet ype_i nf o object per type.

Aswas previously noted, thereis apractical reason that dynam c_cast <> isapplicable only to polymorphic objects: An
object does not store its runtime type information directly (as a data member, for example).

Runtime Type Information of Polymorphic Objects

Every polymorphic object has a pointer to its virtual functionstable. This pointer, traditionally named vpt r, holdsthe
address of adispatch table that contains the memory addresses of every virtual function in this class. The trick isto add another
entry to thistable. Thisentry points at the classst ype_i nf o object. In other words, the vpt r data member of a
polymorphic object points at atable of pointers, in which the address of t ype_i nf o iskept at afixed position. Thismodel is
very economical in terms of memory usage; it requiresasinglet ype_i nf o object and a pointer for every polymorphic class.
Note that thisis afixed cost, regardless of how many instances of the class actually exist in the program. The cost of retrieving
an object's runtime type information is therefore a single pointer indirection, which might be less efficient than direct access to
adata member; still, though, it is equivalent to avirtual function invocation.

Additional Overhead

A pointer indirection, at ype_i nf o object, and a pointer per class sound like a reasonable price to pay for RTTI support.
Thisisnot the full picture, however. Thet ype_i nf o objects, just like any other object, have to be constructed. Large
programs that contain hundreds of distinct polymorphic classes have to construct an equivalent number of t ype i nf o
objects aswell.

RTTI Support Can Usually Be Toggled

This overhead isimposed even if you never use RTTI in your programs. For this reason, most compilers enable you to switch
off their RTTI support (check the user's manual to see the default RTTI setting of your compiler and how it can be modified).
If you never use RTTI in your programs, iyou can turn off your compiler's RTTI support. The results are smaller executables
and adlightly faster code.

typeid Versus dynamic_cast<>

Until now, this chapter has discussed the indirect cost of RTTI support. It is now time to explore the cost of its direct usage --
that is, applyingt ypei d anddynam c_cast <>.

At ypei d invocation is a constant time operation. It takes the same length of time to retrieve the runtime type information of
every polymorphic object, regardless of its derivational complexity. In essence, callingt ypei d issimilar to invoking avirtual
member function. For instance, the expressiont ypei d( obj ) isevauated into something similar to the following:

return *(obj->__vptr[0]); //return the type_info object whose address
/'l is stored at offset O in the virtual table of obj

Note that the pointer to aclassst ype_i nf o object isstored at afixed offset in the virtua table (usually 0, but this is
i npl enent at i on- dependent).

Unliket ypei d, dynam c_cast <> isnot a constant time operation. In the expression dynam c_cast <T&> (obj),
where T isthe target type and obj isthe operand, the time that is needed to cast the operand to the target type depends on the
complexity of the class hierarchy of obj . dynami c¢c_cast <> hasto traverse the derivation tree of the obj until it has
located the target object in it. When the target is a virtual base, the dynamic cast becomes even more complicated (albeit
unavoidable, as you have seen); consequently, it takes longer to execute. The worst case scenario is when the operand isa
deeply derived object and the target is a nonrelated class type. In thiscase, dynam c_cast <> hasto traverse the entire
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derivation tree of obj beforeit can confidently decide that obj cannot be casttoaT. In other words, afailed
dynam c_cast <>isan O(n) operation, where n isthe number of base classes of the operand.

Y ou might recall the conclusion that from a design point of view, dynam c_cast <> ispreferabletot ypei d because the
former enables more flexibility and extensibility. Notwithstanding that, the runtime overhead of t ypei d can beless
expensive than dynam c_cast <>, depending on the derivational complexity of the entities involved.

Conclusions

The RTTI mechanism of C++ consists of three components: operator t ypei d, operator dynam c_cast <>, and class
std::type_info.RTTIlisrelatively new in C++. Some existing compilers do not support it yet. Furthermore, compilers
that support it can usually be configured to disable RTTI support. Even when thereis no explicit usage of RTTI in a program,
the compiler automatically adds the necessary "scaffolding” to the resultant executable. To avert this, you can usually switch
off your compiler's RTTI support.

From the object-oriented design point of view, operator dynami ¢_cast <> ispreferabletot ypei d because it enables more
flexibility and robustness, as you have seen. However, dynam c¢_cast <> can be slower thant ypei d because its
performance depends on the proximity of its target and operand, as well as on the derivational complexity of the latter. When
complex derivationa hierarchies are used, the incurred performance penalty might be noticeable. It is recommended, therefore,
that you use RTTI judiciously. In many cases, a virtual member function is sufficient to achieve the necessary polymorphic
behavior. Only when virtual member functions are insufficient should RTTI be considered.

Following are afew additional notes to keep in mind when using RTTI:

« Inorder to enable RTTI support, an object must have at |east one virtual member function. In addition, switch on your
compiler's RTTI support (please consult your user's manual for further information) if it isn't already on.

« Make surethat your program has acat ch-statement to handlest d: : bad_cast exceptions whenever you are using
dynam c_cast <> with areference. Note also that an attempt to dereference anull pointer in at ypei d expression,
asint ypei d(*p) wherep isNULL, resultsinast d: : bad_t ypei d exception being thrown.

o Whenyou areusingdynam c_cast <> with apointer, aways check the returned value.

Contents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.
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Namespaces were introduced to the C++ Standard in 1995. This chapter explains what namespaces are and why they were
added to the language. Y ou will see how namespaces can avoid name conflicts and how they facilitate configuration
management and version control in large-scale projects. Finally, you will learn how namespaces interact with other language
features.
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The Rationale Behind Namespaces

In order to understand why namespaces were added to the language in the first place, here's an analogy: Imagine that the file
system on your computer did not have directories and subdirectories at all. All fileswould be stored in aflat repository, visible
all the time to every user and application. Consequently, extreme difficulties would arise: Filenames would clash (with some
systems limiting a filename to eight characters, plus three for the extension, thisis even more likely to happen), and simple
actions such as listing, copying, or searching files would be much more difficult. In addition, security and authorization
restrictions would be severely compromised.

Namespaces in C++ are equivalent to directories. They can be nested easily, they protect your code from name conflicts, they
enable you to hide declarations, and they do not incur any runtime or memory overhead. Most of the components of the C++
Standard Library are grouped under namespace st d. Namespace st d is subdivided into additional namespaces such as
std::rel _ops, which containsthe definitions of STL's overloaded operators.

A Brief Historical Background

In the early 1990s, when C++ was gaining popularity as a general purpose programming language, many vendors were
shipping proprietary implementations of various component classes. Class libraries for string manipulations, mathematical
functions, and data containers were integral parts of frameworks such as MFC, STL, OWL, and others. The proliferation of
reusable components caused a name-clashing problem. A class hamed vect or , for instance, might appear in a mathematical
library and in another container library that were both used at the same time; or a class named st r i ng might be found in
almost every framework and class library. It was impossible for the compiler to distinguish between different classes that had
identical names. Similarly, linkers could not cope with identical names of member functions of classes with indistinguishable
names. For example, a member function

vector::operator==(const vector&);

might be defined in two different classes -- the first might be a class of a mathematical library, whereas the other might belong
to some container library.

Large-Scale Projects Are More Susceptible to Name Clashes

Name-clashes are not confined to third party software libraries. In large-scale software projects, short and elegant names for
classes, functions, and constants can also cause name conflicts because it is likely that the same name might be used more than
once to indicate different entities by different developers. In the pre-namespace era, the only workaround was to use various
affixesin identifiers names. This practice, however, istedious and error prone. Consider the following:

class string // short but dangerous. soneone el se may have picked //this name
al ready. ..

{
¥

cl ass excel Sof t Conpany_string /'l a long nane is safer but tedious. //A nightmare if
conpany changes its nane...

{

¥

Namespaces enable you to use convenient, short, and intelligible names safely. Instead of repeating the unwieldy affixes time
after time, you can group your declarations in a namespace and factor out the recurring affix as follows:

Il...

Il...

/1file excel Soft Conpany. h
nanmespace excel Soft Conpany { // a nanespace definition
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class string {/*..*/};
class vector {/*..*/};

}

Namespace members, like class members, can be defined separately from their declarations. For example

#i ncl ude <i ostreanr
usi ng nanespace std;
nanmespace A

void f(); //declaration

}

void A :f() //definition in a separate file

{
}

int main()

{

cout<<"in f"<<endl;

A f();
return O;

}
Properties of Namespaces

Namespaces are more than just name containers. They were designed to allow fast and simple migration of legacy code
without inflicting any overhead. Namespaces have several properties that facilitate their usage. The following sections discuss
these properties.

Fully Qualified Names

A namespace is a scope in which declarations and definitions are grouped together. In order to refer to any of these from
another scope, afully qualified nameisrequired. A fully qualified name of an identifier consists of its namespaces, followed
by a scope resolution operator (: : ), its class name, and, finally, the identifier itself. Because both namespaces and classes can
be nested, the resulting name can be rather long -- but it ensures unique identification:

unsi gned int maxPossi bl eLength =

std::string::npos; //a fully qualified name. npos is a nenber of string; //string
bel ongs to nanespace std

int *p = ::newint; //distinguish global new from overl| oaded new

However, repeating the fully qualified name is tedious and less readable. Instead, you can use a using declaration or ausing
directive.

A using Declaration and a using Directive

A usi ng declaration consists of the keyword usi ng, followed by a namespace::member. It instructs the compiler to locate
every occurrence of acertain identifier (type, operator, function, constant, and so on) in the specified namespace, asif the fully
qualified name were supplied. For example

#i ncl ude <vector> //STL vector; defined in nanmespace std
int main()

{

using std::vector; [//using declaration; every occurrence of vector //is |ooked up
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in std
vector <int> vi;
return O;

}

A usi ng directive, on the other hand, renders all the names of a specified namespace accessible in the scope of the directive.
It consists of the following sequence: usi ng nanespace, followed by a namespace name. For example

#i ncl ude <vector> /'l bel ongs to nanmespace std

#include <iostreant //iostream classes and operators are also in nanespace std
int main()

{

usi ng nanespace std; // a using-directive; all <iostreanm and <vector>
/I decl arations now accessible

vector <int> vi;

Vi . push_back(10);

cout <<vi [ 0] ;

return O;

}

Look back at the st r i ng class example (the code is repeated here for convenience):

/1file excel Soft Conpany. h
nanespace excel Sof t Conpany
{
class string {/*..*/};
class vector {/*..*/};

}

Y ou can now access your own st r i ng classaswell asthe standard st r i ng class in the same program as follows:

#include <string> // std::string

#i ncl ude "excel Sof t Conpany. h"

int main()

{
usi ng nanespace excel Soft Conpany;
string s; //referring to class excel Soft Conpany: :string
std::string standardstr; //now instantiate an ANSI string
return O;

}
Namespaces Can Be Extended

The C++ standardization committee was well aware of the fact that related declarations can span across several trandglation
units. Therefore, a namespace can be defined in parts. For example

[/file proj_const.h
nanespace M/Proj

{

enum Net Pr ot ocol s
{
TCP_I P,
HTTP,
UDP
}; 1/ enum
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/1file proj_classes.h
nanmespace MyPr oj
{ Il extending MyProj namespace
cl ass Real Ti mneEncoder{ public: NetProtocols detect(); };
cl ass NetworkLink {}; //gl obal
class Userlnterface {};

}

In a separate file, the same namespace can be extended with additional declarations.

The complete namespace My Pr 0] can be extracted from both files as follows:

[1file app.cpp
#i ncl ude "proj _const.h"
#i ncl ude "proj _classes. h"
int main()
{
usi ng nanespace M/Proj;
Real Ti neEncoder encoder;
Net Pr ot ocol s protocol = encoder.detect();
return O;

}
Namespace Aliases

Asyou have observed, choosing a short name for a namespace can eventually lead to a name clash. However, very long
namespaces are not easy to use. For this purpose, a namespace alias can be used. The following example defines the alias ESC
for the unwieldy Excel _Sof t war e _Conpany namespace. Namespace aliases have other useful purposes, as you will see
soon.

/[1file decl.h
nanespace Excel _Sof t war e_Conpany
{

class Date {/*..*/};

class Time {/*..*/};

/1file cal endar.cpp
#i ncl ude "decl . h"
int main()
{
nanespace ESC = Excel _Software_Conpany; //ESC is an alias for
/'l Excel _Sof t war e_Conpany
ESC. : Dat e dat e;
ESC.: Time tine;
return O;

}
Koenig Lookup

Andrew Koenig, one of the creators of C++, devised an algorithm for resolving namespace members' lookup. This algorithm,
also called argument dependent lookup, is used in al standard-compliant compilers to handle cases such as the following:

CAUTION: Please note that some existing compilers do not yet fully support Koenig lookup. Consequently, the
following programs -- which rely on Koenig lookup -- might not compile under compilers that are not fully
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compliant to the ANSI/ISO standard in this respect.

nanmespace M NE

class C {};

voi d func;
}
MNE::C c; // global object of type MNE::C
int main()

func( ¢ ); /I OK MNE :f called
return O;

}

Neither ausi ng declaration nor ausi ng directive existsin the program. Still, the compiler did the right thing -- it correctly
identified the unqualified name f unc asthe function declared in namespace M NE by applying Koenig lookup.

Koenig lookup instructs the compiler to look not just at the usual places, such asthe local scope, but also at the namespace that
contains the argument's type. Therefore, in the following source line, the compiler detects that the object ¢, which isthe
argument of the function f unc( ) , belongs to namespace M NE. Consequently, the compiler looks at namespace M NE to
locate the declaration of f unc() , "guessing” the programmer's intent:

func( ¢ ); // K, MNE: :f called

Without Koenig lookup, nhamespaces impose an unacceptable tedium on the programmer, who has to either repeatedly specify
the fully qualified names or use numerous usi ng declarations. To push the argument in favor of Koenig lookup even further,
consider the following example:

#i ncl ude<i ost reanr

usi ng std::cout;

int main()

{
cout <<"hel | 0"; /1 OK, operator << is brought into scope by Koenig | ookup
return O;

}

Theusi ng declaration injects st d: : cout into the scope of mai n() , thereby enabling the programmer to use the
nonqualified name cout . However, the overloaded << operator, as you might recall, isnot amember of st d: : cout . Itisa
friend function that is defined in namespace st d, and which takesast d: : ost r eamobject asits argument. Without Koenig
lookup, the programmer has to write something similar to the following:

std::operator<<(cout, "hello");

Alternatively, the programmer can provideausi ng nanmespace st d; directive. None of these options are desirable,
however, because they clutter up code and can become a source of confusion and errors. (usi ng directives are the |east
favorable form for rendering names visible in the current scope because they make all the members of a namespace visible
indiscriminately). Fortunately, Koenig lookup "does the right thing" and saves you from this tedium in an elegant way.

Koenig lookup is applied automatically. No specia directives or configuration switches are required to activate it, nor is there
any way to turn it off. Thisfact hasto be kept in mind because it can have surprising results in some circumstances. For
example

namespace NS1

class B{};
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void f;
¥
void f(NSl::B);
int main()
{
NS1::B b;
f; [/ anbiguous; NS1::f() or f(NSl::B)?
return O;

}

A Standard-compliant compiler should issue an error on ambiguity between NS1: : f (NS1: : B) andf ( NS1: : B) . However,
noncompliant compilers do not complain about the ambiguous call; they ssmply pick one of the versions of f () . This,
however, might not be the version that the programmer intended. Furthermore, the problem might arise only at a later stage of
the devel opment, when additional versionsof f () are added to the project -- which can stymie the compiler's lookup
algorithm. This ambiguity is not confined to global names. It might also appear when two namespaces relate to one another --
for instance, if a namespace declares classes that are used as parameters of a class member function that isdeclared in a
different namespace.

Namespaces in Practice

The conclusion that can be drawn from the previous examples is that namespaces, like other language features, must be used
judiciously. For small programs that contain only a handful of classes and afew source files, namespaces are not necessary. In
most cases, such programs are coded and maintained by a single programmer, and they use a limited number of components.
The likelihood of name clashesin this case is rather small. If name clashes still occur, it is always possible to rename the
existing classes and functions, or simply to add namespace | ater.

On the other hand, large-scale projects -- as was stated previously -- are more susceptible to name clashes; therefore, they need
to use namespaces systematically. It is not unusua to find projects on which hundreds of programmers on a dozen or so
development teams are working together. The development of Microsoft Visual C++ 6.0, for example, lasted 18 months, and
more than 1000 people were involved in the devel opment process. Managing such a huge project requires well documented
coding policies -- and namespaces are one of the toolsin the arsenal.

Namespace Utilization Policy in Large-Scale Projects

To see how namespaces can be used in configuration management, imagine an online transaction processing system of an
imaginary international credit card company, Unicard. The project comprises several development teams. One of them, the
database administration team, is responsible for the creation and maintenance of the database tables, indexes, and access
authorizations. The database team also has to provide the access routines and data objects that retrieve and manipulate the data
in the database. A second team is responsible for the graphical user interface. A third team deals with the international online
requests that are initiated by the cinemas, restaurants, shops, and so on where tourists pay with their international Unicard.
Every purchase of a cinematicket, piece of jewelry, or art book has to be confirmed by Unicard before the card owner is
charged. The confirmation process involves checking for the validity of the card, its expiration date, and the card owner's
balance. A similar confirmation procedure is required for domestic purchases. However, international confirmation requests
are transmitted via satellite, whereas domestic confirmations are usually done on the telephone.

In software projects, code reuse is paramount. Because the same business logic is used for both domestic and international
confirmations, the same database access objects need to be used to retrieve the relevant information and perform the necessary
computations. Still, an international confirmation also involves a sophisticated communication stack that receives the request
that is transmitted via satellite, decryptsit, and returns an encrypted response to the sender. A typical implementation of
satellite-based confirmation application can be achieved by means of combining the database access objects with the necessary
communication objects that encapsul ate protocols, communication layers, priority management, message queuing, encryption,
and decryption. It is not difficult to imagine a name conflict resulting from the simultaneous use of the communication
components and the database access objects.

For example, two objects -- one encapsulating a database connection and the other referring to a satellite connection -- can
have an identical name: Connect i on. If, however, communication software components and database access objects are
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declared in two distinct namespaces, the potential of name clashesis minimized. Therefore, com : Connect i on and

dba: : Connect i on can be used in the same application ssmultaneously. A systematic approach can be based on allocating a
separate namespace for every team in a project in which al the components are declared. Such a policy can help you avoid
name clashes among different teams and third party code used in the project.

Namespaces and Version Control

Successful software projects do not end with the product's rollout. In most projects, new versions that are based on their
predecessors are periodically released. Moreover, previous versions have to be supported, patched, and adjusted to operate
with new operating systems, locales, and hardware. Web browsers, commercial databases, word processors, and multimedia
tools are examples of such products. It is often the case that the same development team has to support several versions of the
same software product. A considerable amount of software can be shared among different versions of the same product, but
each version also has its specific components. Namespace aliases can be used in these cases to switch swiftly from one version
to another.

Continuous projects in general have a pool of infrastructure software components that are used ubiquitously. In addition, every
version hasits private pool of specialized components. Namespace aliases can provide dynamic namespaces, that is, a
namespace alias can point at a given time to a namespace of version X and, at another time, it can refer to a different
namespace. For example

nanespace ver_3 11 //16 bit
{
class Wnsock{/*..*/};
class FileSystem{/*..*/};
¥
nanmespace ver_95 //32 bit
{
class Wnsock{/*..*/};
class FileSystem{/*..*/};
}
int main()//inplenenting 16 bit rel ease
{
nanmespace current = ver_3 11; // current is an alias of ver_3 11
usi ng current::Wnsock;
using current:: FileSystem
FileSystem fs; // ver_3 11::FileSystem
/...
return O;

}

In thisexample, theaiascur r ent isasymbol that can refer to either ver _3 11 orver _95. To switch to adifferent
version, the programmer only hasto assign a different namespace to it.

Namespaces Do not Incur Additional Overhead

Namespace resolution, including Koenig lookup, are statically resolved. The underlying implementation of namespaces occurs
by means of name mangling, whereby the compiler incorporates the function name with itslist of arguments, its class name,
and its namespace in order to create a unique name for it (see Chapter 13, "C Language Compatibility Issues," for adetailed
account of name mangling). Therefore, namespaces do not incur any runtime or memory overhead.
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The Interaction of Namespaces with Other Language Features

Namespaces interact with other features of the language and affect programming techniques. Namespaces made some features
in C++ superfluous or undesirable.

Scope Resolution Operator Should Not Be Used To Designate Global Names

In some frameworks (MFC, for instance), it is customary to add the scope resolution operator, : : , before aglobal function's
name to mark it explicitly as afunction that is not a class member (asin the following example):

void String::operator = (const String& other)

{
c.strcpy (this->buffer, other.getBuff());

This practice is not recommended. Many of the standard functions that were once global are now grouped inside namespaces.
For example, st r cpy now belongs to namespace st d, as do most of the Standard Library's functions. Preceding these
functions with the scope resolution operator might confuse the lookup algorithm of the compiler; furthermore, doing so
undermines the very idea of partitioning the global namespace. Therefore, it is recommended that you |eave the scope
resolution operator off the function's name.

Turning an External Function into A File-Local Function

In standard C, anonlocal identifier that is declared to be static has internal linkage, which meansthat it is accessible only from
within the trandation unit (source file) in which it is declared (see also Chapter 2, "Standard Briefing: The Latest Addendato
ANSI/ISO C++"). Thistechnique is used to support information hiding (as in the following example):

/1 File hidden.c

static void deci pher(FILE *f); // accessible only fromwthin this file
/'l now use this function in the current source file

deci pher ("passwords. bin");
/lend of file

Although it is still supported in C++, this convention is now considered a deprecated feature. Future releases of your compiler
might issue a warning message when they find a static identifier that is not a member of aclass. In order to make a function
accessible only from within its translation unit, use an unnamed namespace instead. The following example demonstrates the
process.

/1 File hidden.cpp
nanmespace / I unnamed

{
}

voi d deci pher(FILE *f); [/ accessible only fromwithin this file

/I now use the function in the current source file.
/I No using declarations or directives are needed
deci pher ("passwords. bin");

Although names in an unnamed namespace might have external linkage, they can never be seen from any other translation
unit; the net effect of thisis that the names of an unnamed namespace appear to have static linkage. If you declare another
function with the same name in an unnamed namespace of another file, the two functions are hidden from one another, and
their names do not clash.
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Standard Headers Names

All Standard C++ header files now have to be included as follows:

#i nclude <iostreanr //note: no ".h" extension

That is, the .h extension is omitted. Standard C header files also obey this convention, with the addition of the letter c to their
name. Therefore, a C standard header that was formerly named <xxx. h>isnow <cxxx>. For example

#i ncl ude <cassert> //fornmerly: <assert.h> note the prefix 'c' and the //om ssion of
Il.hll

The older convention for C headers, <xxx. h>, is still supported; however, it is now considered deprecated and, therefore, is
not to not be used in new C++ code. The reason for thisisthat C <xxx. h> headersinject their declarations into the global
namespace. In C++, however, most standard declarations are grouped under namespace st d, as are the <cxxx> Standard C
headers. No inference isto be drawn from the actual name convention that is used on the physical location of a header file or
its underlying name. In fact, most implementations share asingle physical file for the <xxx. h> and its corresponding
<cxxx> notation. Thisis feasible due to some under-the-hood preprocessor tricks. Recall that you need to have ausi ng
declaration, ausi ng directive, or afully qualified name in order to access the declarations in the new style standard headers.
For example

#i ncl ude <cstdi o>
usi ng nanespace std;
void f()

{
}

printf ("Hello World\n");

Restrictions on Namespaces

The C++ Standard defines several restrictions on the use of namespaces. These restrictions are meant to avert anomalies or
ambiguities that can create havoc in the language.

Namespace std Can Not Be Modified

Generally, namespaces are open, so it is perfectly legal to expand existing namespaces with additional declarations and
definitions across several files. The only exception to the ruleis namespace st d. According to the Standard, the result of
modifying namespace st d with additional declarations -- let alone the removal of existing ones -- yields undefined behavior,
and isto be avoided. Thisrestriction might seem arbitrary, but it's just common sense -- any attempt to tamper with namespace
st d undermines the very concept of a namespace dedicated exclusively to standard declarations.

User-Defined new and delete Cannot Be Declared in a Namespace

The Standard prohibits declarations of newand del et e operatorsin a namespace. To see why, consider the following
example:

char *pc; //gl obal

nanespace A

{
voi d* operator new ( std::size_t );
void operator delete ( void * );
voi d func ()

{

pc = new char ( 'a'); //using A :new
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}
Y 1A

void f() { delete pc; } // call A :delete or //::delete?

Some programmers might expect the operator A: : del et e to be selected because it matches the operator new that was used
to allocate the storage; others might expect the standard operator del et e to be called because A: : del et e isnot visiblein
function f () . By prohibiting declarations of newand del et e in a namespace altogether, C++ avoids any such ambiguities.

Conclusions

Namespaces were the latest addition to the C++ Standard. Therefore, some compilers do not yet support this feature. However,
all compiler vendors will incorporate namespace support in the near future. The importance of namespaces cannot be
over-emphasized. Asyou have seen, any nontrivial C++ program utilizes components of the Standard Template Library, the

i ost r eamlibrary, and other standard header files -- all of which are now namespace nenber s.

L arge-scal e software projects can use namespaces cleverly to avoid common pitfalls and to facilitate version control, as you
have seen.

C++ offers three methods for injecting a namespace constituent into the current scope. Thefirstisausi ng directive, which
renders all the members of a namespace visible in the current scope. The second isausi ng declaration, which is more
selective and enables the injection of a single component from a namespace. Finally, afully qualified name uniquely identifies
a namespace member. In addition, the argument-dependent lookup, or Koenig lookup, captures the programmer's intention
without forcing him or her to use wearying references to a namespace.

Contents
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Introduction

A template is amold from which the compiler generates afamily of classes or functions. C++ programming styles
and concepts have changed considerably since the first implementation of templates back in 1991 (in cf r ont 2.0).
Initially, templates were viewed as a support for generic container classes such asAr r ay and Li st . In recent years,
the experience of using templates has shown that this feature is most useful in designing and implementing
general-purpose libraries such as the Standard Template Library. Templatized libraries and frameworks are both
efficient and portable. With the widespread usage of templates, C++ has added more sophisticated constructs to
control their behavior and performance, including partial specializations, explicit specializations, template members,
exported templates, default type arguments, and more.

This chapter discusses various aspects of designing and implementing templates. First, class templates are explained.
Function templates come next. Finally, template issues of special concern -- such as pointers to members, virtual
member functions within atemplate class, inheritance relations, and explicit instantiations -- are discussed.

Class Templates

Many algorithms and data structures can be defined independently of the concrete data type that they manipulate.
Often, the reliance on a hardwired data type is merely a programming artifact. The concept of a complex number, for
instance, is not exclusively limited to the fundamental type doubl e. Rather, it is applicable to every floating-point
type. Designing atype-independent class that abstracts the concept of a complex number has many advantages
because it enables users to choose the desired level of precision for a specific application without having to
reduplicate code manually. In addition, type-independent classes are more portable among different platforms and
locales.

Declaration of a Class Template

A classtemplate is declared using the keyword t enpl at e, followed by atemplate parameter list that is enclosed in
angular brackets and a declaration or a definition of the class. For example

tenpl ate <class T> class Vector; //declaration
tenplate <class T> class Vector //definition
L
privat e:
size t sz;
T * buff;
publ i c:
explicit Vector<T>(size_t s = 100);
Vect or <T> (const Vector <T> & v); //copy constructor
Vect or <T>& operat or= (const Vector<T>& v); //assignnent operator
~Vector<T>(); //destrcutor
[/ ot her nmenber functions
T& operator [] (unsigned int index);
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const T& operator [] (unsigned int index) const;
size t size() const;

};

Member functions of a class template can be defined outside the class body. In this case, they have to be explicitly
declared as member functions of their class template. For example

//definitions of Vector's nenber functions

//follow the class declaration

tenpl ate <class T> Vector<T>:.:Vector<T> (size t s) //constructor definition
sz(s),

buff (new T[s])

{}

tenpl ate <class T> Vector<T>::Vector<T> (const Vector <T> & v) //copy ctor

{

sz = 0;

buff = 0;

*this = v; //use overl oaded assi gnnent operator
}
tenpl ate <class T> Vector<T>& Vector<T>::operator= // assignnent operator
(const Vector <T> & v)
{

if (this == &v)

return *this;

thi s->Vector<T>::~Vector<T>(); //call destructor

buff = new T[v.size()]; //allocate sufficient storage

for (sizet i =0; i < v.size(); i++)

buff[i] = v[i]; //menberw se copy

sz = v.size();

return *this;
}
tenpl ate <class T> Vector<T>:.:~Vector<T> () //destructor
{

delete [] buff;
}

tenplate <class T> inline T& Vector<T>::operator [] (unsigned int i)

{
}

tenplate <class T> inline const T& Vector<T>::operator [] //const version
(unsigned int i) const

{
}

tenplate <class T> inline size t Vector<T>:.:size () const

{

}
/' Vect or. hpp

return buff[i];

return buff[i];

return sz;

Theprefixt enpl at e <cl ass T> indicatesthat T is atemplate parameter, which is a placeholder for ayet
unspecified type. The keyword cl ass is of particular interest because the corresponding argument for the parameter
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T isnot necessarily a user-defined type; it can also be afundamental type, such aschar ori nt . If you prefer amore
neutral term, you can use thet ypenamne keyword instead (t ypenane also has other uses, though, as you will see
next):

tenpl ate <typenane T> class Vector //typenane instead of class
/1 no semantic difference between the two forns
{

i
tenpl ate <typenanme T> Vector<T>::Vector<T> (size_t s)
sz(s), buff (new T[s]) {}

Within the scope of Vect or , qualification with the parameter T is redundant, so the member functions can be
declared and defined without it. The constructor, for example, can be declared as follows:

Il ..

tenpl ate <class T> class Vector

L

publ i c:

Vector (size t s = 100); [// equivalent to Vector <T>(size_t s = 100);

};

Similarly, the constructor's definition can omit the redundant parameter:

/1l equivalent to tenplate <class T> Vector<T>::Vector<T>(size_t s)
tenpl ate <class T> Vector<T>::Vector (size t s)
buff (new T[s]), sz(s)

{}
Instantiation and Specialization

A classtemplate is not aclass. The process of instantiating a class from a class template and atype argument is called
template instantiation. A template id, that is, atemplate name followed by alist of argumentsin angular brackets (for
example, Vect or <i nt >), iscalled a specialization. A specialization of a class template can be used exactly like any
other class. Consider the following examples:

void func (Vector <float> &); //function paraneter

size_t n = sizeof( Vector <char>); //sizeof expression

class nmyStringVector: private Vector<std::string> //base class
{/1*...*%};

#i ncl ude <i ostreanr

#i ncl ude <typei nfo>

#i ncl ude <string>

usi ng nanespace std;

cout <<typei d(Vector< string>).nane(); //typeid expression
Vector<int> vi; // creating an object

The compiler instantiates only the necessary member functions of a given specialization. In the following example,
points of member instantiation are numbered:

#i ncl ude <i ostreanp
#i ncl ude "Vector. hpp"
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usi ng nanespace std,;

I nt main()
{
Vector<int> vi(5); [/ 1
for (int i = 0; 1<5; i++)
{
vi[i] =i; [Ifill wvi Il 2
cout <<vi [i] <<endl ;
}

return 0; // 3
}

The compiler generates code only for the following Vect or member functions, which are used either explicitly or
implicitly in the program:

Vector<int>::Vector<int> (size_t s) //1: constructor
sz(s), buff (newint[s]) {}
inline int& Vector<int>::operator [] (unsigned int idx) //2: operator []

{
}

Vector<int>::~Vector<int> () //3: destructor

return buff[idx];

delete [] buff;
}

In contrast, code for the member functionsi ze_t Vect or<int>::size() const isnotgenerated by the
compiler because it is not required. For some compilers, it might be ssmpler to instantiate all the class members at
once whether they are needed or not. However, the "generate on demand" policy is a Standard requirement, and has
two functions:

« Efficiency -- It isnot uncommon for certain class templates to define hundreds of member functions (STL
containers, for example); normally, however, fewer than a dozen of these are actually used in a program.
Generating the code for unused member functions times the number of specializations used in the program can
easily bloat the size of the executable -- and it might unnecessarily increase compilation and linkage time.

« Flexibility -- In some cases, not every type supports all the operations that are defined in a class template. For
example, acontainer class can use ost r eanmnis operator << to display members of fundamental types such as
char andi nt and user-defined types for which an overloaded version of << is defined. However, a POD
(plain old data) struct for which no overloaded version of << exists can still be stored in such a container as
long as the << is not invoked.

Template Arguments

A template can take type parameters, that is, symbols that represent an as yet unspecified type. For example

tenplate <class T > class Vector {/*...*/};

A template can aso take ordinary typessuch asi nt and| ong as parameters:

tenplate <class T, int n> class Array

{
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private:
T a[n];
int size;
publ i c:
Array() : size (n){}
T& operator [] (int idx) { return a[idx]; }
3

Note, however, that when an ordinary type is used as a parameter, the template argument must be a constant or a
constant expression of an integral type. For example

void array_user()

{
const int cn = 5;
int num= 10;
Array<char, 5> ac; [// OK, 5 is a const
Array<float, cn> af; // OK cn is const
Array<unsi gned char, sizeof(float)> auc; // OK constant expression used
Array<bool, nun» ab; // error, numis not a constant
}

Besides constant expressions, other arguments that are allowed are a non-overloaded pointer to member and the
address of an object or afunction with external linkage. This also impliesthat astring literal cannot be used as a
template argument because it has internal linkage. For example:

tenpl ate <class T, const char *> class A

{1*...%1};

void array_user()

{
const char * p ="illegal";
A<int, "invalid"> aa; [/ error, string literal used as a tenplate argunent
A<int, p> ab; // also an error, p doesn't have external I|inkage

}

A template can take atemplate as an argument. For example

i nt send(const Vector<char*>& );

I nt main()

{
Vector <Vector<char*> > nsg_que(10); //a tenplate used as an argunent
[1...fill nmsg_que

for (int i =0; i < 10; i++) //transmt nessages
send(nsg_queli]);
return O;

}

Note that when atemplate is used as an argument, the space between the left two angular brackets is mandatory:

Vect or <Vector<char*> > nsg_que(10);

Otherwise, the >> sequence is parsed as the right shift operator.
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At ypedef can be used to avert this mishap and improve readability, both for the compiler and for the human
reader:

t ypedef Vector<char *> nsg;
Vect or <nsg> nsg_que;

Default Type Arguments

Class templates can have default type arguments.

Aswith default argument values of a function, the default type of atemplate gives the programmer more flexibility in
choosing the optimal type for a particular application. For instance, the Vect or template can be optimized for
special memory management tasks. Instead of using the hard-coded si ze_t typefor storing the size of aVect or, it
can have asize type as a parameter. For most purposes, the default typesi ze_t isused. However, for managing
extremely large memory buffers on the one hand -- or very small ones on the other hand -- the programmer isfree to
choose other suitable data typesinstead. For example

tenplate <class T, class S = size t > class Vector
{
private:
S sz;
T * buff;
publ i c:
explicit Vector(S s = 100): sz(s), buff(new T[s]){}
~Vector ();
[/ ot her nmenber functions
S size() const;

b

tenplate <class T, class S> Vector<T, S>:: ~Vector<T, S>()//destructor definition

{
delete [] buff;

}
tenplate <class T, class S> S Vector<T, S>::size() const
{
return sz;
}
int  main()
{
Vect or <int> ordinary;
Vector <int, unsigned char> tiny(5);
return O;
}

An additional advantage of a default size type is the capability to support implementation-dependent types. On a
machine that supports 64-bit integers, for instance, programmers can use Vect or to easily manipulate very large
memory buffers:

Vector <int, unsigned __int64> very_ huge;

The fact that the programmer does not have to make any changes to the definition of Vect or to get the appropriate
specialization cannot be overemphasized. Without templates, such ahigh level of automation is very difficult to
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achieve.

Static Data Members

Templates can have static data members. For example

tenpl ate<class T> class C

{
publ i c:

static T stat;
H

tenplate<class T> T C<T>::stat = 5; //definition

A static data member can be accessed as follows:

void f()
{
int n = Cint>::stat;
}
Friendship

A friend of a class template can be afunction template or class template, a specialization of afunction template or
class template, or an ordinary (nontemplate) function or class. The following sections discuss the various types of
friendship that a class template can have.

Nontemplate Friends

Nontemplate friend declarations of a class template look quite similar to friend declarations of a nontemplate class. In
the following example, the class template Vect or declaresthe ordinary functionf () and class Thi ng asits
friends:

cl ass Thi ng;
tenpl ate <class T> class Vector

{
publi c:
I ..
friend void f ();
friend class Thing;
b

Each specialization of Vect or hasthefunctionf () and class Thi ng asfriends.
Specializations

Y ou can declare a specialization as afriend of a class template. In the following example, the class template Vect or
declares the speciaization C<voi d* > asitsfriend:

tenplate <class T> class C{/*...*/};
tenpl ate <class T> class Vector

{
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publ i c:
/...
friend class C<void*>; //other specializations are not friends of Vector

3
Template Friends

A friend of a class template can be atemplate by itself. For instance, you can declare a class template as afriend of
another class template:

tenplate <class U> class D{/*...*/};
tenpl ate <class T> class Vector

{

publ i c:

/...

tenplate <class U> friend class D

}

Every specialization of Disafriend of every specialization of Vect or . You can aso declare afunction template asa
friend (function templates will be discussed in further detail shortly). For instance, you might add an overloaded
operator == function template to test the equality of two Vect or objects. Consequently, for every specialization of
Vect or , theimplementation will generate a corresponding specialization of the overloaded operator ==. In order to
declare afriend template function, you first have to forward declare the class template and the friend function
template as follows:

tenpl ate <class T> class Vector; // class tenplate forward declaration
/1 forward declaration of the function tenplate to be used as a friend
tenpl ate <class T> bool operator== (const Vector<T>& vl1l, const Vector<T>& v2);

Next, the friend function template is declared inside the class body:

tenpl ate <class T> class Vector
{
publ i c:
I, ..
friend bool operator==<T> (const Vector<T>& v1l, const Vector<T>& v2);

b

Finally, the friend function template is defined as follows:

tenpl ate <class T> bool operator== (const Vector<T>& vl, const Vector<T>& v2)
{
/[l two Vectors are equal if and only if:
/1 1) they have the same nunber of el enents;
Il 2) every elenent in one Vector is identical to the
/'l corresponding elenent in the second one

if (vl.size() !'= v2.size())

return fal se;
for (size_t i = 0; i<vl.size(); 1++)

{
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if(vi[i] '= v2[i])
return false;

}

return true;

}
Partial Specialization

It is possible to define apartial specialization of a class template. A partial specialization provides an alternative
definition of the primary template. It is used instead of the primary definition when the argumentsin any
specialization match those that are given in the partial specialization. For instance, a partial specialization of Vect or
can handle pointer types exclusively. Thus, for specializations of fundamental types and user-defined types, the
primary Vect or classisused. For pointers, the partial specialization is used instead of the primary class template. A
pointer partial specialization can optimize the manipulation of pointersin several ways.

In addition, some operations that manipulate pointers involve dereferencing and the use of operator - >, neither of
which is used with non-pointer types.

A partia specialization is defined as follows:

/1filename: Vector. hpp
tenpl ate <class T> class Vector <T*> //partial specialization of Vector <T>
{
private:
size_ t size;
void * p;
publi c:
Vector();
~Vector ();
/l...menber functions
size t size() const;
1
/I Vect or. hpp

A partia specialization isindicated by the parameter list that immediately follows the class template name (remember
that the primary template is declared without the list after its name). Compare these two forms:

tenpl ate <class T> class Vector //primary tenpl ate

{};

tenpl ate <class T> class Vector <T*> //partial specialization

{};

Partial specializations of a class template that has several parameters are declared as follows:

template<class T, class U, int i> class A { }; /'l primary
tenplate<class T, int i> class A<T, T*, i> { }; /1 partial specialization
tenpl ate<class T> class A<int, T*, 8> { }; /| another partial specialization

Partial specializations nust appear after the primary declaration of a class
tenplate, and its paraneter cannot contain default types.
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Explicit Specialization of a Class Template

An explicit specialization of a class template provides an alternative definition of the primary template. It is used
instead of the primary definition if the arguments in a particular specialization match those that are given in the
explicit specialization. When isit useful ? Consider the Vect or template: The code that is generated by the compiler
for the speciaization Vect or <bool > isvery inefficient. Instead of storing every Boolean value in asingle bit, it
occupies at least an entire byte. When you are manipulating large amounts of bits, for example in logical operations or
digital signal processing, thisis unacceptable. In addition, bit-oriented operations can be performed more efficiently
using the bitwise operators. Obviously, there are significant advantages to defining a Vect or templatethat is
specifically adjusted to manipulate bits. Following is an example of an explicit specialization Vect or <bool > that
manipulates bits rather than bytes:

tenplate <> class Vector <bool> //explicit specialization

L
private:
size t sz;
unsi gned char * buff;
publ i c:
explicit Vector(sizet s =1) : sz(s),
buff (new unsigned char [(sz+7U)/8U ) {}
Vect or <bool > (const Vector <bool> & v);
Vect or <bool >& oper at or= (const Vect or<bool >& v);
~Vect or <bool >();
[/ ot her nmenber functions
bool & operator [] (unsigned int index);
const bool & operator [] (unsigned int index) const;
size_t size() const;
b
voi d bitmanip()
{

Vect or< bool > bits(8);
bits[0] = true; //assign
bool seventh = bits[7]; //retrieve

}

Thet enpl at e<> prefix indicates an explicit specialization of a primary template. The template arguments for a
specialization are specified in the angular brackets that immediately follow the class name. The specialization
hierarchy of Vect or that has been defined thus far is as follows:

tenplate <class T> class Vector //primary tenplate

{};

tenplate <class T> class Vector <T*> //partial specialization
{};

tenplate <> class Vector <bool> //explicit specialization

{};

Fortunately, the Standard Template Library already defines a specialization of st d: : vect or <bool > for
manipulating bits optimally, as you will read in the next chapter, "STL and Generic Programming.”
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Specializations of Class Template Functions
The overloaded operator == of class Vect or performs a plausible comparison between two Vect or objects when

their elements are either fundamental types or objects that overload operator ==. However, a comparison of two
objects that store C stringsis likely to yield the wrong result. For example

#i ncl ude "Vector. hpp"

extern const char nsgl[] = "hello";
extern const char nsg2[] = "hello";
i nt main()

{

Vect or<const char *> v1(1), v2(1); //the sane nunber of elenents

vl[ 0] = nsgl;

v2[ 0] = nsg2;

bool equal = (vl == v2); //false, strings are equal but pointers aren't
return O;

NOTE: Whether identical string literals are treated as distinct objects isimplementation-dependent.
Some implementations might store the constantsms g1 and nsg2 at the same memory address (on such
implementations, the expression bool equal = (v1 == v2); yieldstrue). However, the
discussion here assumesthat nsgl and nsg2 are stored in two distinct memory addresses.

Although v1 and v2 have the same number of elements and their elements hold the same string value, operator ==
returnsf al se because it compares the addresses of the strings rather than the strings themselves. Y ou can ater this
behavior by defining a specialized version of operator == for typeconst char * exclusively, which comparesthe
strings rather than their addresses. The compiler picks the specialized version only when objects of type

Vect or <const char *> arecompared. Otherwise, it usesthe primary version of operator ==. It is not necessary
to add the declaration of the specialized friend operator == in the declaration of the template class Vect or .
However, it is still recommended that you do so in order to document the existence of a specialized operator ==. For
example

tenpl ate <class T> class Vector;
tenpl ate <class T> bool operator== (const Vector<T>& vl, const Vector<T>& v2);
tenpl ate <class T> class Vector

{
/...
publi c:
friend bool operator==<T> (const Vector<T>& v1,
const Vector<T>& v2); // primry
friend bool operator== ( //specialized version
const Vector<const char *>& vl,
const Vector<const char *>& v2);
1

The definition of the specialized function must appear after the generic version. Therefore, you place it at the same
header file, right after the generic version. Following is the specialized version:

/| appended to vector. hpp
#include <cstring> //needed for strcnp
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usi ng nanespace std;

tenpl ate <> bool operator==
const Vector<const char *>& vl,
const Vector<const char *>& v2 )

{
if (vl.size() !'=v2.size()) //las before
return fal se;
for (sizet i = 0; i<vl.size(); i++)
if (strcnp(vi[i], v2[i]) !'= 0) //conpare string val ues
return fal se;
}
return true;
}

Here again, the empty angular brackets that follow the keyword t enpl at e indicate a specialized version that
overrides apreviously defined generic version. The compiler now uses the specialized form of operator == to
comparev1 and v2; as expected, theresultisnow t r ue.

Specialized functions operate in away that resembles the behavior of virtual member functionsin aderived class. In
both cases, the actual function that is being called depends on the type. However, the virtual dispatch mechanism
relies on the dynamic type of the object, whereas template function specializations are resolved statically.

Function Templates

Many algorithms perform a sequence of identical operations, regardless of the data type they manipulate. m n and
max, array sort,andswap are examples of such type-independent algorithms. In the pre-template era,
programmers had to use alternative techniques to implement generic algorithms:-- macros, voi d pointers, and a
common root base -- al of which incurred significant drawbacks. This section exemplifies the drawbacks of these
techniques and then demonstrates how function templates are used in implementing generic algorithms.

Function-Like Macros

Function-like macros were the predominant form of implementing generic algorithmsin C. For example

#define mn(x,y) ((x)<(y))?(x):(y)
void f()

doubl e dlower = m n(5.5, 5.4);
int ilower = mn(sizeof (double), sizeof(int));
char clower = mn('a, 'b");

}

The C Standard library defines various function-like macros. To some extent, they can be used effectively because
they avoid the overhead that is associated with afull-blown function call. However, macros have significant
drawbacks as well. The preprocessor macro expansion is a simple text substitution, with very limited awareness of
scope rules and type-checking. Furthermore, macros are notoriously hard to debug because the compiler scans a
source file that might look very different from the original file. For this reason, compiler diagnostics can refer to code
that the original source file does not contain. Macros can easily bloat the size of a program because every macro call
Is expanded inline. When large macros are called repeatedly, the result can be a dramatic increase in the size of the
program. In spite of the syntactic similarity, macros are semantically very different from functions -- they have no
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linkage, address, or storage type. For these reasons, use macros sparingly -- if at all.

void Pointers

An alternative approach to macros is the use of a generic pointer, voi d *, which can hold the address of any data
type. The C standard library defined two generic functions that rely on thisfeature: gsort and bsear ch.gsort is
declared in the header <st dl i b. h> asfollows:

void gsort( void *,
size t,
size t,
int (*) (const void *, const void *)

),

The type-unawareness of these generic functionsis achieved by using voi d pointers and an abstract, user-defined
comparison function. Still, there are noticeable limitations to this technique. voi d pointers are not type-safe, and the
repeated function callbacks impose runtime overhead that, in most cases, cannot be avoided by inlining.

A Common Root Base

In some other object-oriented languages, every object is ultimately derived from a common base class (this design
approach and its deficiencies in C++ are described in further detail in Chapter 5, " Object-Oriented Programming and
Design"). Generic algorithms can rely on this feature. For example

/'l pseudo C++ code
class Cbject // a comon root class

{
publ i c:
virtual bool operator < (const Object& const; //polynorphic behavior
/l..other menbers
3
const Object& m n(const Cbject &, const Object& y)
{
return x.operator<(y) ? x : y; //x and y can be objects of any class type
}

Imitating this approach in C++ is not as useful asit isin other languages, though. C++ does not force a common root
class. Therefore, it isthe programmer's -- not the implementation’s -- responsibility to ensure that every classis
derived from a common base. Worse yet, the common root class is not standardized. Thus, such algorithms are not
portable. In addition, these algorithms cannot handle fundamental types because they are limited to class objects
exclusively. Finally, the extensive use of runtime type checking imposes an unacceptable performance on
general-purpose algorithms.

Function templates are free from all these drawbacks. They are type-safe, they can be inlined by the compiler to boost
performance, and -- most importantly -- they are applicable to fundamental types and user-defined types alike.

A function template declaration contains the keyword t enpl at e, followed by alist of template parameters and a
function declaration. As opposed to ordinary functions, which are usually declared in one translation unit and defined
in another, the definition of a function template follows its declaration. For example

tenplate <class T> T max( T tl, T t2)
{
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return (t1 >t2) ?2 tl . t2;
}

Unlike class templates, function template parameters are implicitly deduced from the type of their arguments.
In the following example, the compiler instantiates three distinct specializations of swap, according to the type of
arguments used in each invocation:

#i ncl ude <string>
usi ng nanespace std;

i nt main()
{
int i =0, ] =8;
char c ='a', d ="'2z2";
string s1 = "first", s2 = "second";
int nmax = max(i, j); /] int max (int, int);
char cmax = max(c, d); /| char max (char, char);
string smax = max(sl, s2); /[l string max (string, string);
return O;
}

It is possible to define several function templates with the same name (that is, to overload it) or to combine ordinary
functions with function templates that have the same name. For example

tenplate <class T> T max( T t1, T t2)

{
return (t1 >1t2) ?2tl1: t2;
}
int max (int i, int j)
{
return (i >j) ?2i 1 j;
}

The compiler does not generate ani nt version of max( ) . Instead, it invokesthe functioni nt max (int, int)
when max () iscaled with arguments of typei nt .

Performance Considerations

C++ provides severa facilities for controlling the instantiation of templates, including explicit instantiation of
templates and exported templates. The following sections demonstrate how to use these features, as well as other
techniques to enhance performance.

Type Equivalence

Two templates are equivalent (that is, they refer to the same template id) when all the following conditions hold:
« Name equivalence -- The names of the templates are identical and they refer to the same template.
« Argument Equivalence -- The type arguments of the templates are the same.

« ldentical non-Type Arguments -- The non-type arguments of integral or enumeration type of both templates
have identical values, and their non-type arguments of pointer or reference type refer to the same external
object or function.

file:///D|/Cool Stuff/old/ftp/1/1/ch09/ch09.htm (15 von 22) [12.05.2000 14:46:22]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 9 - Templates

« Template-template Arguments-- The template-template arguments of both templates refer to the same
template.

Following are some examples:

tenpl ate<class T, long size> class Array

{I* ... * };
voi d func()
{

Array<char, 2*512> a;
Array<char, 1024> b;
}

The compiler evaluates constant expressions such as2* 512, so templatesa and b are of the same type. Following is
another example:

tenpl ate<class T, int(*error_code_fct)()> class Buffer
{ 1> ... * };

int error_handl er();

I nt anot her _error_handl er();

voi d func()

{

Buf fer<int, &error_handl er> bl;

Buf fer<i nt, &another _error_handl er> b2;

Buf fer<i nt, &another _error_handl er> b3;

Buf f er <unsi gned i nt, &another _error_handl er> b4;
}

b2 and b3 are of the same type because they are instances of the same template and they take the same type and
non-type arguments. Conversely, b1l and b4 are of distinct types.

Thefunction f unc() instantiated three distinct specializations from the same class template: one for b1, a second
for b2 and b3, and athird for b4. Unlike ordinary function overloading, the compiler generates a distinct class from
the template for every unique type. On machines that have the same underlying representation for | ong and i nt
types, the following code still results in the instantiation of two distinct templates:

void too_prolific()

{

Buffer<int, &error_handl er> buffl;
Buf f er <l ong, &error_handl er> buff2;

}

Similarly, char andunsi gned char aredistinct types, even on machines that treat char asunsi gned by
default. Programmers who are accustomed to the lenient matching rules of ordinary function overloading are not
always aware of the potential code bloat that can result from using templates with very similar yet distinct types.
Avoiding Unnecessary Instantiations

In the following example, three distinct copies of the template m n are generated -- one for each type that is used:

tenplate < class T>T mn(Tf, T5s)
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{
}

voi d use_mn()

{

return f < s? f: s;

int n =5 nr 10;

int j =mn(n,m; /I mn<int> instantiated

char c ='a', d ="'Db";

char k = min(c,d); / / mi n<char > i nstanti at ed

short int u=5, v = 10;

short int w= mn(u,v); /1l mn<short int> instantiated

}

On the other hand, an ordinary function avoids the automatic generation of redundant specializations:

int mn(int f, int s)

{
return f < s? f: s;
}
voi d use_min()
{

/] all three invocation of mn
[/ use int min (int, int);

int n =5, nF 10;

int j =mn(n,m;
char c ='a', d ="'b";

char k = mn(c,d);

short int u=5, v = 10;
short int w= mn(u,v);

}

Still, the template version of m n has a clear advantage over the function: It can handle pointers and any other
user-defined types. Y ou want the benefits of atemplate while avoiding the unnecessary generation of specializations.
How can these be avoided? A simple solution isto safely cast the arguments into one common type before invoking
the function template. For example:

void no_proliferation()

{

short n =5, nr 10;

int j = mn( static_cast<int> (n),

static_cast<int> (m ); //mn<int> instantiated
char c ='a', d ="'b";
char k = static_cast<char> (mn( static_cast<int> ,
static_cast<int> ) ); //mn<int> used

}

This technique can also be applied to pointers: First, they have to be cast tovoi d *, and then they must be cast back
to their origina type. When you are using pointers to polymorphic objects, pointers to derived objects are cast to
pointers to a base class.

For very small templates such asm n, casting the arguments into a common denominator type is not worth the
trouble. Nonetheless, when nontrivial templates that contain hundreds of code lines are used, you might consider
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doing so.

Explicit Template Instantiation

Aswas previoudy noted, templates are instantiated only if they are used in the program. Generally, compilers
generate the necessary code for a specialization when they encounter its use in the source file. When large
applications that consist of hundreds of source files have to be compiled, this can cause a significant increasein
compilation time because the compiler's processing is repeatedly interrupted when it has to generate code for sporadic
speciaizations. The recurrent interruption can occur in almost every source file because they use -- almost without
exception -- template classes of the Standard Library. Consider a simple project that consists of only three source
files:

[/filename funcl. cpp
#i ncl ude <string>
#i ncl ude <i ostreanp
usi ng nanespace std;
voi d funcl()
{

string s; //generate default constructor and destructor

s = "hello"; //generate assignnent operator for const char *

string s2;

s2 =s; |l generate operator = const string& string&

cout<<s2.size(); // generate string::size, ostream& operator <<(int)
}
// funcl. cpp
/1filename func2.cpp
#i ncl ude <string>
#i ncl ude <i ostreanp
usi ng nanespace std;
void func2()
{

string s; //generate default constructor and destructor
cout<<"enter a string: "<<endl; //generate ostream& operator<<(const char *)

cin>>s //generate istream& operator>>(string&)
}
[/ func2. cpp
[1filename main.cpp
i nt main()
{

funcl();

func2();

retrun O;

}

/| main.cpp

The compilation time can be reduced if all the necessary template code isinstantiated all at once, thereby avoiding the
repeated interruption of the compiler's processing. For this purpose, you can use an explicit instantiation. An explicit
Iinstantiation isindicated by the keyword t enpl at e (without the <>), followed by atemplate declaration. Here are a
few examples of explicit template instantiations:

tenplate <class T> class A{/*..*/};
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tenpl ate<class T> void func(T& { }

[1filenanme instantiations. hpp
tenpl ate class Vector<short>; //explicit instantiation of a class tenplate
tenplate A<int>:A<int>(); //explicit instantiation of a menber function
tenpl ate cl ass

std::basic_string<char>; //explicit instantiation of a namespace nenber
tenplate void func<int>(int&; //explicit instantiation of a function tenplate

Examples of Explicit Instantiations in the Standard Library

The Standard Library defines several specializations of class templates. One example is the class template

basi c_stri ng<>. Two specialized versions of thisclassarest d: : stri ngandstd: : wst ri ng, which are
t ypedef sof the specializationsbasi ¢c_st ri ng<char > and basi c_st ri ng<wchar _t >, respectively.
Usually, there is no need to instantiate any of these explicitly because the header <st r i ng> already instantiates
these specializations:

#include <string> //definitions of std::string and std::wstring
usi ng nanespace std;
bool Transl at eToKor ean(const stringé& origin,
wstring& target ); //English / Korean dictionary
int main()
{
string EnglishMsg = "This program has perforned an illegal operation”;
wstring KoreanMsg;
Tr ansl at eToKor ean( Engl i shMsg, Kor eanMsgQ) ;

}

Exported Templates

NOTE: Exported templates are relatively new in C++; therefore, not all compilers support this feature
yet. Please consult your user's manual to check whether your compiler supportsit.

A template definition can be #i ncl uded in several transation units; consequently, it can be compiled several times.
Asyou have observed, this can considerably increase compilation and linkage time. Instead of #i ncl udi ng a
complete definition of the template, it is possible to compile the template definition only once, and use only the
template's declaration in other trandation units. Thisisvery similar to the compilation of external functions and
classes, in which the definition is compiled only once and then only the declarations are required.

To compile atemplate separately and then use its declaration, the template has to be exported. Thisis done by
preceding the template's definition with the keyword expor t :

[/filename mn.cpp
export tenplate < class T > T mn (const T& a, const T& b)

{
}

Now only the declaration of the template is required when it is used in other trandation units. For example

return a >b ? b : a;

[/file mn.c
tenplate < class T > T mn (const T & a, const T &b); //declaration only
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i nt main()

{
int j=0, k=1;
in smaller = nmin(j,k);
return O;

}

Inline function templates cannot be exported. If an inline template function is declared both export andi nl i ne,
theexpor t declaration has no effect and the template is only inline. Declaring a class template exported is
equivalent to declaring al its non-inline member functions, static data members, and member classes exported.
Templates in an unnamed namespace are not to be exported.

Interaction with Other Language Features

The interaction of templates with other language features can sometimes yield surprising results. The following
sections discuss various aspects of interaction between templates and other language features, including ambiguous
interpretation of qualified template names, inheritance, and virtual member functions.

The typename Keyword

Using qualified namesin atemplate can cause ambiguity between atype and a non-type. For example

int N;
tenplate < class T > T func()
{
T.:A* N, // anmbiguous: nultiplication or a pointer declaration?
I
}

If T: : Aisatypename, the definition of f unc() N createsa pointer. If, on the other hand, T: : Aisanon-type (for
example, if Aisdatamember of typei nt), T: : A * Nisan expression statement that consists of the multiplication
of the qualified member T: : Aby aglobal i nt N. By default, the compiler assumes that an expression suchasT: : A
refersto anon-type. Thet ypenane keyword instructs the compiler to supersede this default interpretation and
resolve the ambiguity in favor of atype name rather than a non-type. In other words, the preceding (seemingly
ambiguous) statement is actually resolved as a multiplication expression, the result of which is discarded. In order to
declare apointer, thet ypenane keyword is required:

int N,
tenplate < class T > T func()
{
typenane T::A* N, // Nis a now pointer since T:.:Ais a typenane
I, ..
3

Inheritance Relationship of Templates

A common mistake is to assume that a container of pointers or references to objects of a derived classis a container of
pointers or references to a base class. For example

#i ncl ude<vect or >
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usi ng nanespace std,;
cl ass Base
{
public: virtual void f() {}
1
class Derived : public Base
{
public: void f() {}
b
voi d func( vector<Base*>& vb);
I nt main()
{
Derived d;
vect or <Deri ved*> vd,;
vd. push_back( &d) ;
func(vd); //error, vector<Derived*>& is not a vector<Base*>

}

Although the is-arelationship exists between the classes Der i ved and Base, there is no such relationship between
specializations of the same class template that contain pointers or references to related objects.

Virtual Member Functions

A member function template should not be virtual. However, ordinary member functions in a class template can be
virtual. For example

tenplate <class T> class A

{

publ i c:
tenpl ate <class S> virtual void f(S); [l error
virtual int g(); // K

b

A specialization of amember function template does not override a virtual function that is defined in a base class. For
example

cl ass Base

{
publ i c:
virtual void f(char);
b
class Derived : public Base
{
publi c:
tenplate <class T> void f(T); /1 does not override B::f(int)
3
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Pointers to Members of a Class Template

Pointers to class members can take the address of a specialized member function of a class template. Aswith ordinary
classes, pointers to members cannot take the address of a static member function. In the following example, the
specidization st d: : vect or <i nt > isused:

#i ncl ude<vect or >
usi ng nanespace std;
/1l a typedef is used to hide the unw el dy syntax
typedef void (vector< int > :*pnv) (size_t);
voi d func()
{
pmv  reserve_ptr = &ector< int >::reserve;
/l...use reserve ptr

}
Conclusions

Templates simplify and streamline the implementation of generic containers and functions. The benefits of templates
have allured software vendors, who are now migrating from plain object-oriented frameworks to object-oriented
generic frameworks. However, parameterized types are not unique to C++. Back in 1983, Adaintroduced generic
packages, which were roughly equivalent to class templates. Other languages implemented similar mechanisms of
automated code generation from a skeletal user-written code.

The two main template categoriesin C++ are class templates and function templates. A class template encapsul ates
parameterized data members and function members. Function templates are a means of implementing generic
algorithms. The traditional methods of implementing generic algorithmsin pre-template C++ were rather limited,
unsafe, and inefficient compared to templates. An important aspect of templates is the support of object semantics.

C++ enables programmers to control the instantiation of templates by explicitly instantiating them. It is possible to
instantiate an entire class, a certain member function of a class, or a particular specialization of afunction template.
An explicit instantiation of atemplate isindicated by the keyword t enpl at e, without angular brackets that are
followed by the template declaration. Explicit specializations of a class template are always required. For function
templates, the compiler usually deduces the specialization from the type of the arguments. It is possible to define
partial specialization of a class template that overrides the primary class template for a set of types. Thisfeatureis
most useful for modifying the behavior of a class template that manipulates pointers. A partial specialization is
indicated by a secondary list of parameters following the name of the template. An explicit specialization enables the
programmer to override the automatic instantiation of a class template for a certain type. An explicit specialization is
indicated by the keywordt enpl at e, followed by empty angular brackets and alist of type arguments after the
template's name.

Templates and operator overloading are the building blocks of generic programming. The Standard Template Library
Is an exemplary framework of generic programming, as you will seein the next chapter.

Contents
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Introduction

Object-oriented design offers alimited form of code reuse inheritance and polymorphism. The generic programming
paradigm is designed to enable a higher level of reusability. Instead of data hiding, it relies on data independence.
C++ hastwo features that support data independence: templates and operator overloading. A combination of these
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features alows a generic algorithm to assume very little about the actual object to which it is applied, whether itisa
fundamental type or a user-defined type. Consequently, such an algorithm is not confined to a specific data type, and
it has a higher reusability potential than does a type-dependent a gorithm.

The Sandard Template Library (STL) is an exemplary framework that is built on the foundations of generic
programming. STL is acollection of generic algorithms and containers that communicate through iterators. This
chapter explores the principles of generic programming, focusing on STL. A complete account of every STL
container and algorithm can fill abook of its own, so this chapter only discusses the basic concepts of generic
programming. It starts with an overview of STL header files. STL components are discussed next: containers,
iterators, algorithms, function objects, adaptors, and allocators. This discussion presents some of the most widely used
containers and algorithms of STL. Finally, classst r i ng isdescribed in detail.

Generic Programming

Generic software is primarily reusable software. Reusability is characterized by two key features: adaptability and
efficiency. It isnot difficult to imagine highly adaptive software components that are too inefficient to become widely
used (these are usually implemented by complex inheritance hierarchies, virtual functions, and extensive use of
runtime type information). Conversely, efficient components are generally written in low-level, platform-dependent
code that is both nonportable and hard to maintain. Templates overcome these difficulties because they are checked at
compile time rather than at runtime, because they do not require any inheritance relation among objects, and because
they are applicable to fundamental types. The most useful generic components are containers and algorithms. For
years, programmers were implementing their own lists, queues, sets, and other container types to make up for the lack
of language support; however, homemade containers suffer from significant drawbacks. They are not portable, they
are sometimes less than 100% bug free, their interfaces vary from one implementation to another, and they can be less
than optimal in terms of runtime performance and memory usage.

In the latest phases of the standardization of C++, Alex Stepanov suggested adding a generic library of containers and
algorithmsto C++. He based his proposal on asimilar generic library that he had previously designed for Ada. At that
time (November 1993), the committee was under pressure to complete the ongoing standardization process as fast as
possible. Consequently, suggestions for language extensions were rejected one after another. However, Stepanov's
proposal was too good to be forsaken the committee adopted it unanimously.

The proposed generic library was a collection of containers based on mathematical data models such as vector, queue,
list, and stack. It also contained a set of generic algorithmssuch assort , mer ge, fi nd, r epl ace, and so on.
These library constituents were implemented with templates. Still, templates aone are insufficient because
fundamental types, pointers, user-defined types, and single bits are manipulated by different language constructs and
operators. Operator overloading provides the necessary uniform interface that abstracts the actual data type of a
container or an algorithm. The following section examines these components in greater detail.

Organization of STL Header Files

STL components are grouped under namespace st d. They are defined in the following header files. Note that
prestandardized implementations of STL might use different header names, as indicated below.

Containers

Container classes are defined in the following header files (see Table 10.1). The associative containers multimap and
mul ti set aredefined in <map> and <set >, respectively. Similarly, priority_queue and deque are defined in
<queue>. (On some prestandardized implementations, the container adaptors stack, queue, and priority_queue are
in<st ack. h>).
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Table 10.1 STL Containers

]Header |Contents

[<vect or >|Anarray of T

]<I i st> |A doubly-linked listof T
]<deque> A double-ended queue of T
[<queue> |A queueof T

]<st ack> |Astackof T

’<map> An associative array of T
<set>  [Asetof T

]<bi t set >|A set of Boolean values

Algorithms

STL generic algorithms can be applied to a sequence of elements. They are defined in the following header file (see
Table 10.2). (On prestandardized implementations, generic algorithms are defined in <al go. h>).

Table 10.2 STL Algorithms

’Header Contents
]<al gori t hnm |A collection of generic agorithms

Iterators
Iterators are used to navigate sequences. They are defined in the following header file (see Table 10.3)

Table 10.3 STL Iterators

Header Contents
]<i t erator> ]Various types of iterators and iterator support

Numeric Library
STL provides severa classes and algorithms that are specifically designed for numeric computations (see Table 10.4).

Table 10.4 Numeric Containers and Algorithms

]Header ]Contents

’<corrp| ex> ]Compl ex numbers and their associated operations
’<v al array> ’Mathemati cal vectors and their associated operations
]<numer i cs> ]Generalized numeric operations
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Utilities
The following headers define auxiliary components that are used in STL containers and algorithms (see Table 10.5).
These include function adaptors, pairs, and classaut o_pt r (discussed later).

Table 10.5 General Utilities

]Header ]Contents

]<ut ility> ]Operatorsand pairs

’<f uncti onal >’Function objects
]<rrermr y> ]Allocators andauto_ptr

Containers

A container is an object that can hold other objects as its elements. A generic container is not confined to a specific
type it can store objects of any kind. C supports one container type in the form of built-in arrays. Other languages
support other data models. Pascal, for example, has abuilt-in set type, and Lisp supports lists (hence its name). C++
inherited from C its support for arrays. Arrays have several propertiesthat more or less correspond to the
mathematical notion of avector: They can store any data type and they provide random access that is, the time needed
to access any element isidentical, regardless of the element'’s position.

Still, under some circumstances, arrays are less convenient than other data models; it isimpossible to insert a new
element in the middle of an array. Also, you cannot append new elements to the end of an array. With other data
models, (alist, for example), it is possible to insert new elements in the middle of the container or to append el ements
toitsend. A special type of list, a heterogenic list, can hold elements of different types at the same time.

Sequence Containers

A sequence container organizes a collection of objects of the sametype T into a strictly linear arrangement. Following
are examples of sequence containers:

« T v[n] A built-in array that stores a fixed number of n elements and provides random access to them.

« std::vector<T> An array-like container that stores a varying number of n elements and provides random access
to them. Insertions and deletions at the end of a vector are constant time operations.

» std::deque<T> A double-ended queue that provides random access to a sequence of varying length, with
constant time insertions and deletions at the beginning and the end.

o std::list<T> A list that provides linear time access to a sequence of varying length, with constant time
insertions and deletions at any position.

Interestingly, built-in arrays are considered sequence containers because STL agorithms are designed to work with
them as they work with other sequence types.

Requirements for STL Containment

Elements of STL containers must be copy-constructible and assignable. Essentially, copy-constructible means that an
object and a copy of that object must be identical (although the formal definition in the Standard is somewhat more
complicated than that). Likewise, assignable means that assigning one object to another resultsin two identical
objects. These definitions might sound trivial because objects in general are copy-constructible and assignable; later,
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however (when classaut o_pt r isdiscussed), you will see an example of an object that does not meet these
requirements and is, therefore, not to be stored in STL containers.

An additional requirement is that container el ements must have their copy constructor, default constructor, assignment
operator, and destructor publicly declared (either explicitly or implicitly).

The vector Container Class

The standard containers share a common interface, but each container also defines particular operations. Following is
the interface of classvect or <T>:

nanmespace std {
tenplate <class T, class Allocator = allocator<T> >
cl ass vector {

publ i c:
/'l inplenmentation-defined types
t ypedef inplenentation defined iterator;
t ypedef inplenentation defined const _iterator;
t ypedef inplenentation defined size_type;
t ypedef inplenentation defined di fference_type;
[/ additional types
t ypedef typenane All ocator::reference ref erence;

t ypedef typenane Allocator::const_reference const _reference;
typedef T value_type;

t ypedef All ocat or al | ocat or _type;

t ypedef typenanme All ocator:: pointer poi nter;

t ypedef typenane All ocator::const_pointer const _poi nter

t ypedef std::reverse iterator<iterator> reverse_iterator;

typedef std::reverse_iterator<const iterator> const _reverse_ iterator;
[l construction, copying destruction and assignnent operations
explicit vector(const Allocator& = Allocator());
explicit vector(size type n, const T& value = T(),
const Allocator& = Allocator());
tenpl ate <class I nputlterator>
vector(lnputlterator first, Inputlterator |ast,
const Allocator& = Allocator());
vector (const vector<T, All ocator>& x);
~vector();
vect or <T, Al | ocat or >& oper at or =(const vector<T, Al | ocat or >& X) ;
tenpl ate <class Inputlterator>
void assign(lnputlterator first, Inputlterator |ast);
voi d assign(size_type n, const T& u);
al l ocator _type get_allocator() const;
/literators

i terator begi n();

const __iterator begi n() const;
i terator end() ;

const _iterator end() const;
reverse_iterator rbegin();

const _reverse iterator rbegin() const;
reverse_iterator rend();
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const _reverse_iterator rend() const;

[/ capacity operations

size type size() const;

size_type max_size() const;

voi d resize(size type sz, Tc = T());
si ze _type capacity() const;

bool enpty() const;

voi d reserve(size_type n);

/|l el ement access operations

ref erence operator[] (size_type n);
const _reference operator[](size_type n) const;
const _reference at(size type n) const;

ref erence at (size_type n);
reference front();

const _reference front() const;
ref erence back() ;

const _reference back() const;
/1l nodifiers
voi d push_back(const T& x);
voi d pop_back();
Iterator insert(iterator position, const T& X);
voi d insert(iterator position, size type n, const T& Xx);
tenpl ate <class Inputlterator>
void insert(iterator position,
Inputlterator first, Inputlterator |ast);
iterator erase(iterator position);
Iterator erase(iterator first, iterator |ast);
voi d swap(vect or <T, Al | ocat or >&)
voi d clear();
}; //class vector
/ I non- menber overl oaded operators
tenplate <class T, class Allocator>
bool operator==(const vector<T, All ocat or>& X,
const vector<T, Al l ocator>& y);
tenplate <class T, class Allocator>
bool operator< (const vector<T, All ocator>& X,
const vector<T, Al l ocator>& y);
tenplate <class T, class Allocator>
bool operator!=(const vector<T, All ocator>& X,
const vector<T, Al l ocator>& y);
tenplate <class T, class Allocator>
bool operator> (const vector<T, All ocator>& X,
const vector<T, Al |l ocator>& y);
tenplate <class T, class Allocator>
bool operator>=(const vector<T, All ocat or>& X,
const vector<T, Al |l ocator>& y);
tenplate <class T, class Allocator>
bool operator<=(const vector<T, All ocator>& X,
const vector<T, Al |l ocator>& y);
/| speci alized al gorithmns
tenplate <class T, class Allocator>
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voi d swap(vector<T, Al |l ocator>& x, vector<T, Al |l ocator>& y);
}/ / nanmespace std

On most implementations, the parameterized typessi ze_t ype anddi f f er ence_t ype havethe default values
size t andptrdiff _t,respectively. However, they can be replaced by other types for particular specializations.

The storage of STL containers automatically grows as necessary, freeing the programmer from this tedious and
error-prone task. For example, avect or can be used to read an unknown number of elements from the keyboard:

#i ncl ude <vector>
#1 ncl ude <i ostreanp
usi ng nanespace std;
i nt main()
{ | |
vector <int> vi;
for (;;) //read nunbers froma user's console until 0 is input
.
I nt tenp;
cout<<"enter a nunber; press 0 to term nate" <<endl;
ci n>>t enp;
if (temp == 0 ) break; //exit froml oop?
vi . push_back(tenp); //insert int into the buffer
}
cout<< "you entered "<< vi.size() <<" elenents" <<endl;
return O;
}//end main

Container Reallocation

The memory allocation scheme of STL containers must address two conflicting demands. On the one hand, a
container should not preallocate large amounts of memory because it can impair the system's performance. On the
other hand, it isinefficient to allow a container reallocate memory whenever it stores afew more elements. The
allocation strategy has to walk athin line. On many implementations, a container initially allocates a small memory
buffer, which grows exponentially with every reallocation. Sometimes, however, it is possible to estimate in advance
how many elements the container will have to store. In this case, the user can preallocate a sufficient amount of
memory in advance so that the recurrent reallocation process can be avoided. Imagine amail server of some Internet
Service Provider: The server isalmost idle at 4 am. At 9 am., however, it hasto transfer thousands of emails every
minute. Theincoming emails are first stored inavect or before they are routed to other mail servers across the
Webh. Allowing the container to reallocate itself little by little with every few dozen emails can degrade performance.

What Happens During Reallocation?

The reallocation process consists of four steps. First, a new memory buffer that is large enough to store the container
is allocated. Second, the existing elements are copied to the new memory location. Third, the destructors of the
elementsin their previous location are successively invoked. Finally, the origina memory buffer is released.
Obvioudly, reallocation is a costly operation. Y ou can avert reallocation by calling the member function
reserve().reserve(n) ensuresthat the container reserves sufficient memory for at least n elements in advance,
asin the following example:

cl ass Message { /*...*/};
#i ncl ude <vector>
usi ng nanespace std;
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int FillWthMessages(vector<Message>& nsg _que); //severe tinme constraints

I nt main()

{
vect or <Message> nsgs;
/'l before entering a tinme-critical section, nmake room for 1000 Messages
negs. reserve(1000);

/Ino re-allocation should occur before 1000 objects have been stored in vector
FillWthMessages(nsgs);
return O;

}
capacity() and size()

capaci ty() returnsthe total number of elements that the container can hold without requiring reallocation.

si ze() returnsthe number of elements that are currently stored in the container. In other words, capaci ty() -
si ze() isthe number of available "free dlots" that can be filled with additional elements without reallocating. The
capacity of acontainer can be resized explicitly by calling either r eser ve() orr esi ze() . These member
functions differ in two respects. r esi ze( n) alocates memory for n objects and default-initializes them (you can
provide a different initializer value as the second optional argument).

reserve() alocatesraw memory without initializing it. In addition, r eser ve() does not change the valuethat is
returned from si ze()) it only changesthe value that is returned from capaci t y(). r esi ze() changes both these
values. For example

#1 ncl ude <i ostreanp
#i ncl ude <vector>
#i ncl ude <string>
usi ng nanespace std;
int main()
{ |
vector <string> vs;
vs.reserve(10); //nmake roomfor at |east 10 nore strings
vs. push_back(string()); //insert an el enent
cout <<"size: "<< vs.size()<<endl; //output: 1
cout <<"capacity: "<<vs.capacity()<<endl; //output: 10
cout<<"there's roomfor "<<vs.capacity() - vs.size()
<<" elenents before reallocation"<<endl;
/[lallocate 10 nore elenents, initialized each with string::string()
vs.resize(20);
cout <<"si ze: "<< vs.size()<<endl; //output 20
cout <<"capacity: "<<vs.capacity()<<endl; //output 20;
return O;

}
Specifying the Container's Capacity During Construction

Up until now, the examplesin this chapter have used explicit operations to preallocate storage by calling either
reserve() orresi ze().However, itispossible to specify the requested storage size during construction. For
example

#i ncl ude <vector >
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usi ng nanespace std,;

int main()

{
vector<int> vi(1000); //initial storage for 1000 int's
[1vi contains 1000 elenents initialized by int::int()
return O;

}

Remember that r eser ve( ) allocates raw memory without initializing it. The constructor, on the other hand,
initializes the allocated elements by invoking their default constructor. It is possible to specify adifferent initializer
value, though:

vector<int> vi (1000, 4); //initial all 1000 int's with 4

Accessing a Single Element

The overloaded operator [ ] and the member function at () enable direct access to a vector's element. Both have a
const andanon-const version, so they can be used to access an element of aconst and anon-const vector,
respectively.

Theoverloaded [ ] operator was designed to be as efficient as its built-in counterpart. Therefore, [ ] does not check
to seeif its argument actually refersto avalid element. The lack of runtime checks ensures the fastest access time (an
operator [ ] call isusually inlined). However, using operator [ | with anillegal subscript yields undefined behavior.
When performance is paramount, and when the code is written carefully so that only legal subscripts are accessed, use
the[ ] operator. The[] notation isaso more readable and intuitive. Nonetheless, runtime checks are unavoidable in
some circumstances for instance, when the subscript value is received from an external source such as afunction, a
database record, or a human operator. In such cases you should use the member function at () instead of operator
[].at () performsrange checking and, in case of an attempt to access an out of range member, it throws an
exception of typest d: : out _of _range. Hereisan example:

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <st dexcept>

usi ng nanespace std;

i nt main()

{
vector<string> vs; // vs has no elenents currently
vs. push_back("string"); //add first el enent
vs[0] = "overriding string"; //override it using []
try
{

cout<< vs.at(10) <<endl; //out of range el enent, exception thrown
catch(std::out_of range & except)
/'l handl e out-of-range subscri pt

}

}//end main
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Front and Back Operations

Front and back operations refer to the beginning and the end of a container, respectively. The member function
push_back() appendsasingle element to the end of the container. When the container has exhausted its free
storage, it reallocates additional storage, and then appends the element. The member function pop_back() removes
the last element from the container. The member functionsf r ont () and back() accessasingle element at the
container's beginning and end, respectively. f r ont () and back() both haveaconst and anon-const version.
For example

#i ncl ude <i ostreanp
#i ncl ude <vector>
usi ng nanespace std;
int main()
{
vector <short> v;
v. push_back(5);
v. push_back(10);

cout<<"front: " << v.front() << endl; //5
cout <<"back: " << v.back() << endl; //10

v. pop_back(); //renove v[1]

cout <<"back: " << v.back() << endl; //now 5
return O;

}
Container Assignment

STL containers overload the assignment operator, thereby allowing containers of the same type to be assigned easily.
For example

#i ncl ude <i ostreanp
#i ncl ude<vect or >
usi ng nanespace std;
i nt main()
{ | |
vector <int> vi;
Vi . push_back(1);
Vi . push_back(2);
vector <int> new vector;
[/ copy the contents of vi to new vector, which automatically grows as needed
new vector = vi;
cout << new vector[0] << new vector[1l] << endl; /'l display 1 and 2
return O;

}

Contiguity of Vectors

Built-in arraysin C++ reside in contiguous chunks of memory. The Standard, however, does not require that vector
elements occupy contiguous memory. When STL was added to the Standard, it seemed intuitive that vectors should

store their elements contiguously, so contiguity never became an explicit requirement. Indeed, all current STL
implementations follow this convention. The current specification, however, permits implementations that do not use
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contiguous memory. This loophole will probably be fixed by the Standardization committee in the future, and vector
contiguity will become a Standard requirement.

A vector<Base> Should not Store Derived Objects

Each element in a vector must have the same size. Because a derived object can have additional members, its size
might be larger than the size of its base class. Avoid storing a derived object inavect or <Base> because it can
cause object slicing with undefined results. Y ou can, however, achieve the desired polymorphic behavior by storing a
pointer to aderived object inavect or <Base* >.

FIFO Data Models

In aqueue data model (a queueisalso called FIFO first in first out), the first element that isinserted islocated at the
topmost position, and any subsequent elements are located at lower positions. The two basic operationsin a queue are
pop() andpush().A push() operation inserts an element into the bottom of the queue. A pop() operation
removes the element at the topmost position, which was the first to be inserted; consequently, the element that is
located one position lower becomes the topmost element. The STL queue container can be used as follows:

#i ncl ude <i ostreanp
#i ncl ude <queue>
usi ng nanespace st d;
i nt main()
{
gueue <int> iq;
i g.push(93); //insert the first elenent, it is the top-nost one
i q. push(250);
I g. push(10); //last elenment inserted is |ocated at the bottom
cout<<"currently there are "<< iqg.size() << " elenents" << endl;
while (liqg.enpty() )
{
cout <<"the last elenent is: "<<iq.front() << endl; //front() returns
//the top-nost el ement
iq.pop(); //renove the top-nost el enent

return O;

}

STL also defines a double-ended queue, or deque (pronounced "deck™) container. A deque isaqueuethat is
optimized to support operations at both ends efficiently. Another type of queue isapriority queue. A

priority gueue hasal itseementsinternaly sorted according to their priority. The element with the highest
priority islocated at the top. To qualify asan element of pri ori ty_queue, an object hasto define the < operator
(priority_queue isdiscussed in detail later, in the section titled " Function Objects”).

lterators

Iterators can be thought of as generic pointers. They are used to navigate a container without having to know the
actual type of its elements. Several member functions such asbegi n() andend() return iterators that point to the
ends of acontainer.
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begin() and end()

All STL containers provide thebegi n() and end() pair of member functions. begi n() returns an iterator that
points to the first element of the container. For example

#i ncl ude <i ostreanr
#i ncl ude <vector>
#i ncl ude <string>
usi ng nanespace std,;

I nt main()
{
vector <int> v(1); //roomfor a single elenent
v[0] = 10;
vector<int>: :iterator p = v.begin(); I/l p points to the first elenent of v

*p = 11; //assign a new value to v[0] through p
cout << *p; [//output 11
return O;

}

The member function end( ') , on the other hand, returns an iterator that points one position past the last valid element
of the container. This sounds surprising at first, but there's nothing really unusual about it if you consider how
C-strings are represented: An additional null character is automatically appended one position past the final element
of thechar array. The additional element in STL hasasimilar role it indicates the end of the container. Having
end() return an iterator that points one position past the container's elementsis useful inf or and whi | e loops. For
example

vector <int> v(10);

int n=0;

for (vector<int>::iterator p = v.begin(); p<v.end(); p++)
*P = n++y

begi n() andend() comeintwo versions. const and non-const . The non-const version returns a non-const
iterator, which enables the user to modify the values of the container's element, asyou just saw. Theconst version
returns a const iterator, which cannot modify its container.

For example

const vector <char> v(10);

vector<char>::iterator p = v.begin(); //error, nust use a const_iterator
vector<char>::const _iterator cp = v.begin(); //XK
*cp ='a'; /lerror, attenpt to nodify a const object

cout << *cp; [/ XK

The member functionsr begi n() andr end() (reversebegi n() andreverseend() ) aresimilar to begi n()
and end( ) , except that they return reverse iterators, which apply to reverse sequences. Essentialy, reverse iterators
are ordinary iterators, except that they invert the semantics of the overloaded ++ and - - operators. They are useful
when the elements of a container are accessed in reverse order.

For example

#i ncl ude <i ostreanp
#i ncl ude <vector>
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#i ncl ude <string>
usi ng nanespace std;
voi d ascendi ng_order ()
{
vect or <doubl e> v(10);
double d = 0. 1;
for (vector<double>::iterator p = v.begin(); p<v.end(); p++) //initialize
{
*p:d;
d+= 0. 1;

/1display elements of v in ascendi ng order
for (vector<doubl e>::reverse iterator rp = v.rbegin(); rp < v.rend(); rp++)
{
cout << *rp<<endl ;
}
}

Likebegi n() andend(),rbegi n() andrend() haveaconst andanon-const version.

The Underlying Representation of Iterators

Most implementations of STL use pointers as the underlying representation of iterators. However, an iterator need not
be a pointer, and there's a good reason for that. Consider a huge vector of scanned images that are stored on a 6GB
disk; the built-in pointer on most machines has only 32 bits, which is not large enough to iterate through this large
vector. Instead of a bare pointer, an implementation can use a 64-bit integer as the underlying iterator in this case.
Likewise, a container that holds elements such as bits and nibbles (to which built-in pointers cannot refer) can be
implemented with a different underlying type for iterators and still provide the same interface. However, bare pointers
can sometimes be used to iterate through the elements of a container on certain implementations; for example

#i ncl ude <vector>
#i ncl ude <i ostreane
usi ng nanespace st d;
voi d hack()
{
vector<int> vi;
Vi . push_back(5);
int *p = vi.begin();//bad progranmm ng practice, although it my work
*p = 6; //assign vi[O0]
cout<<vi[0]; //output 6 (nmaybe)
}

Using bare pointersinstead of iteratorsis a bad programming practice avoid it.

"const Correctness" of Iterators
Usetheconst iterator of a container when the elements that are accessed through it are not to be modified. Aswith

ordinary pointer types, using anon-const iterator implies that the contents of the container are to be changed. A
const iterator enables the compiler to detect simple mistakes, and it is more readable.
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Initializing a Vector with the Contents of a Built-in Array

Aswas previoudy noted, built-in arrays are valid sequence containers. Thus, the addresses of array ends can be used
asiteratorsto initialize a vector with the contents of a built-in array. For example

#i ncl ude<vect or >
#i ncl ude <i ostreanp
usi ng nanespace std;
I nt main()
{
int arr[3];
arr[0] = 4; arr[1l] =8; arr[2] = 16;
vector <int> vi ( &arr[0], //address of the array's beginning
&arr[3] ); // must point one el enent past the array's end
cout<< vi[0] << "\t' << wvi[1l] << '"\t' << vVvi[2] <<endl; [/ output: 4 8 16
return O;

}
Ilterator Invalidation

Reallocation can occur when a member function modifiesits container. Modifying member functions are
reserve() andresi ze(), push_back() andpop_back(),erase(),clear(),insert(),andothers
In addition, assignment operations and modifying algorithms can also cause reallocation. When a container
reallocates its elements, their addresses change. Consequently, the values of existing iterators are invalidated.

For example

#i ncl ude <i ostreanr
#1 ncl ude <list>
usi ng nanespace std;
int main()
{
i st <doubl e> payroll;
payrol | . push_back(5000. 00);
| i st <doubl e>::const _iterator p = payroll.begin(); //points to first el ement
for (int i =0 ; 1 < 10; i++)
{
payrol | . push_back(4500.00); //insert 10 nore elenents to payroll;
/lreallocation may occur

}
/| DANGEROUS
cout << "first elenent in payroll: "<< *p <<endl; // p may have
/ I been invali dat ed
return O;

}

In the preceding example, payr ol | might have reallocated itself during the insertion of ten additional elements,
thereby invalidating the value of p. Using an invalid iterator is similar to using a pointer with the address of a deleted
object both result in undefined behavior. To be on the safe side, it is recommended that you reassign the iterator's
value after calling a modifying member function. For example
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| i st <doubl e>::const _iterator p = payroll.begin();//points to the first el enent
for (int i =0 ; 1 < 10; i++)

{

payrol | . push_back(4500.00); // reallocation may occur here
}

p = payroll.begin(); // reassign p

cout <<"first elenment in payroll: "<<*p<<endl; // now safe
}

Alternatively, you can prevent reallocation by preallocating sufficient storage before the instantiation of an iterator.
For example

I nt main()
{
i st <doubl e> payroll;
payrol | .reserve(1l);
payrol | . push_back(5000. 00);
| i st <doubl e>::const _iterator p = payroll.begin();

for (int i =0 ; 1 < 10; i++)
{
payrol | . push_back(4500.00); //no reallocation
}
cout << "first elenment in payroll: "<< *p <<endl; // K
return O;
}
Algorithms

STL defines arich collection of generic algorithms that can be applied to containers and other sequences. There are
three major categories of algorithms. non-modifying sequence operations, mutating sequence operations, and
algorithms for sorting.

Non-Modifying Sequence Operations

Non-modifying sequence operations are algorithms that do not directly modify the sequence on which they operate.
They include operations such as search, checking for equality, and counting.

The find() Algorithm

The generic algorithm f i nd() locates an element within asequence. f i nd() takesthree arguments. The first two
are iterators that point to the beginning and the end of the sequence, respectively.

The third argument is the sought-after value. f i nd() returns an iterator that points to the first element that is
identical to the sought-after value. If f i nd() cannot locate the requested value, it returns an iterator that points one
element past the final element in the sequence (that is, it returns the same value asend( ) does). For example

#include <algorithnme // definition of find()
#include <list>

#i ncl ude <i ostreanp

usi ng nanespace std;

i nt main()
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{

i st<char> |c;
| c. push_back('A");
| c. push_back('T");
| c. push_back('L");
list<char>::iterator p = find(lc.begin(), lIc.end(), "A); /[l find "A
if (p!=1lc.end()) /[l was 'A found?
*p ='S; [l then replace it with 'S
while (p !'=1lc.end()) /1display the nodified |ist
cout <<* p++;
return O;

}
Mutating Sequence Operations

M utating sequence agorithms modify the sequence on which they operate. They include operations such as copy, fill,
replace, and transform.

The copy() Algorithm

The Standard Library provides a generic copy function, which can be used to copy a sequence of objectsto a
specified target. The first and the second arguments of copy () areconst iteratorsthat mark the sequence's
beginning and its end, respectively. The third argument points to a container into which the sequenceis copied. The
following example demonstrates how to copy the elementsof al i st intoavect or:

#i ncl ude <al gorithne

#i ncl ude<l i st>

#i ncl ude<vect or >

usi ng nanespace std;

i nt main()

{
list<int> li; vector <int> vi;
['i.push_back(1);
['i.push_back(2);

vi.reserve( li.size() ); [//nmust make room for copied elenents in advance
//copy list elenents into vector, starting at vector's begi nning

copy (li.begin(), li.end(), vi.begin() );

return O;

}
Sort Operations

This category contains algorithms for sorting and merging sequences and set-like algorithms that operate on sorted
sequences. Theseincludesort (), partial _sort(),binary_search(),| ower_bound(), and many
others.

The sort() Algorithm

sort () takestwo arguments of type const iterator that point to the beginning and the end of the sequence,
respectively. An optional third algorithm is a predicate object, which alters the computation of sor t (predicate
objects and adaptors are discussed shortly). For example
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#1 ncl ude <i ostreanp
#i nclude <algorithme //definition of sort()
#i ncl ude <vector>
usi ng nanespace st d;
i nt main()
{
vector <int> vi;
Vi . push_back(7);
Vi . push_back(1);
Vi . push_back(19);

sort(vi.begin(), vi.end() ); [/ sort vi; default is ascending order
cout<< vi[0] <<", "<<wvi[l] <<", "<< vVi[2] <<endl; // output: 1, 7, 19
return O;

}

One way to force a descending order isto use reverseiterators:

sort(vi.rbegin(), vi.rend() ); // now sort in descendi ng order
cout<< vi[0] <<", "<<vi[l]<<", "<<vi[2]<<endl; // output: 19, 7, 1

Requirements for Sorting Containers

Whensort () operateson acontainer, it usesthe relational operators == and < of the container's el ements.
User-defined types that do not support these operators can still be stored in a container, but such a container cannot be
sorted.

Function Objects

It is customary to use a function pointer to invoke a callback routine. In an object-oriented environment, nonetheless,
afunction can be encapsulated in a function object (see also Chapter 3, "Operator Overloading"). There are several
advantages to using a function object, or functor, instead of a pointer. Function objects are more resilient because the
object that contains the function can be modified without affecting its users. In addition, compilers caninline a
function object, which is nearly impossible when function pointers are used. But perhaps the most compelling
argument in favor of function objectsis their genericity a function object can embody a generic algorithm by means
of amember template.

Implementation of Function Objects

A function object overloads the function call operator. A generic function object defines the overloaded function call
operator as amember function template. Consequently, the object can be used like afunction call. Remember that the
overloaded operator () can have avarying number of arguments, and any return value. In the following example, a
function object implements a generic negation operator:

#i ncl ude <i ostreane
#i ncl ude <vect or>
usi ng nanespace std;
cl ass negate

public : //generic negation operator
tenplate < class T > T operator() (T t) const { return -t;}
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b
voi d cal | back(int n, const negate& neg) //pass a function object rather
//than a function pointer

{
n = neg(n); //invoke the overloaded () operator to negate n
cout << n;
}
i nt main()
cal | back(5, negate() ); //output: -5
return O;
}

Uses of Function Objects

Some container operations use function objects. For example, apri ori ty gueue usesthel ess function object
to sort its elements internally. The following example demonstrates a scheduler that stores tasks with different
prioritiesinapri ority_queue. Tasksthat have higher priority are located at the top. Tasks with identical priority
are located according to the order of their insertion, asin an ordinary queue:

#i ncl ude <functional > // definition of |ess

#i ncl ude <queue> // definition of priority queue

#i ncl ude <i ostreanp

usi ng nanespace std,;

struct Task

{

int priority;

friend bool operator < (const Task& t1, const Task& t2);
Task(int p=0) : priority(p) {}

b
bool operator < (const Task& t1l, const Task& t2)

{
}

I nt main()

{

return tl.priority <t2.priority;

priority queue<Task> schedul er;
schedul er. push(Task(3));

schedul er. push(Task(5));

schedul er. push(Task(1));

schedul er. push(Task(1));

cout << scheduler.top().priority <<endl; /1l output 5
return O;

}

Predicate Objects

A predicate is an expression that returns a Boolean value. Similarly, afunction object that returns a Boolean valueis a
predicate object. STL defines several predicate objects that can be used to alter the computation of a generic

algorithm. These predicate objects are defined in the header <f unct i onal >. In aprevious example, you saw the
operation of the algorithm sor t () . Thethird argument of sort () isapredicate that alters the computation of this
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algorithm. For example, the predicate gr eat er <i nt > can be used to override the default ascending order.
Likewise, the predicate | ess<i nt > restores the original ascending order:

#i nclude <functional > //definitions of STL predicates
#i nclude <algorithnme //definition of sort
#i ncl ude <vector>
#i ncl ude <i ostreanp
usi ng nanespace std;
I nt main()
{
vector <int> vi;
Vi . push_back(9);
vi . push_back(5);
Vi . push_back(10);
sort(vi.begin(), vi.end(), greater<int> () ); [// descending order

cout<< vi[0] << '"\t' << vi[1l] << '"\t' << vi[2] <<endl; [l output: 10 9 5
sort(vi.begin(), vi.end(), less<int> () ); /1 now in ascendi ng order
cout<< vi[0] << "\t' << vi[l] << "\t' << vi[2] <<endl; /1l output: 5 9 10
return O;

}
Adaptors

An adaptor is a component that modifies the interface of another component. STL uses several types of adaptors:
sequence adaptors, iterator adaptors, and function adaptors.

Sequence Adaptors

A sequence adaptor is a container that is built upon another container and that modifies its interface. For example, the
container st ack isusually implemented asadeque, whose non-st ack operations are hidden. In addition, st ack

uses the operationsback( ) , push_back(),and pop_back() of adeque to implement the operationst op() ,

push(), and pop(), respectively. For example

#i ncl ude <string>
#1 ncl ude <stack>
#i ncl ude <i ostreanp
usi ng nanespace std;
I nt main()
{
stack <string> strstack;
strstack. push("Bjarne");
strstack. push("Stroustrup");
string topnost = strstack.top();
cout << "topnost elenent is: "<< topnost << endl; // "Stroustrup"
strstack. pop();
cout<< "topnost elenment is: "<< strstack.top() << endl; // "Bjarne"
return O;

}

Calling the member function pop() onan empty stack isan error. If you are not sure whether a stack contains any
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elements, you can use the member function enpt y() to check it first. For example

st ack<i nt> stk;
//...many |lines of code
If (!stk.enpty() ) //test stack before popping it

{
}

Iterator Adaptors

stk. pop();

The interface of an iterator can be altered by an iterator adaptor. The member functionsr end() andr begi n()
return reverse iterators, which are iterators that have the meanings of operators ++ and - - exchanged. Using areverse
iterator is more convenient in some computations.

Function Adaptors

Earlier you saw the use of gr eat er asafunction adaptor for changing the computation of sort () . STL also
provides negators, which are used to reverse the result of certain Boolean operations. Binders are another type of
adaptors, which convert a binary function object into a unary function object by binding an argument to a specific
value.

Allocators

Every STL container uses an allocator that encapsul ates the memory model that the program uses. Allocators hide the
platform-dependent details such as the size of pointers, memory organization, reallocation model, and memory page
size. Because a container can work with different alocator types, it can easily work in different environments smply
by plugging a different allocator into it. An implementation provides a suitable allocator for every container.
Normally, users should not override the default allocator.

Specialized Containers

Chapter 9, "Templates," discussed the benefits of defining template specializations to optimize and rectify the
behavior of a primary template for a particular type. vect or has a specialized form that manipulates Boolean values
optimally, namely vect or <bool >. This specialization isimplemented in away that squeezes each element into a
single hit, rather than abool variable, albeit with the familiar vect or interface. For example

#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng nanespace std

void transmt(vector <bool > &binarystream

{
cout <<bi narystreanf{O]; // subscript operator provided
vect or<bool >:: const _iterator bit _iter = binarystreambegin(); //iterators
i f (binarystreani0] == true)
{/* do sonething */ }
}
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Associative Containers

An associative array is one for which the index need not be an integer. An associative array is also called map or
dictionary. STL defines several associative containers. A map, for instance, stores pairs of values; one serves as the
key, and the other is the associated value. The template pai r <cl ass Key, cl ass Val ue> servesasanap
element. In the following example, amap is used to trandlate the string value of an enumerator into its corresponding
integral value. The string is the key whose associated valueisani nt :

#i ncl ude <map>

#i ncl ude <string>

#i ncl ude <i ostreane

usi ng nanespace st d;

enum di rections {up, down};

i nt main()

{
pair<string, int> Enunerator(string("down"), down); //create a pair
map<string, int>m; //create a map
m .insert(Enunerator); //insert the pair
int n=m["down"]; //n =1 //string used as subscri pt
return O;

}

A map can store only unique keys. A mul t i map isamap that can store duplicate keys.

set issimilar to amap except that the associated values areirrelevant in this case. A set isused when only the keys
are important: to ensure that a database transaction does not attempt to insert arecord with a unique key that already
existsin atable, for example. mul t i set isaset that allows duplicate keys.

Class auto_ptr

The classtemplate aut o_pt r implements the "resource acquisition isinitialization" idiom (discussed in Chapter 5,
"Object-Oriented Programming Design"). It isinitialized by a pointer to an object allocated on the free store

(aut o_pt r hasadefault constructor so you can instantiate an empty aut o_pt r and assign a pointer to it later).
The destructor of aut o_pt r destroys the object that is bound to the pointer. This technique can avoid memory
leakage in the case of exceptions (see also Chapter 6, "Exception Handling"), or it can ssimplify programming by
sparing the hassle of explicitly deleting every object allocated on the free store. Classaut o_pt r isdeclared in the
standard header <nenor y>. Following is an example of using aut o_pt r ( points of possible object destruction are
numbered):

#i ncl ude <menory>
usi ng nanespace std;
void f() { if (condition) throw "err";}
int main()
{
try

{
aut o_pt r <doubl e> dptr (new doubl e(0.0));

*dptr = 0.5; //overloaded * provides pointer-Ilike syntax

f();

} /1 1: no exception was thrown, dptr destroyed here
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catch(...)

{ /'l 2: an exception was thrown, dptr destroyed here
}

return O;

}

It is guaranteed that the memory that was allocated from the free store isreleased: If f () throws an exception, the
dpt r object isdestroyed during stack unwinding (2) and, as aresult, the memory that was allocated from the free
storeisreleased. Otherwise, dpt r isdestroyed whenthet ry block exits (1).

STL Containers Should not Store auto_ptr Elements

Elements of STL containers must be copy-constructible and assignable, as was noted previously. During reallocation,
acontainer copy-constructs its elementsin a new memory location and destroys the origina elements by invoking
their destructor. However, an aut o_pt r isnot copy-constructible. Rather, it provides strict ownership semantics,
which means that it owns the object to which it holds a pointer (ownership is also discussed in Chapter 5). Copying an
aut o_pt r object copies that pointer and transfers ownership to the destination. This standsin contrast to the
copy-constructible and assignable requirements: One copy of aut o_pt r holds a pointer to the free store object,
whereas the other copy doesn't. (If more than one aut o_pt r ownsthe same object at the same time, the results are
undefined.) Therefore, aut o_pt r objects are not to be stored in STL containers.

Nearly Containers

STL defines three additional components that behave, in many ways, like ordinary containers. They have automatic
memory management, they have iterators, and they share a container-like interface with member functions such as
begi n() andend() . Still, they are not considered "first-class citizens' in the STL catalog because they are not
generic. Astringissimilartovect or butisconfined to char datatype. val arr ay resemblesvect or, abeit
with a strong bias toward numerical computations. The third classin this category isbi t set , whichisaset
designed to store and manipulate bits in an efficient way. These nearly containers have alimited use for general
purposes, except for st ri ng.

Class string

std: :stringisashorthandfor st d: : basi c_stri ng<char >, asyou saw in Chapter 9. st ri ng provides
many of the operations of ordinary STL containers; for example, it conforms to the requirements of a sequence and it
defines iterators. However, st r i ng isoptimized for the use of a character string exclusively.

The consideration in the design of st r i ng included utmost efficiency, support for C-strings, and generality (that is,
st ri ng isnot targeted for a particular application use).

Constructors

st ri ng has adefault constructor and five more constructors:

nanmespace std
{
tenpl ate<cl ass charT, class traits = char_traits<charT>,
cl ass Allocator = allocator<charT> >
cl ass basic_string {
publ i c:
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/...
explicit basic_string(const Allocator& a = Allocator());
basi c_string(const basic _string& str, size_ type pos 0,
size_type n = npos, const Allocator& a = Allocator());
basi c_string(const charT* s,
size type n, const Allocator& a = Allocator());
basi c_string(const charT* s, const Allocator& a = Allocator());
basic_string(size_type n, charT c, const Allocator& a = Allocator());
t enpl at e<cl ass | nputlterator>
basic_string(lnputlterator begin, Inputlterator end,
const Allocator& a = Allocator());

/...
b
}

In other words, ast ri ng can be initialized by a C-string, by another string object, by part of a C-string, by a
sequence of characters, or by part of another st r i ng. Following are some examples:

#i ncl ude <string>
usi ng nanespace std;
void f()
{
const char text[] = "hello world";
string s =text; //initialization of string object wth a Gstyle string
string s2(s); [//copy construction
string s3(& ext[0], & ext[5]); // part of a Cstring; s3 = "hello"
string s4(10, 0); //a sequence of zero initialized characters
string s5 ( s2.begin(), s2.find(' '")); //initialized part of another string
/1s5 = "hello"

}

It isimportant to note that when the initializer isapointer to char , st r i ng does not check the pointer. It isthe
programmer's responsibility to ensure that the pointer isvalid and that it is not NULL. Otherwise, the results are
undefined. For example

#i ncl ude<stri ng>

using std::string;

const char * getDescription(int synbol); // may return a NULL pointer
string& witeToString (int synbol)

/1l sloppy: initializer mght be NULL; undefined behavior in this case
string *p = new string(getDescription(synbol));
return *p;

}

st ri ng does not check for aNULL pointer to avoid the incurred performance overhead. Remember that standard C
functionssuch asst r cpy() avoid thisoverhead too. Evenif st ri ng did check thechar pointer, it isunclear
what it isto do in the case of aNULL value. Clearly, aNULL pointer is not avalid C-string, so creating an empty
string isincorrect. Throwing an exception is perhaps a plausible approach, but it incurs additiona runtime overhead
and is not always desirable.

A safer implementation of the preceding example might check the initializing pointer to make sure that it is not
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NULL:

string& witeToString (int symnbol)
{
const char *p = getDescription(synbol);
if (p) // now safe
{
string *pstr = new string(p);
return *pstr;

}

return *new string;

}
Conversion to a C-string

Classst ri ng provides two member functions that returntheconst char * representation of its object. The
following sections discuss these member functions.

The c_str() Member Function

st ri ng doesnot defineachar * conversion operator. There are two reasons for this. First, implicit conversions
can cause undesirable surprises when you least expect it (refer to Chapter 3). Another reason is that C-strings must be
null-terminated. The underlying representation of ast r i ng object isimplementation-dependent and might not use a
null-terminated sequence. Therefore, an implicit conversion of ast r i ng object in a context that requires a
null-terminated array of characters can be disastrous. For these reasons, st r i ng does not provide such a conversion
operator. Instead, an explicit call tost ri ng: : c_str () isrequired.c_str () returnstheconst char *
representation of its object. For example

void f()

{
string s = "Hello";
if( strecnp( s.c_str(), "Hello")== 0)
cout <<"identical "<<endl;
el se
cout <<"di fferent "<<endl ;
}

The pointer that isreturned fromc_str () isowned by thest ri ng object. The user should not attempt to delete it
or to modify its associated char array. The returned pointer is not to be used after anon-const member function
has been called.

The data() Member Function

The member functiondat a() asoreturnsaconst char * representation of its object (but the resultant array
might not be null-terminated).

Accessing a Single Element

There are two ways to access a single character from a string object. One is to use the overloaded operator [ ] , asin
the following example:
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#i ncl ude <string>

usi ng nanespace std;

void first()

{

“"hell o world";

string s =
c =s[0]; [/lassign 'h'

char

}

Another way isto use the member function at () . Similar to classvect or,string: : at () performs
range-checking and throws an exception of type st d: : out _of _r ange when an attempt is made to access an
out-of-range character.

Clearing the Contents of A string

To explicitly erase the contents of ast r i ng, you can use the member function er ase( ) . For example

#i ncl ude <i ostreanp
#i ncl ude <string>
usi ng nanespace std;
void f()
{
char key;
string nsg = "press any key to continue";
cout <<nsg<<endl ;
ci n<<key;
meg. erase(); //clear nsg

}
Comparison

st ri ng defines three versions of operator ==:

bool operator == (const string& left, const string right);
bool operator == (const char* left, const string right);
bool operator == (const string& left, const char* right);

This proliferation might seem redundant because st r i ng has a constructor that automatically convertsaconst
char * toastring object. Therefore, only the first version of operator == is necessary. However, the overhead of
creating atemporary string can be unacceptable under some circumstances: The temporary string has to allocate

memory on the free store, copy the C-string, and then release the allocated memory. The Standardization committee's

Intent was to make comparison of strings as efficient as possible. Therefore, the additional versions of operator ==
were added to enable efficient comparisons.

Additional Overloaded Operators
Aswas previously noted, ast r i ng can be assigned another st ri ng, aC-string, or asingle character. Smilarly,

there are three versions of the overloaded operator += that support concatenation of another string, a C-string, or a
single character to an existing string. For example

#i ncl ude <string>
usi ng nanespace std,;
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void f()
{

string s1 = "ab"
string s2= "cd";

sl+=s2;
sl+= "ef";
sl+='¢g';

}

st ri ng aso defines an overloaded + that returns a string that concatenates its operands. Similarly, the operators <
and > perform alexicographical comparison between their operands.

Performance Issues

st ri ng isprobably the most widely used classin C++ programs. The efficiency of its design and implementation
were cardinal. For example, st r i ng provides optimized container operations such asf i nd(), copy() , and
repl ace() that are specifically designed to manipulate characters efficiently. In some respects, st r i ng objects
are even more efficient than char * interms of speed and space. The following sections discuss two aspects of
st ri ng's performance: size computation and reference counting.

Size

st ri ng has adata member that holdsits size. Calculating the size of a string object is, therefore, afast constant time
operation. On the other hand, the performance of st r | en() isproportional to the number of charactersthat are
stored in a C-string. When large strings are used and size computations are frequent, st d: : st ri ng is more efficient
than a C-string.

Reference Counting

In anutshell, areference counted model counts how many instances of a class have an identical state. When two or
more instances share the same state, the implementation creates only a single copy and counts the number of existing
references to this copy. For example, an array of strings can be represented asasingle st ri ng object that holds the
number of elementsin the array (reference counting is not confined to arrays). Since initialy the array elements share
the same state (they all are empty strings), only a single object is needed. When one of the array elements changesiits
state (if it isassigned adifferent value, for instance), the existing object creates one more object thisis called "copy
on write". Asyou can see, the reference counting model can enhance performance in terms of both memory usage and
speed. The Standard's specification of classst ri ng isformulated to allow but it does not require a reference counted
implementation.

A reference counted implementation must have the same semantics as a non-reference counted implementation. For
example

string stri("xyz");

string::iterator i = strl. begin();
string str2 = str1;
*I='w,; [/nmust nodify only strl

Conclusions

STL was designed to allow maximal reusability without sacrificing efficiency. The Standard specifies performance
requirements with which STL containers and algorithms must comply. These performance specifications are the
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minimum requirements; an implementation might offer better performance.

The plug compatibility of STL components, which enables the user to create other components or to modify the
interface of existing components, is remarkable. Other frameworks and libraries impose severe constraints on the use

of their components, considerably limiting their plug-compatibility.

STL isregarded by C++ creators as the most important addition to the language in recent years. Mastering STL isa
worthwhile investment. It is estimated that other programming languages will follow the role model of STL and
provide similar generic frameworks. Three major advantages of preferring STL to homemade containers are

« Portability All standard-compliant C++ implementations supply them.
« Performance STL components were designed and implemented to meet strict efficiency demands.

« Rédiability STL containers and algorithms were already debugged and tested.

Contents
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Introduction

C++ added the necessary language constructs to the memory model of C to support object semantics. In addition, it
fixed some loopholesin the original model and enhanced it with higher levels of abstraction and automation. This
chapter delves into the memory model of C++, starting with the three types of data storage. Next, the various versions
of operatorsnewand del et e are discussed; finally, some techniques and guidelines for effective and bug-free usage
of the memory management constructs are presented.

Types of Storage

C++ hasthree fundamental types of data storage: automatic storage, static storage, and free store. Each of these
memory types has different semantics of object initialization and lifetime.

Automatic Storage
Local objects that are not explicitly declared st at i ¢ or ext er n, local objects that are declared aut o or

r egi st er, and function arguments have automatic storage. This type of storageis aso called stack memory.
Automatic objects are created automatically upon entering afunction or a block. They are destroyed when the
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function or block exits. Thus, on each entry into afunction or a block, a new copy of its automatic objectsis created.
The default value of automatic variables and nonclass objects is indeterminate.

Static Storage

Global objects, static data members of a class, namespace variables, and static variablesin functionsreside in static
memory.

The address of a static object remains the same throughout the program'’s execution.

Every static object is constructed only once during the lifetime of the program. By default, static data are initialized to
binary zeros. Static objects with a nontrivial constructor (see Chapter 4, "Special Member Functions: Default
Constructor, Copy Constructor, Destructor, And Assignment Operator") are subsequently initialized by their
constructors. Objects with static storage are included in the following examples:

int num //global variables have static storage
int func()
{
static int calls; //initialized to O by default
return ++call s;

}
class C
{
private:
static bool b;
1
nanmespace NS
{
std::string str; //str has static storage
}
Free Store

Free store memory, also called heap memory or dynamic memory, contains objects and variables that are created by
operator new. Objects and variables that are alocated on the free store persist until they are explicitly released by a
subsequent call to operator del et e. The memory that is alocated from the free store is not returned to the operating
system automatically after the program'’s termination.

Therefore, failing to release memory that was allocated using new generaly yields memory leaks. The address of an
object that is allocated on the free store is determined at runtime. Theinitial value of raw storage that is allocated by
newis unspecified.

POD (Plain Old Data) and non-POD Objects

A POD (plain old data) object has one of the following data types. a fundamental type, pointer, union, struct, array,
or classwith atrivial constructor. Conversely, a non-POD object is one for which anontrivial constructor exists. The
properties of an object are in effect only during its lifetime.
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The Lifetime of a POD Object

A POD object beginsits lifetime when it obtains storage with the proper alignment and size for itstype, and its
lifetime ends when the storage for the object is either reused or deallocated.

The Lifetime of a non-POD Object

A non-POD object beginsits lifetime after the constructor call has completed; its lifetime ends when its destructor has
started.

Allocation and Deallocation Functions

C++ defines the global allocation functionsnewand new| | aswell asthe corresponding global deallocation
functionsdel et e and del et e[ ] . These functions are accessible from each translation unit of a program without
including the header <new>. Their implicit declarations are as follows:

voi d* operator new(std::size t) throwstd::bad alloc); // new

voi d* operator new](std::size t) throwmstd::bad alloc); // new []
voi d operator delete(void*) throw(); [// delete

void operator delete[](void*) throw(); // delete[]

The implicit declarations introduce only the function names operator new, operator new ] , operator del et e, and
operator del et e[ ] . However, they do not introduce the namesst d, st d: : bad_al | oc,andstd: : si ze_t.An
explicit reference to any of these names requires that the appropriate header file be included. For example

#include <new> // declarations of std and size t
usi ng nanespace std;
char * allocate (size_t bytes);
Int main
{
char * buff = allocate(sizeof (char) );
return O;

}
Semantics of Allocation Functions

The return type of an allocation functionisvoi d *, and itsfirst parameter is of typesi ze_t . The value of thefirst
parameter isinterpreted as the requested memory size. The allocation function attempts to allocate the requested size
of memory from the free store. If the allocation request is successful, it returns the address of the start of a block of
storage whose size, in bytes, is at least as large as the requested size.

Semantics of Deallocation Functions

The return type of adeallocation functionisvoi d; itsfirst parameter isof typevoi d *. A deallocation function can
have more than one parameter. The value of the first argument that is supplied to a deallocation function can be NULL
(in this case, the deallocation function call has no effect). Otherwise, the value supplied to a deallocation function
must be one of the values returned by a previous invocation of a corresponding allocation function.Allocation and
deallocation functions perform the basic operations of allocating memory from the free store and releasing it. Note
however, that in general, you do not invoke these functions directly. Rather, you use a new expression and a delete
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expression. A new expression implicitly invokes an allocation function and then constructs an object on the allocated

memory; likewise, a delete expression destroys an object, and then it invokes a deall ocation function to release the
storage of the destroyed object.

NOTE: Inthefollowing sections, newand del et e refer to anewexpresson and adel et e
expression, respectively, unless stated otherwise.

malloc() and free() Versus new and delete

C++ dtill supports the standard C library functionsmal | oc() andf r ee() . The backward compatibility with Cis
useful in three cases: for combining legacy code that was originally written in C in C++ programs, for writing C++
code that is meant to be supported in C environment (more on thisin Chapter 13, "C Language Compatibility
Issues"), and for making newand del et e implementable by callingmal | oc() andfree().

Otherwise, mal | oc() andfree() arenotto beused in C++ code because -- unlike newand del et e -- they do
not support object semantics. newand del et e are aso significantly safer and more extensible.

Support For Object Semantics

newand del et e automatically construct and destroy objects. mal | oc() andf r ee(), onthe other hand, merely
allocate and deallocate raw memory from the heap. In particular, using mal | oc() to create anon-POD object yields
undefined behavior. For example

#i ncl ude <cstdli b>

#i ncl ude <string>

usi ng nanespace std;
string* func() //very bad

{
string *pstr = static_cast<string*> (malloc (sizeof(string))); //disaster!
return pstr; //any attenpt to use pstr as a pointer to a string is undefined
}
Safety

Operator new automatically calculates the size of the object that it constructs. Conversely, withmal | oc() , the
programmer has to specify explicitly the number of bytes that have to be allocated. In addition, mal | oc() returnsa
pointer to voi d, which hasto be explicitly cast to the desired type. Thisis both tedious and dangerous. Operator new
returns a pointer to the desired type, so no explicit type cast is required. For example

#i ncl ude <cstdlib>
usi ng nanespace std,;
voi d func()

{

int * p = static_cast<int *> malloc(sizeof(int));
int * p2 = newint;

}
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Extensibility

Operator new can be overloaded by a class. This feature enables specific classes to use different memory
management policies, as you will see next. On the other hand, mal | oc() cannot be overloaded for a specific class.

Theresultsof callingf r ee() torelease apointer that was allocated by new, or of using del et e to release memory
that was allocated by mal | oc() , are undefined. The Standard does not guarantee that the underlying implementation
of operator newusesmal | oc() ; furthermore, on some implementationsmal | oc() and new use different heaps.

new and delete

Allocating and Deallocating Arrays Using new([] and delete[]

new ] alocatesan array of objects of the specified type. The value that is returned by new ] isthe address of the
first element in the allocated array. For example

I nt main()
{
int *p = new int[10];
bool equal = (p == &p[0]); //true
delete[] p;
return O;

}

Objects that are alocated using new| | must bereleased by acall todel et e[ ] . Using plain del et e instead of
del et e[ ] inthiscase resultsin undefined behavior. Thisis because when new| ] is executed, the runtime system
stores the number of elementsin the allocated array in an implementation-defined way. The corresponding

del et e[ ] expression retrieves the number of allocated elements to invoke the same number of destructors. How
doesnew ] storethe number of elementsin the alocated array? The most widely used technique is to allocate an
extrasi zeof (st d: : size_t) bytes; thatis, for aclass C, the expression

C* p = newdn];

allocates amemory buffer that containssi zeof (std: :size t) + n * sizeof bytes Thevauen iswritten
to the allocated buffer just before the first C object. When del et e[ ] isinvoked, it looks for the value n in afixed
offset before p (which must point to the first element in the array). del et e[ ] then invokes Cs destructor n times
and, finally, releases the memory block. Plain del et e, on the other hand, does not perform such offset adjustments
-- it simply invokes the destructor of the object to which p points.

An alternative technique is to store n in an associative array in which p serves asthe key and n isits associated value.
When the statement
delete[] p;

isexecuted, del et e[ ] canlookup p inan associative array such as

std::map<void *, std::size_t>

and retrieve its associated value n. Other techniques for storing the number of array elements can be used as well, but
in any one of them, using plain del et e instead of del et e[ ] torelease an array of objects allocated by new |
results in undefined behavior and should never happen. Similarly, using del et e[ ] to release a single object that
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was allocated by plain newis also disastrous: It might cause memory leaks, heap corruption, or a program crash.

Contrary to popular belief, the same rules apply to arrays of fundamental types -- not just to arrays of objects.
Although del et e[ ] doesnot invoke destructorsin the case of fundamental types, it still has to retrieve the number
of elementsin the array to calculate the complete size of the memory block. For example

#i ncl ude<stri ng>
void f()
{
char *pc = new char[ 100];
string *ps = new std::string[100];
/1...use pc and ps
delete[] pc; //no destructors invoked, still delete[] is required
/'l for arrays allocated by new ]
del ete[] ps //ensures each nenber's destructor is called

}
Exceptions and Operator new
In pre-Standard C++, new returned a NULL pointer when it failed to allocate the requested amount of memory. In this

respect, new behaved likemal | oc() in C. Programmers had to check the value that was returned from new before
they used it to make sure that it was not NULL. For example

void f(int size) //anachronistic usage of new

{
char *p = new char [size];
if (p == 0) //this was fine until 1994
/l...use p safely
delete [] p;
}
return;
}
const int BUF_SIZE = 1048576L,;
i nt main()
f (BUF_SI ZE) ;
return O;
}

Returning a NULL pointer upon failure, however, was problematic. (Note that the NULL pointer policy was applicable
to both plain newand new ] . Similarly, the modified behavior appliesto newaswell asnewf ] .) It forced
programmers to test the value that was returned by every invocation of operator new, which is a tedious and
error-prone process. In addition, the recurrent testing of the returned pointer can increase the size of the programs and
add aruntime performance overhead (you might recall that these are the drawbacks associated with the return value
policy, discussed in Chapter 6, "Exception Handling"). Failures in dynamic memory allocation are rather rare and
generaly indicate an unstable system state. Thisis exactly the kind of runtime errors that exception handling was
designed to cope with. For these reasons, the C++ standardization committee changed the specification of newafew
years ago. The Standard now states that operator new throws an exception of typest d: : bad_al | oc whenit fails,
rather than returning a NULL pointer.
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CAUTION: Although compiler vendors have been sluggish in adopting this change, most C++
compilers now conform to the standard in this respect, and throw an exception of type
st d:: bad_al | oc when newfails. Please consult your compiler's documentation for more details.

A program that calls new either directly or indirectly (for example, if it uses STL containers, which allocate memory
from the free store) must contain an appropriate handler that catchesast d: : bad_al | oc exception. Otherwise,
whenever new fails, the program terminates due to an uncaught exception. The exception-throwing policy aso
implies that testing the pointer that is returned from newis completely useless. If newis successful, the redundant
test wastes system resources. On the other hand, in the case of an allocation failure, the thrown exception aborts the
current thread of execution from where it was thrown -- so the test is not executed anyway. The revised,
standard-conforming form of the previously presented program looks similar to the following:

void f(int size) //standard-confornm ng usage of new

{
char *p = new char [size];
/l...use p safely
delete [] p;
return;
}

#i ncl ude <st dexcept>
#i ncl ude <i ostreanp
usi ng nanespace std,;
const int BUF _SIZE = 1048576L;
I nt main()
{
try
{
f (BUF_SI ZE) ;
}
catch(bad_al l oc& ex) //handl e exception thrown fromf()
{
cout <<ex. what () <<endl ;
/l...other diagnostics and renedi es

}

return -1;

}
Exception-Free Version of Operator new

Still, under some circumstances, throwing an exception is undesirable. For example, exception handling might have
been turned off to enhance performance; on some platforms, it might not be supported at all.

The Standardization committee was aware of this and added an exception-free version of newto the Standard. The
exception-free version of newreturns a NULL pointer in the event of afailure, rather than throwing a

std: : bad_al | oc exception. Thisversion of newtakes an additional argument of type const

st d: : not hr ow_t & (defined in the header <new>). It comes in two flavors, one for plain new and another for

new | .

[/ exception-free versions of new and new] defined in the header <new>
voi d* operator new(std::size t size, const std::nothrowt& throw();
voi d* operator new](std::size t size, const std::nothrowt& throw);
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The exception-free newis also called nothrow new. It is used as follows:

#i ncl ude <new>
#i ncl ude <string>
usi ng nanespace std,;
void f(int size) // denonstrating nothrow new
{
char *p = new (nothrow) char [size]; //array nothrow new
if (p ==0)
{
/l...use p
delete [] p;
}
string *pstr = new (nothrow) string; //plain nothrow new
if (pstr == 0)
{
/l...use pstr
delete [] pstr;
}

return;

}
const int BUF _SIZE = 1048576L;

i nt main()

{
f (BUF_SI ZE) ;
return O;

}

The argument not hr owis defined and created in header <new> as follows:

extern const nothrow t nothrow,

Classnot hr ow_t isdefined asfollows:

struct nothrowt {}; //an enpty class

In other words, the type not hr ow _t isan empty class (the empty classidiom is discussed in Chapter 5,
"Object-Oriented Program and Design") whose sole purpose isto overload global new.

Placement new

An additional version of operator new enables you to construct an object (or an array of objects) at a predetermined
memory position. Thisversion is called placement new and has many useful applications, including building a
custom-made memory pool or a garbage collector. Additionally, it can be used in mission-critical applications
because there is no danger of allocation failure (the memory that is used by placement new has already been
allocated). Placement new s also faster because the construction of an object on a preallocated buffer takes less time.
Following is an example of using placement new:

#i ncl ude <new>
#i ncl ude <i ostreanp
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usi ng nanespace std;
voi d pl acenent ()

{
i nt *pi = new int; /I plain new
float *pf = new float[2]; //new []
i nt *p = new (pi) int (5); [//placenment new
float *p2 = new (pf) float; [//placenent new |
p2[ 0] = 0. 33f;
cout<< *p << p2[0] << endl;
/...
del ete pi;
delete [] pf;
}

Explicit Destructor Invocation Is Required for an Object Created by Placement new

Destructors of objects that were constructed using placement new have to be invoked explicitly. To see why, consider
the following example:

#i ncl ude <new>

#i ncl ude <i ostreanr

usi ng nanespace std;

class C

{

publi c:
C() { cout<< "constructed" <<endl; }
~C(){ cout<< "destroyed" <<endl; }

}
i nt main()
{

char * p = new char [sizeof ]|; // pre-allocate a buffer

C *pc = new (p) C [// placenent new

/l... used pc

pc->C.:~C(); // 1l:explicit destructor invocation is required
delete [] p; //2

return O;

}

Without an explicit destructor invocation in (1), the object that is pointed to by p will never be destroyed, but the
memory block on which it was created will be released by thedel et e[ ] statement in (2).

Exceptions During Object Construction

Aswas previously noted, new performs two operations: It allocates memory from the free store by calling an
alocation function, and it constructs an object on the allocated memory. The question is, does the allocated memory
leak when an exception is thrown during the construction process? The answer isno, it doesn't. The allocated memory
isreturned to the free store by the system before the exception propagates to the program. Thus, an invocation of
operator new can be construed as two consecutive operations. The first operation merely allocates a sufficient
memory block from the free store with the appropriate alignment requirements. In the event of failure, the system
throws an exception of type st d: : bad_al | oc. If thefirst operation was successful, the second one begins. The
second operation consists of invoking the object's constructor with the pointer that is retained from the previous step.
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Put differently, the statement

C" p = new C

Istransformed by the compiler into something similar to the following:

#i ncl ude <new>

usi ng nanespace std,;

class {/*...*/};

void __new() throw (bad_all oc)

{
C* p =reinterpret_cast<C*> (new char [sizeof ]); //step 1. allocate
/1l raw nmenory
try
{
new (p) C//step 2: construct the objects on previously allocated buffer
}
catch(...) [//catch any exception thrown from C s constructor
{
delete[] p; //free the allocated buffer
throw, //re-throw the exception of C s constructor
}
}

Alignment Considerations

The pointer that is returned by new has the suitable alignment properties so that it can be converted to a pointer of
any object type and then used to access that object or array. Consequently, you are permitted to allocate character
arrays into which objects of other typeswill later be placed. For example

#i ncl ude <new>
#i ncl ude <i ostreane
#i ncl ude <string>
usi ng nanespace std;
cl ass Enpl oyee
{
private:

string nane;

i nt age;
publi c:
Enpl oyee();
~Enpl oyee();
3
void func() //use a pre allocated char array to construct

/'l an object of a different type

{

char * pc = new char|[si zeof (Enpl oyee)];

Enpl oyee *penp = new (pc) Enployee; //construct on char array
/l...use penp

penp- >Enpl oyee: : ~Enpl oyee(); //explicit destruction
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delete [] pc;
}

It might be tempting to use a buffer that is allocated on the stack to avoid the hassle of deleting it later:

char pbuff [sizeof (Enpl oyee)];
Enpl oyee *p = new (pbuff ) Enpl oyee; //undefined behavi or

However, char arrays of automatic storage type are not guaranteed to meet the necessary alignment requirements of
objects of other types. Therefore, constructing an object of a preallocated buffer of automatic storage type can result
in undefined behavior. Furthermore, creating a new object at a storage location that was previously occupied by a
const object with static or automatic storage type also results in undefined behavior. For example

const Enpl oyee enp;
voi d bad _placenent() //attenpting to construct a new obj ect

/[l at the storage |ocation of a const object
{

enp. Enpl oyee: : ~Enpl oyee() ;
new (&enp) const Enpl oyee; // undefined behavi or

}
Member Alignment

The size of aclass or astruct might be larger than the result of adding the size of each data member init. Thisis
because the compiler is allowed to add additional padding bytes between members whose size does not fit exactly into
amachine word (see also Chapter 13). For example

#i ncl ude <cstring>
usi ng nanespace std;
struct Person
{
char firstNane[5];
int age; // int occupies 4 bytes
char | ast Nange[ 8] ;
}; //the actual size of Person is nost likely larger than 17 bytes
voi d func()

{
Person person = {{"john"}, 30, {"lippman"}};
nenset (&person, 0, 5+4+48 ); //may not erase the contents of
/| person properly
}

On a 32-bit architecture, three additional bytes can be inserted between the first and the second members of Per son,
increasing the size of Per son from 17 bytesto 20.

On some implementations, the menset () call doesnot clear the last three bytes of the member | ast Nane.
Therefore, usethesi zeof operator to calculate the correct size:

nmenset (&p, 0, sizeof(Person));
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The Size Of A Complete Object Can Never Be Zero

An empty class doesn't have any data members or member functions. Therefore, the size of an instance is seemingly
zero. However, C++ guarantees that the size of a complete object is never zero. Consider the following example:

class Empty {};
Enpty e; // e occupies at |least 1 byte of nenory

If an object is allowed to occupy zero bytes of storage, its address can overlap with the address of a different object.
The most obvious case is an array of empty objects whose elements all have an identical address. To guarantee that a
complete object always has a distinct memory address, a complete object occupies at |east one byte of memory.
Non-compl ete objects -- for example, base class subobjects in a derived class -- can occupy zero bytes of memory.

User-Defined Versions of new and delete Cannot Be
Declared in a Namespace

User-defined versions of newand del et e can be declared in a class scope. However, it isillegal to declare themin
anamespace. To see why, consider the following example:

char *pc;
nanespace A
{
voi d* operator new ( size_t );
voi d operator delete ( void * );
void func ()
{
pc = new char ( 'a');

}

void f() { delete pc; } // A :delete or ::delete?

Declaring newand del et e in namespace A is confusing for both compilers and human readers. Some programmers
might expect the operator A: : del et e to be selected in the function f () because it matches the operator new that
was used to alocate the storage. In contrast, others might expect del et e to be called because A: : del et e isnot
visibleinf () . For this reason, the Standardization committee decided to disallow declarations of newand del et e
INn a namespace.

Overloading new and delete in a Class

It ispossible to override newand del et e and define a specialized form for them for a given class. Thus, for aclass
C that defines these operators, the following statements

C" p = new C
del ete p;

invoke the class's versions of newand del et e, respectively. Defining class-specific versions of newand del et e
Is useful when the default memory management scheme is unsuitable. This technique is also used in applications that
have a custom memory pool. In the following example, operator newfor class Cisredefined to alter the default
behavior in case of an allocation failure; instead of throwing st d: : bad_al | oc, this specific version throws a
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const char *.A matching operator del et e isredefined accordingly:

#i ncl ude <cstdlib>// malloc() and free()
#i ncl ude <i ostreanp
usi ng nanespace std;
class C
L
private:
int j;
publ i c:
C() : j(0) { cout<< "constructed"<<endl; }
~C() { cout<<"destroyed";}
voi d* operator new (size t size); //inplicitly declared static
voi d operator delete (void *p); //inplicitly declared static

1
voi d* C.:operator new (size t size) throw (const char *)
{
void * p = mall oc(size);
if (p==0)
throw "allocation failure"; //instead of std::bad alloc
return p;
}
void C. :operator delete (void *p)
{
free(p);
}
i nt main()
{
try
{
C *p = new C
del ete p;
}
catch (const char * err)
{
cout <<err <<endl ;
}
return O;
}

Remember that overloaded newand del et e areimplicitly declared as static members of their classif they are not
explicitly declared static. Note also that a user-defined newimplicitly invokes the objects's constructor; likewise, a
user-defined del et e implicitly invokes the object's destructor.

Guidelines for Effective Memory Usage

Choosing the correct type of storage for an object is a critical implementation decision because each type of storage
has different implications for the program's performance, reliability, and maintenance. This section tells you how to
choose the correct type of storage for an object and thus avoid common pitfalls and performance penalties. This
section also discusses general topics that are associated with the memory model of C++, and it compares C++ to other
languages.
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Prefer Automatic Storage to Free Store Whenever Possible

Creating objects on the free store, when compared to automatic storage, is more expensive in terms of performance
for several reasons:

« Runtime overhead Allocating memory from the free store involves negotiations with the operating system.
When the free store is fragmented, finding a contiguous block of memory can take even longer. In addition, the
exception handling support in the case of allocation failures adds additional runtime overhead.

« Maintenance Dynamic allocation might fail; additional code is required to handle such exceptions.

« Safety An object might be accidentally deleted more than once, or it might not be deleted at al. Both of these
are afertile source of bugs and runtime crashes in many applications.

The following code sample demonstrates two common bugs that are associated with allocating objects on the free
store:

#i ncl ude <string>
usi ng nanespace std,;
void f()
L |
string *p = new string;
/[l...use p
if (p->enpty()!= fal se)
{
/1...do sonething
return; [/ OOPS! nmenory | eak: p was not del eted

}
else //string is enpty

{
del ete p;
/[/..do other stuff

}
delete p; //OOPS! p is deleted twice if isEnpty == fal se

}

Such bugs are quite common in large programs that frequently allocate objects on the free store. Often, it is possible
to create objects on the stack, thereby simplifying the structure of the program and eliminating the potential for such
bugs. Consider how the use of alocal st r i ng object simplifies the preceding code sample:

#i ncl ude <string>
usi ng nanespace st d;
void f()
Lo
string s;
/l...use s
if (s.enmpty()!= fal se)
{

/1...do sonething
return;

}
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el se

{
//..do other stuff

}
}

Asarule, automatic and static storage types are always preferable to free store.

Correct Syntax for Local Object Instantiation

The correct syntax for instantiating alocal object by invoking its default constructor is

string str; /I no parent heses

Although empty parentheses can be used after the class name, asin

string str(); //entirely different neaning

the statement has an entirely different meaning. It is parsed as a declaration of afunction named st r , which takes no
arguments and returnsast ri ng by value.

Zero As A Universal Initializer

Theliteral O isani nt . However, it can be used as a universal initializer for every fundamental datatype. Zeroisa
specia case in this respect because the compiler examines its context to determine its type. For example:

void *p =0; //zerois inplicitly converted to void *
float salary = 0O; /[l O0is cast to a float

char nane[ 10] = {0}; /Il 0 cast to a '\0

bool b =0; // 0 cast to false

void (*pf)(int) = 0; /1l pointer to a function

int (C:*pm) () = 0; //pointer to a class nenber

Always Initialize Pointers

An uninitialized pointer has an indeterminate value. Such a pointer is often called awild pointer. It is almost
Impossible to test whether awild pointer isvalid, especialy if it is passed as an argument to a function (which in turn
can only verify that it isnot NULL). For example

voi d func(char *p );
int main()

{

char * p; //dangerous: uninitialized
/[1...many lines of code; p left uninitialized by m stake
if (p)//erroneously assumng that a non-null value indicates a valid address

func(p); /'l func has no way of know ng whether p has a valid address

return O;

}

Even if your compiler does initialize pointers automaticaly, it is best to initialize them explicitly to ensure code
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readability and portability.

Explicit Initializations of POD Object

Aswas previously noted, POD objects with automatic storage have an indeterminate value by default in order to
avoid the performance penalty incurred by initialization. However, you can initialize automatic POD objects
explicitly when necessary. The following sections explain how thisis done.

Initializing Local Automatic Structs and Arrays

One way to initialize automatic POD objectsisby calling menset () or asimilar initiaization function. However,
thereis amuch simpler way to do it -- without calling a function, as you can see in the following example:

struct Person

{
| ong 1D
i nt bankAccount;
bool retired;

}
i nt main()
{

Person person ={0}; //ensures that all nenbers of
|/ person are initialized to binary zeros
return O;

}

This technique is applicable to every POD struct. It relies on the fact that the first member is afundamental data type.
Theinitializer zero is automatically cast to the appropriate fundamental type. It is guaranteed that whenever the
initialization list contains fewer initializers than the number of members, the rest of the members are initialized to
binary zeros as well. Note that even if the definition of Per son changes -- additional members are added to it or the
members ordering is swapped -- all its members are still initialized. The same initialization technique is also
applicableto local automatic arrays of fundamental types as well asto arrays of POD objects:

void f()

{

{0}; //all array elenents are initialized to '\0

float farr[100] {0}; //all array elenents are initialized to 0.0

int iarr[100] = {0}; [//all array elenments are initialized to O

void *pvarr[100] = {0};//array of void * all elenments are initialized to NULL
[l...use the arrays

char nane[ 100]

}

This technique works for any combination of structs and arrays:

struct A

{

char nane[ 20] ;
i nt age;
| ong I D;
3
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void f()
{

}

Union Initialization

A a[ 100] = {0};

Y ou caninitialize a union. However, unlike struct initialization, the initialization list of a union must contain only a
singleinitializer, which must refer to the first member in the union. For example

uni on Key
{
int num key;
voi d *ptr_key;
char nane_key[ 10];

b
voi d func()
{
Key key = {5}; [/ first nmenber of Key is of type int
/1 any additional bytes initialized to binary zeros
}

Detecting a Machine's Endian

The term endian refers to the way in which a computer architecture stores the bytes of a multibyte number in
memory. When bytes at |lower addresses have lower significance (as is the case with Intel microprocessors, for
instance), it is called little endian ordering. Conversely, big endian ordering describes a computer architecturein
which the most significant byte has the lowest memory address. The following program detects the endian of the
machine on which it is executed:

i nt main()
{
uni on probe
{
unsi gned i nt num
unsi gned char bytes[sizeof (unsigned int)];
1
probe p ={ 1U}; //linitialize first nmenber of p with unsigned 1
bool little_endian = (p.bytes[0] == 1U); //in a big endian architecture,
/1 p.bytes[0] equals O
return O;
}

The Lifetime Of A Bound Temporary Object

Y ou can safely bind areference to atemporary object. The temporary object to which the reference is bound persists
for the lifetime of the reference. For example

class C

{
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private:
int j;
publ i c:
Clint i) @ j(i) {}
int getVal () const {return j;}

}
i nt main()
{

const C& cr = C(2); //bind a reference to a tenp; tenp' s destruction
//deferred to the end of the program
Cc2 =cr; [/use the bound reference safely
int val = cr.getVal ();
return O;
}//tenporary destroyed here along with its bound reference

Deleting A Pointer More Than Once

The result of applying del et e to the same pointer after it has been deleted is undefined. Clearly, this bug should
never happen. However, it can be prevented by assigning a NULL value to a pointer right after it has been deleted. It is
guaranteed that a NULL pointer deletion is harmless. For example

#i ncl ude <string>
usi ng nanespace st d;
voi d func
{
string * ps = new string;
/l...use ps
i{f ( ps->enpty() )
del et e ps;
ps = NULL; //safety-guard: further deletions of ps will be harnless
}
/1...many |ines of code
delete ps; // ps is deleted for the second tinme. Harmnl ess however

}
Data Pointers Versus Function Pointers

Both C and C++ make a clear-cut distinction between two types of pointers -- data pointers and function pointers. A
function pointer embodies several constituents, such as the function's signature and return value. A data pointer, on
the other hand, merely holds the address of the first memory byte of a variable. The substantial difference between the
two led the C standardization committee to prohibit the use of voi d* to represent function pointers, and vice versa.
In C++, this restriction was relaxed, but the results of coercing afunction pointer to avoi d* are
implementation-defined. The opposite -- that is, converting data pointers to function pointers -- isillegal.

Pointer Equality

Pointers to objects or functions of the same type are considered equal in three cases:

« If both pointers are NULL. For example
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int *pl = NULL, p2 = NULL;
bool equal = (pl==p2); //true

« If they point to the same object. For example

char c;
char * pcl = &c;
char * pc2 = &c;

bool equal (pcl == pc2); // true

« If they point one position past the end of the same array. For example

I nt nunf?2];
int * pl = numt2, *p2 = numt2;
bool equal = ( pl == p2); //true

Storage Reallocation

Inadditiontomal | oc() andfree(), Calsoprovidesthefunctionr eal | oc() for changing the size of an
existing buffer. C++ does not have a corresponding reallocation operator. Adding operator r enewto C++ was one of
the suggestions for language extension that was most frequently sent to the standardization committee. Instead, there
are two ways to readjust the size of memory that is allocated on the free store. Thefirst is very inelegant and error
prone. It consists of allocating a new buffer with an appropriate size, copying the contents of the original buffer to it
and, finally, deleting the original buffer. For example

void real |l ocate

{
char * p new char [100];
[...fill p
char p2 = new char [200]; //allocate a | arger buffer
for (int i = 0; i<100; i++) p2[i] = p[i]; //copy
delete [] p; //release original buffer

}

Obvioudly, thistechnique isinefficient and tedious. For objects that change their size frequently, this is unacceptable.
The preferable method is to use the container classes of the Standard Template Library (STL). STL containers are
discussed in Chapter 10, "STL and Generic Programming.”

Local Static Variables

By default, local static variables (not to be confused with static class members) are initialized to binary zeros.
Conceptually, they are created before the program's outset and destroyed after the program's termination. However,
like local variables, they are accessible only from within the scope in which they are declared. These properties make
static variables useful for storing afunction's state on recurrent invocations because they retain their values from the
previous call. For example

void MoveTo(int OfsetFronCurrentX, int OfsetFrontCurrenty)
{

static int currX, currY; [//zero initialized
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currX += O fset FromCurrent X;
currY += O fset FronCurrent,;
Put Pi xel (curr X, currY);

}
void DrawLine(int x, int y, int |ength)
{
for (int i=0; i<length; i++)
MoveTo( x++, y--);
}

However, when the need arises for storing a function's state, a better design choice isto use a class. Class data
members replace the static variables and a member function replaces the global function. Local static variablesin a
member function are of special concern: Every derived object that inherits such a member function also refers to the
same instance of the local static variables of its base class. For example

cl ass Base
{
publ i c:
int countCalls()
{
static int cnt = 0O;
return ++cnt;

}
b
class Derivedl : public Base { /*..*/};
class Derived2 : public Base { /*..*/};
/| Base::countCalls(), Derivedl::countCalls() and Derived2::countCalls
/'l hold a shared copy of cnt

int main()
{
Derivedl di;
int diCalls = dl.countCalls(); //dlCalls =1
Deri ved2 d2;
int d2Calls = d2.countCalls(); //d2Calls = 2, not 1
return O;
}

Static local variables in the member function count Cal | s can be used to measure load balancing by counting the
total number of invocations of that member function, regardless of the actual object from which it was called.
However, it is obvious that the programmer's intention was to count the number of invocations through Der i ved?2
exclusively. In order to achieve that, a static class member can be used instead:

cl ass Base

{
private:
static int i;
publ i c:
virtual int countCalls() { return ++i; }
1
int Base::i;

class Derivedl : public Base
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L
private:
static int i; //hides Base::i
publ i c:
int countCalls() { return ++i; } //overrides Base:: countCalls()
1
int Derivedl::i;
class Derived2 : public Base
{
private:
static int i; //hides Base::i and distinct from Derivedl: :i
publ i c:
virtual int countCalls() { return ++i; }
1
int Derived2::i;
i nt main()
{
Derivedl di,
Deri ved2 dz;
int diCalls = dl.countCalls(); //dlCalls =1
int d2Calls = d2.countCalls(); //d2Calls also =1
return O;
}

Static variables are problematic in a multithreaded environment because they are shared and have to be accessed by
means of alock.

Global Anonymous Unions

An anonymous union (anonymous unions are discussed in Chapter 12, "Optimizing Y our Code") that isdeclared in a
named namespace or in the global namespace has to be explicitly declared st at i ¢. For example

static union //anonynous union in gl obal nanespace

{

int num
char *pc;
H
namespace NS

{
}

I nt main()

{

static union { double d; bool b;}; //anonynous union in a named nanespace

NS: :
num
pc =
return

0. 0;

I o

5
"s

ir";
0;
}
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The const and volatile Properties of an Object

There are several phases that comprise the construction of an object, including the construction of its base and
embedded objects, the assignment of at hi s pointer, the creation of the virtual table, and the invocation of the
constructor's body. The construction of acv-qualified (const or vol ati | e) object has an additional phase, which
turnsitintoaconst /vol at i | e object. The cv qualities are effected after the object has been fully constructed.

Conclusions

The complex memory model of C++ enables maximal flexibility. The three types of data storage -- automatic, static,
and free store -- offer alevel of control that normally exist only in assembly languages.

The fundamental constructs of dynamic memory allocation are operators new and del et e. Each of these has no
fewer than six different versions; there are plain and array variants, each of which comesin three flavors: exception
throwing, exception free, and placement.

Many object-oriented programming languages have a built-in garbage collector, which is an automatic memory
manager that detects unreferenced objects and reclaims their storage (see also Chapter 14, "Concluding Remarks and
Future Directions,” for a discussion on garbage collection). The reclaimed storage can then be used to create new
objects, thereby freeing the programmer from having to explicitly release dynamically-allocated memory. Having an
automatic garbage collector is handy because it eliminates a large source of bugs, runtime crashes, and memory leaks.
However, garbage collection is not a panacea. It incurs additional runtime overhead due to repeated compaction,
reference counting, and memory initialization operations, which are unacceptable in time-critical applications.
Furthermore, when garbage collection is used, destructors are not necessarily invoked immediately when the lifetime
of an object ends, but at an indeterminate time afterward (when the garbage collector is sporadically invoked). For
these reasons, C++ does not provide a garbage collector. Nonetheless, there are techniques to minimize -- and even
eliminate -- the perils and drudgery of manual memory management without the associated disadvantages of garbage
collection. The easiest way to ensure automatic memory allocation and deallocation is to use automatic storage. For
objects that have to grow and shrink dynamically, you can use STL containers that automatically and optimally adjust
their size. Finally, in order to create an object that exists throughout the execution of a program, you can declare it

st at i c. Nonetheless, dynamic memory allocation is sometimes unavoidable. In such cases, aut o_pt r (discussed
in Chapters 6 and 11, "Memory Management™) simplifies the usage of dynamic memory.

Effective and bug-free usage of the diversity of C++ memory handling constructs and concepts requires a high level
of expertise and experience. It isn't an exaggeration to say that most of the bugs in C/C++ programs are related to
memory management. However, this diversity also renders C++ a multipurpose, no compromise programming
language.

Contents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.
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Introduction

One often-heard claim during the past 30 years is that performance doesn't matter because the computational power of
hardware is constantly dropping. Therefore, buying a stronger machine or extending the RAM of an existing one can
make up for the sluggish performance of software written in a high-level programming language. In other words, a
hardware upgrade is more cost-effective than the laborious task of hand-tuning code. That might be correct for client
applications that execute on a standard personal computer. A modestly priced personal computer these days offers
higher computational power than a mainframe did two decades ago, and the computational power still grows
exponentially every 18 months or so. However, in many other application domains, a hardware upgrade is less
favorable because it istoo expensive or because it simply is not an option. In proprietary embedded systems with
128K of RAM or less, extending the RAM requires redesigning the entire system from scratch, as well asinvesting
several yearsin the development and testing of the new chips. In this case, code optimization is the only viable choice
for satisfactory performance.

But optimization is not confined to esoteric application domains such as embedded systems or hard core real-time
applications. Even in mainstream application domains such as financial and billing systems, code optimization is
sometimes necessary. For a bank that owns a $1,500,000 mainframe computer, buying afaster machineisless
preferable than rewriting afew thousand lines of critical code. Code optimization is also the primary tool for
achieving satisfactory performance from server applications that support numerous users, such as Relational Database
Management Systems and Web servers.

Another common belief is that code optimization implies less readable and harder to maintain software. Thisis not
necessarily true. Sometimes, simple code modifications such as relocating the declarations in a source file or choosing
adifferent container type can make all the difference in the world. Y et none of these changes entails unreadable code,
nor do they incur any additional maintenance overhead. In fact, some of the optimization techniques can even
improve the software's extensibility and readability. More aggressive optimizations can range from using a simplified
class hierarchy, through the combination of inline assembly code. The result in this case is less readable, harder to
maintain, and less portable code. Optimization can be viewed as a continuum; the extent to which it is applied
depends on avariety of considerations.

Scope of This Chapter

Optimization is avast subject that can easily fill afew thick volumes. This chapter discusses various optimization
techniques, most of which can be easily applied in C++ code without requiring a deep understanding of the
underlying hardware architecture of a particular platform. The intent isto give you arough estimate of the
performance cost of choosing one programming strategy over another (you can experiment with the programs that are
discussed in the following sections on your computer). The purpose is to provide you with practical guidelines and
notions, rather than delve into theoretical aspects of performance analysis, efficiency of algorithms, or the Big Oh
notation.
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Before Optimizing Your Software

Detecting the bottlenecks of a program is the first step in optimizing it. It isimportant, however, to profile the release
version rather than the debug version of the program because the debug version of the executable contains additional
code. A debug-enabled executable can be about 40% larger than the equivalent release executable. The extracodeis
required for symbol lookup and other debug "scaffolding”. Most implementations provide distinct debug and release
versions of operator new and other library functions. Usually, the debug version of new initializes the allocated
memory with a unique value and adds a header at block start; the release version of new doesn't perform either of
these tasks. Furthermore, arelease version of an executable might have been optimized already in several ways,
including the elimination of unnecessary temporary objects, loop unrolling (see the sidebar "A Few Compiler
Tricks"), moving objects to the registers, and inlining. For these reasons, you cannot assuredly deduce from a debug
version where the performance bottlenecks are actually located.

A Few Compiler Tricks

A compiler can automatically optimize the code in several ways. The named return value and loop
unrolling are two instances of such automatic optimizations.

Consider the following code:

int *buff = newint[3];
for (int i =0; i<3; i++)
buff[i] = 0;

Thisloop isinefficient: On every iteration, it assigns avalue to the next array element. However,
precious CPU timeis also wasted on testing and incrementing the counter's value and performing a jump
statement. To avoid this overhead, the compiler can unroll the loop into a sequence of three assignment
statements, as follows:

buff[ 0] = O;
buff[ 1] = O;
buff[2] = 0;

The named return value is a C++-specific optimization that eliminates the construction and destruction of
atemporary object. When atemporary object is copied to another object using a copy constructor, and
when both these objects are cv-unqualified, the Standard allows the implementation to treat the two
objects as one, and not perform a copy at all. For example

class A
{

public:

AQ) s

~A() ;

A(const A&);

A operator=(const A&);
3
A ()

{
A a;
return a;

}
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A a2 =1();

The object a does not need to be copied when f () returns. Instead, the return value of f () can be
constructed directly into the object a2, thereby avoiding both the construction and destruction of a
temporary object on the stack.

Remember also that debugging and optimization are two distinct operations. The debug version needs to be used to
trap bugs and to verify that the program is free from logical errors. The tested release version needs to be used in
performance tuning and optimizations. Of course, applying the code optimization techniques that are presented in this
chapter can enhance the performance of the debug version as well, but the release version is the one that needs to be
used for performance evaluation.

NOTE: It isnot uncommon to find a"phantom bottleneck” in the debug version, which the programmer
strains hard to fix, only to discover later that it has disappeared anyway in the release version. Andrew
Koenig wrote an excellent article that tells the story of an evasive bottleneck that automatically dissolved
in the release version ("An Example of Hidden Library Overhead", C++ Report vol. 10:2, February
1998, page 11). The lesson that can be learned from this article is applicable to everyone who practices
code optimization.

Declaration Placement

The placing of declarations of variables and objects in the program can have significant performance effects.
Likewise, choosing between the postfix and prefix operators can also affect performance. This section concentrates on
four issues: initialization versus assignment, relocation of declarations to the part of the program that actually uses
them, a constructor's member initialization list, and prefix versus postfix operators.

Prefer Initialization to Assignment
C allows declarations only at a block's beginning, before any program statements. For example

void f()

voi d g()

vt
int i;
doubl e d;
char * p;
f();

}

In C++, adeclaration is a statement; as such, it can appear almost anywhere within the program. For example

void f()

voi d g()

L
int i;
f();
doubl e d;
char * p;

}
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The motivation for this change in C++ wasto allow for declarations of objects right before they are used. There are
two benefits to this practice. First, this practice guarantees that an object cannot be tampered with by other parts of the
program before it has been used. When objects are declared at the block's beginning and are used only 20 or 50 lines
later, there is no such guarantee. For instance, a pointer to an object that was allocated on the free store might be
accidentally deleted somewhere before it is actually used. Declaring the pointer right before it is used, however,
reduces the likelihood of such mishaps.

The second benefit in declaring objects right before their usage is the capability to initialize them immediately with
the desired value. For example

#i ncl ude <string>
usi ng nanespace std,;
void func(const string& s)

{
}

For fundamental types, initialization is only marginally more efficient than assignment; or it can be identical to late
assignment in terms of performance. Consider the following version of f unc() , which applies assignment rather
than initialization:

bool enp = s.enpty(); //local declarations enables imediate initialization

void func2() //less efficient than func()? Not necessarily

L

string s;

bool enp;

enp = s.enpty(); //late assignnent
}

My compiler produces the same assembly code asit did with theinitialization version. However, asfar as
user-defined types are concerned, the difference between initialization and assignment can be quite noticeable. The
following example demonstrates the performance gain in this case (by modifying the preceding example). Instead of a
bool variable, afull-blown class object is used, which has all the four special member functions defined:

I nt constructor, assignnment_op, copy, destr; //global counters
class C
{
publ i c:

() ;

C& operator = (const C&);

C(const C&);

~C();
1
C:.d)
{

}
C& C.:operator = (const C& other)

{

++constructor;

++assi gnnent _op;
return *this;

}
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C. :C(const C& other)
{

}
C . ~)
{

}

Asin the previous example, two different versions of the same function are compared; the first uses object
initialization and the second uses assignment:

++C0py;

++destr;

voi d assign(const C& cl)
{
C c2;
c2 = cl,
}
void initialize(const C& cl)
{
Cc2 = cl;
}

Cadling assi gn() causesthree member function invocations: one for the constructor, one for the assignment
operator, and one for the destructor. i ni ti al i ze() causesonly two member function invocations: the copy
constructor and the destructor. Initialization saves one function call. For a nonsensical class such as C, the additional
runtime penalty that results from a superfluous constructor call might not be crucial. However, bear in mind that
constructors of real-world objects also invoke constructors of their base classes and embedded objects. When thereis
a choice between initialization and assignment, therefore, initialization is always preferable.

Relocating Declarations
Preferring initialization of objects over assignment is one aspect of localizing declarations. On some occasions, the

performance boost that can result from moving declarations is even more appreciable. Consider the following
example:

bool is_C Needed();

voi d use()
{
C c1;
if (is_C_Needed() == fal se)
{
return; //cl was not needed
}
//use cl here
return;
}

Thelocal object c1 isunconditionally constructed and destroyed inuse( ) , evenif it isnot used at al. The compiler
transforms the body of use() into something that looks like this:

voi d use()
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{
C cl;
cl.C:C(); //11. conpiler-added constructor call
if (is_C Needed() == fal se)
{
cl.C:~C(); //2. conpiler-added destructor call
return; //cl was not needed but was constructed and destroyed still
}
/luse cl here
cl.C:~C(); //3. conpiler-added destructor call
return;
}

Asyou can see, wheni s_C Needed() returnsf al se, the unnecessary construction and destruction of c1 are still
unavoidable. Can aclever compiler optimize away the unnecessary construction and destruction in this case? The
Standard allows the compiler to suppress the creation (and consequently, the destruction) of an object if it is not
needed, and if neither its constructor nor its destructor has any side effects. In this example, however, the compiler
cannot perform this feat for two reasons. First, both the constructor and the destructor of c1 have side effects -- they
increment counters. Second, theresult of i s_ C_Needed() isunknown at compile time; therefore, thereis no
guaranteethat c1 is actually unnecessary at runtime. Nevertheless, with alittle help from the programmer, the
unnecessary construction and destruction can be eliminated. All that is required is the relocation of the declaration of
c1 to the point where it is actually used:

voi d use()
{
if (is_C Needed() == fal se)
{
return; //cl was not needed
}

C cl; //noved fromthe block's beginning
/luse cl here
return;

}

Consequently, the object c1 is constructed only when it isreally needed -- that is, wheni s _C Needed() returns
t rue. Ontheother hand, ifi s_C Needed() returnsf al se, c1 isneither constructed nor destroyed. Thus,
simply by moving the declaration of c1, you managed to eliminate two unnecessary member function calls! How
does it work? The compiler transforms the body of use() into something such as the following:

voi d use()

{
if (is_C_Needed() == fal se)
{
return; //cl was not needed
}
C c1; //noved fromthe bl ock's beginning
cl.C:C(); /11 conpiler-added constructor call
/luse cl here
cl.C:~C(); /12 conpiler-added destructor call
return;
}
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To readlize the effect of this optimization, change the body of use() . Instead of constructing a single object, you now
use an array of 1000 C objects:

voi d use()

{
if (is_C_Needed() == fal se)
{
return; //cl was not needed
}
C c1[ 1000];
//use cl here
return,;
}

In addition, you definei s_C Needed() toreturnf al se:

bool is_ C Needed()
{

}

Finaly, the mai n() driver looks similar to the following:

return fal se;

i nt main()
{
for (int j = 0; j<100000; j++)
use();
return O;

}

Thetwo versionsof use() differ dramaticaly in their performance. They were compared on a Pentium |1, 233MHz
machine. To corroborate the results, the test was repeated five times. When the optimized version was used, the f or
loop inmai n() took lessthan 0.02 of a second, on average. However, when the same f or loop was executed with
the original, the nonoptimized version of use() took 16 seconds. The dramatic variation in these resultsisn't too
surprising; after all, the nonoptimized version incurs 100,000,000 constructor calls as well as 100,000,000 destructor
calls, whereas the optimized version calls none. These results might also hint at the performance gain that can be
achieved simply by preallocating sufficient storage for container objects, rather than allowing them to reallocate
repeatedly (see aso Chapter 10, "STL and Generic Programming”).

Member-Initialization Lists

Asyou read in Chapter 4, "Special Member Functions: Default Constructor, Copy Constructor, Destructor, and
Assignment Operator,” amember initialization list is needed for the initialization of const and reference data
members, and for passing arguments to a constructor of a base or embedded subobject. Otherwise, data members can
either be assigned inside the constructor body or initialized in a member initialization list. For example

class Date //nmeminitialization version

L
private:
i nt day;
i nt nont h;
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int year;

/[ constructor and destructor
publ i c:

Date(int d =0, int m=0, int y =0) : day , nonth(m, year(y) {}
i

Alternatively, you can define the constructor as follows:

Date::Date(int d, int m int y) //assignnment within the constructor body
{

day = d;
month = m
year =Y,

}

Isthere a difference in terms of performance between the two constructors? Not in this example. All the data
membersin Dat e are of afundamental type. Therefore, initializing them by amem-initialization list isidentical in
terms of performance to assignment within the constructor body. However, with user-defined types, the difference
between the two formsis significant. To demonstrate that, return to the member function counting class, C, and define
another class that contains two instances thereof:

cl ass Person
L
private:
Cc 1,
C c_ 2
publ i c:
Person(const C& cl1l, const C& c2 ): c_1(cl), c_2(c2) {}
3

An alternative version of Per son's constructor looks similar to the following:

Per son: : Person(const C& cl, const C& c2)
{
cl,

C_
(o c2:

1
2

}

Finally, themai n() driver isdefined asfollows:

int main()

{

Cc; //lcreated only once, used as dumry argunents in Person's constructor
for (int | = 0; j<30000000; j++)
{

Person p(c, c);

}

return O;

}

The two versions were compared on a Pentium |1, 233MHz machine. To corroborate the results, the test was repeated
five times. When amember initialization list was used, thef or loopinmai n() took 12 seconds, on average. The

file:///D|/Cool Stuff/old/ftp/1/1/ch12/ch12.htm (9 von 22) [12.05.2000 14:46:37]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 12 - Optimizing Your Code

nonoptimized version took 15 seconds, on average. In other words, the assignment inside the constructor body is
slower by afactor of 25% compared to the member-initialized constructor. The member function counters can give
you aclue as to the reasons for the difference. Table 12.1 presents the number of member function calls of class Cfor
the member initialized constructor and for the assignment inside the constructor's body.

Table 12.1 Comparison Between Member Initialization and Assignment Within the Constructor's
Body for Class Person

Initialization Method [Default Constructor [Assignment Copy Constructor Destructor Calls
Calls Operator Calls Calls

Member initidization |0 0 60,000,000 60,000,000

list

Assignment within 60,000,000 60,000,000 0 60,000,000

Constructor

When amember initialization list is used, only the copy constructor and the destructor of the embedded object are
called (note that Per son has two embedded members), whereas the assignment within the constructor body also
adds a default constructor call per embedded object. In Chapter 4, you learned how the compiler inserts additional
code into the constructor's body before any user-written code. The additional code invokes the constructors of the
base classes and embedded objects of the class. In the case of polymorphic classes, this code also initializesthevpt r .
The assigning constructor of class Per son istransformed into something such as the following:

Per son: : Person(const C& cl, const C& c2) //assignnent within constructor body
{
/| pseudo C++ code inserted by the conpiler before user-witten code
c_1.C:C); /linvoke default constructor of enbedded object c_1
c 2.C:C(); /linvoke default constructor of enbedded object c_2
[luser-written code cones here:
c 1 cl;
c 2 c2;

}

The default construction of the embedded objects is unnecessary because they are reassigned new values immediately
afterward. The member initialization list, on the other hand, appears before any user-written code in the constructor.
Because the constructor body does not contain any user-written code in this case, the transformed constructor looks
similar to the following:

Person: : Person(const C& cl, const C& c2) // nmenber initialization [ist ctor

/| pseudo C++ code inserted by the conpiler before user-witten code
c_1.C:C(cl); /linvoke copy constructor of enbedded object c 1
c_2.C:C(c2); /linvoke copy constructor of enbedded object c_2

/[luser-written code cones here (note: there's no user code)

}

Y ou can conclude from this example that for a class that has subobjects, a member initialization list is preferable to an
assignment within the constructor's body. For this reason, many programmers use member initialization lists across
the board, even for data members of fundamental types.
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Prefix Versus Postfix Operators
The prefix operators ++ and - - tend to be more efficient than their postfix versions because when postfix operators
are used, atemporary copy is needed to retain the value of the operand before it is changed. For fundamental types,

the compiler can eliminate the extra copy. However, for user-defined types, thisis nearly impossible. A typical
implementation of the overloaded prefix and postfix operators demonstrates the difference between the two:

cl ass Date

{
private:
/...
i nt AddDays(int d);
publ i c:
Dat e operator++(int unused);
Dat e& oper at or ++() ;
b
Dat e Date::operator++(int unused) //postfix
{
Date tenp(*this); //create a copy of the current object
t hi s->AddDays(1); //increnment current object
return tenp; //return by value a copy of the object before it was increnented
}
Dat e& Dat e: : oper at or ++() [l prefix
{
t hi s->AddDays(1); //increnment current object
return *this; //return by reference the current object
}

The overloaded postfix ++ is significantly less efficient than the prefix for two reasons: It requires the creation of a
temporary copy, and it returns that copy by value. Therefore, whenever you are free to choose between postfix and
prefix operators of an object, choose the prefix version.

Inline Functions

Inline functions can eliminate the overhead incurred by afunction call and still provide the advantages of ordinary
functions. However, inlining is not a panacea. In some situations, it can even degrade the program's performance. It is
important to use this feature judicioudly.

Function Call Overhead

The exact cost of an ordinary function call isimplementation-dependent. It usually involves storing the current stack
state, pushing the arguments of the function onto the stack and initializing them, and jumping to the memory address
that contains the function's instructions -- only then does the function begin to execute. When the function returns, a
sequence of reverse operations also takes place. In other languages (such as Pascal and COBOL), the overhead of a
function call is even more noticeable because there are additional operations that the implementation performs before
and after afunction call. For amember function that merely returns the value of a data member, this overhead can be
unacceptable. Inline functions were added to C++ to allow efficient implementation of such accessor and mutator
member functions (getters and setters, respectively). Nonmember functions can also be declared i nl i ne.
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Benefits of Inline Functions

The benefits of inlining afunction are significant: From a user's point of view, the inlined function looks like an
ordinary function. It can have arguments and a return value; furthermore, it has its own scope, yet it does not incur the
overhead of afull-blown function call. In addition, it is remarkably safer and easier to debug than using a macro. But
there are even more benefits. When the body of afunction isinlined, the compiler can optimize the resultant code
even further by applying context-specific optimizations that it cannot perform on the function's code alone.

All member functions that are implemented inside the class body are implicitly declared i nl i ne. In addition,
compiler synthesized constructors, copy constructors, assignment operators, and destructors are implicitly declared
I nl'i ne. For example

class A
L
private:
int a;
publ i c:
int Get_a() { returna; } // inplicitly inline
virtual void Set_a(int aa) { a =aa; } //inplicitly inline
[/ conpi | er synthesized canoni cal nmenber functions al so declared inline

b

It isimportant to realize, however, that thei nl i ne specifier is merely arecommendation to the compiler. The
compiler isfree to ignore this recommendation and outline the function; it can also inline a function that was not
explicitly declared i nl i ne. Fortunately, C++ guarantees that the function's semantics cannot be altered by the
compiler just becauseit isor isnot inlined. For example, it is possible to take the address of afunction that was not
declared i nl i ne, regardless of whether it was inlined by the compiler (the result, however, is the creation of an
outline copy of the function). How do compilers determine which functions are to be inlined and which are not? They
have proprietary heuristics that are designed to pick the best candidates for inlining, depending on various criteria.
These criteriainclude the size of the function body, whether it declares|ocal variables, its complexity (for example,
recursion and loops usually disqualify afunction from inlining), and additional implementation- and
context-dependent factors.

What Happens When a Function that Is Declared inline Cannot Be Inlined?

Theoretically, when the compiler refusesto inline a function, that function is then treated like an ordinary function:
The compiler generates the object code for it, and invocations of the function are transformed into a jump to its
memory address. Unfortunately, the implications of outlining a function are more complicated than that. Itisa
common practice to define inline functions in the class declaration. For example

/1 filenane Tine.h
#i ncl ude<cti nme>
#i ncl ude<i ostreanp
usi ng nanespace std;
class Tine
{
publ i c:
inline void Show() { for (int i = 0; i<10; i++) cout<<tine(0)<<endl;}
b

[/ filenane Tine.h

Because the member function Ti me: : Show( ) containsalocal variable and af or loop, the compiler islikely to
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ignorethei nl i ne request and treat it as an ordinary member function. However, the class declaration itself can be
#i ncl uded in separately compiled trand ation units:

/1 filename f1.cpp
#include "Tinme. hj"
void f1()

{
Time t1;
t 1. Show() ;

}
/Il f1.cpp

/1 filenane f2.cpp
#i nclude "Ti ne. h"
voi d f2()
{

Tinme t2;

t 2. Show() ;

}
Il f2.cpp

As aresult, the compiler generates two identical copies of the same member function for the same program:

void f1();
void f2();
int main()
{
F1();
f2();
return O;

}

When the program is linked, the linker is faced with two identical copiesof Ti ne: : Show( ) . Normally, function
redefinition causes a link-time error. Un-inlined functions are a special case, however. Older implementations of C++
coped with this situation by treating an un-inlined function asif it had been declared st at i ¢. Consequently, each
copy of the compiled function was only visible within the translation unit in which it was declared. This solved the
name clashing problem at the cost of multiple local copies of the same function. In this case, thei nl i ne declaration
did not boost performance; on the contrary, every call of the un-inlined function was resolved as an ordinary function
call with the regular overhead. Even worse, the multiple copies of the function code increased compilation and
linkage time and bloated the size of the executable. Ironically, not declaring Ti me: : Show() i nl i ne might have
yielded better performance! Remember that the programmer is generally not aware of all the actual costs of this -- the
compiler strains quietly, the linker sighs silently, and the resultant executable is more bloated and sluggish than ever.
But it still works, and the users scratch their heads, saying, "This object-oriented programming isreally awful! I'm
sure this app would run much faster if I'd written it in C!".

Fortunately, the Standard's specification regarding un-inlined functions was recently changed. A Standard compliant
implementation generates only a single copy of such afunction, regardless of the number of trandlation units that
defineit. In other words, an un-inlined function is treated similarly to an ordinary function. However, it might take
some time for all compiler vendors to adopt the new specifications.
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Additional Issues of Concern

There are two more conundrums that are associated with inline functions. The first has to do with maintenance. A
function can begin its life as a slim inline function, offering the benefits that were previously described. At alater
phase in the lifetime of the system, the function body can be extended to include additional functionality, resulting
from changes in the implementation of its class. Suddenly, the inline substitution can become inefficient or even
impossible. It is therefore important to reconsider the removal of thei nl i ne specifier from such functions. For
member functions that are defined in the class body, the change is more complicated because the function definition
has to be moved to a separate sourcefile.

Another problem might arise when inline functions are used in code libraries. It isimpossible to maintain binary
compatibility if the definition of an inline function changes. In this case, the users must recompile their code to reflect
the change. For a non-inline function, the users only need to relink their code, which is considerably less of a burden
than a massive recompilation and relink.

The Do's and Don'ts of inline

Thelesson hereisthati nl i ne isnot amagical potion for enhancing performance. For very short functions -- for
example, accessors, mutators, and function wrappers (see Chapter 13, "C Language Compatibility Issues’) -- the

i nl i ne specifier can be profitable in terms of both execution speed and program size. If the inlined function is not
very short and it is called extensively, however, the result can be an increase in the size of the executable.
Furthermore, many processors cache the machine instructions of frequently used parts of the program; excessive
inlining can cause a reduced instruction cache hit and, consequently, poorer overall performance. The real annoyance
occurs when the compiler refuses to inline afunction even though it was declared i nl i ne. On older
implementations, the result was quite painful. On Standard compliant implementations, the consequences of
un-inlining are less detrimental, but they are still undesirable. Some compilers are clever enough to figure out on their
own which functions are to be inlined. However, most compilers are lessinline-savvy so it is best to examine the
effect of an inline declaration empirically. If the inline declaration does not enhance performance, avoid it.

Optimizing Memory Usage

Optimization has several aspects:. faster execution speed, efficient usage of system resources, and minimal usage of
memory. In general, code optimization attempts to improve all these aspects. The declaration rel ocation technique that
was demonstrated earlier eliminates the unnecessary creation and destruction of objects, thereby reducing the
program's size and accelerating its runtime speed. However, other optimization techniques are heavily biased toward
one direction -- speedier code or a smaller memory footprint. Sometimes, though, these goals are mutually exclusive;
that is, compacting the memory footprint engenders slower code, whereas afaster code implies alarger memory
footprint. This section presents various techniques for optimizing, or compacting, the memory requirements of a
program.

Bit Fields

In both C and C++ it is possible to store and access data directly in the tiniest possible unit: asingle bit. Because a bit
is not the natural storage unit for C/C++ implementations, the use of bit fields can increase the size of the executable

due to the additional maneuvers that are exercised by the processor in accessing a sequence of one or more bits. This

Isaclear-cut case of sacrificing runtime speed for the sake of minimizing memory usage.

NOTE: Note, however, that some hardware architectures provide special processor instructions for
accessing bits. Therefore, whether bit fields affect the program's speed or not is very much
platform-dependent.
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Normally, you don't use bit fields just to save afew more bytes. For some applications, however, the tradeoff between
execution speed and storage compaction is definitely worth its while. For example, the billing system of an average
international telephone company stores every phone call as arecord in arelational database. These records are
processed in batch periodically to calculate the customer's monthly bill. The database stores millions of new records
every day, and it has to keep the customer's billing information for at least one year. The compl ete database contains
around one billion records at any given time. Because the database is also backed up periodically, and because it
might also be a distributed database, every record is stored in more than one physical location. In fact, there might be
20 billion records stored in different backup generations and distributed portions of the database at any given time. A
minimal billing record contains the customer's ID, atimestamp, codes that indicate the type of the call (for example,
local or long distance) and the tariff (off peak, peak time). Literally, every bit counts here -- one redundant bit implies
2.5GB of wasted storage!

A non-space-optimizing definition of the billing record might look like this:

struct BillingRec
{
| ong cust _id;
| ong tinestanp;
enum Cal | Type
{
toll _free
| ocal ,
regi onal ,
| ong_di st ance,
i nternational,
cel | ul ar
} type;
enum Cal | Tari ff
{
of f _peak,
medi umrate,
peak time
} tariff;
i

A Bi | | i ngRec occupies no fewer than 16 bytes of memory on my 32-bit machine. Clearly, space is wasted here.
Thefirst two fields occupy four bytes each, as expected. However, the two enumvariables occupy an additional eight
bytes, even though they both can be safely represented in less than asingle byte. A tweaked versionof Bi | | i ngRec
can squeeze the enumvaluesinto two bit fields:

struct BillingRec
{
| ong cust _id;
| ong ti nmestanp;
enum Cal | Type

toll free,
| ocal ,
regi onal ,

| ong_di st ance,
i nternational,
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cel lul ar

1

enum Cal | Tari ff
{

of f _peak,
nmedi um r at e,
peak time

1
unsigned call: 3; //three bits
unsigned tariff: 2; //two bits

b

Thesizeof Bi | | i ngRec isnow 12 bytes. The four bytes that are saved are equal to megabytes of data storage per
day. Still, the size can be reduced even more. The two bit fields occupy five bitsin total, which isless than a byte.
One might therefore expect Bi | | i ngRec to occupy 9 bytes rather than 12. The problem is that the compiler inserts
three additional padding bytes after the bit fieldsto align the size of Bi | | i ngRec on aword boundary (more on
member alignment in Chapter 11, "Memory Management"). The additiona padding bytes ensure faster accesstime --
at the cost of three wasted bytes. There are two ways to overcome this problem: Y ou can change the compiler's setting
to alow alignment on a byte boundary, or you can change the size of the other members so that -- in total -- it reaches
exactly eight bytes.

NOTE: Note that both solutions might not be portable, and on some hardware architectures, the compiler
will nonetheless insist on word boundary alignment. Check your compiler's specifications regarding
member alignment settings.

Changing the size of the membersis somewhat tricky because the first two members have to become bit fields as
well:

struct BillingRec
{

int cust_id: 24; // 23 bits + 1 sign bit

int timestanp: 24;

enum Cal | Type

{rir...

}
enum Cal | Tari ff
{rr...

1
unsi gned call: 3;
unsigned tariff: 2;

b

Thistime, Bi | | i ngRec occupies eight bytesin total, which is half of itsoriginal size. The storage that is saved in
this example can amount to 10GB annually. Considering the cheap prices of magnetic storage media these days,
saving afew thousand dollars might not seem to be a compelling argument -- but there is another reason for favoring
smaller data storage: the costs of digital communication. A distributed database has synchronized copies in multiple
sites. The synchronization processis usually done by means of digital data transfer from the central database to its
synchronized copies, and vice versa. The transmission of millions of records on leased linesis pretty expensive. But
for a phone company that owns these lines, thisis not an issue of special concern; suppose, however, that the
company is an international bank that pays hundreds of dollars for every hour of datatransfer. In this case, halving the
data volume is unquestionably profitable. Another point to remember is the Web; if the telephone company has a Web
site that enablesits customers to view their billing information online, the download time of hundreds of records
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through analog dialup lines can be cut in half by this tweak.

Unions

Unions can also be used to minimize memory waste by locating two or more data members at the same memory
address, where the value of (at most) one of the data membersis active at any time. The size of aunion is sufficient to
hold the largest of its data members. A union can have member functions, including a constructor and destructor, but
it cannot have virtual member functions. A union cannot serve as a base class of, nor can it inherit from, another class.
In addition, a union cannot store objects that have nontrivial special member functions. C++ also supports anonymous
unions. An anonymous union is an unnamed object of an unnamed type (anonymous unions are also discussed in
Chapter 11). For example

nion { long n; void * p}; [/ anonynous
= 1000L; // nmenbers are directly accessed
=0; // nis nowalso O

Unlike a named union, an anonymous one cannot have member functions or nonpublic data members.

When are unions useful ? The following class retrieves a person's data from a database. The key can be either a unique
ID number or a person's last name, but never both at once:

cl ass Personal Details
{
private:
char * nane;
| ong 1D
/...
publ i c:
Per sonal Det ai | s(const char *nm); [//key is of type char * used
Personal Details(long id) : I1Did) {} //nunmeric key used

b
Memory is wasted here because only one of the keys can be used at atime. An anonymous union can be used in this
case to minimize memory usage. For example

cl ass Personal Detail s

{
private:
uni on //anonynous
{
char * nane;
| ong 1D,
1
publ i c:
Per sonal Det ai | s(const char *nm;
Personal Details(long id) : ID(id) {/**/} [// direct access to a nenber
/...
b

By using aunion, the size of class Per sonal Det ai | s ishalved. Again, saving four bytes of memory is not worth
the trouble unless this class serves as a mold for millions of database records or if the records are transmitted on slow
communication lines. Note that unions do not incur any runtime overhead, so there is no speed tradeoff in this case.

file:///D|/Cool Stuff/old/ftp/1/1/ch12/ch12.htm (17 von 22) [12.05.2000 14:46:37]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 12 - Optimizing Your Code
The advantage of an anonymous union over a named one is that its members can be accessed directly.

Speed Optimizations

In time-critical applications, every CPU cycle counts. This section presents afew simple guidelines for speed
optimization. Some of them have been around since the early days of C; others are C++ specific.

Using a Class To Pack a Long Argument List

The overhead of afunction call isincreased when the function has along list of arguments. The runtime system has to
initialize the stack with the values of the arguments; naturally, this operation takes longer when there are more
arguments. For example, executing the following function 100,000,000 times takes 8.5 seconds on average on my
machine:

void retrieve(const string& title, //5 argunents
const string& author,
i nt | SBN,
int year,
bool & inStore)
{}

Packing the argument list into a single class and passing it by reference as the only argument reduces the result to five
seconds, on average. Of course, for functions that take along time to execute, the stack initialization overhead is
negligible. However, for short and fast functions that are called very often, packing along parameter list within a
single object and passing it by reference can improve performance.

Register Variables

The storage specifier r egi st er can be used as a hint to the compiler that an object will be heavily used in the
program. For example

void f()

{
int *p = new int[3000000];
register int *p2 = p; //store the address in a register

for (register int j = 0; j<3000000; j++)
{
*p2++ = 0;
}
[l...use p
delete [] p;

}

Loop counters are good candidates for being declared as register variables. When they are not stored in aregister, a
substantial amount of the loop's execution time is wasted in fetching the variable from memory, assigning a new value
to it, and storing it back in memory repeatedly. Storing it in a machine register reduces this overhead. Note, however,
that r egi st er isonly arecommendation to the compiler. Aswith function inlining, the compiler can refuse to store
the object in amachine register. Furthermore, modern compilers optimize loop counters and move them to the
machine's registers anyway. Ther egi st er storage specification is not confined to fundamental types. Rather, it can
be used for any type of object. If the object istoo large to fit into aregister, the compiler can still store the object ina
faster memory region, such as the cache memory (cache memory is about ten times faster than the main memory).
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NOTE: Some compilersignorether egi st er specification altogether and automatically store the
program'’s variables according to a set of built-in optimization rules. Please consult your vendor's
specifications for more details on the compiler's handling of register declarations.

Declaring function parameters with ther egi st er storage specifier is arecommendation to pass the arguments on
the machine's registers rather than passing them on the stack. For example

void f(register int j, register Date d);

Declaring Constant Objects as const

In addition to the other boons of declaring constant objects as const , an optimizing compiler can take advantage of
this declaration, too, and store such an object in a machine register instead of in ordinary memory. Note that the same
optimization can be applied to function parameters that are declared const . On the other hand, thevol ati | e
qualifier disables such an optimization (see Appendix A, "Manual of Programming Style"), so useit only when it is
unavoidable.

Runtime Overhead of Virtual Functions

When avirtual function is called through a pointer or areference of an object, the call doesn't necessarily impose
additional runtime penalties. If the compiler can resolve the call statically, no extra overhead isincurred. Furthermore,
avery short virtual function can beinlined in this case. In the following example, a clever compiler can resolve the
calls of the virtual member functions statically:

#i ncl ude <i ostreanp
usi ng nanespace std;
class V
{
publ i c:
virtual void show) const { cout<<"l'm V'<<endl; }
1

class W: public V
{
publ i c:
void show() const { cout<<"I'm W <<endl; }
1
void f(V &v, V *pV)
{
v. show() ;
pV- >show() ;
}
void g()
{
V v;
f(v, &);
}

I nt main()

{
a();

return O;
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}

If the entire program appears in a single trans ation unit, the compiler can perform an inline substitution of the call of
thefunctiong() inmai n() . Theinvocation of f () withing() can aso beinlined, and because the dynamic type
of the arguments that are passed to f () is known at compile time, the compiler can resolve the virtual function calls
insidef () statically. Thereis no guarantee that every compiler actually inlines all the function calls, however, some
compilers certainly take advantage of the fact that the dynamic type of the arguments of f () can be determined at
compile time, and avoid the overhead of dynamic binding in this case,

Function Objects Versus Function Pointers

The benefits of using function objects instead of function pointers (function objects are discussed in Chapter 10 and in
Chapter 3, "Operator Overloading") are not limited to genericity and easier maintenance. Furthermore, compilers can
inline the call of a function object, thereby enhancing performance even further (inlining afunction pointer call is
rarely possible).

A Last Resort

The optimization techniques that have been presented thus far do not dictate design compromises or less readable
code. In fact, some of them improve the software's robustness and the ease of maintenance. Packing along argument
list within a class object, const declarations, and using function objects rather than function pointers provide
additional benefits on top of the performance boost. Under strict time and memory constraints, however, these
techniques might not suffice; additional tweaks are sometimes required, which affect the portability and extensibility
of the software. The techniques that are presented in this section are to be used only as a last resort, and only after all
the other optimizations have been applied.

Disabling RTTI and Exception Handling Support

When you port pure C code to a C++ compiler, you might discover a slight performance degradation. Thisis not a
fault in the programming language or the compiler, but a matter of compiler tuning. All you have to do to gain the
same (or better) performance that you might get from a C compiler is switch off the compiler's RTTI and exception
handling support. Why isthis? In order to support RTTI or exception handling, a C++ compiler inserts additional
"scaffolding" code to the original source file. Thisincreases the executable size alittle, and imposes slight runtime
overhead (the overhead of exception handling and RTTI are discussed in Chapter 6, "Exception Handling," and
Chapter 7, "Runtime Type Identification"”, respectively). When pure C is used, this additional code is unnecessary.
Please note, however, that you should not attempt to apply this tweak with C++ code or C code that uses any C++
constructs such as operator new and virtual functions.

Inline Assembly

Time-critical sections of C++ code can be rewritten in native assembly code. The result can be a significant increase
in speed. Note, however, that this measure is not to be taken lightly because it makes future modifications much more
difficult. Programmers who maintain the code might not be familiar with the particular assembly language that is
used, or they might have no prior experience in assembly language at al. Furthermore, porting the software to other
platforms requires rewriting of the assembly code parts (in some instances, upgrading the processor can also
necessitate rewriting). In addition, developing and testing assembly code is an arduous task that can take much more
time than developing and testing code that is written in a high-level language.

Generally, operations that are coded in assembly are low-level library functions. On most implementations, for
example, the standard library functionsnenset () andstrcpy() arewrittenin native assembly code. C and C++
enable the programmer to embed inline assembly code within an as mblock. For example
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asm

{

nov a, ecx
...

}
Interacting with the Operating System Directly

API functions and classes enable you to interact with the operating system. Sometimes, however, executing a system
command directly can be much faster. For this purpose, you can use the standard function syst en( ) that takesa
shell command asaconst char *. For example, on a DOS/Windows system, you can display thefilesin the
current directory asfollows:

#i ncl ude <cstdlib>
usi ng nanespace std;
int main()

{

}
Here again, the tradeoff is between speed on the one hand and portability and future extensibility on the other hand.

system("dir"); [/execute the "dir" command

Conclusions

In an ideal world, software designers and developers might focus their efforts on robust, extensible, and readable
code. Fortunately, the current state of affairs in the software world is much closer to that ideal than it was 15, 30, or
50 years ago. Notwithstanding that, performance tuning and optimizations will probably remain a necessity for along
time. The faster hardware becomes, the more the software that runs on it is required to meet higher demands. Speech
recognition, online translation of natural languages, neural networks, and complex mathematical computations are
only afew examples of resource-hungry applications that will evolve in the future and require careful optimizations.

Textbooks often recommend that you put off optimization consideration to the final stages of testing. Indeed, the
primary goal isto get the system to work correctly. Nonetheless, some of the techniques presented here -- such as
declaring objects locally, preferring prefix to postfix operators, and using initialization instead of assignment -- need
to become a natural habit. It is awell-known fact that programs usually spend 90% of their time executing only 10%
of their code (the numbers might vary, but they range between 80% and 20% to 95% and 5%). Thefirst step in
optimization is, therefore, identifying that 10% of your programs and optimizing them. Many automated profiling and
optimization tools can assist you in identifying these critical code parts. Some of these tools can aso suggest solutions
to enhance performance. Still, many of the optimization techniques are implementation-specific and always require
human expertise. It isimportant to empirically verify your suspicions and to test the effect of suggested code
modifications to ensure that they indeed improve the system's performance. Programmers' intuitions regarding the
cost of certain operations are often misleading. For example, shorter code is not necessarily faster code. Similarly,
writing convoluted code to avoid the cost of asimplei f statement is not worth the trouble because it saves only one
or two CPU cycles.

Contents
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Introduction

Cisasubset of C++. Theoreticaly, every valid C program is also avalid C++ program. In practice, however, there are some
subtle incompatibilities and silent differences between the seemingly common portion of both languages. Most of these
differences can be diagnosed by the compiler. Others are more evasive and, in rare conditions, they can have surprising effects.

Although it seems that most of the time legacy C code is combined with newer C++ code, the opposite is also true: C++ code
isused in C-based applications. For example, transaction-processing monitors of relational databases that are writtenin C
interact with code modules that are written in C++. This chapter first discusses the differences between |SO C and the C subset
of ANSI/ISO C++, and it demonstrates how to migrate legacy C code to a C++ environment. Next, you will explore the
underlying object model of C++, including the memory layout of objects, member functions, virtual member functions, virtual
base classes, and access specifiers, and you will learn how C code can access C++ objects.

Differences Between ISO C and the C Subset of ANSI/ISO C++

With afew minor differences, C++ isa superset of C. The following sections outline the differences between the C subset of
C++and ISO C.

Function Parameter List

In pre-Standard C, the parameter list of afunction was declared as follows:

/[* pre-standard C, still valid in 1SOC, invalid in C++*/
int negate (n)
int n; /* paraneter declaration appears here*/

{
}

In other words, only the parameters names appeared in the parentheses, whereas their types were declared before the opening
brace. Undeclared parameters defaulted to i nt . In1SO C, asin C++, both the names and types of the parameters must appear
in the parentheses:

return -n;

/* 1SO C and C++ */
int negate (int n)

{
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return -n;

}

The old-style parameter list is still legal in 1SO C, but it is deprecated. In C++, itisillegal. Legacy C code that contains an
old-style parameter list hasto be changed to become valid in C++.

Function Declaration

In C, functions can be called without having to be declared first. In C++, afunction cannot be called without a previous
declaration or definition. For example

/* valid in C but not in Ct+ */

int main()

L
int n;
n = negate(5); /* undeclared function; valid in C but not in C++ */
return O;

}

Functions can be declared in C, just asin C++:

[* C C++ */
int negate(int n);
int main()
t
int n;
n= negate(5);
return O;

}

The use of afunction declaration (also called afunction prototype) in C is recommended because it enables the compiler to
detect mismatches in type and argument number. However, it is not a requirement.

Empty Parameter List

In C, afunction that is declared with an empty list of parameters such as

int f();
void g( int i)

f(i) /* valid in Cbut not in Ct+ */
}

can take any number of arguments of any type. In C++, such a function does not take any arguments.

Implicit int Declarations

In C and in pre-Standard C++, the default type for missing declarationsisi nt . For example

/[* valid in C but not in C++ */
void func()

{
}

const k =0; /*int type assuned in C, invalid in Ct+*/
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ISO C is currently being revised to disallow implicit int declarations.Repeated
Declarations of Global Variables

In C, global variables can be declared more than once without the ext er n specifier. Aslong asasingleinitiaization (at
most) for the same variable is used, the linker resolves all the repeated declarations into a single entity:

/* valid in C but not in Ct+ */

int flag;

int num

int flag; /* repeated declaration of a global variable */
voi d func()

{
}

In C++, an entity must be defined exactly once. Repeated definitions of the same entity in separate translation unitsresult in a
link-time error.

flag = 1,

Implicit Casting of void Pointers

In C, avoi d pointer isimplicitly cast to any other pointer type in assignments and initializations. For example

/* valid in C but not C++*/
#i ncl ude <stdlib. h>

long * p_to_int()

{

long * pl = malloc(sizeof(long)); /* inplicit conversion of void* to |long* */
return pl;

}

In general, implicit conversion of voi d * isundesirable because it can result in bugs that can otherwise be detected by the
compiler. Consider the following example:

/[* valid in C but not C++*/

#i ncl ude <stdlib. h>

long * p_to_int()

{
long * pl = malloc(sizeof(short)); /* oops! */
return pl;

}

In C++, void pointers have to be cast explicitly to the desired type. The explicit
cast makes the programmer's intention clearer and reduces the likelihood of
unpl easant surpri ses.

The Underlying Representation of NULL Pointers

NULL is an implementation-defined const null pointer. C implementations usually define NULL as follows:

#define NULL ((void*)O0)
However, In C++, NULL isusually defined asthe literal O (or OL), but never asvoi d *:

const int NULL = O; //sone C++ inplenentations use this convention
#define NULL O; //others m ght use this convention
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The difference in the underlying representations of NULL pointers between C and C++ derives from the fact that C++ pointers

are strongly typed, whereasin C they are not. If C++ retained C's convention, a C++ statement such as
char * p = NULL;

would be expanded into something similar to

char * p = (void*) O; /1l conpile tinme error: inconpatible pointer types

Because O isthe universal initializer for all pointer typesin C++, it isused instead the traditional C convention; in fact, many
programmers simply use the literal O or OL instead of NULL.

Default Linkage Type of Global const Variables

In C, the default linkage of global const variablesisext er n. An uninitialized const variableisimplicitly zero initialized.
For example

[*** valid in C but not Ct+ ***/

/* file error_flag.h */

const int error; /*default extern |inkage */
[*** end file ***/

#i nclude"error _flag. h"

int func();

int main()

{
int status = func();
if( status == error)
{

/ *do sonet hing */

}
return O;

}

In C++, agloba const variablethat isnot explicitly declared ext er n has static linkage. In addition, aconst variable must
beinitialized.

Null-Terminated Character Arrays

In C, character arrays can beinitialized with a string literal without the null-terminating character. For example

[*** valid in C but not C++ ***/
const char nessage[5] = "hello"; /* does not contain a null term nator */

In C++, character arraysthat are initialized by a string literal must be large enough to contain a null terminator.

Assignment of Integers to an enum Type

In C, the assignment of integers to an enumerated type is valid. For example

[*** valid in C but not Ct+ ***/
enum St at us {good, bad};
voi d func()

{
}

Status stat = 1; /* integer assignment */
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In C++, enuns are strongly typed. Only enumerators of the same enumtype can be assigned to an enumvariable. Explicit
type casting is required otherwise. For example

/| C++
enum St at us {good, bad};
void func()

{

}
Definition of Structs in a Function Parameter List and Return Type

Status stat = static_cast<Status> (1); // stat = bad

In C, astruct can be defined in afunction parameter list aswell asin its return type. For example

[*** valid in C but not Ct+ ***/
/* struct definition in return type and paraneter |ist of a function */
struct Stat { int code; char nsg[10];}

| ogon (struct User { char usernane[8]; char pwd[8];} u );

In C++, thisisillegal.
Bypassing an Initialization

A jump statement unconditionally transfers control. A jump statement is one of the following: agot o statement, a transfer
from the condition of aswi t ch statement to acase label, abr eak statement, acont i nue statement, or ar et ur n
statement. In C, the initialization of a variable can be skipped by ajump statement, asin the following example:

[*** valid in C but not C++ ***/
int main()
{
int n=1;
swi tch(n)
{
case O:
int j=0;
br eak;
case 1. /* skip initialization of j */
j ++;  /* undefined */
br eak;
defaul t:
br eak;

}

return O;

}
In C++, bypassing an initidization isillegal.

Quiet Differences Between C and C++

The differences that have been presented thus far are easily diagnosed by a C++ compiler. There are, however, semantic
differences between C and C++ in the interpretation of certain constructs. These differences might not result in a compiler
diagnostic; therefore, it isimportant to pay attention to them.
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The Size of an enum Type

In C, the size of an enuneration equals the sizeof(int). In C++, the underlying type
for an enuneration is not necessarily anint -- it can be smaller. Furthernore, if an
enunerator's value is too large to be represented as an unsigned int, the

i npl enmentation is allowed to use a larger unit. For exanple enum{ SIZE =
5000000000UL };

The Size of A Character Constant

In C, theresult of applying the operator si zeof to acharacter constant -- for example, si zeof (' ¢' ) ; -- equals
si zeof (i nt) . In C++, onthe other hand, the expression si zeof (' ¢' ) ; equalssi zeof (char).

Predefined Macros

C and C++ compilers define the following macros:

__DATE__ /*a literal containing conpilation date in the form™"Apr 13 1998" */
__TIME__ /*a literal containing the conpilation tinme in the form"10:01: 07" */
__FILE__ /*a literal containing the nane of the source file being conpiled */
__LINE__ /* current line nunber in the source file */

C++ compilers exclusively define the following macro:

__cplupl us

Standard-compliant C compilers define the following macro symbol:

STDC

Whether a C++ compiler also defines the macro symbol _ STDC ___ isimplementation-dependent.

Default Value Returned from main()

In C, when control reaches the end of mai n() without encountering ar et ur n statement, the effect isthat of returning an
undefined value to the environment. In C++, however, mai n() implicitly executes a

return O;

statement in this case.

NOTE: You might have noticed that the code listings throughout the book contain an explicit r et ur n statement
at the end of mai n( ) , even though thisis not necessary. There are two reasons for this: First, many compilers
that do not comply with the Standard issue awarning message when ar et ur n statement is omitted. Secondly,
the explicit r et ur n statement is used to return a nonzero value in the event of an error.

Migrating From C to C++

Resolving the syntactic and semantic differences between C and C++ isthefirst step in migrating from C to C++. This process
ensures that C code can compile under a C++ compiler, and that the program behaves as expected. There is another clear
advantage of compiling C code under a C++ compiler: The tighter type checking that is applied by a C++ compiler can detect
potential bugs that a C compiler does not detect. The list of discrepancies between C and C++ that was previously presented is
mostly aresult of loopholes and potential trapsin C that were fixed in C++. Anissue that is of concern, however, is
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performance -- does a C++ compiler produce object code that is less efficient than the code produced by a C compiler? This
topic is discussed in more detail in Chapter 12, "Optimizing Y our Code." However, it isimportant to note that a good C++
compiler can outperform a good C compiler because it can exercise optimization techniques that C compilers normally do not
support, such as function inlining and the named return value (also discussed in Chapter 12).

Nonetheless, in order to benefit from the robustness of object-oriented programming, more substantial code modifications are
required. Fortunately, the transition from procedural to object-oriented programming can be performed gradually. The
following section demonstrates a technique of wrapping bare functions with an additional code layer to minimize the
dependency on implementation details. Following that is a discussion of how to use full-fledged classes that wrap legacy code
in order to gain more of the benefits of object-orientation.

Function Wrappers

Low-level code such as infrastructure routines and API functions can be used by different teams for the same project.
Normally, this code is developed and maintained by athird party vendor or a specific team in the project. For example

int retrievePerson (int key, Person* recordToBefilled); /* C function */

A problem can arise when the interface of () changes: Every occurrence of afunction call hasto be tracked down and
modified accordingly. Consider how such asmall change can affect existing programs:

/*

function nodification: key is now a char * instead of an int
every call to this function has to nodified accordingly

*/

int retrievePerson (const char * key, Person* recordToBefill ed);

Asyou saw in Chapter 5, "Object-Oriented Programming and Design," one of the most noticeable weaknesses of procedural
programming isits vulnerability to such changes; however, even in strict procedural programming you can localize their
impact by using awrapper function. A wrapper function calls the vulnerable function and returnsits result. Following is an
example:

/* A wrapper function */
int WapRetrievePerson(int key, Person* recordToBefill ed)

{
}

A wrapper provides a stable interface to a code fragment that is used extensively and that is vulnerable to changes. When using
awrapper function, a change in the interface of an API function is reflected only in the definition of its corresponding wrapper

function. Other parts of the program are not affected by the change. Thisis very similar to the way in which a class's accessors

and mutators provide indirect access to its nonpublic members. In the following example, the function wrapper's body has been
modified due to the change in the type of key fromi nt tochar *. Note, however, that its interface remains intact:

return retrievePerson (key, recordToBefill ed);

[*** file DB_API.h ***/
int retrievePerson (const char *strkey, Person* precordToBefilled);
t ypedef struct
{
char first_nane[ 20];
char | ast_name[ 20];
char address [50];
} Person;
[*** file DB_API.h ***/
#i ncl ude <stdio. h>
#include " DB APlI.h "
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int WapRetrievePerson(int key, Person* precordToBefilled) //remains intact

{
/[* wapper's inplenmentation nodified according to API's nodification */
char strkey[ 100];
sprintf (strkey, "%l", key); /* convert int to a string */
return retrievePerson (strkey, precordToBefilled);

}

By systematically applying this technique to every function that is maintained by other teams or vendors, you can ensure a
reasonable level of interface stability even when the underlying implementation changes.

Although the function wrapper technique offers protection from changes in implementation details, it does not provide other
advantages of object-oriented programming, including encapsulation of related operations in a single class, constructors and
destructors, and inheritance. The next phase in the migration processis to encapsulate a collection of related functionsinto a
single wrapper class. This technique, however, requires familiarity with object-oriented concepts and principles.

Designing Legacy Code Wrapper Classes

In many frameworks that were originally written in C and then ported to C++, acommon -- but wrong -- practice was to wrap
C functionsin asingle wrapper class. Such awrapper class provides asits interface a series of operations mapped directly to
the legacy functions. The following networking functions provide an example:

[*** file: network.h ***/
#i f ndef NETWORK_H
#defi ne NETWORK H
/* functions related to UDP protocol */
int UDP_init();
int UDP_bind(int port);
int UDP_listen(int timeout);
i nt UDP_send(char * buffer);
/* functions related to X. 25 protocol */
int X25 create_virtual _line();
int X25 read_nsg_from queue(char * buffer);
/* general utility functions */
int hton(unsigned int); //reverse bytes fromhost to network order
int ntoh(unsigned int); //reverse bytes fromnetwork to host order
#endi f
[*** network.h ***/

A naglum]ive implementation of a class wrapper might simply embed all these functionsin asingle class as follows:

#i ncl ude "network. h"
cl ass Net wor ki ng
{
private:
[l...stuff
publ i c:
[/ constructor and destructor
Net wor ki ng() ;
~Net wor ki ng() ;
/| menber s
int UDP_init();
int UDP_bind(int port);
int UDP_listen(int tineout);
int UDP_send(char * buffer);
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int X25 create_virtual _line();

int X25 read_nsg_from queue(char * buffer);

int hton(unsigned int); //reverse bytes fromhost to network order
int ntoh(unsigned int); //reverse bytes fromnetwork to host order

}

However, this method of implementing awrapper class is not recommended. X.25 and UDP protocols are used for different
purposes and have almost nothing in common. Bundling the interfaces of these two protocols together can cause maintenance
problemsin the long term -- and it undermines the very reason for moving to an object-oriented design in the first place.
Furthermore, due to its amorphous interface, Net wor ki ng isnot an ideal base for other derived classes.The problem with
Net wor ki ng and similar classesisthat they do not genuinely embody an object-oriented policy. They are merely a
collection of unrelated operations. A better design approach is to divide the legacy functions into meaningful, self-contained
units and wrap each unit by a dedicated class. For example

#i ncl ude "network. h"
cl ass UDP_API
{
private:
[l...stuff
public:
[/ constructor and destructor
UDP_API () ;
~UDP_API () ;
/| menbers
int UDP_init();
int UDP_bind(int port);
int UDP_listen(int timeout);
i nt UDP_send(char * buffer);
}
cl ass X25_API
{
private:
/l...stuff
publ i c:
[l constructor and destructor
X25_API () :
~X25_API () ;
/| menber s
int X25 create_virtual _line();
int X25 read_nsg_from queue(char * buffer);
b
class Net _utility

{ |
private:

Il...stuff

public:

/I constructor and destructor

Net utility();

~Net _utility();

/' menmber s

int hton(unsigned int); //reverse bytes fromhost to network order
int ntoh(unsigned int); //reverse bytes fromnetwork to host order

};

Now each class offers a coherent interface. Another advantage is a simpler usage protocol; users of class X25_API , for
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instance, are not forced to accept the interface of UDP protocol, and vice versa.

Multilingual Environments

NOTE: In this section, the distinction between C code and C++ isindicated explicitly by file extensions. The .h
extension is used for C header files, whereas C++ header files are indicated by the .hpp extension. Similarly, .c
and .cpp extensions are used for C and C++ source files, respectively. In addition, only C-style comments are used
in Cfiles.

Thusfar, this chapter has concentrated on a unidirectional migration process: from C to C++. Nevertheless, many systems are
not confined to a single programming language. A typical information system can simultaneously use one programming
language for the graphical interface, another language for accessing data from a database, and a third language for server
applications. Often, these languages have to share data and code with one another. This section focuses on how to combine C
and C++ codein a bilingual system that uses both these languages simultaneously.

The easiest way to ensure compatibility between code modules that are written in C and C++ isto adhere to the common
denominator of these languages. Then again, using C++ as a procedural language ("better C") isn't worth the bother -- you can
simply stick to C. Combining object-oriented C++ code with procedural C code into a seamless executable is more challenging
-- but it offers many advantages.

C and C++ Linkage Conventions

By default, C++ functions have C++ linkage, which isincompatible with C linkage. Consequently, global C++ functions
cannot be called from C code unless they are explicitly declared as having a C linkage.

Forcing C Linkage on A C++ Function

To override the default C++ linkage, a C++ function has to be declared ext er n " C' .For example

/'l filenane decl. hpp

extern "C'" void f(int n); //force Clinkage so that f() can be called fromC
/'l code although it is conpiled by a C++ conpiler

/'l decl . hpp

Theext ern " C' prefix instructs a C++ compiler to apply C linkage to the function f () rather than the default C++ linkage.
This means that a C++ compiler does not apply name manglingtof () , either (see the following sidebar, "What'sin Name
Mangling?'). Consequently, acall tof () from C codeis properly resolved by a C linker. A C++ linker can aso locate the
compiled version of f () even though it hasa C linkage type. In other words, declaring C++ functionsasext ern " C'
guarantees interoperability between C++ and C (aswell as other procedural languages that use the C calling convention).
However, forcing C linkage has a price: It isimpossible to overload another version of f () that isaso declared asext er n

" C'. For example

/1 filenane decl. hpp

extern "C'" void f(int n);

extern "C' void f(float f); //error, second C linkage of f is illegal
/'l decl . hpp

Note that you can declare additional overloaded versionsof f () aslong asthey are not declared extern "C":
[l filename decl. hpp
extern "C'" void f(int n); //OK can be called fromC and C++ code

void f(float f); //OK no CIlinkage used. Can be called only from C++ code
void f(char c); //OK no Clinkage used. Can be called only from C++ code
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/'l decl . hpp

How doesit work? A call to the function from C code is translated to a CALL assembly directive, followed by the function
name. Declaring a C++ functionasext ern " C' ensuresthat the name that is generated for it by a C++ compiler isidentical
to the name that a C compiler expects. On the other hand, if the called function is compiled by a C++ compiler without the
extern "C' specifier, it has amangled name but a C compiler still places the nonmangled name after the CALL directive,
resulting in alink-time error.

What'sin Name Mangling?

Name mangling (the more politically correct term, although rarely used, is name decoration) is a method used by
a C++ compiler to generate unique names for identifiersin a program. The exact details of the agorithm are
compiler-dependent, and they might vary from one version to another. Name mangling ensures that entities with
seemingly identical names get unique identifications. The resultant mangled name contains all the information
that might be needed by the linker, including linkage type, scope, calling convention, and so on. For instance,
when agloba function is overloaded, the generated mangled name for each overloaded version is unique. Name
mangling is also applied to variables. Thus, alocal variable and a global variable with the same user-given name
still get distinct mangled names. How is the mangled name synthesized? The compiler picks the user-given name
of anidentifier and decorates it with additional affixes to indicate a variable of afundamental type, aclass, or a
function. For afunction, the mangled name embeds its scope and linkage type, the namespace in which it is
declared, the list of parameters, the parameters passing mechanism, and the parameters' cv-qualifications. A
mangled name of a member function incorporates additional information such as the class name, whether itisa
const member function, and other implementation-dependent details that the linker and the runtime environment
might need. Following is an example: For aglobal functionvoi d func(i nt);,agiven compiler can generate
the corresponding mangled name __ x_f unc @ @ where the affix x indicates afunction, f unc isthe function's
user-given name, @indicates the beginning of the parameter list, i indicates the type of the parameter, and the
closing @sign signals the end of the parameter list. An overloaded version of f () has a different mangled name
because it has a different parameter list. The original user-given name can be reproduced from the mangled name,
so linkersin general can issue error messages in a human-readable format.

Aswas previoudly stated, the name mangling scheme of a given compiler can change from one version to another
(for example, if the new version supports namespaces, whereas the previous one did not). Thisis one of the
reasons you often have to recompile your code with every compiler upgrade. Another important implication is
that, usually, the linker and the compiler need to come from the same vendor and have compatible versions. This
ensures that they share the same naming conventions and that they produce compatible binary code.

Calling C++ Code from C Code

Up until now, you have observed the C++ side of the story. A C program cannot #i ncl ude the header filedecl . hpp
becausetheext ern " C' specifier is not recognized by a C compiler. To ensure that the declaration can be parsed by aC
compiler, ext ern " C' needsto bevisibleto a C++ compiler -- but not to a C compiler. A C++ function with C linkage has
to be declared in two distinct forms, one for C++ and another for C. This can be achieved by using separate C and C++ header
files. The C header file looks similar to the following:

[*** filename decl.h ***/
void f(int n); /* identical to the C++ header but no extern "C' here */
[*** decl.h ***/

The header file can be#i ncl uded in the C sourcefile that callsthe function f () . For example

[*** filename do_something.c ***/
#i ncl ude "decl.h"
voi d do_sonet hi ng()

f(5);
}
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[*** do_sonething.c ***/

K eeping separate header files for C and C++ is not an elegant solution, however. The header files have to remain in sync all
the time, and when many header files are used, this can turn into a serious maintenance problem. A better alternativeisto use
one or more C header files for the declarations. For example

[*** filename f.h ***/

void f(int n); /* identical to the C++ header but no extern "C' here */
/*** fh ***/

[*** filename g.h ***/

void g(const char * pc, int n);

/*** gh ***/

Next, the C header filesare#i ncl uded in a C++ header file that containsanext ern " C" block:

/'l filenanme decl. hpp
extern "C'

{

#i nclude "f.h"

#i ncl ude "g. h"

}
/1 filenane decl. hpp

The effect of anext ern " C' block isasif every declaration in the#i ncl uded header fileshad aprecedingext ern " C"
specifier. Another alternative isto modify the C header file directly by adding an #i f def directive to make the ext er n
" C" declaration visible only to a C++ compiler. For example

[*** filenanme decl.h ***/

#i fdef _ cplusplus

extern "C' { //visible only to a C++ conpiler
#endi f

void g(const char * pc, int n);

void f(int n);

#i fdef _ cplusplus

} //visible only to a C++ conpiler

#endi f

| *xx* gh * %% [

Thisway, only one header file is needed. However, it is not always possible to modify the C header files directly. In such
cases, the preceding technigue needs to be used. Please note that a C++ function called from C code is an ordinary C++
function. It can instantiate objects, invoke their member functions, or use any other C++ feature. However, some
implementations might require special configuration settings to ensure that the linker has access to the C++ libraries and
template codes.

Compiling main()
Functions can be compiled by either a C compiler or a C++ compiler. However, a C++ compiler should compile mai n() .
This enables a C++ compiler to take care of templates, static initialization, and additional implementation-dependent

operations for which mai n(') isresponsible. Compiling mai n() under a C compiler will most likely result in link-time errors
due to the different semantics of mai n() in C and C++.
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Minimize the Interface Between C and C++ Code

In general, you can call a C function from C++ code without special adjustments. The opposite, as you have seen, isaso
possible -- but it requires additional adjustments. It is therefore recommended that you keep the interface between the two
languages at a minimum. Declaring every C++ function asext ern " C", for example, is not recommended. Not only does
this convention imply additional modifications to the header files, it aso disables overloading. Remember a so that you cannot
declare amember functionext ern " C'. For C++ functions that have to be called from C code, it might be advantageous to
use afunction wrapper that hasan ext ern " C" specifier. In this case, the wrapped C++ functions can have the C++ linkage.
For example

void g(const char * pc, int n); //extern "C' is unnecessary
void f(int n);
extern "C'" void f_Wapper(int n) //only the wapper function is called fromC

{
f(n);
}
extern "C' void g Wapper(const char *pc, int n)
{
} g(pc, nj;

Mixing <iostream> Classes with <stdio.h> Functions

It is possible to use both <i ost r ean® classes and <st di 0. h> library functionsin the same program, as long as they do not
access the same file. For example, you can usethe <i ost r ean® object ci n to read data from the keyboard, and then use
<st di 0. h> functionsto write the data to adisk file, asin the following program:

#i ncl ude <i ostreanr
#i ncl ude <cstdi o>
usi ng nanespace std;

int main()
b
int num
ci n>>num
cout <<"you enetred: "<< num <<endl ;
FILE *fout = fopen("data.dat", "w');

if (fout) //wite numto a disk file
fprintf(fout, "%\ n", num;

fclose(fout);
return O;

}

It iseven possibleto use <i ost r ean® and <st di 0. h> to manipulate the same file; for instance, a program can send output
to both st dout and cout , athough thisis not recommended. To enable simultaneous access to the samefile, you first have
tocalios::sync_wth _stdio(true); tosynchronizethel/O operations. Note, however, that this synchronization
degrades performance. Therefore, only use it when <i ost r ean® and <st di 0. h> access the samefile. For example

#i ncl ude <i ostreanp
#i ncl ude <cstdi o>
usi ng nanespace std;
int main()

file://ID|/Cool Stuff/old/ftp/1/1/ch13/ch13.htm (14 von 20) [12.05.2000 14:46:46]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 13 - C Language Compatibility Issues

{
ios::sync_with_stdio(true);//enable mxed I/0O
int num
printf("please enter a nunber\n");
ci n>>num
cout <<"you enetred: "<< num << "pl ease enter another one " << endl;
scanf ("%", &num;
return O;
}

Normally, you won't write such code. However, when alarge application combines legacy C functionsthat use <st di 0. h>
and C++ objects that use <i ost r ean®, |/O synchronization is unavoidable because, ultimately, the same low-level system
resources are used by both <st di 0. h>and <i ost r eanp.

Thefact that <i ost r ean® and <st di 0. h> can be combined isamajor advantage. Otherwise, the migration process from
C to C++ might be much fussier, and making C and C++ code work together might prove to be very difficult.

Accessing a C++ Object in C Code

Can C code, which of course is unaware of object semantics, access the data members of a C++ object directly? The short
answer is, "Yes, but". There are some guarantees about the underlying memory layout of an object; C code can take advantage
of these guarantees and treat a C++ object as an ordinary data struct, provided that all the following restrictions apply to the
class of the object in question:

» Theclass has no virtual member functions (including inherited virtual functions of a base class).
» Theclass hasno virtual base classesin the entire inheritance chain.
« The class has no member objects that have either a virtual base class or virtual member functions.

« All the data members of the class are declared without an intervening access specifier.

The Underlying Representation of an Object in Memory

Examine these restrictions in more detail, given the following declaration of the class Dat e:

cl ass Date

{
publ i c:
i nt day;
i nt nont h;
int year;
[/ constructor and destructor
Date(); //current date
~Dat e() ;
/la non-virtual nmenber function
bool isLeap() const;
bool operator == (const Date& other);
¥

The Standard guarantees that within every instance of class Dat e, data members are set down in the order of their declarations
(static data members are stored outside the object and are therefore ignored). There is no requirement that members be set
down in contiguous memory regions; the compiler can insert additional padding bytes (more on thisin Chapter 11, "Memory
Management") between data members to ensure proper alignment. However, thisis also the practice in C, so you can safely
assume that a Dat e object has a memory layout that isidentical to that of the following C struct:
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[*** fil ename POD Date. h***/

struct POD Date

/* the follow ng struct has nenory |ayout that is identical
to a Date object */

{
i nt day;
i nt nont h;
int year;
1
[ *** POD_Dat e. h***/

Consequently, aDat e object can be passed to C code and treated asif it were an instance of POD_Dat e. That the memory
layout in C and C++ isidentical in this case might seem surprising; class Dat e defines member functionsin addition to data
members, yet there is no trace of these member functionsin the object's memory layout. Where are these member functions
stored? C++ treats nonstatic member functions as static functions. In other words, member functions are ordinary functions.
They are no different from global functions, except that they take an implicit t hi s argument, which ensures that they are
called on an object and that they can access its data members. An invocation of amember function is transformed to a function
call, whereby the compiler inserts an additional argument that holds the address of the object. Consider the following example:

voi d func()
{
Date d;
bool leap = d.isLeap(); //1

}

The invocation of the member functioni sLeap() in (1) istransformed by a C++ compiler into something such as

_X_isLeap?Dat e@PK Date@&d); //pseudo C++ code

What was that again? Parse it carefully. The parentheses contain thet hi s argument, which isinserted by the compiler in
every nonstatic member function call. Asyou already know, function names are mangled. _x_i sLeap?Dat e@PK_Dat e@
is a hypothetical mangled name of the member function bool Dat e: :i sLeap() const;.Inthehypothetica C++
compiler, every mangled name begins with an underscore to minimize the potential for conflicts with user-given names. Next,
the x indicates afunction, as opposed to adatavariable. i sLeap isthe user-given name of the function. The ? isa delimiter
that precedes the name of the class. The @that follows the class name indicates the parameter list, which begins with a KPK
and Dat e toindicateaconst pointer toaconst Dat e (thet hi s argument of aconst member functionisaconst
pointer to aconst object). Finaly, aclosing @indicates the end of the parameter list. _x_i sLeap?Dat e @PK_Dat e@is,
therefore, the underlying name of the member functionbool Date: :isLeap() const; .Other compilersarelikely to
use different name mangling schemes, but the details are quite similar to the example presented here. Y ou must be thinking:
"Thisisvery similar to the way procedural programming manipulates data." It is. The crucia differenceisthat the compiler,
rather than the human programmer, takes care of these low-level details.

The C++ Object Model is Efficient

The object model of C++ is the underlying mechanism that supports object-oriented concepts such as constructors and
destructors, encapsulation, inheritance, and polymorphism. The underlying representation of class member functions has
several advantages. It is very efficient in terms of execution speed and memory usage because an object does not store pointers
to its member functions. In addition, the invocation of a nonvirtual member function does not involve additional lookup and
pointer dereferencing. A third advantage is backward compatibility with C; an object of type Dat e can be passed to C code
safely because the binary representation of such an object complies with the binary representation of a corresponding C struct.
Other object-oriented languages use aradically different object model, which might not be compatible with either C or C++.
Most of them use reference semantics. In areference-based object model, an object is represented as a reference (a pointer or a
handle) that refers to a memory block in which data members and pointers to functions are stored. There are some advantages
to reference semantics; for example, reference counting and garbage collection are easier to implement in such languages, and
indeed such languages usually provide automatic reference counting and garbage collection. However, garbage collection also
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incurs additional runtime overhead, and a reference-based model breaks down backward compatibility with C. The C++ object
model, on the other hand, enables C++ compilers to be written in C, and (as you read in Chapter 6, "Exception Handling,")
early C++ compilers were essentially C++-to-C transators.

Memory Layout of Derived Objects

The Standard does not specify the memory layout of base class subobjects in a derived class. In practice, however, all C++
compilers use the same convention: The base class subobject appears first (in left-to-right order in the event of multiple
inheritance), and data members of the derived class follow. C code can access derived objects, aslong as the derived class
abides by the same restrictions that were specified previoudly. For example, consider a nonpolymorphic class that inherits from
Dat e and has additional data members:

cl ass DateTinme: public Date

public: //additional nenbers

| ong tine;

bool PM //display time in AMor PM
Dat eTi me() ;

~Dat eTi nme() ;

| ong getTime() const;

The two additional data members of Dat eTi e are appended after the three members of the base class Ti e, so the memory
layout of aDat eTi e object is equivalent to the following C struct:

[*** filename POD Date.h***/
struct POD DateTi ne
{

i nt day;

i nt nont h;

int year;

long tine

bool PM
¥
[*** POD _Date. h***/
In asimilar vein, the nonpolymorphic member functions of Dat eTi e have no effect on the size or memory layout of the
object.

The compatible memory layout of nonpolymorphic C++ objects and C structs has many useful applications. For example, it
enables relational databases to retrieve and insert objects into a database table. Data Manipulation Languages, such as SQL,
that do not support object semantics, can till treat a"live" object as araw chunk of memory. In fact, several commercial
databases rely on this compatibility to provide an object-oriented interface with an underlying relational data model. Another
application is the capability to transmit objects as a stream of bytes from one machine to another.

Support for Virtual Member Functions

What happens when an object becomes polymorphic? In this case, backward compatibility with C istrickier. As was noted
previoudy, the compiler is alowed to insert additional data membersto a classin addition to user-declared data members.
These members can be padding bytes that ensure proper alignment. In the case of virtual functions, an additional member is
inserted into the class: a pointer to the virtual table, or _vptr. The _vpt r holdsthe address of a static table of function
pointers (as well as the runtime type information of a polymorphic class,; see Chapter 7, "Runtime Type Identification"). The
exact position of the _vpt r isimplementation-dependent. Traditionally, it was placed after the class's user-declared data
members. However, some compilers have moved it to the beginning of the class for performance reasons. Theoretically, the
_vpt r can belocated anywhere inside the class -- even among user-declared members.
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A virtual member function, like a nonvirtual member function, is an ordinary function. When aderived class overridesiit,
however, multiple distinct versions of the function exist. It is not always possible to determine at compile time which of these
functions needs to be invoked. For example

#i ncl ude <i ostreane

usi ng nanespace std;

cl ass Pol yDat e

{

public:

/I Pol yDat e has the same nenbers as Date but it's pol ynorphic
virtual void nanme() const { cout<<"Pol yDate"<<endl ;}

}

cl ass Pol yDat eTi ne: public Pol yDate

{

publ i c:

/'l the sane nmenbers as DateTine but it's pol ynorphic

voi d nane() const { cout<<"Pol yDateTi ne"<<endl;} //override Pol yDate:: name()

H

When these classes are compiled, the hypothetical compiler generates two underlying functions that correspond to
Pol yDat e: : nanme() and Pol yDat eTi nme() : : nane() :

/'l mangl ed nane of void Pol yDate::nane() const
_x_name?Pol yDat e@PK_Pol yDat e@

/1 mangl ed nane of void Pol yDat eTi nme: : nanme() const;
_x_nane?Pol yDat eTi ne@PK_Pol yDat eTi ne@

So far, there's nothing unusual about this. Y ou already know that a member function is an ordinary function that takes an
implicitt hi s argument. Because you have defined two versions of the same virtual function, you also expect to find two
corresponding functions, each of which has a distinct mangled name. However, unlike nonvirtual functions, the compiler
cannot always transform an invocation of a virtual member function into adirect function call. For example

voi d func(const Pol yDat e* pd)

pd- >nane() ;

}

func() can belocated in aseparate source file, which might have been compiled before class Pol yDat eTi me was defined.
Therefore, the invocation of the virtual function name() hasto be deferred until runtime. The compiler transforms the
function call into something such as

(* pd->_vptr[2]) (pd);

Anayzeit; the member _vpt r pointsto the internally-generated virtual table. The first member of the virtual table is usually
saved for the address of the destructor, and the second might store the address of the classst ype_i nf o. Any other
user-defined virtual member functions are located in higher positions. In this example, the address of nanme() isstored at the
third position in the virtual table (in practice, the name of the _vpt r isaso mangled). Thus, the expression pd- >_vptr|[ 2]
returns the address of the function nane() associated with the current object. pd, in the second occurrence, represents the

t hi s argument.

Clearly, defining a corresponding C struct is more precarious in this case and requires intimate acquaintance with the
compiler's preferred position of the _vpt r aswell aswithitssize. Thereis another hazard here: The value of the_vptr is
transient, which means that it might have a different value, according to the address space of the process that executes the
program. . Consequently, when an entire polymorphic object is stored in afile and retrieved later, the retrieved data cannot be
used as avalid object. For al these reasons, accessing polymorphic objects from C code is dangerous and generally needs to be
avoided.
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Virtual Inheritance

C code does not access objects that have avirtual base class either. The reason isthat avirtual base is usually represented in
the form of a pointer to a shared instance of the virtual subobject. Here again, the position of this pointer among user-defined
data members is implementation-dependent. Likewise, the pointer holds atransient value, which can change from one
execution of the program to another.

Different Access Specifiers

The fourth restriction on the legality of accessing C++ objects from C code states that all the data members of the class are
declared without an intervening access specifier. This means, theoretically, that the memory layout of a class that looks similar
to the following

cl ass Anot her Dat e

L

privat e:
i nt day;

private:
i nt nont h;

private:
int year;

publ i c:
[l constructor and destructor
Anot herDate(); //current date
~Anot her Dat e() ;
/la non-virtual menber function
bool isLeap() const;
bool operator == (const Date& other);

H

might differ from a class that has the same data members declared in the same order, abeit without any intervening access
specifiers. In other words, for class Anot her Dat e, an implementation is alowed to place the member nont h before the
member day, year before nont h, or whatever. Of course, this nullifies any compatibility with C code. However, in practice,
all current C++ compilers ignore the access specifiers and store the data members in the order of declaration. So C code that
accesses a class object that has multiple access specifiers might work -- but there is no guarantee that the compatibility will
remain in the future.

Conclusions

The creators of C++ have attempted to preserve, as closely as possible, backward compatibility with C. Indeed, almost without
exception, every C program is also avalid C++ program. Still, there are some subtle differences between the seemingly
common denominator of the two languages. Most of them, as you might have noted, derive from the improved type-safety of
C++. -- for example, the obligatory declaration of afunction prior to its usage, the need to use explicit cast of voi d pointersto
the target pointer, the deprecation of implicit i nt declarations, and the enforcement of a null terminator in a string literal.
Other discrepancies between the two languages derive from the different rules of type definition.

C code can be called directly from C++ code. Calling C++ code from C is also possible under certain conditions, but it requires
additional adjustments regarding the linkage type and it is confined to global functions exclusively. C++ objects can be
accessed from C code, as you have seen, but here again, there are stringent constraints to which you must adhere.
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"Hey, we're done!"

(Josee Lgjoie'swords right after the approval of the C++ Final Draft International Standard in the November 1997
meeting of the ANSI/ISO C++ standardization committee in Morristown, New Jersey)Introduction

The previous chapters have told the past and the present of C++. In nearly 20 years, C++ has evolved from an
experimental language into the most widely used object-oriented programming language worldwide. The importance
of standardizing C++ cannot be overemphasized. Having the ANSI/ISO endorsement has several advantages:

« Language stability -- C++ is probably the largest programming language in commercial use today. Learning
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it from scratch is a demanding and time-consuming process. It is guaranteed that, henceforth, learning C++ is
aone-time investment rather than an iterative process.

« Code stability -- The Standard specifies a set of deprecated features that might become obsolete in the future.
Other than that, Fully ANSI-compliant code is guaranteed to work in the future.

« Manpower portability -- C++ programmers can switch more easily to different environments, projects,
compilers, and companies.

« Easier Portability -- The standard defines a common denominator for all platforms and compiler vendors,
enabling easier porting of software across various operating systems and hardware architectures.

The following code sample is Standard-compliant; however, some compilers will reject it, whereas others will
compile it without complaints:

#1 ncl ude <i ostreanr
usi ng nanmespace std;
void detect _int(size_ t size)
{
swi tch(size)
{
case sizeof(char):
cout <<"char detected"<<endl;
br eak;
case sizeof (short):
cout <<"short detected"<<endl;
br eak;
case sizeof (int):
cout <<"int detected"<<endl;
br eak;
case sizeof (1 ong):
cout <<"int detected"<<endl;
br eak;

}
}

On platforms that have distinct sizes for all four integral types (for example, architectures that use 16 bits for
short,32bitsfori nt, and 64 for | ong) this code will compile and work as expected. On other platforms, where
thesizeof i nt overlaps with the size of another integral type, the compiler will complain on identical case labels.

The point to take home from this example is that the Standard does not guarantee absol ute code portability, nor does
it ensure binary compatibility. However, it facilitates software porting from one platform to another by defining a
common ground for the language, which an implementation is allowed to extend. This practice is almost universal:
Platform-specific libraries and keywords are added to almost every C++ implementation. However, an
implementation cannot alter the specifications of the Standard (otherwise, such an implementation is not
Standard-compliant). Asyou will read in the following sections, allowing platform-specific extensionsis an
important factor in the success of programming languages in general; languages that have attempted to prohibit
platform-specific extensions have failed to obtain a critical mass of users due to alack of vendor support.
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Scope of this Chapter

The previous chapters mostly focus on the hows of C++; this chapter explores the whys. It elucidates the philosophy
behind the design and evolution of C++ and compares it to the evolution of other programming languages. Some
features that almost made it into the Standard are then presented. Possible future additions to C++, including
automatic garbage collection, object persistence, and concurrency, are discussed next. Finally, theoretical and
experimental issues are discussed. The intent is not to predict the future of C++ (there is no guarantee that any of the
features discussed here will ever become an integral part of the Standard), but rather to give you a broader view of
the challenges of language design.

Some of the Features that Almost Made It into the
Standard

The standardization of C++ lasted nine years. STL alone added at least one more year to the original agenda.
However, STL was an exception. Other features that were proposed too late were not included in the Standard. The
following section lists two such features: hashed associative containers and default type arguments of function
templ ates.

Hashed Associative Containers

The Standard Template Library provides only one type of associative container -- the sorted associative container.
The STL sorted associated containersare map, mul ti map, set,andnmul ti set (see Chapter 10, "STL and
Generic Programming"). However, there is another type of associated container, the hashed associative container,
that should really be in the Standard Library but isn't there because it was proposed too late. The difference between
a sorted associative container and a hashed associative container is that the former keeps the keys sorted according
to sometotal order. For example, inamap<stri ng, i nt >, theelementsare sorted according to the
lexicographical order of the strings. A hashed associative container, on the other hand, divides the keysinto a
number of subsets, and the association of each key to its subset is done by a hash function. Consequently, searching
akey is confined to its subset rather than the entire key space. Searching a hashed associative container can
therefore be faster than searching a sorted associative container under some circumstances; but unlike sorted
associated containers, the performance is less predictable. There are already vendors that include hashed associated
containers as an extension, and it is likely that these containers will be added to the Standard in the next revision
phase.

Default Type Arguments of Function Templates

Asyou read in Chapter 9, "Templates," class templates can take default type arguments. However, the Standard
disallows default type arguments in function templates. This asymmetry between class templates and function
templates is simply an unfortunate oversight that was discovered too late to be fixed. Default type arguments of
function templates will most likely be added to C++ in the next revision of the Standard.

The Evolution of C++ Compared to Other Languages

Unlike other newer languages, C++ is not an artifact of acommercial company. C++ does not bear the trademark
sign, nor do any of its creators receive royalties for every compiler that is sold. Thus, C++ is not subjected to the
marketing ploys and dominance battles that rage among software companies these days. Another crucial factor that
distinguishes C++ from some other "would-be perfect" programming languages is the way in which it has been
designed and extended through the years.
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Some of you might recall the tremendous hype that surrounded Adain its early days. Adawas perhaps the most
presumptuous endeavor to create alanguage that was free from the deficiencies of the other programming languages
that existed at that time. Ada promised to be a 100% portable language, free of subsets and dialects. It aso provided
built-in support for multitasking and parameterized types. The design of Ada lasted more than a decade, but it was a
design by committee process rather than the design by community process that characterizes C++. The facts are
known: Ada never really became the general purpose, widely used programming language it intended to be. It is
amusing to recall today that back in 1983, when Ada was released, many believed that it was the last third
generation programming language to be created. Ironically, C++ was making its first steps at exactly that same time.
Needless to say, the design and evolution of C++ have taken aradically different path. Other third generation
languages have appeared since 1983 and -- surely -- new third generation languages will appear in the future. The
factorsthat led to the failure of Ada as auniversal and general purpose programming language can serve as alesson
in language design.

Users' Convenience

The failure of Ada can be attributed mostly to the design by committee approach. In addition, the prohibition of
platform-specific extensions deterred vendors from developing libraries and tools that supported the new language.
It isalways surprising to learn how computer scientists and language users differ in their views about the important
features of the language. C, which was created by programmers rather than by academia, offered convenience and
efficiency at the expense of readability and safety. For example, the capability to write statements such as this one

if (n=v) //did the programmer m stook assignnent for equality?

{

//...do somet hing

}

has been a source of criticism. Still, it isthis very feature that enables programmers to write a complete function that
consists of a single statement such as the following:

void strcpy (char * dst, const char * src)

whil e( *dst++ = *src++ );

}

The tedium of typing long keywordsis also an issue of debate. "Academic languages' usually advocate the use of
verbose statements that consist of complete keywords -- for example, i nt eger rather thani nt , char act er
rather than char (asin Eiffel and other similar languages), andcal | func(); rather thanf unc() ;.
Programmers, on the other hand, feel more comfortable with truncated keywords and symbols. Look at the
following:

class Derived : Base {}; //inheritance indicated by :

In other languages, inheritance is expressed by explicit keywords:

class Derived extends Base {}; //Java; full keyword indicates inheritance

C++ adopts the policy of C in this respect. Furthermore, according to Bjarne Stroustrup, one of the principlesin the
design of C++ saysthat where there is a choice between inconveniencing the compiler writer and annoying the
programmer, choose to inconvenience the compiler writer (The Evolution of C++: Language Design in the
Marketplace of Ideas, p.50). The implementations of operator overloading, enumtypes, templates, default
arguments, and Koenig lookup are instances of this approach. Programmers can get along without direct language
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support for these features, at the cost of inconvenience: Ordinary functions can be used instead of overloaded
operators, constants can replace enumtypes, and fully qualified names can make up for the lack of Koenig lookup.
Fortunately, thisis not the case in C++. Other languages, however, have adopted the opposite approach, namely
simple compiler writing at the cost of inconveniencing the programmers. Java, for instance, does not have enum
types, operator overloading, and default arguments by design. Although these features do not incur overhead of any
kind, and no one doubts their importance and usefulness, they make a compiler writer's work more difficult
(originally, Java designers claimed that operator overloading was an unnecessary complexity).

"Pay as You Go"

The benefits of object-oriented programming are not free. The automatic invocation of constructors and destructors
isvery handy, but it incurs additional overhead in the speed and the size of the program. Likewise, dynamic binding
and virtual inheritance also impose performance penalties. But none of these features is forced on the programmer.
Pure procedural C++ code (legacy C code that is ported to a C++ compiler, for example) does not pay for these
features. In other words, users -- almost without exception -- have a choice between higher-level features, which
impose a performance penalty, and lower-level features, which are free from these performance penalties but are
more susceptible to design modifications and are harder to maintain. The "pay asyou go" principle enables
programmersto use C++ in diverse application domains and apply different programming paradigms according to
their needs and priorities.

Possible Future Additions to C++

It's hard to predict which new features will be added to C++ in the future, mostly because it's hard to predict what
programming in genera will be like five or ten years from now. However, automatic garbage collection,
concurrency, and object persistence are already implemented in many other object-oriented programming languages,
in the future, they might be added to C++ as well. Rule-based programming and better support for dynamically
linked libraries are other such possible extensions that C++ might or might not have in the future. The following
sections discuss these features, and their incurred complications, in greater detail.

Automatic Garbage Collection

"If the programmer's convenience is that important, why doesn't C++ have a garbage collector?" is an often-heard
guestion (garbage collection is also discussed in Chapter 11, "Memory Management"). Clearly, an automated
garbage collector can make the life of a programmer easier. However, unlike objects, virtual member functions, and
dynamic casts, the programmer does not have the freedom of choice with garbage collection. If garbage collection is
an automatic process that is hidden from the programmer, it violates the "pay as you go" principle. The cost of
automatic garbage collection is forced on users, even if they prefer to manage dynamic memory manually.

Isit possible to add automated garbage collection as a switch (very much like the capability to turn off RTTI support
in some compilers)? Thisis an interesting question. Surely, in programs that do not use dynamic memory allocation,
the programmer might want to turn the garbage collector off. The real crux iswith programs that allocate memory
dynamically. Consider the following example:

void f()
{

int * p = newint;
/[l...use p

}

When the garbage collector is switched on, the implementation will mark the pointer p as unreferenced when f ()
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exits. Consequently, in the next invocation of the garbage collector, the memory pointed to by p will be released.
Adding agarbage collector for such simple casesis overkill, though. The programmer can usean aut o_ptr
(aut o_pt r isdiscussed in Chapter 6, "Exception handling,” and in Chapter 11) to achieve the same effect. For
example

void f()

{
auto_ptr<int> p (newint);
/[l...use p

} //lauto_ptr's destructor rel eases p

Garbage collection is more useful when dynamic memory has to be released at a different scope from where it was
allocated. For example, virtual constructors (which are discussed in Chapter 4, " Special Member Functions. Default
Constructor, Copy Constructor, Destructor, and Assignment Operator") enable the user to instantiate a new object of
the right type, without having to know the exact type of the source object (the example is repeated here for
convenience):

cl ass Browser

{
public:
Browser () ;
Browser ( const Browser&);
virtual Browser* construct()
{ return new Browser; } //virtual default constructor
virtual Browser* clone()
{ return new Browser(*this); } //virtual copy constructor
virtual ~Browser();
/...
b
cl ass HTMLEdi tor: public Browser
{
public:
HTMLEdi tor ();
HTMLEdi tor (const HTM.Editor &);
HTMLEdi tor * construct ()
{ return new HTMLEditor; }//virtual default constructor
HTMLEdi tor * cl one()
{ return new HTMLEditor (*this); } //virtual copy constructor
virtual ~HTM_Editor();
...
b

In a garbage collected environment, it is possible to use avirtual constructor in the following way:

void instantiate (Browser& br)

{

}

Here again, the system automatically registers the unnamed pointer that is returned from br . const ruct () and
marks it as unreferenced so that the garbage collector can later destroy its associated object and recycle its storage.

br.construct()->view);
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In a non-garbage collected environment, i nst ant i at e() causesamemory leak because the allocated object is
never deleted (it might cause undefined behavior as well because the allocated object is never destroyed). To enable
this programming practice, a garbage collector is mandatory rather than optional. Y ou might suggest that

I nstanti at e() istobewritten asfollows:

void instantiate (Browser& br)

{
Browser *pbr = br.construct();
pbr->vi ew() ;
del et e pbr;

}

Thisway, i nst ant i at e() can be used in a non-garbage collected environment as well asin a garbage collected
one: When the garbage collector is active, the del et e statement isignored (perhaps by some macro magic) and the
dynamically allocated object is automatically released sometime after i nst ant i at e() hasexited. Thedel et e
statement is executed only when the garbage collector isinactive. However, there is another subtle problem here.

The Problem with Late Destructor Invocation

In a non-garbage collected environment, pbr isdeleted right beforei nst ant i at e() exits, which means that the
destructor of the dynamically allocated object is also invoked at that point. Conversely, in a garbage collected
environment, the destructor will be activated at an unspecified time after i nst ant i at e() exits. The programmer
cannot predict when thiswill happen. It might take afew seconds, but it can aso take hours or even days before the
garbage collector isinvoked the next time. Now suppose that the destructor of Br owser releases alocked
resourcesuch as a database connection, alock, or amodem. The program's behavior in a garbage collected
environment is unpredictable -- the locked resource can cause a deadlock because other objects might be waiting for
it, too. In order to avert such a potential deadlock, destructors can perform only operations that do not affect other
objects, and locked resources have to be released explicitly by calling another member function. For example

void instantiate (Browser& br)

{
Browser *pbr = br.construct();
pbr->vi ew) ;
pbr->rel ease(); //release all |ocked resources
del ete pbr;
}

Thisis, in fact, the predominant technique in garbage collected languages. Then again, to ensure interoperability
between a garbage collected environment and a non-garbage collected one, programmers will have to write a
dedicated member function that releases locked resources that the class acquires -- even if that classisused in a
non-garbage collected environment. This is an unacceptable burden and a violation of the "pay asyou go" principle.
The conclusion that can be drawn from this discussion is that garbage collection cannot be optional. It is nearly
impossible to write efficient and reliable programs that work in both environments. Either automatic garbage
collection needs to be an integral part of the language, or it istotally out (asisthe casein C++ at present).

Time-Critical Applications
Garbage collection cannot be optional, as you have observed. Why not make it an integral part of the language?
Real-time systems are based on deterministic time calculations. For example, afunction that has to execute within a

time slot of 500 microseconds should never exceed its allotted time slice. However, the garbage collection processis
non-deterministic -- it isimpossible to predict when it will be invoked, and how long it will take. Therefore,
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languages that offer automatic garbage collection are usually disqualified for use in time-critical applications. Note
that real-time programming is not confined to missile launching and low-level hardware manipulation; most modern
operating systems include time-critical components that control the allocation of system resources among processes
and threads. Many communication systems are also deterministic by nature. Adding an automated garbage collector
to C++ would disqualify it from being used in such application domains. Because atoggled garbage collector isaso
impractical, C++, by design, is not a garbage collected language at present. Notwithstanding the difficulties involved
in garbage collection, there are some serious discussions of adding garbage collection to C++. It istoo early to
determine if and when this will happen.

Object Persistence

Persistent objects can be stored in nonvolatile storage and used later in other runs of the same program or in other
programs. Storing the contents of an object in persistent storage is called serialization. The process of reconstituting
aserialized object from a persistent repository is called deserialization, or reconstitution. Other object-oriented
languages support object persistence directly by means of alibrary or built-in keywords and operators. C++ does not
support object persistence directly. Designing an efficient, general purpose, platform-independent model of object
persistence is quite a challenge. This section exemplifies handmade solutions that make up for the lack of language
support for persistence. The difficulties and complications that are associated with a handmade object persistence
model demonstrate the importance of language support.

Serialization and Deserialization of Concrete Objects

Consider the following class:

cl ass Date

{
private:
I nt day;
i nt nonth;
I nt year;
[/ constructor and destructor
publi c:
Date(); //current date
~Dat e();
/I, ..
¥

Storing a Dat e object isarather straightforward operation: Every data member is written to a persistent stream
(usually thisisalocal disk file, but it can also be afile on aremote computer). The data members can be read from
the stream at alater stage. For that purpose, two additional member functions are required, one for storing the object
and the other for reading the stored object:

#i ncl ude<f st reanp
usi ng nanmespace std;
cl ass Date

{
I, ..
virtual ofstrean& Wite(ofstrean& archive);
virtual ifstrean& Read(ifstream& archive);
}

of stream& Date::Wite(ofstream& archive)
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{
archive.write( reinterpret_cast<char*> (&day), sizeof(day));
archive.wite( reinterpret _cast<char*> (&month), sizeof(nonth));
archive.write( reinterpret_cast<char*> (&wmnth), sizeof(year));
return archive;

}

ifstrean& Date::Read(ifstrean& archive)

{
archive.read( reinterpret_cast<char*> (&day), sizeof(day));
archive.read( reinterpret_cast<char*> (&mnth), sizeof(nonth));
archive.read( reinterpret_cast<char*> (&mwnth), sizeof(year));
return archive;

}

In addition to the member functions Read() and Wi t e() , it is necessary to define areconstituting constructor,
which reads a serialized object from a stream:

Date:: Date(ifstrean& archive) //reconstituting constructor

{
}

Class Hierarchies

Read(arcive);

For concrete classes such as Dat e, whose members are fundamental types, making up for the lack of standardized
persistence facilitiesis rather straightforward. The serialization and deserialization operations merely store and read
data members, respectively. Note that the class's member functions are not serialized. Thisis not a major issue of
concern because the serialized object should be a close approximation of the binary representation of the object in
memory.

Handling derived classes and classes that contain member objects is more complicated: The member functions
Read() and Wi t e() needto beredefined in every classin the hierarchy. Likewise, areconstituting constructor
isrequired for every class, asin the following example:

cl ass DateTine: public Date

L
private:
i nt secs;
I nt m nutes;
i nt hours;
public:
/...
Dat eTi ne: : Dat eTi ne(i fstream& archive); //reconstituting constructor
of stream& Wite(of strean& archive);
i fstrean& Read(ifstream& archive);
}
of stream& DateTine::Wite(ofstream& archive)
{

Date:: Wite(archive); //must invoke base class Wite() first
archive.wite( reinterpret_cast<char*> (&), sizeof(day));
archive.write( reinterpret _cast<char*> (&month), sizeof(nonth));
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archive.write( reinterpret_cast<char*> (&mnth), sizeof(year));
return archive;

}

i fstrean& DateTine:: Read(ifstream& archive)

{
Dat e: : Read( ar chi ve);
archive.read( reinterpret_cast<char*> (&day), sizeof(day));
archive.read( reinterpret_cast<char*> (&wmwnth), sizeof(nonth));
archive.read( reinterpret_cast<char*> (&wmnth), sizeof(year));
return archive;

}

Dat eTi ne: : Dat eTi ne(i fstream& archive) //reconstituting constructor

{

}
Third Party Classes

Read(arcive);

Overriding the member functions Read() and Wi t e() and serializing data members to and from a stream are
error prone and can cause maintenance difficulties. Whenever data members are added or removed, or when their
types are changed, the implementer has to modify these member functions accordingly -- but thisis still managable.
However, deriving from classes that do not define a reconstituting constructor and the member functions Read( )
and Wi t e() ismoredifficult to handle because a derived class can only serialize its own members -- not members
of its base classes. The same difficulties exist with embedded objects. How are such subobjects serialized? It might
be possible to overcome these difficulties in some cases, albeit with considerable efforts. For example, a class that
containsavect or can iterate through the vector's members and serialize them one by one. Thisisonly half the
story, though. A vector's state depends on other parameters, such asits capacity. Where can thisinformation be
stored if thevect or object itself cannot be serialized? Serializing arrays is another conundrum. One solution isto
write a header in the beginning of every serialized object that contains the number of elements. However, thiswon't
work with reference counted objects. Most implementations of st d: : st ri ng are reference counted, which means
that in the following code snippet, the five st r i ng objects share some of their data members:

#i ncl ude <string>
usi ng nanespace std;
voi d single string()

{
string sarr[4];
string s = sarr[0];
for (int i =1; i< 4; |i++)
{
sarr[i] =s;
}
}

Reference counting is an implementation detail that is hidden from the users of the class; it isimpossible to query
the st ri ng object about how many strings it represents and to serialize this datum.

Handmade object persistence is becoming much more complicated than it seemed at first, isn't it? But that's not all
yet. How might such a handmade persistence model represent templates? By simply storing specializations as
ordinary objects, the model fails to represent the relationship that exists among the specializations. Worse yet,
multiple inheritance and virtual inheritance are even more challenging. How can a handmade persistence model
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ensure that avirtual subobject is serialized only once, regardless of the number of its occurrencesin the inheritance
graph?

A Proposal for a Standardized Persistence Model

Most programmers probably givein at this point, and rightfully so. It is possible to come up with a solution even to
the virtual base class problem, but as soon as this problem is solved, other special cases such as function objects,
static data members, reference variables, and unions present more complexities. There is another drawback in the
handmade persistence model: It is not standardized, and as such, programmers have to implement it on their own.
Theresult isalack of uniformity and varying levels of reliability and performance. Without standardized support for
object persistence, a homemade persistence model is, at best, brittle and error prone. Obviously, without
standardized object persistence it isimpossible to ensure simple, portable, and efficient serialization and
deserialization of objects.

Library-Based Extensions

What might such a standardized persistence model ook like? There are two basic strategies. Oneis library-based,
whereas the other relies on core language extensions (keywords and syntax). A library-based solution is
advantageous in many respects. For example, it does not extend the core language, thus avoiding additional burden
for programmers who do not intend to use persistent objects. In addition, alibrary can be replaced by a better
implementation from another vendor without having to switch to a different compiler. This practice can be seen
today with people who uninstall the original STL implementation -- provided by the compiler vendor -- and replace
it with another one. Still, alibrary-based solution has to deal with the lack of language support for persistence, and it
must face the same difficulties and complications that were demonstrated previously (the intricacies and vagaries of
the most widely used object distribution frameworks, namely the Distributed Component Object Model (DCOM)
and the Common Object Request Broker Architecture (CORBA), prove this point). STL might have never become
what it is today without built-in support for templates and operator overloading. Furthermore, the language support
for templates was extended in various ways to provide the necessary constructs for STL (see Chapter 2, "Standard
Briefing: The Latest Addendato ANSI/ISO C++," and Chapter 9). Similarly, the support for persistence requires
core language extensions.

A New Constructor Type

The special member functions are automatically synthesized by the implementation if the programmer does not
declare them explicitly and if the implementation needs them (see Chapter 4). Similarly, alanguage extension can be
made so that another type of constructor, a reconstituting constructor, is either implicitly synthesized by the
implementation when needed, or so that it can be declared by the programmer. Asis the case with other constructor
types, the programmers need to be alowed to override the default reconstituting constructor by defining it explicitly.
The syntactic form of such a constructor must be distinct from all other constructor forms. In particular, a
reconstituting constructor is not to be identified solely by its signature. In other words, the following

class A

{

I, ..

public:

A(istreanm& repository ); //reconstituting ctor or an ordinary constructor

b

is not recommended. It might well be the case that the programmer's intention was to define an ordinary constructor
that takesani st r eamobject by reference and not a reconstituting constructor. Furthermore, such a convention
might break existing code. A better approach isto add a syntactic clue that signifies a reconstituting constructor
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exclusively. For example, by preceding the symbol >< to the constructor's name

class A

{

/...

public:

><A(istrean& repository ); //reconstituting constructor

};

the reconstituting constructor can take a single parameter of some stream type. This parameter is optional. When the
reconstituting constructor is invoked without an argument, the implementation deserializes the object from a default
input stream that can be specified in the compiler's setting (similar to the default location of the standard header
files). To automate the serialization process, a serializing destructor is aso necessary. How might such a destructor
be declared? One solution is to add another type of destructor so that classes can have two destructor types. Thisis,
however, troublesome because the object model of C++ is based on a single destructor per class. Adding another
type of destructor is ruled out then. Perhaps there is no need to define a distinct destructor type. Instead, the existing
destructor can do the serialization automatically: The compiler can insert into the destructor additional code that
performs the necessary serialization operations. (As you know, compilers already insert code into user-defined
destructors to invoke the destructors of base classes and embedded objects.)

Automating the serialization process has drawbacks, too. Not every class has to be serialized. The overhead of
serializing an object should be imposed only when the user really needs it. Furthermore, the possibility of
encountering runtime exceptions during seriaization is rather high. A full hard disk, a broken network connection,
and a corrupted repository are only a handful of the possible runtime exceptions that can occur during the process of
writing the contents of an object to a permanent storage medium. However, throwing an exception from a destructor
is highly undesirable (see Chapter 6), so perhaps automatic serialization during object destruction is too risky.
Apparently, there is no escape from explicitly calling a member function to do the job. There are other obstacles
here: How to handle the creation and serialization of an array of objects? How to synchronize changesin the
definition of aclass and the contents of an object that was serialized before the change took place? Every language
that supports object persistence deals with these difficultiesin its own way. C++ can borrow some of these ideas,
too, or it can initiate innovative ideas.

This discussion gives you some feel of why language extensions are necessary, and what kind of obstacles they
overcome. However hypothetical this discussion might seem, the evolution of C++ has been a democratic process.
Many of the changes and extensions were initiated by users of the language rather than Standardization committee
members. STL is probably the best example of this. If you have a comprehensive proposal for such an extension,
you can present it to the Standardization committee.

Support for Concurrency

Concurrency is ageneric term for multithreading and multiprocessing. Concurrent programming can effectively
improve performance and responsiveness of an application, be it aword processor or a satellite homing system. C++
does not directly address the issues of multiprocessing, threads, and thread safety. It isimportant to note, however,
that nothing in the Standard Library or the language itself disallows concurrency. Look at the example of exception
handling: In a multithreaded environment, exception handling should be thread-safe, but a single-threaded
environment can implement exception handling in a non-thread-safe manner; this is an implementation-dependent
issue. Implementations are allowed to provide the necessary facilities for concurrency, and indeed many of them do
so. Again, without direct support from the programming language, either by standardized libraries or by core
extensions, the implementation of thread safety is more complicated and highly nonportable. There have been
severa proposalsin the past for adding concurrency to C and C++. At present, however, none of these languages
supports concurrency directly.
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Multithreading

Multithreading, as opposed to multiprocessing, refers to the use of several control threadsin a single process.
Multithreading is therefore simpler to design and implement, and it enables the application to use system resources
more effectively.

Because all threads in a process share the process's data, it is essential to synchronize their operation properly so that
one thread does not interfere with another. For that purpose, synchronization objects are used. Various types of
synchronization objects, such as mutex, critical section, lock, and semaphore offer different levels of resource
allocation and protection. Unfortunately, the details and the characterizations of synchronization objects vary from
platform to platform. A standard library of synchronization objects has to be flexible enough to enable users to
combine platform-specific synchronization objects with standard objects. Thisis similar to the use of

st d: : st ri ng and nonstandard string objects in the same program. Alternatively, the standard thread library could
provide the basic interfaces of the synchronization objects, and the implementation would be platform-dependent.
There is a problem with introducing multithreading support into the Standard, however: single-threaded operating
systems such as DOS. Although these platforms are not very popular these days, they are still in use, and
implementing athread library on these platformsis nearly impossible.

Thread safety

Perhaps the Standard can provide only the necessary features for thread safety and leave the other issues -- such as
synchronization objects, event objects, instantiation, destruction of threads, and so on -- implementation-defined, as
they aretoday. Thread safety ensures that an object can be used safely in a multithreaded environment. For example,
the following thread-unsafe class

cl ass Date

L
private:
i nt day;
i nt nont h;
I nt year;
public:
Date(); //current date
~Dat e() ;
/ | accessors
int getDay() const { return day; }
int getMonth() const { return nonth; }
int getYear() const { return year; }
[l mutators
void setDay(int d) { day = d; }
void setMonth(int m) { nonth = m }
void setYear(int y) { year =vy; }
b

can become thread-safe by applying the following changesto it: At the beginning of each member function, alock
has to be acquired; in every return point of each member function, the lock has to be released.

The modified member functions now look like this:

void Date::setDay(int d)
{
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get | ock();
day = d;
rel ease_ | ock();
}
voi d Date::setMnth(int m
get | ock();
nmonth = m
rel ease_ | ock();
}
/letc.

Thisistedious, and yet very simple to automate. The recurrent pattern is very reminiscent of the "resource
acquisitionisinitialization" idiom (discussed in Chapter 5, " Object-Oriented Programming and Design"). You can
define a class whose constructor acquires alock, and whose destructor releasesit. For example

cl ass LockDat e

L

private:
Dat e& dat e;

publi c:
LockDat e(const Date& d) : date { |ock(&d); }
~LockDate() { release(&d); }

b

A real-world lock class would probably be templatized. It would aso provide timeouts and handle exceptions;
however, the definition of LockDat e suffices for this discussion. The member functions of Dat e can now be
defined as follows:

int Date::getDay() const
{
LockDate | d(this);
return day;
}
/...and so on
voi d Date::getDay(int d)

{
LockDate |d(this);
day = d;

}

/] etc.

This looks better than the original thread-safe version, but it's still tedious. Standard C++, however, goes only that
far. A fully automated thread safety requires core language extensions.

It might not seem obvious from the example why language support for thread safety is necessary. After all,
instantiating alocal object in every member function is not unacceptably complicated or inefficient. The troubles
begin with inheritance. Invoking a non-thread-safe inherited member function might have undefined resultsin this
case. To ensure thread safety in inherited member functions as well, the implementer of Dat e hasto override every
inherited member function. In each override, alock has to be acquired. Then, the parent member function is
invoked, and finally, the lock is released. With alittle help from the programming language, these operations can be
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made much easier.
Before Method and After Method

The CLOS programming language defines the concepts before method and after method. A before method isa
sequence of operations that precedes the action of a method. An after method is a sequence of operations that
succeeds the action of a method. Thus, each method (member function) in CLOS can be thought of as an object with
a corresponding constructor and destructor. CL OS provides default before method and after method for each
user-defined method. By default, the before method and after method do nothing. However, the user can override
them to perform initialization and cleanup operations. Adopting this concept in C++ with slight modifications might
simplify the implementation of thread-safe classes. One direction isto provide identical before method and after
method for every member function of aclass. That is, the before method and after method are defined only once, but
they are automatically invoked by every member function of the class (except for the constructor and destructor).
One of the benefits of this approach is that new member functions that are added to the class automatically become
thread-safe, as do inherited member functions.

Extensible Member Functions

Several programming languages enable the user to compose inherited member functions in a derived class almost
automatically. In C++, amember function of a derived class overrides rather than extends the corresponding
member of the base class. It is possible to extend the inherited function by calling it explicitly before performing any
other operationsin the overriding member function (see Chapter 5). The following example (repeated here for
convenience) shows how it is done:

cl ass rectangl e: public shape

{
/...
virtual void resize (int x, int y) //extends base's resize()
{
shape::resize(x, y); [/lexplicit call to the base's virtual function
//add functionality
int size = x*y;
}
¥

There are two problems with this approach. First, if the base class name changes, the implementer of the derived
class has to find every occurrence of the old qualified name and change it accordingly.

Another problem is that some member functions are meant to be extended rather than overridden. The best examples
are constructors and destructors (which, luckily, the compiler takes care of), but there are other such examples. The
serialization and deserialization operations that were discussed previously also need to be extended rather than
overridden in aderived class.

It is very tempting to solve the first problem by adding the keyword super to the language. Smalltalk and other
object-oriented languages already have it. Why not let C++ programmers enjoy it aswell? super refersto the
direct base class. It can be used in the following manner:

cl ass rectangl e: public shape

{
...

void resize (int x, int y) //extends base's resize()

{
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super.resize(x, y); [//the nane of the base class is not necessary anynore
//add functionality
int size = x*y;

}
}
cl ass speci al Rect: public rectangle
{
void resize (int x, int y) //extends base's resize()
{
super.resize(x, y); [/lcalls recatngle::resize()
//add nore functionality
}
b

However, super isambiguousin objects that have multiple base classes. An alternative solution isto add a
different keyword to the language, ext ensi bl e, that instructs the compiler to insert acall of the base member
function in an overriding member function automatically. For example

cl ass shape

{
public:
extensi bl e void resize();
}
cl ass rectangl e: public shape
{

public:
void resize (int x, int y) //extends base's resize()
{ //shape::resize() is inplicitly invoked at this point
//add functionality
int size = x*y;

}
¥
cl ass special Rect: public rectangle
{
void resize (int x, int y) //extends base's resize()
{ /linmplicitly calls recatngle::resize()
//...add nore functionality
}
1

ext ensi bl e isaspecialized form of vi r t ual , so the latter is unnecessary. Surely, ext ensi bl e solvesthe
first problem: If the base class hame changes, the implementer of the derived class does not have to change the
definition of the member functions. The second problem is also solved here: After amember function is declared
ext ensi bl e, the compiler automatically sees that the corresponding member function of aderived class first
invokes the member function of the base class.

Dynamically Linked Libraries
A typical C++ application consists of a statically linked executable that contains all the code and data of the

program. Although static linking is efficient in terms of speed, it'sinflexible: Every change in the code requires a
complete rebuild of the executable. When a dynamically linked library is used, the executable does not need to be

file:///D|/Cool Stuff/old/ftp/1/1/chl4/ch14.htm (16 von 18) [12.05.2000 14:46:48]


file:///D|/Cool

ANSI/ISO C++ Professional Programmer's Handbook - Chapter 14 - Concluding Remarks and Future Directions

rebuilt; the next time the application is run, it automatically picks up the new library version. The advantage of
dynamically linked librariesis a transparent upgrade of new releases of the dynamically linked library. However,
this transparent "drop in" model breaks under the object model of C++ if the data layout of an object changesin the
new release of the library; this is because the size of an object and the offset of its data members are fixed at compile
time. There have been suggestions to extend the object model of C++ so that it can support dynamic shared libraries
better. However, the costs are slower execution speed and size.

Rule-Based Programming

Many commercial databases support triggers. A trigger is a user-defined rule that instructs the system to perform
specific actions automatically whenever a certain data value changes. For example, imagine a database that contains
two tables, Person and Bank Account. Every row in Bank Account is associated with arecord in Person. Deleting a
Person record automatically triggers the deletion of all its associated Bank Account records. Rules are the equivalent
of triggersin software systems. William Tepfenhart and other researchersat AT& T Bell Laboratories have extended
C++ to support rules (UML and C++: A Practical Guide to Object-Oriented Development, p. 137). The extended
language is called R++ (the R stands for "rules"). In addition to member functions and data members, R++ defines a
third kind of class member: arule. A rule consists of a condition and an associated action that is automatically
executed when the condition evaluatesto t r ue. In C++, the programmer has to test the condition manually in order
to decide whether the associated action is to be executed, usually by aswi t ch statement or ani f statement. In
R++, thistesting is automated -- the system monitors the data members listed in the rul€'s condition, and whenever
the condition is satisfied, the rule "fires" (that is, the associated action is executed). Rule-based programming is
widely used in artificial intelligence, debugging systems, and event-driven systems. Adding this feature to C++
could considerably simplify the design and implementation of such systems.

Conclusions

Language extensions are needed to facilitate the implementation of operations that otherwise might be more difficult
or even impossible. However, there is always a tradeoff involved. To use an analogy, adding an air conditioner to a
car decreases its fuel efficiency and degrades its performance (Principles of Programming Languages. Design,
Evaluation and Implementation, p. 327). Whether it is a beneficia tradeoff depends on various factors, such as the
climate in the region where the car is used, the cost of fuel, the engine's power, and the personal preferences of its
users. Note that the air conditioner can always be turned off to gain more power and increase the fuel efficiency.
Ideally, new language features will not impose a performance penalty of any kind when they are not used. When the
programmer deliberately uses them, they should impose as little overhead as possible or no overhead at all. Thereis,
however, a notable difference between an air conditioner and language extensions. Extensions interact with one
another. For example, the imaginary keyword super has an undesirable interaction with another language feature,
namely multiple inheritance. A more realistic example is template's template arguments. The space between the | eft
two angular brackets is mandatory:

Vect or <Vector<char*> > nsg_que(10);

Otherwise, the >> sequence is parsed as the right shift operator. In other situations, the interaction is much more
complex: Koenig lookup, for instance, can have surprising results under some circumstances (as you read in Chapter
8, "Namespaces').

This chapter has presented three major proposals for language extensions: garbage collection, persistence, and
concurrency. Suggestions for less radical extensions are extensible members and rules. None of these isto be taken
lightly. The complexity involved in standardizing each of these isintensified even further when they interact with
each other. For example, a persistence model becomes even more complicated in athread-safe environment.

Considering the challenges that the designers of C++ have faced during the past two decades, you can remain
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optimistic. If you are familiar with the prestandardized implementations of container classes, RTTI, and exception
handling of several well known frameworks, you are probably aware of how the standardized container classes,

RTTI, and exception handling are much better in every way. Thiswill also be the case if any of the features that are
discussed here become part of the C++ Standard.

Contents
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