
Apache HTTP Server Documentation Version 2.0

Apache Software Foundation

June 30, 2003

ii

About The PDF Documentation

This is an early release of the PDF version of the Apache Documentation. It is converted from XML source files, and
may contain some errors and inconsistencies. If you have difficulty reading a part of this file, please consult instead
the HTML version of the documentation on the Apache HTTP Server website.

Contents

1 Release Notes 1

1.1 Upgrading to 2.0 from 1.3. 2

1.2 Overview of new features in Apache 2.0. 4

1.3 The Apache Software License, Version 1.1. 6

2 Using the Apache HTTP Server 7

2.1 Compiling and Installing. 8

2.2 Starting Apache. .15

2.3 Stopping and Restarting. .17

2.4 Configuration Files. .20

2.5 Configuration Sections. .22

2.6 Server-Wide Configuration. .28

2.7 Log Files .30

2.8 Mapping URLs to Filesystem Locations. 37

2.9 Security Tips .41

2.10 Dynamic Shared Object (DSO) Support. 45

2.11 Content Negotiation. .48

2.12 Custom Error Responses. .55

2.13 Binding .58

2.14 Multi-Processing Modules (MPMs). 60

2.15 Environment Variables in Apache. 61

2.16 Apache’s Handler Use. .66

2.17 Filters .68

2.18 suEXEC Support. .69

2.19 Apache Performance Tuning. 74

2.20 URL Rewriting Guide. .86

3 Apache Virtual Host documentation 113

3.1 Apache Virtual Host documentation. .114

iii

iv CONTENTS

3.2 Name-based Virtual Host Support. .115

3.3 Apache IP-based Virtual Host Support. .118

3.4 Dynamically configured mass virtual hosting. .120

3.5 VirtualHost Examples. .125

3.6 An In-Depth Discussion of Virtual Host Matching. .132

3.7 File Descriptor Limits. .137

3.8 Issues Regarding DNS and Apache. .139

4 Apache Server Frequently Asked Questions 143

4.1 Frequently Asked Questions. .144

4.2 Support - Frequently Asked Questions. .145

4.3 Error Messages - Frequently Asked Questions. .147

5 Apache SSL/TLS Encryption 149

5.1 Apache SSL/TLS Encryption. .150

5.2 SSL/TLS Strong Encryption: An Introduction. .151

5.3 SSL/TLS Strong Encryption: Compatibility. .159

5.4 SSL/TLS Strong Encryption: How-To. .163

5.5 SSL/TLS Strong Encryption: FAQ. .168

6 Guides, Tutorials, and HowTos 183

6.1 How-To / Tutorials .184

6.2 Authentication, Authorization and Access Control. .185

6.3 Apache Tutorial: Dynamic Content with CGI. .189

6.4 Apache Tutorial: Introduction to Server Side Includes. .195

6.5 Apache Tutorial: .htaccess files. .201

6.6 Per-user web directories. .205

6.7 Apache Tutorials .207

7 Platform-specific Notes 211

7.1 Platform Specific Notes. .212

7.2 Using Apache with Microsoft Windows. .213

7.3 Compiling Apache for Microsoft Windows. .221

7.4 Using Apache With Novell NetWare. .226

7.5 Running a High-Performance Web Server on HPUX. .232

7.6 The Apache EBCDIC Port. .233

8 Apache HTTP Server and Supporting Programs 237

8.1 Server and Supporting Programs. .238

CONTENTS v

8.2 httpd - Apache Hypertext Transfer Protocol Server. .239

8.3 ab - Apache HTTP server benchmarking tool. .241

8.4 apachectl - Apache HTTP Server Control Interface. .243

8.5 apxs - APache eXtenSion tool. .245

8.6 dbmmanage - Manage user authentication files in DBM format. 249

8.7 htdigest - manage user files for digest authentication. .251

8.8 htpasswd - Manage user files for basic authentication. .252

8.9 logresolve - Resolve IP-addresses to hostnames in Apache log files. 254

8.10 rotatelogs - Piped logging program to rotate Apache logs. .255

8.11 suexec - Switch user before executing external programs. .257

8.12 Other Programs. .258

9 Apache Miscellaneous Documentation 259

9.1 Apache Miscellaneous Documentation. .260

9.2 International Customized Server Error Messages. .261

9.3 Connections in the FINWAIT 2 state and Apache. .268

9.4 Known Problems in Clients. .273

9.5 Descriptors and Apache. .278

9.6 PATH INFO Changes in the CGI Environment. .281

10 Apache modules 283

10.1 Terms Used to Describe Modules. .284

10.2 Terms Used to Describe Directives. .285

10.3 Apache Module core. .288

10.4 Apache Module modaccess .325

10.5 Apache Module modactions .329

10.6 Apache Module modalias .331

10.7 Apache Module modasis .335

10.8 Apache Module modauth .337

10.9 Apache Module modauthanon .340

10.10Apache Module modauthdbm. .343

10.11Apache Module modauthdigest .346

10.12Apache Module modauth ldap .351

10.13Apache Module modautoindex .361

10.14Apache Module modcache. .372

10.15Apache Module modcernmeta .377

10.16Apache Module modcgi .379

10.17Apache Module modcgid .382

vi CONTENTS

10.18Apache Module modcharsetlite .383

10.19Apache Module moddav .386

10.20Apache Module moddav fs .390

10.21Apache Module moddeflate .391

10.22Apache Module moddir .396

10.23Apache Module moddisk cache .397

10.24Apache Module modecho .402

10.25Apache Module modenv .403

10.26Apache Module modexample .405

10.27Apache Module modexpires .407

10.28Apache Module modext filter .410

10.29Apache Module modfile cache .416

10.30Apache Module modheaders. .419

10.31Apache Module modimap .423

10.32Apache Module modinclude .427

10.33Apache Module modinfo .436

10.34Apache Module modisapi .437

10.35Apache Module modldap .441

10.36Apache Module modlog config .446

10.37Apache Module modlogio .451

10.38Apache Module modmemcache. .452

10.39Apache Module modmime .456

10.40Apache Module modmime magic .468

10.41Apache Module modnegotiation. .472

10.42Apache Module modnw ssl .476

10.43Apache Module modproxy .477

10.44Apache Module modproxy connect .490

10.45Apache Module modproxy ftp .491

10.46Apache Module modproxy http .492

10.47Apache Module modrewrite .493

10.48Apache Module modsetenvif. .512

10.49Apache Module modso. .516

10.50Apache Module modspeling .518

10.51Apache Module modssl .520

10.52Apache Module modstatus. .542

10.53Apache Module modsuexec .544

10.54Apache Module moduniqueid .545

CONTENTS vii

10.55Apache Module moduserdir .547

10.56Apache Module modusertrack. .549

10.57Apache Module modvhostalias .552

10.58Apache Module beos. .556

10.59Apache Module mpmcommon. .558

10.60Apache Module leader. .569

10.61Apache Module mpmnetware .570

10.62Apache Module mpmtos2 .572

10.63Apache Module perchild. .573

10.64Apache Module prefork. .577

10.65Apache Module threadpool. .580

10.66Apache Module mpmwinnt .581

10.67Apache Module worker. .582

11 Developer Documentation 585

11.1 Developer Documentation for Apache 2.0. .586

11.2 Apache 1.3 API notes. .587

11.3 Debugging Memory Allocation in APR. .603

11.4 Documenting Apache 2.0. .606

11.5 Apache 2.0 Hook Functions. .607

11.6 Converting Modules from Apache 1.3 to Apache 2.0. .610

11.7 Request Processing in Apache 2.0. .614

11.8 How filters work in Apache 2.0. .618

12 Glossary and Index 621

12.1 Glossary. .622

12.2 Module Index. .626

12.3 Directive Index .629

12.4 Directive Quick Reference. .638

viii CONTENTS

Chapter 1

Release Notes

1

2 CHAPTER 1. RELEASE NOTES

1.1 Upgrading to 2.0 from 1.3

In order to assist folks upgrading, we maintain a document describing information critical to existing Apache users.
These are intended to be brief notes, and you should be able to find more information in either the New Features (p.4)
document, or in thesrc/CHANGES file.

See also

• Overview of new features in Apache 2.0 (p.4)

Compile-Time Configuration Changes

• Apache now uses anautoconf andlibtool system for configuring the build processes (p.8) . Using this
system is similar to, but not the same as, using the APACI system in Apache 1.3.

• In addition to the usual selection of modules which you can choose to compile, Apache 2.0 has moved the main
part of request processing into Multi-Processing Modules (p.60) (MPMs).

Run-Time Configuration Changes

• Many directives that were in the core server in Apache 1.3 are now in the MPMs. If you wish the behavior of the
server to be as similar as possible to the behavior of Apache 1.3, you should select thePREFORKMPM. Other
MPMs will have different directives to control process creation and request processing.

• The proxy module (p.477) has been revamped to bring it up to HTTP/1.1. Among the important changes, proxy
access control is now placed inside a<PROXY> block rather than a<Directory proxy: > block.

• The handling ofPATHINFO (trailing path information after the true filename) has changed for some modules.
Modules that were previously implemented as a handler but are now implemented as a filter may no longer
accept requests withPATHINFO. Filters such as INCLUDES (p.427) or PHP1 are implemented on top of the
core handler, and therefore reject requests withPATHINFO. You can use theACCEPTPATH INFO directive to
force the core handler to accept requests withPATHINFO and thereby restore the ability to usePATHINFO in
server-side includes.

• TheCACHENEGOTIATEDDOCSdirective now takes the argumenton or off . Existing instances ofCACHENE-
GOTIATEDDOCSshould be replaced withCacheNegotiatedDocs on .

• The ERRORDOCUMENT directive no longer uses a quote at the beginning of the argument to indicate a text
message. Instead, you should enclose the message in double quotes. For example, existing instances of

ErrorDocument 403 "Some Message

should be replaced with

ErrorDocument 403 "Some Message"

As long as the second argument is not a valid URL or pathname, it will be treated as a text message.

• TheAccessConfig andResourceConfig directives no longer exist. Existing instances of these directives
can be replaced with theINCLUDE directive which has equivalent functionality. If you were making use of
the default values of these directives without including them in the configuration files, you may need to add
Include conf/access.conf and Include conf/srm.conf to your httpd.conf . In order to
assure that Apache reads the configuration files in the same order as was implied by the older directives, the
INCLUDE directives should be placed at the end ofhttpd.conf , with the one forsrm.conf preceding the
one foraccess.conf .

1http://www.php.net/

http://www.php.net/

1.1. UPGRADING TO 2.0 FROM 1.3 3

• TheBindAddress andPort directives no longer exist. Equivalent functionality is provided with the more
flexible L ISTEN directive.

• Another use of thePort directive in Apache-1.3 was setting the port number to be used in self-referential
URL’s. The Apache-2.0 equivalent is the newSERVERNAME syntax: it has been changed to allow specifying
both the hostnameand the port number for self-referential URL’s in one directive.

• The ServerType directive no longer exists. The method used to serve requests is now determined by the
selection of MPM. There is currently no MPM designed to be launched by inetd.

• Themod log agent andmod log referer modules which provided theAgentLog , RefererLog and
RefererIgnore directives have been removed. Agent and referer logs are still available using theCUSTOM-
LOG directive ofMOD LOG CONFIG.

• TheAddModule andClearModuleList directives no longer exist. These directives were used to ensure
that modules could be enabled in the correct order. The new Apache 2.0 API allows modules to explicitly
specify their ordering, eliminating the need for these directives.

• The FancyIndexing directive has been removed. The same functionality is available through the
FancyIndexing option to theINDEXOPTIONSdirective.

• The MultiViews content-negotiation technique provided byMOD NEGOTIATION has become more strict in its
default file matching. It will select only fromnegotiablefiles. The old behavior can be restored using the
MULTIVIEWSMATCH directive.

Misc Changes

• The moduleMOD AUTH DIGEST, which was experimental in Apache 1.3, is now a standard module.

• The mod mmapstatic module, which was experimental in Apache 1.3, has been replaced with
MOD FILE CACHE.

• The distribution has been completely reorganized so that it no longer contains an independentsrc directory. In-
stead, the sources are logically organized under the main distribution directory, and installations of the compiled
server should be directed to a separate directory.

Third Party Modules

Extensive changes were made to the server API in Apache 2.0. Existing modules designed for the Apache 1.3 API
will not work in Apache 2.0 without modification. Details are provided in the developer documentation (p.586) .

4 CHAPTER 1. RELEASE NOTES

1.2 Overview of new features in Apache 2.0

This document describes some of the major changes between the 1.3 and 2.0 versions of the Apache HTTP Server.

See also

• Upgrading to 2.0 from 1.3 (p.2)

Core Enhancements

Unix Threading On Unix systems with POSIX threads support, Apache can now run in a hybrid multiprocess, mul-
tithreaded mode. This improves scalability for many, but not all configurations.

New Build System The build system has been rewritten from scratch to be based onautoconf andlibtool . This
makes Apache’s configuration system more similar to that of other packages.

Multiprotocol Support Apache now has some of the infrastructure in place to support serving multiple protocols.
MOD ECHO has been written as an example.

Better support for non-Unix platforms Apache 2.0 is faster and more stable on non-Unix platforms such as BeOS,
OS/2, and Windows. With the introduction of platform-specific multi-processing modules (p.60) (MPMs) and
the Apache Portable Runtime (APR), these platforms are now implemented in their native API, avoiding the
often buggy and poorly performing POSIX-emulation layers.

New Apache API The API for modules has changed significantly for 2.0. Many of the module-ordering/-priority
problems from 1.3 should be gone. 2.0 does much of this automatically, and module ordering is now done
per-hook to allow more flexibility. Also, new calls have been added that provide additional module capabilities
without patching the core Apache server.

IPv6 Support On systems where IPv6 is supported by the underlying Apache Portable Runtime library, Apache
gets IPv6 listening sockets by default. Additionally, theL ISTEN, NAMEV IRTUAL HOST, andV IRTUAL HOST

directives support IPv6 numeric address strings (e.g.,"Listen [fe80::1]:8080").

Filtering Apache modules may now be written as filters which act on the stream of content as it is delivered to or from
the server. This allows, for example, the output of CGI scripts to be parsed for Server Side Include directives
using theINCLUDESfilter in MOD INCLUDE. The moduleMOD EXT FILTER allows external programs to act
as filters in much the same way that CGI programs can act as handlers.

Multilanguage Error Responses Error response messages to the browser are now provided in several languages,
using SSI documents. They may be customized by the administrator to achieve a consistent look and feel.

Simplified configuration Many confusing directives have been simplified. The often confusingPort and
BindAddress directives are gone; only theL ISTEN directive is used for IP address binding; theSERVER-
NAME directive specifies the server name and port number only for redirection and vhost recognition.

Native Windows NT Unicode Support Apache 2.0 on Windows NT now uses utf-8 for all filename encodings.
These directly translate to the underlying Unicode file system, providing multilanguage support for all Windows
NT-based installations, including Windows 2000 and Windows XP.This support does not extend to Windows
95, 98 or ME, which continue to use the machine’s local codepage for filesystem access.

Regular Expression Library Updated Apache 2.0 includes the Perl Compatible Regular Expression Library2

(PCRE). All regular expression evaluation now uses the more powerful Perl 5 syntax.

2http://www.pcre.org/

http://www.pcre.org/

1.2. OVERVIEW OF NEW FEATURES IN APACHE 2.0 5

Module Enhancements

MOD SSL New module in Apache 2.0. This module is an interface to the SSL/TLS encryption protocols provided by
OpenSSL.

MOD DAV New module in Apache 2.0. This module implements the HTTP Distributed Authoring and Versioning
(DAV) specification for posting and maintaining web content.

MOD DEFLATE New module in Apache 2.0. This module allows supporting browsers to request that content be
compressed before delivery, saving network bandwidth.

MOD AUTH LDAP New module in Apache 2.0.41. This module allows an LDAP database to be used to store cre-
dentials for HTTP Basic Authentication. A companion module,MOD LDAP provides connection pooling and
results caching.

MOD AUTH DIGEST Includes additional support for session caching across processes using shared memory.

MOD CHARSET LITE New module in Apache 2.0. This experimental module allows for character set translation or
recoding.

MOD FILE CACHE New module in Apache 2.0. This module includes the functionality ofmod mmapstatic in
Apache 1.3, plus adds further caching abilities.

MOD HEADERS This module is much more flexible in Apache 2.0. It can now modify request headers used by
MOD PROXY, and it can conditionally set response headers.

MOD PROXY The proxy module has been completely rewritten to take advantage of the new filter infrastructure
and to implement a more reliable, HTTP/1.1 compliant proxy. In addition, new<PROXY> configuration
sections provide more readable (and internally faster) control of proxied sites; overloaded<Directory
"proxy:..." > configuration are not supported. The module is now divided into specific protocol support
modules includingproxy connect , proxy ftp andproxy http .

MOD NEGOTIATION A new FORCELANGUAGEPRIORITY directive can be used to assure that the client receives a
single document in all cases, rather than NOT ACCEPTABLE or MULTIPLE CHOICES responses. In addition,
the negotiation and MultiViews algorithms have been cleaned up to provide more consistent results and a new
form of type map that can include document content is provided.

MOD AUTOINDEX Autoindex’ed directory listings can now be configured to use HTML tables for cleaner formatting,
and allow finer-grained control of sorting, including version-sorting, and wildcard filtering of the directory
listing.

MOD INCLUDE New directives allow the default start and end tags for SSI elements to be changed and allow for
error and time format configuration to take place in the main configuration file rather than in the SSI document.
Results from regular expression parsing and grouping (now based on Perl’s regular expression syntax) can be
retrieved usingMOD INCLUDE’s variables$0 .. $9 .

MOD AUTH DBM Now supports multiple types of DBM-like databases using theAUTHDBMTYPE directive.

6 CHAPTER 1. RELEASE NOTES

1.3 The Apache Software License, Version 1.1

Copyright (c) 2000-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledg-
ment:

"This product includes software developed by the Apache Software

Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowl-
edgments normally appear.

4. The names" Apache" and " Apache Software Foundation" must not be used to endorse or promote prod-
ucts derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called" Apache" , nor may" Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

=⇒THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foun-
dation. For more information on the Apache Software Foundation, please see<http://www.apache.org/>.

Portions of this software are based upon public domain software originally written at the National Center for Super-
computing Applications, University of Illinois, Urbana-Champaign.

Chapter 2

Using the Apache HTTP Server

7

8 CHAPTER 2. USING THE APACHE HTTP SERVER

2.1 Compiling and Installing

This document covers compilation and installation of Apache on Unix and Unix-like systems only. For compiling and
installation on Windows, see Using Apache with Microsoft Windows (p.213) . For other platforms, see the platform
(p. 212) documentation.

Apache 2.0’s configuration and installation environment has changed completely from Apache 1.3. Apache 1.3 used
a custom set of scripts to achieve easy installation. Apache 2.0 now useslibtool andautoconf to create an
environment that looks like many other Open Source projects.

See also

• Starting Apache (p.15)

• Stopping and Restarting (p.17)

Overview for the impatient

Download $ lynx http://www.apache.org/dist/httpd/httpd-2 0 NN.tar.gz

Extract $ gzip -d httpd-2 0 NN.tar.gz
$ tar xvf httpd-2 0 NN.tar

Configure $./configure --prefix= PREFIX

Compile $ make

Install $ make install

Customize $ vi PREFIX/conf/httpd.conf

Test $ PREFIX/bin/apachectl start

NN must be replaced with the current minor version number, andPREFIXmust be replaced with the filesystem path
under which the server should be installed. IfPREFIX is not specified, it defaults to/usr/local/apache2 .

Each section of the compilation and installation process is described in more detail below, beginning with the require-
ments for compiling and installing Apache HTTPD.

Requirements

The following requirements exist for building Apache:

Disk Space Make sure you have at least 50 MB of temporary free disk space available. After installation Apache
occupies approximately 10 MB of disk space. The actual disk space requirements will vary considerably based
on your chosen configuration options and any third-party modules.

ANSI-C Compiler and Build System Make sure you have an ANSI-C compiler installed. The GNU C compiler
(GCC)1 from the Free Software Foundation (FSF)2 is recommended (version 2.7.2 is fine). If you don’t have
GCC then at least make sure your vendor’s compiler is ANSI compliant. In addition, yourPATHmust contain
basic build tools such asmake.

Accurate time keeping Elements of the HTTP protocol are expressed as the time of day. So, it’s time to investi-
gate setting some time synchronization facility on your system. Usually thentpdate or xntpd programs
are used for this purpose which are based on the Network Time Protocol (NTP). See the Usenet newsgroup
comp.protocols.time.ntp3 and the NTP homepage4 for more details about NTP software and public time servers.

1http://www.gnu.org/software/gcc/gcc.html
2http://www.gnu.org/
3news:comp.protocols.time.ntp
4http://www.eecis.udel.edu/˜ntp/

http://www.gnu.org/software/gcc/gcc.html
http://www.gnu.org/
news:comp.protocols.time.ntp
http://www.eecis.udel.edu/~ntp/

2.1. COMPILING AND INSTALLING 9

Perl 55 [OPTIONAL] For some of the support scripts like apxs (p.245) or dbmmanage (p.249) (which are written
in Perl) the Perl 5 interpreter is required (versions 5.003 or newer are sufficient). If no such interpreter is found
by the ‘configure ’ script there is no harm. Of course, you still can build and install Apache 2.0. Only those
support scripts cannot be used. If you have multiple Perl interpreters installed (perhaps a Perl 4 from the vendor
and a Perl 5 from your own), then it is recommended to use the--with-perl option (see below) to make
sure the correct one is selected by./configure .

Download

Apache can be downloaded from the Apache HTTP Server download site6 which lists several mirrors. You’ll find here
the latest stable release.

After downloading, especially if a mirror site is used, it is important to verify that you have a complete and unmodified
version of the Apache HTTP Server. This can be accomplished by testing the downloaded tarball against the PGP
signature. This, in turn, is a two step procedure. First, you must obtain theKEYS7 file from the Apache distribution
site, too. (To assure that theKEYSfile itself has not been modified, it may be a good idea to use a file from a previous
distribution of Apache or import the keys from a public key server.) The keys are imported into your personal key ring
using one of the following commands (depending on your pgp version):

$ pgp < KEYS

or

$ gpg --import KEYS

The next step is to test the tarball against the PGP signature, which should always be obtained from the main Apache
website8. A link to the signature file is placed behind the corresponding download link or may be found in the particular
directory at the Apache distribution site9. Its filename is identical to the source tarball with the addition of.asc . Then
you can check the distribution with one of the following commands (again, depending on your pgp version):

$ pgp httpd-2 0 NN.tar.gz.asc

or

$ gpg --verify httpd-2 0 NN.tar.gz.asc

You should receive a message like

Good signature from user "Martin Kraemer <martin@apache.org >".

Depending on the trust relationships contained in your key ring, you may also receive a message saying that the
relationship between the key and the signer of the key cannot be verified. This is not a problem if you trust the
authenticity of theKEYSfile.

6http://httpd.apache.org/download.cgi
7http://www.apache.org/dist/httpd/KEYS
8http://httpd.apache.org/download.cgi
9http://www.apache.org/dist/httpd/

http://httpd.apache.org/download.cgi
http://www.apache.org/dist/httpd/KEYS
http://httpd.apache.org/download.cgi
http://www.apache.org/dist/httpd/

10 CHAPTER 2. USING THE APACHE HTTP SERVER

Extract

Extracting the source from the Apache HTTPD tarball is a simple matter of uncompressing, and then untarring:

$ gzip -d httpd-2 0 NN.tar.gz

$ tar xvf httpd-2 0 NN.tar

This will create a new directory under the current directory containing the source code for the distribution. You should
cd into that directory before proceeding with compiling the server.

Configuring the source tree

The next step is to configure the Apache source tree for your particular platform and personal requirements. This is
done using the scriptconfigure included in the root directory of the distribution. (Developers downloading the
CVS version of the Apache source tree will need to haveautoconf and libtool installed and will need to run
buildconf before proceeding with the next steps. This is not necessary for official releases.)

To configure the source tree using all the default options, simply type./configure . To change the default options,
configure accepts a variety of variables and command line options. Environment variables are generally placed
before the./configure command, while other options are placed after. The most important option here is the
location prefix where Apache is to be installed later, because Apache has to be configured for this location to work
correctly. But there are a lot of other options available for your pleasure.

For a short impression of what possibilities you have, here is a typical example which compiles Apache for the instal-
lation tree/sw/pkg/apache with a particular compiler and flags plus the two additional modulesMOD REWRITE

andMOD SPELING for later loading through the DSO mechanism:

$ CC="pgcc" CFLAGS="-O2" \
./configure --prefix=/sw/pkg/apache \
--enable-rewrite=shared \
--enable-speling=shared

Whenconfigure is run it will take several minutes to test for the availability of features on your system and build
Makefiles which will later be used to compile the server.

The easiest way to find all of the configuration flags for Apache is to run./configure --help . What follows is
a brief description of most of the arguments and environment variables.

Environment Variables

Theautoconf build process uses several environment variables to configure the build environment. In general, these
variables change the method used to build Apache, but not the eventual features of the server. These variables can be
placed in the environment before invokingconfigure , but it is usually easier to specify them on theconfigure
command line as demonstrated in the example above.

CC=... The name of the C compiler command.

CPPFLAGS=... Miscellaneous C preprocessor and compiler options.

CFLAGS=... Debugging and optimization options for the C compiler.

LDFLAGS=... Miscellaneous options to be passed to the linker.

2.1. COMPILING AND INSTALLING 11

LIBS=... Library location information ("-L" and"-l" options) to pass to the linker.

INCLUDES=... Header file search directories ("-I dir ").

TARGET=... [Default: apache] Name of the executable which will be built.

NOTESTCPPFLAGS=...

NOTESTCFLAGS=...

NOTESTLDFLAGS=...

NOTESTLIBS=... These variables share the same function as their non-NOTESTnamesakes. However, the vari-
ables are applied to the build process only after autoconf has performed its feature testing. This allows the
inclusion of flags which will cause problems during feature testing, but must be used for the final compilation.

SHLIB PATH=... Options which specify shared library paths for the compiler and linker.

autoconf Output Options

--help Prints the usage message including all available options, but does not actually configure anything.

--quiet Prevents the printing of the usual"checking..." messages.

--verbose Prints much more information during the configuration process, including the names of all the files
examined.

Pathnames

There are currently two ways to configure the pathnames under which Apache will install its files. First, you can
specify a directory and have Apache install itself under that directory in its default locations.

--prefix= PREFIX [Default: /usr/local/apache2] Specifies the directory under which the Apache files
will be installed.

It is possible to specify that architecture-dependent files should be placed under a different directory.

--exec-prefix= EPREFIX [Default: PREFIX] Specifies the directory under which architecture-dependent files
will be placed.

The second, and more flexible way to configure the install path locations for Apache is using theconfig.layout
file. Using this method, it is possible to separately specify the location for each type of file within the Apache
installation. Theconfig.layout file contains several example configurations, and you can also create your
own custom configuration following the examples. The different layouts in this file are grouped into<Layout
FOO>... </Layout > sections and referred to by name as inFOO.

--enable-layout= LAYOUT Use the named layout in theconfig.layout file to specify the installation paths.

12 CHAPTER 2. USING THE APACHE HTTP SERVER

Modules

Apache is a modular server. Only the most basic functionality is included in the core server. Extended features
are available in various modules. During the configuration process, you must select which modules to compile
for use with your server. You can view a list of modules (p.626) included in the documentation. Those modules
with a status (p.284) of " Base" are included by default and must be specifically disabled if you do not want them
(e.g. MOD USERDIR). Modules with any other status must be specifically enabled if you wish to use them (e.g.
MOD EXPIRES).

There are two ways for a module to be compiled and used with Apache. Modules may bestatically compiled, which
means that they are permanently included in the Apache binary. Alternatively, if your operating system supports
Dynamic Shared Objects (DSOs) andautoconf can detect that support, then modules may bedynamically compiled.
DSO modules are stored separately from the Apache binary, and may be included or excluded from the server using
the run-time configuration directives provided byMOD SO. The modso is automatically included in the server if any
dynamic modules are included in the compilation. If you would like to make your server capable of loading DSOs
without actually compiling any dynamic modules, you can explicitly--enable-so .

--enable- MODULE[=shared] Compile and include the moduleMODULE. The identifierMODULE is the
Module Identifier (p.284) from the module documentation without the" module" string. To compile the
module as a DSO, add the option=shared .

--disable- MODULERemove the moduleMODULE which would otherwise be compiled and included.

--enable-modules= MODULE-LIST Compile and include the modules listed in the space-separatedMODULE-
LIST.

--enable-mods-shared= MODULE-LIST Compile and include the modules in the space-separatedMODULE-
LIST as dynamically loadable (DSO) modules.

The MODULE-LIST in the --enable-modules and --enable-mods-shared options is usually a space-
separated list of module identifiers. For example, to enableMOD DAV andMOD INFO, you can either use

./configure --enable-dav --enable-info

or, equivalently,

./configure --enable-modules="dav info"

In addition, the special keywordsall or most can be used to add all or most of the modules in one step. You can
then remove any modules that you do not want with the--disable- MODULEoption. For example, to include all
modules as DSOs with the exception ofMOD INFO, you can use

./configure --enable-mods-shared=all --disable-info

In addition to the standard set of modules, Apache 2.0 also includes a choice of Multi-Processing Modules (p.60)
(MPMs). One, and only one MPM must be included in the compilation process. The default MPMs for each platform
are listed on the MPM documentation page (p.60) , but can be overridden on theconfigure command line.

--with-mpm= NAMEChoose the mpmNAME.

To activate an MPM called mpmname, you can use

./configure --with-mpm=mpm name

2.1. COMPILING AND INSTALLING 13

DBM

Several Apache features, includingMOD AUTH DBM and MOD REWRITE’s DBM REWRITEMAP use simple
key/value databases for quick lookups of information. Apache includes SDBM with its source-code, so this database
is always available. If you would like to use other database types, the followingconfigure options are available:

--with-gdbm[= path]

--with-ndbm[= path]

--with-berkeley-db[= path] If no path is specified, Apache will search for the include files and libraries in
the usual search paths. An explicitpath will cause Apache to look inpath/lib andpath/include for the
relevant files. Finally, thepathmay specify specific include and library paths separated by a colon.

Suexec

Apache includes a support program called suexec (p.69) which can be used to isolate user CGI programs. However,
if suexec is improperly configured, it can cause serious security problems. Therefore, you should carefully read and
consider the suexec documentation (p.69) before implementing this feature.

Build

Now you can build the various parts which form the Apache package by simply running the command:

$ make

Please be patient here, since a base configuration takes approximately 3 minutes to compile under a Pentium III/Linux
2.2 system, but this will vary widely depending on your hardware and the number of modules which you have enabled.

Install

Now its time to install the package under the configured installationPREFIX (see--prefix option above) by
running:

$ make install

If you are upgrading, the installation will not overwrite your configuration files or documents.

Customize

Next, you can customize your Apache HTTP server by editing the configuration files (p.20) underPREFIX/conf/ .

$ vi PREFIX/conf/httpd.conf

Have a look at the Apache manual under docs/manual/ (p.??) or consult http://httpd.apache.org/docs-2.0/ for the most
recent version of this manual and a complete reference of available configuration directives (p.629) .

14 CHAPTER 2. USING THE APACHE HTTP SERVER

Test

Now you can start (p.15) your Apache HTTP server by immediately running:

$ PREFIX/bin/apachectl start

and then you should be able to request your first document via URLhttp://localhost/ . The web page you see
is located under theDOCUMENTROOT which will usually bePREFIX/htdocs/ . Then stop (p.17) the server again
by running:

$ PREFIX/bin/apachectl stop

2.2. STARTING APACHE 15

2.2 Starting Apache

On Windows, Apache is normally run as a service on Windows NT, 2000 and XP, or as a console application on
Windows 9x and ME. For details, see Running Apache as a Service (p.213) and Running Apache as a Console
Application (p.213) .

On Unix, the httpd (p.239) program is run as a daemon that executes continuously in the background to handle
requests. This document describes how to invokehttpd .

See also

• Stopping and Restarting (p.17)

• httpd (p.239)

• apachectl (p.243)

How Apache Starts

If the L ISTEN specified in the configuration file is default of 80 (or any other port below 1024), then it is necessary to
have root privileges in order to start apache, so that it can bind to this privileged port. Once the server has started and
performed a few preliminary activities such as opening its log files, it will launch severalchild processes which do the
work of listening for and answering requests from clients. The mainhttpd process continues to run as the root user,
but the child processes run as a less privileged user. This is controlled by the selected Multi-Processing Module (p.
60) .

The recommended method of invoking thehttpd executable is to use the apachectl (p.243) control script. This script
sets certain environment variables that are necessary forhttpd to function correctly under some operating systems,
and then invokes thehttpd binary. apachectl will pass through any command line arguments, so anyhttpd
options may also be used withapachectl . You may also directly edit theapachectl script by changing the
HTTPDvariable near the top to specify the correct location of thehttpd binary and any command-line arguments
that you wish to bealwayspresent.

The first thing thathttpd does when it is invoked is to locate and read the configuration file (p.20) httpd.conf .
The location of this file is set at compile-time, but it is possible to specify its location at run time using the-f
command-line option as in

/usr/local/apache2/bin/apachectl -f /usr/local/apache/conf/httpd.conf

If all goes well during startup, the server will detach from the terminal and the command prompt will return almost
immediately. This indicates that the server is up and running. You can then use your browser to connect to the server
and view the test page in theDOCUMENTROOT directory and the local copy of the documentation linked from that
page.

Errors During Start-up

If Apache suffers a fatal problem during startup, it will write a message describing the problem either to the console
or to theERRORLOG before exiting. One of the most common error messages is"Unable to bind to Port
..." . This message is usually caused by either:

• Trying to start the server on a privileged port when not logged in as the root user; or

• Trying to start the server when there is another instance of Apache or some other web server already bound to
the same Port.

For further trouble-shooting instructions, consult the Apache FAQ (p.144) .

16 CHAPTER 2. USING THE APACHE HTTP SERVER

Starting at Boot-Time

If you want your server to continue running after a system reboot, you should add a call toapachectl to your
system startup files (typicallyrc.local or a file in anrc.N directory). This will start Apache as root. Before doing
this ensure that your server is properly configured for security and access restrictions.

The apachectl script is designed to act like a standard SysV init script; it can take the argumentsstart ,
restart , and stop and translate them into the appropriate signals tohttpd . So you can often simply link
apachectl into the appropriate init directory. But be sure to check the exact requirements of your system.

Additional Information

Additional information about the command-line options of httpd (p.239) and apachectl (p.243) as well as other
support programs included with the server is available on the Server and Supporting Programs (p.238) page. There is
also documentation on all the modules (p.626) included with the Apache distribution and the directives (p.629) that
they provide.

2.3. STOPPING AND RESTARTING 17

2.3 Stopping and Restarting

This document covers stopping and restarting Apache on Unix-like systems. Windows NT, 2000 and XP users should
see Running Apache as a Service (p.213) and Windows 9x and ME users should see Running Apache as a Console
Application (p.213) for information on how to control Apache on those platforms.

See also

• httpd (p.239)

• apachectl (p.243)

Introduction

In order to stop or restart Apache, you must send a signal to the runninghttpd processes. There are two ways to
send the signals. First, you can use the unixkill command to directly send signals to the processes. You will notice
manyhttpd executables running on your system, but you should not send signals to any of them except the parent,
whose pid is in thePIDFILE. That is to say you shouldn’t ever need to send signals to any process except the parent.
There are three signals that you can send the parent:TERM, HUP, andUSR1, which will be described in a moment.

To send a signal to the parent you should issue a command such as:

kill -TERM ‘cat /usr/local/apache2/logs/httpd.pid‘

The second method of signaling thehttpd processes is to use the-k command line options:stop , restart , and
graceful , as described below. These are arguments to the httpd (p.239) binary, but we recommend that you send
them using the apachectl (p.243) control script, which will pass them through tohttpd .

After you have signaledhttpd , you can read about its progress by issuing:

tail -f /usr/local/apache2/logs/error log

Modify those examples to match yourSERVERROOT andPIDFILE settings.

Stop Now

Signal: TERM apachectl -k stop

Sending theTERMor stop signal to the parent causes it to immediately attempt to kill off all of its children. It may
take it several seconds to complete killing off its children. Then the parent itself exits. Any requests in progress are
terminated, and no further requests are served.

Graceful Restart

Signal: USR1 apachectl -k graceful

TheUSR1or graceful signal causes the parent process toadvisethe children to exit after their current request (or
to exit immediately if they’re not serving anything). The parent re-reads its configuration files and re-opens its log
files. As each child dies off the parent replaces it with a child from the newgenerationof the configuration, which
begins serving new requests immediately.

18 CHAPTER 2. USING THE APACHE HTTP SERVER

=⇒On certain platforms that do not allowUSR1to be used for a graceful restart, an alternative
signal may be used (such asWINCH). The commandapachectl graceful will send the
right signal for your platform.

This code is designed to always respect the process control directive of the MPMs, so the number of processes and
threads available to serve clients will be maintained at the appropriate values throughout the restart process. Further-
more, it respectsSTARTSERVERSin the following manner: if after one second at leastSTARTSERVERSnew children
have not been created, then create enough to pick up the slack. Hence the code tries to maintain both the number of
children appropriate for the current load on the server, and respect your wishes with theSTARTSERVERSparameter.

Users of theMOD STATUS will notice that the server statistics arenot set to zero when aUSR1is sent. The code was
written to both minimize the time in which the server is unable to serve new requests (they will be queued up by the
operating system, so they’re not lost in any event) and to respect your tuning parameters. In order to do this it has to
keep thescoreboardused to keep track of all children across generations.

The status module will also use aGto indicate those children which are still serving requests started before the graceful
restart was given.

At present there is no way for a log rotation script usingUSR1to know for certain that all children writing the pre-
restart log have finished. We suggest that you use a suitable delay after sending theUSR1signal before you do anything
with the old log. For example if most of your hits take less than 10 minutes to complete for users on low bandwidth
links then you could wait 15 minutes before doing anything with the old log.

=⇒If your configuration file has errors in it when you issue a restart then your parent will not
restart, it will exit with an error. In the case of graceful restarts it will also leave children
running when it exits. (These are the children which are" gracefully exiting" by handling their
last request.) This will cause problems if you attempt to restart the server – it will not be able to
bind to its listening ports. Before doing a restart, you can check the syntax of the configuration
files with the-t command line argument (see httpd (p.239)). This still will not guarantee that
the server will restart correctly. To check the semantics of the configuration files as well as the
syntax, you can try startinghttpd as a non-root user. If there are no errors it will attempt to
open its sockets and logs and fail because it’s not root (or because the currently runninghttpd
already has those ports bound). If it fails for any other reason then it’s probably a config file
error and the error should be fixed before issuing the graceful restart.

Restart Now

Signal: HUP apachectl -k restart

Sending theHUPor restart signal to the parent causes it to kill off its children like inTERM, but the parent doesn’t
exit. It re-reads its configuration files, and re-opens any log files. Then it spawns a new set of children and continues
serving hits.

Users ofMOD STATUS will notice that the server statistics are set to zero when aHUPis sent.

=⇒If your configuration file has errors in it when you issue a restart then your parent will not
restart, it will exit with an error. See above for a method of avoiding this.

Appendix: signals and race conditions

Prior to Apache 1.2b9 there were severalrace conditionsinvolving the restart and die signals (a simple description
of race condition is: a time-sensitive problem, as in if something happens at just the wrong time it won’t behave as
expected). For those architectures that have the" right" feature set we have eliminated as many as we can. But it
should be noted that there still do exist race conditions on certain architectures.

2.3. STOPPING AND RESTARTING 19

Architectures that use an on diskSCOREBOARDFILE have the potential to corrupt their scoreboards. This can result
in the" bind: Address already in use" (afterHUP) or " long lost child came home!" (afterUSR1). The former is a fatal
error, while the latter just causes the server to lose a scoreboard slot. So it might be advisable to use graceful restarts,
with an occasional hard restart. These problems are very difficult to work around, but fortunately most architectures
do not require a scoreboard file. See theSCOREBOARDFILE documentation for a architecture uses it.

All architectures have a small race condition in each child involving the second and subsequent requests on a persistent
HTTP connection (KeepAlive). It may exit after reading the request line but before reading any of the request headers.
There is a fix that was discovered too late to make 1.2. In theory this isn’t an issue because the KeepAlive client has
to expect these events because of network latencies and server timeouts. In practice it doesn’t seem to affect anything
either – in a test case the server was restarted twenty times per second and clients successfully browsed the site without
getting broken images or empty documents.

20 CHAPTER 2. USING THE APACHE HTTP SERVER

2.4 Configuration Files

This document describes the files used to configure the Apache HTTP server.

Main Configuration Files

Related Modules
MOD MIME

Related Directives
<IFDEFINE>
INCLUDE

TYPESCONFIG

Apache is configured by placing directives (p.629) in plain text configuration files. The main configuration file is
usually calledhttpd.conf . The location of this file is set at compile-time, but may be overridden with the-f
command line flag. In addition, other configuration files may be added using theINCLUDE directive, and wildcards
can be used to include many configuration files. Any directive may be placed in any of these configuration files.
Changes to the main configuration files are only recognized by Apache when it is started or restarted.

The server also reads a file containing mime document types; the filename is set by theTYPESCONFIG directive, and
is mime.types by default.

Syntax of the Configuration Files

Apache configuration files contain one directive per line. The back-slash" \" may be used as the last character on
a line to indicate that the directive continues onto the next line. There must be no other characters or white space
between the back-slash and the end of the line.

Directives in the configuration files are case-insensitive, but arguments to directives are often case sensitive. Lines that
begin with the hash character" #" are considered comments, and are ignored. Comments maynot be included on a
line after a configuration directive. Blank lines and white space occurring before a directive are ignored, so you may
indent directives for clarity.

You can check your configuration files for syntax errors without starting the server by usingapachectl
configtest or the-t command line option.

Modules

Related Modules
MOD SO

Related Directives
<IFMODULE>
LOADMODULE

Apache is a modular server. This implies that only the most basic functionality is included in the core server. Extended
features are available through modules (p.626) which can be loaded into Apache. By default, a base (p.284) set of
modules is included in the server at compile-time. If the server is compiled to use dynamically loaded (p.45) modules,
then modules can be compiled separately and added at any time using theLOADMODULE directive. Otherwise,
Apache must be recompiled to add or remove modules. Configuration directives may be included conditional on a
presence of a particular module by enclosing them in an<IFMODULE> block.

To see which modules are currently compiled into the server, you can use the-l command line option.

2.4. CONFIGURATION FILES 21

Scope of Directives

Related Modules Related Directives
<DIRECTORY>
<DIRECTORYMATCH>
<FILES>
<FILESMATCH>
<LOCATION>
<LOCATIONMATCH>
<V IRTUAL HOST>

Directives placed in the main configuration files apply to the entire server. If you wish to change the configuration for
only a part of the server, you can scope your directives by placing them in<DIRECTORY>, <DIRECTORYMATCH>,
<FILES>, <FILESMATCH>, <LOCATION>, and<LOCATIONMATCH> sections. These sections limit the applica-
tion of the directives which they enclose to particular filesystem locations or URLs. They can also be nested, allowing
for very fine grained configuration.

Apache has the capability to serve many different websites simultaneously. This is called Virtual Hosting (p.114)
. Directives can also be scoped by placing them inside<V IRTUAL HOST> sections, so that they will only apply to
requests for a particular website.

Although most directives can be placed in any of these sections, some directives do not make sense in some contexts.
For example, directives controlling process creation can only be placed in the main server context. To find which
directives can be placed in which sections, check the Context (p.285) of the directive. For further information, we
provide details on How Directory, Location and Files sections work (p.22) .

.htaccess Files

Related Modules Related Directives
ACCESSFILENAME

ALLOWOVERRIDE

Apache allows for decentralized management of configuration via special files placed inside the web tree. The special
files are usually called.htaccess , but any name can be specified in theACCESSFILENAME directive. Directives
placed in.htaccess files apply to the directory where you place the file, and all sub-directories. The.htaccess
files follow the same syntax as the main configuration files. Since.htaccess files are read on every request, changes
made in these files take immediate effect.

To find which directives can be placed in.htaccess files, check the Context (p.285) of the directive. The server ad-
ministrator further controls what directives may be placed in.htaccess files by configuring theALLOWOVERRIDE

directive in the main configuration files.

For more information on.htaccess files, see the .htaccess tutorial (p.201) .

22 CHAPTER 2. USING THE APACHE HTTP SERVER

2.5 Configuration Sections

Directives in the configuration files (p.20) may apply to the entire server, or they may be restricted to apply only to
particular directories, files, hosts, or URLs. This document describes how to use configuration section containers or
.htaccess files to change the scope of other configuration directives.

Types of Configuration Section Containers

Related Modules
CORE

MOD PROXY

Related Directives
<DIRECTORY>
<DIRECTORYMATCH>
<FILES>
<FILESMATCH>
<IFDEFINE>
<IFMODULE>
<LOCATION>
<LOCATIONMATCH>
<PROXY>
<PROXYMATCH>
<V IRTUAL HOST>

There are two basic types of containers. Most containers are evaluated for each request. The enclosed directives are
applied only for those requests that match the containers. The<IFDEFINE> and<IFMODULE> containers, on the
other hand, are evaluated only at server startup and restart. If their conditions are true at startup, then the enclosed
directives will apply to all requests. If the conditions are not true, the enclosed directives will be ignored.

The<IFDEFINE> directive encloses directives that will only be applied if an appropriate parameter is defined on the
httpd command line. For example, with the following configuration, all requests will be redirected to another site
only if the server is started usinghttpd -DClosedForNow :

<IfDefine ClosedForNow >
Redirect / http://otherserver.example.com/

</IfDefine >

The <IFMODULE> directive is very similar, except it encloses directives that will only be applied if a particular
module is available in the server. The module must either be statically compiled in the server, or it must be dynamically
compiled and itsLOADMODULE line must be earlier in the configuration file. This directive should only be used if
you need your configuration file to work whether or not certain modules are installed. It should not be used to enclose
directives that you want to work all the time, because it can suppress useful error messages about missing modules.

In the following example, theM IMEMAGICFILES directive will be applied only ifMOD MIME MAGIC is available.

<IfModule mod mime magic.c >
MimeMagicFile conf/magic

</IfModule >

Both <IFDEFINE> and<IFMODULE> can apply negative conditions by preceding their test with" !" . Also, these
sections can be nested to achieve more complex restrictions.

2.5. CONFIGURATION SECTIONS 23

Filesystem and Webspace

The most commonly used configuration section containers are the ones that change the configuration of particular
places in the filesystem or webspace. First, it is important to understand the difference between the two. The filesystem
is the view of your disks as seen by your operating system. For example, in a default install, Apache resides at
/usr/local/apache2 in the Unix filesystem or"c:/Program Files/Apache Group/Apache2" in the
Windows filesystem. (Note that forward slashes should always be used as the path separator in Apache, even for
Windows.) In contrast, the webspace is the view of your site as delivered by the web server and seen by the client. So
the path/dir/ in the webspace corresponds to the path/usr/local/apache2/htdocs/dir/ in the filesystem
of a default Apache install on Unix. The webspace need not map directly to the filesystem, since webpages may be
generated dynamically from databases or other locations.

Filesystem Containers

The <DIRECTORY> and<FILES> directives, along with their regex counterparts, apply directives to parts of the
filesystem. Directives enclosed in a<DIRECTORY> section apply to the named filesystem directory and all subdirec-
tories of that directory. The same effect can be obtained using .htaccess files (p.201) . For example, in the following
configuration, directory indexes will be enabled for the/var/web/dir1 directory and all subdirectories.

<Directory /var/web/dir1 >
Options +Indexes

</Directory >

Directives enclosed in a<FILES> section apply to any file with the specified name, regardless of what directory it lies
in. So for example, the following configuration directives will, when placed in the main section of the configuration
file, deny access to any file namedprivate.html regardless of where it is found.

<Files private.html >
Order allow,deny
Deny from all

</Files >

To address files found in a particular part of the filesystem, the<FILES> and <DIRECTORY> sections can be
combined. For example, the following configuration will deny access to/var/web/dir1/private.html ,
/var/web/dir1/subdir2/private.html , /var/web/dir1/subdir3/private.html , and any
other instance ofprivate.html found under the/var/web/dir1/ directory.

<Directory /var/web/dir1 >
<Files private.html >
Order allow,deny
Deny from all
</Files >

</Directory >

Webspace Containers

The <LOCATION> directive and its regex counterpart, on the other hand, change the config-
uration for content in the webspace. For example, the following configuration prevents ac-
cess to any URL-path that begins in /private. In particular, it will apply to requests for

24 CHAPTER 2. USING THE APACHE HTTP SERVER

http://yoursite.example.com/private , http://yoursite.example.com/private123 , and
http://yoursite.example.com/private/dir/file.html as well as any other requests starting with
the/private string.

<Location /private >
Order Allow,Deny
Deny from all

</Location >

The <LOCATION> directive need not have anything to do with the filesystem. For example, the following exam-
ple shows how to map a particular URL to an internal Apache handler provided byMOD STATUS. No file called
server-status needs to exist in the filesystem.

<Location /server-status >
SetHandler server-status

</Location >

Wildcards and Regular Expressions

The <DIRECTORY>, <FILES>, and<LOCATION> directives can each use shell-style wildcard characters as in
fnmatch from the C standard library. The character" * " matches any sequence of characters," ?" matches any
single character, and" [seq]" matches any character inseq. The" /" character will not be matched by any wildcard; it
must be specified explicitly.

If even more flexible matching is required, each container has a regular-expression (regex) counterpart<DIRECTO-
RYMATCH>, <FILESMATCH>, and<LOCATIONMATCH> that allow perl-compatible regular expressions (p.622)
to be used in choosing the matches. But see the section below on configuration merging to find out how using regex
sections will change how directives are applied.

A non-regex wildcard section that changes the configuration of all user directories could look as follows:

<Directory /home/*/public html >
Options Indexes

</Directory >

Using regex sections, we can deny access to many types of image files at once:

<FilesMatch \.(?i:gif|jpe?g|png)$ >
Order allow,deny
Deny from all

</FilesMatch >

What to use When

Choosing between filesystem containers and webspace containers is actually quite easy. When applying directives to
objects that reside in the filesystem always use<DIRECTORY> or <FILES>. When applying directives to objects
that do not reside in the filesystem (such as a webpage generated from a database), use<LOCATION>.

It is important to never use<LOCATION> when trying to restrict access to objects in the filesystem. This is because
many different webspace locations (URLs) could map to the same filesystem location, allowing your restrictions to be
circumvented. For example, consider the following configuration:

2.5. CONFIGURATION SECTIONS 25

<Location /dir/ >
Order allow,deny
Deny from all

</Location >

This works fine if the request is forhttp://yoursite.example.com/dir/ . But what if you
are on a case-insensitive filesystem? Then your restriction could be easily circumvented by requesting
http://yoursite.example.com/DIR/ . The<DIRECTORY> directive, in contrast, will apply to any con-
tent served from that location, regardless of how it is called. (An exception is filesystem links. The same directory can
be placed in more than one part of the filesystem using symbolic links. The<DIRECTORY> directive will follow the
symbolic link without resetting the pathname. Therefore, for the highest level of security, symbolic links should be
disabled with the appropriateOPTIONSdirective.)

If you are, perhaps, thinking that none of this applies to you because you use a case-sensitive filesystem, remember that
there are many other ways to map multiple webspace locations to the same filesystem location. Therefore you should
always use the filesystem containers when you can. There is, however, one exception to this rule. Putting configuration
restrictions in a<Location / > section is perfectly safe because this section will apply to all requests regardless of
the specific URL.

Virtual Hosts

The<V IRTUAL HOST> container encloses directives that apply to specific hosts. This is useful when serving multiple
hosts from the same machine with a different configuration for each. For more information, see the Virtual Host
Documentation (p.114) .

Proxy

The <PROXY> and <PROXYMATCH> containers apply enclosed configuration directives only to sites accessed
throughMOD PROXY’s proxy server that match the specified URL. For example, the following configuration will
prevent the proxy server from being used to access thecnn.com website.

<Proxy http://cnn.com/* >
Order allow,deny
Deny from all

</Proxy >

What Directives are Allowed?

To find out what directives are allowed in what types of configuration sections, check the Context (p.285) of the direc-
tive. Everything that is allowed in<DIRECTORY> sections is also syntactically allowed in<DIRECTORYMATCH>,
<FILES>, <FILESMATCH>, <LOCATION>, <LOCATIONMATCH>, <PROXY>, and<PROXYMATCH> sections.
There are some exceptions, however.

• TheALLOWOVERRIDE directive works only in<DIRECTORY> sections.

• TheFollowSymLinks andSymLinksIfOwnerMatch OPTIONS work only in <DIRECTORY> sections
or .htaccess files.

• TheOPTIONSdirective cannot be used in<FILES> and<FILESMATCH> sections.

26 CHAPTER 2. USING THE APACHE HTTP SERVER

How the sections are merged

The configuration sections are applied in a very particular order. Since this can have important effects on how config-
uration directives are interpreted, it is important to understand how this works.

The order of merging is:

1. <DIRECTORY> (except regular expressions) and .htaccess done simultaneously (with .htaccess, if allowed,
overriding<DIRECTORY>)

2. <DIRECTORYMATCH> (and<Directory ˜ >)

3. <FILES> and<FILESMATCH> done simultaneously

4. <LOCATION> and<LOCATIONMATCH> done simultaneously

Apart from<DIRECTORY>, each group is processed in the order that they appear in the configuration files.<DI-
RECTORY> (group 1 above) is processed in the order shortest directory component to longest. So for example,
<Directory /var/web/dir > will be processed before<Directory /var/web/dir/subdir >. If mul-
tiple <DIRECTORY> sections apply to the same directory they are processed in the configuration file order. Config-
urations included via theINCLUDE directive will be treated as if they were inside the including file at the location of
theINCLUDE directive.

Sections inside<V IRTUAL HOST> sections are appliedafter the corresponding sections outside the virtual host defi-
nition. This allows virtual hosts to override the main server configuration.

Later sections override earlier ones.

=⇒Technical Note
There is actually a<Location >/<LocationMatch > sequence performed just before
the name translation phase (whereAliases andDocumentRoots are used to map URLs
to filenames). The results of this sequence are completely thrown away after the translation
has completed.

Some Examples

Below is an artificial example to show the order of merging. Assuming they all apply to the request, the directives in
this example will be applied in the order A> B > C > D > E.

<Location / >
E
</Location >

<Files f.html >
D
</Files >

<VirtualHost * >
<Directory /a/b >
B
</Directory >
</VirtualHost >

<DirectoryMatch "ˆ.*b$" >
C
</DirectoryMatch >

<Directory /a/b >
A
</Directory >

2.5. CONFIGURATION SECTIONS 27

For a more concrete example, consider the following. Regardless of any access restrictions placed in<DIRECTORY>
sections, the<LOCATION> section will be evaluated last and will allow unrestricted access to the server. In other
words, order of merging is important, so be careful!

<Location / >
Order deny,allow
Allow from all
</Location >

Woops! This <Directory > section will have no effect
<Directory / >
Order allow,deny
Allow from all
Deny from badguy.example.com

</Directory >

28 CHAPTER 2. USING THE APACHE HTTP SERVER

2.6 Server-Wide Configuration

This document explains some of the directives provided by theCORE server which are used to configure the basic
operations of the server.

Server Identification

Related Modules Related Directives
SERVERNAME

SERVERADMIN

SERVERSIGNATURE

SERVERTOKENS

USECANONICAL NAME

The SERVERADMIN andSERVERTOKENS directives control what information about the server will be presented in
server-generated documents such as error messages. TheSERVERTOKENSdirective sets the value of the Server HTTP
response header field.

TheSERVERNAME andUSECANONICAL NAME directives are used by the server to determine how to construct self-
referential URLs. For example, when a client requests a directory, but does not include the trailing slash in the
directory name, Apache must redirect the client to the full name including the trailing slash so that the client will
correctly resolve relative references in the document.

File Locations

Related Modules Related Directives
COREDUMPDIRECTORY

DOCUMENTROOT

ERRORLOG

LOCKFILE

PIDFILE

SCOREBOARDFILE

SERVERROOT

These directives control the locations of the various files that Apache needs for proper operation. When the pathname
used does not begin with a slash (/), the files are located relative to theSERVERROOT. Be careful about locating files
in paths which are writable by non-root users. See the security tips (p.41) documentation for more details.

Limiting Resource Usage

Related Modules Related Directives
L IMIT REQUESTBODY

L IMIT REQUESTFIELDS

L IMIT REQUESTFIELDSIZE

L IMIT REQUESTL INE

RLIMIT CPU
RLIMIT MEM
RLIMIT NPROC
THREADSTACKSIZE

2.6. SERVER-WIDE CONFIGURATION 29

The L IMIT REQUEST* directives are used to place limits on the amount of resources Apache will use in reading
requests from clients. By limiting these values, some kinds of denial of service attacks can be mitigated.

TheRLIMIT * directives are used to limit the amount of resources which can be used by processes forked off from the
Apache children. In particular, this will control resources used by CGI scripts and SSI exec commands.

TheTHREADSTACKSIZE directive is used only on Netware to control the stack size.

30 CHAPTER 2. USING THE APACHE HTTP SERVER

2.7 Log Files

In order to effectively manage a web server, it is necessary to get feedback about the activity and performance of the
server as well as any problems that may be occurring. The Apache HTTP Server provides very comprehensive and
flexible logging capabilities. This document describes how to configure its logging capabilities, and how to understand
what the logs contain.

Security Warning

Anyone who can write to the directory where Apache is writing a log file can almost certainly gain access to the uid
that the server is started as, which is normally root. DoNOT give people write access to the directory the logs are
stored in without being aware of the consequences; see the security tips (p.41) document for details.

In addition, log files may contain information supplied directly by the client, without escaping. Therefore, it is possible
for malicious clients to insert control-characters in the log files, so care must be taken in dealing with raw logs.

Error Log

Related Modules Related Directives
ERRORLOG

LOGLEVEL

The server error log, whose name and location is set by theERRORLOG directive, is the most important log file. This
is the place where Apache httpd will send diagnostic information and record any errors that it encounters in processing
requests. It is the first place to look when a problem occurs with starting the server or with the operation of the server,
since it will often contain details of what went wrong and how to fix it.

The error log is usually written to a file (typicallyerror log on unix systems anderror.log on Windows and
OS/2). On unix systems it is also possible to have the server send errors tosyslog or pipe them to a program.

The format of the error log is relatively free-form and descriptive. But there is certain information that is contained in
most error log entries. For example, here is a typical message.

[Wed Oct 11 14:32:52 2000] [error] [client 127.0.0.1] client denied

by server configuration: /export/home/live/ap/htdocs/test

The first item in the log entry is the date and time of the message. The second entry lists the severity of the error being
reported. TheLOGLEVEL directive is used to control the types of errors that are sent to the error log by restricting the
severity level. The third entry gives the IP address of the client that generated the error. Beyond that is the message
itself, which in this case indicates that the server has been configured to deny the client access. The server reports the
file-system path (as opposed to the web path) of the requested document.

A very wide variety of different messages can appear in the error log. Most look similar to the example above. The
error log will also contain debugging output from CGI scripts. Any information written tostderr by a CGI script
will be copied directly to the error log.

It is not possible to customize the error log by adding or removing information. However, error log entries dealing with
particular requests have corresponding entries in the access log. For example, the above example entry corresponds
to an access log entry with status code 403. Since it is possible to customize the access log, you can obtain more
information about error conditions using that log file.

During testing, it is often useful to continuously monitor the error log for any problems. On unix systems, you can
accomplish this using:

2.7. LOG FILES 31

tail -f error log

Access Log

Related Modules
MOD LOG CONFIG

MOD SETENVIF

Related Directives
CUSTOMLOG

LOGFORMAT

SETENV IF

The server access log records all requests processed by the server. The location and content of the access log are
controlled by theCUSTOMLOG directive. TheLOGFORMAT directive can be used to simplify the selection of the
contents of the logs. This section describes how to configure the server to record information in the access log.

Of course, storing the information in the access log is only the start of log management. The next step is to analyze this
information to produce useful statistics. Log analysis in general is beyond the scope of this document, and not really
part of the job of the web server itself. For more information about this topic, and for applications which perform log
analysis, check the Open Directory10 or Yahoo11.

Various versions of Apache httpd have used other modules and directives to control access logging, including
mod log referer, modlog agent, and theTransferLog directive. TheCUSTOMLOG directive now subsumes the
functionality of all the older directives.

The format of the access log is highly configurable. The format is specified using a format string that looks much like
a C-style printf(1) format string. Some examples are presented in the next sections. For a complete list of the possible
contents of the format string, see theMOD LOG CONFIG format strings (p.446) .

Common Log Format

A typical configuration for the access log might look as follows.

LogFormat "%h %l %u %t \"%r \" %>s %b" common

CustomLog logs/access log common

This defines thenicknamecommonand associates it with a particular log format string. The format string consists of
percent directives, each of which tell the server to log a particular piece of information. Literal characters may also be
placed in the format string and will be copied directly into the log output. The quote character (") must be escaped
by placing a back-slash before it to prevent it from being interpreted as the end of the format string. The format string
may also contain the special control characters" \n" for new-line and" \t" for tab.

The CUSTOMLOG directive sets up a new log file using the definednickname. The filename for the access log is
relative to theSERVERROOT unless it begins with a slash.

The above configuration will write log entries in a format known as the Common Log Format (CLF). This standard
format can be produced by many different web servers and read by many log analysis programs. The log file entries
produced in CLF will look something like this:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache pb.gif

HTTP/1.0" 200 2326

10http://dmoz.org/Computers/Software/Internet/SiteManagement/Loganalysis/
11http://dir.yahoo.com/Computersand Internet/Software/Internet/WorldWide Web/Servers/LogAnalysisTools/

http://dmoz.org/Computers/Software/Internet/Site_Management/Log_analysis/
http://dir.yahoo.com/Computers_and_Internet/Software/Internet/World_Wide_Web/Servers/Log_Analysis_Tools/

32 CHAPTER 2. USING THE APACHE HTTP SERVER

Each part of this log entry is described below.

127.0.0.1 (%h) This is the IP address of the client (remote host) which made the request to the server. IfHOST-
NAMELOOKUPS is set toOn, then the server will try to determine the hostname and log it in place of the IP
address. However, this configuration is not recommended since it can significantly slow the server. Instead, it is
best to use a log post-processor such as logresolve (p.254) to determine the hostnames. The IP address reported
here is not necessarily the address of the machine at which the user is sitting. If a proxy server exists between
the user and the server, this address will be the address of the proxy, rather than the originating machine.

- (%l) The" hyphen" in the output indicates that the requested piece of information is not available. In this case, the
information that is not available is the RFC 1413 identity of the client determined byidentd on the clients
machine. This information is highly unreliable and should almost never be used except on tightly controlled
internal networks. Apache httpd will not even attempt to determine this information unlessIDENTITYCHECK is
set toOn.

frank (%u) This is the userid of the person requesting the document as determined by HTTP authentication. The
same value is typically provided to CGI scripts in theREMOTEUSERenvironment variable. If the status code
for the request (see below) is 401, then this value should not be trusted because the user is not yet authenticated.
If the document is not password protected, this entry will be"-" just like the previous one.

[10/Oct/2000:13:55:36 -0700] (%t) The time that the server finished processing the request. The format
is:

[day/month/year:hour:minute:second zone]
day = 2*digit
month = 3*letter
year = 4*digit
hour = 2*digit
minute = 2*digit
second = 2*digit
zone = (‘+’ | ‘-’) 4*digit

It is possible to have the time displayed in another format by specifying%{format }t in the log format string,
whereformat is as instrftime(3) from the C standard library.

"GET /apache pb.gif HTTP/1.0" (\"%r \") The request line from the client is given in double quotes. The
request line contains a great deal of useful information. First, the method used by the client isGET. Second, the
client requested the resource/apache pb.gif , and third, the client used the protocolHTTP/1.0 . It is also
possible to log one or more parts of the request line independently. For example, the format string"%m %U%q
%H"will log the method, path, query-string, and protocol, resulting in exactly the same output as"%r" .

200 (%>s) This is the status code that the server sends back to the client. This information is very valuable, because
it reveals whether the request resulted in a successful response (codes beginning in 2), a redirection (codes
beginning in 3), an error caused by the client (codes beginning in 4), or an error in the server (codes beginning
in 5). The full list of possible status codes can be found in the HTTP specification12 (RFC2616 section 10).

2326 (%b) The last entry indicates the size of the object returned to the client, not including the response headers. If
no content was returned to the client, this value will be"-" . To log "0" for no content, use%Binstead.

Combined Log Format

Another commonly used format string is called the Combined Log Format. It can be used as follows.

12http://www.w3.org/Protocols/rfc2616/rfc2616.txt

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

2.7. LOG FILES 33

LogFormat "%h %l %u %t \"%r \" %>s %b \"%{Referer }i \"
\"%{User-agent }i \"" combined

CustomLog log/access log combined

This format is exactly the same as the Common Log Format, with the addition of two more fields. Each of the
additional fields uses the percent-directive%{header }i , whereheadercan be any HTTP request header. The access
log under this format will look like:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache pb.gif

HTTP/1.0" 200 2326 "http://www.example.com/start.html" "Mozilla/4.08

[en] (Win98; I ;Nav)"

The additional fields are:

"http://www.example.com/start.html" (\"%{Referer }i \") The " Referer" (sic) HTTP request
header. This gives the site that the client reports having been referred from. (This should be the page that
links to or includes/apache pb.gif).

"Mozilla/4.08 [en] (Win98; I ;Nav)" (\"%{User-agent }i \") The User-Agent HTTP request
header. This is the identifying information that the client browser reports about itself.

Multiple Access Logs

Multiple access logs can be created simply by specifying multipleCUSTOMLOG directives in the configuration file.
For example, the following directives will create three access logs. The first contains the basic CLF information, while
the second and third contain referer and browser information. The last twoCUSTOMLOG lines show how to mimic
the effects of theReferLog andAgentLog directives.

LogFormat "%h %l %u %t \"%r \" %>s %b" common
CustomLog logs/access log common
CustomLog logs/referer log "% {Referer }i - > %U"

CustomLog logs/agent log "% {User-agent }i"

This example also shows that it is not necessary to define a nickname with theLOGFORMAT directive. Instead, the
log format can be specified directly in theCUSTOMLOG directive.

Conditional Logs

There are times when it is convenient to exclude certain entries from the access logs based on characteristics of
the client request. This is easily accomplished with the help of environment variables (p.61) . First, an environment
variable must be set to indicate that the request meets certain conditions. This is usually accomplished withSETENV IF.
Then theenv= clause of theCUSTOMLOG directive is used to include or exclude requests where the environment
variable is set. Some examples:

Mark requests from the loop-back interface
SetEnvIf Remote Addr "127 \.0 \.0 \.1" dontlog
Mark requests for the robots.txt file
SetEnvIf Request URI "ˆ/robots \.txt$" dontlog
Log what remains

CustomLog logs/access log common env=!dontlog

34 CHAPTER 2. USING THE APACHE HTTP SERVER

As another example, consider logging requests from english-speakers to one log file, and non-english speakers to a
different log file.

SetEnvIf Accept-Language "en" english
CustomLog logs/english log common env=english

CustomLog logs/non english log common env=!english

Although we have just shown that conditional logging is very powerful and flexibly, it is not the only way to control
the contents of the logs. Log files are more useful when they contain a complete record of server activity. It is often
easier to simply post-process the log files to remove requests that you do not want to consider.

Log Rotation

On even a moderately busy server, the quantity of information stored in the log files is very large. The access log file
typically grows 1 MB or more per 10,000 requests. It will consequently be necessary to periodically rotate the log
files by moving or deleting the existing logs. This cannot be done while the server is running, because Apache will
continue writing to the old log file as long as it holds the file open. Instead, the server must be restarted (p.17) after
the log files are moved or deleted so that it will open new log files.

By using agracefulrestart, the server can be instructed to open new log files without losing any existing or pending
connections from clients. However, in order to accomplish this, the server must continue to write to the old log files
while it finishes serving old requests. It is therefore necessary to wait for some time after the restart before doing any
processing on the log files. A typical scenario that simply rotates the logs and compresses the old logs to save space
is:

mv access log access log.old
mv error log error log.old
apachectl graceful
sleep 600

gzip access log.old error log.old

Another way to perform log rotation is using piped logs as discussed in the next section.

Piped Logs

Apache httpd is capable of writing error and access log files through a pipe to another process, rather than directly
to a file. This capability dramatically increases the flexibility of logging, without adding code to the main server. In
order to write logs to a pipe, simply replace the filename with the pipe character"|" , followed by the name of the
executable which should accept log entries on its standard input. Apache will start the piped-log process when the
server starts, and will restart it if it crashes while the server is running. (This last feature is why we can refer to this
technique as" reliable piped logging" .)

Piped log processes are spawned by the parent Apache httpd process, and inherit the userid of that process. This means
that piped log programs usually run as root. It is therefore very important to keep the programs simple and secure.

One important use of piped logs is to allow log rotation without having to restart the server. The Apache HTTP Server
includes a simple program called rotatelogs (p.255) for this purpose. For example, to rotate the logs every 24 hours,
you can use:

CustomLog "|/usr/local/apache/bin/rotatelogs /var/log/access log

86400" common

2.7. LOG FILES 35

Notice that quotes are used to enclose the entire command that will be called for the pipe. Although these examples
are for the access log, the same technique can be used for the error log.

A similar but much more flexible log rotation program called cronolog13 is available at an external site.

As with conditional logging, piped logs are a very powerful tool, but they should not be used where a simpler solution
like off-line post-processing is available.

Virtual Hosts

When running a server with many virtual hosts (p.114) , there are several options for dealing with log files. First,
it is possible to use logs exactly as in a single-host server. Simply by placing the logging directives outside the
<V IRTUAL HOST> sections in the main server context, it is possible to log all requests in the same access log and
error log. This technique does not allow for easy collection of statistics on individual virtual hosts.

If CUSTOMLOG or ERRORLOG directives are placed inside a<V IRTUAL HOST> section, all requests or errors for
that virtual host will be logged only to the specified file. Any virtual host which does not have logging directives will
still have its requests sent to the main server logs. This technique is very useful for a small number of virtual hosts,
but if the number of hosts is very large, it can be complicated to manage. In addition, it can often create problems with
insufficient file descriptors (p.137) .

For the access log, there is a very good compromise. By adding information on the virtual host to the log format string,
it is possible to log all hosts to the same log, and later split the log into individual files. For example, consider the
following directives.

LogFormat "%v %l %u %t \"%r \" %>s %b" comonvhost

CustomLog logs/access log comonvhost

The%vis used to log the name of the virtual host that is serving the request. Then a program like split-logfile (p.258)
can be used to post-process the access log in order to split it into one file per virtual host.

Other Log Files

Related Modules
MOD CGI

MOD REWRITE

Related Directives
PIDFILE

REWRITELOG

REWRITELOGLEVEL

SCRIPTLOG

SCRIPTLOGBUFFER

SCRIPTLOGLENGTH

PID File

On startup, Apache httpd saves the process id of the parent httpd process to the filelogs/httpd.pid . This filename
can be changed with thePIDFILE directive. The process-id is for use by the administrator in restarting and terminating
the daemon by sending signals to the parent process; on Windows, use the -k command line option instead. For more
information see the Stopping and Restarting (p.17) page.

13http://www.cronolog.org/

http://www.cronolog.org/

36 CHAPTER 2. USING THE APACHE HTTP SERVER

Script Log

In order to aid in debugging, theSCRIPTLOG directive allows you to record the input to and output from CGI scripts.
This should only be used in testing - not for live servers. More information is available in the modcgi (p. 379)
documentation.

Rewrite Log

When using the powerful and complex features of modrewrite (p.493) , it is almost always necessary to use the
REWRITELOG to help in debugging. This log file produces a detailed analysis of how the rewriting engine transforms
requests. The level of detail is controlled by theREWRITELOGLEVEL directive.

2.8. MAPPING URLS TO FILESYSTEM LOCATIONS 37

2.8 Mapping URLs to Filesystem Locations

This document explains how Apache uses the URL of a request to determine the filesystem location from which to
serve a file.

Related Modules and Directives

Related Modules
MOD ALIAS

MOD PROXY

MOD REWRITE

MOD USERDIR

MOD SPELING

MOD VHOST ALIAS

Related Directives
ALIAS

ALIASMATCH

CHECKSPELLING

DOCUMENTROOT

ERRORDOCUMENT

OPTIONS

PROXYPASS

PROXYPASSREVERSE

REDIRECT

REDIRECTMATCH

REWRITECOND

REWRITEMATCH

SCRIPTALIAS

SCRIPTALIASMATCH

USERDIR

DocumentRoot

In deciding what file to serve for a given request, Apache’s default behavior is to take the URL-Path for the request
(the part of the URL following the hostname and port) and add it to the end of theDOCUMENTROOT specified in your
configuration files. Therefore, the files and directories underneath theDOCUMENTROOT make up the basic document
tree which will be visible from the web.

Apache is also capable of Virtual Hosting (p.114) , where the server receives requests for more than one host. In
this case, a differentDOCUMENTROOT can be specified for each virtual host, or alternatively, the directives provided
by the moduleMOD VHOST ALIAS can be used to dynamically determine the appropriate place from which to serve
content based on the requested IP address or hostname.

Files Outside the DocumentRoot

There are frequently circumstances where it is necessary to allow web access to parts of the filesystem that are not
strictly underneath theDOCUMENTROOT. Apache offers several different ways to accomplish this. On Unix systems,
symbolic links can bring other parts of the filesystem under theDOCUMENTROOT. For security reasons, Apache
will follow symbolic links only if the OPTIONS setting for the relevant directory includesFollowSymLinks or
SymLinksIfOwnerMatch .

Alternatively, theALIAS directive will map any part of the filesystem into the web space. For example, with

Alias /docs /var/web

the URL http://www.example.com/docs/dir/file.html will be served from
/var/web/dir/file.html . The SCRIPTALIAS directive works the same way, with the additional
effect that all content located at the target path is treated as CGI scripts.

38 CHAPTER 2. USING THE APACHE HTTP SERVER

For situations where you require additional flexibility, you can use theALIASMATCH and SCRIPTALIASMATCH

directives to do powerful regular-expression based matching and substitution. For example,

ScriptAliasMatch ˆ/˜([a-zA-Z0-9]*)/cgi-bin/(.*) /home/$1/cgi-bin/$2

will map a request to http://example.com/˜user/cgi-bin/script.cgi to the path
/home/user/cgi-bin/script.cgi and will treat the resulting file as a CGI script.

User Directories

Traditionally on Unix systems, the home directory of a particularusercan be referred to as̃user/ . The module
MOD USERDIR extends this idea to the web by allowing files under each user’s home directory to be accessed using
URLs such as the following.

http://www.example.com/˜user/file.html

For security reasons, it is inappropriate to give direct access to a user’s home directory from the web. There-
fore, the USERDIR directive specifies a directory underneath the user’s home directory where web files are lo-
cated. Using the default setting ofUserdir public html , the above URL maps to a file at a directory like
/home/user/public html/file.html where /home/user/ is the user’s home directory as specified in
/etc/passwd .

There are also several other forms of theUserdir directive which you can use on systems where/etc/passwd
does not contain the location of the home directory.

Some people find the" ˜" symbol (which is often encoded on the web as%7e) to be awkward and prefer to use an
alternate string to represent user directories. This functionality is not supported by moduserdir. However, if users’
home directories are structured in a regular way, then it is possible to use theALIASMATCH directive to achieve
the desired effect. For example, to makehttp://www.example.com/upages/user/file.html map to
/home/user/public html/file.html , use the followingAliasMatch directive:

AliasMatch ˆ/upages/([a-zA-Z0-9]*)/?(.*) /home/$1/public html/$2

URL Redirection

The configuration directives discussed in the above sections tell Apache to get content from a specific place in the
filesystem and return it to the client. Sometimes, it is desirable instead to inform the client that the requested content is
located at a different URL, and instruct the client to make a new request with the new URL. This is calledredirection
and is implemented by theREDIRECT directive. For example, if the contents of the directory/foo/ under the
DOCUMENTROOT are moved to the new directory/bar/ , you can instruct clients to request the content at the new
location as follows:

Redirect permanent /foo/ http://www.example.com/bar/

This will redirect any URL-Path starting in/foo/ to the same URL path on thewww.example.com server with
/bar/ substituted for/foo/ . You can redirect clients to any server, not only the origin server.

Apache also provides aREDIRECTMATCH directive for more complicated rewriting problems. For example, to redi-
rect requests for the site home page to a different site, but leave all other requests alone, use the following configuration:

2.8. MAPPING URLS TO FILESYSTEM LOCATIONS 39

RedirectMatch permanent ˆ/$ http://www.example.com/startpage.html

Alternatively, to temporarily redirect all pages on one site to a particular page on another site, use the following:

RedirectMatch temp .* http://othersite.example.com/startpage.html

Reverse Proxy

Apache also allows you to bring remote documents into the URL space of the local server. This technique is called
reverse proxyingbecause the web server acts like a proxy server by fetching the documents from a remote server and
returning them to the client. It is different from normal proxying because, to the client, it appears the documents
originate at the reverse proxy server.

In the following example, when clients request documents under the/foo/ directory, the server fetches those docu-
ments from the/bar/ directory oninternal.example.com and returns them to the client as if they were from
the local server.

ProxyPass /foo/ http://internal.example.com/bar/

ProxyPassReverse /foo/ http://internal.example.com/bar/

ThePROXYPASS configures the server to fetch the appropriate documents, while thePROXYPASSREVERSEdirective
rewrites redirects originating atinternal.example.com so that they target the appropriate directory on the local
server. It is important to note, however, that links inside the documents will not be rewritten. So any absolute links
on internal.example.com will result in the client breaking out of the proxy server and requesting directly from
internal.example.com .

Rewriting Engine

When even more powerful substitution is required, the rewriting engine provided byMOD REWRITE can be useful.
The directives provided by this module use characteristics of the request such as browser type or source IP address in
deciding from where to serve content. In addition, modrewrite can use external database files or programs to determine
how to handle a request. The rewriting engine is capable of performing all three types of mappings discussed above:
internal redirects (aliases), external redirects, and proxying. Many practical examples employing modrewrite are
discussed in the URL Rewriting Guide (p.86) .

File Not Found

Inevitably, URLs will be requested for which no matching file can be found in the filesystem. This can happen for
several reasons. In some cases, it can be a result of moving documents from one location to another. In this case, it is
best to use URL redirection to inform clients of the new location of the resource. In this way, you can assure that old
bookmarks and links will continue to work, even though the resource is at a new location.

Another common cause of" File Not Found" errors is accidental mistyping of URLs, either directly in the browser,
or in HTML links. Apache provides the moduleMOD SPELING (sic) to help with this problem. When this module is
activated, it will intercept" File Not Found" errors and look for a resource with a similar filename. If one such file is
found, modspeling will send an HTTP redirect to the client informing it of the correct location. If several" close"
files are found, a list of available alternatives will be presented to the client.

An especially useful feature of modspeling, is that it will compare filenames without respect to case. This can help
systems where users are unaware of the case-sensitive nature of URLs and the unix filesystem. But using modspeling

40 CHAPTER 2. USING THE APACHE HTTP SERVER

for anything more than the occasional URL correction can place additional load on the server, since each" incorrect"
request is followed by a URL redirection and a new request from the client.

If all attempts to locate the content fail, Apache returns an error page with HTTP status code 404 (file not found). The
appearance of this page is controlled with theERRORDOCUMENT directive and can be customized in a flexible manner
as discussed in the Custom error responses (p.55) and International Server Error Responses (p.261) documents.

2.9. SECURITY TIPS 41

2.9 Security Tips

Some hints and tips on security issues in setting up a web server. Some of the suggestions will be general, others
specific to Apache.

Keep up to Date

The Apache HTTP Server has a good record for security and a developer community highly concerned about security
issues. But it is inevitable that some problems – small or large – will be discovered in software after it is released. For
this reason, it is crucial to keep aware of updates to the software. If you have obtained your version of the HTTP Server
directly from Apache, we highly recommend you subscribe to the Apache HTTP Server Announcements List14 where
you can keep informed of new releases and security updates. Similar services are available from most third-party
distributors of Apache software.

Of course, most times that a web server is compromised, it is not because of problems in the HTTP Server code.
Rather, it comes from problems in add-on code, CGI scripts, or the underlying Operating System. You must therefore
stay aware of problems and updates with all the software on your system.

Permissions on ServerRoot Directories

In typical operation, Apache is started by the root user, and it switches to the user defined by theUSER directive to
serve hits. As is the case with any command that root executes, you must take care that it is protected from modification
by non-root users. Not only must the files themselves be writeable only by root, but so must the directories, and parents
of all directories. For example, if you choose to place ServerRoot in /usr/local/apache then it is suggested that you
create that directory as root, with commands like these:

mkdir /usr/local/apache
cd /usr/local/apache
mkdir bin conf logs
chown 0 . bin conf logs
chgrp 0 . bin conf logs

chmod 755 . bin conf logs

It is assumed that /, /usr, and /usr/local are only modifiable by root. When you install the httpd executable, you should
ensure that it is similarly protected:

cp httpd /usr/local/apache/bin
chown 0 /usr/local/apache/bin/httpd
chgrp 0 /usr/local/apache/bin/httpd

chmod 511 /usr/local/apache/bin/httpd

You can create an htdocs subdirectory which is modifiable by other users – since root never executes any files out of
there, and shouldn’t be creating files in there.

If you allow non-root users to modify any files that root either executes or writes on then you open your system to root
compromises. For example, someone could replace the httpd binary so that the next time you start it, it will execute
some arbitrary code. If the logs directory is writeable (by a non-root user), someone could replace a log file with a
symlink to some other system file, and then root might overwrite that file with arbitrary data. If the log files themselves
are writeable (by a non-root user), then someone may be able to overwrite the log itself with bogus data.

14http://httpd.apache.org/lists.html#http-announce

http://httpd.apache.org/lists.html#http-announce

42 CHAPTER 2. USING THE APACHE HTTP SERVER

Server Side Includes

Server Side Includes (SSI) present a server administrator with several potential security risks.

The first risk is the increased load on the server. All SSI-enabled files have to be parsed by Apache, whether or not
there are any SSI directives included within the files. While this load increase is minor, in a shared server environment
it can become significant.

SSI files also pose the same risks that are associated with CGI scripts in general. Using the" exec cmd" element,
SSI-enabled files can execute any CGI script or program under the permissions of the user and group Apache runs as,
as configured in httpd.conf.

There are ways to enhance the security of SSI files while still taking advantage of the benefits they provide.

To isolate the damage a wayward SSI file can cause, a server administrator can enable suexec (p.69) as described in
the CGI in General section

Enabling SSI for files with .html or .htm extensions can be dangerous. This is especially true in a shared, or high
traffic, server environment. SSI-enabled files should have a separate extension, such as the conventional .shtml. This
helps keep server load at a minimum and allows for easier management of risk.

Another solution is to disable the ability to run scripts and programs from SSI pages. To do this replaceIncludes
with IncludesNOEXEC in the OPTIONS directive. Note that users may still use<–#include virtual=" ..." –> to
execute CGI scripts if these scripts are in directories desginated by aSCRIPTALIAS directive.

CGI in General

First of all, you always have to remember that you must trust the writers of the CGI scripts/programs or your ability
to spot potential security holes in CGI, whether they were deliberate or accidental. CGI scripts can run essentially
arbitrary commands on your system with the permissions of the web server user and can therefore be extremely
dangerous if they are not carefully checked.

All the CGI scripts will run as the same user, so they have potential to conflict (accidentally or deliberately) with other
scripts e.g. User A hates User B, so he writes a script to trash User B’s CGI database. One program which can be used
to allow scripts to run as different users is suEXEC (p.69) which is included with Apache as of 1.2 and is called from
special hooks in the Apache server code. Another popular way of doing this is with CGIWrap15.

Non Script Aliased CGI

Allowing users to execute CGI scripts in any directory should only be considered if:

• You trust your users not to write scripts which will deliberately or accidentally expose your system to an attack.

• You consider security at your site to be so feeble in other areas, as to make one more potential hole irrelevant.

• You have no users, and nobody ever visits your server.

Script Aliased CGI

Limiting CGI to special directories gives the admin control over what goes into those directories. This is inevitably
more secure than non script aliased CGI, but only if users with write access to the directories are trusted or the admin
is willing to test each new CGI script/program for potential security holes.

Most sites choose this option over the non script aliased CGI approach.

15http://cgiwrap.unixtools.org/

http://cgiwrap.unixtools.org/

2.9. SECURITY TIPS 43

Other sources of dynamic content

Embedded scripting options which run as part of the server itself, such as modphp, modperl, modtcl, and
mod python, run under the identity of the server itself (see theUSER directive), and therefore scripts executed by
these engines potentially can access anything the server user can. Some scripting engines may provide restrictions, but
it is better to be safe and assume not.

Protecting System Settings

To run a really tight ship, you’ll want to stop users from setting up.htaccess files which can override security
features you’ve configured. Here’s one way to do it.

In the server configuration file, put

<Directory / >
AllowOverride None

</Directory >

This prevents the use of.htaccess files in all directories apart from those specifically enabled.

Protect Server Files by Default

One aspect of Apache which is occasionally misunderstood is the feature of default access. That is, unless you take
steps to change it, if the server can find its way to a file through normal URL mapping rules, it can serve it to clients.

For instance, consider the following example:

cd /; ln -s / public html

Accessing http://localhost/˜root/

This would allow clients to walk through the entire filesystem. To work around this, add the following block to your
server’s configuration:

<Directory / >
Order Deny,Allow
Deny from all

</Directory >

This will forbid default access to filesystem locations. Add appropriateDIRECTORY blocks to allow access only in
those areas you wish. For example,

<Directory /usr/users/*/public html >
Order Deny,Allow
Allow from all
</Directory >
<Directory /usr/local/httpd >
Order Deny,Allow
Allow from all

</Directory >

44 CHAPTER 2. USING THE APACHE HTTP SERVER

Pay particular attention to the interactions ofLOCATION and DIRECTORY directives; for instance, even if
<Directory / > denies access, a<Location / > directive might overturn it

Also be wary of playing games with theUSERDIR directive; setting it to something like" ./" would have the same
effect, for root, as the first example above. If you are using Apache 1.3 or above, we strongly recommend that you
include the following line in your server configuration files:

UserDir disabled root

Watching Your Logs

To keep up-to-date with what is actually going on against your server you have to check the Log Files (p.30) . Even
though the log files only reports what has already happend, they will give you some understanding of what attacks is
thrown against the server and allows you to check if the necessary level of security is present.

A couple of examples:

grep -c "/jsp/source.jsp?/jsp/ /jsp/source.jsp??" access log

grep "client denied" error log | tail -n 10

The first example will list the number of attacks trying to exploit the Apache Tomcat Source.JSP Malformed Request
Information Disclosure Vulnerability16, the second example will list the ten last denied clients, for example:

[Thu Jul 11 17:18:39 2002] [error] [client foo.bar.com] client denied

by server configuration: /usr/local/apache/htdocs/.htpasswd

As you can see, the log files only report what already has happend, so if the client had been able to access the
.htpasswd file you would have seen something similar to:

foo.bar.com - - [12/Jul/2002:01:59:13 +0200] "GET /.htpasswd

HTTP/1.1"

in your Access Log (p.30) . This means you probably commented out the following in your server configuration file:

<Files ˜ "ˆ \.ht" >
Order allow,deny
Deny from all

<Files >

16http://online.securityfocus.com/bid/4876/info/

http://online.securityfocus.com/bid/4876/info/

2.10. DYNAMIC SHARED OBJECT (DSO) SUPPORT 45

2.10 Dynamic Shared Object (DSO) Support

The Apache HTTP Server is a modular program where the administrator can choose the functionality to include in the
server by selecting a set of modules. The modules can be statically compiled into thehttpd binary when the server is
built. Alternatively, modules can be compiled as Dynamic Shared Objects (DSOs) that exist separately from the main
httpd binary file. DSO modules may be compiled at the time the server is built, or they may be compiled and added
at a later time using the Apache Extension Tool (apxs (p.245)).

This document describes how to use DSO modules as well as the theory behind their use.

Implementation

Related Modules
MOD SO

Related Directives
LOADMODULE

The DSO support for loading individual Apache modules is based on a module namedMOD SO which must be stat-
ically compiled into the Apache core. It is the only module besidesCORE which cannot be put into a DSO itself.
Practically all other distributed Apache modules can then be placed into a DSO by individually enabling the DSO
build for them viaconfigure ’s --enable- module =shared option as discussed in the install documentation
(p.8) . After a module is compiled into a DSO namedmod foo.so you can useMOD SO’s LOADMODULE command
in yourhttpd.conf file to load this module at server startup or restart.

To simplify this creation of DSO files for Apache modules (especially for third-party modules) a new support program
named apxs (p.245) (APache eXtenSion) is available. It can be used to build DSO based modulesoutside of the
Apache source tree. The idea is simple: When installing Apache theconfigure ’s make install procedure
installs the Apache C header files and puts the platform-dependent compiler and linker flags for building DSO files
into theapxs program. This way the user can useapxs to compile his Apache module sources without the Apache
distribution source tree and without having to fiddle with the platform-dependent compiler and linker flags for DSO
support.

Usage Summary

To give you an overview of the DSO features of Apache 2.0, here is a short and concise summary:

1. Build and install adistributedApache module, saymod foo.c , into its own DSOmod foo.so :

$./configure --prefix=/path/to/install --enable-foo=shared

$ make install

2. Build and install athird-partyApache module, saymod foo.c , into its own DSOmod foo.so :

$./configure --add-module=module type:/path/to/3rdparty/mod foo.c
--enable-foo=shared

$ make install

3. Configure Apache forlater installationof shared modules:

$./configure --enable-so

$ make install

46 CHAPTER 2. USING THE APACHE HTTP SERVER

4. Build and install athird-party Apache module, saymod foo.c , into its own DSOmod foo.so outside of
the Apache source tree using apxs (p.245) :

$ cd /path/to/3rdparty
$ apxs -c mod foo.c

$ apxs -i -a -n foo mod foo.la

In all cases, once the shared module is compiled, you must use aLOADMODULE directive inhttpd.conf to tell
Apache to activate the module.

Background

On modern Unix derivatives there exists a nifty mechanism usually called dynamic linking/loading ofDynamic Shared
Objects(DSO) which provides a way to build a piece of program code in a special format for loading it at run-time
into the address space of an executable program.

This loading can usually be done in two ways: Automatically by a system program calledld.so when an executable
program is started or manually from within the executing program via a programmatic system interface to the Unix
loader through the system callsdlopen()/dlsym() .

In the first way the DSO’s are usually calledshared librariesor DSO libraries and namedlibfoo.so or
libfoo.so.1.2 . They reside in a system directory (usually/usr/lib) and the link to the executable program
is established at build-time by specifying-lfoo to the linker command. This hard-codes library references into the
executable program file so that at start-time the Unix loader is able to locatelibfoo.so in /usr/lib , in paths
hard-coded via linker-options like-R or in paths configured via the environment variableLD LIBRARY PATH. It then
resolves any (yet unresolved) symbols in the executable program which are available in the DSO.

Symbols in the executable program are usually not referenced by the DSO (because it’s a reusable library of general
code) and hence no further resolving has to be done. The executable program has no need to do anything on its own
to use the symbols from the DSO because the complete resolving is done by the Unix loader. (In fact, the code to
invoke ld.so is part of the run-time startup code which is linked into every executable program which has been
bound non-static). The advantage of dynamic loading of common library code is obvious: the library code needs to be
stored only once, in a system library likelibc.so , saving disk space for every program.

In the second way the DSO’s are usually calledshared objectsor DSO filesand can be named with an arbitrary
extension (although the canonical name isfoo.so). These files usually stay inside a program-specific directory
and there is no automatically established link to the executable program where they are used. Instead the executable
program manually loads the DSO at run-time into its address space viadlopen() . At this time no resolving of
symbols from the DSO for the executable program is done. But instead the Unix loader automatically resolves any
(yet unresolved) symbols in the DSO from the set of symbols exported by the executable program and its already
loaded DSO libraries (especially all symbols from the ubiquitouslibc.so). This way the DSO gets knowledge of
the executable program’s symbol set as if it had been statically linked with it in the first place.

Finally, to take advantage of the DSO’s API the executable program has to resolve particular symbols from the DSO
via dlsym() for later use inside dispatch tablesetc. In other words: The executable program has to manually resolve
every symbol it needs to be able to use it. The advantage of such a mechanism is that optional program parts need not
be loaded (and thus do not spend memory) until they are needed by the program in question. When required, these
program parts can be loaded dynamically to extend the base program’s functionality.

Although this DSO mechanism sounds straightforward there is at least one difficult step here: The resolving of symbols
from the executable program for the DSO when using a DSO to extend a program (the second way). Why? Because
" reverse resolving" DSO symbols from the executable program’s symbol set is against the library design (where the
library has no knowledge about the programs it is used by) and is neither available under all platforms nor standardized.
In practice the executable program’s global symbols are often not re-exported and thus not available for use in a DSO.

2.10. DYNAMIC SHARED OBJECT (DSO) SUPPORT 47

Finding a way to force the linker to export all global symbols is the main problem one has to solve when using DSO
for extending a program at run-time.

The shared library approach is the typical one, because it is what the DSO mechanism was designed for, hence it
is used for nearly all types of libraries the operating system provides. On the other hand using shared objects for
extending a program is not used by a lot of programs.

As of 1998 there are only a few software packages available which use the DSO mechanism to actually extend their
functionality at run-time: Perl 5 (via its XS mechanism and the DynaLoader module), Netscape Server,etc. Starting
with version 1.3, Apache joined the crew, because Apache already uses a module concept to extend its functionality
and internally uses a dispatch-list-based approach to link external modules into the Apache core functionality. So,
Apache is really predestined for using DSO to load its modules at run-time.

Advantages and Disadvantages

The above DSO based features have the following advantages:

• The server package is more flexible at run-time because the actual server process can be assembled at run-time
via LOADMODULE httpd.conf configuration commands instead ofconfigure options at build-time. For
instance this way one is able to run different server instances (standard & SSL version, minimalistic & powered
up version [modperl, PHP3],etc.) with only one Apache installation.

• The server package can be easily extended with third-party modules even after installation. This is at least a
great benefit for vendor package maintainers who can create a Apache core package and additional packages
containing extensions like PHP3, modperl, modfastcgi,etc.

• Easier Apache module prototyping because with the DSO/apxs pair you can both work outside the Apache
source tree and only need anapxs -i command followed by anapachectl restart to bring a new
version of your currently developed module into the running Apache server.

DSO has the following disadvantages:

• The DSO mechanism cannot be used on every platform because not all operating systems support dynamic
loading of code into the address space of a program.

• The server is approximately 20% slower at startup time because of the symbol resolving overhead the Unix
loader now has to do.

• The server is approximately 5% slower at execution time under some platforms because position independent
code (PIC) sometimes needs complicated assembler tricks for relative addressing which are not necessarily as
fast as absolute addressing.

• Because DSO modules cannot be linked against other DSO-based libraries (ld -lfoo) on all platforms (for
instance a.out-based platforms usually don’t provide this functionality while ELF-based platforms do) you can-
not use the DSO mechanism for all types of modules. Or in other words, modules compiled as DSO files are
restricted to only use symbols from the Apache core, from the C library (libc) and all other dynamic or static
libraries used by the Apache core, or from static library archives (libfoo.a) containing position indepen-
dent code. The only chances to use other code is to either make sure the Apache core itself already contains a
reference to it or loading the code yourself viadlopen() .

48 CHAPTER 2. USING THE APACHE HTTP SERVER

2.11 Content Negotiation

Apache’s supports content negotiation as described in the HTTP/1.1 specification. It can choose the best representation
of a resource based on the browser-supplied preferences for media type, languages, character set and encoding. It also
implements a couple of features to give more intelligent handling of requests from browsers that send incomplete
negotiation information.

Content negotiation is provided by theMOD NEGOTIATION module. which is compiled in by default.

About Content Negotiation

A resource may be available in several different representations. For example, it might be available in different
languages or different media types, or a combination. One way of selecting the most appropriate choice is to give the
user an index page, and let them select. However it is often possible for the server to choose automatically. This works
because browsers can send as part of each request information about what representations they prefer. For example,
a browser could indicate that it would like to see information in French, if possible, else English will do. Browsers
indicate their preferences by headers in the request. To request only French representations, the browser would send

Accept-Language: fr

Note that this preference will only be applied when there is a choice of representations and they vary by language.

As an example of a more complex request, this browser has been configured to accept French and English, but prefer
French, and to accept various media types, preferring HTML over plain text or other text types, and preferring GIF or
JPEG over other media types, but also allowing any other media type as a last resort:

Accept-Language: fr; q=1.0, en; q=0.5

Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6,

image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

Apache supports ’server driven’ content negotiation, as defined in the HTTP/1.1 specification. It fully supports the
Accept, Accept-Language, Accept-Charset and Accept-Encoding request headers. Apache also supports ’transparent’
content negotiation, which is an experimental negotiation protocol defined in RFC 2295 and RFC 2296. It does not
offer support for ’feature negotiation’ as defined in these RFCs.

A resourceis a conceptual entity identified by a URI (RFC 2396). An HTTP server like Apache provides access to
representationsof the resource(s) within its namespace, with each representation in the form of a sequence of bytes
with a defined media type, character set, encoding, etc. Each resource may be associated with zero, one, or more than
one representation at any given time. If multiple representations are available, the resource is referred to asnegotiable
and each of its representations is termed avariant . The ways in which the variants for a negotiable resource vary are
called thedimensionsof negotiation.

Negotiation in Apache

In order to negotiate a resource, the server needs to be given information about each of the variants. This is done in
one of two ways:

• Using a type map (i.e., a*.var file) which names the files containing the variants explicitly, or

• Using a ’MultiViews’ search, where the server does an implicit filename pattern match and chooses from among
the results.

2.11. CONTENT NEGOTIATION 49

Using a type-map file

A type map is a document which is associated with the handler namedtype-map (or, for backwards-compatibility
with older Apache configurations, the mime typeapplication/x-type-map). Note that to use this feature, you
must have a handler set in the configuration that defines a file suffix astype-map ; this is best done with a

AddHandler type-map .var

in the server configuration file.

Type map files should have the same name as the resource which they are describing, and have an entry for each
available variant; these entries consist of contiguous HTTP-format header lines. Entries for different variants are
separated by blank lines. Blank lines are illegal within an entry. It is conventional to begin a map file with an entry for
the combined entity as a whole (although this is not required, and if present will be ignored). An example map file is
shown below. This file would be namedfoo.var , as it describes a resource namedfoo .

URI: foo

URI: foo.en.html
Content-type: text/html
Content-language: en

URI: foo.fr.de.html
Content-type: text/html;charset=iso-8859-2

Content-language: fr, de

Note also that a typemap file will take precedence over the filename’s extension, even when Multiviews is on. If the
variants have different source qualities, that may be indicated by the" qs" parameter to the media type, as in this
picture (available as jpeg, gif, or ASCII-art):

URI: foo

URI: foo.jpeg
Content-type: image/jpeg; qs=0.8

URI: foo.gif
Content-type: image/gif; qs=0.5

URI: foo.txt

Content-type: text/plain; qs=0.01

qs values can vary in the range 0.000 to 1.000. Note that any variant with a qs value of 0.000 will never be chosen.
Variants with no ’qs’ parameter value are given a qs factor of 1.0. The qs parameter indicates the relative ’quality’ of
this variant compared to the other available variants, independent of the client’s capabilities. For example, a jpeg file is
usually of higher source quality than an ascii file if it is attempting to represent a photograph. However, if the resource
being represented is an original ascii art, then an ascii representation would have a higher source quality than a jpeg
representation. A qs value is therefore specific to a given variant depending on the nature of the resource it represents.

The full list of headers recognized is available in the modnegotation typemap (p.472) documentation.

Multiviews

MultiViews is a per-directory option, meaning it can be set with anOPTIONSdirective within a<DIRECTORY>,
<LOCATION> or <FILES> section inhttpd.conf , or (if ALLOWOVERRIDE is properly set) in.htaccess files.
Note thatOptions All does not setMultiViews ; you have to ask for it by name.

50 CHAPTER 2. USING THE APACHE HTTP SERVER

The effect ofMultiViews is as follows: if the server receives a request for/some/dir/foo , if /some/dir has
MultiViews enabled, and/some/dir/foo doesnot exist, then the server reads the directory looking for files
named foo.*, and effectively fakes up a type map which names all those files, assigning them the same media types
and content-encodings it would have if the client had asked for one of them by name. It then chooses the best match
to the client’s requirements.

MultiViews may also apply to searches for the file named by theDIRECTORYINDEX directive, if the server is trying
to index a directory. If the configuration files specify

DirectoryIndex index

then the server will arbitrate betweenindex.html andindex.html3 if both are present. If neither are present,
andindex.cgi is there, the server will run it.

If one of the files found when reading the directory does not have an extension recognized bymod mime to designate
its Charset, Content-Type, Language, or Encoding, then the result depends on the setting of theMULTI V IEWSMATCH

directive. This directive determines whether handlers, filters, and other extension types can participate in MultiViews
negotiation.

The Negotiation Methods

After Apache has obtained a list of the variants for a given resource, either from a type-map file or from the filenames
in the directory, it invokes one of two methods to decide on the ’best’ variant to return, if any. It is not necessary to
know any of the details of how negotiation actually takes place in order to use Apache’s content negotiation features.
However the rest of this document explains the methods used for those interested.

There are two negotiation methods:

1. Server driven negotiation with the Apache algorithm is used in the normal case. The Apache algorithm is
explained in more detail below. When this algorithm is used, Apache can sometimes ’fiddle’ the quality factor
of a particular dimension to achieve a better result. The ways Apache can fiddle quality factors is explained in
more detail below.

2. Transparent content negotiation is used when the browser specifically requests this through the mechanism
defined in RFC 2295. This negotiation method gives the browser full control over deciding on the ’best’ variant,
the result is therefore dependent on the specific algorithms used by the browser. As part of the transparent
negotiation process, the browser can ask Apache to run the ’remote variant selection algorithm’ defined in RFC
2296.

Dimensions of Negotiation

Dimension Notes
Media Type Browser indicates preferences with the Accept header field. Each item can have an associated quality factor.

Variant description can also have a quality factor (the" qs" parameter).
Language Browser indicates preferences with the Accept-Language header field. Each item can have a quality factor.

Variants can be associated with none, one or more than one language.
Encoding Browser indicates preference with the Accept-Encoding header field. Each item can have a quality factor.
Charset Browser indicates preference with the Accept-Charset header field. Each item can have a quality factor. Variants

can indicate a charset as a parameter of the media type.

Apache Negotiation Algorithm

Apache can use the following algorithm to select the ’best’ variant (if any) to return to the browser. This algorithm is
not further configurable. It operates as follows:

2.11. CONTENT NEGOTIATION 51

1. First, for each dimension of the negotiation, check the appropriateAccept*header field and assign a quality to
each variant. If theAccept*header for any dimension implies that this variant is not acceptable, eliminate it. If
no variants remain, go to step 4.

2. Select the ’best’ variant by a process of elimination. Each of the following tests is applied in order. Any variants
not selected at each test are eliminated. After each test, if only one variant remains, select it as the best match
and proceed to step 3. If more than one variant remains, move on to the next test.

(a) Multiply the quality factor from the Accept header with the quality-of-source factor for this variant’s media
type, and select the variants with the highest value.

(b) Select the variants with the highest language quality factor.

(c) Select the variants with the best language match, using either the order of languages in the Accept-
Language header (if present), or else the order of languages in theLanguagePriority directive (if
present).

(d) Select the variants with the highest ’level’ media parameter (used to give the version of text/html media
types).

(e) Select variants with the best charset media parameters, as given on the Accept-Charset header line. Charset
ISO-8859-1 is acceptable unless explicitly excluded. Variants with atext/* media type but not explicitly
associated with a particular charset are assumed to be in ISO-8859-1.

(f) Select those variants which have associated charset media parameters that arenot ISO-8859-1. If there are
no such variants, select all variants instead.

(g) Select the variants with the best encoding. If there are variants with an encoding that is acceptable to the
user-agent, select only these variants. Otherwise if there is a mix of encoded and non-encoded variants,
select only the unencoded variants. If either all variants are encoded or all variants are not encoded, select
all variants.

(h) Select the variants with the smallest content length.

(i) Select the first variant of those remaining. This will be either the first listed in the type-map file, or when
variants are read from the directory, the one whose file name comes first when sorted using ASCII code
order.

3. The algorithm has now selected one ’best’ variant, so return it as the response. The HTTP response header Vary
is set to indicate the dimensions of negotiation (browsers and caches can use this information when caching the
resource). End.

4. To get here means no variant was selected (because none are acceptable to the browser). Return a 406 status
(meaning" No acceptable representation") with a response body consisting of an HTML document listing the
available variants. Also set the HTTP Vary header to indicate the dimensions of variance.

Fiddling with Quality Values

Apache sometimes changes the quality values from what would be expected by a strict interpretation of the Apache
negotiation algorithm above. This is to get a better result from the algorithm for browsers which do not send full or
accurate information. Some of the most popular browsers send Accept header information which would otherwise
result in the selection of the wrong variant in many cases. If a browser sends full and correct information these fiddles
will not be applied.

Media Types and Wildcards

The Accept: request header indicates preferences for media types. It can also include ’wildcard’ media types, such as
" image/*" or " */* " where the * matches any string. So a request including:

52 CHAPTER 2. USING THE APACHE HTTP SERVER

Accept: image/*, */*

would indicate that any type starting" image/" is acceptable, as is any other type. Some browsers routinely send
wildcards in addition to explicit types they can handle. For example:

Accept: text/html, text/plain, image/gif, image/jpeg, */*

The intention of this is to indicate that the explicitly listed types are preferred, but if a different representation is
available, that is ok too. Using explicit quality values, what the browser really wants is something like:

Accept: text/html, text/plain, image/gif, image/jpeg, */*; q=0.01

The explicit types have no quality factor, so they default to a preference of 1.0 (the highest). The wildcard */* is given
a low preference of 0.01, so other types will only be returned if no variant matches an explicitly listed type.

If the Accept: header containsno q factors at all, Apache sets the q value of" */* " , if present, to 0.01 to emulate
the desired behavior. It also sets the q value of wildcards of the format" type/*" to 0.02 (so these are preferred over
matches against" */* " . If any media type on the Accept: header contains a q factor, these special values arenot
applied, so requests from browsers which send the explicit information to start with work as expected.

Language Negotiation Exceptions

New in Apache 2.0, some exceptions have been added to the negotiation algorithm to allow graceful fallback when
language negotiation fails to find a match.

When a client requests a page on your server, but the server cannot find a single page that matches the Accept-language
sent by the browser, the server will return either a" No Acceptable Variant" or " Multiple Choices" response to the
client. To avoid these error messages, it is possible to configure Apache to ignore the Accept-language in these cases
and provide a document that does not explicitly match the client’s request. TheFORCELANGUAGEPRIORITY directive
can be used to override one or both of these error messages and substitute the servers judgement in the form of the
LANGUAGEPRIORITY directive.

The server will also attempt to match language-subsets when no other match can be found. For example, if a client
requests documents with the languageen-GB for British English, the server is not normally allowed by the HTTP/1.1
standard to match that against a document that is marked as simplyen . (Note that it is almost surely a configuration
error to includeen-GB and noten in the Accept-Language header, since it is very unlikely that a reader understands
British English, but doesn’t understand English in general. Unfortunately, many current clients have default configu-
rations that resemble this.) However, if no other language match is possible and the server is about to return a" No
Acceptable Variants" error or fallback to theLANGUAGEPRIORITY, the server will ignore the subset specification
and matchen-GB againsten documents. Implicitly, Apache will add the parent language to the client’s acceptable
language list with a very low quality value. But note that if the client requests" en-GB; qs=0.9, fr; qs=0.8" , and
the server has documents designated" en" and" fr" , then the" fr" document will be returned. This is necessary to
maintain compliance with the HTTP/1.1 specification and to work effectively with properly configured clients.

In order to support advanced techniques (such as Cookies or special URL-paths) to determine the user’s preferred lan-
guage, since Apache 2.0.47MOD NEGOTIATION recognizes the environment variable (p.61) prefer-language .
If it exists and contains an appropriate language tag,MOD NEGOTIATION will try to select a matching variant. If
there’s no such variant, the normal negotiation process applies.

Example
SetEnvIf Cookie "language=en" prefer-language=en

SetEnvIf Cookie "language=fr" prefer-language=fr

2.11. CONTENT NEGOTIATION 53

Extensions to Transparent Content Negotiation

Apache extends the transparent content negotiation protocol (RFC 2295) as follows. A new{encoding .. } ele-
ment is used in variant lists to label variants which are available with a specific content-encoding only. The imple-
mentation of the RVSA/1.0 algorithm (RFC 2296) is extended to recognize encoded variants in the list, and to use
them as candidate variants whenever their encodings are acceptable according to the Accept-Encoding request header.
The RVSA/1.0 implementation does not round computed quality factors to 5 decimal places before choosing the best
variant.

Note on hyperlinks and naming conventions

If you are using language negotiation you can choose between different naming conventions, because files can have
more than one extension, and the order of the extensions is normally irrelevant (see the modmime (p.456) documen-
tation for details).

A typical file has a MIME-type extension (e.g., html), maybe an encoding extension (e.g., gz), and of course a
language extension (e.g., en) when we have different language variants of this file.

Examples:

• foo.en.html

• foo.html.en

• foo.en.html.gz

Here some more examples of filenames together with valid and invalid hyperlinks:

Filename Valid hyperlink Invalid hyperlink
foo.html.en foo

foo.html
-

foo.en.html foo foo.html
foo.html.en.gz foo

foo.html
foo.gz
foo.html.gz

foo.en.html.gz foo foo.html
foo.html.gz
foo.gz

foo.gz.html.en foo
foo.gz
foo.gz.html

foo.html

foo.html.gz.en foo
foo.html
foo.html.gz

foo.gz

Looking at the table above, you will notice that it is always possible to use the name without any extensions in a
hyperlink (e.g., foo). The advantage is that you can hide the actual type of a document rsp. file and can change it
later,e.g., from html to shtml or cgi without changing any hyperlink references.

If you want to continue to use a MIME-type in your hyperlinks (e.g.foo.html) the language extension (including an
encoding extension if there is one) must be on the right hand side of the MIME-type extension (e.g., foo.html.en).

Note on Caching

When a cache stores a representation, it associates it with the request URL. The next time that URL is requested,
the cache can use the stored representation. But, if the resource is negotiable at the server, this might result in only
the first requested variant being cached and subsequent cache hits might return the wrong response. To prevent this,

54 CHAPTER 2. USING THE APACHE HTTP SERVER

Apache normally marks all responses that are returned after content negotiation as non-cacheable by HTTP/1.0 clients.
Apache also supports the HTTP/1.1 protocol features to allow caching of negotiated responses.

For requests which come from a HTTP/1.0 compliant client (either a browser or a cache), the directiveCACHENE-
GOTIATEDDOCS can be used to allow caching of responses which were subject to negotiation. This directive can be
given in the server config or virtual host, and takes no arguments. It has no effect on requests from HTTP/1.1 clients.

More Information

For more information about content negotiation, see Alan J. Flavell’s Language Negotiation Notes17. But note that
this document may not be updated to include changes in Apache 2.0.

17http://ppewww.ph.gla.ac.uk/˜flavell/www/lang-neg.html

http://ppewww.ph.gla.ac.uk/~flavell/www/lang-neg.html

2.12. CUSTOM ERROR RESPONSES 55

2.12 Custom Error Responses

Additional functionality allows webmasters to configure the response of Apache to some error or problem.

Customizable responses can be defined to be activated in the event of a server detected error or problem.

If a script crashes and produces a" 500 Server Error" response, then this response can be replaced with either some
friendlier text or by a redirection to another URL (local or external).

Behavior

Old Behavior

NCSA httpd 1.3 would return some boring old error/problem message which would often be meaningless to the user,
and would provide no means of logging the symptoms which caused it.

New Behavior

The server can be asked to:

1. Display some other text, instead of the NCSA hard coded messages, or

2. redirect to a local URL, or

3. redirect to an external URL.

Redirecting to another URL can be useful, but only if some information can be passed which can then be used to
explain and/or log the error/problem more clearly.

To achieve this, Apache will define new CGI-like environment variables:

REDIRECTHTTP ACCEPT=*/*, image/gif, image/x-xbitmap, image/jpeg
REDIRECTHTTP USERAGENT=Mozilla/1.1b2 (X11; I; HP-UX A.09.05
9000/712)
REDIRECTPATH=.:/bin:/usr/local/bin:/etc
REDIRECTQUERYSTRING=
REDIRECTREMOTEADDR=121.345.78.123
REDIRECTREMOTEHOST=ooh.ahhh.com
REDIRECTSERVERNAME=crash.bang.edu
REDIRECTSERVERPORT=80
REDIRECTSERVERSOFTWARE=Apache/0.8.15

REDIRECTURL=/cgi-bin/buggy.pl

Note theREDIRECT prefix.

At leastREDIRECTURLandREDIRECTQUERYSTRINGwill be passed to the new URL (assuming it’s a cgi-script
or a cgi-include). The other variables will exist only if they existed prior to the error/problem.Noneof these will be
set if yourERRORDOCUMENT is anexternalredirect (anything starting with a scheme name likehttp: , even if it
refers to the same host as the server).

56 CHAPTER 2. USING THE APACHE HTTP SERVER

Configuration

Use ofERRORDOCUMENT is enabled for .htaccess files when theALLOWOVERRIDE is set accordingly.

Here are some examples...

ErrorDocument 500 /cgi-bin/crash-recover
ErrorDocument 500 "Sorry, our script crashed. Oh dear"
ErrorDocument 500 http://xxx/
ErrorDocument 404 /Lame excuses/not found.html

ErrorDocument 401 /Subscription/how to subscribe.html

The syntax is,

ErrorDocument <3-digit-code > <action >

where the action can be,

1. Text to be displayed. Prefix the text with a quote ("). Whatever follows the quote is displayed.Note: the (")
prefix isn’t displayed.

2. An external URL to redirect to.

3. A local URL to redirect to.

Custom Error Responses and Redirects

Apache’s behavior to redirected URLs has been modified so that additional environment variables are available to a
script/server-include.

Old behavior

Standard CGI vars were made available to a script which has been redirected to. No indication of where the redirection
came from was provided.

New behavior

A new batch of environment variables will be initialized for use by a script which has been redirected to. Each new
variable will have the prefixREDIRECT. REDIRECT environment variables are created from the CGI environment
variables which existed prior to the redirect, they are renamed with aREDIRECT prefix, i.e., HTTP USERAGENT
becomesREDIRECTHTTP USERAGENT. In addition to these new variables, Apache will defineREDIRECTURL
andREDIRECTSTATUSto help the script trace its origin. Both the original URL and the URL being redirected to
can be logged in the access log.

If the ErrorDocument specifies a local redirect to a CGI script, the script should include a"Status:" header field
in its output in order to ensure the propagation all the way back to the client of the error condition that caused it to be
invoked. For instance, a Perl ErrorDocument script might include the following:

...
print "Content-type: text/html \n";
printf "Status: %s Condition Intercepted \n", $ENV {"REDIRECT STATUS"};

...

2.12. CUSTOM ERROR RESPONSES 57

If the script is dedicated to handling a particular error condition, such as404NotFound , it can use the specific code
and error text instead.

Note that the scriptmustemit an appropriateStatus: header (such as302Found), if the response contains a
Location: header (in order to issue a client side redirect). Otherwise theLocation: header may have no effect.

58 CHAPTER 2. USING THE APACHE HTTP SERVER

2.13 Binding

Configuring Apache to listen on specific addresses and ports.

See also

• Virtual Hosts (p.114)

• DNS Issues (p.139)

Overview

Related Modules
CORE

MPM COMMON

Related Directives
<V IRTUAL HOST>
L ISTEN

When Apache starts, it binds to some port and address on the local machine and waits for incoming requests. By
default, it listens to all addresses on the machine. However, it needs to be told to listen on specific ports, or to listen
on only selected addresses, or a combination. This is often combined with the Virtual Host feature which determines
how Apache responds to different IP addresses, hostnames and ports.

The L ISTEN directive tells the server to accept incoming requests only on the specified port or address-and-port
combinations. If only a port number is specified in theL ISTEN directive, the server listens to the given port on all
interfaces. If an IP address is given as well as a port, the server will listen on the given port and interface. Multiple
Listen directives may be used to specify a number of addresses and ports to listen on. The server will respond to
requests from any of the listed addresses and ports.

For example, to make the server accept connections on both port 80 and port 8000, use:

Listen 80

Listen 8000

To make the server accept connections on two specified interfaces and port numbers, use

Listen 192.170.2.1:80

Listen 192.170.2.5:8000

IPv6 addresses must be surrounded in square brackets, as in the following example:

Listen [fe80::a00:20ff:fea7:ccea]:80

Special IPv6 Considerations

A growing number of platforms implement IPv6, and APR supports IPv6 on most of these platforms, allowing Apache
to allocate IPv6 sockets and handle requests which were sent over IPv6.

One complicating factor for Apache administrators is whether or not an IPv6 socket can handle both IPv4 connections
and IPv6 connections. Handling IPv4 connections with an IPv6 socket uses IPv4-mapped IPv6 addresses, which are
allowed by default on most platforms but are disallowed by default on FreeBSD, NetBSD, and OpenBSD in order to
match the system-wide policy on those platforms. But even on systems where it is disallowed by default, a special
configure parameter can change this behavior for Apache.

2.13. BINDING 59

If you want Apache to handle IPv4 and IPv6 connections with a minimum of sockets, which requires using IPv4-
mapped IPv6 addresses, specify the--enable-v4-mapped configure option and use generic Listen directives like
the following:

Listen 80

With --enable-v4-mapped , the Listen directives in the default configuration file created by Apache will use this
form. --enable-v4-mapped is the default on all platforms but FreeBSD, NetBSD, and OpenBSD, so this is
probably how your Apache was built.

If you want Apache to handle IPv4 connections only, regardless of what your platform and APR will support, specify
an IPv4 address on all Listen directives, as in the following examples:

Listen 0.0.0.0:80

Listen 192.170.2.1:80

If you want Apache to handle IPv4 and IPv6 connections on separate sockets (i.e., to disable IPv4-mapped addresses),
specify the--disable-v4-mapped configure option and use specific Listen directives like the following:

Listen [::]:80

Listen 0.0.0.0:80

With --disable-v4-mapped , the Listen directives in the default configuration file created by Apache will use
this form. --disable-v4-mapped is the default on FreeBSD, NetBSD, and OpenBSD.

How This Works With Virtual Hosts

Listen does not implement Virtual Hosts. It only tells the main server what addresses and ports to listen to. If no
<V IRTUAL HOST> directives are used, the server will behave the same for all accepted requests. However,<V IR-
TUAL HOST> can be used to specify a different behavior for one or more of the addresses and ports. To implement
a VirtualHost, the server must first be told to listen to the address and port to be used. Then a<V IRTUAL HOST>
section should be created for a specified address and port to set the behavior of this virtual host. Note that if the
<V IRTUAL HOST> is set for an address and port that the server is not listening to, it cannot be accessed.

60 CHAPTER 2. USING THE APACHE HTTP SERVER

2.14 Multi-Processing Modules (MPMs)

This document describes what a Multi-Processing Module is and how they are using by the Apache HTTP Server.

Introduction

The Apache HTTP Server is designed to be a powerful and flexible web server that can work on a very wide variety of
platforms in a range of different environments. Different platforms and different environments often require different
features, or may have different ways of implementing the same feature most efficiently. Apache has always accommo-
dated a wide variety of environments through its modular design. This design allows the webmaster to choose which
features will be included in the server by selecting which modules to load either at compile-time or at run-time.

Apache 2.0 extends this modular design to the most basic functions of a web server. The server ships with a selection
of Multi-Processing Modules (MPMs) which are responsible for binding to network ports on the machine, accepting
requests, and dispatching children to handle the requests.

Extending the modular design to this level of the server allows two important benefits:

• Apache can more cleanly and efficiently support a wide variety of operating systems. In particular, the Windows
version of Apache is now much more efficient, sinceMPM WINNT can use native networking features in place
of the POSIX layer used in Apache 1.3. This benefit also extends to other operating systems that implement
specialized MPMs.

• The server can be better customized for the needs of the particular site. For example, sites that need a great deal
of scalability can choose to use a threaded MPM likeWORKER, while sites requiring stability or compatibility
with older software can use aPREFORK. In addition, special features like serving different hosts under different
userids (PERCHILD) can be provided.

At the user level, MPMs appear much like other Apache modules. The main difference is that one and only one MPM
must be loaded into the server at any time. The list of available MPMs appears on the module index page (p.626) .

Choosing an MPM

MPMs must be chosen during configuration, and compiled into the server. Compilers are capable of optimizing a lot
of functions if threads are used, but only if they know that threads are being used. Because some MPMs use threads
on Unix and others don’t, Apache will always perform better if the MPM is chosen at configuration time and built into
Apache.

To actually choose the desired MPM, use the argument –with-mpm=NAMEwith the ./configure script.NAME is the
name of the desired MPM.

Once the server has been compiled, it is possible to determine which MPM was chosen by using./httpd -l . This
command will list every module that is compiled into the server, including the MPM.

MPM Defaults

The following table lists the default MPMs for various operating systems. This will be the MPM selected if you do
not make another choice at compile-time.

BeOS BEOS

Netware MPM NETWARE

OS/2 MPMT OS2
Unix PREFORK

Windows MPM WINNT

2.15. ENVIRONMENT VARIABLES IN APACHE 61

2.15 Environment Variables in Apache

The Apache HTTP Server provides a mechanism for storing information in named variables that are calledenvironment
variables. This information can be used to control various operations such as logging or access control. The variables
are also used as a mechanism to communicate with external programs such as CGI scripts. This document discusses
different ways to manipulate and use these variables.

Although these variables are referred to asenvironment variables, they are not the same as the environment variables
controlled by the underlying operating system. Instead, these variables are stored and manipulated in an internal
Apache structure. They only become actual operating system environment variables when they are provided to CGI
scripts and Server Side Include scripts. If you wish to manipulate the operating system environment under which
the server itself runs, you must use the standard environment manipulation mechanisms provided by your operating
system shell.

Setting Environment Variables

Related Modules
MOD ENV

MOD REWRITE

MOD SETENVIF

MOD UNIQUE ID

Related Directives
BROWSERMATCH

BROWSERMATCHNOCASE

PASSENV

REWRITERULE

SETENV

SETENV IF

SETENV IFNOCASE

UNSETENV

Basic Environment Manipulation

The most basic way to set an environment variable in Apache is using the unconditionalSETENV directive. Variables
may also be passed from the environment of the shell which started the server using thePASSENV directive.

Conditional Per-Request Settings

For additional flexibility, the directives provided by modsetenvif allow environment variables to be set on a per-
request basis, conditional on characteristics of particular requests. For example, a variable could be set only when a
specific browser (User-Agent) is making a request, or only when a specific Referer [sic] header is found. Even more
flexibility is available through the modrewrite’sREWRITERULE which uses the[E=...] option to set environment
variables.

Unique Identifiers

Finally, moduniqueid sets the environment variableUNIQUEID for each request to a value which is guaranteed to
be unique across" all" requests under very specific conditions.

Standard CGI Variables

In addition to all environment variables set within the Apache configuration and passed from the shell, CGI scripts and
SSI pages are provided with a set of environment variables containing meta-information about the request as required

62 CHAPTER 2. USING THE APACHE HTTP SERVER

by the CGI specification18.

Some Caveats

• It is not possible to override or change the standard CGI variables using the environment manipulation directives.

• When suexec (p.69) is used to launch CGI scripts, the environment will be cleaned down to a set ofsafe
variables before CGI scripts are launched. The list ofsafevariables is defined at compile-time insuexec.c .

• For portability reasons, the names of environment variables may contain only letters, numbers, and the un-
derscore character. In addition, the first character may not be a number. Characters which do not match this
restriction will be replaced by an underscore when passed to CGI scripts and SSI pages.

Using Environment Variables

Related Modules
MOD ACCESS

MOD CGI

MOD EXT FILTER

MOD HEADERS

MOD INCLUDE

MOD LOG CONFIG

MOD REWRITE

Related Directives
ALLOW

CUSTOMLOG

DENY

EXTFILTERDEFINE

HEADER

LOGFORMAT

REWRITECOND

REWRITERULE

CGI Scripts

One of the primary uses of environment variables is to communicate information to CGI scripts. As discussed above,
the environment passed to CGI scripts includes standard meta-information about the request in addition to any variables
set within the Apache configuration. For more details, see the CGI tutorial (p.189) .

SSI Pages

Server-parsed (SSI) documents processed by modinclude’sINCLUDESfilter can print environment variables using
theecho element, and can use environment variables in flow control elements to makes parts of a page conditional on
characteristics of a request. Apache also provides SSI pages with the standard CGI environment variables as discussed
above. For more details, see the SSI tutorial (p.195) .

Access Control

Access to the server can be controlled based on the value of environment variables using theallow from env=
anddeny from env= directives. In combination withSETENV IF, this allows for flexible control of access to the
server based on characteristics of the client. For example, you can use these directives to deny access to a particular
browser (User-Agent).

18http://cgi-spec.golux.com/

http://cgi-spec.golux.com/

2.15. ENVIRONMENT VARIABLES IN APACHE 63

Conditional Logging

Environment variables can be logged in the access log using theLOGFORMAT option%e. In addition, the decision on
whether or not to log requests can be made based on the status of environment variables using the conditional form
of the CUSTOMLOG directive. In combination withSETENV IF this allows for flexible control of which requests are
logged. For example, you can choose not to log requests for filenames ending ingif , or you can choose to only log
requests from clients which are outside your subnet.

Conditional Response Headers

The HEADER directive can use the presence or absence of an environment variable to determine whether or not a
certain HTTP header will be placed in the response to the client. This allows, for example, a certain response header
to be sent only if a corresponding header is received in the request from the client.

External Filter Activation

External filters configured byMOD EXT FILTER using theEXTFILTERDEFINE directive can by activated conditional
on an environment variable using thedisableenv= andenableenv= options.

URL Rewriting

The%{ENV:... } form of TestStringin theREWRITECOND allows modrewrite’s rewrite engine to make decisions
conditional on environment variables. Note that the variables accessible in modrewrite without theENV: prefix are
not actually environment variables. Rather, they are variables special to modrewrite which cannot be accessed from
other modules.

Special Purpose Environment Variables

Interoperability problems have led to the introduction of mechanisms to modify the way Apache behaves when talking
to particular clients. To make these mechanisms as flexible as possible, they are invoked by defining environment
variables, typically withBROWSERMATCH, thoughSETENV andPASSENV could also be used, for example.

downgrade-1.0

This forces the request to be treated as a HTTP/1.0 request even if it was in a later dialect.

force-no-vary

This causes anyVary fields to be removed from the response header before it is sent back to the client. Some clients
don’t interpret this field correctly (see the known client problems (p.273) page); setting this variable can work around
this problem. Setting this variable also impliesforce-response-1.0.

force-response-1.0

This forces an HTTP/1.0 response to clients making an HTTP/1.0 request. It was originally implemented as a result of
a problem with AOL’s proxies. Some HTTP/1.0 clients may not behave correctly when given an HTTP/1.1 response,
and this can be used to interoperate with them.

64 CHAPTER 2. USING THE APACHE HTTP SERVER

gzip-only-text/html

When set to a value of" 1" , this variable disables the DEFLATE output filter provided byMOD DEFLATE for content-
types other thantext/html .

no-gzip

When set, theDEFLATEfilter of MOD DEFLATE will be turned off.

nokeepalive

This disablesKEEPALIVE when set.

prefer-language

This influencesMOD NEGOTIATION’s behaviour. If it contains a language tag (such asen , ja or x-klingon),
MOD NEGOTIATION tries to deliver a variant with that language. If there’s no such variant, the normal negotiation (p.
48) process applies.

redirect-carefully

This forces the server to be more careful when sending a redirect to the client. This is typically used when a client
has a known problem handling redirects. This was originally implemented as a result of a problem with Microsoft’s
WebFolders software which has a problem handling redirects on directory resources via DAV methods.

suppress-error-charset

Available in versions after 2.0.40

When Apache issues a redirect in response to a client request, the response includes some actual text to be displayed
in case the client can’t (or doesn’t) automatically follow the redirection. Apache ordinarily labels this text according
to the character set which it uses, which is ISO-8859-1.

However, if the redirection is to a page that uses a different character set, some broken browser versions will try to
use the character set from the redirection text rather than the actual page. This can result in Greek, for instance, being
incorrectly rendered.

Setting this environment variable causes Apache to omit the character set for the redirection text, and these broken
browsers will then correctly use that of the destination page.

Examples

Changing protocol behavior with misbehaving clients

We recommend that the following lines be included in httpd.conf to deal with known client problems.

2.15. ENVIRONMENT VARIABLES IN APACHE 65

#
The following directives modify normal HTTP response behavior.
The first directive disables keepalive for Netscape 2.x and browsers that
spoof it. There are known problems with these browser implementations.
The second directive is for Microsoft Internet Explorer 4.0b2
which has a broken HTTP/1.1 implementation and does not properly
support keepalive when it is used on 301 or 302 (redirect) responses.
#
BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

#
The following directive disables HTTP/1.1 responses to browsers which
are in violation of the HTTP/1.0 spec by not being able to grok a
basic 1.1 response.
#
BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

Do not log requests for images in the access log

This example keeps requests for images from appearing in the access log. It can be easily modified to prevent logging
of particular directories, or to prevent logging of requests coming from particular hosts.

SetEnvIf Request_URI \.gif image-request
SetEnvIf Request_URI \.jpg image-request
SetEnvIf Request_URI \.png image-request
CustomLog logs/access_log common env=!image-request

Prevent " Image Theft"

This example shows how to keep people not on your server from using images on your server as inline-images on their
pages. This is not a recommended configuration, but it can work in limited circumstances. We assume that all your
images are in a directory called /web/images.

SetEnvIf Referer "ˆhttp://www.example.com/" local_referal
Allow browsers that do not send Referer info
SetEnvIf Referer "ˆ$" local_referal
<Directory /web/images>

Order Deny,Allow
Deny from all
Allow from env=local_referal

</Directory>

For more information about this technique, see the ApacheToday tutorial" Keeping Your Images from Adorning
Other Sites19" .

19http://apachetoday.com/newsstory.php3?ltsn=2000-06-14-002-01-PS

http://apachetoday.com/news_story.php3?ltsn=2000-06-14-002-01-PS

66 CHAPTER 2. USING THE APACHE HTTP SERVER

2.16 Apache’s Handler Use

This document describes the use of Apache’s Handlers.

What is a Handler

Related Modules
MOD ACTIONS

MOD ASIS

MOD CGI

MOD IMAP

MOD INFO

MOD MIME

MOD NEGOTIATION

MOD STATUS

Related Directives
ACTION

ADDHANDLER

REMOVEHANDLER

SETHANDLER

A " handler" is an internal Apache representation of the action to be performed when a file is called. Generally, files
have implicit handlers, based on the file type. Normally, all files are simply served by the server, but certain file types
are" handled" separately.

Apache 1.1 adds the ability to use handlers explicitly. Based on either filename extensions or on location, handlers can
be specified without relation to file type. This is advantageous both because it is a more elegant solution, and because
it also allows for both a typeand a handler to be associated with a file. (See also Files with Multiple Extensions (p.
456) .)

Handlers can either be built into the server or included in a module, or they can be added with theACTION directive.
The built-in handlers in the standard distribution are as follows:

• default-handler: Send the file using thedefault handler() , which is the handler used by default to handle
static content. (core)

• send-as-is: Send file with HTTP headers as is. (MOD ASIS)

• cgi-script: Treat the file as a CGI script. (MOD CGI)

• imap-file: Parse as an imagemap rule file. (MOD IMAP)

• server-info: Get the server’s configuration information. (MOD INFO)

• server-status: Get the server’s status report. (MOD STATUS)

• type-map: Parse as a type map file for content negotiation. (MOD NEGOTIATION)

Examples

Modifying static content using a CGI script

The following directives will cause requests for files with thehtml extension to trigger the launch of thefooter.pl
CGI script.

Action add-footer /cgi-bin/footer.pl

AddHandler add-footer .html

Then the CGI script is responsible for sending the originally requested document (pointed to by the
PATHTRANSLATEDenvironment variable) and making whatever modifications or additions are desired.

2.16. APACHE’S HANDLER USE 67

Files with HTTP headers

The following directives will enable thesend-as-is handler, which is used for files which contain their own HTTP
headers. All files in the/web/htdocs/asis/ directory will be processed by thesend-as-is handler, regardless
of their filename extensions.

<Directory /web/htdocs/asis >
SetHandler send-as-is

</Directory >

Programmer’s Note

In order to implement the handler features, an addition has been made to the Apache API (p.587) that you may wish
to make use of. Specifically, a new record has been added to therequest rec structure:

char *handler

If you wish to have your module engage a handler, you need only to setr- >handler to the name of the handler at
any time prior to theinvoke handler stage of the request. Handlers are implemented as they were before, albeit
using the handler name instead of a content type. While it is not necessary, the naming convention for handlers is to
use a dash-separated word, with no slashes, so as to not invade the media type name-space.

68 CHAPTER 2. USING THE APACHE HTTP SERVER

2.17 Filters

This document describes the use of filters in Apache.

Filters

Related Modules
MOD DEFLATE

MOD EXT FILTER

MOD INCLUDE

Related Directives
ADDINPUTFILTER

ADDOUTPUTFILTER

REMOVEINPUTFILTER

REMOVEOUTPUTFILTER

EXTFILTERDEFINE

EXTFILTEROPTIONS

SETINPUTFILTER

SETOUTPUTFILTER

A filter is a process that is applied to data that is sent or received by the server. Data sent by clients to the server is
processed byinput filterswhile data sent by the server to the client is processed byoutput filters. Multiple filters can
be applied to the data, and the order of the filters can be explicitly specified.

Filters are used internally by Apache to perform functions such as chunking and byte-range request handling. In addi-
tion, modules can provide filters that are selectable using run-time configuration directives. The set of filters that apply
to data can be manipulated with theSETINPUTFILTER, SETOUTPUTFILTER, ADDINPUTFILTER, ADDOUTPUTFIL -
TER, REMOVEINPUTFILTER, andREMOVEOUTPUTFILTER directives.

The following user-selectable filters are currently provided with the Apache HTTP Server distribution.

INCLUDES Server-Side Includes processing byMOD INCLUDE

DEFLATE Compress output before sending it to the client usingMOD DEFLATE

In addition, the moduleMOD EXT FILTER allows for external programs to be defined as filters.

2.18. SUEXEC SUPPORT 69

2.18 suEXEC Support

ThesuEXEC feature provides Apache users the ability to runCGI andSSI programs under user IDs different from
the user ID of the calling web-server. Normally, when a CGI or SSI program executes, it runs as the same user who is
running the web server.

Used properly, this feature can reduce considerably the security risks involved with allowing users to develop and run
private CGI or SSI programs. However, if suEXEC is improperly configured, it can cause any number of problems
and possibly create new holes in your computer’s security. If you aren’t familiar with managing setuid root programs
and the security issues they present, we highly recommend that you not consider using suEXEC.

Before we begin

Before jumping head-first into this document, you should be aware of the assumptions made on the part of the Apache
Group and this document.

First, it is assumed that you are using a UNIX derivative operating system that is capable ofsetuid andsetgidoper-
ations. All command examples are given in this regard. Other platforms, if they are capable of supporting suEXEC,
may differ in their configuration.

Second, it is assumed you are familiar with some basic concepts of your computer’s security and its administration.
This involves an understanding ofsetuid/setgidoperations and the various effects they may have on your system and
its level of security.

Third, it is assumed that you are using anunmodified version of suEXEC code. All code for suEXEC has been
carefully scrutinized and tested by the developers as well as numerous beta testers. Every precaution has been taken
to ensure a simple yet solidly safe base of code. Altering this code can cause unexpected problems and new security
risks. It ishighly recommended you not alter the suEXEC code unless you are well versed in the particulars of security
programming and are willing to share your work with the Apache Group for consideration.

Fourth, and last, it has been the decision of the Apache Group toNOT make suEXEC part of the default installation
of Apache. To this end, suEXEC configuration requires of the administrator careful attention to details. After due
consideration has been given to the various settings for suEXEC, the administrator may install suEXEC through normal
installation methods. The values for these settings need to be carefully determined and specified by the administrator
to properly maintain system security during the use of suEXEC functionality. It is through this detailed process that
the Apache Group hopes to limit suEXEC installation only to those who are careful and determined enough to use it.

Still with us? Yes? Good. Let’s move on!

suEXEC Security Model

Before we begin configuring and installing suEXEC, we will first discuss the security model you are about to imple-
ment. By doing so, you may better understand what exactly is going on inside suEXEC and what precautions are taken
to ensure your system’s security.

suEXEC is based on a setuid" wrapper" program that is called by the main Apache web server. This wrapper is called
when an HTTP request is made for a CGI or SSI program that the administrator has designated to run as a userid other
than that of the main server. When such a request is made, Apache provides the suEXEC wrapper with the program’s
name and the user and group IDs under which the program is to execute.

The wrapper then employs the following process to determine success or failure – if any one of these conditions fail,
the program logs the failure and exits with an error, otherwise it will continue:

1. Was the wrapper called with the proper number of arguments?

70 CHAPTER 2. USING THE APACHE HTTP SERVER

The wrapper will only execute if it is given the proper number of arguments. The proper argument format is
known to the Apache web server. If the wrapper is not receiving the proper number of arguments, it is either
being hacked, or there is something wrong with the suEXEC portion of your Apache binary.

2. Is the user executing this wrapper a valid user of this system?

This is to ensure that the user executing the wrapper is truly a user of the system.

3. Is this valid user allowed to run the wrapper?

Is this user the user allowed to run this wrapper? Only one user (the Apache user) is allowed to execute this
program.

4. Does the target program have an unsafe hierarchical reference?

Does the target program contain a leading ’/’ or have a ’..’ backreference? These are not allowed; the target
program must reside within the Apache webspace.

5. Is the target user name valid?

Does the target user exist?

6. Is the target group name valid?

Does the target group exist?

7. Is the target userNOT superuser?

Presently, suEXEC does not allow ’root’ to execute CGI/SSI programs.

8. Is the target useridABOVE the minimum ID number?

The minimum user ID number is specified during configuration. This allows you to set the lowest possible
userid that will be allowed to execute CGI/SSI programs. This is useful to block out" system" accounts.

9. Is the target group NOT the superuser group?

Presently, suEXEC does not allow the ’root’ group to execute CGI/SSI programs.

10. Is the target groupid ABOVE the minimum ID number?

The minimum group ID number is specified during configuration. This allows you to set the lowest possible
groupid that will be allowed to execute CGI/SSI programs. This is useful to block out" system" groups.

11. Can the wrapper successfully become the target user and group?

Here is where the program becomes the target user and group via setuid and setgid calls. The group access list
is also initialized with all of the groups of which the user is a member.

12. Does the directory in which the program resides exist?

If it doesn’t exist, it can’t very well contain files.

13. Is the directory within the Apache webspace?

If the request is for a regular portion of the server, is the requested directory within the server’s document root?
If the request is for a UserDir, is the requested directory within the user’s document root?

14. Is the directory NOT writable by anyone else?

We don’t want to open up the directory to others; only the owner user may be able to alter this directories
contents.

15. Does the target program exist?

If it doesn’t exists, it can’t very well be executed.

2.18. SUEXEC SUPPORT 71

16. Is the target program NOT writable by anyone else?

We don’t want to give anyone other than the owner the ability to change the program.

17. Is the target program NOT setuid or setgid?

We do not want to execute programs that will then change our UID/GID again.

18. Is the target user/group the same as the program’s user/group?

Is the user the owner of the file?

19. Can we successfully clean the process environment to ensure safe operations?

suEXEC cleans the process’ environment by establishing a safe execution PATH (defined during configuration),
as well as only passing through those variables whose names are listed in the safe environment list (also created
during configuration).

20. Can we successfully become the target program and execute?

Here is where suEXEC ends and the target program begins.

This is the standard operation of the suEXEC wrapper’s security model. It is somewhat stringent and can impose new
limitations and guidelines for CGI/SSI design, but it was developed carefully step-by-step with security in mind.

For more information as to how this security model can limit your possibilities in regards to server configuration, as
well as what security risks can be avoided with a proper suEXEC setup, see the" Beware the Jabberwock" section of
this document.

Configuring & Installing suEXEC

Here’s where we begin the fun.

suEXEC configuration options

--enable-suexec This option enables the suEXEC feature which is never installed or activated by default. At
least one –with-suexec-xxxxx option has to be provided together with the –enable-suexec option to let APACI
accept your request for using the suEXEC feature.

--with-suexec-bin= PATH The path to the suexec binary must be hard-coded in the server for security reasons.
Use this option to override the default path.e.g.--with-suexec-bin=/usr/sbin/suexec

--with-suexec-caller= UID The username (p.558) under which Apache normally runs. This is the only user
allowed to execute this program.

--with-suexec-userdir= DIR Define to be the subdirectory under users’ home directories where suEXEC
access should be allowed. All executables under this directory will be executable by suEXEC as the user so they
should be" safe" programs. If you are using a" simple" UserDir directive (ie. one without a" * " in it) this
should be set to the same value. suEXEC will not work properly in cases where the UserDir directive points
to a location that is not the same as the user’s home directory as referenced in the passwd file. Default value is
" public html" .
If you have virtual hosts with a different UserDir for each, you will need to define them to all reside in one
parent directory; then name that parent directory here.If this is not defined properly, " ˜userdir" cgi requests
will not work!

--with-suexec-docroot= DIR Define as the DocumentRoot set for Apache. This will be the only hierar-
chy (aside from UserDirs) that can be used for suEXEC behavior. The default directory is the –datadir
value with the suffix" /htdocs" , e.g. if you configure with"--datadir=/home/apache" the directory
" /home/apache/htdocs" is used as document root for the suEXEC wrapper.

72 CHAPTER 2. USING THE APACHE HTTP SERVER

--with-suexec-uidmin= UID Define this as the lowest UID allowed to be a target user for suEXEC. For most
systems, 500 or 100 is common. Default value is 100.

--with-suexec-gidmin= GID Define this as the lowest GID allowed to be a target group for suEXEC. For most
systems, 100 is common and therefore used as default value.

--with-suexec-logfile= FILE This defines the filename to which all suEXEC transactions and errors are
logged (useful for auditing and debugging purposes). By default the logfile is named" suexeclog" and located
in your standard logfile directory (–logfiledir).

--with-suexec-safepath= PATH Define a safe PATH environment to pass to CGI executables. Default value
is " /usr/local/bin:/usr/bin:/bin" .

Checking your suEXEC setup
Before you compile and install the suEXEC wrapper you can check the configuration with the –layout option.
Example output:

suEXEC setup:
suexec binary: /usr/local/apache/sbin/suexec
document root: /usr/local/apache/share/htdocs
userdir suffix: public html
logfile: /usr/local/apache/var/log/suexec log
safe path: /usr/local/bin:/usr/bin:/bin
caller ID: www
minimum user ID: 100

minimum group ID: 100

Compiling and installing the suEXEC wrapper
If you have enabled the suEXEC feature with the –enable-suexec option the suexec binary (together with Apache
itself) is automatically built if you execute the command" make" .
After all components have been built you can execute the command" make install" to install them. The
binary image " suexec" is installed in the directory defined by the –sbindir option. Default location is
" /usr/local/apache/sbin/suexec" .
Please note that you needroot privilegesfor the installation step. In order for the wrapper to set the user ID, it must
be installed as ownerroot and must have the setuserid execution bit set for file modes.

Enabling & Disabling suEXEC

Upon startup of Apache, it looks for the file" suexec" in the " sbin" directory (default is
" /usr/local/apache/sbin/suexec"). If Apache finds a properly configured suEXEC wrapper, it will print the
following message to the error log:

[notice] suEXEC mechanism enabled (wrapper: /path/to/suexec)

If you don’t see this message at server startup, the server is most likely not finding the wrapper program where it
expects it, or the executable is not installedsetuid root.

If you want to enable the suEXEC mechanism for the first time and an Apache server is already running you must kill
and restart Apache. Restarting it with a simple HUP or USR1 signal will not be enough.

If you want to disable suEXEC you should kill and restart Apache after you have removed the" suexec" file.

2.18. SUEXEC SUPPORT 73

Using suEXEC

Virtual Hosts:
One way to use the suEXEC wrapper is through theSUEXECUSERGROUPdirective inV IRTUAL HOSTdefinitions. By
setting this directive to values different from the main server user ID, all requests for CGI resources will be executed
as theUserandGroupdefined for that<V IRTUAL HOST>. If this directive is not specified for a<V IRTUAL HOST>
then the main server userid is assumed.

User directories:
The suEXEC wrapper can also be used to execute CGI programs as the user to which the request is being directed.
This is accomplished by using the" ˜ " character prefixing the user ID for whom execution is desired. The only
requirement needed for this feature to work is for CGI execution to be enabled for the user and that the script must
meet the scrutiny of the security checks above.

Debugging suEXEC

The suEXEC wrapper will write log information to the file defined with the –with-suexec-logfile option as indicated
above. If you feel you have configured and installed the wrapper properly, have a look at this log and the errorlog for
the server to see where you may have gone astray.

Beware the Jabberwock: Warnings & Examples

NOTE! This section may not be complete. For the latest revision of this section of the documentation, see the Apache
Group’s Online Documentation20 version.

There are a few points of interest regarding the wrapper that can cause limitations on server setup. Please review these
before submitting any" bugs" regarding suEXEC.

• suEXEC Points Of Interest

• Hierarchy limitations

For security and efficiency reasons, all suexec requests must remain within either a top-level document root for
virtual host requests, or one top-level personal document root for userdir requests. For example, if you have
four VirtualHosts configured, you would need to structure all of your VHosts’ document roots off of one main
Apache document hierarchy to take advantage of suEXEC for VirtualHosts. (Example forthcoming.)

• suEXEC’s PATH environment variable

This can be a dangerous thing to change. Make certain every path you include in this define is atrusted
directory. You don’t want to open people up to having someone from across the world running a trojan horse on
them.

• Altering the suEXEC code

Again, this can causeBig Trouble if you try this without knowing what you are doing. Stay away from it if at
all possible.

20http://httpd.apache.org/docs-2.0/suexec.html

http://httpd.apache.org/docs-2.0/suexec.html

74 CHAPTER 2. USING THE APACHE HTTP SERVER

2.19 Apache Performance Tuning

! Warning:
This document has not been fully updated to take into account changes made in the 2.0 version
of the Apache HTTP Server. Some of the information may still be relevant, but please use it
with care.

Orignally written by Dean Gaudet.

Apache 2.0 is a general-purpose webserver, designed to provide a balance of flexibility, portability, and performance.
Although it has not been designed specifically to set benchmark records, Apache 2.0 is capable of high performance
in many real-world situations.

Compared to Apache 1.3, release 2.0 contains many additional optimizations to increase throughput and scalability.
Most of these improvements are enabled by default. However, there are compile-time and run-time configuration
choices that can significantly affect performance. This document describes the options that a server administrator
can configure to tune the performance of an Apache 2.0 installation. Some of these configuration options enable the
httpd to better take advantage of the capabilities of the hardware and OS, while others allow the administrator to trade
functionality for speed.

Hardware and Operating System Issues

The single biggest hardware issue affecting webserver performance is RAM. A webserver should never ever have to
swap, as swapping increases the latency of each request beyond a point that users consider" fast enough" . This causes
users to hit stop and reload, further increasing the load. You can, and should, control theMAX CLIENTS setting so that
your server does not spawn so many children it starts swapping. This procedure for doing this is simple: determine
the size of your average Apache process, by looking at your process list via a tool such astop , and divide this into
your total available memory, leaving some room for other processes.

Beyond that the rest is mundane: get a fast enough CPU, a fast enough network card, and fast enough disks, where
" fast enough" is something that needs to be determined by experimentation.

Operating system choice is largely a matter of local concerns. But some guidelines that have proven generally useful
are:

• Run the latest stable release and patchlevel of the operating system that you choose. Many OS suppliers have
introduced significant performance improvements to their TCP stacks and thread libraries in recent years.

• If your OS supports asendfile(2) system call, make sure you install the release and/or patches needed to
enable it. (With Linux, for example, this means using Linux 2.4 or later. For early releases of Solaris 8, you may
need to apply a patch.) On systems where it is available,sendfile enables Apache 2 to deliver static content
faster and with lower CPU utilization.

2.19. APACHE PERFORMANCE TUNING 75

Run-Time Configuration Issues

Related Modules
MOD DIR

MPM COMMON

MOD STATUS

Related Directives
ALLOWOVERRIDE

DIRECTORYINDEX

HOSTNAMELOOKUPS

ENABLEMMAP
ENABLESENDFILE

KEEPALIVE TIMEOUT

MAX SPARESERVERS

M INSPARESERVERS

OPTIONS

STARTSERVERS

HostnameLookups and other DNS considerations

Prior to Apache 1.3,HOSTNAMELOOKUPSdefaulted toOn. This adds latency to every request because it requires a
DNS lookup to complete before the request is finished. In Apache 1.3 this setting defaults toOff . If you need to have
addresses in your log files resolved to hostnames, use thelogresolve (p. 254) program that comes with Apache,
on one of the numerous log reporting packages which are available.

It is recommended that you do this sort of postprocessing of your log files on some machine other than the production
web server machine, in order that this activity not adversely affect server performance.

If you use anyAL L O W from domain or DE N Y from domain directives (i.e., using a hostname, or a domain
name, rather than an IP address) then you will pay for a double reverse DNS lookup (a reverse, followed by a forward
to make sure that the reverse is not being spoofed). For best performence, therefore, use IP addresses, rather than
names, when using these directives, if possible.

Note that it’s possible to scope the directives, such as within a<Location /server-status > section. In this
case the DNS lookups are only performed on requests matching the criteria. Here’s an example which disables lookups
except for.html and.cgi files:

HostnameLookups off
<Files ˜ " \.(html|cgi)$" >

HostnameLookups on

</Files >

But even still, if you just need DNS names in some CGIs you could consider doing thegethostbyname call in the
specific CGIs that need it.

FollowSymLinks and SymLinksIfOwnerMatch

Wherever in your URL-space you do not have anOptions FollowSymLinks , or you do have anOptions
SymLinksIfOwnerMatch Apache will have to issue extra system calls to check up on symlinks. One extra call
per filename component. For example, if you had:

DocumentRoot /www/htdocs
<Directory / >

Options SymLinksIfOwnerMatch

</Directory >

76 CHAPTER 2. USING THE APACHE HTTP SERVER

and a request is made for the URI/index.html . Then Apache will performlstat(2) on/www, /www/htdocs ,
and /www/htdocs/index.html . The results of theselstats are never cached, so they will occur on every
single request. If you really desire the symlinks security checking you can do something like this:

DocumentRoot /www/htdocs
<Directory / >

Options FollowSymLinks

</Directory >

<Directory /www/htdocs >

Options -FollowSymLinks +SymLinksIfOwnerMatch

</Directory >

This at least avoids the extra checks for theDOCUMENTROOT path. Note that you’ll need to add similar sections
if you have anyALIAS or REWRITERULE paths outside of your document root. For highest performance, and no
symlink protection, setFollowSymLinks everywhere, and never setSymLinksIfOwnerMatch .

AllowOverride

Wherever in your URL-space you allow overrides (typically.htaccess files) Apache will attempt to open
.htaccess for each filename component. For example,

DocumentRoot /www/htdocs
<Directory / >

AllowOverride all

</Directory >

and a request is made for the URI/index.html . Then Apache will attempt to open/.htaccess ,
/www/.htaccess , and/www/htdocs/.htaccess . The solutions are similar to the previous case ofOptions
FollowSymLinks . For highest performance useAllowOverride None everywhere in your filesystem.

Negotiation

If at all possible, avoid content-negotiation if you’re really interested in every last ounce of performance. In practice
the benefits of negotiation outweigh the performance penalties. There’s one case where you can speed up the server.
Instead of using a wildcard such as:

DirectoryIndex index

Use a complete list of options:

DirectoryIndex index.cgi index.pl index.shtml index.html

where you list the most common choice first.

Also note that explicitly creating atype-map file provides better performance than usingMultiViews , as the
necessary information can be determined by reading this single file, rather than having to scan the directory for files.

If your site needs content negotiation consider usingtype-map files, rather than theOptions MultiViews
directive to accomplish the negotiation. See the Content Negotiation (p.48) documentation for a full discussion of the
methods of negotiation, and instructions for creatingtype-map files.

2.19. APACHE PERFORMANCE TUNING 77

Memory-mapping

In situations where Apache 2.0 needs to look at the contents of a file being delivered–for example, when doing server-
side-include processing–it normally memory-maps the file if the OS supports some form ofmmap(2) .

On some platforms, this memory-mapping improves performance. However, there are cases where memory-mapping
can hurt the performance or even the stability of the httpd:

• On some operating systems,mmapdoes not scale as well asread(2) when the number of CPUs increases.
On multiprocessor Solaris servers, for example, Apache 2.0 sometimes delivers server-parsed files faster when
mmapis disabled.

• If you memory-map a file located on an NFS-mounted filesystem and a process on another NFS client machine
deletes or truncates the file, your process may get a bus error the next time it tries to access the mapped file
content.

For installations where either of these factors applies, you should useEnableMMAP off to disable the memory-
mapping of delivered files. (Note: This directive can be overridden on a per-directory basis.)

Sendfile

In situations where Apache 2.0 can ignore the contents of the file to be delivered – for example, when serving static
file content – it normally uses the kernel sendfile support the file if the OS supports thesendfile(2) operation.

On most platforms, using sendfile improves performance by eliminating separate read and send mechanics. However,
there are cases where using sendfile can harm the stability of the httpd:

• Some platforms may have broken sendfile support that the build system did not detect, especially if the binaries
were built on another box and moved to such a machine with broken sendfile support.

• With an NFS-mounted files, the kernel may be unable to reliably serve the network file through it’s own cache.

For installations where either of these factors applies, you should useEnableSendfile off to disable sendfile
delivery of file contents. (Note: This directive can be overridden on a per-directory basis.)

Process Creation

Prior to Apache 1.3 theM INSPARESERVERS, MAX SPARESERVERS, and STARTSERVERS settings all had drastic
effects on benchmark results. In particular, Apache required a" ramp-up" period in order to reach a number of
children sufficient to serve the load being applied. After the initial spawning ofSTARTSERVERSchildren, only one
child per second would be created to satisfy theM INSPARESERVERS setting. So a server being accessed by 100
simultaneous clients, using the defaultSTARTSERVERS of 5 would take on the order 95 seconds to spawn enough
children to handle the load. This works fine in practice on real-life servers, because they aren’t restarted frequently.
But does really poorly on benchmarks which might only run for ten minutes.

The one-per-second rule was implemented in an effort to avoid swamping the machine with the startup of new children.
If the machine is busy spawning children it can’t service requests. But it has such a drastic effect on the perceived
performance of Apache that it had to be replaced. As of Apache 1.3, the code will relax the one-per-second rule. It
will spawn one, wait a second, then spawn two, wait a second, then spawn four, and it will continue exponentially
until it is spawning 32 children per second. It will stop whenever it satisfies theM INSPARESERVERSsetting.

This appears to be responsive enough that it’s almost unnecessary to twiddle theM INSPARESERVERS, MAX SPARE-
SERVERSandSTARTSERVERSknobs. When more than 4 children are spawned per second, a message will be emitted
to theERRORLOG. If you see a lot of these errors then consider tuning these settings. Use theMOD STATUS output as
a guide.

78 CHAPTER 2. USING THE APACHE HTTP SERVER

Related to process creation is process death induced by theMAX REQUESTSPERCHILD setting. By default this is0,
which means that there is no limit to the number of requests handled per child. If your configuration currently has this
set to some very low number, such as30 , you may want to bump this up significantly. If you are running SunOS or
an old version of Solaris, limit this to10000 or so because of memory leaks.

When keep-alives are in use, children will be kept busy doing nothing waiting for more requests on the already open
connection. The defaultKEEPALIVE TIMEOUT of 15 seconds attempts to minimize this effect. The tradeoff here is
between network bandwidth and server resources. In no event should you raise this above about60 seconds, as most
of the benefits are lost21.

Compile-Time Configuration Issues

Choosing an MPM

Apache 2.x supports pluggable concurrency models, called Multi-Processing Modules (p.60) (MPMs). When build-
ing Apache, you must choose an MPM to use. There are platform-specific MPMs for some platforms:BEOS,
MPM NETWARE, MPMT OS2, andMPM WINNT. For general Unix-type systems, there are several MPMs from which
to choose. The choice of MPM can affect the speed and scalability of the httpd:

• TheWORKER MPM uses multiple child processes with many threads each. Each thread handles one connection
at a time. Worker generally is a good choice for high-traffic servers because it has a smaller memory footprint
than the prefork MPM.

• ThePREFORKMPM uses multiple child processes with one thread each. Each process handles one connection
at a time. On many systems, prefork is comparable in speed to worker, but it uses more memory. Prefork’s
threadless design has advantages over worker in some situations: it can be used with non-thread-safe third-party
modules, and it is easier to debug on platforms with poor thread debugging support.

For more information on these and other MPMs, please see the MPM documentation (p.60) .

Modules

Since memory usage is such an important consideration in performance, you should attempt to eliminate modules that
youare not actually using. If you have built the modules as DSOs (p.45) , eliminating modules is a simple matter
of commenting out the associatedLOADMODULE directive for that module. This allows you to experiment with
removing modules, and seeing if your site still functions in their absense.

If, on the other hand, you have modules statically linked into your Apache binary, you will need to recompile Apache
in order to remove unwanted modules.

An associated question that arises here is, of course, what modules you need, and which ones you don’t. The answer
here will, of course, vary from one web site to another. However, theminimal list of modules which you can get by
with tends to includeMOD MIME , MOD DIR, andMOD LOG CONFIG. mod log config is, of course, optional, as
you can run a web site without log files. This is, however, not recommended.

Atomic Operations

Some modules, such asMOD CACHE and recent development builds of the worker MPM, use APR’s atomic API. This
API provides atomic operations that can be used for lightweight thread synchronization.

By default, APR implements these operations using the most efficient mechanism available on each target OS/CPU
platform. Many modern CPUs, for example, have an instruction that does an atomic compare-and-swap (CAS) opera-
tion in hardware. On some platforms, however, APR defaults to a slower, mutex-based implementation of the atomic

21http://www.research.digital.com/wrl/techreports/abstracts/95.4.html

http://www.research.digital.com/wrl/techreports/abstracts/95.4.html

2.19. APACHE PERFORMANCE TUNING 79

API in order to ensure compatibility with older CPU models that lack such instructions. If you are building Apache
for one of these platforms, and you plan to run only on newer CPUs, you can select a faster atomic implementation at
build time by configuring Apache with the--enable-nonportable-atomics option:

./buildconf

./configure --with-mpm=worker --enable-nonportable-atomics=yes

The--enable-nonportable-atomics option is relevant for the following platforms:

• Solaris on SPARC
By default, APR uses mutex-based atomics on Solaris/SPARC. If you configure with
--enable-nonportable-atomics , however, APR generates code that uses a SPARC v8plus
opcode for fast hardware compare-and-swap. If you configure Apache with this option, the atomic operations
will be more efficient (allowing for lower CPU utilization and higher concurrency), but the resulting executable
will run only on UltraSPARC chips.

• Linux on x86
By default, APR uses mutex-based atomics on Linux. If you configure with
--enable-nonportable-atomics , however, APR generates code that uses a 486 opcode for
fast hardware compare-and-swap. This will result in more efficient atomic operations, but the resulting
executable will run only on 486 and later chips (and not on 386).

mod status and ExtendedStatus On

If you includeMOD STATUS and you also setExtendedStatus On when building and running Apache, then on
every request Apache will perform two calls togettimeofday(2) (or times(2) depending on your operating
system), and (pre-1.3) several extra calls totime(2) . This is all done so that the status report contains timing
indications. For highest performance, setExtendedStatus off (which is the default).

accept Serialization - multiple sockets

This discusses a shortcoming in the Unix socket API. Suppose your web server uses multipleL ISTEN statements
to listen on either multiple ports or multiple addresses. In order to test each socket to see if a connection is ready
Apache usesselect(2) . select(2) indicates that a socket haszeroor at least oneconnection waiting on it.
Apache’s model includes multiple children, and all the idle ones test for new connections at the same time. A naive
implementation looks something like this (these examples do not match the code, they’re contrived for pedagogical
purposes):

80 CHAPTER 2. USING THE APACHE HTTP SERVER

for (;;) {
for (;;) {

fd set accept fds;

FD ZERO (&accept fds);
for (i = first socket; i <= last socket; ++i) {

FD SET (i, &accept fds);

}
rc = select (last socket+1, &accept fds, NULL, NULL, NULL);
if (rc < 1) continue;
new connection = -1;
for (i = first socket; i <= last socket; ++i) {

if (FD ISSET (i, &accept fds)) {
new connection = accept (i, NULL, NULL);
if (new connection != -1) break;

}
}
if (new connection != -1) break;

}
process the new connection;

}

But this naive implementation has a serious starvation problem. Recall that multiple children execute this loop at the
same time, and so multiple children will block atselect when they are in between requests. All those blocked
children will awaken and return fromselect when a single request appears on any socket (the number of children
which awaken varies depending on the operating system and timing issues). They will all then fall down into the loop
and try toaccept the connection. But only one will succeed (assuming there’s still only one connection ready), the
rest will beblockedin accept . This effectively locks those children into serving requests from that one socket and
no other sockets, and they’ll be stuck there until enough new requests appear on that socket to wake them all up. This
starvation problem was first documented in PR#46722. There are at least two solutions.

One solution is to make the sockets non-blocking. In this case theaccept won’t block the children, and they will
be allowed to continue immediately. But this wastes CPU time. Suppose you have ten idle children inselect , and
one connection arrives. Then nine of those children will wake up, try toaccept the connection, fail, and loop back
into select , accomplishing nothing. Meanwhile none of those children are servicing requests that occurred on other
sockets until they get back up to theselect again. Overall this solution does not seem very fruitful unless you have
as many idle CPUs (in a multiprocessor box) as you have idle children, not a very likely situation.

Another solution, the one used by Apache, is to serialize entry into the inner loop. The loop looks like this (differences
highlighted):

22http://bugs.apache.org/index/full/467

http://bugs.apache.org/index/full/467

2.19. APACHE PERFORMANCE TUNING 81

for (;;) {
accept mutex on ();
for (;;) {

fd set accept fds;

FD ZERO (&accept fds);
for (i = first socket; i <= last socket; ++i) {

FD SET (i, &accept fds);

}
rc = select (last socket+1, &accept fds, NULL, NULL, NULL);
if (rc < 1) continue;
new connection = -1;
for (i = first socket; i <= last socket; ++i) {

if (FD ISSET (i, &accept fds)) {
new connection = accept (i, NULL, NULL);
if (new connection != -1) break;

}
}
if (new connection != -1) break;

}
accept mutex off ();
process the new connection;

}

The functionsaccept mutex on andaccept mutex off implement a mutual exclusion semaphore. Only one
child can have the mutex at any time. There are several choices for implementing these mutexes. The choice is defined
in src/conf.h (pre-1.3) orsrc/include/ap config.h (1.3 or later). Some architectures do not have any
locking choice made, on these architectures it is unsafe to use multipleL ISTEN directives.

USEFLOCKSERIALIZED ACCEPTThis method uses theflock(2) system call to lock a lock file (located by
theLOCKFILE directive).

USEFCNTLSERIALIZED ACCEPTThis method uses thefcntl(2) system call to lock a lock file (located by
theLOCKFILE directive).

USESYSVSEMSERIALIZED ACCEPT(1.3 or later) This method uses SysV-style semaphores to implement the
mutex. Unfortunately SysV-style semaphores have some bad side-effects. One is that it’s possible Apache will
die without cleaning up the semaphore (see theipcs(8) man page). The other is that the semaphore API
allows for a denial of service attack by any CGIs running under the same uid as the webserver (i.e., all CGIs,
unless you use something likesuexec or cgiwrapper). For these reasons this method is not used on any
architecture except IRIX (where the previous two are prohibitively expensive on most IRIX boxes).

USEUSLOCKSERIALIZED ACCEPT(1.3 or later) This method is only available on IRIX, and uses
usconfig(2) to create a mutex. While this method avoids the hassles of SysV-style semaphores, it is not the
default for IRIX. This is because on single processor IRIX boxes (5.3 or 6.2) the uslock code is two orders of
magnitude slower than the SysV-semaphore code. On multi-processor IRIX boxes the uslock code is an order
of magnitude faster than the SysV-semaphore code. Kind of a messed up situation. So if you’re using a mul-
tiprocessor IRIX box then you should rebuild your webserver with-DUSE USLOCKSERIALIZED ACCEPT
on theEXTRACFLAGS.

USEPTHREADSERIALIZED ACCEPT(1.3 or later) This method uses POSIX mutexes and should work on any
architecture implementing the full POSIX threads specification, however appears to only work on Solaris (2.5
or later), and even then only in certain configurations. If you experiment with this you should watch out for your
server hanging and not responding. Static content only servers may work just fine.

82 CHAPTER 2. USING THE APACHE HTTP SERVER

If your system has another method of serialization which isn’t in the above list then it may be worthwhile adding code
for it (and submitting a patch back to Apache).

Another solution that has been considered but never implemented is to partially serialize the loop – that is, let in a
certain number of processes. This would only be of interest on multiprocessor boxes where it’s possible multiple
children could run simultaneously, and the serialization actually doesn’t take advantage of the full bandwidth. This is
a possible area of future investigation, but priority remains low because highly parallel web servers are not the norm.

Ideally you should run servers without multipleL ISTEN statements if you want the highest performance. But read on.

accept Serialization - single socket

The above is fine and dandy for multiple socket servers, but what about single socket servers? In theory they shouldn’t
experience any of these same problems because all children can just block inaccept(2) until a connection arrives,
and no starvation results. In practice this hides almost the same" spinning" behaviour discussed above in the non-
blocking solution. The way that most TCP stacks are implemented, the kernel actually wakes up all processes blocked
in accept when a single connection arrives. One of those processes gets the connection and returns to user-space,
the rest spin in the kernel and go back to sleep when they discover there’s no connection for them. This spinning is
hidden from the user-land code, but it’s there nonetheless. This can result in the same load-spiking wasteful behaviour
that a non-blocking solution to the multiple sockets case can.

For this reason we have found that many architectures behave more" nicely" if we serialize even the single socket
case. So this is actually the default in almost all cases. Crude experiments under Linux (2.0.30 on a dual Pentium
pro 166 w/128Mb RAM) have shown that the serialization of the single socket case causes less than a 3% decrease in
requests per second over unserialized single-socket. But unserialized single-socket showed an extra 100ms latency on
each request. This latency is probably a wash on long haul lines, and only an issue on LANs. If you want to override
the single socket serialization you can defineSINGLE LISTEN UNSERIALIZED ACCEPTand then single-socket
servers will not serialize at all.

Lingering Close

As discussed in draft-ietf-http-connection-00.txt23 section 8, in order for an HTTP server toreliably implement the
protocol it needs to shutdown each direction of the communication independently (recall that a TCP connection is
bi-directional, each half is independent of the other). This fact is often overlooked by other servers, but is correctly
implemented in Apache as of 1.2.

When this feature was added to Apache it caused a flurry of problems on various versions of Unix because of a
shortsightedness. The TCP specification does not state that theFIN WAIT 2 state has a timeout, but it doesn’t prohibit
it. On systems without the timeout, Apache 1.2 induces many sockets stuck forever in theFIN WAIT 2 state. In many
cases this can be avoided by simply upgrading to the latest TCP/IP patches supplied by the vendor. In cases where the
vendor has never released patches (i.e., SunOS4 – although folks with a source license can patch it themselves) we
have decided to disable this feature.

There are two ways of accomplishing this. One is the socket optionSOLINGER. But as fate would have it, this has
never been implemented properly in most TCP/IP stacks. Even on those stacks with a proper implementation (i.e.,
Linux 2.0.31) this method proves to be more expensive (cputime) than the next solution.

For the most part, Apache implements this in a function calledlingering close (in http main.c). The func-
tion looks roughly like this:

23http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

2.19. APACHE PERFORMANCE TUNING 83

void lingering close (int s)
{

char junk buffer[2048];

/* shutdown the sending side */
shutdown (s, 1);

signal (SIGALRM, lingering death);
alarm (30);

for (;;) {
select (s for reading, 2 second timeout);
if (error) break;
if (s is ready for reading) {

if (read (s, junk buffer, sizeof (junk buffer)) <= 0) {
break;

}
/* just toss away whatever is here */

}
}
close (s);

}

This naturally adds some expense at the end of a connection, but it is required for a reliable implementation. As
HTTP/1.1 becomes more prevalent, and all connections are persistent, this expense will be amortized over more
requests. If you want to play with fire and disable this feature you can defineNOLINGCLOSE, but this is not recom-
mended at all. In particular, as HTTP/1.1 pipelined persistent connections come into uselingering close is an
absolute necessity (and pipelined connections are faster24, so you want to support them).

Scoreboard File

Apache’s parent and children communicate with each other through something called the scoreboard. Ideally this
should be implemented in shared memory. For those operating systems that we either have access to, or have been
given detailed ports for, it typically is implemented using shared memory. The rest default to using an on-disk file.
The on-disk file is not only slow, but it is unreliable (and less featured). Peruse thesrc/main/conf.h file for your
architecture and look for eitherUSEMMAPSCOREBOARDor USESHMGETSCOREBOARD. Defining one of those
two (as well as their companionsHAVEMMAPandHAVESHMGETrespectively) enables the supplied shared memory
code. If your system has another type of shared memory, edit the filesrc/main/http main.c and add the hooks
necessary to use it in Apache. (Send us back a patch too please.)

=⇒Historical note: The Linux port of Apache didn’t start to use shared memory until version 1.2
of Apache. This oversight resulted in really poor and unreliable behaviour of earlier versions
of Apache on Linux.

DYNAMIC MODULE LIMIT

If you have no intention of using dynamically loaded modules (you probably don’t if you’re reading this and tun-
ing your server for every last ounce of performance) then you should add-DDYNAMICMODULELIMIT=0 when
building your server. This will save RAM that’s allocated only for supporting dynamically loaded modules.

24http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

84 CHAPTER 2. USING THE APACHE HTTP SERVER

Appendix: Detailed Analysis of a Trace

Here is a system call trace of Apache 2.0.38 with the worker MPM on Solaris 8. This trace was collected using:

truss -l -p httpd child pid.

The -l option tells truss to log the ID of the LWP (lightweight process–Solaris’s form of kernel-level thread) that
invokes each system call.

Other systems may have different system call tracing utilities such asstrace , ktrace , or par . They all produce
similar output.

In this trace, a client has requested a 10KB static file from the httpd. Traces of non-static requests or requests with
content negotiation look wildly different (and quite ugly in some cases).

/67: accept(3, 0x00200BEC, 0x00200C0C, 1) (sleeping...)
/67: accept(3, 0x00200BEC, 0x00200C0C, 1) = 9

In this trace, the listener thread is running within LWP #67.

=⇒Note the lack ofaccept(2) serialization. On this particular platform, the worker MPM uses
an unserialized accept by default unless it is listening on multiple ports.

/65: lwp_park(0x00000000, 0) = 0
/67: lwp_unpark(65, 1) = 0

Upon accepting the connection, the listener thread wakes up a worker thread to do the request processing. In this trace,
the worker thread that handles the request is mapped to LWP #65.

/65: getsockname(9, 0x00200BA4, 0x00200BC4, 1) = 0

In order to implement virtual hosts, Apache needs to know the local socket address used to accept the connection. It is
possible to eliminate this call in many situations (such as when there are no virtual hosts, or whenL ISTEN directives
are used which do not have wildcard addresses). But no effort has yet been made to do these optimizations.

/65: brk(0x002170E8) = 0
/65: brk(0x002190E8) = 0

The brk(2) calls allocate memory from the heap. It is rare to see these in a system call trace, because the httpd
uses custom memory allocators (apr pool andapr bucket alloc) for most request processing. In this trace,
the httpd has just been started, so it must callmalloc(3) to get the blocks of raw memory with which to create the
custom memory allocators.

/65: fcntl(9, F_GETFL, 0x00000000) = 2
/65: fstat64(9, 0xFAF7B818) = 0
/65: getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B910, 2190656) = 0
/65: fstat64(9, 0xFAF7B818) = 0
/65: getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B914, 2190656) = 0
/65: setsockopt(9, 65535, 8192, 0xFAF7B918, 4, 2190656) = 0
/65: fcntl(9, F_SETFL, 0x00000082) = 0

2.19. APACHE PERFORMANCE TUNING 85

Next, the worker thread puts the connection to the client (file descriptor 9) in non-blocking mode. The
setsockopt(2) andgetsockopt(2) calls are a side-effect of how Solaris’s libc handlesfcntl(2) on sock-
ets.

/65: read(9, " G E T / 1 0 k . h t m".., 8000) = 97

The worker thread reads the request from the client.

/65: stat("/var/httpd/apache/httpd-8999/htdocs/10k.html", 0xFAF7B978) = 0
/65: open("/var/httpd/apache/httpd-8999/htdocs/10k.html", O_RDONLY) = 10

This httpd has been configured withOptions FollowSymLinks andAllowOverride None . Thus it doesn’t
need tolstat(2) each directory in the path leading up to the requested file, nor check for.htaccess files. It
simply callsstat(2) to verify that the file: 1) exists, and 2) is a regular file, not a directory.

/65: sendfilev(0, 9, 0x00200F90, 2, 0xFAF7B53C) = 10269

In this example, the httpd is able to send the HTTP response header and the requested file with a single
sendfilev(2) system call. Sendfile semantics vary among operating systems. On some other systems, it is neces-
sary to do awrite(2) or writev(2) call to send the headers before callingsendfile(2) .

/65: write(4, " 1 2 7 . 0 . 0 . 1 - ".., 78) = 78

This write(2) call records the request in the access log. Note that one thing missing from this trace is atime(2)
call. Unlike Apache 1.3, Apache 2.0 usesgettimeofday(3) to look up the time. On some operating systems,
like Linux or Solaris,gettimeofday has an optimized implementation that doesn’t require as much overhead as a
typical system call.

/65: shutdown(9, 1, 1) = 0
/65: poll(0xFAF7B980, 1, 2000) = 1
/65: read(9, 0xFAF7BC20, 512) = 0
/65: close(9) = 0

The worker thread does a lingering close of the connection.

/65: close(10) = 0
/65: lwp_park(0x00000000, 0) (sleeping...)

Finally the worker thread closes the file that it has just delivered and blocks until the listener assigns it another con-
nection.

/67: accept(3, 0x001FEB74, 0x001FEB94, 1) (sleeping...)

Meanwhile, the listener thread is able to accept another connection as soon as it has dispatched this connection to
a worker thread (subject to some flow-control logic in the worker MPM that throttles the listener if all the available
workers are busy). Though it isn’t apparent from this trace, the nextaccept(2) can (and usually does, under high
load conditions) occur in parallel with the worker thread’s handling of the just-accepted connection.

86 CHAPTER 2. USING THE APACHE HTTP SERVER

2.20 URL Rewriting Guide

=⇒Originally written by
Ralf S. Engelschall<rse@apache.org>
December 1997

This document supplements theMOD REWRITE reference documentation (p.493) . It describes how one can use
Apache’sMOD REWRITE to solve typical URL-based problems webmasters are usually confronted with in practice. I
give detailed descriptions on how to solve each problem by configuring URL rewriting rulesets.

Introduction to mod rewrite

The Apache moduleMOD REWRITE is a killer one, i.e. it is a really sophisticated module which provides a powerful
way to do URL manipulations. With it you can nearly do all types of URL manipulations you ever dreamed about.
The price you have to pay is to accept complexity, becauseMOD REWRITE’s major drawback is that it is not easy to
understand and use for the beginner. And even Apache experts sometimes discover new aspects whereMOD REWRITE

can help.

In other words: WithMOD REWRITE you either shoot yourself in the foot the first time and never use it again or love
it for the rest of your life because of its power. This paper tries to give you a few initial success events to avoid the first
case by presenting already invented solutions to you.

Practical Solutions

Here come a lot of practical solutions I’ve either invented myself or collected from other peoples solutions in the past.
Feel free to learn the black magic of URL rewriting from these examples.

! ATTENTION: Depending on your server-configuration it can be necessary to slightly change
the examples for your situation, e.g. adding the[PT] flag when additionally using
MOD ALIAS and MOD USERDIR, etc. Or rewriting a ruleset to fit in.htaccess context
instead of per-server context. Always try to understand what a particular ruleset really does
before you use it. It avoid problems.

URL Layout

Canonical URLs

Description: On some webservers there are more than one URL for a resource. Usually there are canonical URLs
(which should be actually used and distributed) and those which are just shortcuts, internal ones, etc. Indepen-
dent of which URL the user supplied with the request he should finally see the canonical one only.

Solution: We do an external HTTP redirect for all non-canonical URLs to fix them in the location view of the Browser
and for all subsequent requests. In the example ruleset below we replace/˜user by the canonical/u/user
and fix a missing trailing slash for/u/user .

RewriteRule ˆ/˜([ˆ/]+)/?(.*) /u/$1/$2 [R]
RewriteRule ˆ/([uge])/([ˆ/]+)$ /$1/$2/ [R]

2.20. URL REWRITING GUIDE 87

Canonical Hostnames

Description: ...

Solution:

RewriteCond %{HTTP_HOST} !ˆfully\.qualified\.domain\.name [NC]
RewriteCond %{HTTP_HOST} !ˆ$
RewriteCond %{SERVER_PORT} !ˆ80$
RewriteRule ˆ/(.*) http://fully.qualified.domain.name:%{SERVER_PORT}/$1 [L,R]
RewriteCond %{HTTP_HOST} !ˆfully\.qualified\.domain\.name [NC]
RewriteCond %{HTTP_HOST} !ˆ$
RewriteRule ˆ/(.*) http://fully.qualified.domain.name/$1 [L,R]

Moved DocumentRoot

Description: Usually theDOCUMENTROOT of the webserver directly relates to the URL"/" . But often this data is
not really of top-level priority, it is perhaps just one entity of a lot of data pools. For instance at our Intranet sites
there are/e/www/ (the homepage for WWW),/e/sww/ (the homepage for the Intranet) etc. Now because
the data of theDOCUMENTROOT stays at/e/www/ we had to make sure that all inlined images and other stuff
inside this data pool work for subsequent requests.

Solution: We just redirect the URL/ to /e/www/ . While is seems trivial it is actually trivial withMOD REWRITE,
only. Because the typical old mechanisms of URLAliases(as provides byMOD ALIAS and friends) only used
prefix matching. With this you cannot do such a redirection because theDOCUMENTROOT is a prefix of all
URLs. With MOD REWRITE it is really trivial:

RewriteEngine on
RewriteRule ˆ/$ /e/www/ [R]

Trailing Slash Problem

Description: Every webmaster can sing a song about the problem of the trailing slash on URLs referencing directo-
ries. If they are missing, the server dumps an error, because if you say/˜quux/foo instead of/˜quux/foo/
then the server searches for afile namedfoo . And because this file is a directory it complains. Actually it tries
to fix it itself in most of the cases, but sometimes this mechanism need to be emulated by you. For instance after
you have done a lot of complicated URL rewritings to CGI scripts etc.

Solution: The solution to this subtle problem is to let the server add the trailing slash automatically. To do this
correctly we have to use an external redirect, so the browser correctly requests subsequent images etc. If we
only did a internal rewrite, this would only work for the directory page, but would go wrong when any images are
included into this page with relative URLs, because the browser would request an in-lined object. For instance,
a request forimage.gif in /˜quux/foo/index.html would become/˜quux/image.gif without
the external redirect!

So, to do this trick we write:

RewriteEngine on
RewriteBase /˜quux/
RewriteRule ˆfoo$ foo/ [R]

88 CHAPTER 2. USING THE APACHE HTTP SERVER

The crazy and lazy can even do the following in the top-level.htaccess file of their homedir. But notice that
this creates some processing overhead.

RewriteEngine on
RewriteBase /˜quux/
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ˆ(.+[ˆ/])$ $1/ [R]

Webcluster through Homogeneous URL Layout

Description: We want to create a homogeneous and consistent URL layout over all WWW servers on a Intranet
webcluster, i.e. all URLs (per definition server local and thus server dependent!) become actually serverin-
dependent! What we want is to give the WWW namespace a consistent server-independent layout: no URL
should have to include any physically correct target server. The cluster itself should drive us automatically to
the physical target host.

Solution: First, the knowledge of the target servers come from (distributed) external maps which contain information
where our users, groups and entities stay. The have the form

user1 server_of_user1
user2 server_of_user2
: :

We put them into filesmap.xxx-to-host . Second we need to instruct all servers to redirect URLs of the
forms

/u/user/anypath
/g/group/anypath
/e/entity/anypath

to

http://physical-host/u/user/anypath
http://physical-host/g/group/anypath
http://physical-host/e/entity/anypath

when the URL is not locally valid to a server. The following ruleset does this for us by the help of the map files
(assuming that server0 is a default server which will be used if a user has no entry in the map):

2.20. URL REWRITING GUIDE 89

RewriteEngine on

RewriteMap user-to-host txt:/path/to/map.user-to-host
RewriteMap group-to-host txt:/path/to/map.group-to-host
RewriteMap entity-to-host txt:/path/to/map.entity-to-host

RewriteRule ˆ/u/([ˆ/]+)/?(.*) http://${user-to-host:$1|server0}/u/$1/$2
RewriteRule ˆ/g/([ˆ/]+)/?(.*) http://${group-to-host:$1|server0}/g/$1/$2
RewriteRule ˆ/e/([ˆ/]+)/?(.*) http://${entity-to-host:$1|server0}/e/$1/$2

RewriteRule ˆ/([uge])/([ˆ/]+)/?$ /$1/$2/.www/
RewriteRule ˆ/([uge])/([ˆ/]+)/([ˆ.]+.+) /$1/$2/.www/$3\

Move Homedirs to Different Webserver

Description: Many webmasters have asked for a solution to the following situation: They wanted to redirect just
all homedirs on a webserver to another webserver. They usually need such things when establishing a newer
webserver which will replace the old one over time.

Solution: The solution is trivial withMOD REWRITE. On the old webserver we just redirect all/˜user/anypath
URLs tohttp://newserver/˜user/anypath .

RewriteEngine on
RewriteRule ˆ/˜(.+) http://newserver/˜$1 [R,L]

Structured Homedirs

Description: Some sites with thousands of users usually use a structured homedir layout, i.e. each homedir is in
a subdirectory which begins for instance with the first character of the username. So,/˜foo/anypath is
/home/ f /foo/.www/anypath while /˜bar/anypath is /home/ b/bar/.www/anypath .

Solution: We use the following ruleset to expand the tilde URLs into exactly the above layout.

RewriteEngine on
RewriteRule ˆ/˜(([a-z])[a-z0-9]+)(.*) /home/$2/$1/.www$3

Filesystem Reorganization

Description: This really is a hardcore example: a killer application which heavily uses per-directory
RewriteRules to get a smooth look and feel on the Web while its data structure is never touched or ad-
justed. Background:net.swis my archive of freely available Unix software packages, which I started to collect
in 1992. It is both my hobby and job to to this, because while I’m studying computer science I have also worked
for many years as a system and network administrator in my spare time. Every week I need some sort of software
so I created a deep hierarchy of directories where I stored the packages:

90 CHAPTER 2. USING THE APACHE HTTP SERVER

drwxrwxr-x 2 netsw users 512 Aug 3 18:39 Audio/
drwxrwxr-x 2 netsw users 512 Jul 9 14:37 Benchmark/
drwxrwxr-x 12 netsw users 512 Jul 9 00:34 Crypto/
drwxrwxr-x 5 netsw users 512 Jul 9 00:41 Database/
drwxrwxr-x 4 netsw users 512 Jul 30 19:25 Dicts/
drwxrwxr-x 10 netsw users 512 Jul 9 01:54 Graphic/
drwxrwxr-x 5 netsw users 512 Jul 9 01:58 Hackers/
drwxrwxr-x 8 netsw users 512 Jul 9 03:19 InfoSys/
drwxrwxr-x 3 netsw users 512 Jul 9 03:21 Math/
drwxrwxr-x 3 netsw users 512 Jul 9 03:24 Misc/
drwxrwxr-x 9 netsw users 512 Aug 1 16:33 Network/
drwxrwxr-x 2 netsw users 512 Jul 9 05:53 Office/
drwxrwxr-x 7 netsw users 512 Jul 9 09:24 SoftEng/
drwxrwxr-x 7 netsw users 512 Jul 9 12:17 System/
drwxrwxr-x 12 netsw users 512 Aug 3 20:15 Typesetting/
drwxrwxr-x 10 netsw users 512 Jul 9 14:08 X11/

In July 1996 I decided to make this archive public to the world via a nice Web interface." Nice" means that I
wanted to offer an interface where you can browse directly through the archive hierarchy. And" nice" means
that I didn’t wanted to change anything inside this hierarchy - not even by putting some CGI scripts at the top
of it. Why? Because the above structure should be later accessible via FTP as well, and I didn’t want any Web
or CGI stuff to be there.

Solution: The solution has two parts: The first is a set of CGI scripts which create all the pages at all directory levels
on-the-fly. I put them under/e/netsw/.www/ as follows:

-rw-r--r-- 1 netsw users 1318 Aug 1 18:10 .wwwacl
drwxr-xr-x 18 netsw users 512 Aug 5 15:51 DATA/
-rw-rw-rw- 1 netsw users 372982 Aug 5 16:35 LOGFILE
-rw-r--r-- 1 netsw users 659 Aug 4 09:27 TODO
-rw-r--r-- 1 netsw users 5697 Aug 1 18:01 netsw-about.html
-rwxr-xr-x 1 netsw users 579 Aug 2 10:33 netsw-access.pl
-rwxr-xr-x 1 netsw users 1532 Aug 1 17:35 netsw-changes.cgi
-rwxr-xr-x 1 netsw users 2866 Aug 5 14:49 netsw-home.cgi
drwxr-xr-x 2 netsw users 512 Jul 8 23:47 netsw-img/
-rwxr-xr-x 1 netsw users 24050 Aug 5 15:49 netsw-lsdir.cgi
-rwxr-xr-x 1 netsw users 1589 Aug 3 18:43 netsw-search.cgi
-rwxr-xr-x 1 netsw users 1885 Aug 1 17:41 netsw-tree.cgi
-rw-r--r-- 1 netsw users 234 Jul 30 16:35 netsw-unlimit.lst

The DATA/ subdirectory holds the above directory structure, i.e. the realnet.swstuff and gets automatically
updated viardist from time to time. The second part of the problem remains: how to link these two structures
together into one smooth-looking URL tree? We want to hide theDATA/ directory from the user while running
the appropriate CGI scripts for the various URLs. Here is the solution: first I put the following into the per-
directory configuration file in theDOCUMENTROOT of the server to rewrite the announced URL/net.sw/ to
the internal path/e/netsw :

RewriteRule ˆnet.sw$ net.sw/ [R]
RewriteRule ˆnet.sw/(.*)$ e/netsw/$1

2.20. URL REWRITING GUIDE 91

The first rule is for requests which miss the trailing slash! The second rule does the real thing. And then comes
the killer configuration which stays in the per-directory config file/e/netsw/.www/.wwwacl :

Options ExecCGI FollowSymLinks Includes MultiViews

RewriteEngine on

we are reached via /net.sw/ prefix
RewriteBase /net.sw/

first we rewrite the root dir to
the handling cgi script
RewriteRule ˆ$ netsw-home.cgi [L]
RewriteRule ˆindex\.html$ netsw-home.cgi [L]

strip out the subdirs when
the browser requests us from perdir pages
RewriteRule ˆ.+/(netsw-[ˆ/]+/.+)$ $1 [L]

and now break the rewriting for local files
RewriteRule ˆnetsw-home\.cgi.* - [L]
RewriteRule ˆnetsw-changes\.cgi.* - [L]
RewriteRule ˆnetsw-search\.cgi.* - [L]
RewriteRule ˆnetsw-tree\.cgi$ - [L]
RewriteRule ˆnetsw-about\.html$ - [L]
RewriteRule ˆnetsw-img/.*$ - [L]

anything else is a subdir which gets handled
by another cgi script
RewriteRule !ˆnetsw-lsdir\.cgi.* - [C]
RewriteRule (.*) netsw-lsdir.cgi/$1

Some hints for interpretation:

1. Notice theL (last) flag and no substitution field (’- ’) in the forth part

2. Notice the! (not) character and theC (chain) flag at the first rule in the last part

3. Notice the catch-all pattern in the last rule

NCSA imagemap to Apachemod imap

Description: When switching from the NCSA webserver to the more modern Apache webserver a lot of people
want a smooth transition. So they want pages which use their old NCSAimagemap program to work under
Apache with the modernMOD IMAP. The problem is that there are a lot of hyperlinks around which reference
theimagemap program via/cgi-bin/imagemap/path/to/page.map . Under Apache this has to read
just /path/to/page.map .

Solution: We use a global rule to remove the prefix on-the-fly for all requests:

RewriteEngine on
RewriteRule ˆ/cgi-bin/imagemap(.*) $1 [PT]

92 CHAPTER 2. USING THE APACHE HTTP SERVER

Search pages in more than one directory

Description: Sometimes it is necessary to let the webserver search for pages in more than one directory. Here Multi-
Views or other techniques cannot help.

Solution: We program a explicit ruleset which searches for the files in the directories.

RewriteEngine on

first try to find it in custom/...
...and if found stop and be happy:
RewriteCond /your/docroot/dir1/%{REQUEST_FILENAME} -f
RewriteRule ˆ(.+) /your/docroot/dir1/$1 [L]

second try to find it in pub/...
...and if found stop and be happy:
RewriteCond /your/docroot/dir2/%{REQUEST_FILENAME} -f
RewriteRule ˆ(.+) /your/docroot/dir2/$1 [L]

else go on for other Alias or ScriptAlias directives,
etc.
RewriteRule ˆ(.+) - [PT]

Set Environment Variables According To URL Parts

Description: Perhaps you want to keep status information between requests and use the URL to encode it. But you
don’t want to use a CGI wrapper for all pages just to strip out this information.

Solution: We use a rewrite rule to strip out the status information and remember it via an environment variable which
can be later dereferenced from within XSSI or CGI. This way a URL/foo/S=java/bar/ gets translated to
/foo/bar/ and the environment variable namedSTATUSis set to the value" java" .

RewriteEngine on
RewriteRule ˆ(.*)/S=([ˆ/]+)/(.*) $1/$3 [E=STATUS:$2]

Virtual User Hosts

Description: Assume that you want to providewww.username .host.domain.com for the homepage of user-
name via just DNS A records to the same machine and without any virtualhosts on this machine.

Solution: For HTTP/1.0 requests there is no solution, but for HTTP/1.1 requests which contain a Host: HTTP header
we can use the following ruleset to rewritehttp://www.username.host.com/anypath internally to
/home/username/anypath :

RewriteEngine on
RewriteCond %{HTTP_HOST} ˆwww\.[ˆ.]+\.host\.com$
RewriteRule ˆ(.+) %{HTTP_HOST}$1 [C]
RewriteRule ˆwww\.([ˆ.]+)\.host\.com(.*) /home/$1$2

2.20. URL REWRITING GUIDE 93

Redirect Homedirs For Foreigners

Description: We want to redirect homedir URLs to another webserverwww.somewhere.com when the requesting
user does not stay in the local domainourdomain.com . This is sometimes used in virtual host contexts.

Solution: Just a rewrite condition:

RewriteEngine on
RewriteCond %{REMOTE_HOST} !ˆ.+\.ourdomain\.com$
RewriteRule ˆ(/˜.+) http://www.somewhere.com/$1 [R,L]

Redirect Failing URLs To Other Webserver

Description: A typical FAQ about URL rewriting is how to redirect failing requests on webserver A to webserver
B. Usually this is done viaERRORDOCUMENT CGI-scripts in Perl, but there is also aMOD REWRITE solution.
But notice that this performs more poorly than using anERRORDOCUMENT CGI-script!

Solution: The first solution has the best performance but less flexibility, and is less error safe:

RewriteEngine on
RewriteCond /your/docroot/%{REQUEST_FILENAME} !-f
RewriteRule ˆ(.+) http://webserverB.dom/$1

The problem here is that this will only work for pages inside theDOCUMENTROOT. While you can add more
Conditions (for instance to also handle homedirs, etc.) there is better variant:

RewriteEngine on
RewriteCond %{REQUEST_URI} !-U
RewriteRule ˆ(.+) http://webserverB.dom/$1

This uses the URL look-ahead feature ofMOD REWRITE. The result is that this will work for all types of URLs
and is a safe way. But it does a performance impact on the webserver, because for every request there is one
more internal subrequest. So, if your webserver runs on a powerful CPU, use this one. If it is a slow machine,
use the first approach or better aERRORDOCUMENT CGI-script.

Extended Redirection

Description: Sometimes we need more control (concerning the character escaping mechanism) of URLs on redirects.
Usually the Apache kernels URL escape function also escapes anchors, i.e. URLs like"url#anchor" . You
cannot use this directly on redirects withMOD REWRITE because theuri escape() function of Apache
would also escape the hash character. How can we redirect to such a URL?

Solution: We have to use a kludge by the use of a NPH-CGI script which does the redirect itself. Because here no
escaping is done (NPH=non-parseable headers). First we introduce a new URL schemexredirect: by the
following per-server config-line (should be one of the last rewrite rules):

94 CHAPTER 2. USING THE APACHE HTTP SERVER

RewriteRule ˆxredirect:(.+) /path/to/nph-xredirect.cgi/$1 \
[T=application/x-httpd-cgi,L]

This forces all URLs prefixed withxredirect: to be piped through thenph-xredirect.cgi program.
And this program just looks like:

#!/path/to/perl
##
nph-xredirect.cgi -- NPH/CGI script for extended redirects
Copyright (c) 1997 Ralf S. Engelschall, All Rights Reserved.
##

$| = 1;
$url = $ENV{’PATH_INFO’};

print "HTTP/1.0 302 Moved Temporarily\n";
print "Server: $ENV{’SERVER_SOFTWARE’}\n";
print "Location: $url\n";
print "Content-type: text/html\n";
print "\n";
print "<html>\n";
print "<head>\n";
print "<title>302 Moved Temporarily (EXTENDED)</title>\n";
print "</head>\n";
print "<body>\n";
print "<h1>Moved Temporarily (EXTENDED)</h1>\n";
print "The document has moved here.<p>\n";
print "</body>\n";
print "</html>\n";

##EOF##

This provides you with the functionality to do redirects to all URL schemes, i.e. including the one which are not
directly accepted byMOD REWRITE. For instance you can now also redirect tonews:newsgroup via

RewriteRule ˆanyurl xredirect:news:newsgroup

=⇒Notice: You have not to put[R] or [R,L] to the above rule because thexredirect: need
to be expanded later by our special" pipe through" rule above.

Archive Access Multiplexer

Description: Do you know the great CPAN (Comprehensive Perl Archive Network) under
http://www.perl.com/CPAN? This does a redirect to one of several FTP servers around the world
which carry a CPAN mirror and is approximately near the location of the requesting client. Actually this can
be called an FTP access multiplexing service. While CPAN runs via CGI scripts, how can a similar approach
implemented viaMOD REWRITE?

2.20. URL REWRITING GUIDE 95

Solution: First we notice that from version 3.0.0MOD REWRITE can also use the"ftp:" scheme on redirects. And
second, the location approximation can be done by aREWRITEMAP over the top-level domain of the client.
With a tricky chained ruleset we can use this top-level domain as a key to our multiplexing map.

RewriteEngine on
RewriteMap multiplex txt:/path/to/map.cxan
RewriteRule ˆ/CxAN/(.*) %{REMOTE_HOST}::$1 [C]
RewriteRule ˆ.+\.([a-zA-Z]+)::(.*)$ ${multiplex:$1|ftp.default.dom}$2 [R,L]

##
map.cxan -- Multiplexing Map for CxAN
##

de ftp://ftp.cxan.de/CxAN/
uk ftp://ftp.cxan.uk/CxAN/
com ftp://ftp.cxan.com/CxAN/

:
##EOF##

Time-Dependent Rewriting

Description: When tricks like time-dependent content should happen a lot of webmasters still use CGI scripts which
do for instance redirects to specialized pages. How can it be done viaMOD REWRITE?

Solution: There are a lot of variables namedTIME xxx for rewrite conditions. In conjunction with the special
lexicographic comparison patterns<STRING, >STRINGand=STRINGwe can do time-dependent redirects:

RewriteEngine on
RewriteCond %{TIME_HOUR}%{TIME_MIN} >0700
RewriteCond %{TIME_HOUR}%{TIME_MIN} <1900
RewriteRule ˆfoo\.html$ foo.day.html
RewriteRule ˆfoo\.html$ foo.night.html

This provides the content offoo.day.html under the URLfoo.html from 07:00-19:00 and at the
remaining time the contents offoo.night.html . Just a nice feature for a homepage...

Backward Compatibility for YYYY to XXXX migration

Description: How can we make URLs backward compatible (still existing virtually) after migrating
document.YYYY to document.XXXX , e.g. after translating a bunch of.html files to.phtml ?

Solution: We just rewrite the name to its basename and test for existence of the new extension. If it exists, we take
that name, else we rewrite the URL to its original state.

96 CHAPTER 2. USING THE APACHE HTTP SERVER

backward compatibility ruleset for
rewriting document.html to document.phtml
when and only when document.phtml exists
but no longer document.html
RewriteEngine on
RewriteBase /˜quux/
parse out basename, but remember the fact
RewriteRule ˆ(.*)\.html$ $1 [C,E=WasHTML:yes]
rewrite to document.phtml if exists
RewriteCond %{REQUEST_FILENAME}.phtml -f
RewriteRule ˆ(.*)$ $1.phtml [S=1]
else reverse the previous basename cutout
RewriteCond %{ENV:WasHTML} ˆyes$
RewriteRule ˆ(.*)$ $1.html

Content Handling

From Old to New (intern)

Description: Assume we have recently renamed the pagefoo.html to bar.html and now want to provide the
old URL for backward compatibility. Actually we want that users of the old URL even not recognize that the
pages was renamed.

Solution: We rewrite the old URL to the new one internally via the following rule:

RewriteEngine on
RewriteBase /˜quux/
RewriteRule ˆfoo\.html$ bar.html

From Old to New (extern)

Description: Assume again that we have recently renamed the pagefoo.html to bar.html and now want to
provide the old URL for backward compatibility. But this time we want that the users of the old URL get hinted
to the new one, i.e. their browsers Location field should change, too.

Solution: We force a HTTP redirect to the new URL which leads to a change of the browsers and thus the users view:

RewriteEngine on
RewriteBase /˜quux/
RewriteRule ˆfoo\.html$ bar.html [R]

Browser Dependent Content

Description: At least for important top-level pages it is sometimes necessary to provide the optimum of browser
dependent content, i.e. one has to provide a maximum version for the latest Netscape variants, a minimum
version for the Lynx browsers and a average feature version for all others.

2.20. URL REWRITING GUIDE 97

Solution: We cannot use content negotiation because the browsers do not provide their type in that form. Instead
we have to act on the HTTP header" User-Agent" . The following condig does the following: If the HTTP
header" User-Agent" begins with" Mozilla/3" , the pagefoo.html is rewritten tofoo.NS.html and and
the rewriting stops. If the browser is" Lynx" or " Mozilla" of version 1 or 2 the URL becomesfoo.20.html .
All other browsers receive pagefoo.32.html . This is done by the following ruleset:

RewriteCond %{HTTP_USER_AGENT} ˆMozilla/3.*
RewriteRule ˆfoo\.html$ foo.NS.html [L]

RewriteCond %{HTTP_USER_AGENT} ˆLynx/.* [OR]
RewriteCond %{HTTP_USER_AGENT} ˆMozilla/[12].*
RewriteRule ˆfoo\.html$ foo.20.html [L]

RewriteRule ˆfoo\.html$ foo.32.html [L]

Dynamic Mirror

Description: Assume there are nice webpages on remote hosts we want to bring into our namespace. For FTP servers
we would use themirror program which actually maintains an explicit up-to-date copy of the remote data on
the local machine. For a webserver we could use the programwebcopy which acts similar via HTTP. But both
techniques have one major drawback: The local copy is always just as up-to-date as often we run the program. It
would be much better if the mirror is not a static one we have to establish explicitly. Instead we want a dynamic
mirror with data which gets updated automatically when there is need (updated data on the remote host).

Solution: To provide this feature we map the remote webpage or even the complete remote webarea to our namespace
by the use of the Proxy Throughput feature (flag[P]):

RewriteEngine on
RewriteBase /˜quux/
RewriteRule ˆhotsheet/(.*)$ http://www.tstimpreso.com/hotsheet/$1 [P]

RewriteEngine on
RewriteBase /˜quux/
RewriteRule ˆusa-news\.html$ http://www.quux-corp.com/news/index.html [P]

Reverse Dynamic Mirror

Description: ...

Solution: RewriteEngine on
RewriteCond /mirror/of/remotesite/$1 -U
RewriteRule ˆhttp://www\.remotesite\.com/(.*)$ /mirror/of/remotesite/$1

98 CHAPTER 2. USING THE APACHE HTTP SERVER

Retrieve Missing Data from Intranet

Description: This is a tricky way of virtually running a corporate (external) Internet webserver
(www.quux-corp.dom), while actually keeping and maintaining its data on a (internal) Intranet
webserver (www2.quux-corp.dom) which is protected by a firewall. The trick is that on the external
webserver we retrieve the requested data on-the-fly from the internal one.

Solution: First, we have to make sure that our firewall still protects the internal webserver and that only the external
webserver is allowed to retrieve data from it. For a packet-filtering firewall we could for instance configure a
firewall ruleset like the following:

ALLOW Host www.quux-corp.dom Port >1024 --> Host www2.quux-corp.dom Port 80
DENY Host * Port * --> Host www2.quux-corp.dom Port 80

Just adjust it to your actual configuration syntax. Now we can establish theMOD REWRITE rules which request
the missing data in the background through the proxy throughput feature:

RewriteRule ˆ/˜([ˆ/]+)/?(.*) /home/$1/.www/$2
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ˆ/home/([ˆ/]+)/.www/?(.*) http://www2.quux-corp.dom/˜$1/pub/$2 [P]

Load Balancing

Description: Suppose we want to load balance the traffic towww.foo.com overwww[0-5].foo.com (a total of
6 servers). How can this be done?

Solution: There are a lot of possible solutions for this problem. We will discuss first a commonly known DNS-based
variant and then the special one withMOD REWRITE:

1. DNS Round-Robin
The simplest method for load-balancing is to use the DNS round-robin feature ofBIND. Here you just
configurewww[0-9].foo.com as usual in your DNS with A(address) records, e.g.

www0 IN A 1.2.3.1
www1 IN A 1.2.3.2
www2 IN A 1.2.3.3
www3 IN A 1.2.3.4
www4 IN A 1.2.3.5
www5 IN A 1.2.3.6

Then you additionally add the following entry:

www IN CNAME www0.foo.com.
IN CNAME www1.foo.com.
IN CNAME www2.foo.com.
IN CNAME www3.foo.com.
IN CNAME www4.foo.com.
IN CNAME www5.foo.com.
IN CNAME www6.foo.com.

2.20. URL REWRITING GUIDE 99

Notice that this seems wrong, but is actually an intended feature ofBIND and can be used in this way.
However, now whenwww.foo.com gets resolved,BIND gives outwww0-www6- but in a slightly per-
mutated/rotated order every time. This way the clients are spread over the various servers. But notice
that this not a perfect load balancing scheme, because DNS resolve information gets cached by the other
nameservers on the net, so once a client has resolvedwww.foo.com to a particularwwwN.foo.com , all
subsequent requests also go to this particular namewwwN.foo.com . But the final result is ok, because
the total sum of the requests are really spread over the various webservers.

2. DNS Load-Balancing
A sophisticated DNS-based method for load-balancing is to use the programlbnamed which can be found
at http://www.stanford.edu/˜schemers/docs/lbnamed/lbnamed.html25. It is a Perl 5 program in conjunction
with auxilliary tools which provides a real load-balancing for DNS.

3. Proxy Throughput Round-Robin
In this variant we useMOD REWRITEand its proxy throughput feature. First we dedicatewww0.foo.com
to be actuallywww.foo.com by using a single

www IN CNAME www0.foo.com.

entry in the DNS. Then we convertwww0.foo.com to a proxy-only server, i.e. we configure this machine
so all arriving URLs are just pushed through the internal proxy to one of the 5 other servers (www1-www5).
To accomplish this we first establish a ruleset which contacts a load balancing scriptlb.pl for all URLs.

RewriteEngine on
RewriteMap lb prg:/path/to/lb.pl
RewriteRule ˆ/(.+)$ ${lb:$1} [P,L]

Then we writelb.pl :

#!/path/to/perl
##
lb.pl -- load balancing script
##

$| = 1;

$name = "www"; # the hostname base
$first = 1; # the first server (not 0 here, because 0 is myself)
$last = 5; # the last server in the round-robin
$domain = "foo.dom"; # the domainname

$cnt = 0;
while (<STDIN>) {

$cnt = (($cnt+1) % ($last+1-$first));
$server = sprintf("%s%d.%s", $name, $cnt+$first, $domain);
print "http://$server/$_";

}

##EOF##

=⇒A last notice: Why is this useful? Seems likewww0.foo.com still is overloaded? The answer
is yes, it is overloaded, but with plain proxy throughput requests, only! All SSI, CGI, ePerl,
etc. processing is completely done on the other machines. This is the essential point.

25http://www.stanford.edu/˜schemers/docs/lbnamed/lbnamed.html

http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html

100 CHAPTER 2. USING THE APACHE HTTP SERVER

4. Hardware/TCP Round-Robin

There is a hardware solution available, too. Cisco has a beast called LocalDirector which does a load
balancing at the TCP/IP level. Actually this is some sort of a circuit level gateway in front of a webcluster.
If you have enough money and really need a solution with high performance, use this one.

Reverse Proxy

Description: ...

2.20. URL REWRITING GUIDE 101

Solution:

##
apache-rproxy.conf -- Apache configuration for Reverse Proxy Usage
##

server type
ServerType standalone
Listen 8000
MinSpareServers 16
StartServers 16
MaxSpareServers 16
MaxClients 16
MaxRequestsPerChild 100

server operation parameters
KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeout 15
Timeout 400
IdentityCheck off
HostnameLookups off

paths to runtime files
PidFile /path/to/apache-rproxy.pid
LockFile /path/to/apache-rproxy.lock
ErrorLog /path/to/apache-rproxy.elog
CustomLog /path/to/apache-rproxy.dlog "%{%v/%T}t %h -> %{SERVER}e URL: %U"

unused paths
ServerRoot /tmp
DocumentRoot /tmp
CacheRoot /tmp
RewriteLog /dev/null
TransferLog /dev/null
TypesConfig /dev/null
AccessConfig /dev/null
ResourceConfig /dev/null

speed up and secure processing
<Directory />
Options -FollowSymLinks -SymLinksIfOwnerMatch
AllowOverride None
</Directory>

the status page for monitoring the reverse proxy
<Location /apache-rproxy-status>
SetHandler server-status
</Location>

enable the URL rewriting engine
RewriteEngine on
RewriteLogLevel 0

define a rewriting map with value-lists where
mod_rewrite randomly chooses a particular value
RewriteMap server rnd:/path/to/apache-rproxy.conf-servers

make sure the status page is handled locally
and make sure no one uses our proxy except ourself
RewriteRule ˆ/apache-rproxy-status.* - [L]
RewriteRule ˆ(http|ftp)://.* - [F]

now choose the possible servers for particular URL types
RewriteRule ˆ/(.*\.(cgi|shtml))$ to://${server:dynamic}/$1 [S=1]
RewriteRule ˆ/(.*)$ to://${server:static}/$1

and delegate the generated URL by passing it
through the proxy module
RewriteRule ˆto://([ˆ/]+)/(.*) http://$1/$2 [E=SERVER:$1,P,L]

and make really sure all other stuff is forbidden
when it should survive the above rules...
RewriteRule .* - [F]

enable the Proxy module without caching
ProxyRequests on
NoCache *

setup URL reverse mapping for redirect reponses
ProxyPassReverse / http://www1.foo.dom/
ProxyPassReverse / http://www2.foo.dom/
ProxyPassReverse / http://www3.foo.dom/
ProxyPassReverse / http://www4.foo.dom/
ProxyPassReverse / http://www5.foo.dom/
ProxyPassReverse / http://www6.foo.dom/

102 CHAPTER 2. USING THE APACHE HTTP SERVER

##
apache-rproxy.conf-servers -- Apache/mod_rewrite selection table
##

list of backend servers which serve static
pages (HTML files and Images, etc.)
static www1.foo.dom|www2.foo.dom|www3.foo.dom|www4.foo.dom

list of backend servers which serve dynamically
generated page (CGI programs or mod_perl scripts)
dynamic www5.foo.dom|www6.foo.dom

New MIME-type, New Service

Description: On the net there are a lot of nifty CGI programs. But their usage is usually boring, so a lot of webmaster
don’t use them. Even Apache’s Action handler feature for MIME-types is only appropriate when the CGI
programs don’t need special URLs (actuallyPATHINFO and QUERYSTRINGS) as their input. First, let
us configure a new file type with extension.scgi (for secure CGI) which will be processed by the popular
cgiwrap program. The problem here is that for instance we use a Homogeneous URL Layout (see above) a
file inside the user homedirs has the URL/u/user/foo/bar.scgi . But cgiwrap needs the URL in the
form /˜user/foo/bar.scgi/ . The following rule solves the problem:

RewriteRule ˆ/[uge]/([ˆ/]+)/\.www/(.+)\.scgi(.*) ...
... /internal/cgi/user/cgiwrap/˜$1/$2.scgi$3 [NS,T=application/x-http-cgi]

Or assume we have some more nifty programs:wwwlog (which displays theaccess.log for a URL subtree
andwwwidx (which runs Glimpse on a URL subtree). We have to provide the URL area to these programs so
they know on which area they have to act on. But usually this ugly, because they are all the times still requested
from that areas, i.e. typically we would run theswwidx program from within/u/user/foo/ via hyperlink
to

/internal/cgi/user/swwidx?i=/u/user/foo/

which is ugly. Because we have to hard-codeboth the location of the areaand the location of the CGI inside
the hyperlink. When we have to reorganize the area, we spend a lot of time changing the various hyperlinks.

Solution: The solution here is to provide a special new URL format which automatically leads to the proper CGI
invocation. We configure the following:

RewriteRule ˆ/([uge])/([ˆ/]+)(/?.*)/* /internal/cgi/user/wwwidx?i=/$1/$2$3/
RewriteRule ˆ/([uge])/([ˆ/]+)(/?.*):log /internal/cgi/user/wwwlog?f=/$1/$2$3

Now the hyperlink to search at/u/user/foo/ reads only

HREF="*"

2.20. URL REWRITING GUIDE 103

which internally gets automatically transformed to

/internal/cgi/user/wwwidx?i=/u/user/foo/

The same approach leads to an invocation for the access log CGI program when the hyperlink:log gets used.

From Static to Dynamic

Description: How can we transform a static pagefoo.html into a dynamic variantfoo.cgi in a seamless way,
i.e. without notice by the browser/user.

Solution: We just rewrite the URL to the CGI-script and force the correct MIME-type so it gets really run as a CGI-
script. This way a request to/˜quux/foo.html internally leads to the invocation of/˜quux/foo.cgi .

RewriteEngine on
RewriteBase /˜quux/
RewriteRule ˆfoo\.html$ foo.cgi [T=application/x-httpd-cgi]

On-the-fly Content-Regeneration

Description: Here comes a really esoteric feature: Dynamically generated but statically served pages, i.e. pages
should be delivered as pure static pages (read from the filesystem and just passed through), but they have to
be generated dynamically by the webserver if missing. This way you can have CGI-generated pages which are
statically served unless one (or a cronjob) removes the static contents. Then the contents gets refreshed.

Solution: This is done via the following ruleset:

RewriteCond %{REQUEST_FILENAME} !-s
RewriteRule ˆpage\.html$ page.cgi [T=application/x-httpd-cgi,L]

Here a request topage.html leads to a internal run of a correspondingpage.cgi if page.html is still
missing or has filesize null. The trick here is thatpage.cgi is a usual CGI script which (additionally to
its STDOUT) writes its output to the filepage.html . Once it was run, the server sends out the data of
page.html . When the webmaster wants to force a refresh the contents, he just removespage.html (usually
done by a cronjob).

Document With Autorefresh

Description: Wouldn’t it be nice while creating a complex webpage if the webbrowser would automatically refresh
the page every time we write a new version from within our editor? Impossible?

Solution: No! We just combine the MIME multipart feature, the webserver NPH feature and the URL manipulation
power ofMOD REWRITE. First, we establish a new URL feature: Adding just:refresh to any URL causes
this to be refreshed every time it gets updated on the filesystem.

104 CHAPTER 2. USING THE APACHE HTTP SERVER

RewriteRule ˆ(/[uge]/[ˆ/]+/?.*):refresh /internal/cgi/apache/nph-refresh?f=$1

Now when we reference the URL

/u/foo/bar/page.html:refresh

this leads to the internal invocation of the URL

/internal/cgi/apache/nph-refresh?f=/u/foo/bar/page.html

The only missing part is the NPH-CGI script. Although one would usually say" left as an exercise to the reader"
;-) I will provide this, too.

2.20. URL REWRITING GUIDE 105

#!/sw/bin/perl
##
nph-refresh -- NPH/CGI script for auto refreshing pages
Copyright (c) 1997 Ralf S. Engelschall, All Rights Reserved.
##
$| = 1;

split the QUERY_STRING variable
@pairs = split(/&/, $ENV{’QUERY_STRING’});
foreach $pair (@pairs) {

($name, $value) = split(/=/, $pair);
$name =˜ tr/A-Z/a-z/;
$name = ’QS_’ . $name;
$value =˜ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;
eval "\$$name = \"$value\"";

}
$QS_s = 1 if ($QS_s eq ’’);
$QS_n = 3600 if ($QS_n eq ’’);
if ($QS_f eq ’’) {

print "HTTP/1.0 200 OK\n";
print "Content-type: text/html\n\n";
print "ERROR: No file given\n";
exit(0);

}
if (! -f $QS_f) {

print "HTTP/1.0 200 OK\n";
print "Content-type: text/html\n\n";
print "ERROR: File $QS_f not found\n";
exit(0);

}

sub print_http_headers_multipart_begin {
print "HTTP/1.0 200 OK\n";
$bound = "ThisRandomString12345";
print "Content-type: multipart/x-mixed-replace;boundary=$bound\n";
&print_http_headers_multipart_next;

}

sub print_http_headers_multipart_next {
print "\n--$bound\n";

}

sub print_http_headers_multipart_end {
print "\n--$bound--\n";

}

sub displayhtml {
local($buffer) = @_;
$len = length($buffer);
print "Content-type: text/html\n";
print "Content-length: $len\n\n";
print $buffer;

}

sub readfile {
local($file) = @_;
local(*FP, $size, $buffer, $bytes);
($x, $x, $x, $x, $x, $x, $x, $size) = stat($file);
$size = sprintf("%d", $size);
open(FP, "<$file");
$bytes = sysread(FP, $buffer, $size);
close(FP);
return $buffer;

}

$buffer = &readfile($QS_f);
&print_http_headers_multipart_begin;
&displayhtml($buffer);

sub mystat {
local($file) = $_[0];
local($time);

($x, $x, $x, $x, $x, $x, $x, $x, $x, $mtime) = stat($file);
return $mtime;

}

$mtimeL = &mystat($QS_f);
$mtime = $mtime;
for ($n = 0; $n < $QS_n; $n++) {

while (1) {
$mtime = &mystat($QS_f);
if ($mtime ne $mtimeL) {

$mtimeL = $mtime;
sleep(2);
$buffer = &readfile($QS_f);
&print_http_headers_multipart_next;
&displayhtml($buffer);
sleep(5);
$mtimeL = &mystat($QS_f);
last;

}
sleep($QS_s);

}
}

&print_http_headers_multipart_end;

exit(0);

##EOF##

106 CHAPTER 2. USING THE APACHE HTTP SERVER

Mass Virtual Hosting

Description: The <V IRTUAL HOST> feature of Apache is nice and works great when you just have a few dozens
virtual hosts. But when you are an ISP and have hundreds of virtual hosts to provide this feature is not the best
choice.

Solution: To provide this feature we map the remote webpage or even the complete remote webarea to our namespace
by the use of the Proxy Throughput feature (flag[P]):

##
vhost.map
##
www.vhost1.dom:80 /path/to/docroot/vhost1
www.vhost2.dom:80 /path/to/docroot/vhost2

:
www.vhostN.dom:80 /path/to/docroot/vhostN

2.20. URL REWRITING GUIDE 107

##
httpd.conf
##

:
use the canonical hostname on redirects, etc.
UseCanonicalName on

:
add the virtual host in front of the CLF-format
CustomLog /path/to/access_log "%{VHOST}e %h %l %u %t \"%r\" %>s %b"

:

enable the rewriting engine in the main server
RewriteEngine on

define two maps: one for fixing the URL and one which defines
the available virtual hosts with their corresponding
DocumentRoot.
RewriteMap lowercase int:tolower
RewriteMap vhost txt:/path/to/vhost.map

Now do the actual virtual host mapping
via a huge and complicated single rule:
#
1. make sure we don’t map for common locations
RewriteCond %{REQUEST_URL} !ˆ/commonurl1/.*
RewriteCond %{REQUEST_URL} !ˆ/commonurl2/.*

:
RewriteCond %{REQUEST_URL} !ˆ/commonurlN/.*
#
2. make sure we have a Host header, because
currently our approach only supports
virtual hosting through this header
RewriteCond %{HTTP_HOST} !ˆ$
#
3. lowercase the hostname
RewriteCond ${lowercase:%{HTTP_HOST}|NONE} ˆ(.+)$
#
4. lookup this hostname in vhost.map and
remember it only when it is a path
(and not "NONE" from above)
RewriteCond ${vhost:%1} ˆ(/.*)$
#
5. finally we can map the URL to its docroot location
and remember the virtual host for logging puposes
RewriteRule ˆ/(.*)$ %1/$1 [E=VHOST:${lowercase:%{HTTP_HOST}}]

:

Access Restriction

Blocking of Robots

Description: How can we block a really annoying robot from retrieving pages of a specific webarea? A
/robots.txt file containing entries of the" Robot Exclusion Protocol" is typically not enough to get rid
of such a robot.

108 CHAPTER 2. USING THE APACHE HTTP SERVER

Solution: We use a ruleset which forbids the URLs of the webarea/˜quux/foo/arc/ (perhaps a very deep direc-
tory indexed area where the robot traversal would create big server load). We have to make sure that we forbid
access only to the particular robot, i.e. just forbidding the host where the robot runs is not enough. This would
block users from this host, too. We accomplish this by also matching the User-Agent HTTP header information.

RewriteCond %{HTTP_USER_AGENT} ˆNameOfBadRobot.*
RewriteCond %{REMOTE_ADDR} ˆ123\.45\.67\.[8-9]$
RewriteRule ˆ/˜quux/foo/arc/.+ - [F]

Blocked Inline-Images

Description: Assume we have underhttp://www.quux-corp.de/˜quux/ some pages with inlined GIF
graphics. These graphics are nice, so others directly incorporate them via hyperlinks to their pages. We don’t
like this practice because it adds useless traffic to our server.

Solution: While we cannot 100% protect the images from inclusion, we can at least restrict the cases where the
browser sends a HTTP Referer header.

RewriteCond %{HTTP_REFERER} !ˆ$
RewriteCond %{HTTP_REFERER} !ˆhttp://www.quux-corp.de/˜quux/.*$ [NC]
RewriteRule .*\.gif$ - [F]

RewriteCond %{HTTP_REFERER} !ˆ$
RewriteCond %{HTTP_REFERER} !.*/foo-with-gif\.html$
RewriteRule ˆinlined-in-foo\.gif$ - [F]

Host Deny

Description: How can we forbid a list of externally configured hosts from using our server?

Solution: For Apache>= 1.3b6:

RewriteEngine on
RewriteMap hosts-deny txt:/path/to/hosts.deny
RewriteCond ${hosts-deny:%{REMOTE_HOST}|NOT-FOUND} !=NOT-FOUND [OR]
RewriteCond ${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND} !=NOT-FOUND
RewriteRule ˆ/.* - [F]

For Apache<= 1.3b6:

2.20. URL REWRITING GUIDE 109

RewriteEngine on
RewriteMap hosts-deny txt:/path/to/hosts.deny
RewriteRule ˆ/(.*)$ ${hosts-deny:%{REMOTE_HOST}|NOT-FOUND}/$1
RewriteRule !ˆNOT-FOUND/.* - [F]
RewriteRule ˆNOT-FOUND/(.*)$ ${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND}/$1
RewriteRule !ˆNOT-FOUND/.* - [F]
RewriteRule ˆNOT-FOUND/(.*)$ /$1

##
hosts.deny
##
ATTENTION! This is a map, not a list, even when we treat it as such.
mod_rewrite parses it for key/value pairs, so at least a
dummy value "-" must be present for each entry.
##

193.102.180.41 -
bsdti1.sdm.de -
192.76.162.40 -

Proxy Deny

Description: How can we forbid a certain host or even a user of a special host from using the Apache proxy?

Solution: We first have to make sureMOD REWRITE is below(!) MOD PROXY in the Configuration file when com-
piling the Apache webserver. This way it gets calledbeforeMOD PROXY. Then we configure the following for
a host-dependent deny...

RewriteCond %{REMOTE_HOST} ˆbadhost\.mydomain\.com$
RewriteRule !ˆhttp://[ˆ/.]\.mydomain.com.* - [F]

...and this one for a user@host-dependent deny:

RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} ˆbadguy@badhost\.mydomain\.com$
RewriteRule !ˆhttp://[ˆ/.]\.mydomain.com.* - [F]

Special Authentication Variant

Description: Sometimes a very special authentication is needed, for instance a authentication which checks for a set
of explicitly configured users. Only these should receive access and without explicit prompting (which would
occur when using the Basic Auth viaMOD AUTH).

Solution: We use a list of rewrite conditions to exclude all except our friends:

110 CHAPTER 2. USING THE APACHE HTTP SERVER

RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !ˆfriend1@client1.quux-corp\.com$
RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !ˆfriend2@client2.quux-corp\.com$
RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !ˆfriend3@client3.quux-corp\.com$
RewriteRule ˆ/˜quux/only-for-friends/ - [F]

Referer-based Deflector

Description: How can we program a flexible URL Deflector which acts on the" Referer" HTTP header and can be
configured with as many referring pages as we like?

Solution: Use the following really tricky ruleset...

RewriteMap deflector txt:/path/to/deflector.map

RewriteCond %{HTTP_REFERER} !=""
RewriteCond ${deflector:%{HTTP_REFERER}} ˆ-$
RewriteRule ˆ.* %{HTTP_REFERER} [R,L]

RewriteCond %{HTTP_REFERER} !=""
RewriteCond ${deflector:%{HTTP_REFERER}|NOT-FOUND} !=NOT-FOUND
RewriteRule ˆ.* ${deflector:%{HTTP_REFERER}} [R,L]

... in conjunction with a corresponding rewrite map:

##
deflector.map
##

http://www.badguys.com/bad/index.html -
http://www.badguys.com/bad/index2.html -
http://www.badguys.com/bad/index3.html http://somewhere.com/

This automatically redirects the request back to the referring page (when"-" is used as the value in the map)
or to a specific URL (when an URL is specified in the map as the second argument).

Other

External Rewriting Engine

Description: A FAQ: How can we solve the FOO/BAR/QUUX/etc. problem? There seems no solution by the use of
MOD REWRITE...

Solution: Use an externalREWRITEMAP, i.e. a program which acts like aREWRITEMAP. It is run once on startup
of Apache receives the requested URLs onSTDIN and has to put the resulting (usually rewritten) URL on
STDOUT(same order!).

2.20. URL REWRITING GUIDE 111

RewriteEngine on
RewriteMap quux-map prg:/path/to/map.quux.pl
RewriteRule ˆ/˜quux/(.*)$ /˜quux/${quux-map:$1}

#!/path/to/perl

disable buffered I/O which would lead
to deadloops for the Apache server
$| = 1;

read URLs one per line from stdin and
generate substitution URL on stdout
while (<>) {

s|ˆfoo/|bar/|;
print $_;

}

This is a demonstration-only example and just rewrites all URLs/˜quux/foo/... to /˜quux/bar/... .
Actually you can program whatever you like. But notice that while such maps can beusedalso by an average
user, only the system administrator candefine it.

112 CHAPTER 2. USING THE APACHE HTTP SERVER

Chapter 3

Apache Virtual Host documentation

113

114 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.1 Apache Virtual Host documentation

The term Virtual Host refers to the practice of running more than one web site (such aswww.company1.com and
www.company2.com) on a single machine. Virtual hosts can be" IP-based (p.118) " , meaning that you have a
different IP address for every web site, or" name-based (p.115) " , meaning that you have multiple names running on
each IP address. The fact that they are running on the same physical server is not apparent to the end user.

Apache was one of the first servers to support IP-based virtual hosts right out of the box. Versions 1.1 and later of
Apache support both IP-based and name-based virtual hosts (vhosts). The latter variant of virtual hosts is sometimes
also calledhost-basedor non-IP virtual hosts.

Below is a list of documentation pages which explain all details of virtual host support in Apache version 1.3 and later.

See also

• MOD VHOST ALIAS

• Name-based virtual hosts (p.115)

• IP-based virtual hosts (p.118)

• Virtual host examples (p.125)

• File descriptor limits (p.137)

• Mass virtual hosting (p.120)

• Details of host matching (p.132)

Virtual Host Support

• Name-based Virtual Hosts (p.115) (More than one web site per IP address)

• IP-based Virtual Hosts (p.118) (An IP address for each web site)

• Virtual Host examples for common setups (p.125)

• File Descriptor Limits (p.137) (or, Too many log files)

• Dynamically Configured Mass Virtual Hosting (p.120)

• In-Depth Discussion of Virtual Host Matching (p.132)

Configuration directives

• <V IRTUAL HOST>

• NAMEV IRTUAL HOST

• SERVERNAME

• SERVERALIAS

• SERVERPATH

If you are trying to debug your virtual host configuration, you may find the Apache-S command line switch useful.
That is, type the following command:

/usr/local/apache2/bin/httpd -S

This command will dump out a description of how Apache parsed the configuration file. Careful examination of the
IP addresses and server names may help uncover configuration mistakes. (See the docs for the httpd program (p.239)
for other command line options)

3.2. NAME-BASED VIRTUAL HOST SUPPORT 115

3.2 Name-based Virtual Host Support

This document describes when and how to use name-based virtual hosts.

See also

• IP-based Virtual Host Support (p.118)

• An In-Depth Discussion of Virtual Host Matching (p.132)

• Dynamically configured mass virtual hosting (p.120)

• Virtual Host examples for common setups (p.125)

• ServerPath configuration example (p.125)

Name-based vs. IP-based Virtual Hosts

IP-based virtual hosts use the IP address of the connection to determine the correct virtual host to serve. Therefore
you need to have a separate IP address for each host. With name-based virtual hosting, the server relies on the client
to report the hostname as part of the HTTP headers. Using this technique, many different hosts can share the same IP
address.

Name-based virtual hosting is usually simpler, since you need only configure your DNS server to map each hostname
to the correct IP address and then configure the Apache HTTP Server to recognize the different hostnames. Name-
based virtual hosting also eases the demand for scarce IP addresses. Therefore you should use name-based virtual
hosting unless there is a specific reason to choose IP-based virtual hosting. Some reasons why you might consider
using IP-based virtual hosting:

• Some ancient clients are not compatible with name-based virtual hosting. For name-based virtual hosting to
work, the client must send the HTTP Host header. This is required by HTTP/1.1, and is implemented by all
modern HTTP/1.0 browsers as an extension. If you need to support obsolete clients and still use name-based
virtual hosting, a possible technique is discussed at the end of this document.

• Name-based virtual hosting cannot be used with SSL secure servers because of the nature of the SSL protocol.

• Some operating systems and network equipment implement bandwidth management techniques that cannot
differentiate between hosts unless they are on separate IP addresses.

Using Name-based Virtual Hosts

Related Modules
CORE

Related Directives
DOCUMENTROOT

NAMEV IRTUAL HOST

SERVERALIAS

SERVERNAME

SERVERPATH

<V IRTUAL HOST>

To use name-based virtual hosting, you must designate the IP address (and possibly port) on the server that will be
accepting requests for the hosts. This is configured using theNAMEV IRTUAL HOST directive. In the normal case
where any and all IP addresses on the server should be used, you can use* as the argument toNAMEV IRTUAL HOST.
Note that mentioning an IP address in aNAMEV IRTUAL HOST directive does not automatically make the server listen
to that IP address. See Setting which addresses and ports Apache uses (p.58) for more details. In addition, any IP
address specified here must be associated with a network interface on the server.

116 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

The next step is to create a<V IRTUAL HOST> block for each different host that you would like to serve. The argument
to the<V IRTUAL HOST> directive should be the same as the argument to theNAMEV IRTUAL HOST directive (ie, an
IP address, or* for all addresses). Inside each<V IRTUAL HOST> block, you will need at minimum aSERVERNAME

directive to designate which host is served and aDOCUMENTROOT directive to show where in the filesystem the
content for that host lives.

=⇒Main host goes away
If you are adding virtual hosts to an existing web server, you must also create a<V IRTUAL -
HOST> block for the existing host. TheSERVERNAME andDOCUMENTROOT included in
this virtual host should be the same as the globalSERVERNAME andDOCUMENTROOT. List
this virtual host first in the configuration file so that it will act as the default host.

For example, suppose that you are serving the domainwww.domain.tld and you wish to add the virtual
host www.otherdomain.tld , which points at the same IP address. Then you simply add the following to
httpd.conf :

NameVirtualHost *

<VirtualHost * >

ServerName www.domain.tld
ServerAlias domain.tld *.domain.tld
DocumentRoot /www/domain

</VirtualHost >

<VirtualHost * >

ServerName www.otherdomain.tld
DocumentRoot /www/otherdomain

</VirtualHost >

You can alternatively specify an explicit IP address in place of the* in both theNAMEV IRTUAL HOST and<V IRTU-
AL HOST> directives. For example, you might want to do this in order to run some name-based virtual hosts on one
IP address, and either IP-based, or another set of name-based virtual hosts on another address.

Many servers want to be accessible by more than one name. This is possible with theSERVERALIAS directive, placed
inside the<V IRTUAL HOST> section. For example in the first<V IRTUAL HOST> block above, theSERVERALIAS

directive indicates that the listed names are other names which people can use to see that same web site:

ServerAlias domain.tld *.domain.tld

then requests for all hosts in thedomain.tld domain will be served by thewww.domain.tld virtual host. The
wildcard characters* and? can be used to match names. Of course, you can’t just make up names and place them in
SERVERNAME or ServerAlias . You must first have your DNS server properly configured to map those names to
an IP address associated with your server.

Finally, you can fine-tune the configuration of the virtual hosts by placing other directives inside the<V IRTUAL -
HOST> containers. Most directives can be placed in these containers and will then change the configuration only of
the relevant virtual host. To find out if a particular directive is allowed, check the Context (p.285) of the directive.
Configuration directives set in themain server context(outside any<V IRTUAL HOST> container) will be used only if
they are not overridden by the virtual host settings.

Now when a request arrives, the server will first check if it is using an IP address that matches theNAMEV IRTUAL -
HOST. If it is, then it will look at each<V IRTUAL HOST> section with a matching IP address and try to find one where
theSERVERNAME or ServerAlias matches the requested hostname. If it finds one, then it uses the configuration
for that server. If no matching virtual host is found, thenthe first listed virtual host that matches the IP address will
be used.

3.2. NAME-BASED VIRTUAL HOST SUPPORT 117

As a consequence, the first listed virtual host is thedefaultvirtual host. TheDOCUMENTROOT from themain server
will never be used when an IP address matches theNAMEV IRTUAL HOST directive. If you would like to have a
special configuration for requests that do not match any particular virtual host, simply put that configuration in a
<V IRTUAL HOST> container and list it first in the configuration file.

Compatibility with Older Browsers

As mentioned earlier, there are some clients who do not send the required data for the name-based virtual hosts to
work properly. These clients will always be sent the pages from the first virtual host listed for that IP address (the
primary name-based virtual host).

=⇒How much older?
Please note that when we say older, we really do mean older. You are very unlikely to encounter
one of these browsers in use today. All current versions of any browser send theHost header
as required for name-based virtual hosts.

There is a possible workaround with theSERVERPATH directive, albeit a slightly cumbersome one:

Example configuration:

NameVirtualHost 111.22.33.44

<VirtualHost 111.22.33.44 >

ServerName www.domain.tld
ServerPath /domain
DocumentRoot /web/domain

</VirtualHost >

What does this mean? It means that a request for any URI beginning with"/domain" will be served from the virtual
hostwww.domain.tld . This means that the pages can be accessed ashttp://www.domain.tld/domain/
for all clients, although clients sending aHost: header can also access it ashttp://www.domain.tld/ .

In order to make this work, put a link on your primary virtual host’s page to
http://www.domain.tld/domain/ . Then, in the virtual host’s pages, be sure to use either purely
relative links (e.g., "file.html" or "../icons/image.gif") or links containing the prefacing/domain/
(e.g., "http://www.domain.tld/domain/misc/file.html" or "/domain/misc/file.html").

This requires a bit of discipline, but adherence to these guidelines will, for the most part, ensure that your pages will
work with all browsers, new and old.

118 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.3 Apache IP-based Virtual Host Support

See also

• Name-based Virtual Hosts Support (p.115)

System requirements

As the term IP-based indicates, the servermust have a different IP address for each IP-based virtual host. This
can be achieved by the machine having several physical network connections, or by use of virtual interfaces which are
supported by most modern operating systems (see system documentation for details, these are frequently called" ip
aliases" , and the" ifconfig" command is most commonly used to set them up).

How to set up Apache

There are two ways of configuring apache to support multiple hosts. Either by running a separate httpd daemon for
each hostname, or by running a single daemon which supports all the virtual hosts.

Use multiple daemons when:

• There are security partitioning issues, such as company1 does not want anyone at company2 to be able to read
their data except via the web. In this case you would need two daemons, each running with differentUSER,
GROUP, L ISTEN, andSERVERROOT settings.

• You can afford the memory and file descriptor requirements (p.278) of listening to every IP alias on the machine.
It’s only possible toL ISTEN to the" wildcard" address, or to specific addresses. So if you have a need to listen
to a specific address for whatever reason, then you will need to listen to all specific addresses. (Although one
httpd could listen to N-1 of the addresses, and another could listen to the remaining address.)

Use a single daemon when:

• Sharing of the httpd configuration between virtual hosts is acceptable.

• The machine services a large number of requests, and so the performance loss in running separate daemons may
be significant.

Setting up multiple daemons

Create a separate httpd installation for each virtual host. For each installation, use theL ISTEN directive in the config-
uration file to select which IP address (or virtual host) that daemon services. e.g.

Listen www.smallco.com:80

It is recommended that you use an IP address instead of a hostname (see DNS caveats (p.139)).

Setting up a single daemon with virtual hosts

For this case, a single httpd will service requests for the main server and all the virtual hosts. TheV IRTUAL HOST

directive in the configuration file is used to set the values ofSERVERADMIN , SERVERNAME, DOCUMENTROOT,
ERRORLOG andTRANSFERLOG or CUSTOMLOG configuration directives to different values for each virtual host.
e.g.

3.3. APACHE IP-BASED VIRTUAL HOST SUPPORT 119

<VirtualHost www.smallco.com >
ServerAdmin webmaster@mail.smallco.com
DocumentRoot /groups/smallco/www
ServerName www.smallco.com
ErrorLog /groups/smallco/logs/error log
TransferLog /groups/smallco/logs/access log
</VirtualHost >

<VirtualHost www.baygroup.org >
ServerAdmin webmaster@mail.baygroup.org
DocumentRoot /groups/baygroup/www
ServerName www.baygroup.org
ErrorLog /groups/baygroup/logs/error log
TransferLog /groups/baygroup/logs/access log

</VirtualHost >

It is recommended that you use an IP address instead of a hostname (see DNS caveats (p.139)).

Almostany configuration directive can be put in the VirtualHost directive, with the exception of directives that control
process creation and a few other directives. To find out if a directive can be used in the VirtualHost directive, check
the Context (p.285) using the directive index (p.629) .

USERandGROUPmay be used inside a VirtualHost directive if the suEXEC wrapper (p.69) is used.

SECURITY:When specifying where to write log files, be aware of some security risks which are present if anyone
other than the user that starts Apache has write access to the directory where they are written. See the security tips (p.
41) document for details.

120 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.4 Dynamically configured mass virtual hosting

This document describes how to efficiently serve an arbitrary number of virtual hosts with Apache 1.3.

Motivation

The techniques described here are of interest if yourhttpd.conf contains many<VirtualHost > sections that
are substantially the same, for example:

NameVirtualHost 111.22.33.44
<VirtualHost 111.22.33.44 >

ServerName www.customer-1.com
DocumentRoot /www/hosts/www.customer-1.com/docs
ScriptAlias /cgi-bin/ /www/hosts/www.customer-1.com/cgi-bin

</VirtualHost >
<VirtualHost 111.22.33.44 >

ServerName www.customer-2.com
DocumentRoot /www/hosts/www.customer-2.com/docs
ScriptAlias /cgi-bin/ /www/hosts/www.customer-2.com/cgi-bin

</VirtualHost >
blah blah blah
<VirtualHost 111.22.33.44 >

ServerName www.customer-N.com
DocumentRoot /www/hosts/www.customer-N.com/docs
ScriptAlias /cgi-bin/ /www/hosts/www.customer-N.com/cgi-bin

</VirtualHost >

The basic idea is to replace all of the static<VirtualHost > configuration with a mechanism that works it out
dynamically. This has a number of advantages:

1. Your configuration file is smaller so Apache starts faster and uses less memory.

2. Adding virtual hosts is simply a matter of creating the appropriate directories in the filesystem and entries in the
DNS - you don’t need to reconfigure or restart Apache.

The main disadvantage is that you cannot have a different log file for each virtual host; however if you have very many
virtual hosts then doing this is dubious anyway because it eats file descriptors. It is better to log to a pipe or a fifo and
arrange for the process at the other end to distribute the logs to the customers (it can also accumulate statistics, etc.).

Overview

A virtual host is defined by two pieces of information: its IP address, and the contents of theHost: header in the
HTTP request. The dynamic mass virtual hosting technique is based on automatically inserting this information into
the pathname of the file that is used to satisfy the request. This is done most easily usingMOD VHOST ALIAS , but if
you are using a version of Apache up to 1.3.6 then you must useMOD REWRITE. Both of these modules are disabled
by default; you must enable one of them when configuring and building Apache if you want to use this technique.

A couple of things need to be ‘faked’ to make the dynamic virtual host look like a normal one. The most impor-
tant is the server name which is used by Apache to generate self-referential URLs, etc. It is configured with the
ServerName directive, and it is available to CGIs via theSERVERNAMEenvironment variable. The actual value
used at run time is controlled by theUSECANONICAL NAME setting. WithUseCanonicalName Off the server

3.4. DYNAMICALLY CONFIGURED MASS VIRTUAL HOSTING 121

name comes from the contents of theHost: header in the request. WithUseCanonicalName DNS it comes from
a reverse DNS lookup of the virtual host’s IP address. The former setting is used for name-based dynamic virtual
hosting, and the latter is used for IP-based hosting. If Apache cannot work out the server name because there is no
Host: header or the DNS lookup fails then the value configured withServerName is used instead.

The other thing to ‘fake’ is the document root (configured withDocumentRoot and available to CGIs via the
DOCUMENTROOTenvironment variable). In a normal configuration this setting is used by the core module when
mapping URIs to filenames, but when the server is configured to do dynamic virtual hosting that job is taken over
by another module (eithermod vhost alias or mod rewrite) which has a different way of doing the mapping.
Neither of these modules is responsible for setting theDOCUMENTROOTenvironment variable so if any CGIs or SSI
documents make use of it they will get a misleading value.

Simple dynamic virtual hosts

This extract fromhttpd.conf implements the virtual host arrangement outlined in the Motivation section above,
but in a generic fashion usingmod vhost alias .

get the server name from the Host: header
UseCanonicalName Off

this log format can be split per-virtual-host based on the first
field
LogFormat "%V %h %l %u %t \"%r \" %s %b" vcommon
CustomLog logs/access log vcommon

include the server name in the filenames used to satisfy requests
VirtualDocumentRoot /www/hosts/%0/docs

VirtualScriptAlias /www/hosts/%0/cgi-bin

This configuration can be changed into an IP-based virtual hosting solution by just turningUseCanonicalName
Off into UseCanonicalName DNS . The server name that is inserted into the filename is then derived from the IP
address of the virtual host.

A virtually hosted homepages system

This is an adjustment of the above system tailored for an ISP’s homepages server. Using a slightly more compli-
cated configuration we can select substrings of the server name to use in the filename so that e.g. the documents for
www.user.isp.com are found in/home/user/ . It uses a singlecgi-bin directory instead of one per virtual
host.

all the preliminary stuff is the same as above, then

include part of the server name in the filenames
VirtualDocumentRoot /www/hosts/%2/docs

single cgi-bin directory

ScriptAlias /cgi-bin/ /www/std-cgi/

There are examples of more complicatedVirtualDocumentRoot settings in theMOD VHOST ALIAS documen-
tation.

Using more than one virtual hosting system on the same server

With more complicated setups you can use Apache’s normal<VirtualHost > directives to control the scope of
the various virtual hosting configurations. For example, you could have one IP address for homepages customers

122 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

and another for commercial customers with the following setup. This can of course be combined with conventional
<VirtualHost > configuration sections.

UseCanonicalName Off

LogFormat "%V %h %l %u %t \"%r \" %s %b" vcommon

<Directory /www/commercial >

Options FollowSymLinks
AllowOverride All

</Directory >

<Directory /www/homepages >

Options FollowSymLinks
AllowOverride None

</Directory >

<VirtualHost 111.22.33.44 >

ServerName www.commercial.isp.com

CustomLog logs/access log.commercial vcommon

VirtualDocumentRoot /www/commercial/%0/docs
VirtualScriptAlias /www/commercial/%0/cgi-bin

</VirtualHost >

<VirtualHost 111.22.33.45 >

ServerName www.homepages.isp.com

CustomLog logs/access log.homepages vcommon

VirtualDocumentRoot /www/homepages/%0/docs
ScriptAlias /cgi-bin/ /www/std-cgi/

</VirtualHost >

More efficient IP-based virtual hosting

After the first example I noted that it is easy to turn it into an IP-based virtual hosting setup. Unfortunately that
configuration is not very efficient because it requires a DNS lookup for every request. This can be avoided by laying
out the filesystem according to the IP addresses themselves rather than the corresponding names and changing the
logging similarly. Apache will then usually not need to work out the server name and so incur a DNS lookup.

get the server name from the reverse DNS of the IP address
UseCanonicalName DNS

include the IP address in the logs so they may be split
LogFormat "%A %h %l %u %t \"%r \" %s %b" vcommon
CustomLog logs/access log vcommon

include the IP address in the filenames
VirtualDocumentRootIP /www/hosts/%0/docs

VirtualScriptAliasIP /www/hosts/%0/cgi-bin

Using older versions of Apache

The examples above rely onmod vhost alias which appeared after version 1.3.6. If you are using a version
of Apache withoutmod vhost alias then you can implement this technique withmod rewrite as illustrated
below, but only for Host:-header-based virtual hosts.

3.4. DYNAMICALLY CONFIGURED MASS VIRTUAL HOSTING 123

In addition there are some things to beware of with logging. Apache 1.3.6 is the first version to include the%Vlog
format directive; in versions 1.3.0 - 1.3.3 the%voption did what%Vdoes; version 1.3.4 has no equivalent. In all these
versions of Apache theUseCanonicalName directive can appear in.htaccess files which means that customers
can cause the wrong thing to be logged. Therefore the best thing to do is use the%{Host }i directive which logs the
Host: header directly; note that this may include:port on the end which is not the case for%V.

Simple dynamic virtual hosts usingmod rewrite

This extract fromhttpd.conf does the same thing as the first example. The first half is very similar to the corre-
sponding part above but with some changes for backward compatibility and to make themod rewrite part work
properly; the second half configuresmod rewrite to do the actual work.

There are a couple of especially tricky bits: By default,mod rewrite runs before the other URI translation modules
(mod alias etc.) so if they are used thenmod rewrite must be configured to accommodate them. Also, mome
magic must be performed to do a per-dynamic-virtual-host equivalent ofScriptAlias .

get the server name from the Host: header
UseCanonicalName Off

splittable logs
LogFormat "% {Host }i %h %l %u %t \"%r \" %s %b" vcommon
CustomLog logs/access log vcommon

<Directory /www/hosts >

ExecCGI is needed here because we can’t force
CGI execution in the way that ScriptAlias does
Options FollowSymLinks ExecCGI

</Directory >

now for the hard bit

RewriteEngine On

a ServerName derived from a Host: header may be any case at all
RewriteMap lowercase int:tolower

deal with normal documents first:
allow Alias /icons/ to work - repeat for other aliases
RewriteCond % {REQUESTURI} !ˆ/icons/
allow CGIs to work
RewriteCond % {REQUESTURI} !ˆ/cgi-bin/
do the magic
RewriteRule ˆ/(.*)$ /www/hosts/$ {lowercase:% {SERVERNAME}}/docs/$1

and now deal with CGIs - we have to force a MIME type
RewriteCond % {REQUESTURI} ˆ/cgi-bin/
RewriteRule ˆ/(.*)$ /www/hosts/$ {lowercase:% {SERVERNAME}}/cgi-bin/$1
[T=application/x-httpd-cgi]

that’s it!

A homepages system usingmod rewrite

This does the same thing as the second example.

124 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

RewriteEngine on

RewriteMap lowercase int:tolower

allow CGIs to work
RewriteCond % {REQUESTURI} !ˆ/cgi-bin/

check the hostname is right so that the RewriteRule works
RewriteCond $ {lowercase:% {SERVERNAME}} ˆwww\.[a-z-]+ \.isp \.com$

concatenate the virtual host name onto the start of the URI
the [C] means do the next rewrite on the result of this one
RewriteRule ˆ(.+) $ {lowercase:% {SERVERNAME}}$1 [C]

now create the real file name
RewriteRule ˆwww \.([a-z-]+) \.isp \.com/(.*) /home/$1/$2

define the global CGI directory

ScriptAlias /cgi-bin/ /www/std-cgi/

Using a separate virtual host configuration file

This arrangement uses more advancedmod rewrite features to get the translation from virtual host to document
root from a separate configuration file. This provides more flexibility but requires more complicated configuration.

Thevhost.map file contains something like this:

www.customer-1.com /www/customers/1
www.customer-2.com /www/customers/2
...

www.customer-N.com /www/customers/N

Thehttp.conf contains this:

RewriteEngine on

RewriteMap lowercase int:tolower

define the map file
RewriteMap vhost txt:/www/conf/vhost.map

deal with aliases as above
RewriteCond % {REQUESTURI} !ˆ/icons/
RewriteCond % {REQUESTURI} !ˆ/cgi-bin/
RewriteCond $ {lowercase:% {SERVERNAME}} ˆ(.+)$
this does the file-based remap
RewriteCond $ {vhost:%1 } ˆ(/.*)$
RewriteRule ˆ/(.*)$ %1/docs/$1

RewriteCond % {REQUESTURI} ˆ/cgi-bin/
RewriteCond $ {lowercase:% {SERVERNAME}} ˆ(.+)$
RewriteCond $ {vhost:%1 } ˆ(/.*)$

RewriteRule ˆ/(.*)$ %1/cgi-bin/$1

3.5. VIRTUALHOST EXAMPLES 125

3.5 VirtualHost Examples

This document attempts to answer the commonly-asked questions about setting up virtual hosts. These scenarios are
those involving multiple web sites running on a single server, via name-based (p.115) or IP-based (p.118) virtual
hosts. A document should be coming soon about running sites on several servers behind a single proxy server.

Running several name-based web sites on a single IP address.

Your server has a single IP address, and multiple aliases (CNAMES) point to this machine in DNS. You want to run a
web server forwww.example1.com andwww.example2.org on this machine.

=⇒Note
Creating virtual host configurations on your Apache server does not magically cause DNS
entries to be created for those host names. Youmusthave the names in DNS, resolving to your
IP address, or nobody else will be able to see your web site. You can put entries in yourhosts
file for local testing, but that will work only from the machine with those hosts entries.

Server configuration
Ensure that Apache listens on port 80
Listen 80

Listen for virtual host requests on all IP addresses
NameVirtualHost *

<VirtualHost * >

DocumentRoot /www/example1
ServerName www.example1.com

Other directives here

</VirtualHost >

<VirtualHost * >

DocumentRoot /www/example2
ServerName www.example2.org

Other directives here

</VirtualHost >

The asterisks match all addresses, so the main server serves no requests. Due to the fact thatwww.example1.com
is first in the configuration file, it has the highest priority and can be seen as the default or primary server. That means
that if a request is received that does not match one of the specifiedServerName directives, it will be served by this
first VirtualHost .

=⇒Note

You can, if you wish, replace* with the actual IP address of the system. In that case, the
argument toVirtualHost mustmatch the argument toNameVirtualHost :

NameVirtualHost 172.20.30.40

<VirtualHost 172.20.30.40 >

etc ...

However, it is additionally useful to use* on systems where the IP address is not predictable
- for example if you have a dynamic IP address with your ISP, and you are using some variety
of dynamic DNS solution. Since* matches any IP address, this configuration would work
without changes whenever your IP address changes.

126 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

The above configuration is what you will want to use in almost all name-based virtual hosting situations. The only
think that this configuration will not work for, in fact, is when you are serving different content based on differing IP
addresses or ports.

Name-based hosts on more than one IP address.

=⇒Note
Any of the techniques discussed here can be extended to any number of IP addresses.

The server has two IP addresses. On one (172.20.30.40), we will serve the " main" server,
server.domain.com and on the other (172.20.30.50), we will serve two or more virtual hosts.

Server configuration
Listen 80

This is the "main" server running on 172.20.30.40
ServerName server.domain.com
DocumentRoot /www/mainserver

This is the other address
NameVirtualHost 172.20.30.50

<VirtualHost 172.20.30.50 >

DocumentRoot /www/example1
ServerName www.example1.com

Other directives here ...

</VirtualHost >

<VirtualHost 172.20.30.50 >

DocumentRoot /www/example2
ServerName www.example2.org

Other directives here ...

</VirtualHost >

Any request to an address other than172.20.30.50 will be served from the main server. A request to
172.20.30.50 with an unknown hostname, or noHost: header, will be served fromwww.example1.com .

Serving the same content on different IP addresses (such as an internal and external address).

The server machine has two IP addresses (192.168.1.1 and 172.20.30.40). The machine is sitting be-
tween an internal (intranet) network and an external (internet) network. Outside of the network, the name
server.example.com resolves to the external address (172.20.30.40), but inside the network, that same
name resolves to the internal address (192.168.1.1).

The server can be made to respond to internal and external requests with the same content, with just one
VirtualHost section.

Server configuration
NameVirtualHost 192.168.1.1
NameVirtualHost 172.20.30.40

<VirtualHost 192.168.1.1 172.20.30.40 >

DocumentRoot /www/server1
ServerName server.example.com
ServerAlias server

</VirtualHost >

3.5. VIRTUALHOST EXAMPLES 127

Now requests from both networks will be served from the sameVirtualHost .

=⇒Note:
On the internal network, one can just use the nameserver rather than the fully qualified host
nameserver.example.com .
Note also that, in the above example, you can replace the list of IP addresses with* , which
will cause the server to respond the same on all addresses.

Running different sites on different ports.

You have multiple domains going to the same IP and also want to serve multiple ports. By defining the ports in
the " NameVirtualHost" tag, you can allow this to work. If you try using<VirtualHost name:port> without the
NameVirtualHost name:port or you try to use the Listen directive, your configuration will not work.

Server configuration
Listen 80
Listen 8080

NameVirtualHost 172.20.30.40:80
NameVirtualHost 172.20.30.40:8080

<VirtualHost 172.20.30.40:80 >

ServerName www.example1.com
DocumentRoot /www/domain-80

</VirtualHost >

<VirtualHost 172.20.30.40:8080 >

ServerName www.example1.com
DocumentRoot /www/domain-8080

</VirtualHost >

<VirtualHost 172.20.30.40:80 >

ServerName www.example2.org
DocumentRoot /www/otherdomain-80

</VirtualHost >

<VirtualHost 172.20.30.40:8080 >

ServerName www.example2.org
DocumentRoot /www/otherdomain-8080

</VirtualHost >

IP-based virtual hosting

The server has two IP addresses (172.20.30.40 and 172.20.30.50) which resolve to the names
www.example1.com andwww.example2.org respectively.

128 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Server configuration
Listen 80

<VirtualHost 172.20.30.40 >

DocumentRoot /www/example1
ServerName www.example1.com

</VirtualHost >

<VirtualHost 172.20.30.50 >

DocumentRoot /www/example2
ServerName www.example2.org

</VirtualHost >

Requests for any address not specified in one of the<VirtualHost > directives (such aslocalhost , for example)
will go to the main server, if there is one.

Mixed port-based and ip-based virtual hosts

The server machine has two IP addresses (172.20.30.40 and 172.20.30.50) which resolve to the names
www.example1.com and www.example2.org respectively. In each case, we want to run hosts on ports 80
and 8080.

Server configuration
Listen 172.20.30.40:80
Listen 172.20.30.40:8080
Listen 172.20.30.50:80
Listen 172.20.30.50:8080

<VirtualHost 172.20.30.40:80 >

DocumentRoot /www/example1-80
ServerName www.example1.com

</VirtualHost >

<VirtualHost 172.20.30.40:8080 >

DocumentRoot /www/example1-8080
ServerName www.example1.com

</VirtualHost >

<VirtualHost 172.20.30.50:80 >

DocumentRoot /www/example2-80
ServerName www.example1.org

</VirtualHost >

<VirtualHost 172.20.30.50:8080 >

DocumentRoot /www/example2-8080
ServerName www.example2.org

</VirtualHost >

Mixed name-based and IP-based vhosts

On some of my addresses, I want to do name-based virtual hosts, and on others, IP-based hosts.

3.5. VIRTUALHOST EXAMPLES 129

Server configuration
Listen 80

NameVirtualHost 172.20.30.40

<VirtualHost 172.20.30.40 >

DocumentRoot /www/example1
ServerName www.example1.com

</VirtualHost >

<VirtualHost 172.20.30.40 >

DocumentRoot /www/example2
ServerName www.example2.org

</VirtualHost >

<VirtualHost 172.20.30.40 >

DocumentRoot /www/example3
ServerName www.example3.net

</VirtualHost >

IP-based
<VirtualHost 172.20.30.50 >

DocumentRoot /www/example4
ServerName www.example4.edu

</VirtualHost >

<VirtualHost 172.20.30.60 >

DocumentRoot /www/example5
ServerName www.example5.gov

</VirtualHost >

Using default vhosts

default vhosts for all ports

Catchingeveryrequest to any unspecified IP address and port,i.e., an address/port combination that is not used for
any other virtual host.

Server configuration
<VirtualHost default :* >

DocumentRoot /www/default

</VirtualHost >

Using such a default vhost with a wildcard port effectively prevents any request going to the main server.

A default vhost never serves a request that was sent to an address/port that is used for name-based vhosts. If the request
contained an unknown or noHost: header it is always served from the primary name-based vhost (the vhost for that
address/port appearing first in the configuration file).

You can useALIASMATCH or REWRITERULE to rewrite any request to a single information page (or script).

default vhosts for different ports

Same as setup 1, but the server listens on several ports and we want to use a seconddefault vhost for port 80.

130 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Server configuration
<VirtualHost default :80 >

DocumentRoot /www/default80
...

</VirtualHost >

<VirtualHost default :* >

DocumentRoot /www/default
...

</VirtualHost >

The default vhost for port 80 (whichmustappear before any default vhost with a wildcard port) catches all requests
that were sent to an unspecified IP address. The main server is never used to serve a request.

default vhosts for one port

We want to have a default vhost for port 80, but no other default vhosts.

Server configuration
<VirtualHost default :80 >
DocumentRoot /www/default
...

</VirtualHost >

A request to an unspecified address on port 80 is served from the default vhost any other request to an unspecified
address and port is served from the main server.

Migrating a name-based vhost to an IP-based vhost

The name-based vhost with the hostnamewww.example2.org (from our name-based example, setup 2) should get
its own IP address. To avoid problems with name servers or proxies who cached the old IP address for the name-based
vhost we want to provide both variants during a migration phase.
The solution is easy, because we can simply add the new IP address (172.20.30.50) to theVirtualHost direc-
tive.

Server configuration
Listen 80
ServerName www.example1.com
DocumentRoot /www/example1

NameVirtualHost 172.20.30.40

<VirtualHost 172.20.30.40 172.20.30.50 >

DocumentRoot /www/example2
ServerName www.example2.org
...

</VirtualHost >

<VirtualHost 172.20.30.40 >

DocumentRoot /www/example3
ServerName www.example3.net
ServerAlias *.example3.net
...

</VirtualHost >

3.5. VIRTUALHOST EXAMPLES 131

The vhost can now be accessed through the new address (as an IP-based vhost) and through the old address (as a
name-based vhost).

Using theServerPath directive

We have a server with two name-based vhosts. In order to match the correct virtual host a client must send the correct
Host: header. Old HTTP/1.0 clients do not send such a header and Apache has no clue what vhost the client tried
to reach (and serves the request from the primary vhost). To provide as much backward compatibility as possible
we create a primary vhost which returns a single page containing links with an URL prefix to the name-based virtual
hosts.

Server configuration
NameVirtualHost 172.20.30.40

<VirtualHost 172.20.30.40 >

primary vhost
DocumentRoot /www/subdomain
RewriteEngine On
RewriteRule ˆ/.* /www/subdomain/index.html
...

</VirtualHost >

<VirtualHost 172.20.30.40 >
DocumentRoot /www/subdomain/sub1

ServerName www.sub1.domain.tld
ServerPath /sub1/
RewriteEngine On
RewriteRule ˆ(/sub1/.*) /www/subdomain$1
...

</VirtualHost >

<VirtualHost 172.20.30.40 >

DocumentRoot /www/subdomain/sub2
ServerName www.sub2.domain.tld
ServerPath /sub2/
RewriteEngine On
RewriteRule ˆ(/sub2/.*) /www/subdomain$1
...

</VirtualHost >

Due to theSERVERPATH directive a request to the URLhttp://www.sub1.domain.tld/sub1/ is always
served from the sub1-vhost.
A request to the URLhttp://www.sub1.domain.tld/ is only served from the sub1-vhost if the client sent a
correctHost: header. If noHost: header is sent the client gets the information page from the primary host.
Please note that there is one oddity: A request tohttp://www.sub2.domain.tld/sub1/ is also served from
the sub1-vhost if the client sent noHost: header.
The REWRITERULE directives are used to make sure that a client which sent a correctHost: header can use both
URL variants,i.e., with or without URL prefix.

132 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.6 An In-Depth Discussion of Virtual Host Matching

The virtual host code was completely rewritten inApache 1.3. This document attempts to explain exactly what Apache
does when deciding what virtual host to serve a hit from. With the help of the newNAMEV IRTUAL HOST directive
virtual host configuration should be a lot easier and safer than with versions prior to 1.3.

If you just want to make it work without understanding how, here are some examples (p.125) .

Config File Parsing

There is amain serverwhich consists of all the definitions appearing outside of<VirtualHost > sections. There
are virtual servers, calledvhosts, which are defined by<V IRTUAL HOST> sections.

The directivesL ISTEN, SERVERNAME, SERVERPATH, andSERVERALIAS can appear anywhere within the definition
of a server. However, each appearance overrides the previous appearance (within that server).

The default value of theListen field for mainserver is 80. The mainserver has no defaultServerPath , or
ServerAlias . The defaultServerName is deduced from the servers IP address.

The mainserver Listen directive has two functions. One function is to determine the default network port Apache will
bind to. The second function is to specify the port number which is used in absolute URIs during redirects.

Unlike the mainserver, vhost portsdo notaffect what ports Apache listens for connections on.

Each address appearing in theVirtualHost directive can have an optional port. If the port is unspecified it defaults
to the value of the mainserver’s most recentListen statement. The special port* indicates a wildcard that matches
any port. Collectively the entire set of addresses (including multipleA record results from DNS lookups) are called
the vhost’saddress set.

Unless aNAMEV IRTUAL HOST directive is used for a specific IP address the first vhost with that address is treated as
an IP-based vhost. The IP address can also be the wildcard* .

If name-based vhosts should be used aNameVirtualHost directivemustappear with the IP address set to be used
for the name-based vhosts. In other words, you must specify the IP address that holds the hostname aliases (CNAMEs)
for your name-based vhosts via aNameVirtualHost directive in your configuration file.

Multiple NameVirtualHost directives can be used each with a set ofVirtualHost directives but only one
NameVirtualHost directive should be used for each specific IP:port pair.

The ordering ofNameVirtualHost andVirtualHost directives is not important which makes the following
two examples identical (only the order of theVirtualHost directives foroneaddress set is important, see below):

3.6. AN IN-DEPTH DISCUSSION OF VIRTUAL HOST MATCHING 133

NameVirtualHost 111.22.33.44
<VirtualHost 111.22.33.44 >
server A
...
</VirtualHost >
<VirtualHost 111.22.33.44 >
server B
...
</VirtualHost >

NameVirtualHost 111.22.33.55
<VirtualHost 111.22.33.55 >
server C
...
</VirtualHost >
<VirtualHost 111.22.33.55 >
server D
...
</VirtualHost >

<VirtualHost 111.22.33.44 >
server A
</VirtualHost >
<VirtualHost 111.22.33.55 >
server C
...
</VirtualHost >
<VirtualHost 111.22.33.44 >
server B
...
</VirtualHost >
<VirtualHost 111.22.33.55 >
server D
...
</VirtualHost >

NameVirtualHost 111.22.33.44
NameVirtualHost 111.22.33.55

(To aid the readability of your configuration you should prefer the left variant.)

After parsing theVirtualHost directive, the vhost server is given a defaultListen equal to the port assigned to
the first name in itsVirtualHost directive.

The complete list of names in theVirtualHost directive are treated just like aServerAlias (but are not over-
ridden by anyServerAlias statement) if all names resolve to the same address set. Note that subsequentListen
statements for this vhost will not affect the ports assigned in the address set.

During initialization a list for each IP address is generated and inserted into an hash table. If the IP address is used in a
NameVirtualHost directive the list contains all name-based vhosts for the given IP address. If there are no vhosts
defined for that address theNameVirtualHost directive is ignored and an error is logged. For an IP-based vhost
the list in the hash table is empty.

Due to a fast hashing function the overhead of hashing an IP address during a request is minimal and almost not
existent. Additionally the table is optimized for IP addresses which vary in the last octet.

For every vhost various default values are set. In particular:

1. If a vhost has noSERVERADMIN , RESOURCECONFIG, ACCESSCONFIG, TIMEOUT, KEEPALIVE TIMEOUT,
KEEPALIVE , MAX KEEPALIVE REQUESTS, or SENDBUFFERSIZE directive then the respective value is inher-
ited from the mainserver. (That is, inherited from whatever the final setting of that value is in the mainserver.)

2. The " lookup defaults" that define the default directory permissions for a vhost are merged with those of the
main server. This includes any per-directory configuration information for any module.

3. The per-server configs for each module from the mainserver are merged into the vhost server.

Essentially, the mainserver is treated as" defaults" or a " base" on which to build each vhost. But the positioning
of these mainserver definitions in the config file is largely irrelevant – the entire config of the mainserver has been
parsed when this final merging occurs. So even if a mainserver definition appears after a vhost definition it might
affect the vhost definition.

If the mainserver has noServerName at this point, then the hostname of the machine that httpd is running on is used
instead. We will call themain server address setthose IP addresses returned by a DNS lookup on theServerName
of the mainserver.

For any undefinedServerName fields, a name-based vhost defaults to the address given first in theVirtualHost
statement defining the vhost.

134 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Any vhost that includes the magicdefault wildcard is given the sameServerName as the mainserver.

Virtual Host Matching

The server determines which vhost to use for a request as follows:

Hash table lookup

When the connection is first made by a client, the IP address to which the client connected is looked up in the internal
IP hash table.

If the lookup fails (the IP address wasn’t found) the request is served from thedefault vhost if there is such a
vhost for the port to which the client sent the request. If there is no matchingdefault vhost the request is served
from the mainserver.

If the IP address is not found in the hash table then the match against the port number may also result in an entry
corresponding to aNameVirtualHost * , which is subsequently handled like other name-based vhosts.

If the lookup succeeded (a corresponding list for the IP address was found) the next step is to decide if we have to deal
with an IP-based or a name-base vhost.

IP-based vhost

If the entry we found has an empty name list then we have found an IP-based vhost, no further actions are performed
and the request is served from that vhost.

Name-based vhost

If the entry corresponds to a name-based vhost the name list contains one or more vhost structures. This list contains
the vhosts in the same order as theVirtualHost directives appear in the config file.

The first vhost on this list (the first vhost in the config file with the specified IP address) has the highest priority and
catches any request to an unknown server name or a request without aHost: header field.

If the client provided aHost: header field the list is searched for a matching vhost and the first hit on aServerName
or ServerAlias is taken and the request is served from that vhost. AHost: header field can contain a port number,
but Apache always matches against the real port to which the client sent the request.

If the client submitted a HTTP/1.0 request withoutHost: header field we don’t know to what server the client tried
to connect and any existingServerPath is matched against the URI from the request. The first matching path on
the list is used and the request is served from that vhost.

If no matching vhost could be found the request is served from the first vhost with a matching port number that is on
the list for the IP to which the client connected (as already mentioned before).

Persistent connections

The IP lookup described above is only doneoncefor a particular TCP/IP session while the name lookup is done on
everyrequest during a KeepAlive/persistent connection. In other words a client may request pages from different
name-based vhosts during a single persistent connection.

3.6. AN IN-DEPTH DISCUSSION OF VIRTUAL HOST MATCHING 135

Absolute URI

If the URI from the request is an absolute URI, and its hostname and port match the main server or one of the configured
virtual hostsandmatch the address and port to which the client sent the request, then the scheme/hostname/port prefix
is stripped off and the remaining relative URI is served by the corresponding main server or virtual host. If it does not
match, then the URI remains untouched and the request is taken to be a proxy request.

Observations

• A name-based vhost can never interfere with an IP-base vhost and vice versa. IP-based vhosts can only be
reached through an IP address of its own address set and never through any other address. The same applies
to name-based vhosts, they can only be reached through an IP address of the corresponding address set which
must be defined with aNameVirtualHost directive.

• ServerAlias andServerPath checks are never performed for an IP-based vhost.

• The order of name-/IP-based, thedefault vhost and theNameVirtualHost directive within the config
file is not important. Only the ordering of name-based vhosts for a specific address set is significant. The one
name-based vhosts that comes first in the configuration file has the highest priority for its corresponding address
set.

• For security reasons the port number given in aHost: header field is never used during the matching process.
Apache always uses the real port to which the client sent the request.

• If a ServerPath directive exists which is a prefix of anotherServerPath directive that appears later in
the configuration file, then the former will always be matched and the latter will never be matched. (That is
assuming that noHost: header field was available to disambiguate the two.)

• If two IP-based vhosts have an address in common, the vhost appearing first in the config file is always matched.
Such a thing might happen inadvertently. The server will give a warning in the error logfile when it detects this.

• A default vhost catches a request only if there is no other vhost with a matching IP addressanda match-
ing port number for the request. The request is only caught if the port number to which the client sent the
request matches the port number of yourdefault vhost which is your standardListen by default. A
wildcard port can be specified (i.e., default :*) to catch requests to any available port. This also applies to
NameVirtualHost * vhosts.

• The mainserver is only used to serve a request if the IP address and port number to which the client connected is
unspecified and does not match any other vhost (including adefault vhost). In other words the mainserver
only catches a request for an unspecified address/port combination (unless there is adefault vhost which
matches that port).

• A default vhost or the mainserver isnevermatched for a request with an unknown or missingHost:
header field if the client connected to an address (and port) which is used for name-based vhosts,e.g., in a
NameVirtualHost directive.

• You should never specify DNS names inVirtualHost directives because it will force your server to rely on
DNS to boot. Furthermore it poses a security threat if you do not control the DNS for all the domains listed.
There’s more information (p.139) available on this and the next two topics.

• ServerName should always be set for each vhost. Otherwise A DNS lookup is required for each vhost.

Tips

In addition to the tips on the DNS Issues (p.139) page, here are some further tips:

• Place all mainserver definitions before anyVirtualHost definitions. (This is to aid the readability of the
configuration – the post-config merging process makes it non-obvious that definitions mixed in around virtual
hosts might affect all virtual hosts.)

136 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

• Group correspondingNameVirtualHost andVirtualHost definitions in your configuration to ensure
better readability.

• Avoid ServerPaths which are prefixes of otherServerPaths . If you cannot avoid this then you have to
ensure that the longer (more specific) prefix vhost appears earlier in the configuration file than the shorter (less
specific) prefix (i.e., " ServerPath /abc" should appear after" ServerPath /abc/def").

3.7. FILE DESCRIPTOR LIMITS 137

3.7 File Descriptor Limits

When using a large number of Virtual Hosts, Apache may run out of available file descriptors (sometimes called file
handles) if each Virtual Host specifies different log files. The total number of file descriptors used by Apache is
one for each distinct error log file, one for every other log file directive, plus 10-20 for internal use. Unix operating
systems limit the number of file descriptors that may be used by a process; the limit is typically 64, and may usually
be increased up to a large hard-limit.

Although Apache attempts to increase the limit as required, this may not work if:

1. Your system does not provide thesetrlimit() system call.

2. Thesetrlimit(RLIMIT NOFILE) call does not function on your system (such as Solaris 2.3)

3. The number of file descriptors required exceeds the hard limit.

4. Your system imposes other limits on file descriptors, such as a limit on stdio streams only using file descriptors
below 256. (Solaris 2)

In the event of problems you can:

• Reduce the number of log files; don’t specify log files in the<V IRTUAL HOST> sections, but only log to the
main log files. (See Splitting up your log files, below, for more information on doing this.)

• If you system falls into 1 or 2 (above), then increase the file descriptor limit before starting Apache, using a
script like

#!/bin/sh
ulimit -S -n 100

exec httpd

Please see the Descriptors and Apache (p.278) document containing further details about file descriptor problems and
how they can be solved on your operating system.

Splitting up your log files

If you want to log multiple virtual hosts to the same log file, you may want to split up the log files afterwards in order
to run statistical analysis of the various virtual hosts. This can be accomplished in the following manner.

First, you will need to add the virtual host information to the log entries. This can be done using theLOGFORMAT

directive, and the%vvariable. Add this to the beginning of your log format string:

LogFormat "%v %h %l %u %t \"%r \" %>s %b" vhost

CustomLog logs/multiple vhost log vhost

This will create a log file in the common log format, but with the canonical virtual host (whatever appears in the
SERVERNAME directive) prepended to each line. (SeeCUSTOM LOG FORMATS for more about customizing your log
files.)

When you wish to split your log file into its component parts (one file per virtual host) you can use the program
split-logfile (p. 258) to accomplish this. You’ll find this program in thesupport directory of the
Apache distribution.

Run this program with the command:

138 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

split-logfile < /logs/multiple vhost log

This program, when run with the name of your vhost log file, will generate one file for each virtual host that appears
in your log file. Each file will be calledhostname.log .

3.8. ISSUES REGARDING DNS AND APACHE 139

3.8 Issues Regarding DNS and Apache

This page could be summarized with the statement: don’t configure Apache in such a way that it relies on DNS
resolution for parsing of the configuration files. If Apache requires DNS resolution to parse the configuration files
then your server may be subject to reliability problems (ie. it might not boot), or denial and theft of service attacks
(including users able to steal hits from other users).

A Simple Example

<VirtualHost www.abc.dom >
ServerAdmin webgirl@abc.dom
DocumentRoot /www/abc

</VirtualHost >

In order for Apache to function properly, it absolutely needs to have two pieces of information about each virtual host:
the SERVERNAME and at least one IP address that the server will bind and respond to. The above example does not
include the IP address, so Apache must use DNS to find the address ofwww.abc.dom . If for some reason DNS is
not available at the time your server is parsing its config file, then this virtual hostwill not be configured. It won’t be
able to respond to any hits to this virtual host (prior to Apache version 1.2 the server would not even boot).

Suppose thatwww.abc.dom has address 10.0.0.1. Then consider this configuration snippet:

<VirtualHost 10.0.0.1 >
ServerAdmin webgirl@abc.dom
DocumentRoot /www/abc

</VirtualHost >

This time Apache needs to use reverse DNS to find theServerName for this virtualhost. If that reverse lookup fails
then it will partially disable the virtualhost (prior to Apache version 1.2 the server would not even boot). If the virtual
host is name-based then it will effectively be totally disabled, but if it is IP-based then it will mostly work. However,
if Apache should ever have to generate a full URL for the server which includes the server name, then it will fail to
generate a valid URL.

Here is a snippet that avoids both of these problems:

<VirtualHost 10.0.0.1 >
ServerName www.abc.dom
ServerAdmin webgirl@abc.dom
DocumentRoot /www/abc

</VirtualHost >

Denial of Service

There are (at least) two forms that denial of service can come in. If you are running a version of Apache prior to
version 1.2 then your server will not even boot if one of the two DNS lookups mentioned above fails for any of your
virtual hosts. In some cases this DNS lookup may not even be under your control; for example, ifabc.dom is one of
your customers and they control their own DNS, they can force your (pre-1.2) server to fail while booting simply by
deleting thewww.abc.dom record.

Another form is far more insidious. Consider this configuration snippet:

140 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

<VirtualHost www.abc.dom >
ServerAdmin webgirl@abc.dom
DocumentRoot /www/abc
</VirtualHost >

<VirtualHost www.def.dom >
ServerAdmin webguy@def.dom
DocumentRoot /www/def

</VirtualHost >

Suppose that you’ve assigned 10.0.0.1 towww.abc.dom and 10.0.0.2 towww.def.dom . Furthermore, suppose that
def.dom has control of their own DNS. With this config you have putdef.dom into a position where they can steal
all traffic destined toabc.dom . To do so, all they have to do is setwww.def.dom to 10.0.0.1. Since they control
their own DNS you can’t stop them from pointing thewww.def.dom record wherever they wish.

Requests coming in to 10.0.0.1 (including all those where users typed in URLs of the form
http://www.abc.dom/whatever) will all be served by thedef.dom virtual host. To better under-
stand why this happens requires a more in-depth discussion of how Apache matches up incoming requests with the
virtual host that will serve it. A rough document describing this is available (p.132) .

The " main server" Address

The addition of name-based virtual host support (p.115) in Apache 1.1 requires Apache to know the IP address(es) of
the host that httpd is running on. To get this address it uses either the globalSERVERNAME (if present) or calls the
C functiongethostname (which should return the same as typing" hostname" at the command prompt). Then it
performs a DNS lookup on this address. At present there is no way to avoid this lookup.

If you fear that this lookup might fail because your DNS server is down then you can insert the hostname in
/etc/hosts (where you probably already have it so that the machine can boot properly). Then ensure that your
machine is configured to use/etc/hosts in the event that DNS fails. Depending on what OS you are using this
might be accomplished by editing/etc/resolv.conf , or maybe/etc/nsswitch.conf .

If your server doesn’t have to perform DNS for any other reason then you might be able to get away with running
Apache with theHOSTRESORDERenvironment variable set to" local" . This all depends on what OS and resolver
libraries you are using. It also affects CGIs unless you useMOD ENV to control the environment. It’s best to consult
the man pages or FAQs for your OS.

Tips to Avoid These Problems

• use IP addresses inV IRTUAL HOST

• use IP addresses inL ISTEN

• ensure all virtual hosts have an explicitSERVERNAME

• create a<VirtualHost default :* > server that has no pages to serve

Appendix: Future Directions

The situation regarding DNS is highly undesirable. For Apache 1.2 we’ve attempted to make the server at least
continue booting in the event of failed DNS, but it might not be the best we can do. In any event, requiring the use of
explicit IP addresses in configuration files is highly undesirable in today’s Internet where renumbering is a necessity.

A possible work around to the theft of service attack described above would be to perform a reverse DNS lookup on
the IP address returned by the forward lookup and compare the two names – in the event of a mismatch, the virtualhost

3.8. ISSUES REGARDING DNS AND APACHE 141

would be disabled. This would require reverse DNS to be configured properly (which is something that most admins
are familiar with because of the common use of" double-reverse" DNS lookups by FTP servers and TCP wrappers).

In any event, it doesn’t seem possible to reliably boot a virtual-hosted web server when DNS has failed unless IP
addresses are used. Partial solutions such as disabling portions of the configuration might be worse than not booting
at all depending on what the webserver is supposed to accomplish.

As HTTP/1.1 is deployed and browsers and proxies start issuing theHost header it will become possible to avoid
the use of IP-based virtual hosts entirely. In this case, a webserver has no requirement to do DNS lookups during
configuration. But as of March 1997 these features have not been deployed widely enough to be put into use on
critical webservers.

142 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Chapter 4

Apache Server Frequently Asked Questions

143

144 CHAPTER 4. APACHE SERVER FREQUENTLY ASKED QUESTIONS

4.1 Frequently Asked Questions

The latest version of this FAQ is always available from the main Apache web site, at<http://httpd.apache.org/docs-
2.0/faq/>. In addition, you can view this FAQ all in one page (p.??) for easy searching and printing.

Since Apache 2.0 is quite new, we don’t yet know what theFrequently Asked Questionswill be. While this section
fills up, you should also consult the Apache 1.3 FAQ1 to see if your question is answered there.

1http://httpd.apache.org/docs/misc/FAQ.html

http://httpd.apache.org/docs/misc/FAQ.html

4.2. SUPPORT - FREQUENTLY ASKED QUESTIONS 145

4.2 Support - Frequently Asked Questions

Support

• " Why can’t I ...? Why won’t ... work?" What to do in case of problems

• Whom do I contact for support?

" Why can’t I ...? Why won’t ... work? " What to do in case of problems

If you are having trouble with your Apache server software, you should take the following steps:

Check the errorlog! Apache tries to be helpful when it encounters a problem. In many cases, it will provide some
details by writing one or messages to the server error log. Sometimes this is enough for you to diagnose
& fix the problem yourself (such as file permissions or the like). The default location of the error log is
/usr/local/apache2/logs/error log , but see theERRORLOG directive in your config files for the
location on your server.

Check the FAQ2! The latest version of the Apache Frequently-Asked Questions list can always be found at the main
Apache web site.

Check the Apache bug databaseMost problems that get reported to The Apache Group are recorded in the bug
database3. Pleasecheck the existing reports, openand closed, before adding one. If you find that your issue has
already been reported, pleasedon’t add a" me, too" report. If the original report isn’t closed yet, we suggest
that you check it periodically. You might also consider contacting the original submitter, because there may be
an email exchange going on about the issue that isn’t getting recorded in the database.

Ask in a user support forum Apache has an active community of users who are willing to share their knowledge.
Participating in this community is usually the best and fastest way to get answers to your questions and problems.

Users mailing list4

USENET newsgroups:

• comp.infosystems.www.servers.unix [news5] [google6]
• comp.infosystems.www.servers.ms-windows [news7] [google8]
• comp.infosystems.www.authoring.cgi [news9] [google10]

If all else fails, report the problem in the bug databaseIf you’ve gone through those steps above that are appropri-
ate and have obtained no relief, then pleasedo let the httpd developers know about the problem by logging a
bug report11.

If your problem involves the server crashing and generating a core dump, please include a backtrace (if possible).
As an example,

cd ServerRoot
dbx httpd core

(dbx) where

3http://httpd.apache.org/bugreport.html
4http://httpd.apache.org/userslist.html
5news:comp.infosystems.www.servers.unix
6http://groups.google.com/groups?group=comp.infosystems.www.servers.unix
7news:comp.infosystems.www.servers.ms-windows
8http://groups.google.com/groups?group=comp.infosystems.www.servers.ms-windows
9news:comp.infosystems.www.authoring.cgi

10http://groups.google.com/groups?group=comp.infosystems.www.authoring.cgi
11http://httpd.apache.org/bugreport.html

http://httpd.apache.org/bug_report.html
http://httpd.apache.org/userslist.html
news:comp.infosystems.www.servers.unix
http://groups.google.com/groups?group=comp.infosystems.www.servers.unix
news:comp.infosystems.www.servers.ms-windows
http://groups.google.com/groups?group=comp.infosystems.www.servers.ms-windows
news:comp.infosystems.www.authoring.cgi
http://groups.google.com/groups?group=comp.infosystems.www.authoring.cgi
http://httpd.apache.org/bug_report.html

146 CHAPTER 4. APACHE SERVER FREQUENTLY ASKED QUESTIONS

(Substitute the appropriate locations for your ServerRoot and your httpd and core files. You may have to use
gdb instead ofdbx .)

Whom do I contact for support?

With several million users and fewer than forty volunteer developers, we cannot provide personal support for Apache.
For free support, we suggest participating in a user forum.

Professional, commercial support for Apache is available from a number of companies12.

12http://www.apache.org/info/support.cgi

http://www.apache.org/info/support.cgi

4.3. ERROR MESSAGES - FREQUENTLY ASKED QUESTIONS 147

4.3 Error Messages - Frequently Asked Questions

Error Messages

• Invalid argument: coreoutput filter: writing data to the network

Invalid argument: core output filter: writing data to the network

Apache uses thesendfile syscall on platforms where it is available in order to speed sending of responses. Un-
fortunately, on some systems, Apache will detect the presence ofsendfile at compile-time, even when it does not
work properly. This happens most frequently when using network or other non-standard file-system.

Symptoms of this problem include the above message in the error log and zero-length responses to non-zero-sized files.
The problem generally occurs only for static files, since dynamic content usually does not make use ofsendfile .

To fix this problem, simply use theENABLESENDFILE directive to disablesendfile for all or part of your server.
Also see theENABLEMMAP, which can help with similar problems.

148 CHAPTER 4. APACHE SERVER FREQUENTLY ASKED QUESTIONS

Chapter 5

Apache SSL/TLS Encryption

149

150 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.1 Apache SSL/TLS Encryption

The Apache HTTP Server moduleMOD SSLprovides an interface to the OpenSSL1 library, which provides Strong En-
cryption using the Secure Sockets Layer and Transport Layer Security protocols. The module and this documentation
are based on Ralf S. Engelschall’s modssl project.

Documentation

• Introduction (p.151)

• Compatibility (p.159)

• How-To (p.163)

• Frequently Asked Questions (p.168)

• Glossary (p.622)

mod ssl

Extensive documentation on the directives and environment variables provided by this module is provided in the
mod ssl reference documentation (p.520) .

1http://www.openssl.org/

http://www.openssl.org/

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 151

5.2 SSL/TLS Strong Encryption: An Introduction

The nice thing about standards is that there are so many to choose from. And if you really don’t like
all the standards you just have to wait another year until the one arises you are looking for.

– A. Tanenbaum," Introduction to Computer Networks"

As an introduction this chapter is aimed at readers who are familiar with the Web, HTTP, and Apache, but are not
security experts. It is not intended to be a definitive guide to the SSL protocol, nor does it discuss specific techniques
for managing certificates in an organization, or the important legal issues of patents and import and export restric-
tions. Rather, it is intended to provide a common background to modssl users by pulling together various concepts,
definitions, and examples as a starting point for further exploration.

The presented content is mainly derived, with permission by the author, from the article Introducing SSL and Cer-
tificates using SSLeay2 from Frederick J. Hirsch3, of The Open Group Research Institute, which was published in
Web Security: A Matter of Trust4, World Wide Web Journal, Volume 2, Issue 3, Summer 1997. Please send any
positive feedback to Frederick Hirsch5 (the original article author) and all negative feedback to Ralf S. Engelschall6

(theMOD SSL author).

Cryptographic Techniques

Understanding SSL requires an understanding of cryptographic algorithms, message digest functions (aka. one-way
or hash functions), and digital signatures. These techniques are the subject of entire books (see for instance [AC96])
and provide the basis for privacy, integrity, and authentication.

Cryptographic Algorithms

Suppose Alice wants to send a message to her bank to transfer some money. Alice would like the message to be
private, since it will include information such as her account number and transfer amount. One solution is to use a
cryptographic algorithm, a technique that would transform her message into an encrypted form, unreadable except
by those it is intended for. Once in this form, the message may only be interpreted through the use of a secret key.
Without the key the message is useless: good cryptographic algorithms make it so difficult for intruders to decode the
original text that it isn’t worth their effort.

There are two categories of cryptographic algorithms: conventional and public key.

Conventional cryptography also known as symmetric cryptography, requires the sender and receiver to share a key:
a secret piece of information that may be used to encrypt or decrypt a message. If this key is secret, then nobody
other than the sender or receiver may read the message. If Alice and the bank know a secret key, then they may
send each other private messages. The task of privately choosing a key before communicating, however, can be
problematic.

Public key cryptography also known as asymmetric cryptography, solves the key exchange problem by defining an
algorithm which uses two keys, each of which may be used to encrypt a message. If one key is used to encrypt a
message then the other must be used to decrypt it. This makes it possible to receive secure messages by simply
publishing one key (the public key) and keeping the other secret (the private key).

Anyone may encrypt a message using the public key, but only the owner of the private key will be able to read it. In
this way, Alice may send private messages to the owner of a key-pair (the bank), by encrypting it using their public
key. Only the bank will be able to decrypt it.

2http://home.earthlink.net/˜fjhirsch/Papers/wwwj/article.html
3http://home.earthlink.net/˜fjhirsch/
4http://www.ora.com/catalog/wjsum97/
5mailto:hirsch@fjhirsch.com
6mailto:rse@engelschall.com

http://home.earthlink.net/~fjhirsch/Papers/wwwj/article.html
http://home.earthlink.net/~fjhirsch/
http://www.ora.com/catalog/wjsum97/
mailto:hirsch@fjhirsch.com
mailto:rse@engelschall.com

152 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Message Digests

Although Alice may encrypt her message to make it private, there is still a concern that someone might modify her
original message or substitute it with a different one, in order to transfer the money to themselves, for instance. One
way of guaranteeing the integrity of Alice’s message is to create a concise summary of her message and send this to
the bank as well. Upon receipt of the message, the bank creates its own summary and compares it with the one Alice
sent. If they agree then the message was received intact.

A summary such as this is called a message digest,one-way functionor hash function. Message digests are used
to create short, fixed-length representations of longer, variable-length messages. Digest algorithms are designed to
produce unique digests for different messages. Message digests are designed to make it too difficult to determine
the message from the digest, and also impossible to find two different messages which create the same digest – thus
eliminating the possibility of substituting one message for another while maintaining the same digest.

Another challenge that Alice faces is finding a way to send the digest to the bank securely; when this is achieved, the
integrity of the associated message is assured. One way to do this is to include the digest in a digital signature.

Digital Signatures

When Alice sends a message to the bank, the bank needs to ensure that the message is really from her, so an intruder
does not request a transaction involving her account. Adigital signature, created by Alice and included with the
message, serves this purpose.

Digital signatures are created by encrypting a digest of the message, and other information (such as a sequence number)
with the sender’s private key. Though anyone maydecryptthe signature using the public key, only the signer knows
the private key. This means that only they may have signed it. Including the digest in the signature means the signature
is only good for that message; it also ensures the integrity of the message since no one can change the digest and still
sign it.

To guard against interception and reuse of the signature by an intruder at a later date, the signature contains a unique
sequence number. This protects the bank from a fraudulent claim from Alice that she did not send the message – only
she could have signed it (non-repudiation).

Certificates

Although Alice could have sent a private message to the bank, signed it, and ensured the integrity of the message, she
still needs to be sure that she is really communicating with the bank. This means that she needs to be sure that the
public key she is using corresponds to the bank’s private key. Similarly, the bank also needs to verify that the message
signature really corresponds to Alice’s signature.

If each party has a certificate which validates the other’s identity, confirms the public key, and is signed by a trusted
agency, then they both will be assured that they are communicating with whom they think they are. Such a trusted
agency is called aCertificate Authority, and certificates are used for authentication.

Certificate Contents

A certificate associates a public key with the real identity of an individual, server, or other entity, known as the subject.
As shown in Table 1, information about the subject includes identifying information (the distinguished name), and the
public key. It also includes the identification and signature of the Certificate Authority that issued the certificate, and
the period of time during which the certificate is valid. It may have additional information (or extensions) as well as
administrative information for the Certificate Authority’s use, such as a serial number.

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 153

Table 1: Certificate Information

Subject Distinguished Name, Public Key
Issuer Distinguished Name, Signature
Period of Validity Not Before Date, Not After Date
Administrative Information Version, Serial Number
Extended Information Basic Constraints, Netscape Flags, etc.

A distinguished name is used to provide an identity in a specific context – for instance, an individual might have a
personal certificate as well as one for their identity as an employee. Distinguished names are defined by the X.509
standard [X509], which defines the fields, field names, and abbreviations used to refer to the fields (see Table 2).

Table 2: Distinguished Name Information

DN Field Abbrev. Description Example
Common Name CN Name being certified CN=Joe Average
Organization or Company O Name is associated with this

organization
O=Snake Oil, Ltd.

Organizational Unit OU Name is associated with this
organization unit, such as a department

OU=Research Institute

City/Locality L Name is located in this City L=Snake City
State/Province ST Name is located in this State/Province ST=Desert
Country C Name is located in this Country (ISO

code)
C=XZ

A Certificate Authority may define a policy specifying which distinguished field names are optional, and which are
required. It may also place requirements upon the field contents, as may users of certificates. As an example, a
Netscape browser requires that the Common Name for a certificate representing a server has a name which matches a
wildcard pattern for the domain name of that server, such as*.snakeoil.com .

The binary format of a certificate is defined using the ASN.1 notation [X208] [PKCS]. This notation defines how
to specify the contents, and encoding rules define how this information is translated into binary form. The binary
encoding of the certificate is defined using Distinguished Encoding Rules (DER), which are based on the more general
Basic Encoding Rules (BER). For those transmissions which cannot handle binary, the binary form may be translated
into an ASCII form by using Base64 encoding [MIME]. This encoded version is called PEM encoded (the name comes
from " Privacy Enhanced Mail"), when placed between begin and end delimiter lines as illustrated in the following
example.

154 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Example of a PEM-encoded certificate (snakeoil.crt)

-----BEGIN CERTIFICATE-----
MIIC7jCCAlegAwIBAgIBATANBgkqhkiG9w0BAQQFADCBqTELMAkGA1UEBhMCWFkx
FTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25ha2UgVG93bjEXMBUG
A1UEChMOU25ha2UgT2lsLCBMdGQxHjAcBgNVBAsTFUNlcnRpZmljYXRlIEF1dGhv
cml0eTEVMBMGA1UEAxMMU25ha2UgT2lsIENBMR4wHAYJKoZIhvcNAQkBFg9jYUBz
bmFrZW9pbC5kb20wHhcNOTgxMDIxMDg1ODM2WhcNOTkxMDIxMDg1ODM2WjCBpzEL
MAkGA1UEBhMCWFkxFTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25h
a2UgVG93bjEXMBUGA1UEChMOU25ha2UgT2lsLCBMdGQxFzAVBgNVBAsTDldlYnNl
cnZlciBUZWFtMRkwFwYDVQQDExB3d3cuc25ha2VvaWwuZG9tMR8wHQYJKoZIhvcN
AQkBFhB3d3dAc25ha2VvaWwuZG9tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQDH9Ge/s2zcH+da+rPTx/DPRp3xGjHZ4GG6pCmvADIEtBtKBFAcZ64n+Dy7Np8b
vKR+yy5DGQiijsH1D/j8HlGE+q4TZ8OFk7BNBFazHxFbYI4OKMiCxdKzdif1yfaa
lWoANFlAzlSdbxeGVHoT0K+gT5w3UxwZKv2DLbCTzLZyPwIDAQABoyYwJDAPBgNV
HRMECDAGAQH/AgEAMBEGCWCGSAGG+EIBAQQEAwIAQDANBgkqhkiG9w0BAQQFAAOB
gQAZUIHAL4D09oE6Lv2k56Gp38OBDuILvwLg1v1KL8mQR+KFjghCrtpqaztZqcDt
2q2QoyulCgSzHbEGmi0EsdkPfg6mp0penssIFePYNI+/8u9HT4LuKMJX15hxBam7
dUHzICxBVC1lnHyYGjDuAMhe396lYAn8bCld1/L4NMGBCQ==
-----END CERTIFICATE-----

Certificate Authorities

By first verifying the information in a certificate request before granting the certificate, the Certificate Authority assures
the identity of the private key owner of a key-pair. For instance, if Alice requests a personal certificate, the Certificate
Authority must first make sure that Alice really is the person the certificate request claims.

Certificate Chains

A Certificate Authority may also issue a certificate for another Certificate Authority. When examining a certificate,
Alice may need to examine the certificate of the issuer, for each parent Certificate Authority, until reaching one which
she has confidence in. She may decide to trust only certificates with a limited chain of issuers, to reduce her risk of a
" bad" certificate in the chain.

Creating a Root-Level CA

As noted earlier, each certificate requires an issuer to assert the validity of the identity of the certificate subject, up
to the top-level Certificate Authority (CA). This presents a problem: Since this is who vouches for the certificate of
the top-level authority, which has no issuer? In this unique case, the certificate is" self-signed" , so the issuer of the
certificate is the same as the subject. As a result, one must exercise extra care in trusting a self-signed certificate. The
wide publication of a public key by the root authority reduces the risk in trusting this key – it would be obvious if
someone else publicized a key claiming to be the authority. Browsers are preconfigured to trust well-known certificate
authorities.

A number of companies, such as Thawte7 and VeriSign8 have established themselves as Certificate Authorities. These
companies provide the following services:

• Verifying certificate requests

• Processing certificate requests

• Issuing and managing certificates

7http://www.thawte.com/
8http://www.verisign.com/

http://www.thawte.com/
http://www.verisign.com/

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 155

It is also possible to create your own Certificate Authority. Although risky in the Internet environment, it may be
useful within an Intranet where the organization can easily verify the identities of individuals and servers.

Certificate Management

Establishing a Certificate Authority is a responsibility which requires a solid administrative, technical, and manage-
ment framework. Certificate Authorities not only issue certificates, they also manage them – that is, they determine
how long certificates are valid, they renew them, and they keep lists of certificates that have already been issued but
are no longer valid (Certificate Revocation Lists, or CRLs). Say Alice is entitled to a certificate as an employee of a
company. Say too, that the certificate needs to be revoked when Alice leaves the company. Since certificates are ob-
jects that get passed around, it is impossible to tell from the certificate alone that it has been revoked. When examining
certificates for validity, therefore, it is necessary to contact the issuing Certificate Authority to check CRLs – this is
not usually an automated part of the process.

=⇒Note
If you use a Certificate Authority that is not configured into browsers by default, it is necessary
to load the Certificate Authority certificate into the browser, enabling the browser to validate
server certificates signed by that Certificate Authority. Doing so may be dangerous, since once
loaded, the browser will accept all certificates signed by that Certificate Authority.

Secure Sockets Layer (SSL)

The Secure Sockets Layer protocol is a protocol layer which may be placed between a reliable connection-oriented
network layer protocol (e.g. TCP/IP) and the application protocol layer (e.g. HTTP). SSL provides for secure com-
munication between client and server by allowing mutual authentication, the use of digital signatures for integrity, and
encryption for privacy.

The protocol is designed to support a range of choices for specific algorithms used for cryptography, digests, and
signatures. This allows algorithm selection for specific servers to be made based on legal, export or other concerns,
and also enables the protocol to take advantage of new algorithms. Choices are negotiated between client and server
at the start of establishing a protocol session.

Table 4: Versions of the SSL protocol

Version Source Description Browser Support
SSL v2.0 Vendor Standard (from

Netscape Corp.) [SSL2]
First SSL protocol for which imple-
mentations exists

- NS Navigator 1.x/2.x
- MS IE 3.x
- Lynx/2.8+OpenSSL

SSL v3.0 Expired Internet Draft
(from Netscape Corp.)
[SSL3]

Revisions to prevent specific security
attacks, add non-RSA ciphers, and sup-
port for certificate chains

- NS Navigator 2.x/3.x/4.x
- MS IE 3.x/4.x
- Lynx/2.8+OpenSSL

TLS v1.0 Proposed Internet Stan-
dard (from IETF) [TLS1]

Revision of SSL 3.0 to update the MAC
layer to HMAC, add block padding for
block ciphers, message order standard-
ization and more alert messages.

- Lynx/2.8+OpenSSL

There are a number of versions of the SSL protocol, as shown in Table 4. As noted there, one of the benefits in SSL
3.0 is that it adds support of certificate chain loading. This feature allows a server to pass a server certificate along
with issuer certificates to the browser. Chain loading also permits the browser to validate the server certificate, even if
Certificate Authority certificates are not installed for the intermediate issuers, since they are included in the certificate
chain. SSL 3.0 is the basis for the Transport Layer Security [TLS] protocol standard, currently in development by the
Internet Engineering Task Force (IETF).

156 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Session Establishment

The SSL session is established by following a handshake sequence between client and server, as shown in Figure 1.
This sequence may vary, depending on whether the server is configured to provide a server certificate or request a client
certificate. Though cases exist where additional handshake steps are required for management of cipher information,
this article summarizes one common scenario: see the SSL specification for the full range of possibilities.

=⇒Note
Once an SSL session has been established it may be reused, thus avoiding the performance
penalty of repeating the many steps needed to start a session. For this the server assigns each
SSL session a unique session identifier which is cached in the server and which the client can
use on forthcoming connections to reduce the handshake (until the session identifer expires in
the cache of the server).

[Image not coverted]
Figure 1: Simplified SSL Handshake Sequence

The elements of the handshake sequence, as used by the client and server, are listed below:

1. Negotiate the Cipher Suite to be used during data transfer

2. Establish and share a session key between client and server

3. Optionally authenticate the server to the client

4. Optionally authenticate the client to the server

The first step, Cipher Suite Negotiation, allows the client and server to choose a Cipher Suite supportable by both
of them. The SSL3.0 protocol specification defines 31 Cipher Suites. A Cipher Suite is defined by the following
components:

• Key Exchange Method

• Cipher for Data Transfer

• Message Digest for creating the Message Authentication Code (MAC)

These three elements are described in the sections that follow.

Key Exchange Method

The key exchange method defines how the shared secret symmetric cryptography key used for application data transfer
will be agreed upon by client and server. SSL 2.0 uses RSA key exchange only, while SSL 3.0 supports a choice of key
exchange algorithms including the RSA key exchange when certificates are used, and Diffie-Hellman key exchange
for exchanging keys without certificates and without prior communication between client and server.

One variable in the choice of key exchange methods is digital signatures – whether or not to use them, and if so, what
kind of signatures to use. Signing with a private key provides assurance against a man-in-the-middle-attack during the
information exchange used in generating the shared key [AC96, p516].

Cipher for Data Transfer

SSL uses the conventional cryptography algorithm (symmetric cryptography) described earlier for encrypting mes-
sages in a session. There are nine choices, including the choice to perform no encryption:

• No encryption

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 157

• Stream Ciphers

– RC4 with 40-bit keys

– RC4 with 128-bit keys

• CBC Block Ciphers

– RC2 with 40 bit key

– DES with 40 bit key

– DES with 56 bit key

– Triple-DES with 168 bit key

– Idea (128 bit key)

– Fortezza (96 bit key)

Here" CBC" refers to Cipher Block Chaining, which means that a portion of the previously encrypted cipher text is
used in the encryption of the current block." DES" refers to the Data Encryption Standard [AC96, ch12], which has
a number of variants (including DES40 and 3DESEDE). " Idea" is one of the best and cryptographically strongest
available algorithms, and" RC2" is a proprietary algorithm from RSA DSI [AC96, ch13].

Digest Function

The choice of digest function determines how a digest is created from a record unit. SSL supports the following:

• No digest (Null choice)

• MD5, a 128-bit hash

• Secure Hash Algorithm (SHA-1), a 160-bit hash

The message digest is used to create a Message Authentication Code (MAC) which is encrypted with the message to
provide integrity and to prevent against replay attacks.

Handshake Sequence Protocol

The handshake sequence uses three protocols:

• The SSL Handshake Protocol for performing the client and server SSL session establishment.

• The SSL Change Cipher Spec Protocol for actually establishing agreement on the Cipher Suite for the session.

• The SSL Alert Protocol for conveying SSL error messages between client and server.

These protocols, as well as application protocol data, are encapsulated in the SSL Record Protocol, as shown in Figure
2. An encapsulated protocol is transferred as data by the lower layer protocol, which does not examine the data. The
encapsulated protocol has no knowledge of the underlying protocol.

[Image not coverted]
Figure 2: SSL Protocol Stack

The encapsulation of SSL control protocols by the record protocol means that if an active session is renegotiated the
control protocols will be transmitted securely. If there were no session before, then the Null cipher suite is used, which
means there is no encryption and messages have no integrity digests until the session has been established.

158 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Data Transfer

The SSL Record Protocol, shown in Figure 3, is used to transfer application and SSL Control data between the client
and server, possibly fragmenting this data into smaller units, or combining multiple higher level protocol data messages
into single units. It may compress, attach digest signatures, and encrypt these units before transmitting them using the
underlying reliable transport protocol (Note: currently all major SSL implementations lack support for compression).

[Image not coverted]
Figure 3: SSL Record Protocol

Securing HTTP Communication

One common use of SSL is to secure Web HTTP communication between a browser and a webserver. This case does
not preclude the use of non-secured HTTP. The secure version is mainly plain HTTP over SSL (named HTTPS), but
with one major difference: it uses the URL schemehttps rather thanhttp and a different server port (by default
443). This mainly is whatMOD SSL provides to you for the Apache webserver...

References

[AC96] Bruce Schneier, Applied Cryptography, 2nd Edition, Wiley, 1996. See http://www.counterpane.com/ for
various other materials by Bruce Schneier.

[X208] ITU-T Recommendation X.208, Specification of Abstract Syntax Notation One (ASN.1), 1988. See for in-
stance http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.208-198811-I.

[X509] ITU-T Recommendation X.509, The Directory - Authentication Framework. See for instance
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-X.509.

[PKCS] Public Key Cryptography Standards (PKCS), RSA Laboratories Technical Notes, See
http://www.rsasecurity.com/rsalabs/pkcs/.

[MIME] N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC2045. See for instance http://ietf.org/rfc/rfc2045.txt.

[SSL2] Kipp E.B. Hickman, The SSL Protocol, 1995. See http://www.netscape.com/eng/security/SSL2.html.

[SSL3] Alan O. Freier, Philip Karlton, Paul C. Kocher, The SSL Protocol Version 3.0, 1996. See
http://www.netscape.com/eng/ssl3/draft302.txt.

[TLS1] Tim Dierks, Christopher Allen, The TLS Protocol Version 1.0, 1999. See http://ietf.org/rfc/rfc2246.txt.

5.3. SSL/TLS STRONG ENCRYPTION: COMPATIBILITY 159

5.3 SSL/TLS Strong Encryption: Compatibility

All PCs are compatible. But some of them are more compatible than others.
– Unknown

Here we talk about backward compatibility to other SSL solutions. As you perhaps know, modssl is not the only
existing SSL solution for Apache. Actually there are four additional major products available on the market: Ben
Laurie’s freely available Apache-SSL9 (from where modssl were originally derived in 1998), Red Hat’s commer-
cial Secure Web Server10 (which is based on modssl), Covalent’s commercial Raven SSL Module11 (also based on
mod ssl) and finally C2Net’s commercial product Stronghold12 (based on a different evolution branch named Sioux
up to Stronghold 2.x and based on modssl since Stronghold 3.x).

The idea in modssl is mainly the following: because modssl provides mostly a superset of the functionality of
all other solutions we can easily provide backward compatibility for most of the cases. Actually there are three
compatibility areas we currently address: configuration directives, environment variables and custom log functions.

Configuration Directives

For backward compatibility to the configuration directives of other SSL solutions we do an on-the-fly mapping: direc-
tives which have a direct counterpart in modssl are mapped silently while other directives lead to a warning message
in the logfiles. The currently implemented directive mapping is listed in Table 1. Currently full backward compati-
bility is provided only for Apache-SSL 1.x and modssl 2.0.x. Compatibility to Sioux 1.x and Stronghold 2.x is only
partial because of special functionality in these interfaces which modssl (still) doesn’t provide.

Table 1: Configuration Directive Mapping

Old Directive mod ssl Directive Comment
Apache-SSL 1.x & modssl 2.0.x
compatibility:
SSLEnable SSLEngine on compactified
SSLDisable SSLEngine off compactified
SSLLogFile file SSLLog file compactified
SSLRequiredCiphers spec SSLCipherSuite spec renamed
SSLRequireCipher c1 ... SSLRequire % {SSL CIPHER} in

{" c1", ... }
generalized

SSLBanCipher c1 ... SSLRequire not
(%{SSL CIPHER} in {" c1",
... })

generalized

SSLFakeBasicAuth SSLOptions +FakeBasicAuth merged
SSLCacheServerPath dir - functionality removed
SSLCacheServerPort integer - functionality removed
Apache-SSL 1.x compatibility:
SSLExportClientCertificates SSLOptions +ExportCertData merged
SSLCacheServerRunDir dir - functionality not supported
Sioux 1.x compatibility:
SSL CertFile file SSLCertificateFile file renamed
SSL KeyFile file SSLCertificateKeyFile file renamed
SSL CipherSuite arg SSLCipherSuite arg renamed

9http://www.apache-ssl.org/
10http://www.redhat.com/products/product-details.phtml?id=rhsa
11http://raven.covalent.net/
12http://www.c2.net/products/stronghold/

http://www.apache-ssl.org/
http://www.redhat.com/products/product-details.phtml?id=rhsa
http://raven.covalent.net/
http://www.c2.net/products/stronghold/

160 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

SSL X509VerifyDir arg SSLCACertificatePath arg renamed
SSL Log file SSLLogFile file renamed
SSL Connect flag SSLEngine flag renamed
SSL ClientAuth arg SSLVerifyClient arg renamed
SSL X509VerifyDepth arg SSLVerifyDepth arg renamed
SSL FetchKeyPhraseFrom arg - not directly mappable; use

SSLPassPhraseDialog
SSL SessionDir dir - not directly mappable; use SSLSession-

Cache
SSL Require expr - not directly mappable; use SSLRequire
SSL CertFileType arg - functionality not supported
SSL KeyFileType arg - functionality not supported
SSL X509VerifyPolicy arg - functionality not supported
SSL LogX509Attributes arg - functionality not supported
Stronghold 2.x compatibility:
StrongholdAccelerator dir - functionality not supported
StrongholdKey dir - functionality not supported
StrongholdLicenseFile dir - functionality not supported
SSLFlag flag SSLEngine flag renamed
SSLSessionLockFile file SSLMutex file renamed
SSLCipherList spec SSLCipherSuite spec renamed
RequireSSL SSLRequireSSL renamed
SSLErrorFile file - functionality not supported
SSLRoot dir - functionality not supported
SSL CertificateLogDir dir - functionality not supported
AuthCertDir dir - functionality not supported
SSL Group name - functionality not supported
SSLProxyMachineCertPath dir - functionality not supported
SSLProxyMachineCertFile file - functionality not supported
SSLProxyCACertificatePath dir - functionality not supported
SSLProxyCACertificateFile file - functionality not supported
SSLProxyVerifyDepth number - functionality not supported
SSLProxyCipherList spec - functionality not supported

Environment Variables

When you use “SSLOptions +CompatEnvVars ” additional environment variables are generated. They all cor-
respond to existing official modssl variables. The currently implemented variable derivation is listed in Table 2.

Table 2: Environment Variable Derivation

Old Variable mod ssl Variable Comment
SSL PROTOCOLVERSION SSLPROTOCOL renamed
SSLEAYVERSION SSLVERSIONLIBRARY renamed
HTTPSSECRETKEYSIZE SSLCIPHER USEKEYSIZE renamed
HTTPSKEYSIZE SSL CIPHER ALGKEYSIZE renamed
HTTPSCIPHER SSLCIPHER renamed
HTTPSEXPORT SSLCIPHER EXPORT renamed
SSL SERVERKEY SIZE SSL CIPHER ALGKEYSIZE renamed
SSL SERVERCERTIFICATE SSL SERVERCERT renamed
SSL SERVERCERTSTART SSLSERVERV START renamed
SSL SERVERCERTEND SSLSERVERV END renamed

5.3. SSL/TLS STRONG ENCRYPTION: COMPATIBILITY 161

SSL SERVERCERTSERIAL SSL SERVERMSERIAL renamed
SSL SERVERSIGNATUREALGORITHM SSLSERVERA SIG renamed
SSL SERVERDN SSLSERVERS DN renamed
SSL SERVERCN SSLSERVERS DNCN renamed
SSL SERVEREMAIL SSL SERVERS DNEmail renamed
SSL SERVERO SSLSERVERS DNO renamed
SSL SERVEROU SSLSERVERS DNOU renamed
SSL SERVERC SSL SERVERS DNC renamed
SSL SERVERSP SSLSERVERS DNSP renamed
SSL SERVERL SSL SERVERS DNL renamed
SSL SERVERIDN SSL SERVERI DN renamed
SSL SERVERICN SSL SERVERI DNCN renamed
SSL SERVERIEMAIL SSL SERVERI DNEmail renamed
SSL SERVERIO SSL SERVERI DNO renamed
SSL SERVERIOU SSL SERVERI DNOU renamed
SSL SERVERIC SSL SERVERI DNC renamed
SSL SERVERISP SSL SERVERI DNSP renamed
SSL SERVERIL SSL SERVERI DNL renamed
SSL CLIENT CERTIFICATE SSL CLIENT CERT renamed
SSL CLIENT CERTSTART SSLCLIENT V START renamed
SSL CLIENT CERTEND SSLCLIENT V END renamed
SSL CLIENT CERTSERIAL SSL CLIENT MSERIAL renamed
SSL CLIENT SIGNATUREALGORITHM SSLCLIENT A SIG renamed
SSL CLIENT DN SSLCLIENT S DN renamed
SSL CLIENT CN SSLCLIENT S DNCN renamed
SSL CLIENT EMAIL SSL CLIENT S DNEmail renamed
SSL CLIENT O SSLCLIENT S DNO renamed
SSL CLIENT OU SSLCLIENT S DNOU renamed
SSL CLIENT C SSL CLIENT S DNC renamed
SSL CLIENT SP SSLCLIENT S DNSP renamed
SSL CLIENT L SSL CLIENT S DNL renamed
SSL CLIENT IDN SSL CLIENT I DN renamed
SSL CLIENT ICN SSL CLIENT I DNCN renamed
SSL CLIENT IEMAIL SSL CLIENT I DNEmail renamed
SSL CLIENT IO SSL CLIENT I DNO renamed
SSL CLIENT IOU SSL CLIENT I DNOU renamed
SSL CLIENT IC SSL CLIENT I DNC renamed
SSL CLIENT ISP SSL CLIENT I DNSP renamed
SSL CLIENT IL SSL CLIENT I DNL renamed
SSL EXPORT SSLCIPHER EXPORT renamed
SSL KEYSIZE SSL CIPHER ALGKEYSIZE renamed
SSL SECKEYSIZE SSLCIPHER USEKEYSIZE renamed
SSL SSLEAYVERSION SSLVERSIONLIBRARY renamed
SSL STRONGCRYPTO - Not supported by modssl
SSL SERVERKEY EXP - Not supported by modssl
SSL SERVERKEY ALGORITHM - Not supported by modssl
SSL SERVERKEY SIZE - Not supported by modssl
SSL SERVERSESSIONDIR - Not supported by modssl
SSL SERVERCERTIFICATELOGDIR - Not supported by modssl
SSL SERVERCERTFILE - Not supported by modssl
SSL SERVERKEYFILE - Not supported by modssl
SSL SERVERKEYFILETYPE - Not supported by modssl
SSL CLIENT KEY EXP - Not supported by modssl

162 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

SSL CLIENT KEY ALGORITHM - Not supported by modssl
SSL CLIENT KEY SIZE - Not supported by modssl

Custom Log Functions

When modssl is built into Apache or at least loaded (under DSO situation) additional functions exist for the Custom
Log Format (p.446) of MOD LOG CONFIG as documented in the Reference Chapter. Beside the “%{varname}x ”
eXtension format function which can be used to expand any variables provided by any module, an additional Cryp-
tography “%{name}c ” cryptography format function exists for backward compatibility. The currently implemented
function calls are listed in Table 3.

Table 3: Custom Log Cryptography Function

Function Call Description
%... {version }c SSL protocol version
%... {cipher }c SSL cipher
%... {subjectdn }c Client Certificate Subject Distinguished Name
%... {issuerdn }c Client Certificate Issuer Distinguished Name
%... {errcode }c Certificate Verification Error (numerical)
%... {errstr }c Certificate Verification Error (string)

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 163

5.4 SSL/TLS Strong Encryption: How-To

The solution of this problem is trivial and is left as an exercise for the reader.
– Standard textbook cookie

How to solve particular security constraints for an SSL-aware webserver is not always obvious because of the coher-
ences between SSL, HTTP and Apache’s way of processing requests. This chapter gives instructions on how to solve
such typical situations. Treat is as a first step to find out the final solution, but always try to understand the stuff before
you use it. Nothing is worse than using a security solution without knowing its restrictions and coherences.

Cipher Suites and Enforced Strong Security

• SSLv2 only server

• strong encryption only server

• server gated cryptography

• stronger per-directory requirements

How can I create a real SSLv2-only server?

The following creates an SSL server which speaks only the SSLv2 protocol and its ciphers.

httpd.conf
SSLProtocol -all +SSLv2

SSLCipherSuite SSLv2:+HIGH:+MEDIUM:+LOW:+EXP

How can I create an SSL server which accepts strong encryption only?

The following enables only the seven strongest ciphers:

httpd.conf
SSLProtocol all

SSLCipherSuite HIGH:MEDIUM

How can I create an SSL server which accepts strong encryption only, but allows export browsers to upgrade
to stronger encryption?

This facility is called Server Gated Cryptography (SGC) and details you can find in theREADME.GlobalID doc-
ument in the modssl distribution. In short: The server has a Global ID server certificate, signed by a special CA
certificate from Verisign which enables strong encryption in export browsers. This works as following: The browser
connects with an export cipher, the server sends its Global ID certificate, the browser verifies it and subsequently
upgrades the cipher suite before any HTTP communication takes place. The question now is: How can we allow
this upgrade, but enforce strong encryption. Or in other words: Browser either have to initially connect with strong
encryption or have to upgrade to strong encryption, but are not allowed to keep the export ciphers. The following does
the trick:

164 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

httpd.conf
allow all ciphers for the initial handshake,
so export browsers can upgrade via SGC facility
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

<Directory /usr/local/apache2/htdocs >
but finally deny all browsers which haven’t upgraded
SSLRequire % {SSL CIPHER USEKEYSIZE} >= 128

</Directory >

How can I create an SSL server which accepts all types of ciphers in general, but requires a strong ciphers for
access to a particular URL?

Obviously you cannot just use a server-wideSSLCIPHERSUITE which restricts the ciphers to the strong variants. But
mod ssl allows you to reconfigure the cipher suite in per-directory context and automatically forces a renegotiation of
the SSL parameters to meet the new configuration. So, the solution is:

be liberal in general
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

<Location /strong/area >
but https://hostname/strong/area/ and below
requires strong ciphers
SSLCipherSuite HIGH:MEDIUM

</Location >

Client Authentication and Access Control

• simple certificate-based client authentication

• selective certificate-based client authentication

• particular certificate-based client authentication

• intranet vs. internet authentication

How can I authenticate clients based on certificates when I know all my clients?

When you know your user community (i.e. a closed user group situation), as it’s the case for instance in an Intranet,
you can use plain certificate authentication. All you have to do is to create client certificates signed by your own CA
certificateca.crt and then verify the clients against this certificate.

httpd.conf
require a client certificate which has to be directly
signed by our CA certificate in ca.crt
SSLVerifyClient require
SSLVerifyDepth 1

SSLCACertificateFile conf/ssl.crt/ca.crt

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 165

How can I authenticate my clients for a particular URL based on certificates but still allow arbitrary clients to
access the remaining parts of the server?

For this we again use the per-directory reconfiguration feature ofMOD SSL:

httpd.conf
SSLVerifyClient none
SSLCACertificateFile conf/ssl.crt/ca.crt

<Location /secure/area >
SSLVerifyClient require
SSLVerifyDepth 1

</Location >

How can I authenticate only particular clients for a some URLs based on certificates but still allow arbitrary
clients to access the remaining parts of the server?

The key is to check for various ingredients of the client certificate. Usually this means to check the whole or part
of the Distinguished Name (DN) of the Subject. For this two methods exists: TheMOD AUTH based variant and the
SSLREQUIREvariant. The first method is good when the clients are of totally different type, i.e. when their DNs have
no common fields (usually the organisation, etc.). In this case you’ve to establish a password database containingall
clients. The second method is better when your clients are all part of a common hierarchy which is encoded into the
DN. Then you can match them more easily.

The first method:

httpd.conf

SSLVerifyClient none
<Directory /usr/local/apache2/htdocs/secure/area>

SSLVerifyClient require
SSLVerifyDepth 5
SSLCACertificateFile conf/ssl.crt/ca.crt
SSLCACertificatePath conf/ssl.crt
SSLOptions +FakeBasicAuth
SSLRequireSSL
AuthName "Snake Oil Authentication"
AuthType Basic
AuthBasicProvider file
AuthUserFile /usr/local/apache2/conf/httpd.passwd
require valid-user
</Directory>

httpd.passwd

/C=DE/L=Munich/O=Snake Oil, Ltd./OU=Staff/CN=Foo:xxj31ZMTZzkVA
/C=US/L=S.F./O=Snake Oil, Ltd./OU=CA/CN=Bar:xxj31ZMTZzkVA
/C=US/L=L.A./O=Snake Oil, Ltd./OU=Dev/CN=Quux:xxj31ZMTZzkVA

The second method:

166 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

httpd.conf

SSLVerifyClient none
<Directory /usr/local/apache2/htdocs/secure/area>

SSLVerifyClient require
SSLVerifyDepth 5
SSLCACertificateFile conf/ssl.crt/ca.crt
SSLCACertificatePath conf/ssl.crt
SSLOptions +FakeBasicAuth
SSLRequireSSL
SSLRequire %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \

and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"}
</Directory>

How can I require HTTPS with strong ciphers and either basic authentication or client certificates for access
to a subarea on the Intranet website for clients coming from the Internet but still allow plain HTTP access for
clients on the Intranet?

Let us assume the Intranet can be distinguished through the IP network 192.160.1.0/24 and the subarea on the Intranet
website has the URL/subarea . Then configure the following outside your HTTPS virtual host (so it applies to both
HTTPS and HTTP):

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 167

httpd.conf

SSLCACertificateFile conf/ssl.crt/company-ca.crt

<Directory /usr/local/apache2/htdocs>
Outside the subarea only Intranet access is granted
Order deny,allow
Deny from all
Allow from 192.168.1.0/24
</Directory>

<Directory /usr/local/apache2/htdocs/subarea>
Inside the subarea any Intranet access is allowed
but from the Internet only HTTPS + Strong-Cipher + Password
or the alternative HTTPS + Strong-Cipher + Client-Certificate

If HTTPS is used, make sure a strong cipher is used.
Additionally allow client certs as alternative to basic auth.
SSLVerifyClient optional
SSLVerifyDepth 1
SSLOptions +FakeBasicAuth +StrictRequire
SSLRequire %{SSL_CIPHER_USEKEYSIZE} >= 128

Force clients from the Internet to use HTTPS
RewriteEngine on
RewriteCond %{REMOTE_ADDR} !ˆ192\.168\.1\.[0-9]+$
RewriteCond %{HTTPS} !=on
RewriteRule .* - [F]

Allow Network Access and/or Basic Auth
Satisfy any

Network Access Control
Order deny,allow
Deny from all
Allow 192.168.1.0/24

HTTP Basic Authentication
AuthType basic
AuthName "Protected Intranet Area"
AuthBasicProvider file
AuthUserFile conf/protected.passwd
Require valid-user
</Directory>

168 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.5 SSL/TLS Strong Encryption: FAQ

The wise man doesn’t give the right answers, he poses the right questions.
– Claude Levi-Strauss

This chapter is a collection of frequently asked questions (FAQ) and corresponding answers
following the popular USENET tradition. Most of these questions occurred on the News-
group comp.infosystems.www.servers.unix 13 or the modssl Support Mailing List
modssl-users@modssl.org 14. They are collected at this place to avoid answering the same ques-
tions over and over.

Please read this chapter at least once when installing modssl or at least search for your problem here before submitting
a problem report to the author.

About The Module

• What is the history of modssl?

• mod ssl and Year 2000?

• mod ssl and Wassenaar Arrangement?

What is the history of mod ssl?

The modssl v1 package was initially created in April 1998 by Ralf S. Engelschall15 via porting Ben Laurie16’s Apache-
SSL17 1.17 source patches for Apache 1.2.6 to Apache 1.3b6. Because of conflicts with Ben Laurie’s development
cycle it then was re-assembled from scratch for Apache 1.3.0 by merging the old modssl 1.x with the newer Apache-
SSL 1.18. From this point on modssl lived its own life as modssl v2. The first publicly released version was modssl
2.0.0 from August 10th, 1998. As of this writing (August 1999) the current modssl version is 2.4.0.

After one year of very active development with over 1000 working hours and over 40 releases modssl reached its
current state. The result is an already very clean source base implementing a very rich functionality. The code size
increased by a factor of 4 to currently a total of over 10.000 lines of ANSI C consisting of approx. 70% code and 30%
code documentation. From the original Apache-SSL code currently approx. 5% is remaining only.

After the US export restrictions for cryptographic software were opened, modssl was integrated into the code base of
Apache V2 in 2001.

Is mod ssl Year 2000 compliant?

Yes, modssl is Year 2000 compliant.

Because first modssl internally never stores years as two digits. Instead it always uses the ANSI C & POSIX numerical
data typetime t type, which on almost all Unix platforms at the moment is asigned long (usually 32-bits)
representing seconds since epoch of January 1st, 1970, 00:00 UTC. This signed value overflows in early January 2038
and not in the year 2000. Second, date and time presentations (for instance the variable “%{TIME YEAR}”) are done
with full year value instead of abbreviating to two digits.

13news:comp.infosystems.www.servers.unix
14mailto:modssl-users@modssl.org
15mailto:rse@engelschall.com
16mailto:ben@algroup.co.uk
17http://www.apache-ssl.org/

news:comp.infosystems.www.servers.unix
mailto:modssl-users@modssl.org
mailto:rse@engelschall.com
mailto:ben@algroup.co.uk
http://www.apache-ssl.org/

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 169

Additionally according to a Year 2000 statement18 from the Apache Group, the Apache webserver is Year 2000
compliant, too. But whether OpenSSL or the underlying Operating System (either a Unix or Win32 platform) is Year
2000 compliant is a different question which cannot be answered here.

What about mod ssl and the Wassenaar Arrangement?

First, let us explain what Wassenaar and its Arrangement on Export Controls for Conventional Arms and Dual-Use
Goods and Technologies is: This is a international regime, established 1995, to control trade in conventional arms
and dual-use goods and technology. It replaced the previous CoCom regime. 33 countries are signatories: Argentina,
Australia, Austria, Belgium, Bulgaria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hun-
gary, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, Republic of Korea,
Romania, Russian Federation, Slovak Republic, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Kingdom
and the United States. For more details look at http://www.wassenaar.org/.

In short: The aim of the Wassenaar Arrangement is to prevent the build up of military capabilities that threaten regional
and international security and stability. The Wassenaar Arrangement controls the export of cryptography as a dual-use
good, i.e., one that has both military and civilian applications. However, the Wassenaar Arrangement also provides an
exemption from export controls for mass-market software and free software.

In the current Wassenaar List of Dual Use Goods and Technologies And Munitions, under GENERAL SOFTWARE
NOTE (GSN) it says The Lists do not control" software" which is either: 1. [...] 2." in the public domain" . And
under DEFINITIONS OF TERMS USED IN THESE LISTS one can find the definition: In the public domain" : This
means" technology" or " software" which has been made available without restrictions upon its further dissemination.
N.B. Copyright restrictions do not remove" technology" or " software" from being" in the public domain" .

So, both modssl and OpenSSL are in the public domain for the purposes of the Wassenaar Agreement and its List of
Dual Use Goods and Technologies And Munitions List.

So, modssl and OpenSSL are not affected by the Wassenaar Agreement.

About Installation

• Core dumps for HTTPS requests?

• Permission problem on SSLMutex

• Shared memory and process size?

• PRNG and not enough entropy?

When I access my website the first time via HTTPS I get a core dump?

There can be a lot of reasons why a core dump can occur, of course. Ranging from buggy third-party mod-
ules, over buggy vendor libraries up to a buggy modssl version. But the above situation is often caused by
old or broken vendor DBM libraries. To solve it either build modssl with the built-in SDBM library (specify
--enable-rule=SSL SDBMat the APACI command line) or switch fromSSLSessionCache dbm: to the
newerSSLSessionCache shm: ” variant (after you have rebuilt Apache with MM, of course).

When I startup Apache I get permission errors related to SSLMutex?

When you receive entries like “mod ssl: Child could not open SSLMutex lockfile
/opt/apache/logs/ssl mutex.18332 (System error follows) [...] System:
Permission denied (errno: 13) ” this is usually caused by to restrictive permissions on theparent

18http://www.apache.org/docs/misc/FAQ.html#year2000

http://www.apache.org/docs/misc/FAQ.html#year2000

170 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

directories. Make sure that all parent directories (here/opt , /opt/apache and/opt/apache/logs) have the
x-bit set at least for the UID under which Apache’s children are running (see theUSERdirective of Apache).

When I use the MM library and the shared memory cache each process grows 1.5MB according to ‘top’ al-
though I specified 512000 as the cache size?

The additional 1MB are caused by the global shared memory pool Apache allocates for all modules and which is
not used by modssl for various reasons. So the actually allocated shared memory is always 1MB more than what
you specify onSSLSESSIONCACHE. But don’t be confused by the display of ‘top’: although is indicates thateach
process grow, this is not reality, of course. Instead the additional memory consumption is shared by all processes, i.e.
the 1.5MB are allocated only once per Apache instance and not once per Apache server process.

When I fire up the server, mod ssl stops with the error" Failed to generate temporary 512 bit RSA private key" ,
why?

Cryptographic software needs a source of unpredictable data to work correctly. Many open source operating systems
provide a" randomness device" that serves this purpose (usually named/dev/random). On other systems, applica-
tions have to seed the OpenSSL Pseudo Random Number Generator (PRNG) manually with appropriate data before
generating keys or performing public key encryption. As of version 0.9.5, the OpenSSL functions that need random-
ness report an error if the PRNG has not been seeded with at least 128 bits of randomness. So modssl has to provide
enough entropy to the PRNG to work correctly. For this one has to use theSSLRandomSeeddirectives.

About Configuration

• HTTP and HTTPS with a single server?

• Where is the HTTPS port?

• How to test HTTPS manually?

• Why does my connection hang?

• Why do I get connection refused?

• Why are theSSL XXXvariables missing?

• How to switch with relative hyperlinks?

Is it possible to provide HTTP and HTTPS with a single server?

Yes, HTTP and HTTPS use different server ports, so there is no direct conflict between them. Either run two separate
server instances (one binds to port 80, the other to port 443) or even use Apache’s elegant virtual hosting facility where
you can easily create two virtual servers which Apache dispatches: one responding to port 80 and speaking HTTP and
one responding to port 443 speaking HTTPS.

I know that HTTP is on port 80, but where is HTTPS?

You can run HTTPS on any port, but the standards specify port 443, which is where any HTTPS compliant browser
will look by default. You can force your browser to look on a different port by specifying it in the URL like this (for
port 666):https://secure.server.dom:666/

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 171

How can I speak HTTPS manually for testing purposes?

While you usually just use

$ telnet localhost 80

GET / HTTP/1.0

for simple testing the HTTP protocol of Apache, it’s not so easy for HTTPS because of the SSL protocol between TCP
and HTTP. But with the help of OpenSSL’ss client command you can do a similar check even for HTTPS:

$ openssl s client -connect localhost:443 -state -debug

GET / HTTP/1.0

Before the actual HTTP response you receive detailed information about the SSL handshake. For a more general
command line client which directly understands both the HTTP and HTTPS scheme, can perform GET and POST
methods, can use a proxy, supports byte ranges, etc. you should have a look at nifty cURL19 tool. With it you can
directly check if your Apache is running fine on Port 80 and 443 as following:

$ curl http://localhost/

$ curl https://localhost/

Why does the connection hang when I connect to my SSL-aware Apache server?

Because you connected with HTTP to the HTTPS port, i.e. you used an URL of the form “http:// ” instead of
“https:// ”. This also happens the other way round when you connect via HTTPS to a HTTP port, i.e. when you
try to use “https:// ” on a server that doesn’t support SSL (on this port). Make sure you are connecting to a virtual
server that supports SSL, which is probably the IP associated with your hostname, not localhost (127.0.0.1).

Why do I get “Connection Refused” messages when trying to access my freshly installed Apache+modssl server
via HTTPS?

There can be various reasons. Some of the common mistakes is that people start Apache with just “apachectl
start ” (or “ httpd ”) instead of “apachectl startssl ” (or “ httpd -DSSL ”. Or you’re configuration is not
correct. At least make sure that yourL ISTEN directives match your<V IRTUAL HOST> directives. And if all fails,
please do yourself a favor and start over with the default configuration modssl provides you.

In my CGI programs and SSI scripts the various documentedSSL XXXvariables do not exist. Why?

Just make sure you have “SSLOptions +StdEnvVars ” enabled for the context of your CGI/SSI requests.

How can I use relative hyperlinks to switch between HTTP and HTTPS?

Usually you have to use fully-qualified hyperlinks because you have to change the URL scheme. But with the help of
some URL manipulations through modrewrite you can achieve the same effect while you still can use relative URLs:

19http://curl.haxx.se/

http://curl.haxx.se/

172 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

RewriteEngine on
RewriteRule ˆ/(.*):SSL$ https://% {SERVERNAME}/$1 [R,L]

RewriteRule ˆ/(.*):NOSSL$ http://% {SERVERNAME}/$1 [R,L]

This rewrite ruleset lets you use hyperlinks of the form

About Certificates

• What are Keys, CSRs and Certs?

• Difference on startup?

• How to create a real cert?

• How to create my own CA?

• How to change a pass phrase?

• How to remove a pass phrase?

• How to verify a key/cert pair?

• Bad Certificate Error?

• Why does a 2048-bit key not work?

• Why is client auth broken?

• How to convert from PEM to DER?

• Verisign and the magic getca program?

• Global IDs or SGC?

• Global IDs and Cert Chain?

What are RSA Private Keys, CSRs and Certificates?

The RSA private key file is a digital file that you can use to decrypt messages sent to you. It has a public component
which you distribute (via your Certificate file) which allows people to encrypt those messages to you. A Certificate
Signing Request (CSR) is a digital file which contains your public key and your name. You send the CSR to a
Certifying Authority (CA) to be converted into a real Certificate. A Certificate contains your RSA public key, your
name, the name of the CA, and is digitally signed by your CA. Browsers that know the CA can verify the signature
on that Certificate, thereby obtaining your RSA public key. That enables them to send messages which only you can
decrypt. See the Introduction (p.151) chapter for a general description of the SSL protocol.

Seems like there is a difference on startup between the original Apache and an SSL-aware Apache?

Yes, in general, starting Apache with a built-in modssl is just like starting an unencumbered Apache, except for the
fact that when you have a pass phrase on your SSL private key file. Then a startup dialog pops up asking you to enter
the pass phrase.

To type in the pass phrase manually when starting the server can be problematic, for instance when starting the server
from the system boot scripts. As an alternative to this situation you can follow the steps below under “How can I get
rid of the pass-phrase dialog at Apache startup time?”.

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 173

Ok, I’ve got my server installed and want to create a real SSL server Certificate for it. How do I do it?

Here is a step-by-step description:

1. Make sure OpenSSL is really installed and in yourPATH. But some commands even work ok when you just
run the “openssl ” program from within the OpenSSL source tree as “./apps/openssl ”.

2. Create a RSA private key for your Apache server (will be Triple-DES encrypted and PEM formatted):
$ openssl genrsa -des3 -out server.key 1024

Please backup thisserver.key file and remember the pass-phrase you had to enter at a secure location. You

can see the details of this RSA private key via the command:

$ openssl rsa -noout -text -in server.key
And you could create a decrypted PEM version (not recommended) of this RSA private key via:

$ openssl rsa -in server.key -out server.key.unsecure

3. Create a Certificate Signing Request (CSR) with the server RSA private key (output will be PEM formatted):
$ openssl req -new -key server.key -out server.csr

Make sure you enter the FQDN (" Fully Qualified Domain Name") of the server when OpenSSL prompts

you for the " CommonName" , i.e. when you generate a CSR for a website which will be later accessed
via https://www.foo.dom/ , enter" www.foo.dom" here. You can see the details of this CSR via the
command

$ openssl req -noout -text -in server.csr

4. You now have to send this Certificate Signing Request (CSR) to a Certifying Authority (CA) for signing. The
result is then a real Certificate which can be used for Apache. Here you have two options: First you can let the
CSR sign by a commercial CA like Verisign or Thawte. Then you usually have to post the CSR into a web form,
pay for the signing and await the signed Certificate you then can store into a server.crt file. For more information
about commercial CAs have a look at the following locations:

(a) Verisign

http://digitalid.verisign.com/server/apacheNotice.htm20

(b) Thawte Consulting

http://www.thawte.com/certs/server/request.html21

(c) CertiSign Certificadora Digital Ltda.

http://www.certisign.com.br22

(d) IKS GmbH

http://www.iks-jena.de/produkte/ca/23

20http://digitalid.verisign.com/server/apacheNotice.htm
21http://www.thawte.com/certs/server/request.html
22http://www.certisign.com.br
23http://www.iks-jena.de/produkte/ca/

http://digitalid.verisign.com/server/apacheNotice.htm
http://www.thawte.com/certs/server/request.html
http://www.certisign.com.br
http://www.iks-jena.de/produkte/ca/

174 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

(e) Uptime Commerce Ltd.

http://www.uptimecommerce.com24

(f) BelSign NV/SA

http://www.belsign.be25

Second you can use your own CA and now have to sign the CSR yourself by this CA. Read the next answer in
this FAQ on how to sign a CSR with your CA yourself. You can see the details of the received Certificate via
the command:
$ openssl x509 -noout -text -in server.crt

5. Now you have two files:server.key andserver.crt . These now can be used as following inside your
Apache’shttpd.conf file:

SSLCertificateFile /path/to/this/server.crt
SSLCertificateKeyFile /path/to/this/server.key

Theserver.csr file is no longer needed.

How can I create and use my own Certificate Authority (CA)?

The short answer is to use theCA.sh or CA.pl

script provided by OpenSSL. The long and manual answer is this:

1. Create a RSA private key for your CA (will be Triple-DES encrypted and PEM formatted):
$ openssl genrsa -des3 -out ca.key 1024

Please backup thisca.key file and remember the pass-phrase you currently entered at a secure location. You

can see the details of this RSA private key via the command

$ openssl rsa -noout -text -in ca.key
And you can create a decrypted PEM version (not recommended) of this private key via:

$ openssl rsa -in ca.key -out ca.key.unsecure

2. Create a self-signed CA Certificate (X509 structure) with the RSA key of the CA (output will be PEM format-
ted):
$ openssl req -new -x509 -days 365 -key ca.key -out ca.crt

You can see the details of this Certificate via the command:

$ openssl x509 -noout -text -in ca.crt

3. Prepare a script for signing which is needed because the “openssl ca ” command has some strange require-
ments and the default OpenSSL config doesn’t allow one easily to use “openssl ca ” directly. So a script
namedsign.sh is distributed with the modssl distribution (subdirpkg.contrib/). Use this script for
signing.

24http://www.uptimecommerce.com
25http://www.belsign.be

http://www.uptimecommerce.com
http://www.belsign.be

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 175

4. Now you can use this CA to sign server CSR’s in order to create real SSL Certificates for use inside an Apache
webserver (assuming you already have aserver.csr at hand):
$./sign.sh server.csr

This signs the server CSR and results in aserver.crt file.

How can I change the pass-phrase on my private key file?

You simply have to read it with the old pass-phrase and write it again by specifying the new pass-phrase. You can
accomplish this with the following commands:

$ openssl rsa -des3 -in server.key -out server.key.new
$ mv server.key.new server.key

Here you’re asked two times for a PEM pass-phrase. At the first prompt enter the old pass-phrase and at the second
prompt enter the new pass-phrase.

How can I get rid of the pass-phrase dialog at Apache startup time?

The reason why this dialog pops up at startup and every re-start is that the RSA private key inside your server.key file
is stored in encrypted format for security reasons. The pass-phrase is needed to be able to read and parse this file.
When you can be sure that your server is secure enough you perform two steps:

1. Remove the encryption from the RSA private key (while preserving the original file):
$ cp server.key server.key.org

$ openssl rsa -in server.key.org -out server.key

2. Make sure the server.key file is now only readable by root:
$ chmod 400 server.key

Now server.key will contain an unencrypted copy of the key. If you point your server at this file it will not prompt
you for a pass-phrase. HOWEVER, if anyone gets this key they will be able to impersonate you on the net. PLEASE
make sure that the permissions on that file are really such that only root or the web server user can read it (preferably
get your web server to start as root but run as another server, and have the key readable only by root).

As an alternative approach you can use the “SSLPassPhraseDialog exec:/path/to/program ” facility.
But keep in mind that this is neither more nor less secure, of course.

How do I verify that a private key matches its Certificate?

The private key contains a series of numbers. Two of those numbers form the" public key" , the others are part of your
" private key" . The" public key" bits are also embedded in your Certificate (we get them from your CSR). To check
that the public key in your cert matches the public portion of your private key, you need to view the cert and the key
and compare the numbers. To view the Certificate and the key run the commands:

$ openssl x509 -noout -text -in server.crt
$ openssl rsa -noout -text -in server.key

The ‘modulus’ and the ‘public exponent’ portions in the key and the Certificate must match. But since the public
exponent is usually 65537 and it’s bothering comparing long modulus you can use the following approach:

$ openssl x509 -noout -modulus -in server.crt | openssl md5
$ openssl rsa -noout -modulus -in server.key | openssl md5

176 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

And then compare these really shorter numbers. With overwhelming probability they will differ if the keys are differ-
ent. BTW, if I want to check to which key or certificate a particular CSR belongs you can compute

$ openssl req -noout -modulus -in server.csr | openssl md5

What does it mean when my connections fail with an" alert bad certificate" error?

Usually when you see errors like OpenSSL: error:14094412: SSL
routines:SSL3 READBYTES:sslv3 alert bad certificate in the SSL logfile, this means
that the browser was unable to handle the server certificate/private-key which perhaps contain a RSA-key not equal to
1024 bits. For instance Netscape Navigator 3.x is one of those browsers.

Why does my 2048-bit private key not work?

The private key sizes for SSL must be either 512 or 1024 for compatibility with certain web browsers. A keysize
of 1024 bits is recommended because keys larger than 1024 bits are incompatible with some versions of Netscape
Navigator and Microsoft Internet Explorer, and with other browsers that use RSA’s BSAFE cryptography toolkit.

Why is client authentication broken after upgrading from SSLeay version 0.8 to 0.9?

The CA certificates under the path you configured withSSLCACertificatePath are found by SSLeay through
hash symlinks. These hash values are generated by the ‘openssl x509 -noout -hash ’ command. But the
algorithm used to calculate the hash for a certificate has changed between SSLeay 0.8 and 0.9. So you have to remove
all old hash symlinks and re-create new ones after upgrading. Use theMakefile mod ssl placed into this directory.

How can I convert a certificate from PEM to DER format?

The default certificate format for SSLeay/OpenSSL is PEM, which actually is Base64 encoded DER with header and
footer lines. For some applications (e.g. Microsoft Internet Explorer) you need the certificate in plain DER format.
You can convert a PEM filecert.pem into the corresponding DER filecert.der with the following command:$
openssl x509 -in cert.pem -out cert.der -outform DER

I try to install a Verisign certificate. Why can’t I find neither the getca nor getverisign programs Verisign
mentions?

This is because Verisign has never provided specific instructions for Apache+modssl. Rather they tell you what you
should do if you were using C2Net’s Stronghold (a commercial Apache based server with SSL support). The only
thing you have to do is to save the certificate into a file and give the name of that file to theSSLCertificateFile
directive. Remember that you need to give the key file in as well (seeSSLCertificateKeyFile directive). For a
better CA-related overview on SSL certificate fiddling you can look at Thawte’s modssl instructions26.

Can I use the Server Gated Cryptography (SGC) facility (aka Verisign Global ID) also with modssl?

Yes, modssl since version 2.1 supports the SGC facility. You don’t have to configure anything special for this, just
use a Global ID as your server certificate. Thestep upof the clients are then automatically handled by modssl under
run-time. For details please read theREADME.GlobalID document in the modssl distribution.

26http://www.thawte.com/html/SUPPORT/server/softwaredocs/modssl.html

http://www.thawte.com/html/SUPPORT/server/softwaredocs/modssl.html

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 177

After I have installed my new Verisign Global ID server certificate, the browsers complain that they cannot
verify the server certificate?

That is because Verisign uses an intermediate CA certificate between the root CA certificate (which is installed
in the browsers) and the server certificate (which you installed in the server). You should have received this
additional CA certificate from Verisign. If not, complain to them. Then configure this certificate with the
SSLCertificateChainFile directive in the server. This makes sure the intermediate CA certificate is send
to the browser and this way fills the gap in the certificate chain.

About SSL Protocol

• Random SSL errors under heavy load?

• Why has the server a higher load?

• Why are connections horribly slow?

• Which ciphers are supported?

• How to use Anonymous-DH ciphers

• Why do I get ’no shared ciphers’?

• HTTPS and name-based vhosts

• Why is it not possible to use Name-Based Virtual Hosting to identify different SSL virtual hosts?

• The lock icon in Netscape locks very late

• Why do I get I/O errors with MSIE clients?

• Why do I get I/O errors with NS clients?

Why do I get lots of random SSL protocol errors under heavy server load?

There can be a number of reasons for this, but the main one is problems with the SSL session Cache specified by the
SSLSESSIONCACHE directive. The DBM session cache is most likely the source of the problem, so trying the SHM
session cache or no cache at all may help.

Why has my webserver a higher load now that I run SSL there?

Because SSL uses strong cryptographic encryption and this needs a lot of number crunching. And because when you
request a webpage via HTTPS even the images are transferred encrypted. So, when you have a lot of HTTPS traffic
the load increases.

Often HTTPS connections to my server require up to 30 seconds for establishing the connection, although
sometimes it works faster?

Usually this is caused by using a/dev/random device forSSLRandomSeedwhich is blocking in read(2) calls if
not enough entropy is available. Read more about this problem in the reference chapter underSSLRandomSeed.

What SSL Ciphers are supported by modssl?

Usually just all SSL ciphers which are supported by the version of OpenSSL in use (can depend on the way you built
OpenSSL). Typically this at least includes the following:

1. RC4 with MD5

178 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

2. RC4 with MD5 (export version restricted to 40-bit key)

3. RC2 with MD5

4. RC2 with MD5 (export version restricted to 40-bit key)

5. IDEA with MD5

6. DES with MD5

7. Triple-DES with MD5

To determine the actual list of supported ciphers you can run the following command:

$ openssl ciphers -v

I want to use Anonymous Diffie-Hellman (ADH) ciphers, but I always get “no shared cipher” errors?

In order to use Anonymous Diffie-Hellman (ADH) ciphers, it is not enough to just put “ADH” into your
SSLCipherSuite . Additionally you have to build OpenSSL with “-DSSL ALLOWADH”. Because per default
OpenSSL does not allow ADH ciphers for security reasons. So if you are actually enabling these ciphers make sure
you are informed about the side-effects.

I always just get a ’no shared ciphers’ error if I try to connect to my freshly installed server?

Either you have messed up yourSSLCipherSuite directive (compare it with the pre-configured example in
httpd.conf-dist) or you have chosen the DSA/DH algorithms instead of RSA when you generated your pri-
vate key and ignored or overlooked the warnings. If you have chosen DSA/DH, then your server no longer speaks
RSA-based SSL ciphers (at least not until you also configure an additional RSA-based certificate/key pair). But current
browsers like NS or IE only speak RSA ciphers. The result is the" no shared ciphers" error. To fix this, regenerate
your server certificate/key pair and this time choose the RSA algorithm.

Why can’t I use SSL with name-based/non-IP-based virtual hosts?

The reason is very technical. Actually it’s some sort of a chicken and egg problem: The SSL protocol layer stays below
the HTTP protocol layer and encapsulates HTTP. When an SSL connection (HTTPS) is established Apache/modssl
has to negotiate the SSL protocol parameters with the client. For this modssl has to consult the configuration of the
virtual server (for instance it has to look for the cipher suite, the server certificate, etc.). But in order to dispatch to
the correct virtual server Apache has to know theHost HTTP header field. For this the HTTP request header has to
be read. This cannot be done before the SSL handshake is finished. But the information is already needed at the SSL
handshake phase. Bingo!

Why is it not possible to use Name-Based Virtual Hosting to identify different SSL virtual hosts?

Name-Based Virtual Hosting is a very popular method of identifying different virtual hosts. It allows you to use the
same IP address and the same port number for many different sites. When people move on to SSL, it seems natural to
assume that the same method can be used to have lots of different SSL virtual hosts on the same server.

It comes as rather a shock to learn that it is impossible.

The reason is that the SSL protocol is a separate layer which encapsulates the HTTP protocol. So the problem is that
the SSL session is a separate transaction that takes place before the HTTP session even starts. Therefore all the server

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 179

receives is an SSL request on IP address X and port Y (usually 443). Since the SSL request does not contain any Host:
field, the server has no way to decide which SSL virtual host to use. Usually, it will just use the first one it finds that
matches the port and IP address.

You can, of course, use Name-Based Virtual Hosting to identify many non-SSL virtual hosts (all on port 80, for
example) and then you can have no more than 1 SSL virtual host (on port 443). But if you do this, you must make sure
to put the non-SSL port number on the NameVirtualHost directive, e.g.

NameVirtualHost 192.168.1.1:80

Other workaround solutions are:

Use separate IP addresses for different SSL hosts. Use different port numbers for different SSL hosts.

When I use Basic Authentication over HTTPS the lock icon in Netscape browsers still shows the unlocked state
when the dialog pops up. Does this mean the username/password is still transmitted unencrypted?

No, the username/password is already transmitted encrypted. The icon in Netscape browsers is just not really syn-
chronized with the SSL/TLS layer (it toggles to the locked state when the first part of the actual webpage data is
transferred which is not quite correct) and this way confuses people. The Basic Authentication facility is part of the
HTTP layer and this layer is above the SSL/TLS layer in HTTPS. And before any HTTP data communication takes
place in HTTPS the SSL/TLS layer has already done the handshake phase and switched to encrypted communication.
So, don’t get confused by this icon.

When I connect via HTTPS to an Apache+modssl+OpenSSL server with Microsoft Internet Explorer (MSIE)
I get various I/O errors. What is the reason?

The first reason is that the SSL implementation in some MSIE versions has some subtle bugs related to the HTTP
keep-alive facility and the SSL close notify alerts on socket connection close. Additionally the interaction between
SSL and HTTP/1.1 features are problematic with some MSIE versions, too. You’ve to work-around these problems
by forcing Apache+modssl+OpenSSL to not use HTTP/1.1, keep-alive connections or sending the SSL close notify
messages to MSIE clients. This can be done by using the following directive in your SSL-aware virtual host section:

SetEnvIf User-Agent ".*MSIE.*" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

Additionally it is known some MSIE versions have also problems with particular ciphers. Unfortunately one cannot
workaround these bugs only for those MSIE particular clients, because the ciphers are already used in the SSL hand-
shake phase. So a MSIE-specificSETENV IF doesn’t work to solve these problems. Instead one has to do more drastic
adjustments to the global parameters. But before you decide to do this, make sure your clients really have problems.
If not, do not do this, because it affects all(!) your clients, i.e., also your non-MSIE clients.

The next problem is that 56bit export versions of MSIE 5.x browsers have a broken SSLv3 implementation which
badly interacts with OpenSSL versions greater than 0.9.4. You can either accept this and force your clients to upgrade
their browsers, or you downgrade to OpenSSL 0.9.4 (hmmm), or you can decide to workaround it by accepting the
drawback that your workaround will horribly affect also other browsers:

SSLProtocol all -SSLv3

This completely disables the SSLv3 protocol and lets those browsers work. But usually this is an even less acceptable
workaround. A more reasonable workaround is to address the problem more closely and disable only the ciphers
which cause trouble.

180 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

SSLCipherSuite
ALL:!ADH: !EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP

This also lets the broken MSIE versions work, but only removes the newer 56bit TLS ciphers.

Another problem with MSIE 5.x clients is that they refuse to connect to URLs of the form
https://12.34.56.78/ (IP-addresses are used instead of the hostname), if the server is using the
Server Gated Cryptography (SGC) facility. This can only be avoided by using the fully qualified domain name
(FQDN) of the website in hyperlinks instead, because MSIE 5.x has an error in the way it handles the SGC
negotiation.

And finally there are versions of MSIE which seem to require that an SSL session can be reused (a totally non standard-
conforming behaviour, of course). Connection with those MSIE versions only work if a SSL session cache is used.
So, as a work-around, make sure you are using a session cache (seeSSLSESSIONCACHE directive).

When I connect via HTTPS to an Apache+modssl server with Netscape Navigator I get I/O errors and the
message" Netscape has encountered bad data from the server" What’s the reason?

The problem usually is that you had created a new server certificate with the same DN, but you had told your browser
to accept forever the old server certificate. Once you clear the entry in your browser for the old certificate, everything
usually will work fine. Netscape’s SSL implementation is correct, so when you encounter I/O errors with Netscape
Navigator it is most of the time caused by the configured certificates.

About Support

• Resources in case of problems?

• Support in case of problems?

• How to write a problem report?

• I got a core dump, can you help me?

• How to get a backtrace?

What information resources are available in case of modssl problems?

The following information resources are available. In case of problems you should search here first.

Answers in the User Manual’s F.A.Q. List (this) http://httpd.apache.org/docs-2.0/ssl/sslfaq.html27

First look inside the F.A.Q. (this text), perhaps your problem is such popular that it was already answered a lot
of times in the past.

Postings from the modssl-users Support Mailing List http://www.modssl.org/support/28 Second search for your
problem in one of the existing archives of the modssl-users mailing list. Perhaps your problem popped up at
least once for another user, too.

Problem Reports in the Bug Database http://www.modssl.org/support/bugdb/29 Third look inside the modssl
Bug Database. Perhaps someone else already has reported the problem.

27http://httpd.apache.org/docs-2.0/ssl/sslfaq.html

http://httpd.apache.org/docs-2.0/ssl/ssl_faq.html

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 181

What support contacts are available in case of modssl problems?

The following lists all support possibilities for modssl, in order of preference, i.e. start in this order and do not pick
the support possibility you just like most, please.

1. Write a Problem Report into the Bug Database

http://www.modssl.org/support/bugdb/30

This is the preferred way of submitting your problem report, because this way it gets filed into the bug database
(it cannot be lost)and send to the modssl-users mailing list (others see the current problems and learn from
answers).

2. Write a Problem Report to the modssl-users Support Mailing List

modssl-users@modssl.org31

This is the second way of submitting your problem report. You have to subscribe to the list first, but then you
can easily discuss your problem with both the author and the whole modssl user community.

What information and details should I provide when writing a bug report?

You have to at least always provide the following information:

Apache and OpenSSL version informationThe Apache version can be determined by running “httpd -v ”. The
OpenSSL version can be determined by running “openssl version ”. Alternatively when you have Lynx
installed you can run the command “lynx -mime header http://localhost/ | grep Server ”
to determine all information in a single step.

The details on how you built and installed Apache+modssl+OpenSSLFor this you can provide a logfile of your
terminal session which shows the configuration and install steps. Alternatively you can at least provide the
configure command line you used.

In case of core dumps please include a BacktraceIn case your Apache+modssl+OpenSSL should really dump
core please attach a stack-frame “backtrace” (see the next question on how to get it). Without this informa-
tion the reason for your core dump cannot be found. So you have to provide the backtrace, please.

A detailed description of your problem Don’t laugh, I’m totally serious. I already got a lot of problem reports
where the people not really said what’s the actual problem is. So, in your own interest (you want the problem
be solved, don’t you?) include as much details as possible, please. But start with the essentials first, of course.

I got a core dump, can you help me?

In general no, at least not unless you provide more details about the code location where Apache dumped core. What
is usually always required in order to help you is a backtrace (see next question). Without this information it is mostly
impossible to find the problem and help you in fixing it.

Ok, I got a core dump but how do I get a backtrace to find out the reason for it?

Follow the following steps:

30http://www.modssl.org/support/bugdb/
31mailto:modssl-users@modssl.org

http://www.modssl.org/support/bugdb/
mailto:modssl-users@modssl.org

182 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

1. Make sure you have debugging symbols available in at least Apache. On platforms where you use GCC/GDB
you have to build Apache+modssl with “OPTIM="-g -ggdb3" ” to achieve this. On other platforms at least
“OPTIM="-g" ” is needed.

2. Startup the server and try to produce the core-dump. For this you perhaps want to use a directive like
“CoreDumpDirectory /tmp ” to make sure that the core-dump file can be written. You then should get
a /tmp/core or /tmp/httpd.core file. When you don’t get this, try to run your server under an UID !=
0 (root), because most" current" kernels do not allow a process to dump core after it has done asetuid()
(unless it does anexec()) for security reasons (there can be privileged information left over in memory).
Additionally you can run “/path/to/httpd -X ” manually to force Apache to not fork.

3. Analyze the core-dump. For this rungdb /path/to/httpd /tmp/httpd.core or a similar command
has to run. In GDB you then just have to enter thebt command and, voila, you get the backtrace. For other
debuggers consult your local debugger manual. Send this backtrace to the author.

Chapter 6

Guides, Tutorials, and HowTos

183

184 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

6.1 How-To / Tutorials

How-To / Tutorials

Authentication Authentication is any process by which you verify that someone is who they claim they are. Autho-
rization is any process by which someone is allowed to be where they want to go, or to have information that
they want to have.

See: Authentication, Authorization, and Access Control (p.185)

Dynamic Content with CGI The CGI (Common Gateway Interface) defines a way for a web server to interact with
external content-generating programs, which are often referred to as CGI programs or CGI scripts. It is the sim-
plest, and most common, way to put dynamic content on your web site. This document will be an introduction
to setting up CGI on your Apache web server, and getting started writing CGI programs.

See: CGI: Dynamic Content (p.189)

.htaccess files .htaccess files provide a way to make configuration changes on a per-directory basis. A file,
containing one or more configuration directives, is placed in a particular document directory, and the directives
apply to that directory, and all subdirectories thereof.

See:.htaccess files (p.201)

Introduction to Server Side Includes SSI (Server Side Includes) are directives that are placed in HTML pages, and
evaluated on the server while the pages are being served. They let you add dynamically generated content to an
existing HTML page, without having to serve the entire page via a CGI program, or other dynamic technology.

See: Server Side Includes (SSI) (p.195)

Per-user web directories On systems with multiple users, each user can be permitted to have a web site in their home
directory using theUSERDIR directive. Visitors to a URLhttp://example.com/˜username/ will get
content out of the home directory of the user"username" , out of the subdirectory specified by theUSERDIR

directive.

See: User web directories (public html) (p. 205)

6.2. AUTHENTICATION, AUTHORIZATION AND ACCESS CONTROL 185

6.2 Authentication, Authorization and Access Control

Authentication is any process by which you verify that someone is who they claim they are. Authorization is any
process by which someone is allowed to be where they want to go, or to have information that they want to have.

Related Modules and Directives

Related Modules
MOD AUTH

MOD ACCESS

Related Directives
ALLOW

AUTHGROUPFILE

AUTHNAME

AUTHTYPE

AUTHUSERFILE

DENY

OPTIONS

REQUIRE

Introduction

If you have information on your web site that is sensitive or intended for only a small group of people, the techniques
in this article will help you make sure that the people that see those pages are the people that you wanted to see them.

This article covers the" standard" way of protecting parts of your web site that most of you are going to use.

The Prerequisites

The directives discussed in this article will need to go either in your main server configuration file (typically in a
<DIRECTORY> section), or in per-directory configuration files (.htaccess files).

If you plan to use.htaccess files, you will need to have a server configuration that permits putting authentication
directives in these files. This is done with theALLOWOVERRIDE directive, which specifies which directives, if any,
may be put in per-directory configuration files.

Since we’re talking here about authentication, you will need anALLOWOVERRIDE directive like the following:

AllowOverride AuthConfig

Or, if you are just going to put the directives directly in your main server configuration file, you will of course need to
have write permission to that file.

And you’ll need to know a little bit about the directory structure of your server, in order to know where some files are
kept. This should not be terribly difficult, and I’ll try to make this clear when we come to that point.

Getting it working

Here’s the basics of password protecting a directory on your server.

You’ll need to create a password file. This file should be placed somewhere not accessible from the web.
This is so that folks cannot download the password file. For example, if your documents are served out of
/usr/local/apache/htdocs you might want to put the password file(s) in/usr/local/apache/passwd .

186 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

To create the file, use the htpasswd (p.252) utility that came with Apache. This be located in thebin directory of
wherever you installed Apache. To create the file, type:

htpasswd -c /usr/local/apache/passwd/passwords rbowen

htpasswd will ask you for the password, and then ask you to type it again to confirm it:

htpasswd -c /usr/local/apache/passwd/passwords rbowen
New password: mypassword
Re-type new password: mypassword

Adding password for user rbowen

If htpasswd is not in your path, of course you’ll have to type the full path to the file to get it to run. On my server,
it’s located at/usr/local/apache/bin/htpasswd

Next, you’ll need to configure the server to request a password and tell the server which users are allowed access.
You can do this either by editing thehttpd.conf file or using an.htaccess file. For example, if you wish
to protect the directory/usr/local/apache/htdocs/secret , you can use the following directives, either
placed in the file/usr/local/apache/htdocs/secret/.htaccess , or placed inhttpd.conf inside a
<Directory /usr/local/apache/apache/htdocs/secret> section.

AuthType Basic
AuthName "Restricted Files"
AuthUserFile /usr/local/apache/passwd/passwords

Require user rbowen

Let’s examine each of those directives individually. TheAUTHTYPE directive selects that method that is used to au-
thenticate the user. The most common method isBasic , and this is the method implemented byMOD AUTH. It is
important to be aware, however, that Basic authentication sends the password from the client to the browser unen-
crypted. This method should therefore not be used for highly sensitive data. Apache supports one other authentication
method:AuthType Digest . This method is implemented byMOD AUTH DIGEST and is much more secure. Only
the most recent versions of clients are known to support Digest authentication.

The AUTHNAME directive sets the Realm to be used in the authentication. The realm serves two major functions.
First, the client often presents this information to the user as part of the password dialog box. Second, it is used by the
client to determine what password to send for a given authenticated area.

So, for example, once a client has authenticated in the"Restricted Files" area, it will automatically retry the
same password for any area on the same server that is marked with the"Restricted Files" Realm. Therefore,
you can prevent a user from being prompted more than once for a password by letting multiple restricted areas share
the same realm. Of course, for security reasons, the client will always need to ask again for the password whenever
the hostname of the server changes.

TheAUTHUSERFILE directive sets the path to the password file that we just created withhtpasswd . If you have a
large number of users, it can be quite slow to search through a plain text file to authenticate the user on each request.
Apache also has the ability to store user information in fast database files. TheMOD AUTH DBM module provides the
AUTHDBMUSERFILE directive. These files can be created and manipulated with the dbmmanage (p.249) program.
Many other types of authentication options are available from third party modules in the Apache Modules Database1.

Finally, theREQUIRE directive provides the authorization part of the process by setting the user that is allowed to
access this region of the server. In the next section, we discuss various ways to use theREQUIRE directive.

1http://modules.apache.org/

http://modules.apache.org/

6.2. AUTHENTICATION, AUTHORIZATION AND ACCESS CONTROL 187

Letting more than one person in

The directives above only let one person (specifically someone with a username ofrbowen) into the directory. In
most cases, you’ll want to let more than one person in. This is where theAUTHGROUPFILE comes in.

If you want to let more than one person in, you’ll need to create a group file that associates group names with a list of
users in that group. The format of this file is pretty simple, and you can create it with your favorite editor. The contents
of the file will look like this:

GroupName: rbowen dpitts sungo rshersey

That’s just a list of the members of the group in a long line separated by spaces.

To add a user to your already existing password file, type:

htpasswd /usr/local/apache/passwd/password dpitts

You’ll get the same response as before, but it will be appended to the existing file, rather than creating a new file. (It’s
the-c that makes it create a new password file).

Now, you need to modify your.htaccess file to look like the following:

AuthType Basic
AuthName "By Invitation Only"
AuthUserFile /usr/local/apache/passwd/passwords
AuthGroupFile /usr/local/apache/passwd/groups

Require group GroupName

Now, anyone that is listed in the groupGroupName, and has an entry in thepassword file, will be let in, if they
type the correct password.

There’s another way to let multiple users in that is less specific. Rather than creating a group file, you can just use the
following directive:

Require valid-user

Using that rather than theRequire user rbowen line will allow anyone in that is listed in the password file,
and who correctly enters their password. You can even emulate the group behavior here, by just keeping a separate
password file for each group. The advantage of this approach is that Apache only has to check one file, rather than
two. The disadvantage is that you have to maintain a bunch of password files, and remember to reference the right one
in theAUTHUSERFILE directive.

Possible problems

Because of the way that Basic authentication is specified, your username and password must be verified every time
you request a document from the server. This is even if you’re reloading the same page, and for every image on the
page (if they come from a protected directory). As you can imagine, this slows things down a little. The amount that
it slows things down is proportional to the size of the password file, because it has to open up that file, and go down
the list of users until it gets to your name. And it has to do this every time a page is loaded.

A consequence of this is that there’s a practical limit to how many users you can put in one password file. This limit
will vary depending on the performance of your particular server machine, but you can expect to see slowdowns once
you get above a few hundred entries, and may wish to consider a different authentication method at that time.

188 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

What other neat stuff can I do?

Authentication by username and password is only part of the story. Frequently you want to let people in based on
something other than who they are. Something such as where they are coming from.

The ALLOW and DENY directives let you allow and deny access based on the host name, or host address, of the
machine requesting a document. TheORDER directive goes hand-in-hand with these two, and tells Apache in which
order to apply the filters.

The usage of these directives is:

Allow from address

where address is an IP address (or a partial IP address) or a fully qualified domain name (or a partial domain name);
you may provide multiple addresses or domain names, if desired.

For example, if you have someone spamming your message board, and you want to keep them out, you could do the
following:

Deny from 205.252.46.165

Visitors coming from that address will not be able to see the content covered by this directive. If, instead, you have a
machine name, rather than an IP address, you can use that.

Deny from host.example.com

And, if you’d like to block access from an entire domain, you can specify just part of an address or domain name:

Deny from 192.101.205
Deny from cyberthugs.com moreidiots.com

Deny from ke

Using ORDER will let you be sure that you are actually restricting things to the group that you want to let in, by
combining aDENY and anALLOW directive:

Order deny,allow
Deny from all

Allow from dev.example.com

Listing just theALLOW directive would not do what you want, because it will let folks from that host in, in addition
to letting everyone in. What you want is to letonly those folks in.

More information

You should also read the documentation forMOD AUTH and MOD ACCESSwhich contain some more information
about how this all works.

6.3. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 189

6.3 Apache Tutorial: Dynamic Content with CGI

Introduction

Related Modules
MOD ALIAS

MOD CGI

Related Directives
ADDHANDLER

OPTIONS

SCRIPTALIAS

The CGI (Common Gateway Interface) defines a way for a web server to interact with external content-generating
programs, which are often referred to as CGI programs or CGI scripts. It is the simplest, and most common, way to
put dynamic content on your web site. This document will be an introduction to setting up CGI on your Apache web
server, and getting started writing CGI programs.

Configuring Apache to permit CGI

In order to get your CGI programs to work properly, you’ll need to have Apache configured to permit CGI execution.
There are several ways to do this.

ScriptAlias

TheSCRIPTALIAS

directive tells Apache that a particular directory is set aside for CGI programs. Apache will assume that every file in
this directory is a CGI program, and will attempt to execute it, when that particular resource is requested by a client.

TheSCRIPTALIAS directive looks like:

ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

The example shown is from your defaulthttpd.conf configuration file, if you installed Apache in the default
location. TheSCRIPTALIAS directive is much like theALIAS directive, which defines a URL prefix that is to
mapped to a particular directory.ALIAS and SCRIPTALIAS are usually used for directories that are outside of
the DOCUMENTROOT directory. The difference betweenALIAS and SCRIPTALIAS is that SCRIPTALIAS has the
added meaning that everything under that URL prefix will be considered a CGI program. So, the example above
tells Apache that any request for a resource beginning with/cgi-bin/ should be served from the directory
/usr/local/apache/cgi-bin/ , and should be treated as a CGI program.

For example, if the URLhttp://www.example.com/cgi-bin/test.pl is requested, Apache will attempt
to execute the file/usr/local/apache/cgi-bin/test.pl and return the output. Of course, the file will have
to exist, and be executable, and return output in a particular way, or Apache will return an error message.

CGI outside of ScriptAlias directories

CGI programs are often restricted toSCRIPTALIAS ’ed directories for security reasons. In this way, administrators can
tightly control who is allowed to use CGI programs. However, if the proper security precautions are taken, there is no
reason why CGI programs cannot be run from arbitrary directories. For example, you may wish to let users have web
content in their home directories with theUSERDIR directive. If they want to have their own CGI programs, but don’t
have access to the maincgi-bin directory, they will need to be able to run CGI programs elsewhere.

190 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Explicitly using Options to permit CGI execution

You could explicitly use theOPTIONSdirective, inside your main server configuration file, to specify that CGI execu-
tion was permitted in a particular directory:

<Directory /usr/local/apache/htdocs/somedir >

Options +ExecCGI

</Directory >

The above directive tells Apache to permit the execution of CGI files. You will also need to tell the server what files
are CGI files. The followingADDHANDLER directive tells the server to treat all files with thecgi or pl extension as
CGI programs:

AddHandler cgi-script cgi pl

.htaccess files

A .htaccess file (p. 201) is a way to set configuration directives on a per-directory basis. When Apache serves a
resource, it looks in the directory from which it is serving a file for a file called.htaccess , and, if it finds it, it will
apply directives found therein.

.htaccess files can be permitted with theALLOWOVERRIDE directive, which specifies what types of directives
can appear in these files, or if they are not allowed at all. To permit the directive we will need for this purpose, the
following configuration will be needed in your main server configuration:

AllowOverride Options

In the.htaccess file, you’ll need the following directive:

Options +ExecCGI

which tells Apache that execution of CGI programs is permitted in this directory.

Writing a CGI program

There are two main differences between “regular” programming, and CGI programming.

First, all output from your CGI program must be preceded by a MIME-type header. This is HTTP header that tells the
client what sort of content it is receiving. Most of the time, this will look like:

Content-type: text/html

Secondly, your output needs to be in HTML, or some other format that a browser will be able to display. Most of
the time, this will be HTML, but occasionally you might write a CGI program that outputs a gif image, or other
non-HTML content.

Apart from those two things, writing a CGI program will look a lot like any other program that you might write.

6.3. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 191

Your first CGI program

The following is an example CGI program that prints one line to your browser. Type in the following, save it to a file
calledfirst.pl , and put it in yourcgi-bin directory.

#!/usr/bin/perl
print "Content-type: text/html \n\n";

print "Hello, World.";

Even if you are not familiar with Perl, you should be able to see what is happening here. The first line tells Apache (or
whatever shell you happen to be running under) that this program can be executed by feeding the file to the interpreter
found at the location/usr/bin/perl . The second line prints the content-type declaration we talked about, followed
by two carriage-return newline pairs. This puts a blank line after the header, to indicate the end of the HTTP headers,
and the beginning of the body. The third line prints the string" Hello, World." . And that’s the end of it.

If you open your favorite browser and tell it to get the address

http://www.example.com/cgi-bin/first.pl

or wherever you put your file, you will see the one lineHello, World. appear in your browser window. It’s not
very exciting, but once you get that working, you’ll have a good chance of getting just about anything working.

But it’s still not working!

There are four basic things that you may see in your browser when you try to access your CGI program from the web:

The output of your CGI program Great! That means everything worked fine.

The source code of your CGI program or a" POST Method Not Allowed" messageThat means that you have
not properly configured Apache to process your CGI program. Reread the section on configuring Apache and
try to find what you missed.

A message starting with" Forbidden" That means that there is a permissions problem. Check the Apache error log
and the section below on file permissions.

A message saying" Internal Server Error " If you check the Apache error log, you will probably find that it says
" Premature end of script headers" , possibly along with an error message generated by your CGI program. In
this case, you will want to check each of the below sections to see what might be preventing your CGI program
from emitting the proper HTTP headers.

File permissions

Remember that the server does not run as you. That is, when the server starts up, it is running with the permissions of
an unprivileged user - usuallynobody , or www- and so it will need extra permissions to execute files that are owned
by you. Usually, the way to give a file sufficient permissions to be executed bynobody is to give everyone execute
permission on the file:

chmod a+x first.pl

192 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Also, if your program reads from, or writes to, any other files, those files will need to have the correct permissions to
permit this.

The exception to this is when the server is configured to use suexec (p.69) . This program allows CGI programs to
be run under different user permissions, depending on which virtual host or user home directory they are located in.
Suexec has very strict permission checking, and any failure in that checking will result in your CGI programs failing
with an " Internal Server Error" . In this case, you will need to check the suexec log file to see what specific security
check is failing.

Path information

When you run a program from your command line, you have certain information that is passed to the shell without
you thinking about it. For example, you have a path, which tells the shell where it can look for files that you reference.

When a program runs through the web server as a CGI program, it does not have that path. Any programs that you
invoke in your CGI program (like ’sendmail’, for example) will need to be specified by a full path, so that the shell can
find them when it attempts to execute your CGI program.

A common manifestation of this is the path to the script interpreter (oftenperl) indicated in the first line of your CGI
program, which will look something like:

#!/usr/bin/perl

Make sure that this is in fact the path to the interpreter.

Syntax errors

Most of the time when a CGI program fails, it’s because of a problem with the program itself. This is particularly
true once you get the hang of this CGI stuff, and no longer make the above two mistakes. Always attempt to run your
program from the command line before you test if via a browser. This will eliminate most of your problems.

Error logs

The error logs are your friend. Anything that goes wrong generates message in the error log. You should always look
there first. If the place where you are hosting your web site does not permit you access to the error log, you should
probably host your site somewhere else. Learn to read the error logs, and you’ll find that almost all of your problems
are quickly identified, and quickly solved.

What’s going on behind the scenes?

As you become more advanced in CGI programming, it will become useful to understand more about what’s happening
behind the scenes. Specifically, how the browser and server communicate with one another. Because although it’s all
very well to write a program that prints" Hello, World." , it’s not particularly useful.

Environment variables

Environment variables are values that float around you as you use your computer. They are useful things like your
path (where the computer searches for a the actual file implementing a command when you type it), your username,
your terminal type, and so on. For a full list of your normal, every day environment variables, typeenv at a command
prompt.

6.3. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 193

During the CGI transaction, the server and the browser also set environment variables, so that they can communicate
with one another. These are things like the browser type (Netscape, IE, Lynx), the server type (Apache, IIS, WebSite),
the name of the CGI program that is being run, and so on.

These variables are available to the CGI programmer, and are half of the story of the client-server communication.
The complete list of required variables is at http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

This simple Perl CGI program will display all of the environment variables that are being passed around. Two similar
programs are included in thecgi-bin

directory of the Apache distribution. Note that some variables are required, while others are optional, so you may see
some variables listed that were not in the official list. In addition, Apache provides many different ways for you to add
your own environment variables (p.61) to the basic ones provided by default.

#!/usr/bin/perl
print "Content-type: text/html \n\n";
foreach $key (keys %ENV) {

print "$key -- > $ENV{$key }
";

}

STDIN and STDOUT

Other communication between the server and the client happens over standard input (STDIN) and standard output
(STDOUT). In normal everyday context,STDIN means the keyboard, or a file that a program is given to act on, and
STDOUTusually means the console or screen.

When youPOSTa web form to a CGI program, the data in that form is bundled up into a special format and gets
delivered to your CGI program overSTDIN. The program then can process that data as though it was coming in from
the keyboard, or from a file

The" special format" is very simple. A field name and its value are joined together with an equals (=) sign, and pairs
of values are joined together with an ampersand (&). Inconvenient characters like spaces, ampersands, and equals
signs, are converted into their hex equivalent so that they don’t gum up the works. The whole data string might look
something like:

name=Rich%20Bowen&city=Lexington&state=KY&sidekick=Squirrel%20Monkey

You’ll sometimes also see this type of string appended to the a URL. When that is done, the server puts that string into
the environment variable calledQUERYSTRING. That’s called aGETrequest. Your HTML form specifies whether a
GETor aPOSTis used to deliver the data, by setting theMETHODattribute in theFORMtag.

Your program is then responsible for splitting that string up into useful information. Fortunately, there are libraries
and modules available to help you process this data, as well as handle other of the aspects of your CGI program.

CGI modules/libraries

When you write CGI programs, you should consider using a code library, or module, to do most of the grunt work for
you. This leads to fewer errors, and faster development.

If you’re writing CGI programs in Perl, modules are available on CPAN2. The most popular module for this purpose
is CGI.pm . You might also considerCGI::Lite , which implements a minimal set of functionality, which is all you
need in most programs.

2http://www.cpan.org/

http://www.cpan.org/

194 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

If you’re writing CGI programs in C, there are a variety of options. One of these is theCGIC library, from
http://www.boutell.com/cgic/.

For more information

There are a large number of CGI resources on the web. You can discuss CGI problems with other users on the Usenet
group comp.infosystems.www.authoring.cgi3. And the -servers mailing list from the HTML Writers Guild is a great
source of answers to your questions. You can find out more at http://www.hwg.org/lists/hwg-servers/.

And, of course, you should probably read the CGI specification, which has all the details on the operation of CGI
programs. You can find the original version at the NCSA4 and there is an updated draft at the Common Gateway
Interface RFC project5.

When you post a question about a CGI problem that you’re having, whether to a mailing list, or to a newsgroup, make
sure you provide enough information about what happened, what you expected to happen, and how what actually
happened was different, what server you’re running, what language your CGI program was in, and, if possible, the
offending code. This will make finding your problem much simpler.

Note that questions about CGI problems shouldnever be posted to the Apache bug database unless you are sure you
have found a problem in the Apache source code.

3news:comp.infosystems.www.authoring.cgi
4http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
5http://web.golux.com/coar/cgi/

news:comp.infosystems.www.authoring.cgi
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://web.golux.com/coar/cgi/

6.4. APACHE TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 195

6.4 Apache Tutorial: Introduction to Server Side Includes

Server-side includes provide a means to add dynamic content to existing HTML documents.

Introduction

Related Modules
MOD INCLUDE

MOD CGI

MOD EXPIRES

Related Directives
OPTIONS

XB ITHACK

ADDTYPE

SETOUTPUTFILTER

BROWSERMATCHNOCASE

This article deals with Server Side Includes, usually called simply SSI. In this article, I’ll talk about configuring your
server to permit SSI, and introduce some basic SSI techniques for adding dynamic content to your existing HTML
pages.

In the latter part of the article, we’ll talk about some of the somewhat more advanced things that can be done with SSI,
such as conditional statements in your SSI directives.

What are SSI?

SSI (Server Side Includes) are directives that are placed in HTML pages, and evaluated on the server while the pages
are being served. They let you add dynamically generated content to an existing HTML page, without having to serve
the entire page via a CGI program, or other dynamic technology.

The decision of when to use SSI, and when to have your page entirely generated by some program, is usually a matter
of how much of the page is static, and how much needs to be recalculated every time the page is served. SSI is a great
way to add small pieces of information, such as the current time. But if a majority of your page is being generated at
the time that it is served, you need to look for some other solution.

Configuring your server to permit SSI

To permit SSI on your server, you must have the following directive either in yourhttpd.conf file, or in a
.htaccess file:

Options +Includes

This tells Apache that you want to permit files to be parsed for SSI directives. Note that most configurations contain
multiple OPTIONS directives that can override each other. You will probably need to apply theOptions to the
specific directory where you want SSI enabled in order to assure that it gets evaluated last.

Not just any file is parsed for SSI directives. You have to tell Apache which files should be parsed. There are two ways
to do this. You can tell Apache to parse any file with a particular file extension, such as.shtml , with the following
directives:

AddType text/html .shtml

AddOutputFilter INCLUDES .shtml

196 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

One disadvantage to this approach is that if you wanted to add SSI directives to an existing page, you would have to
change the name of that page, and all links to that page, in order to give it a.shtml extension, so that those directives
would be executed.

The other method is to use theXB ITHACK directive:

XBitHack on

XB ITHACK tells Apache to parse files for SSI directives if they have the execute bit set. So, to add SSI directives to
an existing page, rather than having to change the file name, you would just need to make the file executable using
chmod.

chmod +x pagename.html

A brief comment about what not to do. You’ll occasionally see people recommending that you just tell Apache to
parse all.html files for SSI, so that you don’t have to mess with.shtml file names. These folks have perhaps not
heard aboutXB ITHACK. The thing to keep in mind is that, by doing this, you’re requiring that Apache read through
every single file that it sends out to clients, even if they don’t contain any SSI directives. This can slow things down
quite a bit, and is not a good idea.

Of course, on Windows, there is no such thing as an execute bit to set, so that limits your options a little.

In its default configuration, Apache does not send the last modified date or content length HTTP headers on SSI pages,
because these values are difficult to calculate for dynamic content. This can prevent your document from being cached,
and result in slower perceived client performance. There are two ways to solve this:

1. Use theXBitHack Full configuration. This tells Apache to determine the last modified date by looking only
at the date of the originally requested file, ignoring the modification date of any included files.

2. Use the directives provided byMOD EXPIRES to set an explicit expiration time on your files, thereby letting
browsers and proxies know that it is acceptable to cache them.

Basic SSI directives

SSI directives have the following syntax:

<!--#element attribute=value attribute=value ... -- >

It is formatted like an HTML comment, so if you don’t have SSI correctly enabled, the browser will ignore it, but it
will still be visible in the HTML source. If you have SSI correctly configured, the directive will be replaced with its
results.

The element can be one of a number of things, and we’ll talk some more about most of these in the next installment of
this series. For now, here are some examples of what you can do with SSI

Today’s date

<!--#echo var="DATE LOCAL" -- >

6.4. APACHE TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 197

Theecho element just spits out the value of a variable. There are a number of standard variables, which include the
whole set of environment variables that are available to CGI programs. Also, you can define your own variables with
theset element.

If you don’t like the format in which the date gets printed, you can use theconfig element, with atimefmt
attribute, to modify that formatting.

<!--#config timefmt="%A %B %d, %Y" -- >

Today is <!--#echo var="DATE LOCAL" -- >

Modification date of the file

This document last modified <!--#flastmod file="index.html" -- >

This element is also subject totimefmt format configurations.

Including the results of a CGI program

This is one of the more common uses of SSI - to output the results of a CGI program, such as everybody’s favorite, a
“hit counter.”

<!--#include virtual="/cgi-bin/counter.pl" -- >

Additional examples

Following are some specific examples of things you can do in your HTML documents with SSI.

When was this document modified?

Earlier, we mentioned that you could use SSI to inform the user when the document was most recently modified.
However, the actual method for doing that was left somewhat in question. The following code, placed in your HTML
document, will put such a time stamp on your page. Of course, you will have to have SSI correctly enabled, as
discussed above.

<!--#config timefmt="%A %B %d, %Y" -- >

This file last modified <!--#flastmod file="ssi.shtml" -- >

Of course, you will need to replace thessi.shtml with the actual name of the file that you’re referring to. This can
be inconvenient if you’re just looking for a generic piece of code that you can paste into any file, so you probably want
to use theLAST MODIFIED variable instead:

<!--#config timefmt="%D" -- >

This file last modified <!--#echo var="LAST MODIFIED" -- >

For more details on thetimefmt format, go to your favorite search site and look forstrftime . The syntax is the
same.

198 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Including a standard footer

If you are managing any site that is more than a few pages, you may find that making changes to all those pages can
be a real pain, particularly if you are trying to maintain some kind of standard look across all those pages.

Using an include file for a header and/or a footer can reduce the burden of these updates. You just have to make one
footer file, and then include it into each page with theinclude SSI command. Theinclude element can determine
what file to include with either thefile attribute, or thevirtual attribute. Thefile attribute is a file path,relative
to the current directory. That means that it cannot be an absolute file path (starting with /), nor can it contain ../ as
part of that path. Thevirtual attribute is probably more useful, and should specify a URL relative to the document
being served. It can start with a /, but must be on the same server as the file being served.

<!--#include virtual="/footer.html" -- >

I’ll frequently combine the last two things, putting aLAST MODIFIED directive inside a footer file to be included.
SSI directives can be contained in the included file, and includes can be nested - that is, the included file can include
another file, and so on.

What else can I config?

In addition to being able toconfig the time format, you can alsoconfig two other things.

Usually, when something goes wrong with your SSI directive, you get the message

[an error occurred while processing this directive]

If you want to change that message to something else, you can do so with theerrmsg attribute to theconfig
element:

<!--#config errmsg="[It appears that you don’t know how to use SSI]"

-- >

Hopefully, end users will never see this message, because you will have resolved all the problems with your SSI
directives before your site goes live. (Right?)

And you canconfig the format in which file sizes are returned with thesizefmt attribute. You can specifybytes
for a full count in bytes, orabbrev for an abbreviated number in Kb or Mb, as appropriate.

Executing commands

I expect that I’ll have an article some time in the coming months about using SSI with small CGI programs. For now,
here’s something else that you can do with theexec element. You can actually have SSI execute a command using
the shell (/bin/sh , to be precise - or the DOS shell, if you’re on Win32). The following, for example, will give you
a directory listing.

<pre >
<!--#exec cmd="ls" -- >

</pre >

or, on Windows

6.4. APACHE TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 199

<pre >
<!--#exec cmd="dir" -- >

</pre >

You might notice some strange formatting with this directive on Windows, because the output fromdir contains the
string “<dir >” in it, which confuses browsers.

Note that this feature is exceedingly dangerous, as it will execute whatever code happens to be embedded in the
exec tag. If you have any situation where users can edit content on your web pages, such as with a “guestbook”,
for example, make sure that you have this feature disabled. You can allow SSI, but not theexec feature, with the
IncludesNOEXEC argument to theOptions directive.

Advanced SSI techniques

In addition to spitting out content, Apache SSI gives you the option of setting variables, and using those variables in
comparisons and conditionals.

Caveat

Most of the features discussed in this article are only available to you if you are running Apache 1.2 or later. Of course,
if you are not running Apache 1.2 or later, you need to upgrade immediately, if not sooner. Go on. Do it now. We’ll
wait.

Setting variables

Using theset directive, you can set variables for later use. We’ll need this later in the discussion, so we’ll talk about
it here. The syntax of this is as follows:

<!--#set var="name" value="Rich" -- >

In addition to merely setting values literally like that, you can use any other variable, including, for example, environ-
ment variables, or some of the variables we discussed in the last article (likeLAST MODIFIED, for example) to give
values to your variables. You will specify that something is a variable, rather than a literal string, by using the dollar
sign ($) before the name of the variable.

<!--#set var="modified" value="$LAST MODIFIED" -- >

To put a literal dollar sign into the value of your variable, you need to escape the dollar sign with a backslash.

<!--#set var="cost" value=" \$100" -- >

Finally, if you want to put a variable in the midst of a longer string, and there’s a chance that the name of the variable
will run up against some other characters, and thus be confused with those characters, you can place the name of the
variable in braces, to remove this confusion. (It’s hard to come up with a really good example of this, but hopefully
you’ll get the point.)

<!--#set var="date" value="$ {DATELOCAL} ${DATEGMT}" -- >

200 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Conditional expressions

Now that we have variables, and are able to set and compare their values, we can use them to express conditionals. This
lets SSI be a tiny programming language of sorts.MOD INCLUDE provides anif , elif , else , endif structure for
building conditional statements. This allows you to effectively generate multiple logical pages out of one actual page.

The structure of this conditional construct is:

<!--#if expr="test condition" -- >
<!--#elif expr="test condition" -- >
<!--#else -- >

<!--#endif -- >

A test conditioncan be any sort of logical comparison - either comparing values to one another, or testing the “truth”
of a particular value. (A given string is true if it is nonempty.) For a full list of the comparison operators available to
you, see theMOD INCLUDE documentation. Here are some examples of how one might use this construct.

In your configuration file, you could put the following line:

BrowserMatchNoCase macintosh Mac

BrowserMatchNoCase MSIE InternetExplorer

This will set environment variables “Mac” and “InternetExplorer” to true, if the client is running Internet Explorer on
a Macintosh.

Then, in your SSI-enabled document, you might do the following:

<!--#if expr="$ {Mac} && ${InternetExplorer }" -- >
Apologetic text goes here
<!--#else -- >
Cool JavaScript code goes here

<!--#endif -- >

Not that I have anything against IE on Macs - I just struggled for a few hours last week trying to get some JavaScript
working on IE on a Mac, when it was working everywhere else. The above was the interim workaround.

Any other variable (either ones that you define, or normal environment variables) can be used in conditional statements.
With Apache’s ability to set environment variables with theSetEnvIf directives, and other related directives, this
functionality can let you do some pretty involved dynamic stuff without ever resorting to CGI.

Conclusion

SSI is certainly not a replacement for CGI, or other technologies used for generating dynamic web pages. But it is a
great way to add small amounts of dynamic content to pages, without doing a lot of extra work.

6.5. APACHE TUTORIAL: .HTACCESS FILES 201

6.5 Apache Tutorial: .htaccess files

.htaccess files provide a way to make configuration changes on a per-directory basis.

.htaccess files

Related Modules
CORE

MOD AUTH

MOD CGI

MOD INCLUDE

MOD MIME

Related Directives
ACCESSFILENAME

ALLOWOVERRIDE

OPTIONS

ADDHANDLER

SETHANDLER

AUTHTYPE

AUTHNAME

AUTHUSERFILE

AUTHGROUPFILE

REQUIRE

What they are/How to use them

.htaccess files (or " distributed configuration files") provide a way to make configuration changes on a per-
directory basis. A file, containing one or more configuration directives, is placed in a particular document directory,
and the directives apply to that directory, and all subdirectories thereof.

=⇒Note:
If you want to call your.htaccess file something else, you can change the name of the
file using theACCESSFILENAME directive. For example, if you would rather call the file
.config then you can put the following in your server configuration file:

AccessFileName .config

What you can put in these files is determined by theALLOWOVERRIDE directive. This directive specifies, in cat-
egories, what directives will be honored if they are found in a.htaccess file. If a directive is permitted in a
.htaccess file, the documentation for that directive will contain an Override section, specifying what value must
be inALLOWOVERRIDE in order for that directive to be permitted.

For example, if you look at the documentation for theADDDEFAULTCHARSET directive, you will find that it is
permitted in.htaccess files. (See the Context line in the directive summary.) The Override (p.285) line reads
FileInfo . Thus, you must have at leastAllowOverride FileInfo in order for this directive to be honored in
.htaccess files.

Example:
Context: (p. 285) server config, virtual host,

directory, .htaccess
Override: (p. 285) FileInfo

If you are unsure whether a particular directive is permitted in a.htaccess file, look at the documentation for that
directive, and check the Context line for" .htaccess" .

202 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

When (not) to use .htaccess files

In general, you should never use.htaccess files unless you don’t have access to the main server configuration file.
There is, for example, a prevailing misconception that user authentication should always be done in.htaccess files.
This is simply not the case. You can put user authentication configurations in the main server configuration, and this
is, in fact, the preferred way to do things.

.htaccess files should be used in a case where the content providers need to make configuration changes to the
server on a per-directory basis, but do not have root access on the server system. In the event that the server adminis-
trator is not willing to make frequent configuration changes, it might be desirable to permit individual users to make
these changes in.htaccess files for themselves. This is particularly true, for example, in cases where ISPs are
hosting multiple user sites on a single machine, and want their users to be able to alter their configuration.

However, in general, use of.htaccess files should be avoided when possible. Any configuration that you would
consider putting in a.htaccess file, can just as effectively be made in a<DIRECTORY> section in your main
server configuration file.

There are two main reasons to avoid the use of.htaccess files.

The first of these is performance. WhenALLOWOVERRIDE is set to allow the use of.htaccess files, Apache will
look in every directory for.htaccess files. Thus, permitting.htaccess files causes a performance hit, whether
or not you actually even use them! Also, the.htaccess file is loaded every time a document is requested.

Further note that Apache must look for.htaccess files in all higher-level directories, in order to have a full com-
plement of directives that it must apply. (See section on how directives are applied.) Thus, if a file is requested out of
a directory/www/htdocs/example , Apache must look for the following files:

/.htaccess
/www/.htaccess
/www/htdocs/.htaccess

/www/htdocs/example/.htaccess

And so, for each file access out of that directory, there are 4 additional file-system accesses, even if none of those files
are present. (Note that this would only be the case if.htaccess files were enabled for/ , which is not usually the
case.)

The second consideration is one of security. You are permitting users to modify server configuration, which may result
in changes over which you have no control. Carefully consider whether you want to give your users this privilege.
Note also that giving users less privileges than they need will lead to additional technical support requests. Make
sure you clearly tell your users what level of privileges you have given them. Specifying exactly what you have set
ALLOWOVERRIDE to, and pointing them to the relevant documentation, will save yourself a lot of confusion later.

Note that it is completely equivalent to put a.htaccess file in a directory/www/htdocs/example containing a
directive, and to put that same directive in a Directory section<Directory /www/htdocs/example > in your
main server configuration:

.htaccess file in /www/htdocs/example :

Contents of .htaccess file in/www/htdocs/example
AddType text/example .exm

Section from your httpd.conf file
<Directory /www/htdocs/example >

AddType text/example .exm

</Directory >

6.5. APACHE TUTORIAL: .HTACCESS FILES 203

However, putting this configuration in your server configuration file will result in less of a performance hit, as the
configuration is loaded once when Apache starts, rather than every time a file is requested.

The use of.htaccess files can be disabled completely by setting theALLOWOVERRIDE directive tonone :

AllowOverride None

How directives are applied

The configuration directives found in a.htaccess file are applied to the directory in which the.htaccess file
is found, and to all subdirectories thereof. However, it is important to also remember that there may have been
.htaccess files in directories higher up. Directives are applied in the order that they are found. Therefore, a
.htaccess file in a particular directory may override directives found in.htaccess files found higher up in
the directory tree. And those, in turn, may have overridden directives found yet higher up, or in the main server
configuration file itself.

Example:

In the directory/www/htdocs/example1 we have a.htaccess file containing the following:

Options +ExecCGI

(Note: you must have"AllowOverride Options" in effect to permit the use of the" OPTIONS" directive in
.htaccess files.)

In the directory/www/htdocs/example1/example2 we have a.htaccess file containing:

Options Includes

Because of this second.htaccess file, in the directory/www/htdocs/example1/example2 , CGI execution
is not permitted, as onlyOptions Includes is in effect, which completely overrides any earlier setting that may
have been in place.

Authentication example

If you jumped directly to this part of the document to find out how to do authentication, it is important to note
one thing. There is a common misconception that you are required to use.htaccess files in order to implement
password authentication. This is not the case. Putting authentication directives in a<DIRECTORY> section, in your
main server configuration file, is the preferred way to implement this, and.htaccess files should be used only if
you don’t have access to the main server configuration file. See above for a discussion of when you should and should
not use.htaccess files.

Having said that, if you still think you need to use a.htaccess file, you may find that a configuration such as what
follows may work for you.

You must have"AllowOverride AuthConfig" in effect for these directives to be honored.

.htaccess file contents:

AuthType Basic
AuthName "Password Required"
AuthUserFile /www/passwords/password.file
AuthGroupFile /www/passwords/group.file

Require Group admins

204 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Note thatAllowOverride AuthConfig must be in effect for these directives to have any effect.

Please see the authentication tutorial (p.185) for a more complete discussion of authentication and authorization.

Server Side Includes example

Another common use of.htaccess files is to enable Server Side Includes for a particular directory. This may be
done with the following configuration directives, placed in a.htaccess file in the desired directory:

Options +Includes
AddType text/html shtml

AddHandler server-parsed shtml

Note thatAllowOverride Options andAllowOverride FileInfo must both be in effect for these direc-
tives to have any effect.

Please see the SSI tutorial (p.195) for a more complete discussion of server-side includes.

CGI example

Finally, you may wish to use a.htaccess file to permit the execution of CGI programs in a particular directory.
This may be implemented with the following configuration:

Options +ExecCGI

AddHandler cgi-script cgi pl

Alternately, if you wish to have all files in the given directory be considered to be CGI programs, this may be done
with the following configuration:

Options +ExecCGI

SetHandler cgi-script

Note thatAllowOverride Options andAllowOverride FileInfo must both be in effect for these direc-
tives to have any effect.

Please see the CGI tutorial (p.189) for a more complete discussion of CGI programming and configuration.

Troubleshooting

When you put configuration directives in a.htaccess file, and you don’t get the desired effect, there are a number
of things that may be going wrong.

Most commonly, the problem is thatALLOWOVERRIDE is not set such that your configuration directives are being
honored. Make sure that you don’t have aAllowOverride None in effect for the file scope in question. A good
test for this is to put garbage in your.htaccess file and reload. If a server error is not generated, then you almost
certainly haveAllowOverride None in effect.

If, on the other hand, you are getting server errors when trying to access documents, check your Apache error log. It
will likely tell you that the directive used in your.htaccess file is not permitted. Alternately, it may tell you that
you had a syntax error, which you will then need to fix.

6.6. PER-USER WEB DIRECTORIES 205

6.6 Per-user web directories

On systems with multiple users, each user can be permitted to have a web site in their home directory using the
USERDIR directive. Visitors to a URLhttp://example.com/˜username/ will get content out of the home
directory of the user"username" , out of the subdirectory specified by theUSERDIR directive.

See also

• Mapping URLs to the Filesystem (p.37)

Per-user web directories

Related Modules
MOD USERDIR

Related Directives
USERDIR

DIRECTORYMATCH

ALLOWOVERRIDE

Setting the file path with UserDir

TheUSERDIR directive specifies a directory out of which per-user content is loaded. This directive may take several
different forms.

If a path is given which does not start with a leading slash, it is assumed to be a directory path relative to the home
directory of the specified user. Given this configuration:

UserDir public html

the URL http://example.com/˜rbowen/file.html will be translated to the file path
/home/rbowen/public html/file.html

If a path is given starting with a slash, a directory path will be constructed using that path, plus the username specified.
Given this configuration:

UserDir /var/html

the URL http://example.com/˜rbowen/file.html will be translated to the file path
/var/html/rbowen/file.html

If a path is provided which contains an asterisk (*), a path is used in which the asterisk is replaced with the username.
Given this configuration:

UserDir /var/www/*/docs

the URL http://example.com/˜rbowen/file.html will be translated to the file path
/var/www/rbowen/docs/file.html

206 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Restricting what users are permitted to use this feature

Using the syntax show in the UserDir documentation, you can restrict what users are permitted to use this functionality:

UserDir enabled

UserDir disabled root jro fish

The configuration above will enable the feature for all users except for those listed in thedisabled statement. You
can, likewise, disable the feature for all but a few users by using a configuration like the following:

UserDir disabled

UserDir enabled rbowen krietz

SeeUSERDIR documentation for additional examples.

Enabling a cgi directory for each user

In order to give each user their own cgi-bin directory, you can use a<DIRECTORY> directive to make a particular
subdirectory of a user’s home directory cgi-enabled.

<Directory /home/*/cgi-bin/ >
Options ExecCGI
SetHandler cgi-script

</Directory >

Allowing users to alter configuration

If you want to allows users to modify the server configuration in their web space, they will need to use.htaccess
files to make these changed. Ensure that you have setALLOWOVERRIDE to a value sufficient for the directives that
you want to permit the users to modify. See the .htaccess tutorial (p.201) for additional details on how this works.

6.7. APACHE TUTORIALS 207

6.7 Apache Tutorials

! Warning:
This document has not been fully updated to take into account changes made in the 2.0 version
of the Apache HTTP Server. Some of the information may still be relevant, but please use it
with care.

The following documents give you step-by-step instructions on how to accomplish common tasks with the Apache
HTTP server. Many of these documents are located at external sites and are not the work of the Apache Software
Foundation. Copyright to documents on external sites is owned by the authors or their assignees. Please consult the
official Apache Server documentation (p.??) to verify what you read on external sites.

Installation & Getting Started

• Getting Started with Apache 1.36 (ApacheToday)

• Configuring Your Apache Server Installation7 (ApacheToday)

• Getting, Installing, and Running Apache (on Unix)8 (O’Reilly Network Apache DevCenter)

• Maximum Apache: Getting Started9 (CNET Builder.com)

• How to Build the Apache of Your Dreams10 (Developer Shed)

Basic Configuration

• An Amble Through Apache Configuration11 (O’Reilly Network Apache DevCenter)

• Using .htaccess Files with Apache12 (ApacheToday)

• Setting Up Virtual Hosts13 (ApacheToday)

• Maximum Apache: Configure Apache14 (CNET Builder.com)

• Getting More Out of Apache15 (Developer Shed)

Security

• Security and Apache: An Essential Primer16 (LinuxPlanet)

• Using User Authentication17 (Apacheweek)

• DBM User Authentication18 (Apacheweek)

• An Introduction to Securing Apache19 (Linux.com)

• Securing Apache - Access Control20 (Linux.com)
6http://apachetoday.com/newsstory.php3?ltsn=2000-06-1-001-01-NW-DP-LF
7http://apachetoday.com/newsstory.php3?ltsn=2000-07-10-001-01-NW-LF-SW
8http://www.onlamp.com/pub/a/apache/2000/02/24/installingapache.html
9http://www.builder.com/Servers/Apache/ss01.html

10http://www.devshed.com/ServerSide/Administration/APACHE/
11http://www.onlamp.com/pub/a/apache/2000/03/02/configuringapache.html
12http://apachetoday.com/newsstory.php3?ltsn=2000-07-19-002-01-NW-LF-SW
13http://apachetoday.com/newsstory.php3?ltsn=2000-07-17-001-01-PS
14http://www.builder.com/Servers/Apache/ss02.html
15http://www.devshed.com/ServerSide/Administration/MoreApache/
16http://www.linuxplanet.com/linuxplanet/tutorials/1527/1/
17http://www.apacheweek.com/features/userauth
18http://www.apacheweek.com/features/dbmauth
19http://linux.com/security/newsitem.phtml?sid=12&aid=3549
20http://linux.com/security/newsitem.phtml?sid=12&aid=3667

http://apachetoday.com/news_story.php3?ltsn=2000-06-1-001-01-NW-DP-LF
http://apachetoday.com/news_story.php3?ltsn=2000-07-10-001-01-NW-LF-SW
http://www.onlamp.com/pub/a/apache/2000/02/24/installing_apache.html
http://www.builder.com/Servers/Apache/ss01.html
http://www.devshed.com/Server_Side/Administration/APACHE/
http://www.onlamp.com/pub/a/apache/2000/03/02/configuring_apache.html
http://apachetoday.com/news_story.php3?ltsn=2000-07-19-002-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-07-17-001-01-PS
http://www.builder.com/Servers/Apache/ss02.html
http://www.devshed.com/Server_Side/Administration/MoreApache/
http://www.linuxplanet.com/linuxplanet/tutorials/1527/1/
http://www.apacheweek.com/features/userauth
http://www.apacheweek.com/features/dbmauth
http://linux.com/security/newsitem.phtml?sid=12&aid=3549
http://linux.com/security/newsitem.phtml?sid=12&aid=3667

208 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

• Apache Authentication Part 121 - Part 222 - Part 323 - Part 424 (ApacheToday)

• mod access: Restricting Access by Host25 (ApacheToday)

Logging

• Log Rhythms26 (O’Reilly Network Apache DevCenter)

• Gathering Visitor Information: Customising Your Logfiles27 (Apacheweek)

• Apache Guide: Logging Part 128 - Part 229 - Part 330 - Part 431 - Part 532 (ApacheToday)

CGI and SSI

• Dynamic Content with CGI33 (ApacheToday)

• The Idiot’s Guide to Solving Perl CGI Problems34 (CPAN)

• Executing CGI Scripts as Other Users35 (LinuxPlanet)

• CGI Programming FAQ36 (Web Design Group)

• Introduction to Server Side Includes Part 137 - Part 238 (ApacheToday)

• Advanced SSI Techniques39 (ApacheToday)

• Setting up CGI and SSI with Apache40 (CNET Builder.com)

Other Features

• Content Negotiation Explained41 (Apacheweek)

• Using Apache Imagemaps42 (Apacheweek)

• Keeping Your Images from Adorning Other Sites43 (ApacheToday)

• Language Negotiation Notes44 (Alan J. Flavell)

21http://apachetoday.com/newsstory.php3?ltsn=2000-07-24-002-01-NW-LF-SW
22http://apachetoday.com/newsstory.php3?ltsn=2000-07-31-001-01-NW-DP-LF
23http://apachetoday.com/newsstory.php3?ltsn=2000-08-07-001-01-NW-LF-SW
24http://apachetoday.com/newsstory.php3?ltsn=2000-08-14-001-01-NW-LF-SW
25http://apachetoday.com/newsstory.php3?ltsn=2000-11-13-003-01-SC-LF-SW
26http://www.onlamp.com/pub/a/apache/2000/03/10/logrhythms.html
27http://www.apacheweek.com/features/logfiles
28http://apachetoday.com/newsstory.php3?ltsn=2000-08-21-003-01-NW-LF-SW
29http://apachetoday.com/newsstory.php3?ltsn=2000-08-28-001-01-NW-LF-SW
30http://apachetoday.com/newsstory.php3?ltsn=2000-09-05-001-01-NW-LF-SW
31http://apachetoday.com/newsstory.php3?ltsn=2000-09-18-003-01-NW-LF-SW
32http://apachetoday.com/newsstory.php3?ltsn=2000-09-25-001-01-NW-LF-SW
33http://apachetoday.com/newsstory.php3?ltsn=2000-06-05-001-10-NW-LF-SW
34http://www.cpan.org/doc/FAQs/cgi/idiots-guide.html
35http://www.linuxplanet.com/linuxplanet/tutorials/1445/1/
36http://www.htmlhelp.org/faq/cgifaq.html
37http://apachetoday.com/newsstory.php3?ltsn=2000-06-12-001-01-PS
38http://apachetoday.com/newsstory.php3?ltsn=2000-06-19-002-01-NW-LF-SW
39http://apachetoday.com/newsstory.php3?ltsn=2000-06-26-001-01-NW-LF-SW
40http://www.builder.com/Servers/ApacheFiles/082400/
41http://www.apacheweek.com/features/negotiation
42http://www.apacheweek.com/features/imagemaps
43http://apachetoday.com/newsstory.php3?ltsn=2000-06-14-002-01-PS
44http://ppewww.ph.gla.ac.uk/˜flavell/www/lang-neg.html

http://apachetoday.com/news_story.php3?ltsn=2000-07-24-002-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-07-31-001-01-NW-DP-LF
http://apachetoday.com/news_story.php3?ltsn=2000-08-07-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-08-14-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-11-13-003-01-SC-LF-SW
http://www.onlamp.com/pub/a/apache/2000/03/10/log_rhythms.html
http://www.apacheweek.com/features/logfiles
http://apachetoday.com/news_story.php3?ltsn=2000-08-21-003-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-08-28-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-09-05-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-09-18-003-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-09-25-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-06-05-001-10-NW-LF-SW
http://www.cpan.org/doc/FAQs/cgi/idiots-guide.html
http://www.linuxplanet.com/linuxplanet/tutorials/1445/1/
http://www.htmlhelp.org/faq/cgifaq.html
http://apachetoday.com/news_story.php3?ltsn=2000-06-12-001-01-PS
http://apachetoday.com/news_story.php3?ltsn=2000-06-19-002-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-06-26-001-01-NW-LF-SW
http://www.builder.com/Servers/ApacheFiles/082400/
http://www.apacheweek.com/features/negotiation
http://www.apacheweek.com/features/imagemaps
http://apachetoday.com/news_story.php3?ltsn=2000-06-14-002-01-PS
http://ppewww.ph.gla.ac.uk/~flavell/www/lang-neg.html

6.7. APACHE TUTORIALS 209

If you have a pointer to an accurate and well-written tutorial not included here, please let us know by submitting it to
the Apache Bug Database45.

45http://bugs.apache.org/

http://bugs.apache.org/

210 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Chapter 7

Platform-specific Notes

211

212 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.1 Platform Specific Notes

Microsoft Windows

Using Apache This document explains how to install, configure and run Apache 2.0 under Microsoft Windows.

See: Using Apache with Microsoft Windows (p.213)

Compiling Apache There are many important points before you begin compiling Apache. This document explain
them.

See: Compiling Apache for Microsoft Windows (p.221)

Other Platforms

Novell NetWare This document explains how to install, configure and run Apache 2.0 under Novell NetWare 5.1 and
above.

See: Using Apache With Novell NetWare (p.226)

EBCDIC Version 1.3 of the Apache HTTP Server is the first version which includes a port to a (non-ASCII) main-
frame machine which uses the EBCDIC character set as its native codeset.

! Warning: This document has not been updated to take into account changes made in the 2.0
version of the Apache HTTP Server. Some of the information may still be relevant, but please
use it with care.

See: The Apache EBCDIC Port (p.233)

7.2. USING APACHE WITH MICROSOFT WINDOWS 213

7.2 Using Apache with Microsoft Windows

This document explains how to install, configure and run Apache 2.0 under Microsoft Windows. If you find any bugs,
or wish to contribute in other ways, please use our bug reporting page1.

This document assumes that you are installing a binary distribution of Apache. If you want to compile Apache yourself
(possibly to help with development or tracking down bugs), see Compiling Apache for Microsoft Windows (p.221) .

Because of the current versioning policies on Microsoft Windows operating system families, this document
assumes the following:

• Windows NT: This means all versions of Windows that are based on the Windows NT kernel. Includes Windows
NT, Windows 2000, Windows XP and Windows .Net Server 2003.

• Windows 9x: This means older, consumer-oriented versions of Windows. Includes Windows 95 (also OSR2),
Windows 98 and Windows ME.

Operating System Requirements

The primary Windows platform for running Apache 2.0 is Windows NT. The binary installer only works with the x86
family of processors, such as Intel and AMD processors. Running Apache on Windows 9x is not thoroughly tested,
and it is never recommended on production systems.

On all operating systems, TCP/IP networking must be installed and working. If running on Windows 95, the Winsock
2 upgrade must be installed. Winsock 2 for Windows 95 can be downloaded from here2.

On Windows NT 4.0, installing Service Pack 6 is strongly recommended, as Service Pack 4 created known issues with
TCP/IP and Winsock integrity that were resolved in later Service Packs.

Downloading Apache for Windows

Information on the latest versions of Apache can be found on the web site of the Apache web server at
http://httpd.apache.org/download.cgi. There you will find the current release, as well as more recent alpha or beta
test versions, and a list of HTTP and FTP mirrors from which you can download the Apache web server. Please use a
mirror near to you for a fast and reliable download.

For Windows installations you should download the version of Apache for Windows with the.msi extension. This is
a single Microsoft Installer file, which contains a ready-to-run version of Apache. There is a separate.zip file, which
contains only the source code. You can compile Apache yourself with the Microsoft Visual C++ (Visual Studio) tools.

Installing Apache for Windows

You need Microsoft Installer 1.2 or above for the installation to work. On Windows 9x you can update your Microsoft
Installer to version 2.0 here3 and on Windows NT 4.0 and 2000 the version 2.0 update can be found here4. Windows
XP does not need this update.

Note that you cannot install two versions of Apache 2.0 on the same computer with the binary installer. You can,
however, install a version of the 1.3 seriesand a version of the 2.0 series on the same computer without problems. If
you need to have two different 2.0 versions on the same computer, you have to compile and install Apache from the
source (p.221) .

Run the Apache.msi file you downloaded above. The installation will ask you for these things:

1http://httpd.apache.org/bugreport.html
2http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/SWUNetworkingTools/W95Sockets2/Default.asp
3http://www.microsoft.com/downloads/release.asp?ReleaseID=32831
4http://www.microsoft.com/downloads/release.asp?ReleaseID=32832

http://httpd.apache.org/bug_report.html
http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetworkingTools/W95Sockets2/Default.asp
http://www.microsoft.com/downloads/release.asp?ReleaseID=32831
http://www.microsoft.com/downloads/release.asp?ReleaseID=32832

214 CHAPTER 7. PLATFORM-SPECIFIC NOTES

1. Network Domain. Enter the DNS domain in which your server is or will be registered in. For example, if your
server’s full DNS name isserver.mydomain.net , you would typemydomain.net here.

2. Server Name. Your server’s full DNS name. From the example above, you would type
server.mydomain.net here.

3. Administrator’s Email Address. Enter the server administrator’s or webmaster’s email address here. This
address will be displayed along with error messages to the client by default.

4. For whom to install Apache Select for All Users, on Port 80, as a Service -
Recommended if you’d like your new Apache to listen at port 80 for incoming traffic. It will run as a service
(that is, Apache will run even if no one is logged in on the server at the moment) Selectonly for the
Current User, on Port 8080, when started Manually if you’d like to install Apache for
your personal experimenting or if you already have another WWW server running on port 80.

5. The installation type. SelectTypical for everything except the source code and libraries for module devel-
opment. WithCustom you can specify what to install. A full install will require about 13 megabytes of free
disk space. This doesnot include the size of your web site(s).

6. Where to install. The default path isC: \Program Files \Apache Group under which a directory called
Apache2 will be created by default.

During the installation, Apache will configure the files in theconf subdirectory to reflect the chosen installation
directory. However, if any of the configuration files in this directory already exist, they will not be overwritten.
Instead, the new copy of the corresponding file will be left with the extension.default . So, for example, if
conf \httpd.conf already exists, it will be renamed asconf \httpd.conf.default . After the installation
you should manually check to see what new settings are in the.default file, and if necessary, update your existing
configuration file.

Also, if you already have a file calledhtdocs \index.html , it will not be overwritten (and no
index.html.default will be installed either). This means it should be safe to install Apache over an exist-
ing installation, although you would have to stop the existing running server before doing the installation, and then
start the new one after the installation is finished.

After installing Apache, you must edit the configuration files in theconf subdirectory as required. These files will
be configured during the installation so that Apache is ready to be run from the directory it was installed into, with
the documents server from the subdirectoryhtdocs . There are lots of other options which you should set before you
really start using Apache. However, to get started quickly, the files should work as installed.

Customizing Apache for Windows

Apache is configured by the files in theconf subdirectory. These are the same files used to configure the Unix version,
but there are a few different directives for Apache on Windows. See the directive index (p.629) for all the available
directives.

The main differences in Apache for Windows are:

• Because Apache for Windows is multithreaded, it does not use a separate process for each request, as Apache
does on Unix. Instead there are usually only two Apache processes running: a parent process, and a child which
handles the requests. Within the child process each request is handled by a separate thread.

The process management directives are also different:

MAX REQUESTSPERCHILD : Like the Unix directive, this controls how many requests a single child pro-
cess will serve before exiting. However, unlike on Unix, a single process serves all the requests at once,
not just one. If this is set, it is recommended that a very high number is used. The recommended default,
MaxRequestsPerChild 0 , causes the child process to never exit.

7.2. USING APACHE WITH MICROSOFT WINDOWS 215

! Warning: The server configuration file is reread when a new child process is started. If
you have modifiedhttpd.conf , the new child may not start or you may receive unex-
pected results.

THREADSPERCHILD : This directive is new. It tells the server how many threads it should use. This is the
maximum number of connections the server can handle at once, so be sure to set this number high enough for
your site if you get a lot of hits. The recommended default isThreadsPerChild 50 .

• The directives that accept filenames as arguments must use Windows filenames instead of Unix ones. However,
because Apache uses Unix-style names internally, you must use forward slashes, not backslashes. Drive letters
can be used; if omitted, the drive with the Apache executable will be assumed.

• Apache for Windows contains the ability to load modules at runtime, without recompiling the server. If Apache
is compiled normally, it will install a number of optional modules in the\Apache2 \modules directory. To
activate these or other modules, the newLOADMODULE directive must be used. For example, to activate the
status module, use the following (in addition to the status-activating directives inaccess.conf):

LoadModule status module modules/mod status.so

Information on creating loadable modules (p.516) is also available.

• Apache can also load ISAPI (Internet Server Application Programming Interface) extensions (i.e. internet server
applications), such as those used by Microsoft IIS and other Windows servers. More information is available (p.
437) . Note that Apachecannot load ISAPI Filters.

• When running CGI scripts, the method Apache uses to find the interpreter for the script is configurable using
theSCRIPTINTERPRETERSOURCEdirective.

• Since it is often difficult to manage files with names like.htaccess in Windows, you may find it useful to
change the name of this per-directory configuration file using theACCESSFILENAME directive.

• Any errors during Apache startup are logged into the Windows event log when running on Windows NT.
This mechanism acts as a backup for those situations where Apache cannot even access the normally used
error.log file. You can view the Windows event log by using the Event Viewer application on Windows NT
4.0, and the Event Viewer MMC snap-in on newer versions of Windows.

=⇒Note that there is no startup error logging on Windows 9x because no Windows event log
exists on those operating systems.

Running Apache as a Service

Apache can be run as a service on Windows NT. There is some highly experimental support for similar behavior on
Windows 9x.

You can install Apache as a service automatically during the installation. If you chose to install for all users, the
installation will create an Apache service for you. If you specify to install for yourself only, you can manually register
Apache as a service after the installation. You have to be a member of the Administrators group for the service
installation to succeed.

Apache comes with a utility called the Apache Service Monitor. With it you can see and manage the state of all
installed Apache services on any machine on your network. To be able to manage an Apache service with the monitor,
you have to first install the service (either automatically via the installation or manually).

You can install Apache as a Windows NT service as follows from the command prompt at the Apachebin subdirec-
tory:

apache -k install

216 CHAPTER 7. PLATFORM-SPECIFIC NOTES

If you need to specify the name of the service you want to install, use the following command. You have to do this if
you have several different service installations of Apache on your computer.

apache -k install -n "MyServiceName"

If you need to have specifically named configuration files for different services, you must use this:

apache -k install -n "MyServiceName" -f "c: \files \my.conf"

If you use the first command without any special parameters except-k install , the service will be called
Apache2 and the configuration will be assumed to beconf \httpd.conf .

Removing an Apache service is easy. Just use:

apache -k uninstall

The specific Apache service to be uninstalled can be specified by using:

apache -k uninstall -n "MyServiceName"

Normal starting, restarting and shutting down of an Apache service is usually done via the Apache Service Moni-
tor, by using commands likeNET START Apache2andNET STOP Apache2or via normal Windows service
management. Before starting Apache as a service by any means, you should test the service’s configuration file by
using:

apache -n "MyServiceName" -t

You can control an Apache service by its command line switches, too. To start an installed Apache service you’ll use
this:

apache -k start

To stop an Apache service via the command line switches, use this:

apache -k stop

or

apache -k shutdown

You can also restart a running service and force it to reread its configuration file by using:

apache -k restart

7.2. USING APACHE WITH MICROSOFT WINDOWS 217

By default, all Apache services are registered to run as the system user (theLocalSystem account). The
LocalSystem account has no privileges to your network via any Windows-secured mechanism, including the file
system, named pipes, DCOM, or secure RPC. It has, however, wide privileges locally.

! Never grant any network privileges to theLocalSystem account! If you need Apache
to be able to access network resources, create a separate account for Apache as noted
below.

You may want to create a separate account for running Apache service(s). Especially, if you have to access network
resources via Apache, this is strongly recommended.

1. Create a normal domain user account, and be sure to memorize its password.

2. Grant the newly-created user a privilege ofLog on as a service and Act as part of the
operating system . On Windows NT 4.0 these privileges are granted via User Manager for Domains,
but on Windows 2000 and XP you probably want to use Group Policy for propagating these settings. You can
also manually set these via the Local Security Policy MMC snap-in.

3. Confirm that the created account is a member of the Users group.

4. Grant the account read and execute (RX) rights to all document and script folders (htdocs andcgi-bin for
example).

5. Grant the account change (RWXD) rights to the Apachelogs directory.

6. Grant the account read and execute (RX) rights to theApache.exe binary executable.

=⇒It is usually a good practice to grant the user the Apache service runs as read and execute (RX)
access to the whole Apache2 directory, except thelogs subdirectory, where the user has to
have at least change (RWXD) rights.

If you allow the account to log in as a user and as a service, then you can log on with that account and test that
the account has the privileges to execute the scripts, read the web pages, and that you can start Apache in a console
window. If this works, and you have followed the steps above, Apache should execute as a service with no problems.

=⇒Error code 2186 is a good indication that you need to review the" Log On As" configuration
for the service, since Apache cannot access a required network resource. Also, pay close
attention to the privileges of the user Apache is configured to run as.

When starting Apache as a service you may encounter an error message from the Windows Service Control Manager.
For example, if you try to start Apache by using the Services applet in the Windows Control Panel, you may get the
following message:

Could not start the Apache2 service on \\COMPUTER

Error 1067; The process terminated unexpectedly.

You will get this generic error if there is any problem with starting the Apache service. In order to see what is really
causing the problem you should follow the instructions for Running Apache for Windows from the Command Prompt.

There is some support for Apache on Windows 9x to behave in a similar manner as a service on Windows NT. It
is highly experimental. It is not of production-class reliability, and its future is not guaranteed. It can be mostly
regarded as a risky thing to play with - proceed with caution!

There are some differences between the two kinds of services you should be aware of:

• Apache will attempt to start and if successful it will run in the background. If you run the command

218 CHAPTER 7. PLATFORM-SPECIFIC NOTES

apache -n "MyServiceName" -k start

via a shortcut on your desktop, for example, then if the service starts successfully, a console window will flash up
but it immediately disappears. If Apache detects any errors on startup such as incorrect entries in the httpd.conf
configuration file, the console window will remain visible. This will display an error message which will be
useful in tracking down the cause of the problem.

• Windows 9x does not supportNET STARTor NET STOPcommands. You must control the Apache service on
the command prompt via the-k switches.

• Apache and Windows 9x offer no support for running Apache as a specific user with network privileges. In
fact, Windows 9x offers no security on the local machine, either. This is the simple reason because of which
the Apache Software Foundation never endorses use of a Windows 9x -based system as a public Apache server.
The primitive support for Windows 9x exists only to assist the user in developing web content and learning the
Apache server, and perhaps as an intranet server on a secured, private network.

Once you have confirmed that Apache runs correctly as a console application you can install, control and uninstall the
pseudo-service with the same commands as on Windows NT. You can also use the Apache Service Monitor to manage
Windows 9x pseudo-services.

Running Apache as a Console Application

Running Apache as a service is usually the recommended way to use it, but it is sometimes easier to work from the
command line (on Windows 9x running Apache from the command line is the recommended way due to the lack of
reliable service support.)

To run Apache from the command line as a console application, use the following command:

apache

Apache will execute, and will remain running until it is stopped by pressing Control-C.

You can also run Apache via the shortcut Start Apache in Console placed toStart Menu -- > Programs -- >
Apache HTTP Server 2.0.xx -- > Control Apache Server during the installation. This will open a
console window and start Apache inside it. If you don’t have Apache installed as a service, the window will remain
visible until you stop Apache by pressing Control-C in the console window where Apache is running in. The server
will exit in a few seconds. However, if you do have Apache installed as a service, the shortcut starts the service. If the
Apache service is running already, the shortcut doesn’t do anything.

You can tell a running Apache to stop by opening another console window and entering:

apache -k shutdown

This should be preferred over pressing Control-C because this lets Apache end any current operations and clean up
gracefully.

You can also tell Apache to restart. This forces it to reread the configuration file. Any operations in progress are
allowed to complete without interruption. To restart Apache, use:

apache -k restart

7.2. USING APACHE WITH MICROSOFT WINDOWS 219

=⇒Note for people familiar with the Unix version of Apache: these commands provide a Windows
equivalent tokill -TERM pid andkill -USR1 pid . The command line option used,
-k , was chosen as a reminder of thekill command used on Unix.

If the Apache console window closes immediately or unexpectedly after startup, open the Command Prompt from the
Start Menu –> Programs. Change to the folder to which you installed Apache, type the commandapache , and read
the error message. Then change to the logs folder, and review theerror.log file for configuration mistakes. If you
accepted the defaults when you installed Apache, the commands would be:

c:
cd " \Program Files \Apache Group \Apache2 \bin"

apache

Then wait for Apache to stop, or press Control-C. Then enter the following:

cd .. \logs

more < error.log

When working with Apache it is important to know how it will find the configuration file. You can specify a configu-
ration file on the command line in two ways:

• -f specifies an absolute or relative path to a particular configuration file:

apache -f "c: \my server files \anotherconfig.conf"

or

apache -f files \anotherconfig.conf

• -n specifies the installed Apache service whose configuration file is to be used:

apache -n "MyServiceName"

In both of these cases, the properSERVERROOT should be set in the configuration file.

If you don’t specify a configuration file with-f or -n , Apache will use the file name compiled into the server, such
asconf \httpd.conf . This built-in path is relative to the installation directory. You can verify the compiled file
name from a value labelled asSERVERCONFIGFILE when invoking Apache with the-V switch, like this:

apache -V

Apache will then try to determine itsSERVERROOT by trying the following, in this order:

1. A SERVERROOT directive via the-C command line switch.

2. The-d switch on the command line.

3. Current working directory.

4. A registry entry which was created if you did a binary installation.

220 CHAPTER 7. PLATFORM-SPECIFIC NOTES

5. The server root compiled into the server. This is/apache by default, you can verify it by usingapache
-V and looking for a value labelled asHTTPDROOT.

During the installation, a version-specific registry key is created in the Windows registry. The location of this key
depends on the type of the installation. If you chose to install Apache for all users, the key is located under the
HKEYLOCALMACHINEhive, like this (the version numbers will of course vary between different versions of Apache:

HKEYLOCALMACHINE\SOFTWARE\Apache Group \Apache \2.0.43

Correspondingly, if you chose to install Apache for the current user only, the key is located under the
HKEYCURRENTUSERhive, the contents of which are dependent of the user currently logged on:

HKEYCURRENTUSER\SOFTWARE\Apache Group \Apache \2.0.43

This key is compiled into the server and can enable you to test new versions without affecting the current version. Of
course, you must take care not to install the new version in the same directory as another version.

If you did not do a binary install, Apache will in some scenarios complain about the missing registry key. This warning
can be ignored if the server was otherwise able to find its configuration file.

The value of this key is theSERVERROOT directory which contains theconf subdirectory. When Apache starts
it reads thehttpd.conf file from that directory. If this file contains aSERVERROOT directive which contains a
different directory from the one obtained from the registry key above, Apache will forget the registry key and use the
directory from the configuration file. If you copy the Apache directory or configuration files to a new location it is
vital that you update theSERVERROOT directive in thehttpd.conf file to reflect the new location.

Testing the Installation

After starting Apache (either in a console window or as a service) it will be listening on port 80 (unless you changed
theL ISTEN directive in the configuration files or installed Apache only for the current user). To connect to the server
and access the default page, launch a browser and enter this URL:

http://localhost/

Apache should respond with a welcome page and a link to the Apache manual. If nothing happens or you get an error,
look in theerror.log file in the logs subdirectory. If your host is not connected to the net, or if you have serious
problems with your DNS (Domain Name Service) configuration, you may have to use this URL:

http://127.0.0.1/

Once your basic installation is working, you should configure it properly by editing the files in theconf subdirectory.
Again, if you change the configuration of the Windows NT service for Apache, first attempt to start it from the
command line to make sure that the service starts with no errors.

Because Apachecannot share the same port with another TCP/IP application, you may need to stop, uninstall or
reconfigure certain other services before running Apache. These conflicting services include other WWW servers and
some firewall implementations.

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 221

7.3 Compiling Apache for Microsoft Windows

There are many important points before you begin compiling Apache. See Using Apache with Microsoft Windows (p.
213) before you begin.

Requirements

Compiling Apache requires the following environment to be properly installed:

• Disk Space

Make sure you have at least 50 MB of free disk space available. After installation Apache requires approx-
imately 10 MB of disk space, plus space for log and cache files, which can grow rapidly. The actual disk
space requirements will vary considerably based on your chosen configuration and any third-party modules or
libraries.

• Microsoft Visual C++ 5.0 or higher.

Apache can be built using the command line tools, or from within the Visual Studio IDE Workbench. The
command line build requires the environment to reflect thePATH, INCLUDE, LIB and other variables that can
be configured with thevcvars32 batch file:

"c: \Program Files \DevStudio \VC\Bin \vcvars32.bat"

• The Windows Platform SDK.

Visual C++ 5.0 builds require an updated Microsoft Windows Platform SDK to enable some Apache features.
For command line builds, the Platform SDK environment is prepared by thesetenv batch file:

"c: \Program Files \Platform SDK \setenv.bat"

The Platform SDK files distributed with Visual C++ 6.0 and later are sufficient, so users of later version may
skip this requirement.

=⇒Note that the Windows Platform SDK update is required to enable all supported
MOD ISAPI features. Without a recent update, Apache will issue warnings under
MSVC++ 5.0 that someMOD ISAPI features will be disabled. Look for the update at
http://msdn.microsoft.com/downloads/sdks/platform/platform.asp.

• The awk utility (awk, gawk or similar).

To install Apache within the build system, several files are modified using theawk.exe utility. awk was
chosen since it is a very small download (compared with Perl or WSH/VB) and accomplishes the task of gener-
ating files. Brian Kernighan’s http://cm.bell-labs.com/cm/cs/who/bwk/ site has a compiled native Win32 binary,
http://cm.bell-labs.com/cm/cs/who/bwk/awk95.exe which you must save with the nameawk.exe rather than
awk95.exe .

=⇒Note that Developer Studio IDE will only findawk.exe from the Tools menu Options... Di-
rectories tab (the Projects - VC++ Directories pane in Developer Studio 7.0) listing Executable
file paths. Add the path forawk.exe to this list, and your systemPATHenvironment variable,
as needed.

=⇒Also note that if you are using Cygwin (http://www.cygwin.com/) the awk utility is named
gawk.exe and that the fileawk.exe is really a symlink to thegawk.exe file. The Win-
dows command shell does not recognize symlinks, and because of that building InstallBin will
fail. A workaround is to deleteawk.exe from the cygwin installation and renamegawk.exe
to awk.exe .

222 CHAPTER 7. PLATFORM-SPECIFIC NOTES

• [Optional] OpenSSL libraries (forMOD SSL andab.exe with ssl support)

Caution: there are significant restrictions and prohibitions on the use and distribution of strong cryp-
tography and patented intellectual property throughout the world. OpenSSL includes strong cryptography
controlled by both export regulations and domestic law, as well as intellectual property protected by patent, in
the United States and elsewhere. Neither the Apache Software Foundation nor the OpenSSL project can provide
legal advise regarding possession, use, or distribution of the code provided by the OpenSSL project.Consult
your own legal counsel, you are responsible for your own actions.

OpenSSL must be installed into asrclib subdirectory named openssl , obtained from
http://www.openssl.org/source/, in order to compileMOD SSL or the abs project (ab.exe with SSL
support.) To prepare OpenSSL for bothrelease and debug builds of Apache, and disable the patent
protected features in 0.9.7, you might use the following build commands:

perl Configure VC-WIN32
perl util \mkfiles.pl >MINFO
perl util \mk1mf.pl dll no-asm no-mdc2 no-rc5 no-idea VC-WIN32
>makefile
perl util \mk1mf.pl dll debug no-asm no-mdc2 no-rc5 no-idea VC-WIN32
>makefile.dbg
perl util \mkdef.pl 32 libeay no-asm no-mdc2 no-rc5 no-idea
>ms\libeay32.def
perl util \mkdef.pl 32 ssleay no-asm no-mdc2 no-rc5 no-idea
>ms\ssleay32.def
nmake

nmake -f makefile.dbg

• [Optional] zlib sources (forMOD DEFLATE)

Zlib must be installed into asrclib subdirectory namedzlib , however those sources need not be compiled.
The build system will compile the compression sources directly into theMOD DEFLATE module. Zlib can be
obtained from http://www.gzip.org/zlib/ –MOD DEFLATE is confirmed to build correctly with version 1.1.4.

Command-Line Build

First, unpack the Apache distribution into an appropriate directory. Open a command-line prompt andcd to that
directory.

The master Apache makefile instructions are contained in theMakefile.win file. To compile Apache on Windows
NT, simply use one of the following commands to compiled therelease or debug build, respectively:

nmake /f Makefile.win _apacher

nmake /f Makefile.win _apached

Either command will compile Apache. The latter will include debugging information in the resulting files, making it
easier to find bugs and track down problems.

Developer Studio Workspace IDE Build

Apache can also be compiled using VC++’s Visual Studio development environment. To simplify this process, a Visual
Studio workspace,Apache.dsw , is provided. This workspace exposes the entire list of working.dsp projects that

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 223

are required for the complete Apache binary release. It includes dependencies between the projects to assure that they
are built in the appropriate order.

Open theApache.dsw workspace, and selectInstallBin (Release or Debug build, as desired) as the Active
Project.InstallBin causes all related project to be built, and then invokesMakefile.win to move the compiled
executables and dlls. You may personalize theINSTDIR= choice by changingInstallBin ’s Settings, General tab,
Build command line entry.INSTDIR defaults to the/Apache2 directory. If you only want a test compile (without
installing) you may build theBuildBin project instead.

The.dsp project files are distributed in Visual C++ 6.0 format. Visual C++ 5.0 (97) will recognize them. Visual C++
7.0 (.net) must convertApache.dsw plus the.dsp files into anApache.sln plus .msproj files, be sure you
reconvert the.msproj file if any of the source.dsp files change! This is really trivial, just openApache.dsw in
the VC++ 7.0 IDE once again.

Visual C++ 7.0 (.net) users should also use the Build menu, Configuration Manager dialog to uncheck both theDebug
andRelease Solution modules abs,MOD SSL and MOD DEFLATE. These modules are built by invokingnmake
or the IDE directly with theBinBuild target to build those modules explicitly, only if thesrclib directories
openssl and/orzlib exist.

Exported.mak files pose a greater hassle, but they are required for Visual C++ 5.0 users to buildMOD SSL, abs (ab
with SSL support) and/orMOD DEFLATE. VC++ 7.0 (.net) users also benefit,nmake builds are faster thanbinenv
builds. Build the entire project from within the VC++ 5.0 or 6.0 IDE, then use the Project Menu Export for all
makefiles. You must build the projects first in order to create all dynamic auto-generated targets, so that dependencies
can be parsed correctly. Run the following command to fix the paths so they will build anywhere:

perl srclib \apr \build \fixwin32mak.pl

You must type this command from thetop leveldirectory of thehttpd source tree. Every.mak and.dep project
file within the current directory and below will be corrected, and the timestamps adjusted to reflect the.dsp .

If you contribute back a patch that revises project files, we must commit project files in Visual Studio 6.0 format.
Changes should be simple, with minimal compilation and linkage flags that will be recognized by all VC++ 5.0
through 7.0 environments.

Project Components

TheApache.dsw workspace andmakefile.win nmake script both build the.dsp projects of the Apache server
in the following sequence:

1. srclib \apr \apr.dsp

2. srclib \apr \libapr.dsp

3. srclib \apr-util \uri \gen uri delims.dsp

4. srclib \apr-util \xml \expat \lib \xml.dsp

5. srclib \apr-util \aprutil.dsp

6. srclib \apr-util \libaprutil.dsp

7. srclib \pcre \dftables.dsp

8. srclib \pcre \pcre.dsp

9. srclib \pcre \pcreposix.dsp

10. server \gen test char.dsp

224 CHAPTER 7. PLATFORM-SPECIFIC NOTES

11. libhttpd.dsp

12. Apache.dsp

In addition, themodules \ subdirectory tree contains project files for the majority of the modules.

Thesupport \ directory contains project files for additional programs that are not part of the Apache runtime, but
are used by the administrator to test Apache and maintain password and log files. Windows-specific support projects
are broken out in thesupport \win32 \ directory.

1. support \ab.dsp

2. support \htdigest.dsp

3. support \htpasswd.dsp

4. support \logresolve.dsp

5. support \rotatelogs.dsp

6. support \win32 \ApacheMonitor.dsp

7. support \win32 \wintty.dsp

Once Apache has been compiled, it needs to be installed in its server root directory. The default is the\Apache2
directory, of the same drive.

To build and install all the files into the desired folderdir automatically, use one of the followingnmake commands:

nmake /f Makefile.win installr INSTDIR=dir

nmake /f Makefile.win installd INSTDIR=dir

The dir argument toINSTDIR gives the installation directory; it can be omitted if Apache is to be installed into
\Apache2 .

This will install the following:

• dir \bin \Apache.exe - Apache executable

• dir \bin \ApacheMonitor.exe - Service monitor taskbar icon utility

• dir \bin \htdigest.exe - Digest auth password file utility

• dir \bin \htdbm.exe - SDBM auth database password file utility

• dir \bin \htpasswd.exe - Basic auth password file utility

• dir \bin \logresolve.exe - Log file dns name lookup utility

• dir \bin \rotatelogs.exe - Log file cycling utility

• dir \bin \wintty.exe - Console window utility

• dir \bin \libapr.dll - Apache Portable Runtime shared library

• dir \bin \libaprutil.dll - Apache Utility Runtime shared library

• dir \bin \libhttpd.dll - Apache Core library

• dir \modules \mod *.so - Loadable Apache modules

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 225

• dir \conf - Configuration directory

• dir \logs - Empty logging directory

• dir \include - C language header files

• dir \lib - Link library files

Warning about building Apache from the development tree

=⇒Note only the.dsp files are maintained betweenrelease builds. The.mak files are NOT
regenerated, due to the tremendous waste of reviewer’s time. Therefore, you cannot rely on the
NMAKEcommands above to build revised.dsp project files unless you then export all.mak
files yourself from the project. This is unnecessary if you build from within the Microsoft
Developer Studio environment.

=⇒Also note it is very worthwhile to build theBuildBin target project (or the command line
apacher or apached target) prior to exporting the make files. Many files are autogener-

ated in the build process. Only a full build provides all of the dependent files required to build
proper dependency trees for correct build behavior.

In order to create distribution.mak files, always review the generated.mak (or .dep) dependen-
cies for Platform SDK or other garbage includes. TheDevStudio \SharedIDE \bin \ (VC5) or
DevStudio \Common\MSDev98\bin \ (VC6) directory contains thesysincl.dat file, which must list all
exceptions. Update this file (including both forward and backslashed paths, such as bothsys/time.h and
sys \time.h) to include such dependencies. Including local-install paths in a distributed.mak file will cause the
build to fail completely. And don’t forget to runsrclib/apr/build/fixwin32mak.pl in order to fix absolute
paths within the.mak files.

226 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.4 Using Apache With Novell NetWare

This document explains how to install, configure and run Apache 2.0 under Novell NetWare 6.0 and above. If you find
any bugs, or wish to contribute in other ways, please use our bug reporting page.5

The bug reporting page and dev-httpd mailing list arenotprovided to answer questions about configuration or running
Apache. Before you submit a bug report or request, first consult this document, the Frequently Asked Questions
(p. 144) page and the other relevant documentation topics. If you still have a question or problem, post it to the
novell.devsup.webserver6 newsgroup, where many Apache users are more than willing to answer new and obscure
questions about using Apache on NetWare.

Most of this document assumes that you are installing Apache from a binary distribution. If you want to compile
Apache yourself (possibly to help with development, or to track down bugs), see the section on Compiling Apache for
NetWare below.

Requirements

Apache 2.0 is designed to run on NetWare 6.0 service pack 3 and above. If you are running a service pack less than
SP3, you must install the latest NetWare Libraries for C (LibC)7.

NetWare service packs are available here8.

Apache 2.0 for NetWare can also be run in a NetWare 5.1 environment as long as the latest service pack or the latest
version of the NetWare Libraries for C (LibC)9 has been installed .WARNING: Apache 2.0 for NetWare has not been
targeted for or tested in this environment.

Downloading Apache for NetWare

Information on the latest version of Apache can be found on the Apache web server at http://www.apache.org/. This
will list the current release, any more recent alpha or beta-test releases, together with details of mirror web and
anonymous ftp sites. Binary builds of the latest releases of Apache 2.0 for NetWare can be downloaded from here10.

Installing Apache for NetWare

There is no Apache install program for NetWare currently. If you are building Apache 2.0 for NetWare from source,
you will need to copy the files over to the server manually.

Follow these steps to install Apache on NetWare from the binary download (assuming you will install to
sys:/apache2):

• Unzip the binary download file to the root of theSYS: volume (may be installed to any volume)

• Edit thehttpd.conf file settingSERVERROOT andSERVERNAME along with any file path values to reflect
your correct server settings

• Add SYS:/APACHE2 to the search path, for example:

SEARCH ADD SYS:\APACHE2

5http://httpd.apache.org/bugreport.html
6news://developer-forums.novell.com/novell.devsup.webserver
7http://developer.novell.com/ndk/libc.htm
8http://support.novell.com/misc/patlst.htm#nw
9http://developer.novell.com/ndk/libc.htm

10http://www.apache.org/dist/httpd/binaries/netware

http://httpd.apache.org/bug_report.html
news://developer-forums.novell.com/novell.devsup.webserver
http://developer.novell.com/ndk/libc.htm
http://support.novell.com/misc/patlst.htm#nw
http://developer.novell.com/ndk/libc.htm
http://www.apache.org/dist/httpd/binaries/netware

7.4. USING APACHE WITH NOVELL NETWARE 227

Follow these steps to install Apache on NetWare manually from your own build source (assuming you will install to
sys:/apache2):

• Create a directory calledApache2 on a NetWare volume

• CopyAPACHE2.NLM, APRLIB.NLM to SYS:/APACHE2

• Create a directory underSYS:/APACHE2 calledBIN

• Copy HTDIGEST.NLM, HTPASSWD.NLM, HTDBM.NLM, LOGRES.NLM, ROTLOGS.NLM to
SYS:/APACHE2/BIN

• Create a directory underSYS:/APACHE2 calledCONF

• Copy theHTTPD-STD.CONFfile to theSYS:/APACHE2/CONFdirectory and rename toHTTPD.CONF

• Copy theMIME.TYPES, CHARSET.CONVandMAGICfiles toSYS:/APACHE2/CONFdirectory

• Copy all files and subdirectories in\HTTPD-2.0 \DOCS\ICONSto SYS:/APACHE2/ICONS

• Copy all files and subdirectories in\HTTPD-2.0 \DOCS\MANUALto SYS:/APACHE2/MANUAL

• Copy all files and subdirectories in\HTTPD-2.0 \DOCS\ERRORto SYS:/APACHE2/ERROR

• Copy all files and subdirectories in\HTTPD-2.0 \DOCS\DOCROOTto SYS:/APACHE2/HTDOCS

• Create the directorySYS:/APACHE2/LOGS on the server

• Create the directorySYS:/APACHE2/CGI-BIN on the server

• Create the directorySYS:/APACHE2/MODULESand copy all nlm modules into themodules directory

• Edit theHTTPD.CONFfile searching for all@@Value@@markers and replacing them with the appropriate
setting

• Add SYS:/APACHE2 to the search path, for example:

SEARCH ADD SYS:\APACHE2

Apache may be installed to other volumes besides the defaultSYSvolume.

During the build process, adding the keyword" install" to the makefile command line will automatically produce a
complete distribution package under the subdirectoryDIST . Install Apache by simply copying the distribution that
was produced by the makfiles to the root of a NetWare volume (see: Compiling Apache for NetWare below).

Running Apache for NetWare

To start Apache just typeapache at the console. This will load apache in the OS address space. If you prefer to load
Apache in a protected address space you may specify the address space with the load statement as follows:

load address space = apache2 apache2

This will load Apache into an address space called apache2. Running multiple instances of Apache concurrently on
NetWare is possible by loading each instance into its own protected address space.

After starting Apache, it will be listening to port 80 (unless you changed theL ISTEN directive in the configuration
files). To connect to the server and access the default page, launch a browser and enter the server’s name or address.
This should respond with a welcome page, and a link to the Apache manual. If nothing happens or you get an error,
look in theerror log file in the logs directory.

Once your basic installation is working, you should configure it properly by editing the files in theconf directory.

To unload Apache running in the OS address space just type the following at the console:

228 CHAPTER 7. PLATFORM-SPECIFIC NOTES

unload apache2

or

apache2 shutdown

If apache is running in a protected address space specify the address space in the unload statement:

unload address space = apache2 apache2

When working with Apache it is important to know how it will find the configuration files. You can specify a config-
uration file on the command line in two ways:

• -f specifies a path to a particular configuration file

apache2 -f "vol:/my server/conf/my.conf"

apache -f test/test.conf

In these cases, the properSERVERROOT should be set in the configuration file.

If you don’t specify a configuration file name with-f , Apache will use the file name compiled into the
server, usuallyconf/httpd.conf . Invoking Apache with the-V switch will display this value labeled as
SERVERCONFIGFILE . Apache will then determine itsSERVERROOT by trying the following, in this order:

• A ServerRoot directive via a-C switch.

• The-d switch on the command line.

• Current working directory

• The server root compiled into the server.

The server root compiled into the server is usuallysys:/apache2 . invoking apache with the-V switch will display
this value labeled asHTTPDROOT.

Apache 2.0 for NetWare includes a set of command line directives that can be used to modify or display information
about the running instance of the web server. These directives are only available while Apache is running. Each of
these directives must be preceded by the keywordAPACHE2.

RESTART Instructs Apache to terminate all running worker threads as they become idle, reread the configuration
file and restart each worker thread based on the new configuration.

VERSION Displays version information about the currently running instance of Apache.

MODULES Displays a list of loaded modules both built-in and external.

DIRECTIVES Displays a list of all available directives.

SETTINGS Enables or disables the thread status display on the console. When enabled, the state of each running
threads is displayed on the Apache console screen.

SHUTDOWN Terminates the running instance of the Apache web server.

HELP Describes each of the runtime directives.

By default these directives are issued against the instance of Apache running in the OS address space. To issue a
directive against a specific instance running in a protected address space, include the -p parameter along with the name
of the address space. For more information type" apache2 Help" on the command line.

7.4. USING APACHE WITH NOVELL NETWARE 229

Configuring Apache for NetWare

Apache is configured by reading configuration files usually stored in theconf directory. These are the same as files
used to configure the Unix version, but there are a few different directives for Apache on NetWare. See the Apache
documentation (p.??) for all the available directives.

The main differences in Apache for NetWare are:

• Because Apache for NetWare is multithreaded, it does not use a separate process for each request, as Apache
does on some Unix implementations. Instead there are only threads running: a parent thread, and multiple child
or worker threads which handle the requests.

Therefore the" process" -management directives are different:

MAX REQUESTSPERCHILD - Like the Unix directive, this controls how many requests a worker thread will
serve before exiting. The recommended default,MaxRequestsPerChild 0 , causes the thread to continue
servicing request indefinitely. It is recommended on NetWare, unless there is some specific reason, that this
directive always remain set to0.

STARTTHREADS - This directive tells the server how many threads it should start initially. The recommended
default isStartThreads 50 .

M INSPARETHREADS - This directive instructs the server to spawn additional worker threads if the number of
idle threads ever falls below this value. The recommended default isMinSpareThreads 10 .

MAX SPARETHREADS - This directive instructs the server to begin terminating worker threads if the number of
idle threads ever exceeds this value. The recommended default isMaxSpareThreads 100 .

MAX THREADS - This directive limits the total number of work threads to a maximum value. The recommended
default isThreadsPerChild 250 .

THREADSTACKSIZE - This directive tells the server what size of stack to use for the individual worker thread.
The recommended default isThreadStackSize 65536 .

• The directives that accept filenames as arguments must use NetWare filenames instead of Unix names. However,
because Apache uses Unix-style names internally, forward slashes must be used rather than backslashes. It is
recommended that all rooted file paths begin with a volume name. If omitted, Apache will assume theSYS:
volume which may not be correct.

• Apache for NetWare has the ability to load modules at runtime, without recompiling the server. If Apache is
compiled normally, it will install a number of optional modules in the\Apache2 \modules directory. To
activate these, or other modules, theLOADMODULE directive must be used. For example, to active the status
module, use the following:

LoadModule status module modules/status.nlm

Information on creating loadable modules (p.516) is also available.

Additional NetWare specific directives:

• CGIMAPEXTENSION - This directive maps a CGI file extension to a script interpreter.

• SECUREL ISTEN - Enables SSL encryption for a specified port.

• NWSSLTRUSTEDCERTS - Adds trusted certificates that are used to create secure connections to proxied
servers.

230 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Compiling Apache for NetWare

Compiling Apache requires MetroWerks CodeWarrior 6.x or higher. Once Apache has been built, it can be installed
to the root of any NetWare volume. The default is thesys:/Apache2 directory.

Before running the server you must fill out theconf directory. Copy the fileHTTPD-STD.CONFfrom the distribution
conf directory and rename it toHTTPD.CONF. Edit theHTTPD.CONFfile searching for all@@Value@@markers
and replacing them with the appropriate setting. Copy over theconf/magic andconf/mime.types files as well.
Alternatively, a complete distribution can be built by including the keywordinstall when invoking the makefiles.

Requirements:

The following development tools are required to build Apache 2.0 for NetWare:

• Metrowerks CodeWarrior 6.0 or higher with the NetWare PDK 3.011 or higher.

• NetWare Libraries for C (LibC)12

• LDAP Libraries for C13

• ZLIB Compression Library source code14

• AWK utility (awk, gawk or similar). AWK can be downloaded from
http://developer.novell.com/ndk/apache.htm. The utility must be found in your windows path and
must be namedawk.exe .

• To build using the makefiles, you will need GNU make version 3.78.1 (GMake) available at
http://developer.novell.com/ndk/apache.htm.

Building Apache using the NetWare makefiles:

• Set the environment variableNOVELLLIBCto the location of the NetWare Libraries for C SDK, for example:

Set NOVELLLIBC=c: \novell \ndk \libc

• Set the environment variableMETROWERKSto the location where you installed the Metrowerks CodeWarrior
compiler, for example:

Set METROWERKS=C:\Program Files \Metrowerks \CodeWarrior

If you installed to the default locationC: \Program Files \Metrowerks \CodeWarrior , you don’t need
to set this.

• Set the environment variableLDAPSDKto the location where you installed the LDAP Libraries for C, for
example:

Set LDAPSDK=c: \Novell \NDK\cldapsdk \NetWare \libc

• Set the environment variableZLIBSDK to the location where you installed the source code for the ZLib Library,
for example:

11http://developer.novell.com/ndk/cwpdk.htm
12http://developer.novell.com/ndk/libc.htm
13http://developer.novell.com/ndk/cldap.htm
14http://www.gzip.org/zlib/

http://developer.novell.com/ndk/cwpdk.htm
http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/cldap.htm
http://www.gzip.org/zlib/

7.4. USING APACHE WITH NOVELL NETWARE 231

Set ZLIBSDK=D: \NOVELL\zlib

• Set the environment variableAP WORKto the full path of the\httpd-2.0 directory.

• Set the environment variableAPRWORKto the full path of the\httpd-2.0 \srclib \apr directory.

• Make sure that the path to the AWK utility and the GNU make utility (gmake.exe) have been included in the
system’sPATHenvironment variable.

• Download the source code and unzip to an appropriate directory on your workstation.

• Change directory to\httpd-2.0 \srclib \apr-util \uri and buildGENURI.nlm by running"gmake
-f nwgnumakefile" .

• Copy the fileGENURI.nlm to theSYS: volume of a NetWare server and run using the following command:

SYS:\genuri > sys: \uri delims.h

• Copy the fileuri delims.h to the directory\httpd-2.0 \srclib \apr-util \uri on the build ma-
chine.

• Change directory to \httpd-2.0 \srclib \apr and build APR by running "gmake -f
nwgnumakefile"

• Change directory to\httpd-2.0 \srclib \pcre and build DFTABLES.nlm by running "gmake -f
nwgnumakefile"

• Change directory to\httpd-2.0 \server and build GENCHARS.nlm by running "gmake -f
nwgnumakefile"

• Copy the filesGENCHARS.nlmandDFTABLES.nlm from their respective directories to theSYS: volume of
a NetWare server and run them using the following commands:

SYS:\genchars > sys: \test char.h

SYS:\dftables > sys: \chartables.c

• Copy the filestest char.h and chartables.c to the directory\httpd-2.0 \os\netware on the
build machine.

• Change directory to\httpd-2.0 and build Apache by running"gmake -f nwgnumakefile" . You can
create a distribution directory by adding an install parameter to the command, for example:

gmake -f nwgnumakefile install

Additional make options

• gmake -f nwgnumakefile Builds release versions of all of the binaries and copies them to a\release
destination directory.

• gmake -f nwgnumakefile DEBUG=1 Builds debug versions of all of the binaries and copies them to a
\debug destination directory.

• gmake -f nwgnumakefile install Creates a complete Apache distribution with binaries, docs and ad-
ditional support files in a\dist \Apache2 directory.

• gmake -f nwgnumakefile installdev Same as install but also creates a\lib and\include direc-
tory in the destination directory and copies headers and import files.

• gmake -f nwgnumakefile clean Cleans all object files and binaries from the\release or \debug
build areas depending on whetherDEBUGhas been defined.

• gmake -f nwgnumakefile clobber all Same as clean and also deletes the distribution directory if it
exists.

232 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.5 Running a High-Performance Web Server on HPUX

Date: Wed, 05 Nov 1997 16:59:34 -0800
From: Rick Jones <raj@cup.hp.com>
Reply-To: raj@cup.hp.com
Organization: Network Performance
Subject: HP-UX tuning tips

Here are some tuning tips for HP-UX to add to the tuning page.

For HP-UX 9.X: Upgrade to 10.20
For HP-UX 10.[00—01—10]: Upgrade to 10.20

For HP-UX 10.20:

Install the latest cumulative ARPA Transport Patch. This will allow you to configure the size of the TCP connection
lookup hash table. The default is 256 buckets and must be set to a power of two. This is accomplished with adb
against the *disc* image of the kernel. The variable name istcp hash size . Notice that it’s critically important
that you use"W" to write a 32 bit quantity, not"w" to write a 16 bit value when patching the disc image because the
tcp hash size variable is a 32 bit quantity.

How to pick the value? Examine the output of ftp://ftp.cup.hp.com/dist/networking/tools/connhist (p.??) and see how
many total TCP connections exist on the system. You probably want that number divided by the hash table size to be
reasonably small, say less than 10. Folks can look at HP’s SPECweb96 disclosures for some common settings. These
can be found at http://www.specbench.org/. If an HP-UX system was performing at 1000 SPECweb96 connections
per second, theTIME WAIT time of 60 seconds would mean 60,000 TCP" connections" being tracked.

Folks can check their listen queue depths with ftp://ftp.cup.hp.com/dist/networking/misc/listenq (p.??) .

If folks are running Apache on a PA-8000 based system, they should consider" chatr’ing" the Apache executable to
have a large page size. This would be"chatr +pi L <BINARY>" . The GID of the running executable must have
MLOCKprivileges. Setprivgrp(1m) should be consulted for assigningMLOCK. The change can be validated by
running Glance and examining the memory regions of the server(s) to make sure that they show a non-trivial fraction
of the text segment being locked.

If folks are running Apache on MP systems, they might consider writing a small program that usesmpctl() to bind
processes to processors. A simplepid % numcpu algorithm is probably sufficient. This might even go into the
source code.

If folks are concerned about the number ofFIN WAIT 2 connections, they can use nettune to shrink the value of
tcp keepstart . However, they should be careful there - certainly do not make it less than oh two to four minutes.
If tcp hash size has been set well, it is probably OK to let theFIN WAIT 2’s take longer to timeout (perhaps
even the default two hours) - they will not on average have a big impact on performance.

There are other things that could go into the code base, but that might be left for another email. Feel free to drop me a
message if you or others are interested.

sincerely,

rick jones

http://www.cup.hp.com/netperf/NetperfPage.html

7.6. THE APACHE EBCDIC PORT 233

7.6 The Apache EBCDIC Port

! Warning: This document has not been updated to take into account changes made in the 2.0
version of the Apache HTTP Server. Some of the information may still be relevant, but please
use it with care.

Overview of the Apache EBCDIC Port

Version 1.3 of the Apache HTTP Server is the first version which includes a port to a (non-ASCII) mainframe machine
which uses the EBCDIC character set as its native codeset.

(It is the SIEMENS family of mainframes running the BS2000/OSD operating system15. This mainframe OS nowadays
features a SVR4-derived POSIX subsystem).

The port was started initially to

• prove the feasibility of porting the Apache HTTP server16 to this platform

• find a " worthy and capable" successor for the venerable CERN-3.017 daemon (which was ported a couple of
years ago), and to

• prove that Apache’s preforking process model can on this platform easily outperform the accept-fork-serve
model used by CERN by a factor of 5 or more.

This document serves as a rationale to describe some of the design decisions of the port to this machine.

Design Goals

One objective of the EBCDIC port was to maintain enough backwards compatibility with the (EBCDIC) CERN server
to make the transition to the new server attractive and easy. This required the addition of a configurable method to
define whether a HTML document was stored in ASCII (the only format accepted by the old server) or in EBCDIC
(the native document format in the POSIX subsystem, and therefore the only realistic format in which the other POSIX
tools likegrep or sed could operate on the documents). The current solution to this is a" pseudo-MIME-format"
which is intercepted and interpreted by the Apache server (see below). Future versions might solve the problem by
defining an" ebcdic-handler" for all documents which must be converted.

Technical Solution

Since all Apache input and output is based upon the BUFF data type and its methods, the easiest solution was to add
the conversion to the BUFF handling routines. The conversion must be settable at any time, so a BUFF flag was added
which defines whether a BUFF object has currently enabled conversion or not. This flag is modified at several points
in the HTTP protocol:

• setbefore a request is received (because the request and the request header lines are always in ASCII format)

• set/unsetwhen the request body is received - depending on the content type of the request body (because the
request body may contain ASCII text or a binary file)

• setbefore a reply header is sent (because the response header lines are always in ASCII format)

• set/unsetwhen the response body is sent - depending on the content type of the response body (because the
response body may contain text or a binary file)

15http://www.siemens.de/servers/bs2osd/osdbcus.htm
16http://dev.apache.org/
17http://www.w3.org/Daemon/

http://www.siemens.de/servers/bs2osd/osdbc_us.htm
http://dev.apache.org/
http://www.w3.org/Daemon/

234 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Porting Notes

1. The relevant changes in the source are#ifdef ’ed into two categories:

#ifdef CHARSET EBCDIC Code which is needed for any EBCDIC based machine. This includes character
translations, differences in contiguity of the two character sets, flags which indicate which part of the
HTTP protocol has to be converted and which part doesn’tetc.

#ifdef OSDPOSIX Code which is needed for the SIEMENS BS2000/OSD mainframe platform only.
This deals with include file differences and socket implementation topics which are only required on the
BS2000/OSD platform.

2. The possibility to translate between ASCII and EBCDIC at the socket level (on BS2000 POSIX, there is a socket
option which supports this) was intentionallynot chosen, because the byte stream at the HTTP protocol level
consists of a mixture of protocol related strings and non-protocol related raw file data. HTTP protocol strings
are always encoded in ASCII (theGETrequest, any Header: lines, the chunking informationetc.) whereas the
file transfer parts (i.e., GIF images, CGI outputetc.) should usually be just" passed through" by the server. This
separation between" protocol string" and" raw data" is reflected in the server code by functions likebgets()
or rvputs() for strings, and functions likebwrite() for binary data. A global translation of everything
would therefore be inadequate.

(In the case of text files of course, provisions must be made so that EBCDIC documents are always served in
ASCII)

3. This port therefore features a built-in protocol level conversion for the server-internal strings (which the compiler
translated to EBCDIC strings) and thus for all server-generated documents. The hard coded ASCII escapes\012
and\015 which are ubiquitous in the server code are an exception: they are already the binary encoding of the
ASCII \n and\r and must not be converted to ASCII a second time. This exception is only relevant for server-
generated strings; andexternalEBCDIC documents are not expected to contain ASCII newline characters.

4. By examining the call hierarchy for the BUFF management routines, I added an" ebcdic/ascii conversion layer"
which would be crossed on every puts/write/get/gets, and a conversion flag which allowed enabling/disabling
the conversions on-the-fly. Usually, a document crosses this layer twice from its origin source (a file or CGI
output) to its destination (the requesting client):file - > Apache , andApache - > client .

The server can now read the header lines of a CGI-script output in EBCDIC format, and then find out that
the remainder of the script’s output is in ASCII (like in the case of the output of a WWW Counter program:
the document body contains a GIF image). All header processing is done in the native EBCDIC format; the
server then determines, based on the type of document being served, whether the document body (except for the
chunking information, of course) is in ASCII already or must be converted from EBCDIC.

5. For Text documents (MIME types text/plain, text/htmletc.), an implicit translation to ASCII can be used, or (if
the users prefer to store some documents in raw ASCII form for faster serving, or because the files reside on a
NFS-mounted directory tree) can be served without conversion.

Example:

to serve files with the suffix.ahtml as a raw ASCIItext/html document without implicit conversion (and
suffix .ascii as ASCIItext/plain), use the directives:

AddType text/x-ascii-html .ahtml

AddType text/x-ascii-plain .ascii

Similarly, any text/foo MIME type can be served as" raw ASCII" by configuring a MIME type
"text/x-ascii-foo" for it usingAddType .

6. Non-text documents are always served" binary" without conversion. This seems to be the most sensible choice
for, .e.g., GIF/ZIP/AU file types. This of course requires the user to copy them to the mainframe host using the
"rcp -b" binary switch.

7.6. THE APACHE EBCDIC PORT 235

7. Server parsed files are always assumed to be in native (i.e., EBCDIC) format as used on the machine, and are
converted after processing.

8. For CGI output, the CGI script determines whether a conversion is needed or not: by setting the appropriate
Content-Type, text files can be converted, or GIF output can be passed through unmodified. An example for the
latter case is the wwwcount program which we ported as well.

Document Storage Notes

Binary Files

All files with a Content-Type: which does not start withtext/ are regarded asbinary filesby the server and are
not subject to any conversion. Examples for binary files are GIF images, gzip-compressed files and the like.

When exchanging binary files between the mainframe host and a Unix machine or Windows PC, be sure to use the
ftp " binary" (TYPE I) command, or use thercp -b command from the mainframe host (the-b switch is not
supported in unixrcp ’s).

Text Documents

The default assumption of the server is that Text Files (i.e., all files whoseContent-Type: starts withtext/) are
stored in the native character set of the host, EBCDIC.

Server Side Included Documents

SSI documents must currently be stored in EBCDIC only. No provision is made to convert it from ASCII before
processing.

Apache Modules’ Status

Module Status Notes
CORE +
MOD ACCESS +
MOD ACTIONS +
MOD ALIAS +
MOD ASIS +
MOD AUTH +
MOD AUTH ANON +
MOD AUTH DBM ? with own libdb.a

MOD AUTOINDEX +
MOD CERN META ?
MOD CGI +
mod digest +
MOD DIR +
MOD SO - no shared libs
MOD ENV +
MOD EXAMPLE - (test bed only)
MOD EXPIRES +
MOD HEADERS +
MOD IMAP +

236 CHAPTER 7. PLATFORM-SPECIFIC NOTES

MOD INCLUDE +
MOD INFO +
mod log agent +
MOD LOG CONFIG +
mod log referer +
MOD MIME +
MOD MIME MAGIC ? not ported yet
MOD NEGOTIATION +
MOD PROXY +
MOD REWRITE + untested
MOD SETENVIF +
MOD SPELING +
MOD STATUS +
MOD UNIQUE ID +
MOD USERDIR +
MOD USERTRACK ? untested

Third Party Modules’ Status

Module Status Notes
mod jserv a

ahttp://java.apache.org/

- JAVA still being ported.

mod php3 a

ahttp://www.php.net/

+ mod php3 runs fine, with LDAP and GD
and FreeType libraries.

mod put a

ahttp://hpwww.ec-
lyon.fr/˜vincent/apache/modput.html

? untested

mod session (p. ??) - untested

http://java.apache.org/
http://www.php.net/
http://hpwww.ec-lyon.fr/~vincent/apache/mod_put.html
http://hpwww.ec-lyon.fr/~vincent/apache/mod_put.html

Chapter 8

Apache HTTP Server and Supporting
Programs

237

238 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.1 Server and Supporting Programs

This page documents all the executable programs included with the Apache HTTP Server.

Index

httpd (p. 239) Apache hypertext transfer protocol server

apachectl (p.243) Apache HTTP server control interface

ab (p. 241) Apache HTTP server benchmarking tool

apxs (p.245) APache eXtenSion tool

dbmmanage (p.249) Create and update user authentication files in DBM format for basic authentication

htdigest (p.251) Create and update user authentication files for digest authentication

htpasswd (p.252) Create and update user authentication files for basic authentication

logresolve (p.254) Resolve hostnames for IP-addresses in Apache logfiles

rotatelogs (p.255) Rotate Apache logs without having to kill the server

suexec (p.257) Switch User For Exec

Other Programs (p. 258) Support tools with no own manual page.

8.2. HTTPD - APACHE HYPERTEXT TRANSFER PROTOCOL SERVER 239

8.2 httpd - Apache Hypertext Transfer Protocol Server

httpd is the Apache HyperText Transfer Protocol (HTTP) server program. It is designed to be run as a standalone
daemon process. When used like this it will create a pool of child processes or threads to handle requests.

In general,httpd should not be invoked directly, but rather should be invoked via apachectl (p.243) on Unix-based
systems or as a service on Windows NT, 2000 and XP (p.213) and as a console application on Windows 9x and ME
(p. 213) .

See also

• Starting Apache (p.15)

• Stopping Apache (p.17)

• Configuration Files (p.20)

• Platform-specific Documentation (p.212)

• apachectl (p.243)

Synopsis

httpd [- d serverroot] [- f config] [- C directive] [- c directive] [- D
parameter] [- e level] [- E file] [-k start|restart|graceful|stop] [- R
directory] [- h] [- l] [- L] [- S] [- t] [- v] [- V] [- X]

On Windows systems (p.213) , the following additional arguments are available:

httpd [- k install|config|uninstall] [- n name] [- w]

Options

-d serverroot Set the initial value for theSERVERROOT directive to serverroot. This can be overridden by the
ServerRoot directive in the configuration file. The default is/usr/local/apache2 .

-f config Uses the directives in the file config on startup. If config does not begin with a /, then it is taken to be a
path relative to theSERVERROOT. The default isconf/httpd.conf .

-k start|restart|graceful|stop Signalshttpd to start, restart, or stop. See Stopping Apache (p.17)
for more information.

-C directive Process the configuration directive before reading config files.

-c directive Process the configuration directive after reading config files.

-D parameter Sets a configuration parameter which can be used with<IFDEFINE> sections in the configuration
files to conditionally skip or process commands at server startup and restart.

-e level Sets theLOGLEVEL to level during server startup. This is useful for temporarily increasing the verbosity
of the error messages to find problems during startup.

-E file Send error messages during server startup to file.

-R directory When the server is compiled using theSHAREDCORErule, this specifies the directory for the
shared object files.

-h Output a short summary of available command line options.

240 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

-l Output a list of modules compiled into the server. This willnot list dynamically loaded modules included using
theLOADMODULE directive.

-L Output a list of directives together with expected arguments and places where the directive is valid.

-S Show the settings as parsed from the config file (currently only shows the virtualhost settings).

-t Run syntax tests for configuration files only. The program immediately exits after these syntax parsing with either
a return code of 0 (Syntax OK) or return code not equal to 0 (Syntax Error). If -D DUMPVHOSTS is also set,
details of the virtual host configuration will be printed.

-v Print the version ofhttpd , and then exit.

-V Print the version and build parameters ofhttpd , and then exit.

-X Run httpd in debug mode. Only one worker will be started and the server will not detach from the console.

The following arguments are available only on the Windows platform (p.213) :

-k install|config|uninstall Install Apache as a Windows NT service; change startup options for the
Apache service; and uninstall the Apache service.

-n name The name of the Apache service to signal.

-w Keep the console window open on error so that the error message can be read.

8.3. AB - APACHE HTTP SERVER BENCHMARKING TOOL 241

8.3 ab - Apache HTTP server benchmarking tool

ab is a tool for benchmarking your Apache Hypertext Transfer Protocol (HTTP) server. It is designed to give you
an impression of how your current Apache installation performs. This especially shows you how many requests per
second your Apache installation is capable of serving.

See also

• httpd (p.239)

Synopsis

ab [- A auth-username:password] [- c concurrency] [- C cookie-name=value] [
- d] [- e csv-file] [- g gnuplot-file] [- h] [- H custom-header] [- i] [
- k] [- n requests] [- p POST-file] [- P proxy-auth-username:password] [- q
] [- s] [- S] [- t timelimit] [- T content-type] [- v verbosity] [- V] [
- w] [- x <table >-attributes] [- X proxy[:port]] [- y <tr >-attributes] [
- z <td >-attributes] [http://]hostname[:port]/path

Options

-A auth-username:password Supply BASIC Authentication credentials to the server. The username and
password are separated by a single: and sent on the wire base64 encoded. The string is sent regardless of
whether the server needs it (i.e., has sent an 401 authentication needed).

-c concurrency Number of multiple requests to perform at a time. Default is one request at a time.

-C cookie-name=value Add a Cookie: line to the request. The argument is typically in the form of a
name=value pair. This field is repeatable.

-d Do not display the" percentage served within XX [ms] table" . (legacy support).

-e csv-file Write a Comma separated value (CSV) file which contains for each percentage (from 1% to 100%)
the time (in milli seconds) it took to serve that percentage of the requests. This is usually more useful than the
’gnuplot’ file; as the results are already ’binned’.

-g gnuplot-file Write all measured values out as a ’gnuplot’ or TSV (Tab separate values) file. This file can
easily be imported into packages like Gnuplot, IDL, Mathematica, Igor or even Excell. The labels are on the
first line of the file.

-h Display usage information.

-H custom-header Append extra headers to the request. The argument is typically in the form of a valid header
line, containing a colon-separated field-value pair (i.e., "Accept-Encoding: zip/zop;8bit").

-i Do HEADrequests instead ofGET.

-k Enable the HTTP KeepAlive feature,i.e., perform multiple requests within one HTTP session. Default is no
KeepAlive.

-n requests Number of requests to perform for the benchmarking session. The default is to just perform a single
request which usually leads to non-representative benchmarking results.

-p POST-file File containing data to POST.

242 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

-P proxy-auth-username:password Supply BASIC Authentication credentials to a proxy en-route. The
username and password are separated by a single: and sent on the wire base64 encoded. The string is sent
regardless of whether the proxy needs it (i.e., has sent an 407 proxy authentication needed).

-q When processing more than 150 requests,ab outputs a progress count onstderr every 10% or 100 requests or
so. The-q flag will suppress these messages.

-s When compiled in (ab -h will show you) use the SSL protectedhttps rather than thehttp protocol. This
feature is experimental andveryrudimentary. You probably do not want to use it.

-S Do not display the median and standard deviation values, nor display the warning/error messages when the average
and median are more than one or two times the standard deviation apart. And default to the min/avg/max values.
(legacy support).

-t timelimit Maximum number of seconds to spend for benchmarking. This implies a-n 50000 internally.
Use this to benchmark the server within a fixed total amount of time. Per default there is no timelimit.

-T content-type Content-type header to use for POST data.

-v verbosity Set verbosity level -4 and above prints information on headers,3 and above prints response codes
(404, 200, etc.),2 and above prints warnings and info.

-V Display version number and exit.

-w Print out results in HTML tables. Default table is two columns wide, with a white background.

-x <table >-attributes String to use as attributes for<table >. Attributes are inserted<table here
>.

-X proxy[:port] Use a proxy server for the requests.

-y <tr >-attributes String to use as attributes for<tr >.

-z <td >-attributes String to use as attributes for<td >.

Bugs

There are various statically declared buffers of fixed length. Combined with the lazy parsing of the command line
arguments, the response headers from the server and other external inputs, this might bite you.

It does not implement HTTP/1.x fully; only accepts some ’expected’ forms of responses. The rather heavy use of
strstr(3) shows up top in profile, which might indicate a performance problem;i.e., you would measure theab
performance rather than the server’s.

8.4. APACHECTL - APACHE HTTP SERVER CONTROL INTERFACE 243

8.4 apachectl - Apache HTTP Server Control Interface

apachectl is a front end to the Apache HyperText Transfer Protocol (HTTP) server. It is designed to help the
administrator control the functioning of the Apache httpd (p.239) daemon.

The apachectl script can operate in two modes. First, it can act as a simple front-end to thehttpd command
that simply sets any necessary environment variables and then invokeshttpd , passing through any command line
arguments. Second,apachectl can act as a SysV init script, taking simple one-word arguments likestart ,
restart , andstop , and translating them into appropriate signals tohttpd .

If your Apache installation uses non-standard paths, you will need to edit theapachectl script to set the appropriate
paths to thehttpd binary. You can also specify any necessaryhttpd command line arguments. See the comments
in the script for details.

The apachectl script returns a 0 exit value on success, and>0 if an error occurs. For more details, view the
comments in the script.

See also

• Starting Apache (p.15)

• Stopping Apache (p.17)

• Configuration Files (p.20)

• Platform Docs (p.212)

• httpd (p.239)

Synopsis

When acting in pass-through mode,apachectl can take all the arguments available for the httpd (p.239) binary.

apachectl [httpd-argument]

When acting in SysV init mode,apachectl takes simple, one-word commands, defined below.

apachectl command

Options

Only the SysV init-style options are defined here. Other arguments are defined on the httpd (p.239) manual page.

start Start the Apachehttpd daemon. Gives an error if it is already running. This is equivalent toapachectl
-k start .

stop Stops the Apachehttpd daemon. This is equivalent toapachectl -k stop .

restart Restarts the Apachehttpd daemon. If the daemon is not running, it is started. This command automat-
ically checks the configuration files as inconfigtest before initiating the restart to make sure the daemon
doesn’t die. This is equivalent toapachectl -k restart .

fullstatus Displays a full status report fromMOD STATUS. For this to work, you need to haveMOD STATUS

enabled on your server and a text-based browser such aslynx available on your system. The URL used to
access the status report can be set by editing theSTATUSURLvariable in the script.

status Displays a brief status report. Similar to thefullstatus option, except that the list of requests currently
being served is omitted.

244 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

graceful Gracefully restarts the Apachehttpd daemon. If the daemon is not running, it is started. This differs
from a normal restart in that currently open connections are not aborted. A side effect is that old log files will
not be closed immediately. This means that if used in a log rotation script, a substantial delay may be necessary
to ensure that the old log files are closed before processing them. This command automatically checks the
configuration files as inconfigtest before initiating the restart to make sure Apache doesn’t die. This is
equivalent toapachectl -k graceful .

configtest Run a configuration file syntax test. It parses the configuration files and either reportsSyntax Ok
or detailed information about the particular syntax error. This is equivalent toapachectl -t .

The following additional option is available, but deprecated.

startssl This is equivalent toapachectl -k start -DSSL . We recommend that you use that command
explicitly, or you adjust yourhttpd.conf to remove the<IFDEFINE> section so that SSL will always be
available.

8.5. APXS - APACHE EXTENSION TOOL 245

8.5 apxs - APache eXtenSion tool

apxs is a tool for building and installing extension modules for the Apache HyperText Transfer Protocol (HTTP)
server. This is achieved by building a dynamic shared object (DSO) from one or more source or object files which
then can be loaded into the Apache server under runtime via theLOADMODULE directive fromMOD SO.

So to use this extension mechanism your platform has to support the DSO feature and your Apachehttpd binary has
to be built with theMOD SO module. Theapxs tool automatically complains if this is not the case. You can check
this yourself by manually running the command

$ httpd -l

The moduleMOD SOshould be part of the displayed list. If these requirements are fulfilled you can easily extend your
Apache server’s functionality by installing your own modules with the DSO mechanism by the help of thisapxs tool:

$ apxs -i -a -c mod foo.c
gcc -fpic -DSHARED MODULE -I/path/to/apache/include -c mod foo.c
ld -Bshareable -o mod foo.so mod foo.o
cp mod foo.so /path/to/apache/modules/mod foo.so
chmod 755 /path/to/apache/modules/mod foo.so
[activating module ‘foo’ in /path/to/apache/etc/httpd.conf]
$ apachectl restart
/path/to/apache/sbin/apachectl restart: httpd not running, trying to
start
[Tue Mar 31 11:27:55 1998] [debug] mod so.c(303): loaded module
foo module
/path/to/apache/sbin/apachectl restart: httpd started

$

The arguments files can be any C source file (.c), a object file (.o) or even a library archive (.a). Theapxs tool
automatically recognizes these extensions and automatically used the C source files for compilation while just using
the object and archive files for the linking phase. But when using such pre-compiled objects make sure they are
compiled for position independent code (PIC) to be able to use them for a dynamically loaded shared object. For
instance with GCC you always just have to use-fpic . For other C compilers consult its manual page or at watch for
the flagsapxs uses to compile the object files.

For more details about DSO support in Apache read the documentation ofMOD SO or perhaps even read the
src/modules/standard/mod so.c source file.

See also

• apachectl (p.243)

• httpd (p.239)

Synopsis

apxs - g [- S name=value] - n modname

apxs - q [- S name=value] query ...

apxs - c [- S name=value] [- o dsofile] [- I incdir] [- D name=value] [- L
libdir] [- l libname] [- Wc,compiler-flags] [- Wl, linker-flags] files ...

apxs - i [- S name=value] [- n modname] [- a] [- A] dso-file ...

apxs - e [- S name=value] [- n modname] [- a] [- A] dso-file ...

246 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Options

Common Options

-n modname This explicitly sets the module name for the-i (install) and-g (template generation) option. Use
this to explicitly specify the module name. For option-g this is required, for option-i theapxs tool tries to
determine the name from the source or (as a fallback) at least by guessing it from the filename.

Query Options

-q Performs a query forapxs ’s knowledge about certain settings. The query parameters can be one or more
of the following strings: CC, CFLAGS, CFLAGSSHLIB , INCLUDEDIR, LD SHLIB , LDFLAGSSHLIB ,
LIBEXECDIR, LIBS SHLIB , SBINDIR , SYSCONFDIR, TARGET.

Use this for manually determining settings. For instance use

INC=-I‘apxs -q INCLUDEDIR‘

inside your own Makefiles if you need manual access to Apache’s C header files.

Configuration Options

-S name=value This option changes the apxs settings described above.

Template Generation Options

-g This generates a subdirectory name (see option-n) and there two files: A sample module source file named
mod name.c which can be used as a template for creating your own modules or as a quick start for playing
with the apxs mechanism. And a correspondingMakefile for even easier build and installing of this module.

DSO Compilation Options

-c This indicates the compilation operation. It first compiles the C source files (.c) of files into corresponding object
files (.o) and then builds a dynamically shared object in dsofile by linking these object files plus the remaining
object files (.o and .a) of files. If no-o option is specified the output file is guessed from the first filename in
files and thus usually defaults tomod name.so .

-o dsofile Explicitly specifies the filename of the created dynamically shared object. If not specified and the
name cannot be guessed from the files list, the fallback namemod unknown.so is used.

-D name=value This option is directly passed through to the compilation command(s). Use this to add your own
defines to the build process.

-I incdir This option is directly passed through to the compilation command(s). Use this to add your own include
directories to search to the build process.

-L libdir This option is directly passed through to the linker command. Use this to add your own library directo-
ries to search to the build process.

-l libname This option is directly passed through to the linker command. Use this to add your own libraries to
search to the build process.

8.5. APXS - APACHE EXTENSION TOOL 247

-Wc,compiler-flags This option passes compiler-flags as additional flags to the compiler command. Use this
to add local compiler-specific options.

-Wl,linker-flags This option passes linker-flags as additional flags to the linker command. Use this to add
local linker-specific options.

DSO Installation and Configuration Options

-i This indicates the installation operation and installs one or more dynamically shared objects into the server’s
modules directory.

-a This activates the module by automatically adding a correspondingLOADMODULE line to Apache’s
httpd.conf configuration file, or by enabling it if it already exists.

-A Same as option-a but the createdLOADMODULE directive is prefixed with a hash sign (#), i.e., the module is
just prepared for later activation but initially disabled.

-e This indicates the editing operation, which can be used with the-a and-A options similarly to the-i operation
to edit Apache’shttpd.conf configuration file without attempting to install the module.

Examples

Assume you have an Apache module namedmod foo.c available which should extend Apache’s server functionality.
To accomplish this you first have to compile the C source into a shared object suitable for loading into the Apache
server under runtime via the following command:

$ apxs -c mod foo.c
gcc -fpic -DSHARED MODULE -I/path/to/apache/include -c mod foo.c
ld -Bshareable -o mod foo.so mod foo.o

$

Then you have to update the Apache configuration by making sure aLOADMODULE directive is present to load this
shared object. To simplify this stepapxs provides an automatic way to install the shared object in its" modules"
directory and updating thehttpd.conf file accordingly. This can be achieved by running:

$ apxs -i -a mod foo.c
cp mod foo.so /path/to/apache/modules/mod foo.so
chmod 755 /path/to/apache/modules/mod foo.so
[activating module ‘foo’ in /path/to/apache/etc/httpd.conf]

$

This way a line named

LoadModule foo module modules/mod foo.so

is added to the configuration file if still not present. If you want to have this disabled per default use the-A option,i.e.

$ apxs -i -A mod foo.c

For a quick test of the apxs mechanism you can create a sample Apache module template plus a corresponding Makefile
via:

248 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

$ apxs -g -n foo
Creating [DIR] foo
Creating [FILE] foo/Makefile
Creating [FILE] foo/mod foo.c

$

Then you can immediately compile this sample module into a shared object and load it into the Apache server:

$ cd foo
$ make all reload
apxs -c mod foo.c
gcc -fpic -DSHARED MODULE -I/path/to/apache/include -c mod foo.c
ld -Bshareable -o mod foo.so mod foo.o
apxs -i -a -n "foo" mod foo.so
cp mod foo.so /path/to/apache/modules/mod foo.so
chmod 755 /path/to/apache/modules/mod foo.so
[activating module ‘foo’ in /path/to/apache/etc/httpd.conf]
apachectl restart
/path/to/apache/sbin/apachectl restart: httpd not running, trying to
start
[Tue Mar 31 11:27:55 1998] [debug] mod so.c(303): loaded module
foo module
/path/to/apache/sbin/apachectl restart: httpd started

$

You can even useapxs to compile complex modules outside the Apache source tree, like PHP3:

$ cd php3
$./configure --with-shared-apache=../apache-1.3
$ apxs -c -o libphp3.so mod php3.c libmodphp3-so.a
gcc -fpic -DSHARED MODULE -I/tmp/apache/include -c mod php3.c
ld -Bshareable -o libphp3.so mod php3.o libmodphp3-so.a

$

becauseapxs automatically recognized C source files and object files. Only C source files are compiled while
remaining object files are used for the linking phase.

8.6. DBMMANAGE - MANAGE USER AUTHENTICATION FILES IN DBM FORMAT 249

8.6 dbmmanage - Manage user authentication files in DBM format

dbmmanage is used to create and update the DBM format files used to store usernames and password for basic
authentication of HTTP users. Resources available from the Apache HTTP server can be restricted to just the users
listed in the files created bydbmmanage. This program can only be used when the usernames are stored in a DBM
file. To use a flat-file database see htpasswd (p.252) .

This manual page only lists the command line arguments. For details of the directives necessary to configure user
authentication in httpd (p.239) see the httpd manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/.

See also

• httpd (p.239)

• MOD AUTH DBM

Synopsis

dbmmanage [encoding] filename add|adduser|check|delete|update username [
encpasswd [group[,group...] [comment]]]

dbmmanage filename view [username]

dbmmanage filename import

Options

filename The filename of the DBM format file. Usually without the extension.db , .pag , or .dir .

username The user for which the operations are performed. The username may not contain a colon (:).

encpasswd This is the already encrypted password to use for theupdate andadd commands. You may use a
hyphen (-) if you want to get prompted for the password, but fill in the fields afterwards. Additionally when
using theupdate command, a period (.) keeps the original password untouched.

group A group, which the user is member of. A groupname may not contain a colon (:). You may use a hyphen
(-) if you don’t want to assign the user to a group, but fill in the comment field. Additionally when using the
update command, a period (.) keeps the original groups untouched.

comment This is the place for your opaque comments about the user, like realname, mailaddress or such things. The
server will ignore this field.

Encodings

-d crypt encryption (default, except on Win32, Netware)

-m MD5 encryption (default on Win32, Netware)

-s SHA1 encryption

-p plaintext (not recommended)

250 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Commands

add Adds an entry for username to filename using the encrypted password encpasswd.

adduser Asks for a password and then adds an entry for username to filename.

check Asks for a password and then checks if username is in filename and if it’s password matches the specified
one.

delete Deletes the username entry from filename.

import Readsusername:password entries (one per line) fromSTDIN and adds them to filename. The pass-
words already have to be crypted.

update Same as theadduser command, except that it makes sure username already exists in filename.

view Just displays the contents of the DBM file. If you specify a username, it displays the particular record only.

Bugs

One should be aware that there are a number of different DBM file formats in existence, and with all likelihood,
libraries for more than one format may exist on your system. The three primary examples are SDBM, NDBM, the
GNU project’s GDBM, and Berkeley DB 2. Unfortunately, all these libraries use different file formats, and you must
make sure that the file format used by filename is the same format thatdbmmanage expects to see.dbmmanage
currently has no way of determining what type of DBM file it is looking at. If used against the wrong format, will
simply return nothing, or may create a different DBM file with a different name, or at worst, it may corrupt the DBM
file if you were attempting to write to it.

dbmmanagehas a list of DBM format preferences, defined by the@AnyDBM::ISA array near the beginning of the
program. Since we prefer the Berkeley DB 2 file format, the order in whichdbmmanagewill look for system libraries
is Berkeley DB 2, then NDBM, then GDBM and then SDBM. The first library found will be the librarydbmmanage
will attempt to use for all DBM file transactions. This ordering is slightly different than the standard@AnyDBM::ISA
ordering in perl, as well as the ordering used by the simpledbmopen() call in Perl, so if you use any other utilities to
manage your DBM files, they must also follow this preference ordering. Similar care must be taken if using programs
in other languages, like C, to access these files.

One can usually use thefile program supplied with most Unix systems to see what format a DBM file is in.

8.7. HTDIGEST - MANAGE USER FILES FOR DIGEST AUTHENTICATION 251

8.7 htdigest - manage user files for digest authentication

htdigest is used to create and update the flat-files used to store usernames, realm and password for digest authen-
tication of HTTP users. Resources available from the Apache HTTP server can be restricted to just the users listed in
the files created byhtdigest .

This manual page only lists the command line arguments. For details of the directives necessary to configure digest
authentication in httpd (p.239) see the Apache manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/.

See also

• httpd (p.239)

• MOD AUTH DIGEST

Synopsis

htdigest [- c] passwdfile realm username

Options

-c Create the passwdfile. If passwdfile already exists, it is deleted first.

passwdfile Name of the file to contain the username, realm and password. If-c is given, this file is created if it
does not already exist, or deleted and recreated if it does exist.

realm The realm name to which the user name belongs.

username The user name to create or update in passwdfile. If username does not exist is this file, an entry is added.
If it does exist, the password is changed.

252 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.8 htpasswd - Manage user files for basic authentication

htpasswd is used to create and update the flat-files used to store usernames and password for basic authentication of
HTTP users. Ifhtpasswd cannot access a file, such as not being able to write to the output file or not being able to
read the file in order to update it, it returns an error status and makes no changes.

Resources available from the Apache HTTP server can be restricted to just the users listed in the files created by
htpasswd . This program can only manage usernames and passwords stored in a flat-file. It can encrypt and display
password information for use in other types of data stores, though. To use a DBM database see dbmmanage (p.249) .

htpasswd encrypts passwords using either a version of MD5 modified for Apache, or the system’scrypt() routine.
Files managed byhtpasswd may contain both types of passwords; some user records may have MD5-encrypted
passwords while others in the same file may have passwords encrypted withcrypt() .

This manual page only lists the command line arguments. For details of the directives necessary to configure user
authentication in httpd (p.239) see the Apache manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/1.

See also

• httpd (p.239)

• The scripts in support/SHA1 which come with the distribution.

Synopsis

htpasswd [- c] [- m] [- D] passwdfile username

htpasswd - b [- c] [- m | - d | - p | - s] [- D] passwdfile username password

htpasswd - n [- m | - d | - s | - p] username

htpasswd - nb [- m | - d | - s | - p] username password

Options

-b Use batch mode;i.e., get the password from the command line rather than prompting for it. This option should be
used with extreme care, sincethe password is clearly visibleon the command line.

-c Create the passwdfile. If passwdfile already exists, it is rewritten and truncated. This option cannot be combined
with the-n option.

-n Display the results on standard output rather than updating a file. This is useful for generating password records
acceptable to Apache for inclusion in non-text data stores. This option changes the syntax of the command line,
since the passwdfile argument (usually the first one) is omitted. It cannot be combined with the-c option.

-m Use MD5 encryption for passwords. On Windows, Netware and TPF, this is the default.

-d Usecrypt() encryption for passwords. The default on all platforms but Windows, Netware and TPF. Though
possibly supported byhtpasswd on all platforms, it is not supported by the httpd (p.239) server on Windows,
Netware and TPF.

-s Use SHA encryption for passwords. Facilitates migration from/to Netscape servers using the LDAP Directory
Interchange Format (ldif).

-p Use plaintext passwords. Thoughhtpasswd will support creation on all platforms, the httpd (p.239) daemon
will only accept plain text passwords on Windows, Netware and TPF.

1http://httpd.apache.org

http://httpd.apache.org

8.8. HTPASSWD - MANAGE USER FILES FOR BASIC AUTHENTICATION 253

-D Delete user. If the username exists in the specified htpasswd file, it will be deleted.

passwdfile Name of the file to contain the user name and password. If-c is given, this file is created if it does
not already exist, or rewritten and truncated if it does exist.

username The username to create or update in passwdfile. If username does not exist in this file, an entry is added.
If it does exist, the password is changed.

password The plaintext password to be encrypted and stored in the file. Only used with the-b flag.

Exit Status

htpasswd returns a zero status (" true") if the username and password have been successfully added or updated in
the passwdfile.htpasswd returns1 if it encounters some problem accessing files,2 if there was a syntax problem
with the command line,3 if the password was entered interactively and the verification entry didn’t match,4 if its
operation was interrupted,5 if a value is too long (username, filename, password, or final computed record),6 if the
username contains illegal characters (see the Restrictions section), and7 if the file is not a valid password file.

Examples

htpasswd /usr/local/etc/apache/.htpasswd-users jsmith

Adds or modifies the password for userjsmith . The user is prompted for the password. If executed on a Windows
system, the password will be encrypted using the modified Apache MD5 algorithm; otherwise, the system’scrypt()
routine will be used. If the file does not exist,htpasswd will do nothing except return an error.

htpasswd -c /home/doe/public html/.htpasswd jane

Creates a new file and stores a record in it for userjane . The user is prompted for the password. If the file exists and
cannot be read, or cannot be written, it is not altered andhtpasswd will display a message and return an error status.

htpasswd -mb /usr/web/.htpasswd-all jones Pwd4Steve

Encrypts the password from the command line (Pwd4Steve) using the MD5 algorithm, and stores it in the specified
file.

Security Considerations

Web password files such as those managed byhtpasswd shouldnot be within the Web server’s URI space – that is,
they should not be fetchable with a browser.

The use of the-b option is discouraged, since when it is used the unencrypted password appears on the command
line.

Restrictions

On the Windows and MPE platforms, passwords encrypted withhtpasswd are limited to no more than255 charac-
ters in length. Longer passwords will be truncated to 255 characters.

The MD5 algorithm used byhtpasswd is specific to the Apache software; passwords encrypted using it will not be
usable with other Web servers.

Usernames are limited to255 bytes and may not include the character: .

254 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.9 logresolve - Resolve IP-addresses to hostnames in Apache log files

logresolve is a post-processing program to resolve IP-addresses in Apache’s access logfiles. To minimize impact
on your nameserver, logresolve has its very own internal hash-table cache. This means that each IP number will only
be looked up the first time it is found in the log file.

Takes an Apache log file on standard input. The IP addresses must be the first thing on each line and must be seperated
from the remainder of the line by a space.

Synopsis

logresolve [- s filename] [- c] < access log > access log.new

Options

-s filename Specifies a filename to record statistics.

-c This causeslogresolve to apply some DNS checks: after finding the hostname from the IP address, it looks
up the IP addresses for the hostname and checks that one of these matches the original address.

8.10. ROTATELOGS - PIPED LOGGING PROGRAM TO ROTATE APACHE LOGS 255

8.10 rotatelogs - Piped logging program to rotate Apache logs

rotatelogs is a simple program for use in conjunction with Apache’s piped logfile feature. For example:

CustomLog "|bin/rotatelogs /var/logs/logfile 86400" common

This creates the files /var/logs/logfile.nnnn where nnnn is the system time at which the log nominally starts (this time
will always be a multiple of the rotation time, so you can synchronize cron scripts with it). At the end of each rota-
tion time (here after 24 hours) a new log is started.

CustomLog "|bin/rotatelogs /var/logs/logfile 5M" common

This configuration will rotate the logfile whenever it reaches a size of 5 megabytes.

Synopsis

rotatelogs logfile [rotationtime [offset]] | [filesizeM]

Options

logfile The path plus basename of the logfile. If logfile includes any ’%’ characters, it is treated as a format string
for strftime(3) . Otherwise, the suffix .nnnnnnnnnn is automatically added and is the time in seconds. Both
formats compute the start time from the beginning of the current period.

rotationtime The time between log file rotations in seconds.

offset The number of minutes offset from UTC. If omitted, zero is assumed and UTC is used. For example, to use
local time in the zone UTC -5 hours, specify a value of-300 for this argument.

filesizeM The maximum file size in megabytes followed by the letterMto specify size rather than time. Use this
parameter in place of both rotationtime and offset.

Portability

The following logfile format string substitutions should be supported by allstrftime(3) implementations, see the
strftime(3) man page for library-specific extensions.

%A full weekday name (localized)
%a 3-character weekday name (localized)
%B full month name (localized)
%b 3-character month name (localized)
%c date and time (localized)
%d 2-digit day of month
%H 2-digit hour (24 hour clock)
%I 2-digit hour (12 hour clock)
%j 3-digit day of year
%M 2-digit minute
%m 2-digit month
%p am/pm of 12 hour clock (localized)

256 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

%S 2-digit second
%U 2-digit week of year (Sunday first day of week)
%W 2-digit week of year (Monday first day of week)
%w 1-digit weekday (Sunday first day of week)
%X time (localized)
%x date (localized)
%Y 4-digit year
%y 2-digit year
%Z time zone name
%% literal ‘%’

8.11. SUEXEC - SWITCH USER BEFORE EXECUTING EXTERNAL PROGRAMS 257

8.11 suexec - Switch user before executing external programs

suexec is used by the Apache HTTP Server to switch to another user before executing CGI programs. In order to
achieve this, it must run asroot . Since the HTTP daemon normally doesn’t run asroot , thesuexec executable
needs the setuid bit set and must be owned byroot . It should never be writable for any other person thanroot .

For further information about the concepts and and the security model of suexec please refer to the suexec documen-
tation (http://httpd.apache.org/docs-2.0/suexec.html).

Synopsis

suexec - V

Options

-V If you are root , this option displays the compile options ofsuexec . For security reasons all configuration
options are changable only at compile time.

258 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.12 Other Programs

The following programs are simple support programs included with the Apache HTTP Server which do not have their
own manual pages. They are not installed automatically. You can find them after the configuration process in the
support/ directory.

log server status

This perl script is designed to be run at a frequent interval by something like cron. It connects to the server and
downloads the status information. It reformats the information to a single line and logs it to a file. Adjust the variables
at the top of the script to specify the location of the resulting logfile.

split-logfile

This perl script will take a combined Web server access log file and break its contents into separate files. It assumes
that the first field of each line is the virtual host identity (put there by"%v"), and that the logfiles should be named
that +".log" in the current directory.

The combined log file is read from stdin. Records read will be appended to any existing log files.

Chapter 9

Apache Miscellaneous Documentation

259

260 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

9.1 Apache Miscellaneous Documentation

Below is a list of additional documentation pages that apply to the Apache web server development project.

! Warning
Some of the documents below have not been fully updated to take into account changes made
in the 2.0 version of the Apache HTTP Server. Some of the information may still be relevant,
but please use it with care.

How to use XSSI and Negotiation for custom ErrorDocuments (p.261) Describes a solution which uses XSSI
and negotiation to custom-tailor the Apache ErrorDocuments to taste, adding the advantage of returning in-
ternationalized versions of the error messages depending on the client’s language preferences.

File Descriptor use in Apache (p.278) Describes how Apache uses file descriptors and talks about various limits
imposed on the number of descriptors available by various operating systems.

FIN WAIT 2 (p. 268) A description of the causes of Apache processes going into theFIN WAIT 2 state, and what
you can do about it.

Known Client Problems (p. 273) A list of problems in HTTP clients which can be mitigated by Apache.

Performance Notes - Apache Tuning (p.74) Notes about how to (run-time and compile-time) configure Apache for
highest performance. Notes explaining why Apache does some things, and why it doesn’t do other things (which
make it slower/faster).

Security Tips (p. 41) Some" do" s - and" don’t" s - for keeping your Apache web site secure.

URL Rewriting Guide (p. 86) This document supplements theMOD REWRITE reference documentation (p.493) .
It describes how one can use Apache’sMOD REWRITE to solve typical URL-based problems webmasters are
usually confronted with in practice.

Apache Tutorials (p. 207) A list of external resources which help to accomplish common tasks with the Apache
HTTP server.

9.2. INTERNATIONAL CUSTOMIZED SERVER ERROR MESSAGES 261

9.2 International Customized Server Error Messages

! Warning:
This document has not been fully updated to take into account changes made in the 2.0 version
of the Apache HTTP Server. Some of the information may still be relevant, but please use it
with care.

This document describes an easy way to provide your Apache HTTP Server with a set of customized error messages
which take advantage of Content Negotiation (p.48) andMOD INCLUDE to return error messages generated by the
server in the client’s native language.

Introduction

By using SSI, allERRORDOCUMENT messages can share a homogenous and consistent style and layout, and mainte-
nance work (changing images, changing links) is kept to a minimum because all layout information can be kept in a
single file.

Error documents can be shared across different servers, or even hosts, because all varying information is inserted at
the time the error document is returned on behalf of a failed request.

Content Negotiation then selects the appropriate language version of a particular error message text, honoring the
language preferences passed in the client’s request. (Users usually select their favorite languages in the preferences
options menu of today’s browsers). When an error document in the client’s primary language version is unavailable,
the secondary languages are tried or a default (fallback) version is used.

You have full flexibility in designing your error documents to your personal taste (or your company’s conventions). For
demonstration purposes, we present a simple generic error document scheme. For this hypothetic server, we assume
that all error messages...

• possibly are served by different virtual hosts (different host name, different IP address, or different port) on the
server machine,

• show a predefined company logo in the right top of the message (selectable by virtual host),

• print the error title first, followed by an explanatory text and (depending on the error context) help on how to
resolve the error,

• have some kind of standardized background image,

• display an apache logo and a feedback email address at the bottom of the error message.

An example of a" document not found" message for a german client might look like this:

[Image not coverted]

All links in the document as well as links to the server’s administrator mail address, and even the name and port of the
serving virtual host are inserted in the error document at" run-time" , i.e., when the error actually occurs.

Creating an ErrorDocument directory

For this concept to work as easily as possible, we must take advantage of as much server support as we can get:

1. By defining the MultiViewsOPTIONS, we enable the language selection of the most appropriate language alter-
native (content negotiation).

2. By setting theLANGUAGEPRIORITY directive we define a set of default fallback languages in the situation
where the client’s browser did not express any preference at all.

262 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

3. By enablingMOD INCLUDE (and disallowing execution of cgi scripts for security reasons), we allow the server
to include building blocks of the error message, and to substitute the value of certain environment variables into
the generated document (dynamic HTML) or even to conditionally include or omit parts of the text.

4. The ADDHANDLER and ADDTYPE directives are useful for automatically SSI-expanding all files with a
.shtml suffix to text/html.

5. By using theALIAS directive, we keep the error document directory outside of the document tree because it can
be regarded more as a server part than part of the document tree.

6. The <DIRECTORY> block restricts these" special" settings to the error document directory and avoids an
impact on any of the settings for the regular document tree.

7. For each of the error codes to be handled (see RFC2068 for an exact description of each error code, or look at
src/main/http protocol.c if you wish to see apache’s standard messages), anERRORDOCUMENT in
the aliased/errordocs directory is defined. Note that we only define the basename of the document here
because the MultiViews option will select the best candidate based on the language suffixes and the client’s
preferences. Any error situation with an error codenot handled by a custom document will be dealt with by the
server in the standard way (i.e., a plain error message in english).

8. Finally, theALLOWOVERRIDE directive tells apache that it is not necessary to look for a .htaccess file in the
/errordocs directory: a minor speed optimization.

The resultinghttpd.conf configuration would then look similar to this:

=⇒Note
Note that you can define your own error messages using this method for only part of the
document tree, e.g., a /˜user/ subtree. In this case, the configuration could as well be put into
the .htaccess file at the root of the subtree, and the<Directory> and</Directory> directives
-but not the contained directives- must be omitted.

LanguagePriority en fr de
Alias /errordocs /usr/local/apache/errordocs

<Directory /usr/local/apache/errordocs >

AllowOverride none
Options MultiViews IncludesNoExec FollowSymLinks
AddType text/html .shtml
<FilesMatch " \.shtml[.$]" >

SetOutputFilter INCLUDES

</FilesMatch >

</Directory >

"400 Bad Request",
ErrorDocument 400 /errordocs/400
"401 Authorization Required",
ErrorDocument 401 /errordocs/401
"403 Forbidden",
ErrorDocument 403 /errordocs/403
"404 Not Found",
ErrorDocument 404 /errordocs/404
"500 Internal Server Error",

ErrorDocument 500 /errordocs/500

The directory for the error messages (here:/usr/local/apache/errordocs/) must then be created with the
appropriate permissions (readable and executable by the server uid or gid, only writable for the administrator).

9.2. INTERNATIONAL CUSTOMIZED SERVER ERROR MESSAGES 263

Naming the Individual Error Document files

By defining theMultiViews option, the server was told to automatically scan the directory for matching variants
(looking at language and content type suffixes) when a requested document was not found. In the configuration, we
defined the names for the error documents to be just their error number (without any suffix).

The names of the individual error documents are now determined like this (I’m using 403 as an example, think of it as
a placeholder for any of the configured error documents):

• No file errordocs/403 should exist. Otherwise, it would be found and served (with the DefaultType, usually
text/plain), all negotiation would be bypassed.

• For each language for which we have an internationalized version (note that this need not be the same set of
languages for each error code - you can get by with a single language version until you actuallyhavetrans-
lated versions), a documenterrordocs/403.shtml. lang is created and filled with the error text in that
language (see below).

• One fallback document callederrordocs/403.shtml is created, usually by creating a symlink to the de-
fault language variant (see below).

The Common Header and Footer Files

By putting as much layout information in two special" include files" , the error documents can be reduced to a bare
minimum.

One of these layout files defines the HTML document header and a configurable list of paths to the icons to be shown
in the resulting error document. These paths are exported as a set of SSI environment variables and are later evaluated
by the" footer" special file. The title of the current error (which is put into the TITLE tag and an H1 header) is simply
passed in from the main error document in a variable calledtitle .

By changing this file, the layout of all generated error messages can be changed in a second.(By exploiting the
features of SSI, you can easily define different layouts based on the current virtual host, or even based on the client’s
domain name).

The second layout file describes the footer to be displayed at the bottom of every error message. In this example,
it shows an apache logo, the current server time, the server version string and adds a mail reference to the site’s
webmaster.

For simplicity, the header file is simply calledhead.shtml because it contains server-parsed content but no language
specific information. The footer file exists once for each language translation, plus a symlink for the default language.

for English, French and German versions (default english)

foot.shtml.en,
foot.shtml.fr,
foot.shtml.de,
foot.shtml symlink to

foot.shtml.en

Both files are included into the error document by using the directives<!--#include virtual="head" -- >
and<!--#include virtual="foot" -- > respectively: the rest of the magic occurs in modnegotiation and
in mod include.

See the listings below to see an actual HTML implementation of the discussed example.

264 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Creating ErrorDocuments in Different Languages

After all this preparation work, little remains to be said about the actual documents. They all share a simple common
structure:

<!--#set var="title" value=" error description title " -- >
<!--#include virtual="head" -- >

explanatory error text

<!--#include virtual="foot" -- >

In the listings section, you can see an example of a [400 Bad Request] error document. Documents as simple as that
certainly cause no problems to translate or expand.

The Fallback Language

Do we need a special handling for languages other than those we have translations for? We did set the LanguagePri-
ority, didn’t we?!

Well, the LanguagePriority directive is for the case where the client does not express any language priority at all. But
what happens in the situation where the client wants one of the languages we do not have, and none of those we do
have?

Without doing anything, the Apache server will usually return a [406 no acceptable variant] error, listing the choices
from which the client may select. But we’re in an error message already, and important error information might get
lost when the client had to choose a language representation first.

So, in this situation it appears to be easier to define a fallback language (by copying or linking,e.g., the english
version to a language-less version). Because the negotiation algorithm prefers" more specialized" variants over" more
generic" variants, these generic alternatives will only be chosen when the normal negotiation did not succeed.

A simple shell script to do it (execute within the errordocs/ dir):

for f in *.shtml.en
do

ln -s $f ‘basename $f .en‘

done

Customizing Proxy Error Messages

As of Apache-1.3, it is possible to use theErrorDocument mechanism for proxy error messages as well (previous
versions always returned fixed predefined error messages).

Most proxy errors return an error code of [500 Internal Server Error]. To find out whether a particular error document
was invoked on behalf of a proxy error or because of some other server error, and what the reason for the failure was,
you can check the contents of the newERRORNOTESCGI environment variable: if invoked for a proxy error, this
variable will contain the actual proxy error message text in HTML form.

The following excerpt demonstrates how to exploit theERRORNOTESvariable within an error document:

9.2. INTERNATIONAL CUSTOMIZED SERVER ERROR MESSAGES 265

<!--#if expr="$REDIRECT ERRORNOTES = ’’" -- >

<p>

The server encountered an unexpected condition
which prevented it from fulfilling the request.

</p >

<p>

<a href="mailto: <!--#echo var="SERVER ADMIN" -- >"
SUBJECT="Error message [<!--#echo var="REDIRECT STATUS" -- >]
<!--#echo var="title" -- > for <!--#echo var="REQUEST URI" -- >" >
Please forward this error screen to <!--#echo var="SERVER NAME"
-- >’s
WebMaster ; it includes useful debugging information about
the Request which caused the error.

<pre ><!--#printenv -- ></pre >

</p >

<!--#else -- >

<!--#echo var="REDIRECT ERRORNOTES" -- >

<!--#endif -- >

HTML Listing of the Discussed Example

So, to summarize our example, here’s the complete listing of the400.shtml.en document. You will notice that it
contains almost nothing but the error text (with conditional additions). Starting with this example, you will find it easy
to add more error documents, or to translate the error documents to different languages.

<!--#set var="title" value="Bad Request"-- >
<!--#include virtual="head" -- >

<p>

Your browser sent a request that this server could not understand:
<blockquote >

<!--#echo var="REQUEST URI" -- >

</blockquote >

The request could not be understood by the server due to malformed
syntax. The client should not repeat the request without
modifications.

</p >

<p>

<!--#if expr="$HTTP REFERER != ’’" -- >

Please inform the owner of
<a href=" <!--#echo var="HTTP REFERER" -- >" >the referring
page about
the malformed link.

<!--#else -- >

Please check your request for typing errors and retry.

<!--#endif -- >

</p >

<!--#include virtual="foot" -- >

266 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Here is the completehead.shtml.en file (the funny line breaks avoid empty lines in the document after SSI
processing). Note the configuration section at top. That’s where you configure the images and logos as well as the
apache documentation directory. Look how this file displays two different logos depending on the content of the virtual
host name ($SERVERNAME), and that an animated apache logo is shown if the browser appears to support it (the
latter requires server configuration lines of the form

BrowserMatch "ˆMozilla/[2-4]" anigif

for browser types which support animated GIFs).

<!--#if expr="$SERVER NAME = /.* \.mycompany \.com/" -- >

<!--#set var="IMG CorpLogo"
value="http://$SERVER NAME:$SERVERPORT/errordocs/CorpLogo.gif"
-- >
<!--#set var="ALT CorpLogo" value="Powered by Linux!" -- >

<!--#else -- >

<!--#set var="IMG CorpLogo"
value="http://$SERVER NAME:$SERVERPORT/errordocs/PrivLogo.gif"
-- >
<!--#set var="ALT CorpLogo" value="Powered by Linux!" -- >

<!--#endif-- >

<!--#set var="IMG BgImage"
value="http://$SERVER NAME:$SERVERPORT/errordocs/BgImage.gif" -- >
<!--#set var="DOC Apache"
value="http://$SERVER NAME:$SERVERPORT/Apache/" -- >

<!--#if expr="$anigif" -- >

<!--#set var="IMG Apache"
value="http://$SERVER NAME:$SERVERPORT/icons/apache anim.gif" -- >

<!--#else-- >

<!--#set var="IMG Apache"
value="http://$SERVER NAME:$SERVERPORT/icons/apache pb.gif" -- >

<!--#endif-- >

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN" >
<html >
<head >

<title >
[<!--#echo var="REDIRECT STATUS" -- >] <!--#echo var="title" -- >
</title >

</head >

<body bgcolor="white" background=" <!--#echo var="IMG BgImage" -- >" >

<h1 align="center" >
[<!--#echo var="REDIRECT STATUS" -- >] <!--#echo var="title" -- >
<img src=" <!--#echo var="IMG CorpLogo" -- >"
alt=" <!--#echo var="ALT CorpLogo" -- >" align="right" >
</h1 >

<hr / > <!--
== -- >
<div >

and this is thefoot.shtml.en file:

9.2. INTERNATIONAL CUSTOMIZED SERVER ERROR MESSAGES 267

</div >
<hr / >

<div align="right" >

<small >Local Server time: <!--#echo var="DATE LOCAL"
-- ></small >

</div >

<div align="center" >

<a href=" <!--#echo var="DOC Apache" -- >" >
<img src=" <!--#echo var="IMG Apache" -- >" border="0"
align="bottom"
alt="Powered by <!--#echo var="SERVER SOFTWARE" -->" >
<br / >
<small ><!--#set var="var" value="Powered by $SERVER SOFTWARE
--
File last modified on $LAST MODIFIED" -- >
<!--#echo var="var" -- ></small >

</div >

<p>If the indicated error looks like a misconfiguration, please
inform
<a href="mailto: <!--#echo var="SERVER ADMIN" -- >"
subject="Feedback about Error message [<!--#echo
var="REDIRECT STATUS" -- >]
<!--#echo var="title" -- >, req= <!--#echo var="REQUEST URI" -- >" >
<!--#echo var="SERVER NAME" -- >’s WebMaster .
</p >

</body >

</html >

If you have tips to contribute, send mail to martin@apache.org1

1mailto:martin@apache.org

mailto:martin@apache.org

268 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

9.3 Connections in the FINWAIT 2 state and Apache

! Warning:
This document has not been fully updated to take into account changes made in the 2.0 version
of the Apache HTTP Server. Some of the information may still be relevant, but please use it
with care.

Starting with the Apache 1.2 betas, people are reporting many more connections in the FINWAIT 2 state (as reported
by netstat) than they saw using older versions. When the server closes a TCP connection, it sends a packet with the
FIN bit set to the client, which then responds with a packet with the ACK bit set. The client then sends a packet with
the FIN bit set to the server, which responds with an ACK and the connection is closed. The state that the connection
is in during the period between when the server gets the ACK from the client and the server gets the FIN from the
client is known as FINWAIT 2. See the TCP RFC (p.??) for the technical details of the state transitions.

The FIN WAIT 2 state is somewhat unusual in that there is no timeout defined in the standard for it. This means that
on many operating systems, a connection in the FINWAIT 2 state will stay around until the system is rebooted. If
the system does not have a timeout and too many FINWAIT 2 connections build up, it can fill up the space allocated
for storing information about the connections and crash the kernel. The connections in FINWAIT 2 do not tie up an
httpd process.

Why Does It Happen?

There are numerous reasons for it happening, some of them may not yet be fully clear. What is known follows.

Buggy Clients and Persistent Connections

Several clients have a bug which pops up when dealing with persistent connections (aka keepalives). When the
connection is idle and the server closes the connection (based on theKEEPALIVE TIMEOUT), the client is programmed
so that the client does not send back a FIN and ACK to the server. This means that the connection stays in the
FIN WAIT 2 state until one of the following happens:

• The client opens a new connection to the same or a different site, which causes it to fully close the older
connection on that socket.

• The user exits the client, which on some (most?) clients causes the OS to fully shutdown the connection.

• The FIN WAIT 2 times out, on servers that have a timeout for this state.

If you are lucky, this means that the buggy client will fully close the connection and release the resources on your
server. However, there are some cases where the socket is never fully closed, such as a dialup client disconnecting
from their provider before closing the client. In addition, a client might sit idle for days without making another
connection, and thus may hold its end of the socket open for days even though it has no further use for it.This is a
bug in the browser or in its operating system’s TCP implementation.

The clients on which this problem has been verified to exist:

• Mozilla/3.01 (X11; I; FreeBSD 2.1.5-RELEASE i386)

• Mozilla/2.02 (X11; I; FreeBSD 2.1.5-RELEASE i386)

• Mozilla/3.01Gold (X11; I; SunOS 5.5 sun4m)

• MSIE 3.01 on the Macintosh

• MSIE 3.01 on Windows 95

9.3. CONNECTIONS IN THE FIN WAIT 2 STATE AND APACHE 269

This does not appear to be a problem on:

• Mozilla/3.01 (Win95; I)

It is expected that many other clients have the same problem. What a clientshould do is periodically check its open
socket(s) to see if they have been closed by the server, and close their side of the connection if the server has closed.
This check need only occur once every few seconds, and may even be detected by a OS signal on some systems (e.g.,
Win95 and NT clients have this capability, but they seem to be ignoring it).

Apachecannotavoid these FINWAIT 2 states unless it disables persistent connections for the buggy clients, just like
we recommend doing for Navigator 2.x clients due to other bugs. However, non-persistent connections increase the
total number of connections needed per client and slow retrieval of an image-laden web page. Since non-persistent
connections have their own resource consumptions and a short waiting period after each closure, a busy server may
need persistence in order to best serve its clients.

As far as we know, the client-caused FINWAIT 2 problem is present for all servers that support persistent connections,
including Apache 1.1.x and 1.2.

A necessary bit of code introduced in 1.2

While the above bug is a problem, it is not the whole problem. Some users have observed no FINWAIT 2 problems
with Apache 1.1.x, but with 1.2b enough connections build up in the FINWAIT 2 state to crash their server. The
most likely source for additional FINWAIT 2 states is a function calledlingering close() which was added
between 1.1 and 1.2. This function is necessary for the proper handling of persistent connections and any request
which includes content in the message body (e.g., PUTs and POSTs). What it does is read any data sent by the client
for a certain time after the server closes the connection. The exact reasons for doing this are somewhat complicated,
but involve what happens if the client is making a request at the same time the server sends a response and closes the
connection. Without lingering, the client might be forced to reset its TCP input buffer before it has a chance to read
the server’s response, and thus understand why the connection has closed. See the appendix for more details.

The code inlingering close() appears to cause problems for a number of factors, including the change in traffic
patterns that it causes. The code has been thoroughly reviewed and we are not aware of any bugs in it. It is possible
that there is some problem in the BSD TCP stack, aside from the lack of a timeout for the FINWAIT 2 state, exposed
by thelingering close code that causes the observed problems.

What Can I Do About it?

There are several possible workarounds to the problem, some of which work better than others.

Add a timeout for FIN WAIT 2

The obvious workaround is to simply have a timeout for the FINWAIT 2 state. This is not specified by the RFC, and
could be claimed to be a violation of the RFC, but it is widely recognized as being necessary. The following systems
are known to have a timeout:

• FreeBSD2 versions starting at 2.0 or possibly earlier.

• NetBSD3 version 1.2(?)

• OpenBSD4 all versions(?)

2http://www.freebsd.org/
3http://www.netbsd.org/
4http://www.openbsd.org/

http://www.freebsd.org/
http://www.netbsd.org/
http://www.openbsd.org/

270 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

• BSD/OS5 2.1, with the K210-027 (p.??) patch installed.

• Solaris6 as of around version 2.2. The timeout can be tuned by usingndd to modify
tcp fin wait 2 flush interval , but the default should be appropriate for most servers and improper
tuning can have negative impacts.

• Linux7 2.0.x and earlier(?)

• HP-UX8 10.x defaults to terminating connections in the FINWAIT 2 state after the normal keepalive timeouts.
This does not refer to the persistent connection or HTTP keepalive timeouts, but theSOLINGERsocket option
which is enabled by Apache. This parameter can be adjusted by usingnettune to modify parameters such
as tcp keepstart and tcp keepstop . In later revisions, there is an explicit timer for connections in
FIN WAIT 2 that can be modified; contact HP support for details.

• SGI IRIX9 can be patched to support a timeout. For IRIX 5.3, 6.2, and 6.3, use patches 1654, 1703 and 1778
respectively. If you have trouble locating these patches, please contact your SGI support channel for help.

• NCR’s MP RAS Unix10 2.xx and 3.xx both have FINWAIT 2 timeouts. In 2.xx it is non-tunable at 600 seconds,
while in 3.xx it defaults to 600 seconds and is calculated based on the tunable" max keep alive probes" (default
of 8) multiplied by the" keep alive interval" (default 75 seconds).

• Sequent’s ptx/TCP/IP for DYNIX/ptx11 has had a FINWAIT 2 timeout since around release 4.1 in mid-1994.

The following systems are known to not have a timeout:

• SunOS 4.x12 does not and almost certainly never will have one because it as at the very end of its development
cycle for Sun. If you have kernel source should be easy to patch.

There is a patch available13 for adding a timeout to the FINWAIT 2 state; it was originally intended for BSD/OS, but
should be adaptable to most systems using BSD networking code. You need kernel source code to be able to use it.

Compile without using lingering close()

It is possible to compile Apache 1.2 without using thelingering close() function. This will result in that
section of code being similar to that which was in 1.1. If you do this, be aware that it can cause problems with PUTs,
POSTs and persistent connections, especially if the client uses pipelining. That said, it is no worse than on 1.1, and
we understand that keeping your server running is quite important.

To compile without thelingering close() function, add-DNO LINGCLOSEto the end of theEXTRACFLAGS
line in yourConfiguration file, rerunConfigure and rebuild the server.

UseSOLINGERas an alternative tolingering close()

On most systems, there is an option calledSOLINGER that can be set withsetsockopt(2) . It does something
very similar tolingering close() , except that it is broken on many systems so that it causes far more problems
than lingering close . On some systems, it could possibly work better so it may be worth a try if you have no
other alternatives.

5http://www.bsdi.com/
6http://www.sun.com/
7http://www.linux.org/
8http://www.hp.com/
9http://www.sgi.com/

10http://www.ncr.com/
11http://www.sequent.com
12http://www.sun.com/
13http://www.apache.org/dist/httpd/contrib/patches/1.2/finwait 2.patch

http://www.bsdi.com/
http://www.sun.com/
http://www.linux.org/
http://www.hp.com/
http://www.sgi.com/
http://www.ncr.com/
http://www.sequent.com
http://www.sun.com/
http://www.apache.org/dist/httpd/contrib/patches/1.2/fin_wait_2.patch

9.3. CONNECTIONS IN THE FIN WAIT 2 STATE AND APACHE 271

To try it, add -DUSE SOLINGER -DNOLINGCLOSE to the end of theEXTRACFLAGS line in your
Configuration file, rerunConfigure and rebuild the server.

=⇒NOTE
Attempting to useSOLINGERandlingering close() at the same time is very likely to
do very bad things, so don’t.

Increase the amount of memory used for storing connection state

BSD based networking code:BSD stores network data, such as connection states, in something called an mbuf.
When you get so many connections that the kernel does not have enough mbufs to put them all in, your kernel
will likely crash. You can reduce the effects of the problem by increasing the number of mbufs that are available;
this will not prevent the problem, it will just make the server go longer before crashing.

The exact way to increase them may depend on your OS; look for some reference to the number of" mbufs" or
" mbuf clusters" . On many systems, this can be done by adding the lineNMBCLUSTERS="n", wheren is the
number of mbuf clusters you want to your kernel config file and rebuilding your kernel.

Disable KeepAlive

If you are unable to do any of the above then you should, as a last resort, disable KeepAlive. Edit your httpd.conf and
change" KeepAlive On" to " KeepAlive Off" .

Appendix

Below is a message from Roy Fielding, one of the authors of HTTP/1.1.

Why the lingering close functionality is necessary with HTTP

The need for a server to linger on a socket after a close is noted a couple times in the HTTP specs, but not explained.
This explanation is based on discussions between myself, Henrik Frystyk, Robert S. Thau, Dave Raggett, and John C.
Mallery in the hallways of MIT while I was at W3C.

If a server closes the input side of the connection while the client is sending data (or is planning to send data), then the
server’s TCP stack will signal an RST (reset) back to the client. Upon receipt of the RST, the client will flush its own
incoming TCP buffer back to the un-ACKed packet indicated by the RST packet argument. If the server has sent a
message, usually an error response, to the client just before the close, and the client receives the RST packet before its
application code has read the error message from its incoming TCP buffer and before the server has received the ACK
sent by the client upon receipt of that buffer, then the RST will flush the error message before the client application
has a chance to see it. The result is that the client is left thinking that the connection failed for no apparent reason.

There are two conditions under which this is likely to occur:

1. sending POST or PUT data without proper authorization

2. sending multiple requests before each response (pipelining) and one of the middle requests resulting in an error
or other break-the-connection result.

The solution in all cases is to send the response, close only the write half of the connection (what shutdown is supposed
to do), and continue reading on the socket until it is either closed by the client (signifying it has finally read the
response) or a timeout occurs. That is what the kernel is supposed to do if SOLINGER is set. Unfortunately,
SO LINGER has no effect on some systems; on some other systems, it does not have its own timeout and thus the
TCP memory segments just pile-up until the next reboot (planned or not).

272 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Please note that simply removing the linger code will not solve the problem – it only moves it to a different and much
harder one to detect.

9.4. KNOWN PROBLEMS IN CLIENTS 273

9.4 Known Problems in Clients

! Warning:
This document has not been fully updated to take into account changes made in the 2.0 version
of the Apache HTTP Server. Some of the information may still be relevant, but please use it
with care.

Over time the Apache Group has discovered or been notified of problems with various clients which we have had to
work around, or explain. This document describes these problems and the workarounds available. It’s not arranged in
any particular order. Some familiarity with the standards is assumed, but not necessary.

For brevity, Navigator will refer to Netscape’s Navigator product (which in later versions was renamed
" Communicator" and various other names), andMSIEwill refer to Microsoft’s Internet Explorer product. All trade-
marks and copyrights belong to their respective companies. We welcome input from the various client authors to
correct inconsistencies in this paper, or to provide us with exact version numbers where things are broken/fixed.

For reference, RFC1945 (p.??) defines HTTP/1.0, and RFC2068 (p.??) defines HTTP/1.1. Apache as of version 1.2
is an HTTP/1.1 server (with an optional HTTP/1.0 proxy).

Various of these workarounds are triggered by environment variables. The admin typically controls which are set, and
for which clients, by usingmod browser . Unless otherwise noted all of these workarounds exist in versions 1.2 and
later.

Trailing CRLF on POSTs

This is a legacy issue. The CERN webserver requiredPOSTdata to have an extraCRLF following it. Thus many
clients send an extraCRLFthat is not included in theContent-Length of the request. Apache works around this
problem by eating any empty lines which appear before a request.

Broken KeepAlive

Various clients have had broken implementations ofkeepalive(persistent connections). In particular the Windows
versions of Navigator 2.0 get very confused when the server times out an idle connection. The workaround is present
in the default config files:

BrowserMatch Mozilla/2 nokeepalive

Note that this matches some earlier versions of MSIE, which began the practice of calling themselvesMozilla in their
user-agent strings just like Navigator.

MSIE 4.0b2, which claims to support HTTP/1.1, does not properly support keepalive when it is used on 301 or 302
(redirect) responses. Unfortunately Apache’snokeepalive code prior to 1.2.2 would not work with HTTP/1.1
clients. You must apply this patch14 to version 1.2.1. Then add this to your config:

BrowserMatch "MSIE 4 \.0b2;" nokeepalive

14http://www.apache.org/dist/httpd/patches/applyto 1.2.1/msie4 0b2 fixes.patch

http://www.apache.org/dist/httpd/patches/apply_to_1.2.1/msie_4_0b2_fixes.patch

274 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Incorrect interpretation of HTTP/1.1 in response

To quote from section 3.1 of RFC1945:

=⇒HTTP uses a" <MAJOR>.<MINOR>" numbering scheme to indicate versions of the pro-
tocol. The protocol versioning policy is intended to allow the sender to indicate the format
of a message and its capacity for understanding further HTTP communication, rather than the
features obtained via that communication.

Since Apache is an HTTP/1.1 server, it indicates so as part of its response. Many client authors mistakenly treat this
part of the response as an indication of the protocol that the response is in, and then refuse to accept the response.

The first major indication of this problem was with AOL’s proxy servers. When Apache 1.2 went into beta it was
the first wide-spread HTTP/1.1 server. After some discussion, AOL fixed their proxies. In anticipation of similar
problems, theforce-response-1.0 environment variable was added to Apache. When present Apache will
indicate" HTTP/1.0" in response to an HTTP/1.0 client, but will not in any other way change the response.

The pre-1.1 Java Development Kit (JDK) that is used in many clients (including Navigator 3.x and MSIE 3.x) exhibits
this problem. As do some of the early pre-releases of the 1.1 JDK. We think it is fixed in the 1.1 JDK release. In any
event the workaround:

BrowserMatch Java/1.0 force-response-1.0

BrowserMatch JDK/1.0 force-response-1.0

RealPlayer 4.0 from Progressive Networks also exhibits this problem. However they have fixed it in version 4.01 of
the player, but version 4.01 uses the sameUser-Agent as version 4.0. The workaround is still:

BrowserMatch "RealPlayer 4.0" force-response-1.0

Requests use HTTP/1.1 but responses must be in HTTP/1.0

MSIE 4.0b2 has this problem. Its Java VM makes requests in HTTP/1.1 format but the responses must be in HTTP/1.0
format (in particular, it does not understandchunkedresponses). The workaround is to fool Apache into believing the
request came in HTTP/1.0 format.

BrowserMatch "MSIE 4 \.0b2;" downgrade-1.0 force-response-1.0

This workaround is available in 1.2.2, and in a patch15 against 1.2.1.

Boundary problems with header parsing

All versions of Navigator from 2.0 through 4.0b2 (and possibly later) have a problem if the trailing CRLF of the
response header starts at offset 256, 257 or 258 of the response. A BrowserMatch for this would match on nearly
every hit, so the workaround is enabled automatically on all responses. The workaround implemented detects when
this condition would occur in a response and adds extra padding to the header to push the trailing CRLF past offset
258 of the response.

15http://www.apache.org/dist/httpd/patches/applyto 1.2.1/msie4 0b2 fixes.patch

http://www.apache.org/dist/httpd/patches/apply_to_1.2.1/msie_4_0b2_fixes.patch

9.4. KNOWN PROBLEMS IN CLIENTS 275

Multipart responses and Quoted Boundary Strings

On multipart responses some clients will not accept quotes (") around the boundary string. The MIME standard
recommends that such quotes be used. But the clients were probably written based on one of the examples in RFC2068,
which does not include quotes. Apache does not include quotes on its boundary strings to workaround this problem.

Byterange Requests

A byterange request is used when the client wishes to retrieve a portion of an object, not necessarily the entire object.
There was a very old draft which included these byteranges in the URL. Old clients such as Navigator 2.0b1 and MSIE
3.0 for the MAC exhibit this behaviour, and it will appear in the servers’ access logs as (failed) attempts to retrieve a
URL with a trailing" ;xxx-yyy" . Apache does not attempt to implement this at all.

A subsequent draft of this standard defines a headerRequest-Range , and a response type
multipart/x-byteranges . The HTTP/1.1 standard includes this draft with a few fixes, and it
defines the headerRange and typemultipart/byteranges .

Navigator (versions 2 and 3) sends bothRange and Request-Range headers (with the same value), but does
not accept amultipart/byteranges response. The response must bemultipart/x-byteranges . As a
workaround, if Apache receives aRequest-Range header it considers it" higher priority" than aRange header
and in response usesmultipart/x-byteranges .

The Adobe Acrobat Reader plugin makes extensive use of byteranges and prior to version 3.01 supports only the
multipart/x-byterange response. Unfortunately there is no clue that it is the plugin making the request. If
the plugin is used with Navigator, the above workaround works fine. But if the plugin is used with MSIE 3 (on Win-
dows) the workaround won’t work because MSIE 3 doesn’t give theRange-Request clue that Navigator does. To
workaround this, Apache special cases" MSIE 3" in theUser-Agent and servesmultipart/x-byteranges .
Note that the necessity for this with MSIE 3 is actually due to the Acrobat plugin, not due to the browser.

Netscape Communicator appears to not issue the non-standardRequest-Range header. When an Acrobat plugin
prior to version 3.01 is used with it, it will not properly understand byteranges. The user must upgrade their Acrobat
reader to 3.01.

Set-Cookie header is unmergeable

The HTTP specifications say that it is legal to merge headers with duplicate names into one (separated by commas).
Some browsers that support Cookies don’t like merged headers and prefer that eachSet-Cookie header is sent
separately. When parsing the headers returned by a CGI, Apache will explicitly avoid merging anySet-Cookie
headers.

Expires headers and GIF89A animations

Navigator versions 2 through 4 will erroneously re-request GIF89A animations on each loop of the animation if the
first response included anExpires header. This happens regardless of how far in the future the expiry time is set.
There is no workaround supplied with Apache, however there are hacks for 1.216 and for 1.317.

POSTwithout Content-Length

In certain situations Navigator 3.01 through 3.03 appear to incorrectly issue a POST without the request body. There
is no known workaround. It has been fixed in Navigator 3.04, Netscapes provides some information18. There’s also

16http://www.arctic.org/˜dgaudet/patches/apache-1.2-gif89-expires-hack.patch
17http://www.arctic.org/˜dgaudet/patches/apache-1.3-gif89-expires-hack.patch
18http://help.netscape.com/kb/client/971014-42.html

http://www.arctic.org/~dgaudet/patches/apache-1.2-gif89-expires-hack.patch
http://www.arctic.org/~dgaudet/patches/apache-1.3-gif89-expires-hack.patch
http://help.netscape.com/kb/client/971014-42.html

276 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

some information19 about the actual problem.

JDK 1.2 betas lose parts of responses.

The http client in the JDK1.2beta2 and beta3 will throw away the first part of the response body when both the headers
and the first part of the body are sent in the same network packet AND keep-alive’s are being used. If either condition
is not met then it works fine.

See also Bug-ID’s 4124329 and 4125538 at the java developer connection.

If you are seeing this bug yourself, you can add the following BrowserMatch directive to work around it:

BrowserMatch "Java1 \.2beta[23]" nokeepalive

We don’t advocate this though since bending over backwards for beta software is usually not a good idea; ideally it
gets fixed, new betas or a final release comes out, and no one uses the broken old software anymore. In theory.

Content-Type change is not noticed after reload

Navigator (all versions?) will cache thecontent-type for an object" forever" . Using reload or shift-reload will
not cause Navigator to notice acontent-type change. The only work-around is for the user to flush their caches
(memory and disk). By way of an example, some folks may be using an oldmime.types file which does not map
.htm to text/html , in this case Apache will default to sendingtext/plain . If the user requests the page and it
is served astext/plain . After the admin fixes the server, the user will have to flush their caches before the object
will be shown with the correcttext/html type.

MSIE Cookie problem with expiry date in the year 2000

MSIE versions 3.00 and 3.02 (without the Y2K patch) do not handle cookie expiry dates in the year 2000 properly.
Years after 2000 and before 2000 work fine. This is fixed in IE4.01 service pack 1, and in the Y2K patch for IE3.02.
Users should avoid using expiry dates in the year 2000.

Lynx incorrectly asking for transparent content negotiation

The Lynx browser versions 2.7 and 2.8 send a" negotiate: trans" header in their requests, which is an indication the
browser supports transparent content negotiation (TCN). However the browser does not support TCN. As of version
1.3.4, Apache supports TCN, and this causes problems with these versions of Lynx. As a workaround future versions
of Apache will ignore this header when sent by the Lynx client.

MSIE 4.0 mishandles Vary response header

MSIE 4.0 does not handle a Vary header properly. The Vary header is generated by modrewrite in apache 1.3. The
result is an error from MSIE saying it cannot download the requested file. There are more details in PR#411820.

A workaround is to add the following to your server’s configuration files:

BrowserMatch "MSIE 4 \.0" force-no-vary

19http://www.arctic.org/˜dgaudet/apache/no-content-length/
20http://bugs.apache.org/index/full/4118

http://www.arctic.org/~dgaudet/apache/no-content-length/
http://bugs.apache.org/index/full/4118

9.4. KNOWN PROBLEMS IN CLIENTS 277

(This workaround is only available with releasesafter 1.3.6 of the Apache Web server.)

278 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

9.5 Descriptors and Apache

! Warning:
This document has not been fully updated to take into account changes made in the 2.0 version
of the Apache HTTP Server. Some of the information may still be relevant, but please use it
with care.

A descriptor, also commonly called afile handleis an object that a program uses to read or write an open file, or open
network socket, or a variety of other devices. It is represented by an integer, and you may be familiar withstdin ,
stdout , andstderr which are descriptors 0, 1, and 2 respectively. Apache needs a descriptor for each log file, plus
one for each network socket that it listens on, plus a handful of others. Libraries that Apache uses may also require
descriptors. Normal programs don’t open up many descriptors at all, and so there are some latent problems that you
may experience should you start running Apache with many descriptors (i.e., with many virtual hosts).

The operating system enforces a limit on the number of descriptors that a program can have open at a time. There are
typically three limits involved here. One is a kernel limitation, depending on your operating system you will either
be able to tune the number of descriptors available to higher numbers (this is frequently calledFD SETSIZE). Or you
may be stuck with a (relatively) low amount. The second limit is called thehard resourcelimit, and it is sometimes
set by root in an obscure operating system file, but frequently is the same as the kernel limit. The third limit is called
thesoft resourcelimit. The soft limit is always less than or equal to the hard limit. For example, the hard limit may be
1024, but the soft limit only 64. Any user can raise their soft limit up to the hard limit. Root can raise the hard limit
up to the system maximum limit. The soft limit is the actual limit that is used when enforcing the maximum number
of files a process can have open.

To summarize:

#open files <= soft limit <= hard limit <= kernel limit

You control the hard and soft limits using thelimit (csh) orulimit (sh) directives. See the respective man pages
for more information. For example you can probably useulimit -n unlimited to raise your soft limit up to the
hard limit. You should include this command in a shell script which starts your webserver.

Unfortunately, it’s not always this simple. As mentioned above, you will probably run into some system limitations
that will need to be worked around somehow. Work was done in version 1.2.1 to improve the situation somewhat.
Here is a partial list of systems and workarounds (assuming you are using 1.2.1 or later).

BSDI 2.0

Under BSDI 2.0 you can build Apache to support more descriptors by adding-DFD SETSIZE=nnn to
EXTRACFLAGS(where nnn is the number of descriptors you wish to support, keep it less than the hard limit).
But it will run into trouble if more than approximately 240 Listen directives are used. This may be cured by rebuilding
your kernel with a higher FDSETSIZE.

FreeBSD 2.2, BSDI 2.1+

Similar to the BSDI 2.0 case, you should defineFD SETSIZE and rebuild. But the extra Listen limitation doesn’t
exist.

Linux

By default Linux has a kernel maximum of 256 open descriptors per process. There are several patches available for
the 2.0.x series which raise this to 1024 and beyond, and you can find them in the" unofficial patches" section of the

9.5. DESCRIPTORS AND APACHE 279

Linux Information HQ21. None of these patches are perfect, and an entirely different approach is likely to be taken
during the 2.1.x development. Applying these patches will raise the FDSETSIZE used to compile all programs, and
unless you rebuild all your libraries you should avoid running any other program with a soft descriptor limit above
256. As of this writing the patches available for increasing the number of descriptors do not take this into account. On
a dedicated webserver you probably won’t run into trouble.

Solaris through 2.5.1

Solaris has a kernel hard limit of 1024 (may be lower in earlier versions). But it has a limitation that files using the stdio
library cannot have a descriptor above 255. Apache uses the stdio library for the ErrorLog directive. When you have
more than approximately 110 virtual hosts (with an error log and an access log each) you will need to build Apache
with -DHIGH SLACKLINE=256 added toEXTRACFLAGS. You will be limited to approximately 240 error logs if
you do this.

AIX

AIX version 3.2?? appears to have a hard limit of 128 descriptors. End of story. Version 4.1.5 has a hard limit of 2000.

SCO OpenServer

Edit the/etc/conf/cf.d/stune file or use/etc/conf/cf.d/configure choice 7 (User and Group con-
figuration) and modify theNOFILESkernel parameter to a suitably higher value. SCO recommends a number between
60 and 11000, the default is 110. Relink and reboot, and the new number of descriptors will be available.

Compaq Tru64 UNIX/Digital UNIX/OSF

1. Raiseopen max soft andopen max hard to 4096 in the proc subsystem. Do a man on sysconfig, syscon-
figdb, and sysconfigtab.

2. Raisemax-vnodes to a large number which is greater than the number of apache processes * 4096 (Setting it
to 250,000 should be good for most people). Do a man on sysconfig, sysconfigdb, and sysconfigtab.

3. If you are using Tru64 5.0, 5.0A, or 5.1, defineNOSLACK to work around a bug in the OS.
CFLAGS="-DNOSLACK" ./configure

Others

If you have details on another operating system, please submit it through our Bug Report Page22.

In addition to the problems described above there are problems with many libraries that Apache uses. The most
common example is the bind DNS resolver library that is used by pretty much every unix, which fails if it ends up
with a descriptor above 256. We suspect there are other libraries that similar limitations. So the code as of 1.2.1 takes
a defensive stance and tries to save descriptors less than 16 for use while processing each request. This is called the
low slack line.

Note that this shouldn’t waste descriptors. If you really are pushing the limits and Apache can’t get a descriptor above
16 when it wants it, it will settle for one below 16.

In extreme situations you may want to lower the low slack line, but you shouldn’t ever need to. For example, lowering
it can increase the limits 240 described above under Solaris and BSDI 2.0. But you’ll play a delicate balancing game

21http://www.linuxhq.com/
22http://httpd.apache.org/bugreport.html

http://www.linuxhq.com/
http://httpd.apache.org/bug_report.html

280 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

with the descriptors needed to serve a request. Should you want to play this game, the compile time parameter is
LOWSLACKLINE and there’s a tiny bit of documentation in the header filehttpd.h .

Finally, if you suspect that all this slack stuff is causing you problems, you can disable it. Add-DNO SLACKto
EXTRACFLAGSand rebuild. But please report it to our Bug Report Page23 so that we can investigate.

23http://httpd.apache.org/bugreport.html

http://httpd.apache.org/bug_report.html

9.6. PATH INFO CHANGES IN THE CGI ENVIRONMENT 281

9.6 PATH INFO Changes in the CGI Environment

As implemented in Apache 1.1.1 and earlier versions, the method Apache used to create PATHINFO in the CGI
environment was counterintuitive, and could result in crashes in certain cases. In Apache 1.2 and beyond, this behavior
has changed. Although this results in some compatibility problems with certain legacy CGI applications, the Apache
1.2 behavior is still compatible with the CGI/1.1 specification, and CGI scripts can be easily modified (see below).

The Problem

Apache 1.1.1 and earlier implemented the PATHINFO and SCRIPTNAME environment variables by looking at
the filename, not the URL. While this resulted in the correct values in many cases, when the filesystem path was
overloaded to contain path information, it could result in errant behavior. For example, if the following appeared in a
config file:

Alias /cgi-ralph /usr/local/httpd/cgi-bin/user.cgi/ralph

In this case,user.cgi is the CGI script, the" /ralph" is information to be passed onto the CGI. If this con-
figuration was in place, and a request came for"/cgi-ralph/script/" , the code would set PATHINFO to
"/ralph/script" , and SCRIPTNAME to "/cgi-" . Obviously, the latter is incorrect. In certain cases, this
could even cause the server to crash.

The Solution

Apache 1.2 and later now determine SCRIPTNAME and PATHINFO by looking directly at the URL,
and determining how much of the URL is client-modifiable, and setting PATHINFO to it. To use the
above example, PATHINFO would be set to"/script" , and SCRIPTNAME to "/cgi-ralph" . This
makes sense and results in no server behavior problems. It also permits the script to be guaranteed that
"http://$SERVER NAME:$SERVERPORT$SCRIPTNAME$PATHINFO" will always be an accessible URL
that points to the current script, something which was not necessarily true with previous versions of Apache.

However, the"/ralph" information from theAlias directive is lost. This is unfortunate, but we feel that using
the filesystem to pass along this sort of information is not a recommended method, and a script making use of it
" deserves" not to work. Apache 1.2b3 and later, however, do provide a workaround.

Compatibility with Previous Servers

It may be necessary for a script that was designed for earlier versions of Apache or other servers to need the information
that the old PATHINFO variable provided. For this purpose, Apache 1.2 (1.2b3 and later) sets an additional variable,
FILEPATH INFO. This environment variable contains the value that PATHINFO would have had with Apache 1.1.1.

A script that wishes to work with both Apache 1.2 and earlier versions can simply test for the existence of
FILEPATH INFO, and use it if available. Otherwise, it can use PATHINFO. For example, in Perl, one might use:

$path info = $ENV {’FILEPATH INFO’ } || $ENV {’PATH INFO’ };

By doing this, a script can work with all servers supporting the CGI/1.1 specification, including all versions of Apache.

282 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Chapter 10

Apache modules

283

284 CHAPTER 10. APACHE MODULES

10.1 Terms Used to Describe Modules

This document describes the terms that are used to describe each Apache module (p.??) .

Description

A brief description of the purpose of the module.

Status

This indicates how tightly bound into the Apache Web server the module is; in other words, you may need to recompile
the server in order to gain access to the module and its functionality. Possible values for this attribute are:

MPM A module with status" MPM" is a Multi-Processing Module (p.60) . Unlike the other types of modules,
Apache must have one and only one MPM in use at any time. This type of module is responsible for basic
request handling and dispatching.

Base A module labeled as having" Base" status is compiled and loaded into the server by default, and is therefore
normally available unless you have taken steps to remove the module from your configuration.

Extension A module with " Extension" status is not normally compiled and loaded into the server. To enable the
module and its functionality, you may need to change the server build configuration files and re-compile Apache.

Experimental " Experimental" status indicates that the module is available as part of the Apache kit, but you are
on your own if you try to use it. The module is being documented for completeness, and is not necessarily
supported.

External Modules which are not included with the base Apache distribution (" third-party modules") may use the
" External" status. We are not responsible for, nor do we support such modules.

Source File

This quite simply lists the name of the source file which contains the code for the module. This is also the name used
by the<IFMODULE> directive.

Module Identifier

This is a string which identifies the module for use in theLOADMODULE directive when dynamically loading modules.
In particular, it is the name of the external variable of type module in the source file.

Compatibility

If the module was not part of the original Apache version 2 distribution, the version in which it was introduced should
be listed here. In addition, if the module is limited to particular platforms, the details will be listed here.

10.2. TERMS USED TO DESCRIBE DIRECTIVES 285

10.2 Terms Used to Describe Directives

This document describes the terms that are used to describe each Apache configuration directive (p.629) .

See also

• Configuration files (p.20)

Description

A brief description of the purpose of the directive.

Syntax

This indicates the format of the directive as it would appear in a configuration file. This syntax is extremely directive-
specific, and is described in detail in the directive’s definition. Generally, the directive name is followed by a series
of one or more space-separated arguments. If an argument contains a space, the argument must be enclosed in double
quotes. Optional arguments are enclosed in square brackets. Where an argument can take on more than one possible
value, the possible values are separated by vertical bars" —" . Literal text is presented in the default font, while
argument-types for which substitution is necessary areemphasized. Directives which can take a variable number of
arguments will end in" ..." indicating that the last argument is repeated.

Directives use a great number of different argument types. A few common ones are defined below.

URL A complete Uniform Resource Locator including a scheme, hostname, and optional pathname as in
http://www.example.com/path/to/file.html

URL-path The part of aurl which follows the scheme and hostname as in/path/to/file.html . Theurl-path
represents a web-view of a resource, as opposed to a file-system view.

file-path The path to a file in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/file.html . Unless otherwise specified, afile-pathwhich
does not begin with a slash will be treated as relative to the ServerRoot (p.288) .

directory-path The path to a directory in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/ .

filename The name of a file with no accompanying path information as infile.html .

regex A regular expression, which is a way of describing a pattern to match in text. The directive definition will
specify what theregexis matching against.

extension In general, this is the part of thefilenamewhich follows the last dot. However, Apache recognizes multiple
filename extensions, so if afilenamecontains more than one dot, each dot-separated part of the filename follow-
ing the first dot is anextension. For example, thefilenamefile.html.en contains two extensions:.html
and .en . For Apache directives, you may specifyextensions with or without the leading dot. In addition,
extensions are not case sensitive.

MIME-type A method of describing the format of a file which consists of a major format type and a minor format
type, separated by a slash as intext/html .

env-variable The name of an environment variable (p.61) defined in the Apache configuration process. Note this is not
necessarily the same as an operating system environment variable. See the environment variable documentation
(p. 61) for more details.

286 CHAPTER 10. APACHE MODULES

Default

If the directive has a default value (i.e., if you omit it from your configuration entirely, the Apache Web server will
behave as though you set it to a particular value), it is described here. If there is no default value, this section should
say" None" . Note that the default listed here is not necessarily the same as the value the directive takes in the default
httpd.conf distributed with the server.

Context

This indicates where in the server’s configuration files the directive is legal. It’s a comma-separated list of one or more
of the following values:

server config This means that the directive may be used in the server configuration files (e.g., httpd.conf), but
not within any<V IRTUAL HOST> or <DIRECTORY> containers. It is not allowed in.htaccess files at all.

virtual host This context means that the directive may appear inside<V IRTUAL HOST> containers in the server
configuration files.

directory A directive marked as being valid in this context may be used inside<DIRECTORY>, <LOCATION>,
and<FILES> containers in the server configuration files, subject to the restrictions outlined in How Directory,
Location and Files sections work (p.22) .

.htaccessIf a directive is valid in this context, it means that it can appear insideper-directory.htaccess files. It
may not be processed, though depending upon the overrides currently active.

The directive isonly allowed within the designated context; if you try to use it elsewhere, you’ll get a configuration
error that will either prevent the server from handling requests in that context correctly, or will keep the server from
operating at all –i.e., the server won’t even start.

The valid locations for the directive are actually the result of a Boolean OR of all of the listed contexts. In other words,
a directive that is marked as being valid in"server config, .htaccess" can be used in thehttpd.conf
file and in.htaccess files, but not within any<DIRECTORY> or <V IRTUAL HOST> containers.

Override

This directive attribute indicates which configuration override must be active in order for the directive to be processed
when it appears in a.htaccess file. If the directive’s context doesn’t permit it to appear in.htaccess files, then
no context will be listed.

Overrides are activated by theALLOWOVERRIDE directive, and apply to a particular scope (such as a directory) and
all descendants, unless further modified by otherALLOWOVERRIDE directives at lower levels. The documentation for
that directive also lists the possible override names available.

Status

This indicates how tightly bound into the Apache Web server the directive is; in other words, you may need to recom-
pile the server with an enhanced set of modules in order to gain access to the directive and its functionality. Possible
values for this attribute are:

Core If a directive is listed as having" Core" status, that means it is part of the innermost portions of the Apache Web
server, and is always available.

10.2. TERMS USED TO DESCRIBE DIRECTIVES 287

MPM A directive labeled as having" MPM" status is provided by a Multi-Processing Module (p.60) . This type of
directive will be available if and only if you are using one of the MPMs listed on the Module line of the directive
definition.

Base A directive labeled as having" Base" status is supported by one of the standard Apache modules which is
compiled into the server by default, and is therefore normally available unless you’ve taken steps to remove the
module from your configuration.

Extension A directive with " Extension" status is provided by one of the modules included with the Apache server
kit, but the module isn’t normally compiled into the server. To enable the directive and its functionality, you will
need to change the server build configuration files and re-compile Apache.

Experimental " Experimental" status indicates that the directive is available as part of the Apache kit, but you’re
on your own if you try to use it. The directive is being documented for completeness, and is not necessarily
supported. The module which provides the directive may or may not be compiled in by default; check the top
of the page which describes the directive and its module to see if it remarks on the availability.

Module

This quite simply lists the name of the source module which defines the directive.

Compatibility

If the directive wasn’t part of the original Apache version 2 distribution, the version in which it was introduced should
be listed here. In addition, if the directive is available only on certain platforms, it will be noted here.

288 CHAPTER 10. APACHE MODULES

10.3 Apache Module core

Description: Core Apache HTTP Server features that are always available
Status: Core

Directives

• AcceptPathInfo

• AccessFileName

• AddDefaultCharset

• AddOutputFilterByType

• AllowEncodedSlashes

• AllowOverride

• AuthName

• AuthType

• CGIMapExtension

• ContentDigest

• DefaultType

• <Directory>

• <DirectoryMatch>

• DocumentRoot

• EnableMMAP

• EnableSendfile

• ErrorDocument

• ErrorLog

• FileETag

• <Files>

• <FilesMatch>

• ForceType

• HostnameLookups

• IdentityCheck

• <IfDefine>

• <IfModule>

• Include

• KeepAlive

• KeepAliveTimeout

• <Limit>

• <LimitExcept>

• LimitRequestBody

• LimitRequestFields

• LimitRequestFieldSize

• LimitRequestLine

10.3. APACHE MODULE CORE 289

• LimitXMLRequestBody

• <Location>

• <LocationMatch>

• LogLevel

• MaxKeepAliveRequests

• NameVirtualHost

• Options

• Require

• RLimitCPU

• RLimitMEM

• RLimitNPROC

• Satisfy

• ScriptInterpreterSource

• ServerAdmin

• ServerAlias

• ServerName

• ServerPath

• ServerRoot

• ServerSignature

• ServerTokens

• SetHandler

• SetInputFilter

• SetOutputFilter

• TimeOut

• UseCanonicalName

• <VirtualHost>

AcceptPathInfo Directive

Description: Resources accept trailing pathname information
Syntax: AcceptPathInfo On|Off|Default
Default: AcceptPathInfo Default
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Available in Apache 2.0.30 and later

This directive controls whether requests that contain trailing pathname information that follows an actual filename (or
non-existent file in an existing directory) will be accepted or rejected. The trailing pathname information can be made
available to scripts in thePATHINFO environment variable.

For example, assume the location/test/ points to a directory that contains only the single filehere.html .
Then requests for/test/here.html/more and /test/nothere.html/more both collect /more as
PATHINFO.

The three possible arguments for theACCEPTPATH INFO directive are:

290 CHAPTER 10. APACHE MODULES

Off A request will only be accepted if it maps to a literal path that exists. Therefore a request with trailing pathname
information after the true filename such as/test/here.html/more in the above example will return a 404
NOT FOUND error.

On A request will be accepted if a leading path component maps to a file that exists. The above example
/test/here.html/more will be accepted if/test/here.html maps to a valid file.

Default The treatment of requests with trailing pathname information is determined by the handler (p.66) respon-
sible for the request. The core handler for normal files defaults to rejectingPATHINFO requests. Handlers that
serve scripts, such as cgi-script (p.379) and isapi-isa (p.437) , generally acceptPATHINFO by default.

The primary purpose of theAcceptPathInfo directive is to allow you to override the handler’s choice of accepting
or rejectingPATHINFO. This override is required, for example, when you use a filter (p.68) , such as INCLUDES
(p. 427) , to generate content based onPATHINFO. The core handler would usually reject the request, so you can use
the following configuration to enable such a script:

<Files "mypaths.shtml" >

Options +Includes
SetOutputFilter INCLUDES
AcceptPathInfo On

</Files >

AccessFileName Directive

Description: Name of the distributed configuration file
Syntax: AccessFileName filename [filename] ...
Default: AccessFileName .htaccess
Context: server config, virtual host
Status: Core
Module: core

While processing a request the server looks for the first existing configuration file from this list of names in every
directory of the path to the document, if distributed configuration files are enabled for that directory. For example:

AccessFileName .acl

before returning the document/usr/local/web/index.html , the server will read/.acl , /usr/.acl ,
/usr/local/.acl and/usr/local/web/.acl for directives, unless they have been disabled with

<Directory / >

AllowOverride None

</Directory >

See also

• ALLOWOVERRIDE

• Configuration Files (p.20)

• .htaccess Files (p.201)

10.3. APACHE MODULE CORE 291

AddDefaultCharset Directive

Description: Default character set to be added for a response without an explicit character set
Syntax: AddDefaultCharset On|Off|charset
Default: AddDefaultCharset Off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

This directive specifies the name of the character set that will be added to any response that does not have any parameter
on the content type in the HTTP headers. This will override any character set specified in the body of the document
via a METAtag. A setting ofAddDefaultCharset Off disables this functionality.AddDefaultCharset
On enables Apache’s internal default charset ofiso-8859-1 as required by the directive. You can also specify an
alternate charset to be used. For example:

AddDefaultCharset utf-8

AddOutputFilterByType Directive

Description: assigns an output filter to a particular MIME-type
Syntax: AddOutputFilterByType filter[;filter...] MIME-type

[MIME-type] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Available in Apache 2.0.33 and later

This directive activates a particular output filter (p.68) for a request depending on the response MIME-type.

The following example uses theDEFLATEfilter, which is provided byMOD DEFLATE. It will compress all output
(either static or dynamic) which is labeled astext/html or text/plain before it is sent to the client.

AddOutputFilterByType DEFLATE text/html text/plain

If you want the content to be processed by more than one filter, their names have to be separated by semicolons. It’s
also possible to use oneADDOUTPUTFILTERBYTYPE directive for each of these filters.

The configuration below causes all script output labeled astext/html to be processed at first by theINCLUDES
filter and then by theDEFLATEfilter.

<Location /cgi-bin/ >

Options Includes
AddOutputFilterByType INCLUDES;DEFLATE text/html

</Location >

292 CHAPTER 10. APACHE MODULES

! Note
Enabling filters withADDOUTPUTFILTERBYTYPE may fail partially or completely in some
cases. For expample, no filters are applied if the MIME-type could not be determined and falls
back to theDEFAULTTYPE setting, even if theDEFAULTTYPE is the same.
However, if you want to make sure, that the filters will be applied, assign the content type to
a resource explicitely, for example withADDTYPE or FORCETYPE. Setting the content type
within a (non-nph) CGI script is also safe.
The by-type output filters are never applied on proxy requests.

See also

• ADDOUTPUTFILTER

• SETOUTPUTFILTER

• filters (p.68)

AllowEncodedSlashes Directive

Description: Determines whether encoded path separators in URLs are allowed to be passed through
Syntax: AllowEncodedSlashes On|Off
Default: AllowEncodedSlashes Off
Context: server config, virtual host
Status: Core
Module: core
Compatibility: Available in Apache 2.0.46 and later

The ALLOWENCODEDSLASHES directive allows URLs which contain encoded path separators (%2Ffor / and ad-
ditionally %5Cfor \ on according systems) to be used. Normally such URLs are refused with a 404 (Not found)
error.

TurningALLOWENCODEDSLASHES On is mostly useful when used in conjunction withPATHINFO.

=⇒Note
Allowing encoded slashes doesnot imply decoding. Occurences of%2For %5C(only on
according systems) will be left as such in the otherwise decoded URL string.

See also

• ACCEPTPATH INFO

AllowOverride Directive

Description: Types of directives that are allowed in.htaccess files
Syntax: AllowOverride All|None|directive-type [directive-type] ...
Default: AllowOverride All
Context: directory
Status: Core
Module: core

When the server finds an.htaccess file (as specified byACCESSFILENAME) it needs to know which directives
declared in that file can override earlier configuration directives.

=⇒Only available in <Directory> sections
ALLOWOVERRIDE is valid only in <DIRECTORY> sections, not in<LOCATION> or
<FILES> sections.

10.3. APACHE MODULE CORE 293

When this directive is set toNone, then .htaccess files are completely ignored. In this case, the server will not even
attempt to read.htaccess files in the filesystem.

When this directive is set toAll , then any directive which has the .htaccess Context (p.285) is allowed in.htaccess
files.

The directive-type can be one of the following groupings of directives.

AuthConfig Allow use of the authorization directives (AUTHDBMGROUPFILE, AUTHDBMUSERFILE, AUTH-
GROUPFILE, AUTHNAME, AUTHTYPE, AUTHUSERFILE, REQUIRE, etc.).

FileInfo Allow use of the directives controlling document types (DEFAULTTYPE, ERRORDOCUMENT, FORCETYPE,
LANGUAGEPRIORITY, SETHANDLER, SETINPUTFILTER, SETOUTPUTFILTER, and MOD MIME Add* and
Remove* directives,etc.).

Indexes Allow use of the directives controlling directory indexing (ADDDESCRIPTION, ADDICON, ADDICON-
BYENCODING, ADDICONBYTYPE, DEFAULTICON, DIRECTORYINDEX, FANCY INDEXING, HEADERNAME,
INDEXIGNORE, INDEXOPTIONS, READMENAME, etc.).

Limit Allow use of the directives controlling host access (ALLOW, DENY andORDER).

Options Allow use of the directives controlling specific directory features (OPTIONSandXB ITHACK).

Example:

AllowOverride AuthConfig Indexes

See also

• ACCESSFILENAME

• Configuration Files (p.20)

• .htaccess Files (p.201)

AuthName Directive

Description: Authorization realm for use in HTTP authentication
Syntax: AuthName auth-domain
Context: directory, .htaccess
Override: AuthConfig
Status: Core
Module: core

This directive sets the name of the authorization realm for a directory. This realm is given to the client so that the
user knows which username and password to send.AUTHNAME takes a single argument; if the realm name contains
spaces, it must be enclosed in quotation marks. It must be accompanied byAUTHTYPE andREQUIRE directives, and
directives such asAUTHUSERFILE andAUTHGROUPFILE to work.

For example:

AuthName "Top Secret"

The string provided for theAuthName is what will appear in the password dialog provided by most browsers.

See also

• Authentication, Authorization, and Access Control (p.185)

294 CHAPTER 10. APACHE MODULES

AuthType Directive

Description: Type of user authentication
Syntax: AuthType Basic|Digest
Context: directory, .htaccess
Override: AuthConfig
Status: Core
Module: core

This directive selects the type of user authentication for a directory. OnlyBasic andDigest are currently imple-
mented.

It must be accompanied byAUTHNAME andREQUIRE directives, and directives such asAUTHUSERFILE andAU-
THGROUPFILE to work.

See also

• Authentication, Authorization, and Access Control (p.185)

CGIMapExtension Directive

Description: Technique for locating the interpreter for CGI scripts
Syntax: CGIMapExtension cgi-path .extension
Context: directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: NetWare only

This directive is used to control how Apache finds the interpreter used to run CGI scripts. For example, setting
CGIMapExtension sys: \foo.nlm .foo will cause all CGI script files with a.foo extension to be passed to
the FOO interpreter.

ContentDigest Directive

Description: Enables the generation ofContent-MD5 HTTP Response headers
Syntax: ContentDigest On|Off
Default: ContentDigest Off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Core
Module: core

This directive enables the generation ofContent-MD5 headers as defined in RFC1864 respectively RFC2068.

MD5 is an algorithm for computing a" message digest" (sometimes called" fingerprint") of arbitrary-length data,
with a high degree of confidence that any alterations in the data will be reflected in alterations in the message digest.

The Content-MD5 header provides an end-to-end message integrity check (MIC) of the entity-body. A proxy or
client may check this header for detecting accidental modification of the entity-body in transit. Example header:

Content-MD5: AuLb7Dp1rqtRtxz2m9kRpA==

Note that this can cause performance problems on your server since the message digest is computed on every request
(the values are not cached).

10.3. APACHE MODULE CORE 295

Content-MD5 is only sent for documents served by theCORE, and not by any module. For example, SSI documents,
output from CGI scripts, and byte range responses do not have this header.

DefaultType Directive

Description: MIME content-type that will be sent if the server cannot determine a type in any other way
Syntax: DefaultType MIME-type
Default: DefaultType text/plain
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

There will be times when the server is asked to provide a document whose type cannot be determined by its MIME
types mappings.

The server must inform the client of the content-type of the document, so in the event of an unknown type it uses the
DefaultType . For example:

DefaultType image/gif

would be appropriate for a directory which contained many GIF images with filenames missing the.gif extension.

Note that unlikeFORCETYPE, this directive only provides the default mime-type. All other mime-type definitions,
including filename extensions, that might identify the media type will override this default.

Directory Directive

Description: Enclose a group of directives that apply only to the named file-system directory and sub-
directories

Syntax: <Directory directory-path > ... </Directory >
Context: server config, virtual host
Status: Core
Module: core

<DIRECTORY> and</Directory > are used to enclose a group of directives that will apply only to the named
directory and sub-directories of that directory. Any directive that is allowed in a directory context may be used.
Directory-path is either the full path to a directory, or a wild-card string using Unix shell-style matching. In a wild-
card string,? matches any single character, and* matches any sequences of characters. You may also use[]
character ranges. None of the wildcards match a ‘/’ character, so<Directory /*/public html > will not
match/home/user/public html , but<Directory /home/*/public html > will match. Example:

<Directory /usr/local/httpd/htdocs >

Options Indexes FollowSymLinks

</Directory >

=⇒Be careful with the directory-path arguments: They have to literally match the filesystem path
which Apache uses to access the files. Directives applied to a particular<Directory > will
not apply to files accessed from that same directory via a different path, such as via different
symbolic links.

Extended regular expressions can also be used, with the addition of the˜ character. For example:

296 CHAPTER 10. APACHE MODULES

<Directory ˜ "ˆ/www/.*/[0-9] {3}" >

would match directories in/www/ that consisted of three numbers.

If multiple (non-regular expression)<DIRECTORY> sections match the directory (or one of its parents) containing a
document, then the directives are applied in the order of shortest match first, interspersed with the directives from the
.htaccess files. For example, with

<Directory / >

AllowOverride None

</Directory >

<Directory /home/ >

AllowOverride FileInfo

</Directory >

for access to the document/home/web/dir/doc.html the steps are:

• Apply directiveAllowOverride None (disabling.htaccess files).

• Apply directiveAllowOverride FileInfo (for directory/home).

• Apply any FileInfo directives in /home/.htaccess , /home/web/.htaccess and
/home/web/dir/.htaccess in that order.

Regular expressions are not considered until after all of the normal sections have been applied. Then all of the regular
expressions are tested in the order they appeared in the configuration file. For example, with

<Directory ˜ abc$ >

... directives here ...

</Directory >

the regular expression section won’t be considered until after all normal<DIRECTORY>s and.htaccess files have
been applied. Then the regular expression will match on/home/abc/public html/abc and the corresponding
<DIRECTORY> will be applied.

Note that the default Apache access for<Directory / > is Allow from All . This means that Apache will
serve any file mapped from an URL. It is recommended that you change this with a block such as

<Directory / >

Order Deny,Allow
Deny from All

</Directory >

and then override this for directories youwant accessible. See the Security Tips (p.41) page for more details.

The directory sections occur in thehttpd.conf file. <DIRECTORY> directives cannot nest, and cannot appear in
a<L IMIT > or <L IMIT EXCEPT> section.

See also

• How <Directory>, <Location> and<Files> sections work (p.22) for an explanation of how these different
sections are combined when a request is received

10.3. APACHE MODULE CORE 297

DirectoryMatch Directive

Description: Enclose directives that apply to file-system directories matching a regular expression and their
subdirectories

Syntax: <DirectoryMatch regex > ... </DirectoryMatch >
Context: server config, virtual host
Status: Core
Module: core

<DIRECTORYMATCH> and</DirectoryMatch > are used to enclose a group of directives which will apply
only to the named directory and sub-directories of that directory, the same as<DIRECTORY>. However, it takes as
an argument a regular expression. For example:

<DirectoryMatch "ˆ/www/.*/[0-9] {3}" >

would match directories in/www/ that consisted of three numbers.

See also

• <DIRECTORY> for a description of how regular expressions are mixed in with normal<DIRECTORY>s

• How <Directory>, <Location> and<Files> sections work (p.22) for an explanation of how these different
sections are combined when a request is received

DocumentRoot Directive

Description: Directory that forms the main document tree visible from the web
Syntax: DocumentRoot directory-path
Default: DocumentRoot /usr/local/apache/htdocs
Context: server config, virtual host
Status: Core
Module: core

This directive sets the directory from whichhttpd will serve files. Unless matched by a directive likeALIAS, the
server appends the path from the requested URL to the document root to make the path to the document. Example:

DocumentRoot /usr/web

then an access tohttp://www.my.host.com/index.html refers to/usr/web/index.html .

TheDOCUMENTROOT should be specified without a trailing slash.

See also

• Mapping URLs to Filesystem Location (p.37)

EnableMMAP Directive

Description: Use memory-mapping to read files during delivery
Syntax: EnableMMAP On|Off
Default: EnableMMAP On
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

298 CHAPTER 10. APACHE MODULES

This directive controls whether thehttpd may use memory-mapping if it needs to read the contents of a file during
delivery. By default, when the handling of a request requires access to the data within a file – for example, when
delivering a server-parsed file usingMOD INCLUDE – Apache memory-maps the file if the OS supports it.

This memory-mapping sometimes yields a performance improvement. But in some environments, it is better to disable
the memory-mapping to prevent operational problems:

• On some multiprocessor systems, memory-mapping can reduce the performance of thehttpd .

• With an NFS-mountedDOCUMENTROOT, thehttpd may crash due to a segmentation fault if a file is deleted
or truncated while thehttpd has it memory-mapped.

For server configurations that are vulnerable to these problems, you should disable memory-mapping of delivered files
by specifying:

EnableMMAP Off

For NFS mounted files, this feature may be disabled explicitly for the offending files by specifying:

<Directory "/path-to-nfs-files" >
EnableMMAP Off

</Directory >

EnableSendfile Directive

Description: Use the kernel sendfile support to deliver files to the client
Syntax: EnableSendfile On|Off
Default: EnableSendfile On
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Available in version 2.0.44 and later

This directive controls whetherhttpd may use the sendfile support from the kernel to transmit file contents to the
client. By default, when the handling of a request requires no access to the data within a file – for example, when
delivering a static file – Apache uses sendfile to deliver the file contents without ever reading the file if the OS supports
it.

This sendfile mechanism avoids seperate read and send operations, and buffer allocations. But on some platforms or
within some filesystems, it is better to disable this feature to avoid operational problems:

• Some platforms may have broken sendfile support that the build system did not detect, especially if the binaries
were built on another box and moved to such a machine with broken sendfile support.

• With a network-mountedDOCUMENTROOT (e.g., NFS or SMB), the kernel may be unable to serve the network
file through its own cache.

For server configurations that are vulnerable to these problems, you should disable this feature by specifying:

EnableSendfile Off

10.3. APACHE MODULE CORE 299

For NFS or SMB mounted files, this feature may be disabled explicitly for the offending files by specifying:

<Directory "/path-to-nfs-files" >
EnableSendfile Off

</Directory >

ErrorDocument Directive

Description: What the server will return to the client in case of an error
Syntax: ErrorDocument error-code document
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Quoting syntax for text messages is different in Apache 2.0

In the event of a problem or error, Apache can be configured to do one of four things,

1. output a simple hardcoded error message

2. output a customized message

3. redirect to a local URL-path to handle the problem/error

4. redirect to an external URL to handle the problem/error

The first option is the default, while options 2-4 are configured using theERRORDOCUMENT directive, which is
followed by the HTTP response code and a URL or a message. Apache will sometimes offer additional information
regarding the problem/error.

URLs can begin with a slash (/) for local URLs, or be a full URL which the client can resolve. Alternatively, a message
can be provided to be displayed by the browser. Examples:

ErrorDocument 500 http://foo.example.com/cgi-bin/tester
ErrorDocument 404 /cgi-bin/bad urls.pl
ErrorDocument 401 /subscription info.html

ErrorDocument 403 "Sorry can’t allow you access today"

Note that when you specify anERRORDOCUMENT that points to a remote URL (ie. anything with a method such
ashttp in front of it), Apache will send a redirect to the client to tell it where to find the document, even if the
document ends up being on the same server. This has several implications, the most important being that the client
will not receive the original error status code, but instead will receive a redirect status code. This in turn can confuse
web robots and other clients which try to determine if a URL is valid using the status code. In addition, if you use a
remote URL in anErrorDocument 401 , the client will not know to prompt the user for a password since it will
not receive the 401 status code. Therefore,if you use anErrorDocument 401 directive then it must refer to a
local document.

Microsoft Internet Explorer (MSIE) will by default ignore server-generated error messages when they are" too small"
and substitute its own" friendly" error messages. The size threshold varies depending on the type of error, but in
general, if you make your error document greater than 512 bytes, then MSIE will show the server-generated error
rather than masking it. More information is available in Microsoft Knowledgebase article Q2948071.

Prior to version 2.0, messages were indicated by prefixing them with a single unmatched double quote character.

See also
1http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807

300 CHAPTER 10. APACHE MODULES

• documentation of customizable responses (p.55)

ErrorLog Directive

Description: Location where the server will log errors
Syntax: ErrorLog file-path|syslog[:facility]
Default: ErrorLog logs/error log (Unix) ErrorLog logs/error.log (Windows

and OS/2)
Context: server config, virtual host
Status: Core
Module: core

TheERRORLOG directive sets the name of the file to which the server will log any errors it encounters. If the file-path
is not absolute (in general: does not begin with a slash (/)) then it is assumed to be relative to theSERVERROOT.

Example
ErrorLog /var/log/httpd/error log

If the file-path begins with a pipe (—) then it is assumed to be a command to spawn to handle the error log.

Example
ErrorLog "|/usr/local/bin/httpd errors"

Using syslog instead of a filename enables logging via syslogd(8) if the system supports it. The default is to use
syslog facilitylocal7 , but you can override this by using thesyslog:facility syntax where facility can be one
of the names usually documented in syslog(1).

Example
ErrorLog syslog:user

SECURITY: See the security tips (p.41) document for details on why your security could be compromised if the
directory where logfiles are stored is writable by anyone other than the user that starts the server.

! Note
When entering a file path on non-Unix platforms, care should be taken to make sure that only
forward slashed are used even though the platform may allow the use of back slashes. In
general it is a good idea to always use forward slashes throughout the configuration files.

See also

• LOGLEVEL

• Apache Log Files (p.30)

FileETag Directive

Description: File attributes used to create the ETag HTTP response header
Syntax: FileETag component ...
Default: FileETag INode MTime Size
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

10.3. APACHE MODULE CORE 301

The FILEETAG directive configures the file attributes that are used to create theETag (entity tag) response header
field when the document is based on a file. (TheETag value is used in cache management to save network bandwidth.)
In Apache 1.3.22 and earlier, theETag value wasalwaysformed from the file’s inode, size, and last-modified time
(mtime). TheFILEETAG directive allows you to choose which of these – if any – should be used. The recognized
keywords are:

INode The file’s i-node number will be included in the calculation

MTime The date and time the file was last modified will be included

Size The number of bytes in the file will be included

All All available fields will be used. This is equivalent to:

FileETag INode MTime Size

None If a document is file-based, noETag field will be included in the response

The INode , MTime, andSize keywords may be prefixed with either+ or - , which allow changes to be made to
the default setting inherited from a broader scope. Any keyword appearing without such a prefix immediately and
completely cancels the inherited setting.

If a directory’s configuration includesFileETagINodeMTimeSize , and a subdirectory’s includes
FileETag-INode , the setting for that subdirectory (which will be inherited by any sub-subdirectories that don’t
override it) will be equivalent toFileETagMTimeSize .

Files Directive

Description: Contains directives that apply to matched filenames
Syntax: <Files filename > ... </Files >
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The <FILES> directive limits the scope of the enclosed directives by filename. It is comparable to the<DIREC-
TORY> and <LOCATION> directives. It should be matched with a</Files > directive. The directives given
within this section will be applied to any object with a basename (last component of filename) matching the specified
filename.<FILES> sections are processed in the order they appear in the configuration file, after the<DIRECTORY>
sections and.htaccess files are read, but before<LOCATION> sections. Note that<FILES> can be nested inside
<DIRECTORY> sections to restrict the portion of the filesystem they apply to.

The filename argument should include a filename, or a wild-card string, where? matches any single character, and
* matches any sequences of characters. Extended regular expressions can also be used, with the addition of the˜
character. For example:

<Files ˜ " \.(gif|jpe?g|png)$" >

would match most common Internet graphics formats.<FILESMATCH> is preferred, however.

Note that unlike<DIRECTORY> and<LOCATION> sections,<FILES> sections can be used inside.htaccess
files. This allows users to control access to their own files, at a file-by-file level.

See also

• How <Directory>, <Location> and<Files> sections work (p.22) for an explanation of how these different
sections are combined when a request is received

302 CHAPTER 10. APACHE MODULES

FilesMatch Directive

Description: Contains directives that apply to regular-expression matched filenames
Syntax: <FilesMatch regex > ... </FilesMatch >
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The<FILESMATCH> directive limits the scope of the enclosed directives by filename, just as the<FILES> directive
does. However, it accepts a regular expression. For example:

<FilesMatch " \.(gif|jpe?g|png)$" >

would match most common Internet graphics formats.

See also

• How <Directory>, <Location> and<Files> sections work (p.22) for an explanation of how these different
sections are combined when a request is received

ForceType Directive

Description: Forces all matching files to be served with the specified MIME content-type
Syntax: ForceType MIME-type|None
Context: directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Moved to the core in Apache 2.0

When placed into an.htaccess file or a<DIRECTORY>, or <LOCATION> or <FILES> section, this directive
forces all matching files to be served with the content type identification given by MIME-type. For example, if you
had a directory full of GIF files, but did not want to label them all with.gif , you might want to use:

ForceType image/gif

Note that unlikeDEFAULTTYPE, this directive overrides all mime-type associations, including filename extensions,
that might identify the media type.

You can override anyFORCETYPE setting by using the value ofNone:

force all files to be image/gif:
<Location /images >

ForceType image/gif

</Location >

but normal mime-type associations here:
<Location /images/mixed >

ForceType None

</Location >

10.3. APACHE MODULE CORE 303

HostnameLookups Directive

Description: Enables DNS lookups on client IP addresses
Syntax: HostnameLookups On|Off|Double
Default: HostnameLookups Off
Context: server config, virtual host, directory
Status: Core
Module: core

This directive enables DNS lookups so that host names can be logged (and passed to CGIs/SSIs inREMOTEHOST).
The valueDouble refers to doing double-reverse DNS lookup. That is, after a reverse lookup is performed, a forward
lookup is then performed on that result. At least one of the ip addresses in the forward lookup must match the original
address. (In" tcpwrappers" terminology this is calledPARANOID.)

Regardless of the setting, whenMOD ACCESSis used for controlling access by hostname, a double reverse lookup will
be performed. This is necessary for security. Note that the result of this double-reverse isn’t generally available unless
you setHostnameLookups Double . For example, if onlyHostnameLookups On and a request is made to an
object that is protected by hostname restrictions, regardless of whether the double-reverse fails or not, CGIs will still
be passed the single-reverse result inREMOTEHOST.

The default isOff in order to save the network traffic for those sites that don’t truly need the reverse lookups done. It
is also better for the end users because they don’t have to suffer the extra latency that a lookup entails. Heavily loaded
sites should leave this directiveOff , since DNS lookups can take considerable amounts of time. The utility logresolve
(p.254) , compiled by default to thebin subdirectory of your installation directory, can be used to look up host names
from logged IP addresses offline.

IdentityCheck Directive

Description: Enables logging of the RFC1413 identity of the remote user
Syntax: IdentityCheck On|Off
Default: IdentityCheck Off
Context: server config, virtual host, directory
Status: Core
Module: core

This directive enables RFC1413-compliant logging of the remote user name for each connection, where the client
machine runs identd or something similar. This information is logged in the access log.

The information should not be trusted in any way except for rudimentary usage tracking.

Note that this can cause serious latency problems accessing your server since every request requires one of these
lookups to be performed. When firewalls are involved each lookup might possibly fail and add 30 seconds of latency
to each hit. So in general this is not very useful on public servers accessible from the Internet.

IfDefine Directive

Description: Encloses directives that will be processed only if a test is true at startup
Syntax: <IfDefine [!]parameter-name > ... </IfDefine >
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The<IfDefine test >... </IfDefine > section is used to mark directives that are conditional. The direc-
tives within an<IFDEFINE> section are only processed if the test is true. If test is false, everything between the start
and end markers is ignored.

304 CHAPTER 10. APACHE MODULES

The test in the<IFDEFINE> section directive can be one of two forms:

• parameter-name

• ! parameter-name

In the former case, the directives between the start and end markers are only processed if the parameter named
parameter-name is defined. The second format reverses the test, and only processes the directives if parameter-name
is not defined.

The parameter-name argument is a define as given on thehttpd command line via-Dparameter- , at the time
the server was started.

<IFDEFINE> sections are nest-able, which can be used to implement simple multiple-parameter tests. Example:

httpd -DReverseProxy ...

httpd.conf
<IfDefine ReverseProxy >

LoadModule rewrite module modules/mod rewrite.so
LoadModule proxy module modules/libproxy.so

</IfDefine >

IfModule Directive

Description: Encloses directives that are processed conditional on the presence or absence of a specific
module

Syntax: <IfModule [!]module-name > ... </IfModule >
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The<IfModule test >... </IfModule > section is used to mark directives that are conditional on the pres-
ence of a specific module. The directives within an<IFMODULE> section are only processed if the test is true. If test
is false, everything between the start and end markers is ignored.

The test in the<IFMODULE> section directive can be one of two forms:

• module name

• !module name

In the former case, the directives between the start and end markers are only processed if the module named module
name is included in Apache – either compiled in or dynamically loaded usingLOADMODULE. The second format
reverses the test, and only processes the directives if module name isnot included.

The module name argument is the file name of the module, at the time it was compiled. For example,
mod rewrite.c . If a module consists of several source files, use the name of the file containing the string
STANDARD20MODULESTUFF.

<IFMODULE> sections are nest-able, which can be used to implement simple multiple-module tests.

=⇒This section should only be used if you need to have one configuration file that works whether
or not a specific module is available. In normal operation, directives need not be placed in
<IFMODULE> sections.

10.3. APACHE MODULE CORE 305

Include Directive

Description: Includes other configuration files from within the server configuration files
Syntax: Include file-path|directory-path
Context: server config, virtual host, directory
Status: Core
Module: core
Compatibility: Wildcard matching available in 2.0.41 and later

This directive allows inclusion of other configuration files from within the server configuration files.

Shell-style (fnmatch()) wildcard characters can be used to include several files at once, in alphabetical order. In
addition, if INCLUDE points to a directory, rather than a file, Apache will read all files in that directory and any
subdirectory. But including entire directories is not recommended, because it is easy to accidentally leave temporary
files in a directory that can causehttpd to fail.

The file path specified may be an absolute path (i.e. starting with a slash), or may be relative to theSERVERROOT

directory.

Examples:

Include /usr/local/apache2/conf/ssl.conf

Include /usr/local/apache2/conf/vhosts/*.conf

Or, providing paths relative to yourSERVERROOT directory:

Include conf/ssl.conf

Include conf/vhosts/*.conf

Runningapachectl configtest will give you a list of the files that are being processed during the configuration
check:

root@host# apachectl configtest
Processing config file: /usr/local/apache2/conf/ssl.conf
Processing config file: /usr/local/apache2/conf/vhosts/vhost1.conf
Processing config file: /usr/local/apache2/conf/vhosts/vhost2.conf

Syntax OK

See also

• apachectl (p.243)

KeepAlive Directive

Description: Enables HTTP persistent connections
Syntax: KeepAlive On|Off
Default: KeepAlive On
Context: server config, virtual host
Status: Core
Module: core

The Keep-Alive extension to HTTP/1.0 and the persistent connection feature of HTTP/1.1 provide long-lived HTTP
sessions which allow multiple requests to be sent over the same TCP connection. In some cases this has been shown

306 CHAPTER 10. APACHE MODULES

to result in an almost 50% speedup in latency times for HTML documents with many images. To enable Keep-Alive
connections, setKeepAlive On .

For HTTP/1.0 clients, Keep-Alive connections will only be used if they are specifically requested by a client. In
addition, a Keep-Alive connection with an HTTP/1.0 client can only be used when the length of the content is known
in advance. This implies that dynamic content such as CGI output, SSI pages, and server-generated directory listings
will generally not use Keep-Alive connections to HTTP/1.0 clients. For HTTP/1.1 clients, persistent connections are
the default unless otherwise specified. If the client requests it, chunked encoding will be used in order to send content
of unknown length over persistent connections.

See also

• MAX KEEPALIVE REQUESTS

KeepAliveTimeout Directive

Description: Amount of time the server will wait for subsequent requests on a persistent connection
Syntax: KeepAliveTimeout seconds
Default: KeepAliveTimeout 15
Context: server config, virtual host
Status: Core
Module: core

The number of seconds Apache will wait for a subsequent request before closing the connection. Once a request has
been received, the timeout value specified by theTIMEOUT directive applies.

SettingKEEPALIVE TIMEOUT to a high value may cause performance problems in heavily loaded servers. The higher
the timeout, the more server processes will be kept occupied waiting on connections with idle clients.

Limit Directive

Description: Restrict enclosed access controls to only certain HTTP methods
Syntax: <Limit method [method] ... > ... </Limit >
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Access controls are normally effective forall access methods, and this is the usual desired behavior.In the general
case, access control directives should not be placed within a<L IMIT > section.

The purpose of the<L IMIT > directive is to restrict the effect of the access controls to the nominated HTTP methods.
For all other methods, the access restrictions that are enclosed in the<L IMIT > bracketwill have no effect. The
following example applies the access control only to the methodsPOST, PUT, andDELETE, leaving all other methods
unprotected:

<Limit POST PUT DELETE>

Require valid-user

</Limit >

The method names listed can be one or more of:GET, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH,
PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, andUNLOCK. The method name is case-sensitive.If
GETis used it will also restrictHEADrequests. TheTRACEmethod cannot be limited.

10.3. APACHE MODULE CORE 307

LimitExcept Directive

Description: Restrict access controls to all HTTP methods except the named ones
Syntax: <LimitExcept method [method] ... > ... </LimitExcept >
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

<L IMIT EXCEPT> and</LimitExcept > are used to enclose a group of access control directives which will then
apply to any HTTP access methodnot listed in the arguments; i.e., it is the opposite of a<L IMIT > section and can be
used to control both standard and nonstandard/unrecognized methods. See the documentation for<L IMIT > for more
details.

For example:

<LimitExcept POST GET >

Require valid-user

<LimitExcept >

LimitRequestBody Directive

Description: Restricts the total size of the HTTP request body sent from the client
Syntax: LimitRequestBody bytes
Default: LimitRequestBody 0
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

This directive specifies the number of bytes from 0 (meaning unlimited) to 2147483647 (2GB) that are allowed in a
request body. The default value is defined by the compile-time constantDEFAULTLIMIT REQUESTBODY(0 as
distributed).

The L IMIT REQUESTBODY directive allows the user to set a limit on the allowed size of an HTTP request message
body within the context in which the directive is given (server, per-directory, per-file or per-location). If the client
request exceeds that limit, the server will return an error response instead of servicing the request. The size of a
normal request message body will vary greatly depending on the nature of the resource and the methods allowed on
that resource. CGI scripts typically use the message body for retrieving form information. Implementations of thePUT
method will require a value at least as large as any representation that the server wishes to accept for that resource.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

If, for example, you are permitting file upload to a particular location, and wish to limit the size of the uploaded file to
100K, you might use the following directive:

LimitRequestBody 102400

308 CHAPTER 10. APACHE MODULES

LimitRequestFields Directive

Description: Limits the number of HTTP request header fields that will be accepted from the client
Syntax: LimitRequestFields number
Default: LimitRequestFields 100
Context: server config
Status: Core
Module: core

Number is an integer from 0 (meaning unlimited) to 32767. The default value is defined by the compile-time constant
DEFAULTLIMIT REQUESTFIELDS (100 as distributed).

The L IMIT REQUESTFIELDS directive allows the server administrator to modify the limit on the number of request
header fields allowed in an HTTP request. A server needs this value to be larger than the number of fields that a normal
client request might include. The number of request header fields used by a client rarely exceeds 20, but this may vary
among different client implementations, often depending upon the extent to which a user has configured their browser
to support detailed content negotiation. Optional HTTP extensions are often expressed using request header fields.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks. The value should be increased if normal clients see an
error response from the server that indicates too many fields were sent in the request.

For example:

LimitRequestFields 50

LimitRequestFieldSize Directive

Description: Limits the size of the HTTP request header allowed from the client
Syntax: LimitRequestFieldsize bytes
Default: LimitRequestFieldsize 8190
Context: server config
Status: Core
Module: core

This directive specifies the number of bytes from 0 to the value of the compile-time constant
DEFAULTLIMIT REQUESTFIELDSIZE (8190 as distributed) that will be allowed in an HTTP request
header.

TheL IMIT REQUESTFIELDSIZE directive allows the server administrator to reduce the limit on the allowed size of an
HTTP request header field below the normal input buffer size compiled with the server. A server needs this value to be
large enough to hold any one header field from a normal client request. The size of a normal request header field will
vary greatly among different client implementations, often depending upon the extent to which a user has configured
their browser to support detailed content negotiation.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

For example:

LimitRequestFieldSize 4094

=⇒Under normal conditions, the value should not be changed from the default.

10.3. APACHE MODULE CORE 309

LimitRequestLine Directive

Description: Limit the size of the HTTP request line that will be accepted from the client
Syntax: LimitRequestLine bytes
Default: LimitRequestLine 8190
Context: server config
Status: Core
Module: core

This directive sets the number of bytes from 0 to the value of the compile-time constant
DEFAULTLIMIT REQUESTLINE (8190 as distributed) that will be allowed on the HTTP request-line.

TheL IMIT REQUESTL INE directive allows the server administrator to reduce the limit on the allowed size of a client’s
HTTP request-line below the normal input buffer size compiled with the server. Since the request-line consists of the
HTTP method, URI, and protocol version, theL IMIT REQUESTL INE directive places a restriction on the length of a
request-URI allowed for a request on the server. A server needs this value to be large enough to hold any of its resource
names, including any information that might be passed in the query part of aGETrequest.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

For example:

LimitRequestLine 4094

=⇒Under normal conditions, the value should not be changed from the default.

LimitXMLRequestBody Directive

Description: Limits the size of an XML-based request body
Syntax: LimitXMLRequestBody bytes
Default: LimitXMLRequestBody 1000000
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Limit (in bytes) on maximum size of an XML-based request body. A value of0 will disable any checking.

Example:

LimitXMLRequestBody 0

Location Directive

Description: Applies the enclosed directives only to matching URLs
Syntax: <Location URL-path|URL > ... </Location >
Context: server config, virtual host
Status: Core
Module: core

The<LOCATION> directive limits the scope of the enclosed directives by URL. It is similar to the<DIRECTORY>
directive, and starts a subsection which is terminated with a</Location > directive. <LOCATION> sections are

310 CHAPTER 10. APACHE MODULES

processed in the order they appear in the configuration file, after the<DIRECTORY> sections and.htaccess files
are read, and after the<FILES> sections.

<LOCATION> sections operate completely outside the filesystem. This has several consequences. Most importantly,
<LOCATION> directives should not be used to control access to filesystem locations. Since several different URLs
may map to the same filesystem location, such access controls may by circumvented.

=⇒When to use<L OCATION >

Use<LOCATION> to apply directives to content that lives outside the filesystem. For content
that lives in the filesystem, use<DIRECTORY> and<FILES>. An exception is<Location
/ >, which is an easy way to apply a configuration to the entire server.

For all origin (non-proxy) requests, the URL to be matched is a URL-path of the form/path/ . No scheme,
hostname, port, or query string may be included. For proxy requests, the URL to be matched is of the form
scheme://servername/path , and you must include the prefix.

The URL may use wildcards. In a wild-card string,? matches any single character, and* matches any sequences of
characters.

Extended regular expressions can also be used, with the addition of the˜ character. For example:

<Location ˜ "/(extra|special)/data" >

would match URLs that contained the substring/extra/data or /special/data . The directive<LOCATION-
MATCH> behaves identical to the regex version of<LOCATION>.

The<LOCATION> functionality is especially useful when combined with theSETHANDLER directive. For example,
to enable status requests, but allow them only from browsers atfoo.com , you might use:

<Location /status >

SetHandler server-status
Order Deny,Allow
Deny from all
Allow from .foo.com

</Location >

=⇒Note about / (slash)
The slash character has special meaning depending on where in a URL it appears. People
may be used to its behavior in the filesystem where multiple adjacent slashes are frequently
collapsed to a single slash (i.e., /home///foo is the same as/home/foo). In URL-space
this is not necessarily true. The<LOCATIONMATCH> directive and the regex version of
<LOCATION> require you to explicitly specify multiple slashes if that is your intention.
For example,<LocationMatch ˆ/abc > would match the request URL/abc but not the
request URL //abc . The (non-regex)<LOCATION> directive behaves similarly when used
for proxy requests. But when (non-regex)<LOCATION> is used for non-proxy requests it will
implicitly match multiple slashes with a single slash. For example, if you specify<Location
/abc/def > and the request is to/abc//def then it will match.

See also

• How <Directory>, <Location> and<Files> sections work (p.22) for an explanation of how these different
sections are combined when a request is received

10.3. APACHE MODULE CORE 311

LocationMatch Directive

Description: Applies the enclosed directives only to regular-expression matching URLs
Syntax: <LocationMatch regex > ... </LocationMatch >
Context: server config, virtual host
Status: Core
Module: core

The <LOCATIONMATCH> directive limits the scope of the enclosed directives by URL, in an identical manner to
<LOCATION>. However, it takes a regular expression as an argument instead of a simple string. For example:

<LocationMatch "/(extra|special)/data" >

would match URLs that contained the substring/extra/data or /special/data .

See also

• How <Directory>, <Location> and<Files> sections work (p.22) for an explanation of how these different
sections are combined when a request is received

LogLevel Directive

Description: Controls the verbosity of the ErrorLog
Syntax: LogLevel level
Default: LogLevel warn
Context: server config, virtual host
Status: Core
Module: core

LOGLEVEL adjusts the verbosity of the messages recorded in the error logs (seeERRORLOG directive). The following
levels are available, in order of decreasing significance:

Level Description Example
emerg Emergencies - system is unusable. " Child cannot open lock file. Exiting"
alert Action must be taken immediately. " getpwuid: couldn’t determine user

name from uid"
crit Critical Conditions. " socket: Failed to get a socket, exiting

child"
error Error conditions. " Premature end of script headers"

warn Warning conditions. " child process 1234 did not exit, sending
another SIGHUP"

notice Normal but significant condition. " httpd: caught SIGBUS, attempting to
dump core in ..."

info Informational. " Server seems busy, (you may
need to increase StartServers, or
Min/MaxSpareServers)..."

debug Debug-level messages " Opening config file ..."

When a particular level is specified, messages from all other levels of higher significance will be reported as well.E.g.,
whenLogLevel info is specified, then messages with log levels ofnotice andwarn will also be posted.

Using a level of at leastcrit is recommended.

For example:

LogLevel notice

312 CHAPTER 10. APACHE MODULES

MaxKeepAliveRequests Directive

Description: Number of requests allowed on a persistent connection
Syntax: MaxKeepAliveRequests number
Default: MaxKeepAliveRequests 100
Context: server config, virtual host
Status: Core
Module: core

The MAX KEEPALIVE REQUESTSdirective limits the number of requests allowed per connection whenKEEPALIVE

is on. If it is set to0, unlimited requests will be allowed. We recommend that this setting be kept to a high value for
maximum server performance.

For example:

MaxKeepAliveRequests 500

NameVirtualHost Directive

Description: Designates an IP address for name-virtual hosting
Syntax: NameVirtualHost addr[:port]
Context: server config
Status: Core
Module: core

TheNAMEV IRTUAL HOST directive is a required directive if you want to configure name-based virtual hosts (p.114)
.

Although addr can be hostname it is recommended that you always use an IP address, e.g.

NameVirtualHost 111.22.33.44

With theNAMEV IRTUAL HOST directive you specify the IP address on which the server will receive requests for the
name-based virtual hosts. This will usually be the address to which your name-based virtual host names resolve. In
cases where a firewall or other proxy receives the requests and forwards them on a different IP address to the server,
you must specify the IP address of the physical interface on the machine which will be servicing the requests. If you
have multiple name-based hosts on multiple addresses, repeat the directive for each address.

=⇒Note
Note, that the" main server" and any default servers willneverbe served for a request to a
NAMEV IRTUAL HOST IP Address (unless for some reason you specifyNAMEV IRTUAL HOST

but then don’t define anyV IRTUAL HOSTs for that address).

Optionally you can specify a port number on which the name-based virtual hosts should be used, e.g.

NameVirtualHost 111.22.33.44:8080

IPv6 addresses must be enclosed in square brackets, as shown in the following example:

NameVirtualHost [fe80::a00:20ff:fea7:ccea]:8080

To receive requests on all interfaces, you can use an argument of*

10.3. APACHE MODULE CORE 313

NameVirtualHost *

=⇒Argument to <V IRTUAL HOST> directive
Note that the argument to the<V IRTUAL HOST> directive must exactly match the argument
to theNAMEV IRTUAL HOST directive.

NameVirtualHost 1.2.3.4
<VirtualHost 1.2.3.4 >
...

</VirtualHost >

See also

• Virtual Hosts documentation (p.114)

Options Directive

Description: Configures what features are available in a particular directory
Syntax: Options [+|-]option [[+|-]option] ...
Default: Options All
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Core
Module: core

TheOPTIONSdirective controls which server features are available in a particular directory.

option can be set toNone, in which case none of the extra features are enabled, or one or more of the following:

All All options except forMultiViews . This is the default setting.

ExecCGI Execution of CGI scripts usingMOD CGI is permitted.

FollowSymLinks The server will follow symbolic links in this directory.

=⇒Even though the server follows the symlink it doesnot change the pathname used to match
against<DIRECTORY> sections.
Note also, that this optiongets ignoredif set inside a<LOCATION> section.

Includes Server-side includes provided byMOD INCLUDE are permitted.

IncludesNOEXEC Server-side includes are permitted, but the#exec cmd and#exec cgi are disabled. It is
still possible to#include virtual CGI scripts fromSCRIPTALIASed directories.

Indexes If a URL which maps to a directory is requested, and there is noDIRECTORYINDEX (e.g., index.html)
in that directory, thenMOD AUTOINDEX will return a formatted listing of the directory.

MultiViews Content negotiated (p.48) " MultiViews" are allowed usingMOD NEGOTIATION.

SymLinksIfOwnerMatch The server will only follow symbolic links for which the target file or directory is
owned by the same user id as the link.

=⇒Note
This option gets ignored if set inside a<LOCATION> section.

314 CHAPTER 10. APACHE MODULES

Normally, if multiple OPTIONS could apply to a directory, then the most specific one is used and others are ignored;
the options are not merged. (See how sections are merged (p.22) .) However if all the options on theOPTIONS

directive are preceded by a+ or - symbol, the options are merged. Any options preceded by a+ are added to the
options currently in force, and any options preceded by a- are removed from the options currently in force.

For example, without any+ and- symbols:

<Directory /web/docs >

Options Indexes FollowSymLinks

</Directory >

<Directory /web/docs/spec >

Options Includes

</Directory >

then onlyIncludes will be set for the/web/docs/spec directory. However if the secondOPTIONS directive
uses the+ and- symbols:

<Directory /web/docs >

Options Indexes FollowSymLinks

</Directory >

<Directory /web/docs/spec >

Options +Includes -Indexes

</Directory >

then the optionsFollowSymLinks andIncludes are set for the/web/docs/spec directory.

=⇒Note
Using-IncludesNOEXEC or -Includes disables server-side includes completely regard-
less of the previous setting.

The default in the absence of any other settings isAll .

Require Directive

Description: Selects which authenticated users can access a resource
Syntax: Require entity-name [entity-name] ...
Context: directory, .htaccess
Override: AuthConfig
Status: Core
Module: core

This directive selects which authenticated users can access a directory. The allowed syntaxes are:

Require user userid [userid] ... Only the named users can access the resource.

Require group group-name [group-name] ... Only users in the named groups can access the re-
source.

Require valid-user All valid users can access the resource.

REQUIRE must be accompanied byAUTHNAME andAUTHTYPE directives, and directives such asAUTHUSERFILE

andAUTHGROUPFILE (to define users and groups) in order to work correctly. Example:

10.3. APACHE MODULE CORE 315

AuthType Basic
AuthName "Restricted Directory"
AuthUserFile /web/users
AuthGroupFile /web/groups

Require group admin

Access controls which are applied in this way are effective forall methods.This is what is normally desired. If
you wish to apply access controls only to specific methods, while leaving other methods unprotected, then place the
REQUIRE statement into a<L IMIT > section.

See also

• SATISFY

• MOD ACCESS

RLimitCPU Directive

Description: Limits the CPU consumption of processes launched by Apache children
Syntax: RLimitCPU seconds|max [seconds|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets
the maximum resource limit. Either parameter can be a number, ormax to indicate to the server that the limit should
be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit requires
that the server is running asroot , or in the initial startup phase.

This applies to processes forked off from Apache children servicing requests, not the Apache children themselves.
This includes CGI scripts and SSI exec commands, but not any processes forked off from the Apache parent such as
piped logs.

CPU resource limits are expressed in seconds per process.

See also

• RLIMIT MEM

• RLIMIT NPROC

RLimitMEM Directive

Description: Limits the memory consumption of processes launched by Apache children
Syntax: RLimitMEM bytes|max [bytes|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets
the maximum resource limit. Either parameter can be a number, ormax to indicate to the server that the limit should
be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit requires
that the server is running asroot , or in the initial startup phase.

316 CHAPTER 10. APACHE MODULES

This applies to processes forked off from Apache children servicing requests, not the Apache children themselves.
This includes CGI scripts and SSI exec commands, but not any processes forked off from the Apache parent such as
piped logs.

Memory resource limits are expressed in bytes per process.

See also

• RLIMIT CPU

• RLIMIT NPROC

RLimitNPROC Directive

Description: Limits the number of processes that can be launched by processes launched by Apache children
Syntax: RLimitNPROC number|max [number|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets
the maximum resource limit. Either parameter can be a number, ormax to indicate to the server that the limit should
be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit requires
that the server is running asroot , or in the initial startup phase.

This applies to processes forked off from Apache children servicing requests, not the Apache children themselves.
This includes CGI scripts and SSI exec commands, but not any processes forked off from the Apache parent such as
piped logs.

Process limits control the number of processes per user.

=⇒Note
If CGI processes arenot running under userids other than the web server userid, this directive
will limit the number of processes that the server itself can create. Evidence of this situation
will be indicated bycannot fork messages in theerror log .

See also

• RLIMIT MEM

• RLIMIT CPU

Satisfy Directive

Description: Interaction between host-level access control and user authentication
Syntax: Satisfy Any|All
Default: Satisfy All
Context: directory, .htaccess
Override: AuthConfig
Status: Core
Module: core

Access policy if bothALLOW andREQUIRE used. The parameter can be eitherAll or Any. This directive is only
useful if access to a particular area is being restricted by both username/passwordandclient host address. In this case
the default behavior (All) is to require that the client passes the address access restrictionandenters a valid username

10.3. APACHE MODULE CORE 317

and password. With theAny option the client will be granted access if they either pass the host restriction or enter a
valid username and password. This can be used to password restrict an area, but to let clients from particular addresses
in without prompting for a password.

For example, if you wanted to let people on your network have unrestricted access to a portion of your website, but
require that people outside of your network provide a password, you could use a configuration similar to the following:

Require valid-user
Allow from 192.168.1

Satisfy Any

See also

• ALLOW

• REQUIRE

ScriptInterpreterSource Directive

Description: Technique for locating the interpreter for CGI scripts
Syntax: ScriptInterpreterSource Registry|Registry-Strict|Script
Default: ScriptInterpreterSource Script
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Win32 only; optionRegistry-Strict is available in Apache 2.0 and later

This directive is used to control how Apache finds the interpreter used to run CGI scripts. The default setting is
Script . This causes Apache to use the interpreter pointed to by the shebang line (first line, starting with#!) in the
script. On Win32 systems this line usually looks like:

#!C:/Perl/bin/perl.exe

or, if perl is in thePATH, simply:

#!perl

SettingScriptInterpreterSource Registry will cause the Windows Registry treeHKEYCLASSESROOT
to be searched using the script file extension (e.g.,.pl) as a search key. The command defined by the registry subkey
Shell \ExecCGI \Commandor, if it does not exist, by the subkeyShell \Open\Commandis used to open the
script file. If the registry keys cannot be found, Apache falls back to the behavior of theScript option.

! Security
Be careful when usingScriptInterpreterSource Registry with SCRIPTALIAS ’ed
directories, because Apache will try to executeeveryfile within this directory. TheRegistry
setting may cause undesired program calls on files which are typically not executed. For exam-
ple, the default open command on.htm files on most Windows systems will execute Microsoft
Internet Explorer, so any HTTP request for an.htm file existing within the script directory
would start the browser in the background on the server. This is a good way to crash your
system within a minute or so.

The optionRegistry-Strict which is new in Apache 2.0 does the same thing asRegistry but uses only the
subkeyShell \ExecCGI \Command. TheExecCGI key is not a common one. It must be configured manually in
the windows registry and hence prevents accidental program calls on your system.

318 CHAPTER 10. APACHE MODULES

ServerAdmin Directive

Description: Email address that the server includes in error messages sent to the client
Syntax: ServerAdmin email-address
Context: server config, virtual host
Status: Core
Module: core

TheSERVERADMIN sets the e-mail address that the server includes in any error messages it returns to the client.

It may be worth setting up a dedicated address for this, e.g.

ServerAdmin www-admin@foo.example.com

as users do not always mention that they are talking about the server!

ServerAlias Directive

Description: Alternate names for a host used when matching requests to name-virtual hosts
Syntax: ServerAlias hostname [hostname] ...
Context: virtual host
Status: Core
Module: core

TheSERVERALIAS directive sets the alternate names for a host, for use with name-based virtual hosts (p.115) .

<VirtualHost * >
ServerName server.domain.com
ServerAlias server server2.domain.com server2
...

</VirtualHost >

See also

• Apache Virtual Host documentation (p.114)

ServerName Directive

Description: Hostname and port that the server uses to identify itself
Syntax: ServerName fully-qualified-domain-name[:port]
Context: server config, virtual host
Status: Core
Module: core
Compatibility: In version 2.0, this directive supersedes the functionality of thePORT directive from version

1.3.

TheSERVERNAME directive sets the hostname and port that the server uses to identify itself. This is used when creat-
ing redirection URLs. For example, if the name of the machine hosting the webserver issimple.example.com ,
but the machine also has the DNS aliaswww.example.com and you wish the webserver to be so identified, the
following directive should be used:

ServerName www.example.com:80

10.3. APACHE MODULE CORE 319

If no SERVERNAME is specified, then the server attempts to deduce the hostname by performing a reverse lookup on
the IP address. If no port is specified in the servername, then the server will use the port from the incoming request.
For optimal reliability and predictability, you should specify an explicit hostname and port using theSERVERNAME

directive.

If you are using name-based virtual hosts (p.115) , theSERVERNAME inside a<V IRTUAL HOST> section specifies
what hostname must appear in the request’sHost: header to match this virtual host.

See the description of theUSECANONICAL NAME directive for settings which determine whether self-referential
URL’s (e.g., by theMOD DIR module) will refer to the specified port, or to the port number given in the client’s
request.

See also

• Issues Regarding DNS and Apache (p.139)

• Apache virtual host documentation (p.114)

• USECANONICAL NAME

• NAMEV IRTUAL HOST

• SERVERALIAS

ServerPath Directive

Description: Legacy URL pathname for a name-based virtual host that is accessed by an incompatible
browser

Syntax: ServerPath URL-path
Context: virtual host
Status: Core
Module: core

TheSERVERPATH directive sets the legacy URL pathname for a host, for use with name-based virtual hosts (p.114) .

See also

• Apache Virtual Host documentation (p.114)

ServerRoot Directive

Description: Base directory for the server installation
Syntax: ServerRoot directory-path
Default: ServerRoot /usr/local/apache
Context: server config
Status: Core
Module: core

The SERVERROOT directive sets the directory in which the server lives. Typically it will contain the subdirectories
conf/ andlogs/ . Relative paths for other configuration files are taken as relative to this directory.

Example
ServerRoot /home/httpd

See also

• the-d option tohttpd (p. 15)

• the security tips (p.41) for information on how to properly set permissions on theSERVERROOT

320 CHAPTER 10. APACHE MODULES

ServerSignature Directive

Description: Configures the footer on server-generated documents
Syntax: ServerSignature On|Off|EMail
Default: ServerSignature Off
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

TheSERVERSIGNATURE directive allows the configuration of a trailing footer line under server-generated documents
(error messages,MOD PROXY ftp directory listings,MOD INFO output, ...). The reason why you would want to enable
such a footer line is that in a chain of proxies, the user often has no possibility to tell which of the chained servers
actually produced a returned error message.

The Off setting, which is the default, suppresses the footer line (and is therefore compatible with the behavior of
Apache-1.2 and below). TheOnsetting simply adds a line with the server version number andSERVERNAME of the
serving virtual host, and theEMail setting additionally creates a" mailto:" reference to theSERVERADMIN of the
referenced document.

After version 2.0.44, the details of the server version number presented are controlled by theSERVERTOKENS direc-
tive.

See also

• SERVERTOKENS

ServerTokens Directive

Description: Configures theServer HTTP response header
Syntax: ServerTokens Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full
Default: ServerTokens Full
Context: server config
Status: Core
Module: core

This directive controls whetherServer response header field which is sent back to clients includes a description of
the generic OS-type of the server as well as information about compiled-in modules.

ServerTokens Prod[uctOnly] Server sends (e.g.): Server: Apache

ServerTokens Major Server sends (e.g.): Server: Apache/2

ServerTokens Minor Server sends (e.g.): Server: Apache/2.0

ServerTokens Min[imal] Server sends (e.g.): Server: Apache/2.0.41

ServerTokens OS Server sends (e.g.): Server: Apache/2.0.41 (Unix)

ServerTokens Full (or not specified) Server sends (e.g.): Server: Apache/2.0.41 (Unix)
PHP/4.2.2 MyMod/1.2

This setting applies to the entire server, and cannot be enabled or disabled on a virtualhost-by-virtualhost basis.

After version 2.0.44, this directive also controls the information presented by theSERVERSIGNATURE directive.

See also

• SERVERSIGNATURE

10.3. APACHE MODULE CORE 321

SetHandler Directive

Description: Forces all matching files to be processed by a handler
Syntax: SetHandler handler-name|None
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Moved into the core in Apache 2.0

When placed into an.htaccess file or a<DIRECTORY> or <LOCATION> section, this directive forces all match-
ing files to be parsed through the handler (p.66) given by handler-name. For example, if you had a directory you
wanted to be parsed entirely as imagemap rule files, regardless of extension, you might put the following into an
.htaccess file in that directory:

SetHandler imap-file

Another example: if you wanted to have the server display a status report whenever a URL of
http://servername/status was called, you might put the following intohttpd.conf :

<Location /status >

SetHandler server-status

</Location >

You can override an earlier definedSETHANDLER directive by using the valueNone.

See also

• ADDHANDLER

SetInputFilter Directive

Description: Sets the filters that will process client requests and POST input
Syntax: SetInputFilter filter[;filter...]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

The SETINPUTFILTER directive sets the filter or filters which will process client requests and POST input when
they are received by the server. This is in addition to any filters defined elsewhere, including theADDINPUTFILTER

directive.

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content.

See also

• Filters (p.68) documentation

322 CHAPTER 10. APACHE MODULES

SetOutputFilter Directive

Description: Sets the filters that will process responses from the server
Syntax: SetOutputFilter filter[;filter...]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

TheSETOUTPUTFILTER directive sets the filters which will process responses from the server before they are sent to
the client. This is in addition to any filters defined elsewhere, including theADDOUTPUTFILTER directive.

For example, the following configuration will process all files in the/www/data/ directory for server-side includes.

<Directory /www/data/ >

SetOutputFilter INCLUDES

</Directory >

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content.

See also

• Filters (p.68) documentation

TimeOut Directive

Description: Amount of time the server will wait for certain events before failing a request
Syntax: TimeOut seconds
Default: TimeOut 300
Context: server config
Status: Core
Module: core

TheTIMEOUT directive currently defines the amount of time Apache will wait for three things:

1. The total amount of time it takes to receive a GET request.

2. The amount of time between receipt of TCP packets on a POST or PUT request.

3. The amount of time between ACKs on transmissions of TCP packets in responses.

We plan on making these separately configurable at some point down the road. The timer used to default to 1200
before 1.2, but has been lowered to 300 which is still far more than necessary in most situations. It is not set any lower
by default because there may still be odd places in the code where the timer is not reset when a packet is sent.

UseCanonicalName Directive

Description: Configures how the server determines its own name and port
Syntax: UseCanonicalName On|Off|DNS
Default: UseCanonicalName On
Context: server config, virtual host, directory
Status: Core
Module: core

10.3. APACHE MODULE CORE 323

In many situations Apache must construct aself-referentialURL – that is, a URL that refers back to the same server.
With UseCanonicalName On Apache will use the hostname and port specified in theSERVERNAME directive
to construct the canonical name for the server. This name is used in all self-referential URLs, and for the values of
SERVERNAMEandSERVERPORTin CGIs.

With UseCanonicalName Off Apache will form self-referential URLs using the hostname and port supplied by
the client if any are supplied (otherwise it will use the canonical name, as defined above). These values are the same
that are used to implement name based virtual hosts (p.115) , and are available with the same clients. The CGI
variablesSERVERNAMEandSERVERPORTwill be constructed from the client supplied values as well.

An example where this may be useful is on an intranet server where you have users connecting to the ma-
chine using short names such aswww. You’ll notice that if the users type a shortname, and a URL which
is a directory, such ashttp://www/splat , without the trailing slashthen Apache will redirect them to
http://www.domain.com/splat/ . If you have authentication enabled, this will cause the user to have to
authenticate twice (once forwwwand once again forwww.domain.com – see the FAQ on this subject for more
information2). But if USECANONICAL NAME is setOff , then Apache will redirect tohttp://www/splat/ .

There is a third option,UseCanonicalName DNS , which is intended for use with mass IP-based virtual hosting to
support ancient clients that do not provide aHost: header. With this option Apache does a reverse DNS lookup on
the server IP address that the client connected to in order to work out self-referential URLs.

! Warning
If CGIs make assumptions about the values ofSERVERNAMEthey may be broken by this
option. The client is essentially free to give whatever value they want as a hostname. But if
the CGI is only usingSERVERNAMEto construct self-referential URLs then it should be just
fine.

See also

• SERVERNAME

• L ISTEN

VirtualHost Directive

Description: Contains directives that apply only to a specific hostname or IP address
Syntax: <VirtualHost addr[:port] [addr[:port]] ... > ...

</VirtualHost >
Context: server config
Status: Core
Module: core

<V IRTUAL HOST> and</VirtualHost > are used to enclose a group of directives that will apply only to a par-
ticular virtual host. Any directive that is allowed in a virtual host context may be used. When the server receives a
request for a document on a particular virtual host, it uses the configuration directives enclosed in the<V IRTUAL -
HOST> section. Addr can be:

• The IP address of the virtual host;

• A fully qualified domain name for the IP address of the virtual host;

• The character* , which is used only in combination withNameVirtualHost * to match all IP addresses; or

• The string default , which is used only with IP virtual hosting to catch unmatched IP addresses.

2http://httpd.apache.org/docs/misc/FAQ.html#prompted-twice

http://httpd.apache.org/docs/misc/FAQ.html#prompted-twice

324 CHAPTER 10. APACHE MODULES

Example
<VirtualHost 10.1.2.3 >

ServerAdmin webmaster@host.foo.com
DocumentRoot /www/docs/host.foo.com
ServerName host.foo.com
ErrorLog logs/host.foo.com-error log
TransferLog logs/host.foo.com-access log

</VirtualHost >

IPv6 addresses must be specified in square brackets because the optional port number could not be determined other-
wise. An IPv6 example is shown below:

<VirtualHost [fe80::a00:20ff:fea7:ccea] >

ServerAdmin webmaster@host.example.com
DocumentRoot /www/docs/host.example.com
ServerName host.example.com
ErrorLog logs/host.example.com-error log
TransferLog logs/host.example.com-access log

</VirtualHost >

Each Virtual Host must correspond to a different IP address, different port number or a different host name for the
server, in the former case the server machine must be configured to accept IP packets for multiple addresses. (If
the machine does not have multiple network interfaces, then this can be accomplished with theifconfig alias
command – if your OS supports it).

=⇒Note
The use of<V IRTUAL HOST> doesnot affect what addresses Apache listens on. You may
need to ensure that Apache is listening on the correct addresses usingL ISTEN.

When using IP-based virtual hosting, the special namedefault can be specified in which case this virtual host
will match any IP address that is not explicitly listed in another virtual host. In the absence of anydefault virtual
host the" main" server config, consisting of all those definitions outside any VirtualHost section, is used when no
IP-match occurs. (But note that any IP address that matches aNAMEV IRTUAL HOST directive will use neither the
" main" server config nor thedefault virtual host. See the name-based virtual hosting (p.115) documentation for
further details.)

You can specify a:port to change the port that is matched. If unspecified then it defaults to the same port as the
most recentL ISTEN statement of the main server. You may also specify:* to match all ports on that address. (This is
recommended when used withdefault .)

! Security
See the security tips (p.41) document for details on why your security could be compromised
if the directory where logfiles are stored is writable by anyone other than the user that starts
the server.

See also

• Apache Virtual Host documentation (p.114)

• Issues Regarding DNS and Apache (p.139)

• Setting which addresses and ports Apache uses (p.58)

• How <Directory>, <Location> and<Files> sections work (p.22) for an explanation of how these different
sections are combined when a request is received

10.4. APACHE MODULE MOD ACCESS 325

10.4 Apache Module modaccess

Description: Provides access control based on client hostname, IP address, or other characteristics of
the client request.

Status: Base
ModuleIdentifier: accessmodule
SourceFile: modaccess.c
Compatibility: Available only in versions prior to 2.1

Summary

The directives provided byMOD ACCESSare used in<DIRECTORY>, <FILES>, and<LOCATION> sections as well
as.htaccess (p. 288) files to control access to particular parts of the server. Access can be controlled based
on the client hostname, IP address, or other characteristics of the client request, as captured in environment variables
(p. 61) . TheALLOW andDENY directives are used to specify which clients are or are not allowed access to the server,
while theORDER directive sets the default access state, and configures how theALLOW andDENY directives interact
with each other.

Both host-based access restrictions and password-based authentication may be implemented simultaneously. In that
case, theSATISFY directive is used to determine how the two sets of restrictions interact.

In general, access restriction directives apply to all access methods (GET, PUT, POST, etc). This is the desired behavior
in most cases. However, it is possible to restrict some methods, while leaving other methods unrestricted, by enclosing
the directives in a<L IMIT > section.

Directives

• Allow

• Deny

• Order

See also

• SATISFY

• REQUIRE

Allow Directive

Description: Controls which hosts can access an area of the server
Syntax: Allow from all|host|env=env-variable [host|env=env-variable]

...
Context: directory, .htaccess
Override: Limit
Status: Base
Module: modaccess

TheALLOW directive affects which hosts can access an area of the server. Access can be controlled by hostname, IP
Address, IP Address range, or by other characteristics of the client request captured in environment variables.

The first argument to this directive is alwaysfrom . The subsequent arguments can take three different forms. If
Allow from all is specified, then all hosts are allowed access, subject to the configuration of theDENY and
ORDER directives as discussed below. To allow only particular hosts or groups of hosts to access the server, the host
can be specified in any of the following formats:

326 CHAPTER 10. APACHE MODULES

A (partial) domain-name
Example:
Allow from apache.org

Hosts whose names match, or end in, this string are allowed access. Only complete components are matched, so
the above example will matchfoo.apache.org but it will not matchfooapache.org . This configuration
will cause the server to perform a reverse DNS lookup on the client IP address, regardless of the setting of the
HOSTNAMELOOKUPSdirective.

A full IP address Example:
Allow from 10.1.2.3

An IP address of a host allowed access

A partial IP address
Example:
Allow from 10.1

The first 1 to 3 bytes of an IP address, for subnet restriction.

A network/netmask pair
Example:
Allow from 10.1.0.0/255.255.0.0

A network a.b.c.d, and a netmask w.x.y.z. For more fine-grained subnet restriction.

A network/nnn CIDR specification
Example:
Allow from 10.1.0.0/16

Similar to the previous case, except the netmask consists of nnn high-order 1 bits.

Note that the last three examples above match exactly the same set of hosts.

IPv6 addresses and IPv6 subnets can be specified as shown below:

Allow from fe80::a00:20ff:fea7:ccea

Allow from fe80::a00:20ff:fea7:ccea/10

The third format of the arguments to theALLOW directive allows access to the server to be controlled based on
the existence of an environment variable (p.61) . WhenAllow from env=env-variable is specified, then
the request is allowed access if the environment variable env-variable exists. The server provides the ability to
set environment variables in a flexible way based on characteristics of the client request using the directives pro-
vided byMOD SETENVIF. Therefore, this directive can be used to allow access based on such factors as the clients
User-Agent (browser type),Referer , or other HTTP request header fields.

Example:
SetEnvIf User-Agent ˆKnockKnock/2.0 let me in
<Directory /docroot >

Order Deny,Allow
Deny from all
Allow from env=let me in

</Directory >

In this case, browsers with a user-agent string beginning withKnockKnock/2.0 will be allowed access, and all
others will be denied.

10.4. APACHE MODULE MOD ACCESS 327

Deny Directive

Description: Controls which hosts are denied access to the server
Syntax: Deny from all|host|env=env-variable [host|env=env-variable]

...
Context: directory, .htaccess
Override: Limit
Status: Base
Module: modaccess

This directive allows access to the server to be restricted based on hostname, IP address, or environment variables.
The arguments for theDENY directive are identical to the arguments for theALLOW directive.

Order Directive

Description: Controls the default access state and the order in whichALLOW andDENY are evaluated.
Syntax: Order ordering
Default: Order Deny,Allow
Context: directory, .htaccess
Override: Limit
Status: Base
Module: modaccess

TheORDER directive controls the default access state and the order in whichALLOW andDENY directives are evalu-
ated. Ordering is one of

Deny,Allow TheDENY directives are evaluated before theALLOW directives. Access is allowed by default. Any
client which does not match aDENY directive or does match anALLOW directive will be allowed access to the
server.

Allow,Deny The ALLOW directives are evaluated before theDENY directives. Access is denied by default. Any
client which does not match anALLOW directive or does match aDENY directive will be denied access to the
server.

Mutual-failure Only those hosts which appear on theALLOW list and do not appear on theDENY list are
granted access. This ordering has the same effect asOrder Allow,Deny and is deprecated in favor of that
configuration.

Keywords may only be separated by a comma;no whitespaceis allowed between them. Note that in all cases every
ALLOW andDENY statement is evaluated.

In the following example, all hosts in the apache.org domain are allowed access; all other hosts are denied access.

Order Deny,Allow
Deny from all

Allow from apache.org

In the next example, all hosts in the apache.org domain are allowed access, except for the hosts which are in the
foo.apache.org subdomain, who are denied access. All hosts not in the apache.org domain are denied access because
the default state is to deny access to the server.

Order Allow,Deny
Allow from apache.org

Deny from foo.apache.org

328 CHAPTER 10. APACHE MODULES

On the other hand, if theORDER in the last example is changed toDeny,Allow , all hosts will be allowed access.
This happens because, regardless of the actual ordering of the directives in the configuration file, theAllow from
apache.org will be evaluated last and will override theDeny from foo.apache.org . All hosts not in the
apache.org domain will also be allowed access because the default state will change to allow.

The presence of anORDER directive can affect access to a part of the server even in the absence of accompanying
ALLOW andDENY directives because of its effect on the default access state. For example,

<Directory /www >

Order Allow,Deny

</Directory >

will deny all access to the/www directory because the default access state will be set to deny.

TheORDER directive controls the order of access directive processing only within each phase of the server’s configu-
ration processing. This implies, for example, that anALLOW or DENY directive occurring in a<LOCATION> section
will always be evaluated after anALLOW or DENY directive occurring in a<DIRECTORY> section or.htaccess
file, regardless of the setting of theORDER directive. For details on the merging of configuration sections, see the
documentation on How Directory, Location and Files sections work (p.22) .

10.5. APACHE MODULE MOD ACTIONS 329

10.5 Apache Module modactions

Description: This module provides for executing CGI scripts based on media type or request method.
Status: Base
ModuleIdentifier: actionsmodule
SourceFile: modactions.c

Summary

This module has two directives. TheACTION directive lets you run CGI scripts whenever a file of a certain type is
requested. TheSCRIPT directive lets you run CGI scripts whenever a particular method is used in a request. This
makes it much easier to execute scripts that process files.

Directives

• Action

• Script

See also

• MOD CGI

• Dynamic Content with CGI (p.189)

• Apache’s Handler Use (p.66)

Action Directive

Description: Activates a CGI script for a particular handler or content-type
Syntax: Action action-type cgi-script
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modactions

This directive adds an action, which will activate cgi-script when action-type is triggered by the request. The cgi-script
is the URL-path to a resource that has been designated as a CGI script usingSCRIPTALIAS or ADDHANDLER. The
action-type can be either a handler (p.66) or a MIME content type. It sends the URL and file path of the requested
document using the standard CGI PATHINFO and PATHTRANSLATED environment variables.

Examples
Requests for files of a particular type:
Action image/gif /cgi-bin/images.cgi

Files of a particular file extension
AddHandler my-file-type .xyz

Action my-file-type /cgi-bin/program.cgi

In the first example, requests for files with a MIME content type ofimage/gif will instead be handled by the
specified cgi script/cgi-bin/images.cgi .

In the second example, requests for files with a file extension of.xyz are handled instead by the specified cgi script
/cgi-bin/program.cgi .

See also

• ADDHANDLER

330 CHAPTER 10. APACHE MODULES

Script Directive

Description: Activates a CGI script for a particular request method.
Syntax: Script method cgi-script
Context: server config, virtual host, directory
Status: Base
Module: modactions

This directive adds an action, which will activate cgi-script when a file is requested using the method of method.
The cgi-script is the URL-path to a resource that has been designated as a CGI script usingSCRIPTALIAS or AD-
DHANDLER. The URL and file path of the requested document is sent using the standard CGI PATHINFO and
PATH TRANSLATED environment variables.

=⇒Any arbitrary method name may be used.Method names are case-sensitive, so Script
PUTandScript put have two entirely different effects.

Note that the Script command defines default actions only. If a CGI script is called, or some other resource that is
capable of handling the requested method internally, it will do so. Also note that Script with a method ofGETwill
only be called if there are query arguments present (e.g., foo.html?hi). Otherwise, the request will proceed normally.

Examples
For <ISINDEX >-style searching
Script GET /cgi-bin/search

A CGI PUT handler

Script PUT /˜bob/put.cgi

10.6. APACHE MODULE MOD ALIAS 331

10.6 Apache Module modalias

Description: Provides for mapping different parts of the host filesystem in the document tree and for
URL redirection

Status: Base
ModuleIdentifier: aliasmodule
SourceFile: modalias.c

Summary

The directives contained in this module allow for manipulation and control of URLs as requests arrive at the server.
The ALIAS andSCRIPTALIAS directives are used to map between URLs and filesystem paths. This allows for con-
tent which is not directly under theDOCUMENTROOT served as part of the web document tree. TheSCRIPTALIAS

directive has the additional effect of marking the target directory as containing only CGI scripts.

TheREDIRECT directives are used to instruct clients to make a new request with a different URL. They are often used
when a resource has moved to a new location.

Directives

• Alias

• AliasMatch

• Redirect

• RedirectMatch

• RedirectPermanent

• RedirectTemp

• ScriptAlias

• ScriptAliasMatch

See also

• MOD REWRITE

• Mapping URLs to the filesystem (p.37)

Alias Directive

Description: Maps URLs to filesystem locations
Syntax: Alias URL-path file-path|directory-path
Context: server config, virtual host
Status: Base
Module: modalias

The ALIAS directive allows documents to be stored in the local filesystem other than under theDOCUMENTROOT.
URLs with a (%-decoded) path beginning with url-path will be mapped to local files beginning with directory-path.

Example:
Alias /image /ftp/pub/image

332 CHAPTER 10. APACHE MODULES

A request for http://myserver/image/foo.gif would cause the server to return the file /ftp/pub/image/foo.gif.

Note that if you include a trailing / on the url-path then the server will require a trailing / in order to expand the alias.
That is, if you useAlias /icons/ /usr/local/apache/icons/ then the url/icons will not be aliased.

Note that you may need to specify additional<DIRECTORY> sections which cover thedestinationof aliases. Aliasing
occurs before<DIRECTORY> sections are checked, so only the destination of aliases are affected. (Note however
<LOCATION> sections are run through once before aliases are performed, so they will apply.)

In particular, if you are creating anAlias to a directory outside of yourDOCUMENTROOT, you may need to explicitly
permit access to the target directory.

Example:
Alias /image /ftp/pub/image
<Directory /ftp/pub/image >

Order allow,deny
Allow from all

</Directory >

AliasMatch Directive

Description: Maps URLs to filesystem locations using regular expressions
Syntax: AliasMatch regex file-path|directory-path
Context: server config, virtual host
Status: Base
Module: modalias

This directive is equivalent toALIAS, but makes use of standard regular expressions, instead of simple prefix matching.
The supplied regular expression is matched against the URL-path, and if it matches, the server will substitute any
parenthesized matches into the given string and use it as a filename. For example, to activate the/icons directory,
one might use:

AliasMatch ˆ/icons(.*) /usr/local/apache/icons$1

Redirect Directive

Description: Sends an external redirect asking the client to fetch a different URL
Syntax: Redirect [status] URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modalias

The Redirect directive maps an old URL into a new one. The new URL is returned to the client which attempts to
fetch it again with the new address. URL-path a (%-decoded) path; any requests for documents beginning with this
path will be returned a redirect error to a new (%-encoded) URL beginning with URL.

Example:
Redirect /service http://foo2.bar.com/service

10.6. APACHE MODULE MOD ALIAS 333

If the client requests http://myserver/service/foo.txt, it will be told to access http://foo2.bar.com/service/foo.txt instead.

=⇒Note
Redirect directives take precedence over Alias and ScriptAlias directives, irrespective of their
ordering in the configuration file. Also, URL-path must be an absolute path, not a relative path,
even when used with .htaccess files or inside of<DIRECTORY> sections.

If no status argument is given, the redirect will be" temporary" (HTTP status 302). This indicates to the client that
the resource has moved temporarily. The status argument can be used to return other HTTP status codes:

permanent Returns a permanent redirect status (301) indicating that the resource has moved permanently.

temp Returns a temporary redirect status (302). This is the default.

seeother Returns a" See Other" status (303) indicating that the resource has been replaced.

gone Returns a" Gone" status (410) indicating that the resource has been permanently removed. When this status is
used the URL argument should be omitted.

Other status codes can be returned by giving the numeric status code as the value of status. If the status is between
300 and 399, the URL argument must be present, otherwise it must be omitted. Note that the status must be known to
the Apache code (see the functionsend error response in http protocol.c).

Example:
Redirect permanent /one http://example.com/two

Redirect 303 /three http://example.com/other

RedirectMatch Directive

Description: Sends an external redirect based on a regular expression match of the current URL
Syntax: RedirectMatch [status] regex URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modalias

This directive is equivalent toREDIRECT, but makes use of standard regular expressions, instead of simple prefix
matching. The supplied regular expression is matched against the URL-path, and if it matches, the server will substitute
any parenthesized matches into the given string and use it as a filename. For example, to redirect all GIF files to like-
named JPEG files on another server, one might use:

RedirectMatch (.*) \.gif$ http://www.anotherserver.com$1.jpg

RedirectPermanent Directive

Description: Sends an external permanent redirect asking the client to fetch a different URL
Syntax: RedirectPermanent URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modalias

This directive makes the client know that the Redirect is permanent (status 301). Exactly equivalent toRedirect
permanent .

334 CHAPTER 10. APACHE MODULES

RedirectTemp Directive

Description: Sends an external temporary redirect asking the client to fetch a different URL
Syntax: RedirectTemp URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modalias

This directive makes the client know that the Redirect is only temporary (status 302). Exactly equivalent toRedirect
temp .

ScriptAlias Directive

Description: Maps a URL to a filesystem location and designates the target as a CGI script
Syntax: ScriptAlias URL-path file-path|directory-path
Context: server config, virtual host
Status: Base
Module: modalias

TheSCRIPTALIAS directive has the same behavior as theALIAS directive, except that in addition it marks the target
directory as containing CGI scripts that will be processed byMOD CGI’s cgi-script handler. URLs with a (%-decoded)
path beginning with URL-path will be mapped to scripts beginning with the second argument which is a full pathname
in the local filesystem.

Example:
ScriptAlias /cgi-bin/ /web/cgi-bin/

A request for http://myserver/cgi-bin/foo would cause the server to run the script
/web/cgi-bin/foo .

ScriptAliasMatch Directive

Description: Maps a URL to a filesystem location using a regular expression and designates the target as a
CGI script

Syntax: ScriptAliasMatch regex file-path|directory-path
Context: server config, virtual host
Status: Base
Module: modalias

This directive is equivalent toSCRIPTALIAS, but makes use of standard regular expressions, instead of simple prefix
matching. The supplied regular expression is matched against the URL-path, and if it matches, the server will sub-
stitute any parenthesized matches into the given string and use it as a filename. For example, to activate the standard
/cgi-bin , one might use:

ScriptAliasMatch ˆ/cgi-bin(.*) /usr/local/apache/cgi-bin$1

10.7. APACHE MODULE MOD ASIS 335

10.7 Apache Module modasis

Description: Sends files that contain their own HTTP headers
Status: Base
ModuleIdentifier: asismodule
SourceFile: modasis.c

Summary

This module provides the handlersend-as-is which causes Apache to send the document without adding most of
the usual HTTP headers.

This can be used to send any kind of data from the server, including redirects and other special HTTP responses,
without requiring a cgi-script or an nph script.

For historical reasons, this module will also process any file with the mime typehttpd/send-as-is .

DirectivesThis module provides no directives.

See also

• MOD HEADERS

• MOD CERN META

• Apache’s Handler Use (p.66)

Usage

In the server configuration file, associate files with thesend-as-is handlere.g.

AddHandler send-as-is asis

The contents of any file with a.asis extension will then be sent by Apache to the client with almost no changes.
Clients will need HTTP headers to be attached, so do not forget them. A Status: header is also required; the data
should be the 3-digit HTTP response code, followed by a textual message.

Here’s an example of a file whose contents are sentas isso as to tell the client that a file has redirected.

Status: 301 Now where did I leave that URL
Location: http://xyz.abc.com/foo/bar.html
Content-type: text/html

<html >
<head >
<title >Lame excuses’R’us </title >
</head >
<body >
<h1>Fred’s exceptionally wonderful page has moved to
Joe’s site.
</h1 >
</body >

</html >

336 CHAPTER 10. APACHE MODULES

=⇒Notes:
The server always adds aDate: andServer: header to the data returned to the client, so
these should not be included in the file. The server doesnot add aLast-Modified header;
it probably should.

10.8. APACHE MODULE MOD AUTH 337

10.8 Apache Module modauth

Description: User authentication using text files
Status: Base
ModuleIdentifier: authmodule
SourceFile: modauth.c
Compatibility: Available only in versions prior to 2.1

Summary

This module allows the use of HTTP Basic Authentication to restrict access by looking up users in plain text pass-
word and group files. Similar functionality and greater scalability is provided byMOD AUTH DBM. HTTP Digest
Authentication is provided byMOD AUTH DIGEST.

Directives

• AuthAuthoritative

• AuthGroupFile

• AuthUserFile

See also

• REQUIRE

• SATISFY

• AUTHNAME

• AUTHTYPE

AuthAuthoritative Directive

Description: Sets whether authorization and authentication are passed to lower level modules
Syntax: AuthAuthoritative On|Off
Default: AuthAuthoritative On
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: modauth

Setting theAUTHAUTHORITATIVE directive explicitly toOff allows for both authentication and authorization to be
passed on to lower level modules (as defined in themodules.c files) if there isno userID or rule matching the
supplied userID. If there is a userID and/or rule specified; the usual password and access checks will be applied and a
failure will give an" Authentication Required" reply.

So if a userID appears in the database of more than one module; or if a validREQUIRE directive applies to more
than one module; then the first module will verify the credentials; and no access is passed on; regardless of the
AUTHAUTHORITATIVE setting.

A common use for this is in conjunction with one of the database modules; such asMOD AUTH DBM,
mod auth msql , and MOD AUTH ANON. These modules supply the bulk of the user credential checking; but a
few (administrator) related accesses fall through to a lower level with a well protectedAUTHUSERFILE.

By default control is not passed on and an unknown userID or rule will result in an" Authentication Required" reply.
Not setting it thus keeps the system secure and forces an NCSA compliant behaviour.

338 CHAPTER 10. APACHE MODULES

! Security
Do consider the implications of allowing a user to allow fall-through in his .htaccess file; and
verify that this is really what you want; Generally it is easier to just secure a single .htpasswd
file, than it is to secure a database such as mSQL. Make sure that theAUTHUSERFILE and the
AUTHGROUPFILE are stored outside the document tree of the web-server; donot put them in
the directory that they protect. Otherwise, clients will be able to download theAUTHUSER-
FILE and theAUTHGROUPFILE.

AuthGroupFile Directive

Description: Sets the name of a text file containing the list of user groups for authentication
Syntax: AuthGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: modauth

TheAUTHGROUPFILE directive sets the name of a textual file containing the list of user groups for user authentication.
File-path is the path to the group file. If it is not absolute, it is treated as relative to theSERVERROOT.

Each line of the group file contains a groupname followed by a colon, followed by the member usernames separated
by spaces.

Example:
mygroup: bob joe anne

Note that searching large text files isvery inefficient;AUTHDBMGROUPFILE provides a much better performance.

! Security
Make sure that theAUTHGROUPFILE is stored outside the document tree of the web-server;
do not put it in the directory that it protects. Otherwise, clients may be able to download the
AUTHGROUPFILE.

AuthUserFile Directive

Description: Sets the name of a text file containing the list of users and passwords for authentication
Syntax: AuthUserFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: modauth

The AUTHUSERFILE directive sets the name of a textual file containing the list of users and passwords for user
authentication. File-path is the path to the user file. If it is not absolute (i.e., if it doesn’t begin with a slash), it is
treated as relative to theSERVERROOT.

Each line of the user file contains a username followed by a colon, followed by the encrypted password. If the same
user ID is defined multiple times,MOD AUTH will use the first occurrence to verify the password.

The utility htpasswd (p.252) which is installed as part of the binary distribution, or which can be found in
src/support , is used to maintain this password file. See the man page (p.252) for more details. In short:

Create a password fileFilename with username as the initial ID. It will prompt for the password:

10.8. APACHE MODULE MOD AUTH 339

htpasswd -c Filename username

Add or modifyusername2 in the password fileFilename :

htpasswd Filename username2

Note that searching large text files isvery inefficient;AUTHDBMUSERFILE should be used instead.

! Security
Make sure that theAUTHUSERFILE is stored outside the document tree of the web-server. Do
not put it in the directory that it protects. Otherwise, clients may be able to download the
AUTHUSERFILE.

340 CHAPTER 10. APACHE MODULES

10.9 Apache Module modauth anon

Description: Allows" anonymous" user access to authenticated areas
Status: Extension
ModuleIdentifier: authanonmodule
SourceFile: modauthanon.c
Compatibility: Available only in versions prior to 2.1

Summary

This module does access control in a manner similar to anonymous-ftp sites;i.e. have a ’magic’ user id ’anonymous’
and the email address as a password. These email addresses can be logged.

Combined with other (database) access control methods, this allows for effective user tracking and customization
according to a user profile while still keeping the site open for ’unregistered’ users. One advantage of using Auth-
based user tracking is that, unlike magic-cookies and funny URL pre/postfixes, it is completely browser independent
and it allows users to share URLs.

Directives

• Anonymous

• AnonymousAuthoritative

• AnonymousLogEmail

• AnonymousMustGiveEmail

• AnonymousNoUserID

• AnonymousVerifyEmail

Example

The example below (when combined with the Auth directives of a htpasswd-file based (or GDM, mSQL etc.) base
access control system allows users in as ’guests’ with the following properties:

• It insists that the user enters a userId. (Anonymous NoUserId)

• It insists that the user enters a password. (Anonymous MustGiveEmail)

• The password entered must be a valid email address, ie. contain at least one ’@’ and a ’.’.
(Anonymous VerifyEmail)

• The userID must be one ofanonymous guest www test welcome and comparison isnot case sensi-
tive.

• And the Email addresses entered in the passwd field are logged to the error log file (Anonymous LogEmail)

10.9. APACHE MODULE MOD AUTH ANON 341

Excerpt of httpd.conf:
Anonymous NoUserId off
Anonymous MustGiveEmail on
Anonymous VerifyEmail on
Anonymous LogEmail on
Anonymous anonymous guest www test welcome

AuthName "Use ’anonymous’ & Email address for guest entry"
AuthType basic

An AuthUserFile/AuthDBUserFile/AuthDBMUserFile
directive must be specified, or use
Anonymous Authoritative for public access.
In the .htaccess for the public directory, add:
<Files * >

Order Deny,Allow
Allow from all

Require valid-user

</Files >

Anonymous Directive

Description: Specifies userIDs that areallowed access without password verification
Syntax: Anonymous user [user] ...
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthanon

A list of one or more ’magic’ userIDs which are allowed access without password verification. The userIDs are space
separated. It is possible to use the ’ and" quotes to allow a space in a userID as well as the\escape character.

Please note that the comparison iscase-IN-sensitive.
I strongly suggest that the magic username ’anonymous ’ is always one of the allowed userIDs.

Example:
Anonymous anonymous "Not Registered" "I don’t know"

This would allow the user to enter without password verification by using the userIDs" anonymous" , " AnonyMous" ,
" Not Registered" and" I Don’t Know" .

Anonymous Authoritative Directive

Description: Configures if authorization will fall-through to other methods
Syntax: Anonymous Authoritative On|Off
Default: Anonymous Authoritative Off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthanon

When setOn, there is no fall-through to other authentication methods. So if a userID does not match the values
specified in theANONYMOUS directive, access is denied.

342 CHAPTER 10. APACHE MODULES

Be sure you know what you are doing when you decide to switch it on. And remember that the order in which the
Authentication modules are queried is defined in the modules.c files at compile time.

Anonymous LogEmail Directive

Description: Sets whether the password entered will be logged in the error log
Syntax: Anonymous LogEmail On|Off
Default: Anonymous LogEmail On
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthanon

When setOn, the default, the ’password’ entered (which hopefully contains a sensible email address) is logged in the
error log.

Anonymous MustGiveEmail Directive

Description: Specifies whether blank passwords are allowed
Syntax: Anonymous MustGiveEmail On|Off
Default: Anonymous MustGiveEmail On
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthanon

Specifies whether the user must specify an email address as the password. This prohibits blank passwords.

Anonymous NoUserID Directive

Description: Sets whether the userID field may be empty
Syntax: Anonymous NoUserID On|Off
Default: Anonymous NoUserID Off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthanon

When setOn, users can leave the userID (and perhaps the password field) empty. This can be very convenient for
MS-Explorer users who can just hit return or click directly on the OK button; which seems a natural reaction.

Anonymous VerifyEmail Directive

Description: Sets whether to check the password field for a correctly formatted email address
Syntax: Anonymous VerifyEmail On|Off
Default: Anonymous VerifyEmail Off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthanon

When setOn the ’password’ entered is checked for at least one ’@’ and a ’.’ to encourage users to enter valid email
addresses (see the aboveANONYMOUS LOGEMAIL).

10.10. APACHE MODULE MOD AUTH DBM 343

10.10 Apache Module modauth dbm

Description: Provides for user authentication using DBM files
Status: Extension
ModuleIdentifier: authdbm module
SourceFile: modauthdbm.c
Compatibility: Available only in versions prior to 2.1

Summary

This module provides for HTTP Basic Authentication, where the usernames and passwords are stored in DBM type
database files. It is an alternative to the plain text password files provided byMOD AUTH.

Directives

• AuthDBMAuthoritative

• AuthDBMGroupFile

• AuthDBMType

• AuthDBMUserFile

See also

• AUTHNAME

• AUTHTYPE

• REQUIRE

• SATISFY

AuthDBMAuthoritative Directive

Description: Sets whether authentication and authorization will be passwed on to lower level modules
Syntax: AuthDBMAuthoritative On|Off
Default: AuthDBMAuthoritative On
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthdbm

Setting theAUTHDBMAUTHORITATIVE directive explicitly toOff allows for both authentication and authorization
to be passed on to lower level modules (as defined in themodules.c files) if there isno userID or rule matching
the supplied userID. If there is a userID and/or rule specified; the usual password and access checks will be applied
and a failure will give an" Authentication Required" reply.

So if a userID appears in the database of more than one module; or if a validREQUIRE directive applies to more
than one module; then the first module will verify the credentials; and no access is passed on; regardless of the
AUTHDBMAUTHORITATIVE setting.

A common use for this is in conjunction with one of the basic auth modules; such asMOD AUTH. Whereas this DBM
module supplies the bulk of the user credential checking; a few (administrator) related accesses fall through to a lower
level with a well protected.htpasswd file.

By default, control is not passed on and an unknown userID or rule will result in an" Authentication Required" reply.
Not setting it thus keeps the system secure and forces an NCSA compliant behaviour.

344 CHAPTER 10. APACHE MODULES

! Security:
Do consider the implications of allowing a user to allow fall-through in his.htaccess
file; and verify that this is really what you want; Generally it is easier to just secure a sin-
gle .htpasswd file, than it is to secure a database which might have more access interfaces.

AuthDBMGroupFile Directive

Description: Sets the name of the database file containing the list of user groups for authentication
Syntax: AuthDBMGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthdbm

TheAUTHDBMGROUPFILE directive sets the name of a DBM file containing the list of user groups for user authen-
tication. File-path is the absolute path to the group file.

The group file is keyed on the username. The value for a user is a comma-separated list of the groups to which the
users belongs. There must be no whitespace within the value, and it must never contain any colons.

Security: make sure that theAUTHDBMGROUPFILE is stored outside the document tree of the web-server; donot
put it in the directory that it protects. Otherwise, clients will be able to download theAUTHDBMGROUPFILE unless
otherwise protected.

Combining Group and Password DBM files: In some cases it is easier to manage a single database which contains
both the password and group details for each user. This simplifies any support programs that need to be written: they
now only have to deal with writing to and locking a single DBM file. This can be accomplished by first setting the
group and password files to point to the same DBM:

AuthDBMGroupFile /www/userbase

AuthDBMUserFile /www/userbase

The key for the single DBM is the username. The value consists of

Unix Crypt-ed Password:List of Groups[:(ignored)]

The password section contains the encrypted password as before. This is followed by a colon and the comma separated
list of groups. Other data may optionally be left in the DBM file after another colon; it is ignored by the authentication
module. This is what www.telescope.org uses for its combined password and group database.

AuthDBMType Directive

Description: Sets the type of database file that is used to store passwords
Syntax: AuthDBMType default|SDBM|GDBM|NDBM|DB
Default: AuthDBMType default
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthdbm
Compatibility: Available in version 2.0.30 and later.

Sets the type of database file that is used to store the passwords. The default database type is determined at compile
time. The availability of other types of database files also depends on compile-time settings (p.8) .

10.10. APACHE MODULE MOD AUTH DBM 345

It is crucial that whatever program you use to create your password files is configured to use the same type of database.

AuthDBMUserFile Directive

Description: Sets thename of a database file containing the list of users and passwords for authentication
Syntax: AuthDBMUserFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modauthdbm

TheAUTHDBMUSERFILE directive sets the name of a DBM file containing the list of users and passwords for user
authentication. File-path is the absolute path to the user file.

The user file is keyed on the username. The value for a user is the encrypted password, optionally followed by a colon
and arbitrary data. The colon and the data following it will be ignored by the server.

! Security:
Make sure that theAUTHDBMUSERFILE is stored outside the document tree of the web-
server; donotput it in the directory that it protects. Otherwise, clients will be able to download
theAUTHDBMUSERFILE.

Important compatibility note: The implementation of" dbmopen" in the apache modules reads the string length of
the hashed values from the DBM data structures, rather than relying upon the string being NULL-appended. Some
applications, such as the Netscape web server, rely upon the string being NULL-appended, so if you are having trouble
using DBM files interchangeably between applications this may be a part of the problem.

A perl script called dbmmanage (p.249) is included with Apache. This program can be used to create and update
DBM format password files for use with this module.

346 CHAPTER 10. APACHE MODULES

10.11 Apache Module modauth digest

Description: User authentication using MD5 Digest Authentication.
Status: Experimental
ModuleIdentifier: authdigestmodule
SourceFile: modauthdigest.c

Summary

This module implements HTTP Digest Authentication. However, it has not been extensively tested and is therefore
marked experimental.

Directives

• AuthDigestAlgorithm

• AuthDigestDomain

• AuthDigestFile

• AuthDigestGroupFile

• AuthDigestNcCheck

• AuthDigestNonceFormat

• AuthDigestNonceLifetime

• AuthDigestQop

• AuthDigestShmemSize

See also

• AUTHNAME

• AUTHTYPE

• REQUIRE

• SATISFY

Using Digest Authentication

Using MD5 Digest authentication is very simple. Simply set up authentication normally, usingAuthType Digest
andAUTHDIGESTFILE instead of the normalAuthType Basic andAUTHUSERFILE; also, replace anyAUTH-
GROUPFILE with AUTHDIGESTGROUPFILE. Then add aAUTHDIGESTDOMAIN directive containing at least the
root URI(s) for this protection space.

Appropriate user (text) files can be created using the htdigest (p.251) tool.

Example:
<Location /private/ >

AuthType Digest
AuthName "private area"
AuthDigestDomain /private/ http://mirror.my.dom/private2/
AuthDigestFile /web/auth/.digest pw
Require valid-user

</Location >

10.11. APACHE MODULE MOD AUTH DIGEST 347

=⇒Note
Digest authentication provides a more secure password system than Basic authentication, but
only works with supporting browsers. As of November 2002, the major browsers that support
digest authentication are Operaa, MS Internet Explorerb (fails when used with a query string),
Amayac, Mozillad and Netscapee since version 7. Since digest authentication is not as widely
implemented as basic authentication, you should use it only in controlled environments.

ahttp://www.opera.com/
bhttp://www.microsoft.com/windows/ie/
chttp://www.w3.org/Amaya/
dhttp://www.mozilla.org
ehttp://channels.netscape.com/ns/browsers/download.jsp

AuthDigestAlgorithm Directive

Description: Selects the algorithm used to calculate the challenge and response hases in digest authentication
Syntax: AuthDigestAlgorithm MD5|MD5-sess
Default: AuthDigestAlgorithm MD5
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauthdigest

TheAUTHDIGESTALGORITHM directive selects the algorithm used to calculate the challenge and response hashes.

=⇒MD5-sess is not correctly implemented yet.

AuthDigestDomain Directive

Description: URIs that are in the same protection space for digest authentication
Syntax: AuthDigestDomain URI [URI] ...
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauthdigest

TheAUTHDIGESTDOMAIN directive allows you to specify one or more URIs which are in the same protection space
(i.e. use the same realm and username/password info). The specified URIs are prefixes,i.e. the client will assume that
all URIs " below" these are also protected by the same username/password. The URIs may be either absolute URIs
(i.e. inluding a scheme, host, port, etc) or relative URIs.

This directiveshouldalways be specified and contain at least the (set of) root URI(s) for this space. Omitting to do so
will cause the client to send the Authorization header forevery requestsent to this server. Apart from increasing the
size of the request, it may also have a detrimental effect on performance ifAUTHDIGESTNCCHECK is on.

The URIs specified can also point to different servers, in which case clients (which understand this) will then share
username/password info across multiple servers without prompting the user each time.

http://www.opera.com/
http://www.microsoft.com/windows/ie/
http://www.w3.org/Amaya/
http://www.mozilla.org
http://channels.netscape.com/ns/browsers/download.jsp

348 CHAPTER 10. APACHE MODULES

AuthDigestFile Directive

Description: Location of the text file containing the list of users and encoded passwords for digest authenti-
cation

Syntax: AuthDigestFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauthdigest

TheAUTHDIGESTFILE directive sets the name of a textual file containing the list of users and encoded passwords for
digest authentication. File-path is the absolute path to the user file.

The digest file uses a special format. Files in this format can be created using the htdigest (p.251) utility found in the
support/ subdirectory of the Apache distribution.

AuthDigestGroupFile Directive

Description: Name of the text file containing the list of groups for digest authentication
Syntax: AuthDigestGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauthdigest

TheAUTHDIGESTGROUPFILE directive sets the name of a textual file containing the list of groups and their members
(user names). File-path is the absolute path to the group file.

Each line of the group file contains a groupname followed by a colon, followed by the member usernames separated
by spaces. Example:

mygroup: bob joe anne

Note that searching large text files isvery inefficient.

! Security:
Make sure that theAUTHGROUPFILE is stored outside the document tree of the web-server;
do not put it in the directory that it protects. Otherwise, clients may be able to download the
AUTHGROUPFILE.

AuthDigestNcCheck Directive

Description: Enables or disables checking of the nonce-count sent by the server
Syntax: AuthDigestNcCheck On|Off
Default: AuthDigestNcCheck Off
Context: server config
Status: Experimental
Module: modauthdigest

=⇒Not implemented yet.

10.11. APACHE MODULE MOD AUTH DIGEST 349

AuthDigestNonceFormat Directive

Description: Determines how the nonce is generated
Syntax: AuthDigestNonceFormat format
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauthdigest

=⇒Not implemented yet.

AuthDigestNonceLifetime Directive

Description: How long the server nonce is valid
Syntax: AuthDigestNonceLifetime seconds
Default: AuthDigestNonceLifetime 300
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauthdigest

The AUTHDIGESTNONCEL IFETIME directive controls how long the server nonce is valid. When the client contacts
the server using an expired nonce the server will send back a 401 withstale=true . If seconds is greater than 0 then
it specifies the amount of time for which the nonce is valid; this should probably never be set to less than 10 seconds.
If seconds is less than 0 then the nonce never expires.

AuthDigestQop Directive

Description: Determines the quality-of-protection to use in digest authentication
Syntax: AuthDigestQop none|auth|auth-int [auth|auth-int]
Default: AuthDigestQop auth
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauthdigest

TheAUTHDIGESTQOP directive determines the quality-of-protection to use.auth will only do authentication (user-
name/password);auth-int is authentication plus integrity checking (an MD5 hash of the entity is also computed
and checked);none will cause the module to use the old RFC-2069 digest algorithm (which does not include integrity
checking). Bothauth andauth-int may be specified, in which the case the browser will choose which of these to
use.none should only be used if the browser for some reason does not like the challenge it receives otherwise.

=⇒auth-int is not implemented yet.

AuthDigestShmemSize Directive

Description: The amount of shared memory to allocate for keeping track of clients
Syntax: AuthDigestShmemSize size
Default: AuthDigestShmemSize 1000
Context: server config
Status: Experimental
Module: modauthdigest

350 CHAPTER 10. APACHE MODULES

The AUTHDIGESTSHMEMSIZE directive defines the amount of shared memory, that will be allocated at the server
startup for keeping track of clients. Note that the shared memory segment cannot be set less than the space that is
neccessary for tracking at leastoneclient. This value is dependant on your system. If you want to find out the exact
value, you may simply setAUTHDIGESTSHMEMSIZE to the value of0 and read the error message after trying to start
the server.

The size is normally expressed in Bytes, but you may let the number follow aK or anM to express your value as
KBytes or MBytes. For example, the following directives are all equivalent:

AuthDigestShmemSize 1048576
AuthDigestShmemSize 1024K

AuthDigestShmemSize 1M

10.12. APACHE MODULE MOD AUTH LDAP 351

10.12 Apache Module modauth ldap

Description: Allows an LDAP directory to be used to store the database for HTTP Basic authentica-
tion.

Status: Experimental
ModuleIdentifier: authldap module
SourceFile: modauth ldap.c
Compatibility: Available in version 2.0.41 and later

Summary

MOD AUTH LDAP supports the following features:

• Known to support the OpenLDAP SDK3 (both 1.x and 2.x), Novell LDAP SDK4 and the iPlanet (Netscape)5

SDK.

• Complex authorization policies can be implemented by representing the policy with LDAP filters.

• Support for Microsoft FrontPage allows FrontPage users to control access to their webs, while retaining LDAP
for user authentication.

• Uses extensive caching of LDAP operations via modldap (p.441) .

• Support for LDAP over SSL (requires the Netscape SDK) or TLS (requires the OpenLDAP 2.x SDK or Novell
LDAP SDK).

Directives

• AuthLDAPAuthoritative

• AuthLDAPBindDN

• AuthLDAPBindPassword

• AuthLDAPCharsetConfig

• AuthLDAPCompareDNOnServer

• AuthLDAPDereferenceAliases

• AuthLDAPEnabled

• AuthLDAPFrontPageHack

• AuthLDAPGroupAttribute

• AuthLDAPGroupAttributeIsDN

• AuthLDAPRemoteUserIsDN

• AuthLDAPUrl

See also

• MOD LDAP

3http://www.openldap.org/
4http://developer.novell.com/ndk/cldap.htm
5http://www.iplanet.com/downloads/developer/

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
http://www.iplanet.com/downloads/developer/

352 CHAPTER 10. APACHE MODULES

Contents

• Operation

– The Authentication Phase

– The Authorization Phase

• The require Directives

– require valid-user

– require user

– require group

– require dn

• Examples

• Using TLS

• Using SSL

• Using Microsoft FrontPage withMOD AUTH LDAP

– How It Works

– Caveats

Operation

There are two phases in granting access to a user. The first phase is authentication, in whichMOD AUTH LDAP

verifies that the user’s credentials are valid. This also called thesearch/bindphase. The second phase is authorization,
in which MOD AUTH LDAP determines if the authenticated user is allowed access to the resource in question. This is
also known as thecomparephase.

The Authentication Phase

During the authentication phase,MOD AUTH LDAP searches for an entry in the directory that matches the username
that the HTTP client passes. If a single unique match is found, thenMOD AUTH LDAP attempts to bind to the directory
server using the DN of the entry plus the password provided by the HTTP client. Because it does a search, then a bind,
it is often referred to as the search/bind phase. Here are the steps taken during the search/bind phase.

1. Generate a search filter by combining the attribute and filter provided in theAUTHLDAPURL directive with
the username passed by the HTTP client.

2. Search the directory using the generated filter. If the search does not return exactly one entry, deny or decline
access.

3. Fetch the distinguished name of the entry retrieved from the search and attempt to bind to the LDAP server
using the DN and the password passed by the HTTP client. If the bind is unsuccessful, deny or decline access.

The following directives are used during the search/bind phase

AUTHLDAPURL Specifies the LDAP server, the base DN, the attribute to use in
the search, as well as the extra search filter to use.

AUTHLDAPBINDDN An optional DN to bind with during the search phase.
AUTHLDAPBINDPASSWORD An optional password to bind with during the search phase.

10.12. APACHE MODULE MOD AUTH LDAP 353

The Authorization Phase

During the authorization phase,MOD AUTH LDAP attempts to determine if the user is authorized to access the re-
source. Many of these checks requireMOD AUTH LDAP to do a compare operation on the LDAP server. This is why
this phase is often referred to as the compare phase.MOD AUTH LDAP accepts the followingREQUIRE directives to
determine if the credentials are acceptable:

• Grant access if there is arequire valid-user directive.

• Grant access if there is arequire user directive, and the username in the directive matches the username
passed by the client.

• Grant access if there is arequire dn directive, and the DN in the directive matches the DN fetched from the
LDAP directory.

• Grant access if there is arequire group directive, and the DN fetched from the LDAP directory (or the
username passed by the client) occurs in the LDAP group.

• otherwise, deny or decline access

MOD AUTH LDAP uses the following directives during the compare phase:

AUTHLDAPURL The attribute specified in the URL is used in compare opera-
tions for therequire user operation.

AUTHLDAPCOMPAREDNONSERVER Determines the behavior of therequire dn directive.
AUTHLDAPGROUPATTRIBUTE Determines the attribute to use for comparisons in the

require group directive.
AUTHLDAPGROUPATTRIBUTEISDN Specifies whether to use the user DN or the username when

doing comparisons for therequire group directive.

The require Directives

Apache’sREQUIRE directives are used during the authorization phase to ensure that a user is allowed to access a
resource.

require valid-user

If this directive exists,MOD AUTH LDAP grants access to any user that has successfully authenticated during the
search/bind phase.

require user

The require user directive specifies what usernames can access the resource. OnceMOD AUTH LDAP has re-
trieved a unique DN from the directory, it does an LDAP compare operation using the username specified in the
require user to see if that username is part of the just-fetched LDAP entry. Multiple users can be granted access
by putting multiple usernames on the line, separated with spaces. If a username has a space in it, then it must be sur-
rounded with double quotes. Multiple users can also be granted access by using multiplerequire user directives,
with one user per line. For example, with aAUTHLDAPURL of ldap://ldap/o=Airius?cn (i.e., cn is used
for searches), the following require directives could be used to restrict access:

require user "Barbara Jenson"
require user "Fred User"

require user "Joe Manager"

354 CHAPTER 10. APACHE MODULES

Because of the way thatMOD AUTH LDAP handles this directive, Barbara Jenson could sign on asBarbara Jenson,
Babs Jensonor any othercn that she has in her LDAP entry. Only the singlerequire user line is needed to
support all values of the attribute in the user’s entry.

If the uid attribute was used instead of thecn attribute in the URL above, the above three lines could be condensed
to

require user bjenson fuser jmanager

require group

This directive specifies an LDAP group whose members are allowed access. It takes the distinguished name of the
LDAP group. For example, assume that the following entry existed in the LDAP directory:

dn: cn=Administrators, o=Airius
objectClass: groupOfUniqueNames
uniqueMember: cn=Barbara Jenson, o=Airius

uniqueMember: cn=Fred User, o=Airius

The following directive would grant access to both Fred and Barbara:

require group "cn=Administrators, o=Airius"

Behavior of this directive is modified by theAUTHLDAPGROUPATTRIBUTE and AUTHLDAPGROUPAT-
TRIBUTEISDN directives.

require dn

The require dn directive allows the administrator to grant access based on distinguished names. It specifies a
DN that must match for access to be granted. If the distinguished name that was retrieved from the directory server
matches the distinguished name in therequire dn , then authorization is granted.

The following directive would grant access to a specific DN:

require dn "cn=Barbara Jenson, o=Airius"

Behavior of this directive is modified by theAUTHLDAPCOMPAREDNONSERVER directive.

Examples

• Grant access to anyone who exists in the LDAP directory, using their UID for searches.

AuthLDAPURL "ldap://ldap1.airius.com:389/ou=People,
o=Airius?uid?sub?(objectClass=*)"

require valid-user

• The next example is the same as above; but with the fields that have useful defaults omitted. Also, note the use
of a redundant LDAP server.

10.12. APACHE MODULE MOD AUTH LDAP 355

AuthLDAPURL "ldap://ldap1.airius.com ldap2.airius.com/ou=People,
o=Airius"

require valid-user

• The next example is similar to the previous one, but is uses the common name instead of the UID. Note that
this could be problematical if multiple people in the directory share the samecn , because a search oncn must
return exactly one entry. That’s why this approach is not recommended: it’s a better idea to choose an attribute
that is guaranteed unique in your directory, such asuid .

AuthLDAPURL "ldap://ldap.airius.com/ou=People, o=Airius?cn"

require valid-user

• Grant access to anybody in the Administrators group. The users must authenticate using their UID.

AuthLDAPURL "ldap://ldap.airius.com/o=Airius?uid"

require group cn=Administrators, o=Airius

• The next example assumes that everyone at Airius who carries an alphanumeric pager will have an LDAP
attribute ofqpagePagerID . The example will grant access only to people (authenticated via their UID) who
have alphanumeric pagers:

AuthLDAPURL "ldap://ldap.airius.com/o=Airius?uid??(qpagePagerID=*)"

require valid-user

• The next example demonstrates the power of using filters to accomplish complicated administrative require-
ments. Without filters, it would have been necessary to create a new LDAP group and ensure that the group’s
members remain synchronized with the pager users. This becomes trivial with filters. The goal is to grant access
to anyone who has a filter, plus grant access to Joe Manager, who doesn’t have a pager, but does need to access
the same resource:

AuthLDAPURL
"ldap://ldap.airius.com/o=Airius?uid??(|(qpagePagerID=*)(uid=jmanager))"

require valid-user

This last may look confusing at first, so it helps to evaluate what the search filter will look like based on who
connects, as shown below. The text in blue is the part that is filled in using the attribute specified in the URL.
The text in red is the part that is filled in using the filter specified in the URL. The text in green is filled in using
the information that is retrieved from the HTTP client. If Fred User connects asfuser , the filter would look
like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=fuser))

The above search will only succeed iffuserhas a pager. When Joe Manager connects asjmanager, the filter
looks like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=jmanager))

The above search will succeed whetherjmanagerhas a pager or not.

356 CHAPTER 10. APACHE MODULES

Using TLS

To use TLS, see theMOD LDAP directivesLDAPTRUSTEDCA andLDAPTRUSTEDCATYPE.

Using SSL

To use SSL, see theMOD LDAP directivesLDAPTRUSTEDCA andLDAPTRUSTEDCATYPE.

To specify a secure LDAP server, useldaps:// in theAUTHLDAPURL directive, instead ofldap://.

Using Microsoft FrontPage with mod auth ldap

Normally, FrontPage uses FrontPage-web-specific user/group files (i.e., theMOD AUTH module) to handle all au-
thentication. Unfortunately, it is not possible to just change to LDAP authentication by adding the proper directives,
because it will break thePermissionsforms in the FrontPage client, which attempt to modify the standard text-based
authorization files.

Once a FrontPage web has been created, adding LDAP authentication to it is a matter of adding the following directives
to every.htaccess file that gets created in the web

AuthLDAPURL "the url"
AuthLDAPAuthoritative off
AuthLDAPFrontPageHack on

AUTHLDAPAUTHORITATIVE must be off to allowMOD AUTH LDAP to decline group authentication so that Apache
will fall back to file authentication for checking group membership. This allows the FrontPage-managed group file to
be used.

How It Works

FrontPage restricts access to a web by adding therequire valid-user directive to the.htaccess files. If
AUTHLDAPFRONTPAGEHACK is not on, therequire valid-user directive will succeed for any user who is
valid as far as LDAP is concerned. This means that anybody who has an entry in the LDAP directory is considered a
valid user, whereas FrontPage considers only those people in the local user file to be valid. The purpose of the hack is
to force Apache to consult the local user file (which is managed by FrontPage) - instead of LDAP - when handling the
require valid-user directive.

Once directives have been added as specified above, FrontPage users will be able to perform all management operations
from the FrontPage client.

Caveats

• When choosing the LDAP URL, the attribute to use for authentication should be something that will also be
valid for putting into aMOD AUTH user file. The user ID is ideal for this.

• When adding users via FrontPage, FrontPage administrators should choose usernames that already exist in the
LDAP directory (for obvious reasons). Also, the password that the administrator enters into the form is ignored,
since Apache will actually be authenticating against the password in the LDAP database, and not against the
password in the local user file. This could cause confusion for web administrators.

• Apache must be compiled withMOD AUTH in order to use FrontPage support. This is because Apache will still
use theMOD AUTH group file for determine the extent of a user’s access to the FrontPage web.

10.12. APACHE MODULE MOD AUTH LDAP 357

• The directives must be put in the.htaccess files. Attempting to put them inside<LOCATION> or <DIREC-
TORY> directives won’t work. This is becauseMOD AUTH LDAP has to be able to grab theAUTHUSERFILE

directive that is found in FrontPage.htaccess files so that it knows where to look for the valid user list. If
theMOD AUTH LDAP directives aren’t in the same.htaccess file as the FrontPage directives, then the hack
won’t work, becauseMOD AUTH LDAP will never get a chance to process the.htaccess file, and won’t be
able to find the FrontPage-managed user file.

AuthLDAPAuthoritative Directive

Description: Prevent other authentication modules from authenticating the user if this one fails
Syntax: AuthLDAPAuthoritative on|off
Default: AuthLDAPAuthoritative on
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

Set tooff if this module should let other authentication modules attempt to authenticate the user, should authentication
with this module fail. Control is only passed on to lower modules if there is no DN or rule that matches the supplied
user name (as passed by the client).

AuthLDAPBindDN Directive

Description: Optional DN to use in binding to the LDAP server
Syntax: AuthLDAPBindDN distinguished-name
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

An optional DN used to bind to the server when searching for entries. If not provided,MOD AUTH LDAP will use an
anonymous bind.

AuthLDAPBindPassword Directive

Description: Password used in conjuction with the bind DN
Syntax: AuthLDAPBindPassword password
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

A bind password to use in conjunction with the bind DN. Note that the bind password is probably sensitive data, and
should be properly protected. You should only use theAUTHLDAPBINDDN andAUTHLDAPBINDPASSWORD if
you absolutely need them to search the directory.

AuthLDAPCharsetConfig Directive

Description: Language to charset conversion configuration file
Syntax: AuthLDAPCharsetConfig file-path
Context: server config
Status: Experimental
Module: modauth ldap

358 CHAPTER 10. APACHE MODULES

TheAUTHLDAPCHARSETCONFIG directive sets the location of the language to charset conversion configuration file.
File-path is relative to theSERVERROOT. This file specifies the list of language extensions to character sets. Most
administrators use the providedcharset.conv file, which associates common language extensions to character
sets.

The file contains lines in the following format:

Language-Extension charset [Language-String] ...

The case of the extension does not matter. Blank lines, and lines beginning with a hash character (#) are ignored.

AuthLDAPCompareDNOnServer Directive

Description: Use the LDAP server to compare the DNs
Syntax: AuthLDAPCompareDNOnServer on|off
Default: AuthLDAPCompareDNOnServer on
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

When set,MOD AUTH LDAP will use the LDAP server to compare the DNs. This is the only foolproof way to compare
DNs. MOD AUTH LDAP will search the directory for the DN specified with therequire dn directive, then, retrieve
the DN and compare it with the DN retrieved from the user entry. If this directive is not set,MOD AUTH LDAP simply
does a string comparison. It is possible to get false negatives with this approach, but it is much faster. Note the
MOD LDAP cache can speed up DN comparison in most situations.

AuthLDAPDereferenceAliases Directive

Description: When will the module de-reference aliases
Syntax: AuthLDAPDereferenceAliases never|searching|finding|always
Default: AuthLDAPDereferenceAliases Always
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

This directive specifies whenMOD AUTH LDAP will de-reference aliases during LDAP operations. The default is
always .

AuthLDAPEnabled Directive

Description: Turn on or off LDAP authentication
Syntax: AuthLDAPEnabled on|off
Default: AuthLDAPEnabled on
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

Set tooff to disableMOD AUTH LDAP in certain directories. This is useful if you haveMOD AUTH LDAP enabled at
or near the top of your tree, but want to disable it completely in certain locations.

10.12. APACHE MODULE MOD AUTH LDAP 359

AuthLDAPFrontPageHack Directive

Description: Allow LDAP authentication to work with MS FrontPage
Syntax: AuthLDAPFrontPageHack on|off
Default: AuthLDAPFrontPageHack off
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

See the section on using Microsoft FrontPage withMOD AUTH LDAP.

AuthLDAPGroupAttribute Directive

Description: LDAP attributes used to check for group membership
Syntax: AuthLDAPGroupAttribute attribute
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

This directive specifies which LDAP attributes are used to check for group membership. Multiple attributes can
be used by specifying this directive multiple times. If not specified, thenMOD AUTH LDAP uses themember and
uniquemember attributes.

AuthLDAPGroupAttributeIsDN Directive

Description: Use the DN of the client username when checking for group membership
Syntax: AuthLDAPGroupAttributeIsDN on|off
Default: AuthLDAPGroupAttributeIsDN on
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

When seton , this directive says to use the distinguished name of the client username when checking for group mem-
bership. Otherwise, the username will be used. For example, assume that the client sent the usernamebjenson ,
which corresponds to the LDAP DNcn=Babs Jenson, o=Airius . If this directive is set,MOD AUTH LDAP

will check if the group hascn=Babs Jenson, o=Airius as a member. If this directive is not set, then
MOD AUTH LDAP will check if the group hasbjenson as a member.

AuthLDAPRemoteUserIsDN Directive

Description: Use the DN of the client username to set the REMOTEUSER environment variable
Syntax: AuthLDAPRemoteUserIsDN on|off
Default: AuthLDAPRemoteUserIsDN off
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

If this directive is set to on, the value of theREMOTEUSERenvironment variable will be set to the full distinguished
name of the authenticated user, rather than just the username that was passed by the client. It is turned off by default.

360 CHAPTER 10. APACHE MODULES

AuthLDAPUrl Directive

Description: URL specifying the LDAP search parameters
Syntax: AuthLDAPUrl url
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: modauth ldap

An RFC 2255 URL which specifies the LDAP search parameters to use. The syntax of the URL is

ldap://host:port/basedn?attribute?scope?filter

ldap For regular ldap, use the stringldap . For secure LDAP, useldaps instead. Secure LDAP is only available if
Apache was linked to an LDAP library with SSL support.

host:port The name/port of the ldap server (defaults tolocalhost:389 for ldap , and localhost:636
for ldaps). To specify multiple, redundant LDAP servers, just list all servers, separated by spaces.
MOD AUTH LDAP will try connecting to each server in turn, until it makes a successful connection.

Once a connection has been made to a server, that connection remains active for the life of thehttpd process,
or until the LDAP server goes down.

If the LDAP server goes down and breaks an existing connection,MOD AUTH LDAP will attempt to re-connect,
starting with the primary server, and trying each redundant server in turn. Note that this is different than a true
round-robin search.

basedn The DN of the branch of the directory where all searches should start from. At the very least, this must be the
top of your directory tree, but could also specify a subtree in the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of attributes, only the first
attribute will be used, no matter how many are provided. If no attributes are provided, the default is to useuid .
It’s a good idea to choose an attribute that will be unique across all entries in the subtree you will be using.

scope The scope of the search. Can be eitherone or sub . Note that a scope ofbase is also supported by RFC 2255,
but is not supported by this module. If the scope is not provided, or ifbase scope is specified, the default is to
use a scope ofsub .

filter A valid LDAP search filter. If not provided, defaults to(objectClass=*) , which will search for all objects
in the tree. Filters are limited to approximately 8000 characters (the definition ofMAXSTRING LEN in the
Apache source code). This should be than sufficient for any application.

When doing searches, the attribute, filter and username passed by the HTTP client are combined to create a search
filter that looks like(&(filter)(attribute =username)) .

For example, consider an URL ofldap://ldap.airius.com/o=Airius?cn?sub?(posixid=*) . When
a client attempts to connect using a username ofBabs Jenson , the resulting search filter will be
(&(posixid=*)(cn=Babs Jenson)) .

See above for examples ofAUTHLDAPURL URLs.

10.13. APACHE MODULE MOD AUTOINDEX 361

10.13 Apache Module modautoindex

Description: Generates directory indexes, automatically, similar to the Unixls command or the
Win32dir shell command

Status: Base
ModuleIdentifier: autoindexmodule
SourceFile: modautoindex.c

Summary

The index of a directory can come from one of two sources:

• A file written by the user, typically calledindex.html . TheDIRECTORYINDEX directive sets the name of
this file. This is controlled byMOD DIR.

• Otherwise, a listing generated by the server. The other directives control the format of this listing. TheAD-
DICON, ADDICONBYENCODING andADDICONBYTYPE are used to set a list of icons to display for various
file types; for each file listed, the first icon listed that matches the file is displayed. These are controlled by
MOD AUTOINDEX.

The two functions are separated so that you can completely remove (or replace) automatic index generation should
you want to.

Automatic index generation is enabled with usingOptions +Indexes . See theOPTIONS directive for more
details.

If the FancyIndexing option is given with theINDEXOPTIONSdirective, the column headers are links that control
the order of the display. If you select a header link, the listing will be regenerated, sorted by the values in that column.
Selecting the same header repeatedly toggles between ascending and descending order. These column header links are
suppressed withINDEXOPTIONSdirective’sSuppressColumnSorting option.

Note that when the display is sorted by" Size" , it’s the actualsize of the files that’s used, not the displayed value -
so a 1010-byte file will always be displayed before a 1011-byte file (if in ascending order) even though they both are
shown as" 1K" .

Directives

• AddAlt

• AddAltByEncoding

• AddAltByType

• AddDescription

• AddIcon

• AddIconByEncoding

• AddIconByType

• DefaultIcon

• HeaderName

• IndexIgnore

• IndexOptions

• IndexOrderDefault

• ReadmeName

362 CHAPTER 10. APACHE MODULES

Autoindex Request Query Arguments

Apache 2.0.23 reorganized the Query Arguments for Column Sorting, and introduced an entire group of new query
options. To effectively eliminate all client control over the output, theIndexOptions IgnoreClient option
was introduced.

The column sorting headers themselves are self-referencing hyperlinks that add the sort query options shown below.
Any option below may be added to any request for the directory resource.

• C=Nsorts the directory by file name

• C=Msorts the directory by last-modified date, then file name

• C=Ssorts the directory by size, then file name

• C=Dsorts the directory by description, then file name

• O=Asorts the listing in Ascending Order

• O=Dsorts the listing in Descending Order

• F=0 formats the listing as a simple list (not FancyIndexed)

• F=1 formats the listing as a FancyIndexed list

• F=2 formats the listing as an HTMLTable FancyIndexed list

• V=0 disables version sorting

• V=1 enables version sorting

• P=pattern lists only files matching the given pattern

Note that the ’P’attern query argument is testedafter the usualINDEXIGNORE directives are processed, and all
file names are still subjected to the same criteria as any other autoindex listing. The Query Arguments parser in
MOD AUTOINDEX will stop abruptly when an unrecognized option is encountered. The Query Arguments must be
well formed, according to the table above.

The simple example below, which can be clipped and saved in a header.html file, illustrates these query options. Note
that the unknown" X" argument, for the submit button, is listed last to assure the arguments are all parsed before
mod autoindex encounters the X=Go input.

10.13. APACHE MODULE MOD AUTOINDEX 363

<form action="" method="get" >

Show me a <select name="F" >

<option value="0" > Plain list </option >
<option value="1" selected="selected" > Fancy list </option >
<option value="2" > Table list </option >

</select >
Sorted by <select name="C" >

<option value="N" selected="selected" > Name</option >
<option value="M" > Date Modified </option >
<option value="S" > Size </option >
<option value="D" > Description </option >

</select >
<select name="O" >

<option value="A" selected="selected" > Ascending </option >
<option value="D" > Descending </option >

</select >
<select name="V" >

<option value="0" selected="selected" > in Normal
order </option >
<option value="1" > in Version order </option >

</select >
Matching <input type="text" name="P" value="*" / >
<input type="submit" name="X" value="Go" / >

</form >

AddAlt Directive

Description: Alternate text to display for a file, instead of an icon selected by filename
Syntax: AddAlt string file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

ADDALT provides the alternate text to display for a file, instead of an icon, forFancyIndexing . File is a file ex-
tension, partial filename, wild-card expression or full filename for files to describe. If String contains any whitespace,
you have to enclose it in quotes (" or ’). This alternate text is displayed if the client is image-incapable, has image
loading disabled, or fails to retrieve the icon.

Examples
AddAlt "PDF file" *.pdf

AddAlt Compressed *.gz *.zip *.Z

364 CHAPTER 10. APACHE MODULES

AddAltByEncoding Directive

Description: Alternate text to display for a file instead of an icon selected by MIME-encoding
Syntax: AddAltByEncoding string MIME-encoding [MIME-encoding] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

ADDALTBYENCODING provides the alternate text to display for a file, instead of an icon, forFancyIndexing .
MIME-encoding is a valid content-encoding, such asx-compress . If String contains any whitespace, you have
to enclose it in quotes (" or ’). This alternate text is displayed if the client is image-incapable, has image loading
disabled, or fails to retrieve the icon.

Example
AddAltByEncoding gzip x-gzip

AddAltByType Directive

Description: Alternate text to display for a file, instead of an icon selected by MIME content-type
Syntax: AddAltByType string MIME-type [MIME-type] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

ADDALTBYTYPE sets the alternate text to display for a file, instead of an icon, forFancyIndexing . MIME-type
is a valid content-type, such astext/html . If String contains any whitespace, you have to enclose it in quotes (" or
’). This alternate text is displayed if the client is image-incapable, has image loading disabled, or fails to retrieve the
icon.

Example
AddAltByType ’plain text’ text/plain

AddDescription Directive

Description: Description to display for a file
Syntax: AddDescription string file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

This sets the description to display for a file, forFancyIndexing . File is a file extension, partial filename, wild-card
expression or full filename for files to describe. String is enclosed in double quotes (").

Example
AddDescription "The planet Mars" /web/pics/mars.gif

10.13. APACHE MODULE MOD AUTOINDEX 365

The typical, default description field is 23 bytes wide. 6 more bytes are added by theIndexOptions
SuppressIcon option, 7 bytes are added by theIndexOptions SuppressSize option, and 19 bytes are
added by theIndexOptions SuppressLastModified option. Therefore, the widest default the description
column is ever assigned is 55 bytes.

See the DescriptionWidthINDEXOPTIONS keyword for details on overriding the size of this column, or allowing
descriptions of unlimited length.

=⇒Caution
Descriptive text defined withADDDESCRIPTIONmay contain HTML markup, such as tags and
character entities. If the width of the description column should happen to truncate a tagged
element (such as cutting off the end of a bolded phrase), the results may affect the rest of the
directory listing.

AddIcon Directive

Description: Icon to display for a file selected by name
Syntax: AddIcon icon name [name] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

This sets the icon to display next to a file ending in name forFancyIndexing . Icon is either a (%-escaped) relative
URL to the icon, or of the format(alttext,url) where alttext is the text tag given for an icon for non-graphical
browsers.

Name is either̂ˆDIRECTORYˆˆ for directories,̂ ˆBLANKICONˆˆ for blank lines (to format the list correctly), a
file extension, a wildcard expression, a partial filename or a complete filename.

Examples
AddIcon (IMG,/icons/image.xbm) .gif .jpg .xbm
AddIcon /icons/dir.xbm ˆˆDIRECTORYˆˆ

AddIcon /icons/backup.xbm *˜

ADDICONBYTYPE should be used in preference toADDICON, when possible.

AddIconByEncoding Directive

Description: Icon to display next to files selected by MIME content-encoding
Syntax: AddIconByEncoding icon MIME-encoding [MIME-encoding] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

This sets the icon to display next to files withFancyIndexing . Icon is either a (%-escaped) relative URL to the
icon, or of the format(alttext,url) where alttext is the text tag given for an icon for non-graphical browsers.

MIME-encoding is a wildcard expression matching required the content-encoding.

Example
AddIconByEncoding /icons/compress.xbm x-compress

366 CHAPTER 10. APACHE MODULES

AddIconByType Directive

Description: Icon to display next to files selected by MIME content-type
Syntax: AddIconByType icon MIME-type [MIME-type] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

This sets the icon to display next to files of type MIME-type forFancyIndexing . Icon is either a (%-escaped)
relative URL to the icon, or of the format(alttext,url) where alttext is the text tag given for an icon for non-
graphical browsers.

MIME-type is a wildcard expression matching required the mime types.

Example
AddIconByType (IMG,/icons/image.xbm) image/*

DefaultIcon Directive

Description: Icon to display for files when no specific icon is configured
Syntax: DefaultIcon url-path
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

TheDEFAULTICON directive sets the icon to display for files when no specific icon is known, forFancyIndexing .
Url-path is a (%-escaped) relative URL to the icon.

Example
DefaultIcon /icon/unknown.xbm

HeaderName Directive

Description: Name of the file that will be inserted at the top of the index listing
Syntax: HeaderName filename
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

TheHEADERNAME directive sets the name of the file that will be inserted at the top of the index listing. Filename is
the name of the file to include.

Example
HeaderName HEADER.html

10.13. APACHE MODULE MOD AUTOINDEX 367

=⇒Both HeaderName andREADMENAME now treat Filename as a URI path relative to the one
used to access the directory being indexed. If Filename begins with a slash, it will be taken to
be relative to theDOCUMENTROOT.

Example
HeaderName /include/HEADER.html

Filename must resolve to a document with a major content type oftext/* (e.g.,
text/html , text/plain , etc.). This means that filename may refer to a CGI script if
the script’s actual file type (as opposed to its output) is marked astext/html such as with a
directive like:

AddType text/html .cgi

Content negotiation (p.48) will be performed ifOPTIONS MultiViews is in effect. If file-
name resolves to a statictext/html document (not a CGI script) and either one of theOP-
TIONS Includes or IncludesNOEXEC is enabled, the file will be processed for server-side
includes (see theMOD INCLUDE documentation).

If the file specified byHEADERNAME contains the beginnings of an HTML document (<html>, <head>, etc.) then
you will probably want to setIndexOptions +SuppressHTMLPreamble , so that these tags are not repeated.

IndexIgnore Directive

Description: Adds to the list of files to hide when listing a directory
Syntax: IndexIgnore file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

The INDEXIGNORE directive adds to the list of files to hide when listing a directory. File is a file extension, partial
filename, wildcard expression or full filename for files to ignore. Multiple IndexIgnore directives add to the list, rather
than the replacing the list of ignored files. By default, the list contains. (the current directory).

IndexIgnore README .htaccess *˜

IndexOptions Directive

Description: Various configuration settings for directory indexing
Syntax: IndexOptions [+|-]option [[+|-]option] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

TheINDEXOPTIONSdirective specifies the behavior of the directory indexing. Option can be one of

DescriptionWidth=[n — *] (Apache 2.0.23 and later) The DescriptionWidth keyword allows you to specify
the width of the description column in characters.

-DescriptionWidth (or unset) allowsMOD AUTOINDEX to calculate the best width.

368 CHAPTER 10. APACHE MODULES

DescriptionWidth=n fixes the column width to n bytes wide.

DescriptionWidth=* grows the column to the width necessary to accommodate the longest description
string.

See the section onADDDESCRIPTION for dangers inherent in truncating descriptions.

FancyIndexing This turns on fancy indexing of directories.

FoldersFirst (Apache 2.0.23 and later) If this option is enabled, subdirectory listings willalwaysappear first, fol-
lowed by normal files in the directory. The listing is basically broken into two components, the files and the
subdirectories, and each is sorted separately and then displayed subdirectories-first. For instance, if the sort
order is descending by name, andFoldersFirst is enabled, subdirectoryZed will be listed before subdi-
rectoryBeta , which will be listed before normal filesGammaandAlpha . This option only has an effect if
FancyIndexing is also enabled.

HTMLTable (Experimental, Apache 2.0.23 and later) This experimental option with FancyIndexing constructs a
simple table for the fancy directory listing. Note this will confuse older browsers. It is particularly neces-
sary if file names or description text will alternate between left-to-right and right-to-left reading order, as can
happen on WinNT or other utf-8 enabled platforms.

IconsAreLinks This makes the icons part of the anchor for the filename, for fancy indexing.

IconHeight[=pixels] Presence of this option, when used with IconWidth, will cause the server to includeheight
and width attributes in theimg tag for the file icon. This allows browser to precalculate the page layout
without having to wait until all the images have been loaded. If no value is given for the option, it defaults to
the standard height of the icons supplied with the Apache software.

IconWidth[=pixels] Presence of this option, when used withIconHeight , will cause the server to includeheight
andwidth attributes in theimg tag for the file icon. This allows browser to precalculate the page layout without
having to wait until all the images have been loaded. If no value is given for the option, it defaults to the standard
width of the icons supplied with the Apache software.

IgnoreCase If this option is enabled, names are sorted in a case-insensitive manner. For instance, if the sort order is
ascending by name, and IgnoreCase is enabled, file Zeta will be listed after file alfa (Note: file GAMMA will
always be listed before file gamma).

IgnoreClient This option causesMOD AUTOINDEX to ignore all query variables from the client, including sort order
(impliesSuppressColumnSorting .)

NameWidth=[n — *] TheNameWidth keyword allows you to specify the width of the filename column in bytes.

-NameWidth (or unset) allowsMOD AUTOINDEX to calculate the best width.

NameWidth=n fixes the column width to n bytes wide.

NameWidth=* grows the column to the necessary width.

ScanHTMLTitles This enables the extraction of the title from HTML documents for fancy indexing. If the file does
not have a description given byADDDESCRIPTIONthen httpd will read the document for the value of thetitle
element. This is CPU and disk intensive.

SuppressColumnSorting If specified, Apache will not make the column headings in a FancyIndexed directory listing
into links for sorting. The default behavior is for them to be links; selecting the column heading will sort the
directory listing by the values in that column.Prior to Apache 2.0.23, this also disabled parsing the Query
Arguments for the sort string. That behavior is now controlled by IndexOptions IgnoreClient in Apache
2.0.23.

SuppressDescriptionThis will suppress the file description in fancy indexing listings. By default, no file descriptions
are defined, and so the use of this option will regain 23 characters of screen space to use for something else.
SeeADDDESCRIPTIONfor information about setting the file description. See also theDescriptionWidth
index option to limit the size of the description column.

10.13. APACHE MODULE MOD AUTOINDEX 369

SuppressHTMLPreamble If the directory actually contains a file specified by theHEADERNAME directive, the mod-
ule usually includes the contents of the file after a standard HTML preamble (<html >, <head >, et cetera).
TheSuppressHTMLPreamble option disables this behaviour, causing the module to start the display with
the header file contents. The header file must contain appropriate HTML instructions in this case. If there is no
header file, the preamble is generated as usual.

SuppressIcon (Apache 2.0.23 and later) This will suppress the icon in fancy indexing listings. Combining both
SuppressIcon and SuppressRules yields proper HTML 3.2 output, which by the final specification
prohibitsimg andhr elements from thepre block (used to format FancyIndexed listings.)

SuppressLastModified This will suppress the display of the last modification date, in fancy indexing listings.

SuppressRules (Apache 2.0.23 and later) This will suppress the horizontal rule lines (hr elements) in directory list-
ings. Combining bothSuppressIcon andSuppressRules yields proper HTML 3.2 output, which by the
final specification prohibitsimg andhr elements from thepre block (used to format FancyIndexed listings.)

SuppressSizeThis will suppress the file size in fancy indexing listings.

TrackModified (Apache 2.0.23 and later) This returns the Last-Modified and ETag values for the listed directory in
the HTTP header. It is only valid if the operating system and file system return appropriate stat() results. Some
Unix systems do so, as do OS2’s JFS and Win32’s NTFS volumes. OS2 and Win32 FAT volumes, for example,
do not. Once this feature is enabled, the client or proxy can track changes to the list of files when they perform
a HEADrequest. Note some operating systems correctly track new and removed files, but do not track changes
for sizes or dates of the files within the directory.Changes to the size or date stamp of an existing file will
not update the Last-Modified header on all Unix platforms. If this is a concern, leave this option disabled.

VersionSort (Apache 2.0a3 and later) TheVersionSort keyword causes files containing version numbers to sort
in a natural way. Strings are sorted as usual, except that substrings of digits in the name and description are
compared according to their numeric value.

Example:
foo-1.7
foo-1.7.2
foo-1.7.12
foo-1.8.2
foo-1.8.2a

foo-1.12

If the number starts with a zero, then it is considered to be a fraction:

foo-1.001
foo-1.002
foo-1.030

foo-1.04

Incremental IndexOptions Apache 1.3.3 introduced some significant changes in the handling ofINDEXOPTIONS

directives. In particular:

• Multiple INDEXOPTIONSdirectives for a single directory are now merged together. The result of:

<Directory /foo >
IndexOptions HTMLTable
IndexOptions SuppressColumnsorting

</Directory >

370 CHAPTER 10. APACHE MODULES

will be the equivalent of

IndexOptions HTMLTable SuppressColumnsorting

• The addition of the incremental syntax (i.e., prefixing keywords with+ or -).

Whenever a ’+’ or ’-’ prefixed keyword is encountered, it is applied to the currentINDEXOPTIONS settings
(which may have been inherited from an upper-level directory). However, whenever an unprefixed keyword is
processed, it clears all inherited options and any incremental settings encountered so far. Consider the following
example:

IndexOptions +ScanHTMLTitles -IconsAreLinks FancyIndexing

IndexOptions +SuppressSize

The net effect is equivalent toIndexOptions FancyIndexing +SuppressSize , because the unpre-
fixed FancyIndexing discarded the incremental keywords before it, but allowed them to start accumulating
again afterward.

To unconditionally set theINDEXOPTIONS for a particular directory, clearing the inherited settings, specify
keywords without any+ or - prefixes.

IndexOrderDefault Directive

Description: Sets the default ordering of the directory index
Syntax: IndexOrderDefault Ascending|Descending Name|Date|Size|Description
Default: IndexOrderDefault Ascending Name
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

The INDEXORDERDEFAULT directive is used in combination with theFancyIndexing index option. By default,
fancyindexed directory listings are displayed in ascending order by filename; theINDEXORDERDEFAULT allows you
to change this initial display order.

INDEXORDERDEFAULT takes two arguments. The first must be eitherAscending or Descending , indicating the
direction of the sort. The second argument must be one of the keywordsName, Date , Size , or Description , and
identifies the primary key. The secondary key isalwaysthe ascending filename.

You can force a directory listing to only be displayed in a particular order by combining this directive with the
SuppressColumnSorting index option; this will prevent the client from requesting the directory listing in a
different order.

ReadmeName Directive

Description: Name of the file that will be inserted at the end of the index listing
Syntax: ReadmeName filename
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modautoindex

TheREADMENAME directive sets the name of the file that will be appended to the end of the index listing. Filename
is the name of the file to include, and is taken to be relative to the location being indexed. If Filename begins with a
slash, it will be taken to be relative to theDOCUMENTROOT.

10.13. APACHE MODULE MOD AUTOINDEX 371

Example
ReadmeName FOOTER.html

Example 2
ReadmeName /include/FOOTER.html

See alsoHEADERNAME, where this behavior is described in greater detail.

372 CHAPTER 10. APACHE MODULES

10.14 Apache Module modcache

Description: Content cache keyed to URIs.
Status: Experimental
ModuleIdentifier: cachemodule
SourceFile: modcache.c

Summary

! This module is experimental. Documentation is still under development...

MOD CACHE implements an RFC 26166 compliant HTTP content cache that can be used to cache either local or
proxied content. MOD CACHE requires the services of one or more storage management modules. Two storage
management modules are included in the base Apache distribution:

MOD DISK CACHE implements a disk based storage manager.

MOD MEM CACHE implements a memory based storage manager.MOD MEM CACHE can be configured to operate
in two modes: caching open file descriptors or caching objects in heap storage.MOD MEM CACHE can be used
to cache locally generated content or to cache backend server content forMOD PROXY when configured using
PROXYPASS (aka reverse proxy)

Content is stored in and retrieved from the cache using URI based keys. Content with access protection is not cached.

Directives

• CacheDefaultExpire

• CacheDisable

• CacheEnable

• CacheForceCompletion

• CacheIgnoreCacheControl

• CacheIgnoreNoLastMod

• CacheLastModifiedFactor

• CacheMaxExpire

6http://www.ietf.org/rfc/rfc2616.txt

http://www.ietf.org/rfc/rfc2616.txt

10.14. APACHE MODULE MOD CACHE 373

Related Modules and Directives

Related Modules
MOD DISK CACHE

MOD MEM CACHE

Related Directives
CACHEROOT

CACHESIZE

CACHEGCINTERVAL

CACHEDIRLEVELS

CACHEDIRLENGTH

CACHEEXPIRYCHECK

CACHEM INFILESIZE

CACHEMAX FILESIZE

CACHETIMEMARGIN

CACHEGCDAILY

CACHEGCUNUSED

CACHEGCCLEAN

CACHEGCMEMUSAGE

MCACHESIZE

MCACHEMAX OBJECTCOUNT

MCACHEM INOBJECTSIZE

MCACHEMAX OBJECTSIZE

MCACHEREMOVAL ALGORITHM

MCACHEMAX STREAMINGBUFFER

Sample Configuration

Sample httpd.conf
#
Sample Cache Configuration
#
LoadModule cache module modules/mod cache.so

<IfModule mod cache.c >

#LoadModule disk cache module modules/mod disk cache.so
<IfModule mod disk cache.c >

CacheRoot c:/cacheroot
CacheSize 256
CacheEnable disk /
CacheDirLevels 5
CacheDirLength 3

</IfModule >

LoadModule mem cache module modules/mod memcache.so
<IfModule mod memcache.c >

CacheEnable mem /
MCacheSize 4096
MCacheMaxObjectCount 100
MCacheMinObjectSize 1
MCacheMaxObjectSize 2048

</IfModule >

</IfModule >

374 CHAPTER 10. APACHE MODULES

CacheDefaultExpire Directive

Description: The default duration to cache a document when no expiry date is specified.
Syntax: CacheDefaultExpire seconds
Default: CacheDefaultExpire 3600 (one hour)
Context: server config, virtual host
Status: Experimental
Module: modcache

The CACHEDEFAULTEXPIRE directive specifies a default time, in seconds, to cache a document if neither an ex-
piry date nor last-modified date are provided with the document. The value specified with theCACHEMAX EXPIRE

directive doesnot override this setting.

CacheDefaultExpire 86400

CacheDisable Directive

Description: Disable caching of specified URLs
Syntax: CacheDisable url-string
Context: server config, virtual host
Status: Experimental
Module: modcache

TheCACHEDISABLE directive instructsMOD CACHE to not cache urls at or below url-string.

Example
CacheDisable /local files

CacheEnable Directive

Description: Enable caching of specified URLs using a specified storage manager
Syntax: CacheEnable cache type url-string
Context: server config, virtual host
Status: Experimental
Module: modcache

TheCACHEENABLE directive instructsMOD CACHE to cache urls at or below url-string. The cache storage manager
is specified with the cachetype argument. cachetype meminstructsMOD CACHE to use the memory based storage
manager implemented byMOD MEM CACHE. cachetypedisk instructsMOD CACHE to use the disk based storage
manager implemented byMOD DISK CACHE. cachetype fd instructsMOD CACHE to use the file descriptor cache
implemented byMOD MEM CACHE.

In the event that the URL space overlaps between differentCACHEENABLE directives (as in the example below), each
possible storage manager will be run until the first one that actually processes the request. The order in which the
storage managers are run is determined by the order of theCACHEENABLE directives in the configuration file.

CacheEnable mem /manual
CacheEnable fd /images

CacheEnable disk /

10.14. APACHE MODULE MOD CACHE 375

CacheForceCompletion Directive

Description: Percentage of document served, after which the server will complete caching the file even if
the request is cancelled.

Syntax: CacheForceCompletion Percentage
Default: CacheForceCompletion 60
Context: server config, virtual host
Status: Experimental
Module: modcache

Ordinarily, if a request is cancelled while the response is being cached and delivered to the client the processing of
the response will stop and the cache entry will be removed. TheCACHEFORCECOMPLETION directive specifies a
threshold beyond which the document will continue to be cached to completion, even if the request is cancelled.

The threshold is a percentage specified as a value between1 and100 . A value of0 specifies that the default be used. A
value of100 will only cache documents that are served in their entirety. A value between 60 and 90 is recommended.

CacheForceCompletion 80

! Note:
This feature is currentlynot implemented.

CacheIgnoreCacheControl Directive

Description: Ignore the fact that the client requested the content not be cached.
Syntax: CacheIgnoreCacheControl On|Off
Default: CacheIgnoreCacheControl Off
Context: server config, virtual host
Status: Experimental
Module: modcache

Ordinarily, documents with no-cache or no-store header values will not be stored in the cache. TheCACHEIGNORE-
CACHECONTROL directive allows this behavior to be overridden.CACHEIGNORECACHECONTROL On tells the
server to attempt to cache the document even if it contains no-cache or no-store header values. Documents requiring
authorization willneverbe cached.

CacheIgnoreCacheControl On

CacheIgnoreNoLastMod Directive

Description: Ignore the fact that a response has no Last Modified header.
Syntax: CacheIgnoreNoLastMod On|Off
Default: CacheIgnoreNoLastMod Off
Context: server config, virtual host
Status: Experimental
Module: modcache

Ordinarily, documents without a last-modified date are not cached. Under some circumstances the last-modified date
is removed (duringMOD INCLUDE processing for example) or not provided at all. TheCACHEIGNORENOLASTMOD

directive provides a way to specify that documents without last-modified dates should be considered for caching, even

376 CHAPTER 10. APACHE MODULES

without a last-modified date. If neither a last-modified date nor an expiry date are provided with the document then
the value specified by theCACHEDEFAULTEXPIRE directive will be used to generate an expiration date.

CacheIgnoreNoLastMod On

CacheLastModifiedFactor Directive

Description: The factor used to compute an expiry date based on the LastModified date.
Syntax: CacheLastModifiedFactor float
Default: CacheLastModifiedFactor 0.1
Context: server config, virtual host
Status: Experimental
Module: modcache

In the event that a document does not provide an expiry date but does provide a last-modified date, an expiry date can
be calculated based on the time since the document was last modified. TheCACHELASTMODIFIEDFACTOR directive
specifies a factor to be used in the generation of this expiry date according to the following formula:

expiry-period = time-since-last-modified-date * factor expiry-date =
current-date + expiry-period

For example, if the document was last modified 10 hours ago, and factor is 0.1 then the expiry-period will be set to
10*0.1 = 1 hour. If the current time was 3:00pm then the computed expiry-date would be 3:00pm + 1hour = 4:00pm.

If the expiry-period would be longer than that set byCACHEMAX EXPIRE, then the latter takes precedence.

CacheLastModifiedFactor 0.5

CacheMaxExpire Directive

Description: The maximum time in seconds to cache a document
Syntax: CacheMaxExpire seconds
Default: CacheMaxExpire 86400 (one day)
Context: server config, virtual host
Status: Experimental
Module: modcache

The CACHEMAX EXPIRE directive specifies the maximum number of seconds for which cachable HTTP documents
will be retained without checking the origin server. Thus, documents will be out of date at most this number of
seconds. This maximum value is enforced even if an expiry date was supplied with the document.

CacheMaxExpire 604800

10.15. APACHE MODULE MOD CERN META 377

10.15 Apache Module modcern meta

Description: CERN httpd metafile semantics
Status: Extension
ModuleIdentifier: cernmetamodule
SourceFile: modcernmeta.c

Summary

Emulate the CERN HTTPD Meta file semantics. Meta files are HTTP headers that can be output in addition to the
normal range of headers for each file accessed. They appear rather like the Apache .asis files, and are able to provide a
crude way of influencing the Expires: header, as well as providing other curiosities. There are many ways to manage
meta information, this one was chosen because there is already a large number of CERN users who can exploit this
module.

More information on the CERN metafile semantics7 is available.

Directives

• MetaDir

• MetaFiles

• MetaSuffix

See also

• MOD HEADERS

• MOD ASIS

MetaDir Directive

Description: Name of the directory to find CERN-style meta information files
Syntax: MetaDir directory
Default: MetaDir .web
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: modcernmeta

Specifies the name of the directory in which Apache can find meta information files. The directory is usually a ’hidden’
subdirectory of the directory that contains the file being accessed. Set to"." to look in the same directory as the file:

MetaDir .

Or, to set it to a subdirectory of the directory containing the files:

MetaDir .meta

7http://www.w3.org/pub/WWW/Daemon/User/Config/General.html#MetaDir

http://www.w3.org/pub/WWW/Daemon/User/Config/General.html#MetaDir

378 CHAPTER 10. APACHE MODULES

MetaFiles Directive

Description: Activates CERN meta-file processing
Syntax: MetaFiles on|off
Default: MetaFiles off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: modcernmeta

Turns on/off Meta file processing on a per-directory basis.

MetaSuffix Directive

Description: File name suffix for the file containg CERN-style meta information
Syntax: MetaSuffix suffix
Default: MetaSuffix .meta
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: modcernmeta

Specifies the file name suffix for the file containing the meta information. For example, the default val-
ues for the two directives will cause a request toDOCUMENTROOT/somedir/index.html to look in
DOCUMENTROOT/somedir/.web/index.html.meta and will use its contents to generate additional MIME
header information.

Example:
MetaSuffix .meta

10.16. APACHE MODULE MOD CGI 379

10.16 Apache Module modcgi

Description: Execution of CGI scripts
Status: Base
ModuleIdentifier: cgimodule
SourceFile: modcgi.c

Summary

Any file that has the mime typeapplication/x-httpd-cgi or handlercgi-script (Apache 1.1 or later)
will be treated as a CGI script, and run by the server, with its output being returned to the client. Files acquire this type
either by having a name containing an extension defined by theADDTYPE directive, or by being in aSCRIPTALIAS

directory.

When the server invokes a CGI script, it will add a variable calledDOCUMENTROOTto the environment. This variable
will contain the value of theDOCUMENTROOT configuration variable.

For an introduction to using CGI scripts with Apache, see our tutorial on Dynamic Content With CGI (p.189) .

When using a multi-threaded MPM under unix, the moduleMOD CGID should be used in place of this module. At the
user level, the two modules are essentially identical.

Directives

• ScriptLog

• ScriptLogBuffer

• ScriptLogLength

See also

• ACCEPTPATH INFO

• OPTIONS

• SCRIPTALIAS

• ADDHANDLER

• Running CGI programs under different user IDs (p.69)

• CGI Specification8

CGI Environment variables

The server will set the CGI environment variables as described in the CGI specification9, with the following provisions:

PATH INFO This will not be available if theACCEPTPATH INFO directive is explicitly set tooff . The default behav-
ior, if ACCEPTPATH INFO is not given, is thatMOD CGI will accept path info (trailing /more/path/info
following the script filename in the URI), while the core server will return a 404 NOT FOUND error for re-
quests with additional path info. Omitting theACCEPTPATH INFO directive has the same effect as setting itOn
for MOD CGI requests.

REMOTE HOST This will only be set ifHOSTNAMELOOKUPS is set toon (it is off by default), and if a reverse
DNS lookup of the accessing host’s address indeed finds a host name.

8http://hoohoo.ncsa.uiuc.edu/cgi/
9http://hoohoo.ncsa.uiuc.edu/cgi/

http://hoohoo.ncsa.uiuc.edu/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/

380 CHAPTER 10. APACHE MODULES

REMOTE IDENT This will only be set ifIDENTITYCHECK is set toon and the accessing host supports the ident
protocol. Note that the contents of this variable cannot be relied upon because it can easily be faked, and if there
is a proxy between the client and the server, it is usually totally useless.

REMOTE USER This will only be set if the CGI script is subject to authentication.

CGI Debugging

Debugging CGI scripts has traditionally been difficult, mainly because it has not been possible to study the output
(standard output and error) for scripts which are failing to run properly. These directives, included in Apache 1.2 and
later, provide more detailed logging of errors when they occur.

CGI Logfile Format

When configured, the CGI error log logs any CGI which does not execute properly. Each CGI script which fails to
operate causes several lines of information to be logged. The first two lines are always of the format:

%% [time] request-line

%% HTTP-status CGI-script-filename

If the error is that CGI script cannot be run, the log file will contain an extra two lines:

%%error

error-message

Alternatively, if the error is the result of the script returning incorrect header information (often due to a bug in the
script), the following information is logged:

%request
All HTTP request headers received
POST or PUT entity (if any)
%response
All headers output by the CGI script
%stdout
CGI standard output
%stderr

CGI standard error

(The %stdout and %stderr parts may be missing if the script did not output anything on standard output or standard
error).

ScriptLog Directive

Description: Location of the CGI script error logfile
Syntax: ScriptLog file-path
Context: server config, virtual host
Status: Base
Module: MOD CGI, MOD CGID

TheSCRIPTLOG directive sets the CGI script error logfile. If noSCRIPTLOG is given, no error log is created. If given,
any CGI errors are logged into the filename given as argument. If this is a relative file or path it is taken relative to the
SERVERROOT.

10.16. APACHE MODULE MOD CGI 381

Example
ScriptLog logs/cgi log

This log will be opened as the user the child processes run as,i.e. the user specified in the mainUSERdirective. This
means that either the directory the script log is in needs to be writable by that user or the file needs to be manually
created and set to be writable by that user. If you place the script log in your main logs directory, doNOT change the
directory permissions to make it writable by the user the child processes run as.

Note that script logging is meant to be a debugging feature when writing CGI scripts, and is not meant to be activated
continuously on running servers. It is not optimized for speed or efficiency, and may have security problems if used in
a manner other than that for which it was designed.

ScriptLogBuffer Directive

Description: Maximum amount of PUT or POST requests that will be recorded in the scriptlog
Syntax: ScriptLogBuffer bytes
Default: ScriptLogBuffer 1024
Context: server config, virtual host
Status: Base
Module: MOD CGI, MOD CGID

The size of any PUT or POST entity body that is logged to the file is limited, to prevent the log file growing too big
too quickly if large bodies are being received. By default, up to 1024 bytes are logged, but this can be changed with
this directive.

ScriptLogLength Directive

Description: Size limit of the CGI script logfile
Syntax: ScriptLogLength bytes
Default: ScriptLogLength 10385760
Context: server config, virtual host
Status: Base
Module: MOD CGI, MOD CGID

SCRIPTLOGLENGTH can be used to limit the size of the CGI script logfile. Since the logfile logs a lot of information
per CGI error (all request headers, all script output) it can grow to be a big file. To prevent problems due to unbounded
growth, this directive can be used to set an maximum file-size for the CGI logfile. If the file exceeds this size, no more
information will be written to it.

382 CHAPTER 10. APACHE MODULES

10.17 Apache Module modcgid

Description: Execution of CGI scripts using an external CGI daemon
Status: Base
ModuleIdentifier: cgidmodule
SourceFile: modcgid.c
Compatibility: Unix threaded MPMs only

Summary

Except for the optimizations and the additionalSCRIPTSOCK directive noted below,MOD CGID behaves similarly to
MOD CGI. See theMOD CGI summary for additional details about Apache and CGI.

On certain unix operating systems, forking a process from a multi-threaded server is a very expensive operation
because the new process will replicate all the threads of the parent process. In order to avoid incurring this expense
on each CGI invocation,MOD CGID creates an external daemon that is responsible for forking child processes to run
CGI scripts. The main server communicates with this daemon using a unix domain socket.

This module is used by default instead ofMOD CGI whenever a multi-threaded MPM is selected during the compilation
process. At the user level, this module is identical in configuration and operation toMOD CGI. The only exception
is the additional directiveScriptSock which gives the name of the socket to use for communication with the cgi
daemon.

Directives

• ScriptLog (p.380)

• ScriptLogBuffer (p.381)

• ScriptLogLength (p.381)

• ScriptSock

See also

• MOD CGI

• Running CGI programs under different user IDs (p.69)

ScriptSock Directive

Description: The name of the socket to use for communication with the cgi daemon
Syntax: ScriptSock file-path
Default: ScriptSock logs/cgisock
Context: server config, virtual host
Status: Base
Module: modcgid

This directive sets the name of the socket to use for communication with the CGI daemon. The socket will be opened
using the permissions of the user who starts Apache (usually root). To maintain the security of communications with
CGI scripts, it is important that no other user has permission to write in the directory where the socket is located.

Example
ScriptSock /var/run/cgid.sock

10.18. APACHE MODULE MOD CHARSET LITE 383

10.18 Apache Module modcharset lite

Description: Specify character set translation or recoding
Status: Experimental
ModuleIdentifier: charsetlite module
SourceFile: modcharsetlite.c

Summary

This is anexperimental module and should be used with care. Experiment with yourMOD CHARSET LITE configu-
ration to ensure that it performs the desired function.

MOD CHARSET LITE allows the administrator to specify the source character set of objects as well as the character
set they should be translated into before sending to the client.MOD CHARSET LITE does not translate the data itself
but instead tells Apache what translation to perform.MOD CHARSET LITE is applicable to EBCDIC and ASCII
host environments. In an EBCDIC environment, Apache normally translates text content from the code page of the
Apache process locale to ISO-8859-1.MOD CHARSET LITE can be used to specify that a different translation is to be
performed. In an ASCII environment, Apache normally performs no translation, soMOD CHARSET LITE is needed in
order for any translation to take place.

This module provides a small subset of configuration mechanisms implemented by Russian Apache and its associated
mod charset .

Directives

• CharsetDefault

• CharsetOptions

• CharsetSourceEnc

Common Problems

Invalid character set names

The character set name parameters ofCHARSETSOURCEENC and CHARSETDEFAULT must be acceptable to the
translation mechanism used by APR on the system whereMOD CHARSET LITE is deployed. These character set
names are not standardized and are usually not the same as the corresponding values used in http headers. Currently,
APR can only use iconv(3), so you can easily test your character set names using the iconv(1) program, as follows:

iconv -f charsetsourceenc-value -t charsetdefault-value

Mismatch between character set of content and translation rules

If the translation rules don’t make sense for the content, translation can fail in various ways, including:

• The translation mechanism may return a bad return code, and the connection will be aborted.

• The translation mechanism may silently place special characters (e.g., question marks) in the output buffer when
it cannot translate the input buffer.

384 CHAPTER 10. APACHE MODULES

CharsetDefault Directive

Description: Charset to translate into
Syntax: CharsetDefault charset
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Experimental
Module: modcharsetlite

TheCHARSETDEFAULT directive specifies the charset that content in the associated container should be translated to.

The value of the charset argument must be accepted as a valid character set name by the character set support in APR.
Generally, this means that it must be supported by iconv.

Example
<Directory /export/home/trawick/apacheinst/htdocs/convert >

CharsetSourceEnc UTF-16BE
CharsetDefault ISO-8859-1

</Directory >

CharsetOptions Directive

Description: Configures charset translation behavior
Syntax: CharsetOptions option [option] ...
Default: CharsetOptions DebugLevel=0 NoImplicitAdd
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Experimental
Module: modcharsetlite

TheCHARSETOPTIONSdirective configures certain behaviors ofMOD CHARSET LITE. Option can be one of

DebugLevel=n The DebugLevel keyword allows you to specify the level of debug messages generated by
MOD CHARSET LITE. By default, no messages are generated. This is equivalent toDebugLevel=0 . With
higher numbers, more debug messages are generated, and server performance will be degraded. The actual
meanings of the numeric values are described with the definitions of the DBGLVLconstants near the begin-
ning ofmod charset lite.c .

ImplicitAdd | NoImplicitAdd The ImplicitAdd keyword specifies thatMOD CHARSET LITE should
implicitly insert its filter when the configuration specifies that the character set of content should be translated.
If the filter chain is explicitly configured using theADDOUTPUTFILTER directive,NoImplicitAdd should
be specified so thatMOD CHARSET LITE doesn’t add its filter.

CharsetSourceEnc Directive

Description: Source charset of files
Syntax: CharsetSourceEnc charset
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Experimental
Module: modcharsetlite

TheCHARSETSOURCEENC directive specifies the source charset of files in the associated container.

10.18. APACHE MODULE MOD CHARSET LITE 385

The value of the charset argument must be accepted as a valid character set name by the character set support in APR.
Generally, this means that it must be supported by iconv.

Example
<Directory /export/home/trawick/apacheinst/htdocs/convert >

CharsetSourceEnc UTF-16BE
CharsetDefault ISO-8859-1

</Directory >

The character set names in this example work with the iconv translation support in Solaris 8.

386 CHAPTER 10. APACHE MODULES

10.19 Apache Module moddav

Description: Distributed Authoring and Versioning (WebDAV10) functionality
Status: Extension
ModuleIdentifier: davmodule
SourceFile: moddav.c

Summary

This module provides class 1 and class 2 WebDAV11 (’Web-based Distributed Authoring and Versioning’) function-
ality for Apache. This extension to the HTTP protocol allows creating, moving, copying, and deleting resources and
collections on a remote web server.

Directives

• Dav

• DavDepthInfinity

• DavMinTimeout

See also

• DAV LOCKDB

• L IMIT XMLR EQUESTBODY

• WebDAV Resources12

Enabling WebDAV

To enableMOD DAV , add the following to a container in yourhttpd.conf file:

Dav On

This enables the DAV file system provider, which is implemented by theMOD DAV FSmodule. Therefore, that module
must be compiled into the server or loaded at runtime using theLOADMODULE directive.

In addition, a location for the DAV lock database must be specified in the global section of yourhttpd.conf file
using theDAV LOCKDB directive:

DavLockDB /usr/local/apache2/var/DavLock

The directory containing the lock database file must be writable by theUSER and GROUP under which Apache is
running.

You may wish to add a<L IMIT > clause inside the<LOCATION> directive to limit access to DAV-enabled locations.
If you want to set the maximum amount of bytes that a DAV client can send at one request, you have to use the
L IMIT XMLR EQUESTBODY directive. The" normal" L IMIT REQUESTBODY directive has no effect on DAV requests.

11http://www.webdav.org
12http://www.webdav.org

http://www.webdav.org
http://www.webdav.org

10.19. APACHE MODULE MOD DAV 387

Full Example
DavLockDB /usr/local/apache2/var/DavLock

<Location /foo >

Dav On

AuthType Basic
AuthName DAV
AuthUserFile user.passwd

<LimitExcept GET OPTIONS >

require user admin

</LimitExcept >

</Location >

MOD DAV is a descendent of Greg Stein’s moddav for Apache 1.313. More information about the module is available
from that site.

Security Issues

Since DAV access methods allow remote clients to manipulate files on the server, you must take particular care to
assure that your server is secure before enablingMOD DAV .

Any location on the server where DAV is enabled should be protected by authentication. The use of HTTP Basic
Authentication is not recommended. You should use at least HTTP Digest Authentication, which is provided by the
MOD AUTH DIGEST module. Nearly all WebDAV clients support this authentication method. An alternative is Basic
Authentication over an SSL (p.150) enabled connection.

In order forMOD DAV to manage files, it must be able to write to the directories and files under its control using the
USER andGROUP under which Apache is running. New files created will also be owned by thisUSER andGROUP.
For this reason, it is important to control access to this account. The DAV repository is considered private to Apache;
modifying files outside of Apache (for example using FTP or filesystem-level tools) should not be allowed.

MOD DAV may be subject to various kinds of denial-of-service attacks. TheL IMIT XMLR EQUESTBODY directive can
be used to limit the amount of memory consumed in parsing large DAV requests. TheDAV DEPTHINFINITY directive
can be used to preventPROPFINDrequests on a very large repository from consuming large amounts of memory.
Another possible denial-of-service attack involves a client simply filling up all available disk space with many large
files. There is no direct way to prevent this in Apache, so you should avoid giving DAV access to untrusted users.

Complex Configurations

One common request is to useMOD DAV to manipulate dynamic files (PHP scripts, CGI scripts, etc). This is difficult
because aGETrequest will always run the script, rather than downloading its contents. One way to avoid this is to map
two different URLs to the content, one of which will run the script, and one of which will allow it to be downloaded
and manipulated with DAV.

Alias /phparea /home/gstein/php files
Alias /php-source /home/gstein/php files
<Location /php-source >

DAV On
ForceType text/plain

</Location >

13http://www.webdav.org/moddav/

http://www.webdav.org/mod_dav/

388 CHAPTER 10. APACHE MODULES

With this setup,http://example.com/phparea can be used to access the output of the PHP scripts, and
http://example.com/php-source can be used with a DAV client to manipulate them.

Dav Directive

Description: Enable WebDAV HTTP methods
Syntax: Dav On|Off|provider-name
Default: Dav Off
Context: directory
Status: Extension
Module: moddav

Use theDAV directive to enable the WebDAV HTTP methods for the given container:

<Location /foo >

Dav On

</Location >

The valueOn is actually an alias for the default providerfilesystem which is served by theMOD DAV FS module.
Note, that once you have DAV enabled for some location, itcannotbe disabled for sublocations. For a complete
configuration example have a look at the section above.

! Do not enable WebDAV until you have secured your server. Otherwise everyone will be able
to distribute files on your system.

DavDepthInfinity Directive

Description: Allow PROPFIND, Depth: Infinity requests
Syntax: DavDepthInfinity on|off
Default: DavDepthInfinity off
Context: server config, virtual host, directory
Status: Extension
Module: moddav

Use theDAV DEPTHINFINITY directive to allow the processing ofPROPFINDrequests containing the header ’Depth:
Infinity’. Because this type of request could constitute a denial-of-service attack, by default it is not allowed.

DavMinTimeout Directive

Description: Minimum amount of time the server holds a lock on a DAV resource
Syntax: DavMinTimeout seconds
Default: DavMinTimeout 0
Context: server config, virtual host, directory
Status: Extension
Module: moddav

When a client requests a DAV resource lock, it can also specify a time when the lock will be automatically removed
by the server. This value is only a request, and the server can ignore it or inform the client of an arbitrary value.

Use theDAV M INTIMEOUT directive to specify, in seconds, the minimum lock timeout to return to a client. Microsoft
Web Folders defaults to a timeout of 120 seconds; theDAV M INTIMEOUT can override this to a higher value (like 600
seconds) to reduce the chance of the client losing the lock due to network latency.

10.19. APACHE MODULE MOD DAV 389

Example
<Location /MSWord >

DavMinTimeout 600

</Location >

390 CHAPTER 10. APACHE MODULES

10.20 Apache Module moddav fs

Description: filesystem provider forMOD DAV

Status: Extension
ModuleIdentifier: davfs module
SourceFile: moddav fs.c

Summary

This modulerequiresthe service ofMOD DAV . It acts as a support module forMOD DAV and provides access to
resources located in the server’s file system. The formal name of this provider isfilesystem . MOD DAV backend
providers will be invoked by using theDAV directive:

Example
Dav filesystem

Sincefilesystem is the default provider forMOD DAV , you may simply use the valueOn instead.

Directives

• DavLockDB

See also

• MOD DAV

DavLockDB Directive

Description: Location of the DAV lock database
Syntax: DavLockDB file-path
Context: server config, virtual host
Status: Extension
Module: moddav fs

Use theDAV LOCKDB directive to specify the full path to the lock database, excluding an extension. If the path is not
absolute, it will be taken relative toSERVERROOT. The implementation ofMOD DAV FS uses a SDBM database to
track user locks.

Example
DavLockDB var/DavLock

The directory containing the lock database file must be writable by theUSER and GROUP under which Apache is
running. For security reasons, you should create a directory for this purpose rather than changing the permissions on
an existing directory. In the above example, Apache will create files in thevar/ directory under theSERVERROOT

with the base filenameDavLock and extension name chosen by the server.

10.21. APACHE MODULE MOD DEFLATE 391

10.21 Apache Module moddeflate

Description: Compress content before it is delivered to the client
Status: Extension
ModuleIdentifier: deflatemodule
SourceFile: moddeflate.c

Summary

TheMOD DEFLATE module provides theDEFLATEoutput filter that allows output from your server to be compressed
before being sent to the client over the network.

Directives

• DeflateBufferSize

• DeflateCompressionLevel

• DeflateFilterNote

• DeflateMemLevel

• DeflateWindowSize

See also

• Filters (p.68)

Recommended Configuration

This is a sample configuration for the impatient. But please take the time and read the sections below for a detailed
description!

Compress only a few types
AddOutputFilterByType DEFLATE text/html text/plain text/xml

Compress everything except images
<Location / >

Insert filter
SetOutputFilter DEFLATE

Netscape 4.x has some problems...
BrowserMatch ˆMozilla/4 gzip-only-text/html

Netscape 4.06-4.08 have some more problems
BrowserMatch ˆMozilla/4 \.0[678] no-gzip

MSIE masquerades as Netscape, but it is fine
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

Don’t compress images
SetEnvIfNoCase Request URI \

\.(?:gif|jpe?g|png)$ no-gzip dont-vary

Make sure proxies don’t deliver the wrong content
Header append Vary User-Agent env=!dont-vary

</Location >

392 CHAPTER 10. APACHE MODULES

Enabling Compression

Output Compression

Compression is implemented by theDEFLATEfilter (p. 68) . The following directive will enable compression for
documents in the container where it is placed:

SetOutputFilter DEFLATE

Some popular browsers cannot handle compression of all content so you may want to set the
gzip-only-text/html note to 1 to only allow html files to be compressed (see below). If you set
this toanything but1 it will be ignored.

If you want to restrict the compression to particular MIME types in general, you may use theADDOUTPUTFILTER-
BYTYPE directive. Here is an example of enabling compression only for the html files of the Apache documentation:

<Directory "/your-server-root/manual" >

AddOutputFilterByType DEFLATE text/html

</Directory >

For browsers that have problems even with compression of all file types, use theBROWSERMATCH directive to set the
no-gzip note for that particular browser so that no compression will be performed. You may combineno-gzip
with gzip-only-text/html to get the best results. In that case the former overrides the latter. Take a look at the
following excerpt from the configuration example defined in the section above:

BrowserMatch ˆMozilla/4 gzip-only-text/html
BrowserMatch ˆMozilla/4 \.0[678] no-gzip

BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

At first we probe for aUser-Agent string that indicates a Netscape Navigator version of 4.x. These versions cannot
handle compression of types other thantext/html . The versions 4.06, 4.07 and 4.08 also have problems with
decompressing html files. Thus, we completely turn off the deflate filter for them.

The third BROWSERMATCH directive fixes the guessed identity of the user agent, because the Microsoft Internet
Explorer identifies itself also as" Mozilla/4" but is actually able to handle requested compression. Therefore we
match against the additional string" MSIE" (\b means" word boundary") in theUser-Agent Header and turn off
the restrictions defined before.

=⇒Note
The DEFLATEfilter is always inserted after RESOURCE filters like PHP or SSI. It never
touches internal subrequests.

Input Decompression

The MOD DEFLATE module also provides a filter for decompressing a gzip compressed request body . In order to
activate this feature you have to insert theDEFLATEfilter into the input filter chain usingSETINPUTFILTER or
ADDINPUTFILTER, for example:

<Location /dav-area >

SetInputFilter DEFLATE

</Location >

10.21. APACHE MODULE MOD DEFLATE 393

Now if a request contains aContent-Encoding: gzip header, the body will be automatically decompressed.
Few browsers have the ability to gzip request bodies. However, some special applications actually do support request
compression, for instance some WebDAV14 clients.

! Note on Content-Length
If you evaluate the request body yourself,don’t trust theContent-Length header! The
Content-Length header reflects the length of the incoming data from the client andnot the byte
count of the decompressed data stream.

Dealing with proxy servers

The MOD DEFLATE module sends aVary: Accept-Encoding HTTP response header to alert proxies that a
cached response should be sent only to clients that send the appropriateAccept-Encoding request header. This
prevents compressed content from being sent to a client that will not understand it.

If you use some special exclusions dependent on, for example, theUser-Agent header, you must manually configure
an addition to theVary header to alert proxies of the additional restrictions. For example, in a typical configuration
where the addition of theDEFLATEfilter depends on theUser-Agent , you should add:

Header append Vary User-Agent

If your decision about compression depends on other information than request headers (e.g.HTTP version), you have
to set theVary header to the value* . This prevents compliant proxies from caching entirely.

Example
Header set Vary *

DeflateBufferSize Directive

Description: Fragment size to be compressed at one time by zlib
Syntax: DeflateBufferSize value
Default: DeflateBufferSize 8096
Context: server config, virtual host
Status: Extension
Module: moddeflate

TheDEFLATEBUFFERSIZE directive specifies the size in bytes of the fragments that zlib should compress at one time.

DeflateCompressionLevel Directive

Description: How much compression do we apply to the output
Syntax: DeflateCompressionLevel value
Default: Zlib’s default
Context: server config, virtual host
Status: Extension
Module: moddeflate
Compatibility: This directive is available since Apache 2.0.45

14http://www.webdav.org

http://www.webdav.org

394 CHAPTER 10. APACHE MODULES

The DEFLATECOMPRESSIONLEVEL directive specifies what level of compression should be used, the higher the
value, the better the compression, but the more CPU time is required to achieve this.

The value must between 1 (less compression) and 9 (more compression).

DeflateFilterNote Directive

Description: Places the compression ratio in a note for logging
Syntax: DeflateFilterNote [type] notename
Context: server config, virtual host
Status: Extension
Module: moddeflate
Compatibility: type is available since Apache 2.0.45

TheDEFLATEFILTERNOTE directive specifies that a note about compression ratios should be attached to the request.
The name of the note is the value specified for the directive. You can use that note for statistical purposes by adding
the value to your access log (p.30) .

Example
DeflateFilterNote ratio

LogFormat ’"%r" %b (% {ratio }n) "% {User-agent }i"’ deflate

CustomLog logs/deflate log deflate

If you want to extract more accurate values from your logs, you can use the type argument to specify the type of data
left as note for logging. type can be one of:

Input Store the byte count of the filter’s input stream in the note.

Output Store the byte count of the filter’s output stream in the note.

Ratio Store the compression ratio (output/input * 100) in the note. This is the default, if the type argument
is omitted.

Thus you may log it this way:

Accurate Logging
DeflateFilterNote Input instream
DeflateFilterNote Output outstream
DeflateFilterNote Ratio ratio

LogFormat ’"%r" % {outstream }n/%{instream }n (%{ratio }n%%)’ deflate

CustomLog logs/deflate log deflate

See also

• MOD LOG CONFIG

DeflateMemLevel Directive

Description: How much memory should be used by zlib for compression
Syntax: DeflateMemLevel value
Default: DeflateMemLevel 9
Context: server config, virtual host
Status: Extension
Module: moddeflate

10.21. APACHE MODULE MOD DEFLATE 395

The DEFLATEMEMLEVEL directive specifies how much memory should be used by zlib for compression (a value
between 1 and 9).

DeflateWindowSize Directive

Description: Zlib compression window size
Syntax: DeflateWindowSize value
Default: DeflateWindowSize 15
Context: server config, virtual host
Status: Extension
Module: moddeflate

TheDEFLATEWINDOWSIZE directive specifies the zlib compression window size (a value between 1 and 15). Gen-
erally, the higher the window size, the higher can the compression ratio be expected.

396 CHAPTER 10. APACHE MODULES

10.22 Apache Module moddir

Description: Provides for" trailing slash" redirects and serving directory index files
Status: Base
ModuleIdentifier: dirmodule
SourceFile: moddir.c

Summary

The index of a directory can come from one of two sources:

• A file written by the user, typically calledindex.html . TheDIRECTORYINDEX directive sets the name of
this file. This is controlled byMOD DIR.

• Otherwise, a listing generated by the server. This is provided byMOD AUTOINDEX.

The two functions are separated so that you can completely remove (or replace) automatic index generation should
you want to.

A " trailing slash" redirect is issued when the server receives a request for a URL
http://servername/foo/dirname where dirname is a directory. Directories require a trailing
slash, soMOD DIR issues a redirect tohttp://servername/foo/dirname/ .

Directives

• DirectoryIndex

DirectoryIndex Directive

Description: List of resources to look for when the client requests a directory
Syntax: DirectoryIndex local-url [local-url] ...
Default: DirectoryIndex index.html
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: moddir

TheDIRECTORYINDEX directive sets the list of resources to look for, when the client requests an index of the directory
by specifying a / at the end of the a directory name. Local-url is the (%-encoded) URL of a document on the server
relative to the requested directory; it is usually the name of a file in the directory. Several URLs may be given, in
which case the server will return the first one that it finds. If none of the resources exist and theIndexes option is
set, the server will generate its own listing of the directory.

Example
DirectoryIndex index.html

then a request forhttp://myserver/docs/ would returnhttp://myserver/docs/index.html if it
exists, or would list the directory if it did not.

Note that the documents do not need to be relative to the directory;

DirectoryIndex index.html index.txt /cgi-bin/index.pl

would cause the CGI script/cgi-bin/index.pl to be executed if neitherindex.html or index.txt existed
in a directory.

10.23. APACHE MODULE MOD DISK CACHE 397

10.23 Apache Module moddisk cache

Description: Content cache storage manager keyed to URIs
Status: Experimental
ModuleIdentifier: diskcachemodule
SourceFile: moddisk cache.c

Summary

! This module is experimental. Documentation is still under development...

MOD DISK CACHE implements a disk based storage manager. It is primarily of use in conjunction withMOD PROXY.

Content is stored in and retrieved from the cache using URI based keys. Content with access protection is not cached.

=⇒Note:
MOD DISK CACHE requires the services ofMOD CACHE.

Directives

• CacheDirLength

• CacheDirLevels

• CacheExpiryCheck

• CacheGcClean

• CacheGcDaily

• CacheGcInterval

• CacheGcMemUsage

• CacheGcUnused

• CacheMaxFileSize

• CacheMinFileSize

• CacheRoot

• CacheSize

• CacheTimeMargin

CacheDirLength Directive

Description: The number of characters in subdirectory names
Syntax: CacheDirLength length
Default: CacheDirLength 2
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

TheCACHEDIRLENGTH directive sets the number of characters for each subdirectory name in the cache hierarchy.

=⇒The result ofCACHEDIRLEVELS* CACHEDIRLENGTH must not be higher than 20.

CacheDirLength 4

398 CHAPTER 10. APACHE MODULES

CacheDirLevels Directive

Description: The number of levels of subdirectories in the cache.
Syntax: CacheDirLevels levels
Default: CacheDirLevels 3
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

TheCACHEDIRLEVELS directive sets the number of subdirectory levels in the cache. Cached data will be saved this
many directory levels below theCACHEROOT directory.

=⇒The result ofCACHEDIRLEVELS* CACHEDIRLENGTH must not be higher than 20.

CacheDirLevels 5

CacheExpiryCheck Directive

Description: Indicates if the cache observes Expires dates when seeking files
Syntax: CacheExpiryCheck On|Off
Default: CacheExpiryCheck On
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

More detail will be added here, when the function is implemented.

CacheExpiryCheck Off

! TheCACHEEXPIRYCHECK directive is currentlynot implemented.

CacheGcClean Directive

Description: The time to retain unchanged cached files that match a URL
Syntax: CacheGcClean hours url-string
Default: CacheGcClean ?
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

More detail will be added here, when the function is implemented.

CacheGcClean 12 /daily scripts

! TheCACHEGCCLEAN directive is currentlynot implemented.

10.23. APACHE MODULE MOD DISK CACHE 399

CacheGcDaily Directive

Description: The recurring time each day for garbage collection to be run. (24 hour clock)
Syntax: CacheGcDaily time
Default: CacheGcDaily ?
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

More detail will be added here, when the function is implemented.

CacheGcDaily 23:59

! TheCACHEGCDAILY directive is currentlynot implemented.

CacheGcInterval Directive

Description: The interval between garbage collection attempts.
Syntax: CacheGcInterval hours
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

TheCACHEGCINTERVAL directive specifies the number of hours to wait between attempts to free up disk space.

More detail will be added here, when the function is implemented.

CacheGcInterval 24

! TheCACHEGCINTERVAL directive is currentlynot implemented.

CacheGcMemUsage Directive

Description: The maximum kilobytes of memory used for garbage collection
Syntax: CacheGcMemUsage KBytes
Default: CacheGcMemUsage ?
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

More detail will be added here, when the function is implemented.

CacheGcMemUsage 16

! TheCACHEGCMEMUSAGE directive is currentlynot implemented.

400 CHAPTER 10. APACHE MODULES

CacheGcUnused Directive

Description: The time to retain unreferenced cached files that match a URL.
Syntax: CacheGcUnused hours url-string
Default: CacheGcUnused ?
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

More detail will be added here, when the function is implemented.

CacheGcUnused 12 /local images

! TheCACHEGCUNUSED directive is currentlynot implemented.

CacheMaxFileSize Directive

Description: The maximum size (in bytes) of a document to be placed in the cache
Syntax: CacheMaxFileSize bytes
Default: CacheMaxFileSize 1000000
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

TheCACHEMAX FILESIZE directive sets the maximum size, in bytes, for a document to be considered for storage in
the cache.

CacheMaxFileSize 64000

CacheMinFileSize Directive

Description: The minimum size (in bytes) of a document to be placed in the cache
Syntax: CacheMinFileSize bytes
Default: CacheMinFileSize 1
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

The CACHEM INFILESIZE directive sets the minimum size, in bytes, for a document to be considered for storage in
the cache.

CacheMinFileSize 64

CacheRoot Directive

Description: The directory root under which cache files are stored
Syntax: CacheRoot directory
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

10.23. APACHE MODULE MOD DISK CACHE 401

The CACHEROOT directive defines the name of the directory on the disk to contain cache files. If the
MOD DISK CACHE module has been loaded or compiled in to the Apache server, this directivemustbe defined. Fail-
ing to provide a value forCACHEROOT will result in a configuration file processing error. TheCACHEDIRLEVELS

andCACHEDIRLENGTH directives define the structure of the directories under the specified root directory.

CacheRoot c:/cacheroot

CacheSize Directive

Description: The maximum amount of disk space that will be used by the cache in KBytes
Syntax: CacheSize KBytes
Default: CacheSize 1000000
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

TheCACHESIZE directive sets the desired disk space usage of the cache, in KBytes (1024-byte units). This directive
does not put a hard limit on the size of the cache. The garbage collector will delete files until the usage is at or below
the settings. Always use a value that is lower than the available disk space.

CacheSize 5000000

CacheTimeMargin Directive

Description: The minimum time margin to cache a document
Syntax: CacheTimeMargin ?
Default: CacheTimeMargin ?
Context: server config, virtual host
Status: Experimental
Module: moddisk cache

More detail will be added here, when the function is implemented.

CacheTimeMargin X

! TheCACHETIMEMARGIN directive is currentlynot implemented.

402 CHAPTER 10. APACHE MODULES

10.24 Apache Module modecho

Description: A simple echo server to illustrate protocol modules
Status: Experimental
ModuleIdentifier: echomodule
SourceFile: modecho.c
Compatibility: Available in Apache 2.0 and later

Summary

This module provides an example protocol module to illustrate the concept. It provides a simple echo server. Telnet
to it and type stuff, and it will echo it.

Directives

• ProtocolEcho

ProtocolEcho Directive

Description: Turn the echo server on or off
Syntax: ProtocolEcho On|Off
Context: server config, virtual host
Status: Experimental
Module: modecho
Compatibility: ProtocolEcho is only available in 2.0 and later.

ThePROTOCOLECHO directive enables or disables the echo server.

Example
ProtocolEcho On

10.25. APACHE MODULE MOD ENV 403

10.25 Apache Module modenv

Description: Modifies the environment which is passed to CGI scripts and SSI pages
Status: Base
ModuleIdentifier: envmodule
SourceFile: modenv.c

Summary

This module allows for control of the environment that will be provided to CGI scripts and SSI pages. Environment
variables may be passed from the shell which invoked the httpd process. Alternatively, environment variables may be
set or unset within the configuration process.

Directives

• PassEnv

• SetEnv

• UnsetEnv

See also

• Environment Variables (p.61)

PassEnv Directive

Description: Passes environment variables from the shell
Syntax: PassEnv env-variable [env-variable] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modenv

Specifies one or more environment variables to pass to CGI scripts and SSI pages from the environment of the shell
which invoked the httpd process.

Example
PassEnv LD LIBRARY PATH

SetEnv Directive

Description: Sets environment variables
Syntax: SetEnv env-variable value
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modenv

Sets an environment variable, which is then passed on to CGI scripts and SSI pages.

Example
SetEnv SPECIAL PATH /foo/bin

404 CHAPTER 10. APACHE MODULES

UnsetEnv Directive

Description: Removes variables from the environment
Syntax: UnsetEnv env-variable [env-variable] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modenv

Removes one or more environment variables from those passed on to CGI scripts and SSI pages.

Example
UnsetEnv LD LIBRARY PATH

10.26. APACHE MODULE MOD EXAMPLE 405

10.26 Apache Module modexample

Description: Illustrates the Apache module API
Status: Experimental
ModuleIdentifier: examplemodule
SourceFile: modexample.c

Summary

! This document has not been updated to take into account changes made in the 2.0 version of
the Apache HTTP Server. Some of the information may still be relevant, but please use it with
care.

The files in thesrc/modules/example directory under the Apache distribution directory tree are provided
as an example to those that wish to write modules that use the Apache API.

The main file ismod example.c , which illustrates all the different callback mechanisms and call syntaxes. By no
means does an add-on module need to include routines for all of the callbacks - quite the contrary!

The example module is an actual working module. If you link it into your server, enable the" example-handler"
handler for a location, and then browse to that location, you will see a display of some of the tracing the example
module did as the various callbacks were made.

Directives

• Example

Compiling the example module

To include the example module in your server, follow the steps below:

1. Uncomment the " AddModule modules/example/modexample" line near the bottom of the
src/Configuration file. If there isn’t one, add it; it should look like this:

AddModule modules/example/mod example.o

2. Run thesrc/Configure script ("cdsrc;./Configure"). This will build the Makefile for the server
itself, and update thesrc/modules/Makefile for any additional modules you have requested from beneath
that subdirectory.

3. Make the server (run"make" in thesrc directory).

To add another module of your own:

1. mkdir src/modules/ mymodule

2. cp src/modules/example/* src/modules/ mymodule

3. Modify the files in the new directory.

4. Follow steps [1] through [3] above, with appropriate changes.

406 CHAPTER 10. APACHE MODULES

Using themod example Module

To activate the example module, include a block similar to the following in yoursrm.conf file:

<Location /example-info >
SetHandler example-handler

</Location >

As an alternative, you can put the following into a.htaccess (p. 288) file and then request the file" test.example"
from that location:

AddHandler example-handler .example

After reloading/restarting your server, you should be able to browse to this location and see the brief display mentioned
earlier.

Example Directive

Description: Demonstration directive to illustrate the Apache module API
Syntax: Example
Context: server config, virtual host, directory, .htaccess
Status: Experimental
Module: modexample

TheEXAMPLE directive just sets a demonstration flag which the example module’s content handler displays. It takes
no arguments. If you browse to an URL to which the example content-handler applies, you will get a display of the
routines within the module and how and in what order they were called to service the document request. The effect of
this directive one can observe under the point"Example directive declared here: YES/NO" .

10.27. APACHE MODULE MOD EXPIRES 407

10.27 Apache Module modexpires

Description: Generation ofExpires HTTP headers according to user-specified criteria
Status: Extension
ModuleIdentifier: expiresmodule
SourceFile: modexpires.c

Summary

This module controls the setting of theExpires HTTP header in server responses. The expiration date can set to be
relative to either the time the source file was last modified, or to the time of the client access.

TheExpires HTTP header is an instruction to the client about the document’s validity and persistence. If cached,
the document may be fetched from the cache rather than from the source until this time has passed. After that, the
cache copy is considered" expired" and invalid, and a new copy must be obtained from the source.

Directives

• ExpiresActive

• ExpiresByType

• ExpiresDefault

Alternate Interval Syntax

TheEXPIRESDEFAULT andEXPIRESBYTYPE directives can also be defined in a more readable syntax of the form:

ExpiresDefault " <base > [plus] {<num> <type >}*"

ExpiresByType type/encoding " <base > [plus] {<num> <type >}*"

where<base> is one of:

• access

• now (equivalent to ’access ’)

• modification

Theplus keyword is optional.<num> should be an integer value [acceptable toatoi()], and<type> is one of:

• years

• months

• weeks

• days

• hours

• minutes

• seconds

For example, any of the following directives can be used to make documents expire 1 month after being accessed, by
default:

408 CHAPTER 10. APACHE MODULES

ExpiresDefault "access plus 1 month"
ExpiresDefault "access plus 4 weeks"

ExpiresDefault "access plus 30 days"

The expiry time can be fine-tuned by adding several ’<num> <type>’ clauses:

ExpiresByType text/html "access plus 1 month 15 days 2 hours"

ExpiresByType image/gif "modification plus 5 hours 3 minutes"

Note that if you use a modification date based setting, the Expires header willnot be added to content that does not
come from a file on disk. This is due to the fact that there is no modification time for such content.

ExpiresActive Directive

Description: Enables generation ofExpires headers
Syntax: ExpiresActive On|Off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: modexpires

This directive enables or disables the generation of theExpires header for the document realm in question. (That
is, if found in an.htaccess file, for instance, it applies only to documents generated from that directory.) If set to
Off , no Expires header will be generated for any document in the realm (unless overridden at a lower level, such
as an.htaccess file overriding a server config file). If set toOn, the header will be added to served documents
according to the criteria defined by theEXPIRESBYTYPE andEXPIRESDEFAULT directives (q.v.).

Note that this directive does not guarantee that anExpires header will be generated. If the criteria aren’t met, no
header will be sent, and the effect will be as though this directive wasn’t even specified.

ExpiresByType Directive

Description: Value of theExpires header configured by MIME type
Syntax: ExpiresByType MIME-type <code >seconds
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: modexpires

This directive defines the value of theExpires header generated for documents of the specified type (e.g.,
text/html). The second argument sets the number of seconds that will be added to a base time to construct the
expiration date.

The base time is either the last modification time of the file, or the time of the client’s access to the document. Which
should be used is specified by the<code > field; Mmeans that the file’s last modification time should be used as the
base time, andA means the client’s access time should be used.

The difference in effect is subtle. IfMis used, all current copies of the document in all caches will expire at the same
time, which can be good for something like a weekly notice that’s always found at the same URL. IfA is used, the
date of expiration is different for each client; this can be good for image files that don’t change very often, particularly
for a set of related documents that all refer to the same images (i.e., the images will be accessed repeatedly within a
relatively short timespan).

10.27. APACHE MODULE MOD EXPIRES 409

Example:
enable expirations
ExpiresActive On
expire GIF images after a month in the client’s cache
ExpiresByType image/gif A2592000
HTML documents are good for a week from the
time they were changed

ExpiresByType text/html M604800

Note that this directive only has effect ifExpiresActive On has been specified. It overrides, for the specified
MIME type only, any expiration date set by theEXPIRESDEFAULT directive.

You can also specify the expiration time calculation using an alternate syntax, described earlier in this document.

ExpiresDefault Directive

Description: Default algorithm for calculating expiration time
Syntax: ExpiresDefault <code >seconds
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: modexpires

This directive sets the default algorithm for calculating the expiration time for all documents in the affected realm. It
can be overridden on a type-by-type basis by theEXPIRESBYTYPE directive. See the description of that directive for
details about the syntax of the argument, and the alternate syntax description as well.

410 CHAPTER 10. APACHE MODULES

10.28 Apache Module modext filter

Description: Pass the response body through an external program before delivery to the client
Status: Extension
ModuleIdentifier: extfilter module
SourceFile: modext filter.c

Summary

MOD EXT FILTER presents a simple and familiar programming model for filters (p.68) . With this module, a program
which reads from stdin and writes to stdout (i.e., a Unix-style filter command) can be a filter for Apache. This filtering
mechanism is much slower than using a filter which is specially written for the Apache API and runs inside of the
Apache server process, but it does have the following benefits:

• the programming model is much simpler

• any programming/scripting language can be used, provided that it allows the program to read from standard
input and write to standard output

• existing programs can be used unmodified as Apache filters

Even when the performance characteristics are not suitable for production use,MOD EXT FILTER can be used as a
prototype environment for filters.

Directives

• ExtFilterDefine

• ExtFilterOptions

See also

• Filters (p.68)

10.28. APACHE MODULE MOD EXT FILTER 411

Examples

Generating HTML from some other type of response

mod ext filter directive to define a filter
to HTML-ize text/c files using the external
program /usr/bin/enscript, with the type of
the result set to text/html
ExtFilterDefine c-to-html mode=output \

intype=text/c outtype=text/html \
cmd="/usr/bin/enscript --color -W html -Ec -o - -"

<Directory "/export/home/trawick/apacheinst/htdocs/c" >

core directive to cause the new filter to
be run on output
SetOutputFilter c-to-html

mod mime directive to set the type of .c
files to text/c
AddType text/c .c

mod ext filter directive to set the debug
level just high enough to see a log message
per request showing the configuration in force
ExtFilterOptions DebugLevel=1

</Directory >

Implementing a content encoding filter

Note: this gzip example is just for the purposes of illustration. Please refer toMOD DEFLATE for a practical imple-
mentation.

mod ext filter directive to define the external filter
ExtFilterDefine gzip mode=output cmd=/bin/gzip

<Location /gzipped >

core directive to cause the gzip filter to be
run on output
SetOutputFilter gzip

mod header directive to add
"Content-Encoding: gzip" header field
Header set Content-Encoding gzip

</Location >

412 CHAPTER 10. APACHE MODULES

Slowing down the server

mod ext filter directive to define a filter
which runs everything through cat; cat doesn’t
modify anything; it just introduces extra pathlength
and consumes more resources
ExtFilterDefine slowdown mode=output cmd=/bin/cat \

preservescontentlength

<Location / >

core directive to cause the slowdown filter to
be run several times on output
#
SetOutputFilter slowdown;slowdown;slowdown

</Location >

Using sed to replace text in the response

mod ext filter directive to define a filter which
replaces text in the response
#
ExtFilterDefine fixtext mode=output intype=text/html \

cmd="/bin/sed s/verdana/arial/g"

<Location / >

core directive to cause the fixtext filter to
be run on output
SetOutputFilter fixtext

</Location >

10.28. APACHE MODULE MOD EXT FILTER 413

Tracing another filter

Trace the data read and written by mod deflate
for a particular client (IP 192.168.1.31)
experiencing compression problems.
This filter will trace what goes into mod deflate.
ExtFilterDefine tracebefore \

cmd="/bin/tracefilter.pl /tmp/tracebefore" \
EnableEnv=trace this client

This filter will trace what goes after mod deflate.
Note that without the ftype parameter, the default
filter type of AP FTYPERESOURCE would cause the
filter to be placed *before* mod deflate in the filter
chain. Giving it a numeric value slightly higher than
AP FTYPECONTENTSET will ensure that it is placed
after mod deflate.
ExtFilterDefine traceafter \

cmd="/bin/tracefilter.pl /tmp/traceafter" \
EnableEnv=trace this client ftype=21

<Directory /usr/local/docs >

SetEnvIf Remote Addr 192.168.1.31 trace this client
SetOutputFilter tracebefore;deflate;traceafter

</Directory >

Here is the filter which traces the data:
#!/usr/local/bin/perl -w
use strict;

open(SAVE, " >$ARGV[0]")

or die "can’t open $ARGV[0]: $?";

while (<STDIN>) {
print SAVE $;
print $;

}
close(SAVE);

ExtFilterDefine Directive

Description: Define an external filter
Syntax: ExtFilterDefine filtername parameters
Context: server config
Status: Extension
Module: modext filter

TheEXTFILTERDEFINE directive defines the characteristics of an external filter, including the program to run and its
arguments.

filtername specifies the name of the filter being defined. This name can then be used in SetOutputFilter directives. It
must be unique among all registered filters.At the present time, no error is reported by the register-filter API, so a
problem with duplicate names isn’t reported to the user.

Subsequent parameters can appear in any order and define the external command to run and certain other characteris-
tics. The only required parameter iscmd=. These parameters are:

414 CHAPTER 10. APACHE MODULES

cmd=cmdline Thecmd= keyword allows you to specify the external command to run. If there are arguments after
the program name, the command line should be surrounded in quotation marks (e.g., cmd="/bin/mypgm
arg1 arg2" . Normal shell quoting is not necessary since the program is run directly, bypassing the shell.
Program arguments are blank-delimited. A backslash can be used to escape blanks which should be part of a
program argument. Any backslashes which are part of the argument must be escaped with backslash themselves.
In addition to the standard CGI environment variables, DOCUMENTURI, DOCUMENT PATH INFO, and
QUERY STRING UNESCAPED will also be set for the program.

mode=mode mode should beoutput for now (the default). In the future,mode=input will be used to specify a
filter for request bodies.

intype=imt This parameter specifies the internet media type (i.e., MIME type) of documents which should be
filtered. By default, all documents are filtered. Ifintype= is specified, the filter will be disabled for documents
of other types.

outtype=imt This parameter specifies the internet media type (i.e., MIME type) of filtered documents. It is useful
when the filter changes the internet media type as part of the filtering operation. By default, the internet media
type is unchanged.

PreservesContentLength ThePreservesContentLength keyword specifies that the filter preserves the
content length. This is not the default, as most filters change the content length. In the event that the filter
doesn’t modify the length, this keyword should be specified.

ftype=filtertype This parameter specifies the numeric value for filter type that the filter should be registered as.
The default value, APFTYPE RESOURCE, is sufficient in most cases. If the filter needs to operate at a different
point in the filter chain than resource filters, then this parameter will be necessary. See the APFTYPE foo
definitions in util filter.h for appropriate values.

disableenv=env This parameter specifies the name of an environment variable which, if set, will disable the filter.

enableenv=env This parameter specifies the name of an environment variable which must be set, or the filter will
be disabled.

ExtFilterOptions Directive

Description: ConfigureMOD EXT FILTER options
Syntax: ExtFilterOptions option [option] ...
Default: ExtFilterOptions DebugLevel=0 NoLogStderr
Context: directory
Status: Extension
Module: modext filter

TheEXTFILTEROPTIONSdirective specifies special processing options forMOD EXT FILTER. Option can be one of

DebugLevel=n The DebugLevel keyword allows you to specify the level of debug messages generated by
MOD EXT FILTER. By default, no debug messages are generated. This is equivalent toDebugLevel=0 .
With higher numbers, more debug messages are generated, and server performance will be degraded. The ac-
tual meanings of the numeric values are described with the definitions of the DBGLVLconstants near the
beginning ofmod ext filter.c .

Note: The core directiveLOGLEVEL should be used to cause debug messages to be stored in the Apache error
log.

LogStderr | NoLogStderr TheLogStderr keyword specifies that messages written to standard error by the
external filter program will be saved in the Apache error log.NoLogStderr disables this feature.

10.28. APACHE MODULE MOD EXT FILTER 415

Example
ExtFilterOptions LogStderr DebugLevel=0

Messages written to the filter’s standard error will be stored in the Apache error log. No debug messages will be
generated byMOD EXT FILTER.

416 CHAPTER 10. APACHE MODULES

10.29 Apache Module modfile cache

Description: Caches a static list of files in memory
Status: Experimental
ModuleIdentifier: filecachemodule
SourceFile: modfile cache.c

Summary

! This module should be used with care. You can easily create a broken site using
MOD FILE CACHE, so read this document carefully.

Caching frequently requested files that change very infrequently is a technique for reducing server load.
MOD FILE CACHE provides two techniques for caching frequently requestedstatic files. Through configuration di-
rectives, you can directMOD FILE CACHE to either open thenmmap() a file, or to pre-open a file and save the file’s
openfile handle. Both techniques reduce server load when processing requests for these files by doing part of the work
(specifically, the file I/O) for serving the file when the server is started rather than during each request.

Notice: You cannot use this for speeding up CGI programs or other files which are served by special content handlers.
It can only be used for regular files which are usually served by the Apache core content handler.

This module is an extension of and borrows heavily from themod mmapstatic module in Apache 1.3.

Directives

• CacheFile

• MMapFile

Using mod file cache

MOD FILE CACHE caches a list of statically configured files viaMM APFILE or CACHEFILE directives in the main
server configuration.

Not all platforms support both directives. For example, Apache on Windows does not currently support theMM AP-
STATIC directive, while other platforms, like AIX, support both. You will receive an error message in the server error
log if you attempt to use an unsupported directive. If given an unsupported directive, the server will start but the file
will not be cached. On platforms that support both directives, you should experiment with both to see which works
best for you.

MMapFile Directive

The MM APFILE directive of MOD FILE CACHE maps a list of statically configured files into memory through the
system callmmap() . This system call is available on most modern Unix derivates, but not on all. There are sometimes
system-specific limits on the size and number of files that can bemmap() ed, experimentation is probably the easiest
way to find out.

This mmap() ing is done once at server start or restart, only. So whenever one of the mapped files changes on
the filesystem youhaveto restart the server (see the Stopping and Restarting (p.17) documentation). To reiterate
that point: if the files are modifiedin placewithout restarting the server you may end up serving requests that are
completely bogus. You should update files by unlinking the old copy and putting a new copy in place. Most tools such
asrdist andmv do this. The reason why this modules doesn’t take care of changes to the files is that this check
would need an extrastat() every time which is a waste and against the intent of I/O reduction.

10.29. APACHE MODULE MOD FILE CACHE 417

CacheFile Directive

The CACHEFILE directive ofMOD FILE CACHE opens an activehandleor file descriptorto the file (or files) listed
in the configuration directive and places these open file handles in the cache. When the file is requested, the server
retrieves the handle from the cache and passes it to thesendfile() (or TransmitFile() on Windows), socket
API.

This file handle caching is done once at server start or restart, only. So whenever one of the cached files changes
on the filesystem youhaveto restart the server (see the Stopping and Restarting (p.17) documentation). To reiterate
that point: if the files are modifiedin placewithout restarting the server you may end up serving requests that are
completely bogus. You should update files by unlinking the old copy and putting a new copy in place. Most tools such
asrdist andmvdo this.

=⇒Note
Don’t bother asking for a for a directive which recursively caches all the files in a directory.
Try this instead... See theINCLUDE directive, and consider this command:

find /www/htdocs -type f -print \
| sed -e ’s/.*/mmapfile &/’ > /www/conf/mmap.conf

CacheFile Directive

Description: Cache a list of file handles at startup time
Syntax: CacheFile file-path [file-path] ...
Context: server config
Status: Experimental
Module: modfile cache

The CACHEFILE directive opens handles to one or more files (given as whitespace separated arguments) and places
these handles into the cache at server startup time. Handles to cached files are automatically closed on a server
shutdown. When the files have changed on the filesystem, the server should be restarted to to re-cache them.

Be careful with the file-path arguments: They have to literally match the filesystem path Apache’s URL-to-filename
translation handlers create. We cannot compare inodes or other stuff to match paths through symbolic linksetc.
because that again would cost extrastat() system calls which is not acceptable. This module may or may not work
with filenames rewritten byMOD ALIAS or MOD REWRITE.

Example
CacheFile /usr/local/apache/htdocs/index.html

MMapFile Directive

Description: Map a list of files into memory at startup time
Syntax: MMapFile file-path [file-path] ...
Context: server config
Status: Experimental
Module: modfile cache

The MM APFILE directive maps one or more files (given as whitespace separated arguments) into memory at server
startup time. They are automatically unmapped on a server shutdown. When the files have changed on the filesystem
at least aHUPor USR1signal should be send to the server to re-mmap() them.

418 CHAPTER 10. APACHE MODULES

Be careful with the file-path arguments: They have to literally match the filesystem path Apache’s URL-to-filename
translation handlers create. We cannot compare inodes or other stuff to match paths through symbolic linksetc.
because that again would cost extrastat() system calls which is not acceptable. This module may or may not work
with filenames rewritten byMOD ALIAS or MOD REWRITE.

Example
MMapFile /usr/local/apache/htdocs/index.html

10.30. APACHE MODULE MOD HEADERS 419

10.30 Apache Module modheaders

Description: Customization of HTTP request and response headers
Status: Extension
ModuleIdentifier: headersmodule
SourceFile: modheaders.c
Compatibility: REQUESTHEADER is available only in Apache 2.0

Summary

This module provides directives to control and modify HTTP request and response headers. Headers can be merged,
replaced or removed.

Directives

• Header

• RequestHeader

Order of Processing

The directives provided byMOD HEADERScan occur almost anywhere within the server configuration. They are valid
in the main server config and virtual host sections, inside<DIRECTORY>, <LOCATION> and<FILES> sections,
and within.htaccess files.

The directives are processed in the following order:

1. main server

2. virtual host

3. <DIRECTORY> sections and.htaccess

4. <FILES>

5. <LOCATION>

Order is important. These two headers have a different effect if reversed:

RequestHeader append MirrorID "mirror 12"

RequestHeader unset MirrorID

This way round, theMirrorID header is not set. If reversed, the MirrorID header is set to" mirror 12" .

Examples

1. Copy all request headers that begin with" TS" to the response headers:

Header echo ˆTS

420 CHAPTER 10. APACHE MODULES

2. Add a header,MyHeader , to the response including a timestamp for when the request was received and how
long it took to begin serving the request. This header can be used by the client to intuit load on the server or in
isolating bottlenecks between the client and the server.

Header add MyHeader "%D %t"

results in this header being added to the response:

MyHeader: D=3775428 t=991424704447256

3. Say hello to Joe

Header add MyHeader "Hello Joe. It took %D microseconds \
for Apache to serve this request."

results in this header being added to the response:

MyHeader: Hello Joe. It took D=3775428 microseconds for Apache to

serve this request.

4. Conditionally sendMyHeader on the response if and only if header" MyRequestHeader" is present on the
request. This is useful for constructing headers in response to some client stimulus. Note that this example
requires the services of theMOD SETENVIF module.

SetEnvIf MyRequestHeader value HAVE MyRequestHeader

Header add MyHeader "%D %t mytext" env=HAVE MyRequestHeader

If the headerMyRequestHeader: value is present on the HTTP request, the response will contain the
following header:

MyHeader: D=3775428 t=991424704447256 mytext

Header Directive

Description: Configure HTTP response headers
Syntax: Header set|append|add|unset|echo header [value

[env=[!]variable]]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modheaders

This directive can replace, merge or remove HTTP response headers. The header is modified just after the content
handler and output filters are run, allowing outgoing headers to be modified. The action it performs is determined by
the first argument. This can be one of the following values:

set The response header is set, replacing any previous header with this name. The value may be a format string.

10.30. APACHE MODULE MOD HEADERS 421

append The response header is appended to any existing header of the same name. When a new value is merged
onto an existing header it is separated from the existing header with a comma. This is the HTTP standard way
of giving a header multiple values.

add The response header is added to the existing set of headers, even if this header already exists. This can result
in two (or more) headers having the same name. This can lead to unforeseen consequences, and in general
" append" should be used instead.

unset The response header of this name is removed, if it exists. If there are multiple headers of the same name, all
will be removed.

echo Request headers with this name are echoed back in the response headers. header may be a regular expression.

This argument is followed by a header name, which can include the final colon, but it is not required. Case is ignored
for set , append , add andunset . The header name forecho is case sensitive and may be a regular expression.

Foradd , append andset a value is specified as the third argument. If value contains spaces, it should be surrounded
by doublequotes. value may be a character string, a string containing format specifiers or a combination of both. The
following format specifiers are supported in value:

%t The time the request was received in Universal Coordinated
Time since the epoch (Jan. 1, 1970) measured in microsec-
onds. The value is preceded byt= .

%D The time from when the request was received to the time the
headers are sent on the wire. This is a measure of the duration
of the request. The value is preceded byD=.

%{FOOBAR}e The contents of the environment variable (p.61) FOOBAR.

When theHEADER directive is used with theadd , append , or set argument, a fourth argument may be used to
specify conditions under which the action will be taken. If the environment variable (p.61) specified in theenv=...
argument exists (or if the environment variable does not exist andenv=!... is specified) then the action specified
by theHEADER directive will take effect. Otherwise, the directive will have no effect on the request.

TheHEADER directives are processed just before the response is sent to the network. These means that it is possible
to set and/or override most headers, except for those headers added by the header filter.

RequestHeader Directive

Description: Configure HTTP request headers
Syntax: RequestHeader set|append|add|unset header [value]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modheaders

This directive can replace, merge or remove HTTP request headers. The header is modified just before the content
handler is run, allowing incoming headers to be modified. The action it performs is determined by the first argument.
This can be one of the following values:

set The request header is set, replacing any previous header with this name

append The request header is appended to any existing header of the same name. When a new value is merged onto
an existing header it is separated from the existing header with a comma. This is the HTTP standard way of
giving a header multiple values.

add The request header is added to the existing set of headers, even if this header already exists. This can result in two
(or more) headers having the same name. This can lead to unforeseen consequences, and in generalappend
should be used instead.

422 CHAPTER 10. APACHE MODULES

unset The request header of this name is removed, if it exists. If there are multiple headers of the same name, all
will be removed.

This argument is followed by a header name, which can include the final colon, but it is not required. Case is ignored.
For add , append andset a value is given as the third argument. If value contains spaces, it should be surrounded
by double quotes. For unset, no value should be given.

The REQUESTHEADER directive is processed just before the request is run by its handler in the fixup phase. This
should allow headers generated by the browser, or by Apache input filters to be overridden or modified.

10.31. APACHE MODULE MOD IMAP 423

10.31 Apache Module modimap

Description: Server-side imagemap processing
Status: Base
ModuleIdentifier: imapmodule
SourceFile: modimap.c

Summary

This module processes.map files, thereby replacing the functionality of theimagemap CGI program. Any directory
or document type configured to use the handlerimap-file (using eitherADDHANDLER or SETHANDLER) will be
processed by this module.

The following directive will activate files ending with.map as imagemap files:

AddHandler imap-file map

Note that the following is still supported:

AddType application/x-httpd-imap map

However, we are trying to phase out" magic MIME types" so we are deprecating this method.

Directives

• ImapBase

• ImapDefault

• ImapMenu

New Features

The imagemap module adds some new features that were not possible with previously distributed imagemap programs.

• URL references relative to the Referer: information.

• Default<base > assignment through a new map directivebase .

• No need forimagemap.conf file.

• Point references.

• Configurable generation of imagemap menus.

Imagemap File

The lines in the imagemap files can have one of several formats:

directive value [x,y ...]
directive value "Menu text" [x,y ...]

directive value x,y ... "Menu text"

The directive is one ofbase , default , poly , circle , rect , or point . The value is an absolute or relative
URL, or one of the special values listed below. The coordinates arex,y pairs separated by whitespace. The quoted
text is used as the text of the link if a imagemap menu is generated. Lines beginning with ’#’ are comments.

424 CHAPTER 10. APACHE MODULES

Imagemap File Directives

There are six directives allowed in the imagemap file. The directives can come in any order, but are processed in the
order they are found in the imagemap file.

base Directive Has the effect of<base href="value" > . The non-absolute URLs of the map-file are
taken relative to this value. Thebase directive overridesIMAPBASE as set in a.htaccess file or in
the server configuration files. In the absence of anIMAPBASE configuration directive,base defaults to
http://server name/ .

base uri is synonymous withbase . Note that a trailing slash on the URL is significant.

default Directive The action taken if the coordinates given do not fit any of thepoly , circle or rect di-
rectives, and there are nopoint directives. Defaults tonocontent in the absence of anIMAPDEFAULT

configuration setting, causing a status code of204 No Content to be returned. The client should keep the
same page displayed.

poly Directive Takes three to one-hundred points, and is obeyed if the user selected coordinates fall within the
polygon defined by these points.

circle Takes the center coordinates of a circle and a point on the circle. Is obeyed if the user selected point is with
the circle.

rect Directive Takes the coordinates of two opposing corners of a rectangle. Obeyed if the point selected is within
this rectangle.

point Directive Takes a single point. The point directive closest to the user selected point is obeyed if no other
directives are satisfied. Note thatdefault will not be followed if apoint directive is present and valid
coordinates are given.

Values

The values for each of the directives can any of the following:

a URL The URL can be relative or absolute URL. Relative URLs can contain ’..’ syntax and will be resolved relative
to thebase value.

base itself will not resolved according to the current value. A statementbase mailto: will work properly,
though.

map Equivalent to the URL of the imagemap file itself. No coordinates are sent with this, so a menu will be generated
unlessIMAPMENU is set tonone .

menu Synonymous withmap.

referer Equivalent to the URL of the referring document. Defaults tohttp://servername/ if no Referer:
header was present.

nocontent Sends a status code of204 No Content , telling the client to keep the same page displayed. Valid
for all butbase .

error Fails with a500 Server Error . Valid for all butbase , but sort of silly for anything butdefault .

Coordinates

0,0 200,200 A coordinate consists of an x and a y value separated by a comma. The coordinates are separated
from each other by whitespace. To accommodate the way Lynx handles imagemaps, should a user select the
coordinate0,0 , it is as if no coordinate had been selected.

10.31. APACHE MODULE MOD IMAP 425

Quoted Text

"Menu Text" After the value or after the coordinates, the line optionally may contain text within double quotes.
This string is used as the text for the link if a menu is generated:

Menu text

If no quoted text is present, the name of the link will be used as the text:

http://foo.com

If you want to use double quotes within this text, you have to write them as" .

Example Mapfile

#Comments are printed in a ’formatted’ or ’semiformatted’ menu.
#And can contain html tags. <hr >
base referer
poly map "Could I have a menu, please?" 0,0 0,10 10,10 10,0
rect .. 0,0 77,27 "the directory of the referer"
circle http://www.inetnebr.com/lincoln/feedback/ 195,0 305,27
rect another file "in same directory as referer" 306,0 419,27
point http://www.zyzzyva.com/ 100,100
point http://www.tripod.com/ 200,200

rect mailto:nate@tripod.com 100,150 200,0 "Bugs?"

Referencing your mapfile

HTML example

XHTML example

ImapBase Directive

Description: Defaultbase for imagemap files
Syntax: ImapBase map|referer|URL
Default: ImapBase http://servername/
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modimap

426 CHAPTER 10. APACHE MODULES

TheIMAPBASE directive sets the defaultbase used in the imagemap files. Its value is overridden by abase directive
within the imagemap file. If not present, thebase defaults tohttp://servername/ .

See also

• USECANONICAL NAME

ImapDefault Directive

Description: Default action when an imagemap is called with coordinates that are not explicitly mapped
Syntax: ImapDefault error|nocontent|map|referer|URL
Default: ImapDefault nocontent
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modimap

The IMAPDEFAULT directive sets the defaultdefault used in the imagemap files. Its value is overridden by a
default directive within the imagemap file. If not present, thedefault action isnocontent , which means that
a204 No Content is sent to the client. In this case, the client should continue to display the original page.

ImapMenu Directive

Description: Action if no coordinates are given when calling an imagemap
Syntax: ImapMenu none|formatted|semiformatted|unformatted
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: modimap

TheIMAPMENU directive determines the action taken if an imagemap file is called without valid coordinates.

none If ImapMenu isnone , no menu is generated, and thedefault action is performed.

formatted A formatted menu is the simplest menu. Comments in the imagemap file are ignored. A level one
header is printed, then an hrule, then the links each on a separate line. The menu has a consistent, plain look
close to that of a directory listing.

semiformatted In the semiformatted menu, comments are printed where they occur in the imagemap file.
Blank lines are turned into HTML breaks. No header or hrule is printed, but otherwise the menu is the same as
a formatted menu.

unformatted Comments are printed, blank lines are ignored. Nothing is printed that does not appear in the im-
agemap file. All breaks and headers must be included as comments in the imagemap file. This gives you the
most flexibility over the appearance of your menus, but requires you to treat your map files as HTML instead of
plaintext.

10.32. APACHE MODULE MOD INCLUDE 427

10.32 Apache Module modinclude

Description: Server-parsed html documents (Server Side Includes)
Status: Base
ModuleIdentifier: includemodule
SourceFile: modinclude.c
Compatibility: Implemented as an output filter since Apache 2.0

Summary

This module provides a filter which will process files before they are sent to the client. The processing is controlled by
specially formatted SGML comments, referred to as elements. These elements allow conditional text, the inclusion of
other files or programs, as well as the setting and printing of environment variables.

Directives

• SSIEndTag

• SSIErrorMsg

• SSIStartTag

• SSITimeFormat

• SSIUndefinedEcho

• XBitHack

See also

• OPTIONS

• ACCEPTPATH INFO

• International Customized Server Error Messages (p.261)

• Filters (p.68)

• SSI Tutorial (p.195)

Enabling Server-Side Includes

Server Side Includes are implemented by theINCLUDESfilter (p. 68) . If documents containing server-side include
directives are given the extension .shtml, the following directives will make Apache parse them and assign the resulting
document the mime type oftext/html :

AddType text/html .shtml

AddOutputFilter INCLUDES .shtml

The following directive must be given for the directories containing the shtml files (typically in a<DIRECTORY>
section, but this directive is also valid in.htaccess files if ALLOWOVERRIDE Options is set):

Options +Includes

For backwards compatibility, theserver-parsed handler (p.66) also activates the INCLUDES filter. As well,
Apache will activate the INCLUDES filter for any document with mime typetext/x-server-parsed-html or
text/x-server-parsed-html3 (and the resulting output will have the mime typetext/html).

For more information, see our Tutorial on Server Side Includes (p.195) .

428 CHAPTER 10. APACHE MODULES

PATH INFO with Server Side Includes

Files processed for server-side includes no longer accept requests withPATHINFO (trailing pathname information)
by default. You can use theACCEPTPATH INFO directive to configure the server to accept requests withPATHINFO.

Basic Elements

The document is parsed as an HTML document, with special commands embedded as SGML comments. A command
has the syntax:

<!--#element attribute=value attribute=value ... -- >

The value will often be enclosed in double quotes, but single quotes (’) and backticks (‘) are also possible. Many
commands only allow a single attribute-value pair. Note that the comment terminator (-- >) should be preceded by
whitespace to ensure that it isn’t considered part of an SSI token. The allowed elements are listed in the following
table:

Element Description
config configure output formats
echo print variables
exec execute external programs
fsize print size of a file
flastmod print last modification time of a file
include include a file
printenv print all available variables
set set a value of a variable

SSI elements may be defined by modules other thanMOD INCLUDE. In fact, theexec element is provided by
MOD CGI, and will only be available if this module is loaded.

The config Element

This command controls various aspects of the parsing. The valid attributes are:

errmsg The value is a message that is sent back to the client if an error occurs while parsing the document.

sizefmt The value sets the format to be used which displaying the size of a file. Valid values arebytes for a count
in bytes, orabbrev for a count in Kb or Mb as appropriate, for example a size of 1024 bytes will be printed as
" 1K" .

timefmt The value is a string to be used by thestrftime(3) library routine when printing dates.

The echo Element

This command prints one of the include variables, defined below. If the variable is unset, the result is determined by
theSSIUNDEFINEDECHO directive. Any dates printed are subject to the currently configuredtimefmt .

Attributes:

var The value is the name of the variable to print.

10.32. APACHE MODULE MOD INCLUDE 429

encoding Specifies how Apache should encode special characters contained in the variable before outputting them.
If set tonone , no encoding will be done. If set tourl , then URL encoding (also known as %-encoding; this is
appropriate for use within URLs in links, etc.) will be performed. At the start of anecho element, the default is
set toentity , resulting in entity encoding (which is appropriate in the context of a block-level HTML element,
e.g. a paragraph of text). This can be changed by adding anencoding attribute, which will remain in effect
until the nextencoding attribute is encountered or the element ends, whichever comes first.

Theencoding attribute mustprecedethe correspondingvar attribute to be effective, and only special char-
acters as defined in the ISO-8859-1 character encoding will be encoded. This encoding process may not have
the desired result if a different character encoding is in use.

! In order to avoid cross-site scripting issues, you shouldalwaysencode user supplied data.

The exec Element

Theexec command executes a given shell command or CGI script. It requiresMOD CGI to be present in the server.
If OPTIONS IncludesNOEXEC is set, this command is completely disabled. The valid attributes are:

cgi The value specifies a (%-encoded) URL-path to the CGI script. If the path does not begin with a slash (/), then it
is taken to be relative to the current document. The document referenced by this path is invoked as a CGI script,
even if the server would not normally recognize it as such. However, the directory containing the script must be
enabled for CGI scripts (withSCRIPTALIAS or OPTIONSExecCGI).

The CGI script is given thePATHINFO and query string (QUERYSTRING) of the original request from the
client; thesecannotbe specified in the URL path. The include variables will be available to the script in addition
to the standard CGI (p.379) environment.

Example
<!--#exec cgi="/cgi-bin/example.cgi" -- >

If the script returns aLocation: header instead of output, then this will be translated into an HTML anchor.

The include virtual element should be used in preference toexec cgi . In particular, if you need to
pass additional arguments to a CGI program, using the query string, this cannot be done withexec cgi , but
can be done withinclude virtual , as shown here:

<!--#include virtual="/cgi-bin/example.cgi?argument=value" -- >

cmd The server will execute the given string using/bin/sh . The include variables are available to the command,
in addition to the usual set of CGI variables.

The use of#include virtual is almost always prefered to using either#exec cgi or #exec cmd . The
former (#include virtual) uses the standard Apache sub-request mechanism to include files or scripts. It
is much better tested and maintained.

In addition, on some platforms, like Win32, and on unix when using suexec (p.69) , you cannot pass arguments
to a command in anexec directive, or otherwise include spaces in the command. Thus, while the following
will work under a non-suexec configuration on unix, it will not produce the desired result under Win32, or when
running suexec:

<!--#exec cmd="perl /path/to/perlscript arg1 arg2" -- >

430 CHAPTER 10. APACHE MODULES

The fsize Element

This command prints the size of the specified file, subject to thesizefmt format specification. Attributes:

file The value is a path relative to the directory containing the current document being parsed.

virtual The value is a (%-encoded) URL-path. If it does not begin with a slash (/) then it is taken to be relative to
the current document. Note, that this doesnot print the size of any CGI output, but the size of the CGI script
itself.

The flastmod Element

This command prints the last modification date of the specified file, subject to thetimefmt format specification. The
attributes are the same as for thefsize command.

The include Element

This command inserts the text of another document or file into the parsed file. Any included file is subject to the usual
access control. If the directory containing the parsed file has Options (p.288) IncludesNOEXEC set, then only
documents with a text MIME type (text/plain , text/html etc.) will be included. Otherwise CGI scripts are
invoked as normal using the complete URL given in the command, including any query string.

An attribute defines the location of the document; the inclusion is done for each attribute given to the include command.
The valid attributes are:

file The value is a path relative to the directory containing the current document being parsed. It cannot contain
../ , nor can it be an absolute path. Therefore, you cannot include files that are outside of the document root,
or above the current document in the directory structure. Thevirtual attribute should always be used in
preference to this one.

virtual The value is a (%-encoded) URL-path. The URL cannot contain a scheme or hostname, only a path and an
optional query string. If it does not begin with a slash (/) then it is taken to be relative to the current document.

A URL is constructed from the attribute, and the output the server would return if the URL were accessed by
the client is included in the parsed output. Thus included files can be nested.

If the specified URL is a CGI program, the program will be executed and its output inserted in place of the
directive in the parsed file. You may include a query string in a CGI url:

<!--#include virtual="/cgi-bin/example.cgi?argument=value" -- >

include virtual should be used in preference toexec cgi to include the output of CGI programs into
an HTML document.

The printenv Element

This prints out a listing of all existing variables and their values. Special characters are entity encoded (see theecho
element for details) before being output. There are no attributes.

Example
<!--#printenv -- >

10.32. APACHE MODULE MOD INCLUDE 431

The set Element

This sets the value of a variable. Attributes:

var The name of the variable to set.

value The value to give a variable.

Example
<!--#set var="category" value="help" -- >

Include Variables

In addition to the variables in the standard CGI environment, these are available for theecho command, forif and
elif , and to any program invoked by the document.

DATEGMTThe current date in Greenwich Mean Time.

DATELOCAL The current date in the local time zone.

DOCUMENTNAMEThe filename (excluding directories) of the document requested by the user.

DOCUMENTURI The (%-decoded) URL path of the document requested by the user. Note that in the case of nested
include files, this isnot the URL for the current document.

LAST MODIFIED The last modification date of the document requested by the user.

QUERYSTRING UNESCAPEDIf a query string is present, this variable contains the (%-decoded) query string, which
is escapedfor shell usage (special characters like& etc. are preceded by backslashes).

Variable Substitution

Variable substitution is done within quoted strings in most cases where they may reasonably occur as an argument
to an SSI directive. This includes theconfig , exec , flastmod , fsize , include , echo , andset directives,
as well as the arguments to conditional operators. You can insert a literal dollar sign into the string using backslash
quoting:

<!--#if expr="$a = \$test" -- >

If a variable reference needs to be substituted in the middle of a character sequence that might otherwise be considered
a valid identifier in its own right, it can be disambiguated by enclosing the reference in braces,a la shell substitution:

<!--#set var="Zed" value="$ {REMOTEHOST} ${REQUESTMETHOD}" -- >

This will result in theZed variable being set to"X Y" if REMOTEHOSTis "X" andREQUESTMETHODis "Y" .

The below example will print" in foo" if the DOCUMENTURI is /foo/file.html , " in bar" if it is
/bar/file.html and" in neither" otherwise:

432 CHAPTER 10. APACHE MODULES

<!--#if expr=’"$DOCUMENT URI" = "/foo/file.html"’ -- >

in foo

<!--#elif expr=’"$DOCUMENT URI" = "/bar/file.html"’ -- >

in bar

<!--#else -- >

in neither

<!--#endif -- >

Flow Control Elements

The basic flow control elements are:

<!--#if expr="test condition" -- >
<!--#elif expr="test condition" -- >
<!--#else -- >

<!--#endif -- >

Theif element works like an if statement in a programming language. The test condition is evaluated and if the result
is true, then the text until the nextelif , else or endif element is included in the output stream.

Theelif or else statements are be used to put text into the output stream if the original testcondition was false.
These elements are optional.

Theendif element ends theif element and is required.

test condition is one of the following:

string true if string is not empty

string1 = string2string1 != string2 Compare string1 with string2. If string2 has the form
/string2/ then it is treated as a regular expression. Regular expressions are implemented by the PCRE15

engine and have the same syntax as those in perl 516.

If you are matching positive (=), you can capture grouped parts of the regular expression. The captured parts
are stored in the special variables$1 .. $9 .

Example
<!--#if expr="$QUERY STRING = /ˆsid=([a-zA-Z0-9]+)/" -- >

<!--#set var="session" value="$1" -- >

<!--#endif -- >

string1 < string2string1 <= string2string1 > string2string1 >= string2 Compare
string1 with string2. Note, that strings are comparedliterally (usingstrcmp(3)). Therefore the string" 100"
is less than" 20" .

(test condition) true if testcondition is true

! test condition true if testcondition is false

test condition1 && test condition2 true if both testcondition1 and testcondition2 are true
15http://www.pcre.org
16http://www.perl.com

http://www.pcre.org
http://www.perl.com

10.32. APACHE MODULE MOD INCLUDE 433

test condition1 || test condition2 true if either testcondition1 or testcondition2 is true

"=" and"!=" bind more tightly than"&&" and"||" . "!" binds most tightly. Thus, the following are equivalent:

<!--#if expr="$a = test1 && $b = test2" -- >

<!--#if expr="($a = test1) && ($b = test2)" -- >

Anything that’s not recognized as a variable or an operator is treated as a string. Strings can also be quoted:
’string’ . Unquoted strings can’t contain whitespace (blanks and tabs) because it is used to separate tokens such as
variables. If multiple strings are found in a row, they are concatenated using blanks. So,

string1string2 results in string1string2

and

’string1string2’ results in string1string2.

SSIEndTag Directive

Description: String that ends an include element
Syntax: SSIEndTag tag
Default: SSIEndTag "-- >"
Context: server config, virtual host
Status: Base
Module: modinclude
Compatibility: Available in version 2.0.30 and later.

This directive changes the string thatMOD INCLUDE looks for to mark the end of an include element.

Example
SSIEndTag "% >"

See also

• SSISTARTTAG

SSIErrorMsg Directive

Description: Error message displayed when there is an SSI error
Syntax: SSIErrorMsg message
Default: SSIErrorMsg "[an error occurred while processing this

directive]"
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Base
Module: modinclude
Compatibility: Available in version 2.0.30 and later.

The SSIERRORMSG directive changes the error message displayed whenMOD INCLUDE encounters an error. For
production servers you may consider changing the default error message to" <!-- Error -- >" so that the mes-
sage is not presented to the user.

This directive has the same effect as the<!--#config errmsg=message -- > element.

434 CHAPTER 10. APACHE MODULES

Example
SSIErrorMsg " <!-- Error -- >"

SSIStartTag Directive

Description: String that starts an include element
Syntax: SSIStartTag tag
Default: SSIStartTag " <!--#"
Context: server config, virtual host
Status: Base
Module: modinclude
Compatibility: Available in version 2.0.30 and later.

This directive changes the string thatMOD INCLUDE looks for to mark an include element to process.

You may want to use this option if you have 2 servers parsing the output of a file each processing different commands
(possibly at different times).

Example
SSIStartTag " <%"

The example given above, in conjunction with a matchingSSIENDTAG, will allow you to use SSI directives as shown
in the example below:

SSI directives with alternate start and end tags
<%printenv % >

See also

• SSIENDTAG

SSITimeFormat Directive

Description: Configures the format in which date strings are displayed
Syntax: SSITimeFormat formatstring
Default: SSITimeFormat "%A, %d-%b-%Y %H:%M:%S %Z"
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Base
Module: modinclude
Compatibility: Available in version 2.0.30 and later.

This directive changes the format in which date strings are displayed when echoingDATEenvironment variables. The
formatstring is as instrftime(3) from the C standard library.

This directive has the same effect as the<!--#config timefmt=formatstring -- > element.

Example
SSITimeFormat "%R, %B %d, %Y"

The above directive would cause times to be displayed in the format" 22:26, June 14, 2002" .

10.32. APACHE MODULE MOD INCLUDE 435

SSIUndefinedEcho Directive

Description: String displayed when an unset variable is echoed
Syntax: SSIUndefinedEcho string
Default: SSIUndefinedEcho "(none)"
Context: server config, virtual host
Status: Base
Module: modinclude
Compatibility: Available in version 2.0.34 and later.

This directive changes the string thatMOD INCLUDE displays when a variable is not set and" echoed" .

Example
SSIUndefinedEcho " <!-- undef -- >"

XBitHack Directive

Description: Parse SSI directives in files with the execute bit set
Syntax: XBitHack on|off|full
Default: XBitHack off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: modinclude

TheXB ITHACK directive controls the parsing of ordinary html documents. This directive only affects files associated
with the MIME typetext/html . XB ITHACK can take on the following values:

off No special treatment of executable files.

on Any text/html file that has the user-execute bit set will be treated as a server-parsed html document.

full As for on but also test the group-execute bit. If it is set, then set theLast-modified date of the returned
file to be the last modified time of the file. If it is not set, then no last-modified date is sent. Setting this bit
allows clients and proxies to cache the result of the request.

=⇒Note
You would not want to use the full option, unless you assure the group-execute bit is unset
for every SSI script which might#include a CGI or otherwise produces different output on
each hit (or could potentially change on subsequent requests).

436 CHAPTER 10. APACHE MODULES

10.33 Apache Module modinfo

Description: Provides a comprehensive overview of the server configuration
Status: Extension
ModuleIdentifier: infomodule
SourceFile: modinfo.c

Summary

To configureMOD INFO, add the following to yourhttpd.conf file.

<Location /server-info >

SetHandler server-info

</Location >

You may wish to add a<L IMIT > clause inside the<LOCATION> directive to limit access to your server configuration
information.

Once configured, the server information is obtained by accessinghttp://your.host.dom/server-info

=⇒Note that the configuration files are read by the module at run-time, and therefore the display
may not reflect the running server’s active configuration if the files have been changed since
the server was last reloaded. Also, the configuration files must be readable by the user as which
the server is running (see theUSERdirective), or else the directive settings will not be listed.
It should also be noted that ifMOD INFO is compiled into the server, its handler capability is
available inall configuration files, including per-directory files (e.g., .htaccess). This may
have security-related ramifications for your site.
In particular, this module can leak sensitive information from the configuration directives of
other Apache modules such as system paths, usernames/passwords, database names, etc. Due
to the way this module works there is no way to block information from it. Therefore, this
module shouldonly be used in a controlled environment and always with caution.

Directives

• AddModuleInfo

AddModuleInfo Directive

Description: Adds additional information to the module information displayed by the server-info handler
Syntax: AddModuleInfo module-name string
Context: server config, virtual host
Status: Extension
Module: modinfo
Compatibility: Apache 1.3 and above

This allows the content of string to be shown as HTML interpreted,Additional Information for the module module-
name. Example:

AddModuleInfo mod auth.c ’See <a \
href="http://www.apache.org/docs-2.0/mod/mod auth.html" >\
http://www.apache.org/docs-2.0/mod/mod auth.html ’

10.34. APACHE MODULE MOD ISAPI 437

10.34 Apache Module modisapi

Description: ISAPI Extensions within Apache for Windows
Status: Base
ModuleIdentifier: isapimodule
SourceFile: modisapi.c
Compatibility: Win32 only

Summary

This module implements the Internet Server extension API. It allows Internet Server extensions (e.g. ISAPI .dll
modules) to be served by Apache for Windows, subject to the noted restrictions.

ISAPI extension modules (.dll files) are written by third parties. The Apache Group does not author these modules, so
we provide no support for them. Please contact the ISAPI’s author directly if you are experiencing problems running
their ISAPI extension.Pleasedo notpost such problems to Apache’s lists or bug reporting pages.

Directives

• ISAPIAppendLogToErrors

• ISAPIAppendLogToQuery

• ISAPICacheFile

• ISAPIFakeAsync

• ISAPILogNotSupported

• ISAPIReadAheadBuffer

Usage

In the server configuration file, use theADDHANDLER directive to associate ISAPI files with theisapi-isa handler,
and map it to them with their file extensions. To enable any .dll file to be processed as an ISAPI extension, edit the
httpd.conf file and add the following line:

AddHandler isapi-isa .dll

There is no capability within the Apache server to leave a requested module loaded. However, you may preload and
keep a specific module loaded by using the following syntax in your httpd.conf:

ISAPICacheFile c:/WebWork/Scripts/ISAPI/mytest.dll

Whether or not you have preloaded an ISAPI extension, all ISAPI extensions are governed by the same permissions
and restrictions as CGI scripts. That is,OPTIONSExecCGI must be set for the directory that contains the ISAPI .dll
file.

Review the Additional Notes and the Programmer’s Journal for additional details and clarification of the specific ISAPI
support offered byMOD ISAPI.

438 CHAPTER 10. APACHE MODULES

Additional Notes

Apache’s ISAPI implementation conforms to all of the ISAPI 2.0 specification, except for some" Microsoft-specific"
extensions dealing with asynchronous I/O. Apache’s I/O model does not allow asynchronous reading and writing
in a manner that the ISAPI could access. If an ISA tries to access unsupported features, including async I/O, a
message is placed in the error log to help with debugging. Since these messages can become a flood, the directive
ISAPILogNotSupported Off exists to quiet this noise.

Some servers, like Microsoft IIS, load the ISAPI extension into the server and keep it loaded until memory usage is
too high, or unless configuration options are specified. Apache currently loads and unloads the ISAPI extension each
time it is requested, unless theISAPICACHEFILE directive is specified. This is inefficient, but Apache’s memory
model makes this the most effective method. Many ISAPI modules are subtly incompatible with the Apache server,
and unloading these modules helps to ensure the stability of the server.

Also, remember that while Apache supports ISAPI Extensions, itdoes not support ISAPI Filters. Support for filters
may be added at a later date, but no support is planned at this time.

Programmer’s Journal

If you are programming Apache 2.0MOD ISAPI modules, you must limit your calls toServerSupportFunction
to the following directives:

HSEREQSENDURL REDIRECTRESP Redirect the user to another location.
This must be a fully qualified URL (e.g.http://server/location).

HSEREQSENDURL Redirect the user to another location.
This cannot be a fully qualified URL, you are not allowed to pass the protocol or a server name (e.g. simply
/location).
This redirection is handled by the server, not the browser.

! Warning
In their recent documentation, Microsoft appears to have abandoned the distinction between the
two HSEREQSENDURLfunctions. Apache continues to treat them as two distinct functions
with different requirements and behaviors.

HSEREQSENDRESPONSEHEADERApache accepts a response body following the header if it follows the blank
line (two consecutive newlines) in the headers string argument. This body cannot contain NULLs, since the
headers argument is NULL terminated.

HSEREQDONEWITH SESSION Apache considers this a no-op, since the session will be finished when the ISAPI
returns from processing.

HSEREQMAPURL TO PATH Apache will translate a virtual name to a physical name.

HSEAPPENDLOGPARAMETERThis logged message may be captured in any of the following logs:

• in the\"%{isapi-parameter }n\" component in aCUSTOMLOG directive
• in the%qlog component with theISAPIAPPENDLOGTOQUERY Ondirective
• in the error log with theISAPIAPPENDLOGTOERRORSOndirective

The first option, the%{isapi-parameter }n component, is always available and preferred.

HSEREQIS KEEPCONNWill return the negotiated Keep-Alive status.

HSEREQSENDRESPONSEHEADEREX Will behave as documented, although thefKeepConn flag is ignored.

10.34. APACHE MODULE MOD ISAPI 439

HSEREQIS CONNECTEDWill report false if the request has been aborted.

Apache returnsFALSE to any unsupported call toServerSupportFunction , and sets theGetLastError
value toERRORINVALID PARAMETER.

ReadClient retrieves the request body exceeding the initial buffer (defined byISAPIREADAHEADBUFFER).
Based on theISAPIREADAHEADBUFFER setting (number of bytes to buffer prior to calling the ISAPI handler)
shorter requests are sent complete to the extension when it is invoked. If the request is longer, the ISAPI extension
must useReadClient to retrieve the remaining request body.

WriteClient is supported, but only with theHSEIO SYNC flag or no option flag (value of0). Any
other WriteClient request will be rejected with a return value ofFALSE, and aGetLastError value of
ERRORINVALID PARAMETER.

GetServerVariable is supported, although extended server variables do not exist (as defined by other servers.)
All the usual Apache CGI environment variables are available fromGetServerVariable , as well as the
ALL HTTPandALL RAWvalues.

Apache 2.0MOD ISAPI supports additional features introduced in later versions of the ISAPI specification, as well as
limited emulation of async I/O and theTransmitFile semantics. Apache also supports preloading ISAPI .dlls for
performance, neither of which were not available under Apache 1.3mod isapi .

ISAPIAppendLogToErrors Directive

Description: RecordHSEAPPENDLOGPARAMETERrequests from ISAPI extensions to the error log
Syntax: ISAPIAppendLogToErrors on|off
Default: ISAPIAppendLogToErrors off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modisapi

RecordHSEAPPENDLOGPARAMETERrequests from ISAPI extensions to the server error log.

ISAPIAppendLogToQuery Directive

Description: RecordHSEAPPENDLOGPARAMETERrequests from ISAPI extensions to the query field
Syntax: ISAPIAppendLogToQuery on|off
Default: ISAPIAppendLogToQuery on
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modisapi

RecordHSEAPPENDLOGPARAMETERrequests from ISAPI extensions to the query field (appended to theCUS-
TOMLOG %qcomponent).

ISAPICacheFile Directive

Description: ISAPI .dll files to be loaded at startup
Syntax: ISAPICacheFile file-path [file-path] ...
Context: server config, virtual host
Status: Base
Module: modisapi

440 CHAPTER 10. APACHE MODULES

Specifies a space-separated list of file names to be loaded when the Apache server is launched, and remain loaded until
the server is shut down. This directive may be repeated for every ISAPI .dll file desired. The full path name of each
file should be specified. If the path name is not absolute, it will be treated relative toSERVERROOT.

ISAPIFakeAsync Directive

Description: Fake asynchronous support for ISAPI callbacks
Syntax: ISAPIFakeAsync on|off
Default: ISAPIFakeAsync off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modisapi

While set to on, asynchronous support for ISAPI callbacks is simulated.

ISAPILogNotSupported Directive

Description: Log unsupported feature requests from ISAPI extensions
Syntax: ISAPILogNotSupported on|off
Default: ISAPILogNotSupported off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modisapi

Logs all requests for unsupported features from ISAPI extensions in the server error log. This may help administrators
to track down problems. Once set to on and all desired ISAPI modules are functioning, it should be set back to off.

ISAPIReadAheadBuffer Directive

Description: Size of the Read Ahead Buffer sent to ISAPI extensions
Syntax: ISAPIReadAheadBuffer size
Default: ISAPIReadAheadBuffer 49152
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modisapi

Defines the maximum size of the Read Ahead Buffer sent to ISAPI extensions when they are initially invoked. All
remaining data must be retrieved using theReadClient callback; some ISAPI extensions may not support the
ReadClient function. Refer questions to the ISAPI extension’s author.

10.35. APACHE MODULE MOD LDAP 441

10.35 Apache Module modldap

Description: LDAP connection pooling and result caching services for use by other LDAP modules
Status: Experimental
ModuleIdentifier: ldapmodule
SourceFile: utilldap.c
Compatibility: Available in version 2.0.41 and later

Summary

This module was created to improve the performance of websites relying on backend connections to LDAP servers.
In addition to the functions provided by the standard LDAP libraries, this module adds an LDAP connection pool and
an LDAP shared memory cache.

To enable this module, LDAP support must be compiled into apr-util. This is achieved by adding the--with-ldap
flag to the./configure script when building Apache.

SSL support requires thatMOD LDAP be linked with one of the following LDAP SDKs: OpenLDAP SDK17 (both 1.x
and 2.x), Novell LDAP SDK18 or the iPlanet(Netscape)19 SDK.

Directives

• LDAPCacheEntries

• LDAPCacheTTL

• LDAPOpCacheEntries

• LDAPOpCacheTTL

• LDAPSharedCacheSize

• LDAPTrustedCA

• LDAPTrustedCAType

Example Configuration

The following is an example configuration that usesMOD LDAP to increase the performance of HTTP Basic authenti-
cation provided byMOD AUTH LDAP.

17http://www.openldap.org/
18http://developer.novell.com/ndk/cldap.htm
19http://www.iplanet.com/downloads/developer/

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
http://www.iplanet.com/downloads/developer/

442 CHAPTER 10. APACHE MODULES

Enable the LDAP connection pool and shared
memory cache. Enable the LDAP cache status
handler. Requires that mod ldap and mod auth ldap
be loaded. Change the "yourdomain.example.com" to
match your domain.

LDAPSharedCacheSize 200000
LDAPCacheEntries 1024
LDAPCacheTTL 600
LDAPOpCacheEntries 1024
LDAPOpCacheTTL 600

<Location /ldap-status >

SetHandler ldap-status
Order deny,allow
Deny from all
Allow from yourdomain.example.com
AuthLDAPEnabled on
AuthLDAPURL ldap://127.0.0.1/dc=example,dc=com?uid?one
AuthLDAPAuthoritative on
require valid-user

</Location >

LDAP Connection Pool

LDAP connections are pooled from request to request. This allows the LDAP server to remain connected and bound
ready for the next request, without the need to unbind/connect/rebind. The performance advantages are similar to the
effect of HTTP keepalives.

On a busy server it is possible that many requests will try and access the same LDAP server connection simultaneously.
Where an LDAP connection is in use, Apache will create a new connection alongside the original one. This ensures
that the connection pool does not become a bottleneck.

There is no need to manually enable connection pooling in the Apache configuration. Any module using this module
for access to LDAP services will share the connection pool.

LDAP Cache

For improved performance,MOD LDAP uses an aggressive caching strategy to minimize the number of times that the
LDAP server must be contacted. Caching can easily double or triple the throughput of Apache when it is serving pages
protected with modauth ldap. In addition, the load on the LDAP server will be significantly decreased.

MOD LDAP supports two types of LDAP caching during the search/bind phase with asearch/bind cacheand during
the compare phase with twooperation caches. Each LDAP URL that is used by the server has its own set of these
three caches.

The Search/Bind Cache

The process of doing a search and then a bind is the most time-consuming aspect of LDAP operation, especially if the
directory is large. The search/bind cache is used to cache all searches that resulted in successful binds. Negative results
(i.e., unsuccessful searches, or searches that did not result in a successful bind) are not cached. The rationale behind
this decision is that connections with invalid credentials are only a tiny percentage of the total number of connections,
so by not caching invalid credentials, the size of the cache is reduced.

MOD LDAP stores the username, the DN retrieved, the password used to bind, and the time of the bind in the cache.
Whenever a new connection is initiated with the same username,MOD LDAP compares the password of the new

10.35. APACHE MODULE MOD LDAP 443

connection with the password in the cache. If the passwords match, and if the cached entry is not too old,MOD LDAP

bypasses the search/bind phase.

The search and bind cache is controlled with theLDAPCACHEENTRIES andLDAPCACHETTL directives.

Operation Caches

During attribute and distinguished name comparison functions,MOD LDAP uses two operation caches to cache the
compare operations. The first compare cache is used to cache the results of compares done to test for LDAP group
membership. The second compare cache is used to cache the results of comparisons done between distinguished
names.

The behavior of both of these caches is controlled with theLDAPOPCACHEENTRIES and LDAPOPCACHETTL
directives.

Monitoring the Cache

MOD LDAP has a content handler that allows administrators to monitor the cache performance. The name of the content
handler isldap-status , so the following directives could be used to access theMOD LDAP cache information:

<Location /server/cache-info >

SetHandler ldap-status

</Location >

By fetching the URLhttp://servername/cache-info , the administrator can get a status report of every
cache that is used byMOD LDAP cache. Note that if Apache does not support shared memory, then eachhttpd
instance has its own cache, so reloading the URL will result in different information each time, depending on which
httpd instance processes the request.

Using SSL

The ability to create an SSL connections to an LDAP server is defined by the directivesLDAPTRUSTEDCA and
LDAPTRUSTEDCATYPE. These directives specify the certificate file or database and the certificate type. Whenever
the LDAP url includesldaps://, MOD LDAP will establish a secure connection to the LDAP server.

Establish an SSL LDAP connection. Requires that
mod ldap and mod auth ldap be loaded. Change the
"yourdomain.example.com" to match your domain.

LDAPTrustedCA /certs/certfile.der
LDAPTrustedCAType DER FILE

<Location /ldap-status >

SetHandler ldap-status
Order deny,allow
Deny from all
Allow from yourdomain.example.com
AuthLDAPEnabled on
AuthLDAPURL ldaps://127.0.0.1/dc=example,dc=com?uid?one
AuthLDAPAuthoritative on
require valid-user

</Location >

444 CHAPTER 10. APACHE MODULES

If MOD LDAP is linked against the Netscape/iPlanet LDAP SDK, it will not talk to any SSL server unless that server has
a certificate signed by a known Certificate Authority. As part of the configurationMOD LDAP needs to be told where
it can find a database containing the known CAs. This database is in the same format as Netscape Communicator’s
cert7.db database. The easiest way to get this file is to start up a fresh copy of Netscape, and grab the resulting
$HOME/.netscape/cert7.db file.

LDAPCacheEntries Directive

Description: Maximum number of entires in the primary LDAP cache
Syntax: LDAPCacheEntries number
Default: LDAPCacheEntries 1024
Context: server config
Status: Experimental
Module: modldap

Specifies the maximum size of the primary LDAP cache. This cache contains successful search/binds. Set it to 0 to
turn off search/bind caching. The default size is 1024 cached searches.

LDAPCacheTTL Directive

Description: Time that cached items remain valid
Syntax: LDAPCacheTTL seconds
Default: LDAPCacheTTL 600
Context: server config
Status: Experimental
Module: modldap

Specifies the time (in seconds) that an item in the search/bind cache remains valid. The default is 600 seconds (10
minutes).

LDAPOpCacheEntries Directive

Description: Number of entries used to cache LDAP compare operations
Syntax: LDAPOpCacheEntries number
Default: LDAPOpCacheEntries 1024
Context: server config
Status: Experimental
Module: modldap

This specifies the number of entriesMOD LDAP will use to cache LDAP compare operations. The default is 1024
entries. Setting it to 0 disables operation caching.

LDAPOpCacheTTL Directive

Description: Time that entries in the operation cache remain valid
Syntax: LDAPOpCacheTTL seconds
Default: LDAPOpCacheTTL 600
Context: server config
Status: Experimental
Module: modldap

Specifies the time (in seconds) that entries in the operation cache remain valid. The default is 600 seconds.

10.35. APACHE MODULE MOD LDAP 445

LDAPSharedCacheSize Directive

Description: Size in bytes of the shared-memory cache
Syntax: LDAPSharedCacheSize bytes
Default: LDAPSharedCacheSize 102400
Context: server config
Status: Experimental
Module: modldap

Specifies the number of bytes to specify for the shared memory cache. The default is 100kb.

LDAPTrustedCA Directive

Description: Sets the file containing the trusted Certificate Authority certificate or database
Syntax: LDAPTrustedCA directory-path/filename
Context: server config
Status: Experimental
Module: modldap

It specifies the directory path and file name of the trusted CAMOD LDAP should use when establishing an SSL
connection to an LDAP server. If using the Netscape/iPlanet Directory SDK, the file name should becert7.db .

LDAPTrustedCAType Directive

Description: Specifies the type of the Certificate Authority file
Syntax: LDAPTrustedCAType type
Context: server config
Status: Experimental
Module: modldap

The following types are supported:
DER FILE - file in binary DER format
BASE64FILE - file in Base64 format
CERT7DB PATH - Netscape certificate database file")

446 CHAPTER 10. APACHE MODULES

10.36 Apache Module modlog config

Description: Logging of the requests made to the server
Status: Base
ModuleIdentifier: logconfig module
SourceFile: modlog config.c

Summary

This module provides for flexible logging of client requests. Logs are written in a customizable format, and may be
written directly to a file, or to an external program. Conditional logging is provided so that individual requests may be
included or excluded from the logs based on characteristics of the request.

Three directives are provided by this module:TRANSFERLOG to create a log file,LOGFORMAT to set a custom format,
andCUSTOMLOG to define a log file and format in one step. TheTRANSFERLOG andCUSTOMLOG directives can
be used multiple times in each server to cause each request to be logged to multiple files.

Directives

• CookieLog

• CustomLog

• LogFormat

• TransferLog

See also

• Apache Log Files (p.30)

Custom Log Formats

The format argument to theLOGFORMAT and CUSTOMLOGdirectives is a string. This string is used to log each
request to the log file. It can contain literal characters copied into the log files and the C-style control characters" \n"
and" \t" to represent new-lines and tabs. Literal quotes and back-slashes should be escaped with back-slashes.

The characteristics of the request itself are logged by placing"%" directives in the format string, which are replaced
in the log file by the values as follows:

FormatString Description
%% The percent sign (Apache 2.0.44 and later)
%...a Remote IP-address
%...A Local IP-address
%...B Bytes sent, excluding HTTP headers.
%...b Bytes sent, excluding HTTP headers. In CLF format,i.e. a ’- ’ rather than a 0 when no bytes are sent.
%... {Foobar }C The contents of cookie Foobar in the request sent to the server.
%...D The time taken to serve the request, in microseconds.
%... {FOOBAR}e The contents of the environment variable FOOBAR
%...f Filename
%...h Remote host
%...H The request protocol
%... {Foobar }i The contents ofFoobar: header line(s) in the request sent to the server.
%...l Remote logname (from identd, if supplied)

10.36. APACHE MODULE MOD LOG CONFIG 447

%...m The request method
%... {Foobar }n The contents of note Foobar from another module.
%... {Foobar }o The contents ofFoobar: header line(s) in the reply.
%...p The canonical port of the server serving the request
%...P The process ID of the child that serviced the request.
%... {format }P The process ID or thread id of the child that serviced the request. Valid formats arepid and tid .

(Apache 2.0.46 and later)
%...q The query string (prepended with a? if a query string exists, otherwise an empty string)
%...r First line of request
%...s Status. For requests that got internally redirected, this is the status of the *original* request —%... >s

for the last.
%...t Time, in common log format time format (standard english format)
%... {format }t The time, in the form given by format, which should be instrftime(3) format. (potentially localized)
%...T The time taken to serve the request, in seconds.
%...u Remote user (from auth; may be bogus if return status (%s) is 401)
%...U The URL path requested, not including any query string.
%...v The canonicalSERVERNAME of the server serving the request.
%...V The server name according to theUSECANONICAL NAME setting.
%...X Connection status when response is completed:

X = connection aborted before the response completed.
+ = connection may be kept alive after the response is sent.
- = connection will be closed after the response is sent.

(This directive was%...c in late versions of Apache 1.3, but this conflicted with the historical ssl
%... {var }c syntax.)

%...I Bytes received, including request and headers, cannot be zero. You need to enableMOD LOGIO to use
this.

%...O Bytes sent, including headers, cannot be zero. You need to enableMOD LOGIO to use this.

The " ..." can be nothing at all (e.g., "%h %u %r %s %b"), or it can indicate conditions for inclusion of the item
(which will cause it to be replaced with" -" if the condition is not met). The forms of condition are a list of HTTP
status codes, which may or may not be preceded by" !" . Thus," %400,501{User-agent}i" logsUser-agent: on
400 errors and 501 errors (Bad Request, Not Implemented) only;" %!200,304,302{Referer}i" logs Referer: on
all requests which didnot return some sort of normal status.

Note that in httpd 2.0 versions prior to 2.0.46, no escaping was performed on the strings from%...r , %...i and
%...o . This was mainly to comply with the requirements of the Common Log Format. This implied that clients
could insert control characters into the log, so you had to be quite careful when dealing with raw log files.

For security reasons, starting with 2.0.46, non-printable and other special characters are escaped mostly by using\xhh
sequences, where hh stands for the hexadecimal representation of the raw byte. Exceptions from this rule are" and\
which are escaped by prepending a backslash, and all whitespace characters which are written in their C-style notation
(\n, \t etc).

Some commonly used log format strings are:

Common Log Format (CLF) "%h %l %u %t \"%r \" %>s %b"

Common Log Format with Virtual Host "%v %h %l %u %t \"%r \" %>s %b"

NCSA extended/combined log format"%h %l %u %t \"%r \" %>s %b \"%{Referer }i \"
\"%{User-agent }i \""

Referer log format "%{Referer }i - > %U"

Agent (Browser) log format "%{User-agent }i"

448 CHAPTER 10. APACHE MODULES

Note that the canonicalSERVERNAME andL ISTEN of the server serving the request are used for%vand%prespec-
tively. This happens regardless of theUSECANONICAL NAME setting because otherwise log analysis programs would
have to duplicate the entire vhost matching algorithm in order to decide what host really served the request.

Security Considerations

See the security tips (p.41) document for details on why your security could be compromised if the directory where
logfiles are stored is writable by anyone other than the user that starts the server.

CookieLog Directive

Description: Sets filename for the logging of cookies
Syntax: CookieLog filename
Context: server config, virtual host
Status: Base
Module: modlog config
Compatibility: This directive is deprecated.

The COOKIELOG directive sets the filename for logging of cookies. The filename is relative to theSERVERROOT.
This directive is included only for compatibility withmod cookies , and is deprecated.

CustomLog Directive

Description: Sets filename and format of log file
Syntax: CustomLog file|pipe format|nickname [env=[!]environment-variable]
Context: server config, virtual host
Status: Base
Module: modlog config

The CUSTOMLOG directive is used to log requests to the server. A log format is specified, and the logging can
optionally be made conditional on request characteristics using environment variables.

The first argument, which specifies the location to which the logs will be written, can take one of the following two
types of values:

file A filename, relative to theSERVERROOT.

pipe The pipe character"|" , followed by the path to a program to receive the log information on its standard input.

! Security:
If a program is used, then it will be run as the user who started httpd. This will be root if the
server was started by root; be sure that the program is secure.

! Note
When entering a file path on non-Unix platforms, care should be taken to make sure that only
forward slashed are used even though the platform may allow the use of back slashes. In
general it is a good idea to always use forward slashes throughout the configuration files.

The second argument specifies what will be written to the log file. It can specify either a nickname defined by a
previousLOGFORMAT directive, or it can be an explicit format string as described in the log formats section.

For example, the following two sets of directives have exactly the same effect:

10.36. APACHE MODULE MOD LOG CONFIG 449

CustomLog with format nickname
LogFormat "%h %l %u %t \"%r \" %>s %b" common
CustomLog logs/access log common

CustomLog with explicit format string

CustomLog logs/access log "%h %l %u %t \"%r \" %>s %b"

The third argument is optional and controls whether or not to log a particular request based on the presence or absence
of a particular variable in the server environment. If the specified environment variable (p.61) is set for the request (or
is not set, in the case of a ’env=!name ’ clause), then the request will be logged.

Environment variables can be set on a per-request basis using theMOD SETENVIF and/orMOD REWRITE modules.
For example, if you want to record requests for all GIF images on your server in a separate logfile but not in your main
log, you can use:

SetEnvIf Request URI \.gif$ gif-image
CustomLog gif-requests.log common env=gif-image

CustomLog nongif-requests.log common env=!gif-image

LogFormat Directive

Description: Describes a format for use in a log file
Syntax: LogFormat format|nickname [nickname]
Default: LogFormat "%h %l %u %t \"%r \" %>s %b"
Context: server config, virtual host
Status: Base
Module: modlog config

This directive specifies the format of the access log file.

The LOGFORMAT directive can take one of two forms. In the first form, where only one argument is specified, this
directive sets the log format which will be used by logs specified in subsequentTRANSFERLOG directives. The single
argument can specify an explicit format as discussed in the custom log formats section above. Alternatively, it can use
a nickname to refer to a log format defined in a previousLOGFORMAT directive as described below.

The second form of theLOGFORMAT directive associates an explicit format with a nickname. This nickname can
then be used in subsequentLOGFORMAT or CUSTOMLOG directives rather than repeating the entire format string. A
LOGFORMAT directive that defines a nicknamedoes nothing else– that is, itonly defines the nickname, it doesn’t
actually apply the format and make it the default. Therefore, it will not affect subsequentTRANSFERLOG directives.
In addition,LOGFORMAT cannot use one nickname to define another nickname. Note that the nickname should not
contain percent signs (%).

Example
LogFormat "%v %h %l %u %t \"%r \" %>s %b" vhost common

TransferLog Directive

Description: Specify location of a log file
Syntax: TransferLog file|pipe
Context: server config, virtual host
Status: Base
Module: modlog config

450 CHAPTER 10. APACHE MODULES

This directive has exactly the same arguments and effect as theCUSTOMLOG directive, with the exception that it does
not allow the log format to be specified explicitly or for conditional logging of requests. Instead, the log format is
determined by the most recently specifiedLOGFORMAT directive which does not define a nickname. Common Log
Format is used if no other format has been specified.

Example
LogFormat "%h %l %u %t \"%r \" %>s %b \"%{Referer }i \"
\"%{User-agent }i \""

TransferLog logs/access log

10.37. APACHE MODULE MOD LOGIO 451

10.37 Apache Module modlogio

Description: Logging of input and output bytes per request
Status: Base
ModuleIdentifier: logiomodule
SourceFile: modlogio.c

Summary

This module provides the logging of input and output number of bytes received/sent per request. The numbers reflect
the actual bytes as received on the network, which then takes into account the headers and bodies of requests and
responses. The counting is done before SSL/TLS on input and after SSL/TLS on output, so the numbers will correctly
reflect any changes made by encryption.

This module requiresMOD LOG CONFIG.

DirectivesThis module provides no directives.

See also

• MOD LOG CONFIG

• Apache Log Files (p.30)

Custom Log Formats

This modules adds two new logging directives. The characteristics of the request itself are logged by placing"%"
directives in the format string, which are replaced in the log file by the values as follows:

FormatString Description
%...I Bytes received, including request and headers, cannot be zero.
%...O Bytes sent, including headers, cannot be zero.

Usually, the functionality is used like this:

Combined I/O log format: "%h %l %u %t \"%r \" %>s %b \"%{Referer }i \"
\"%{User-agent }i \" %I %O"

452 CHAPTER 10. APACHE MODULES

10.38 Apache Module modmem cache

Description: Content cache keyed to URIs
Status: Experimental
ModuleIdentifier: memcachemodule
SourceFile: modmemcache.c

Summary

! This module is experimental. Documentation is still under development...

This modulerequiresthe service ofMOD CACHE. It acts as a support module forMOD CACHE and provides a memory
based storage manager.MOD MEM CACHE can be configured to operate in two modes: caching open file descriptors
or caching objects in heap storage.MOD MEM CACHE is most useful when used to cache locally generated content or
to cache backend server content forMOD PROXY configured forPROXYPASS (aka reverse proxy).

Content is stored in and retrieved from the cache using URI based keys. Content with access protection is not cached.

Directives

• MCacheMaxObjectCount

• MCacheMaxObjectSize

• MCacheMaxStreamingBuffer

• MCacheMinObjectSize

• MCacheRemovalAlgorithm

• MCacheSize

See also

• MOD CACHE

• MOD DISK CACHE

MCacheMaxObjectCount Directive

Description: The maximum number of objects allowed to be placed in the cache
Syntax: MCacheMaxObjectCount value
Default: MCacheMaxObjectCount 1009
Context: server config
Status: Experimental
Module: modmemcache

TheMCACHEMAX OBJECTCOUNT directive sets the maximum number of objects to be cached. The value is used to
create the open hash table. If a new object needs to be inserted in the cache and the maximum number of objects has
been reached, an object will be removed to allow the new object to be cached. The object to be removed is selected
using the algorithm specified byMCACHEREMOVAL ALGORITHM.

Example
MCacheMaxObjectCount 13001

10.38. APACHE MODULE MOD MEM CACHE 453

MCacheMaxObjectSize Directive

Description: The maximum size (in bytes) of a document allowed in the cache
Syntax: MCacheMaxObjectSize bytes
Default: MCacheMaxObjectSize 10000
Context: server config
Status: Experimental
Module: modmemcache

The MCACHEMAX OBJECTSIZE directive sets the maximum allowable size, in bytes, of a document for it to be
considered cacheable.

Example
MCacheMaxObjectSize 6400000

=⇒Note
The value ofMCACHEMAX OBJECTSIZE must be greater than the value specified by the
MCACHEM INOBJECTSIZE directive.

MCacheMaxStreamingBuffer Directive

Description: Maximum amount of a streamed response to buffer in memory before declaring the response
uncacheable

Syntax: MCacheMaxStreamingBuffer size in bytes
Default: MCacheMaxStreamingBuffer the smaller of 100000 or

MCacheMaxObjectSize
Context: server config
Status: Experimental
Module: modmemcache

TheMCACHEMAX STREAMINGBUFFERdirective specifies the maximum number of bytes of a streamed response to
buffer before deciding that the response is too big to cache. A streamed response is one in which the entire content is
not immediately available and in which theContent-Length may not be known. Sources of streaming responses
include proxied responses and the output of CGI scripts. By default, a streamed response willnot be cached unless it
has aContent-Length header. The reason for this is to avoid using a large amount of memory to buffer a partial
response that might end up being too large to fit in the cache. TheMCACHEMAX STREAMINGBUFFER directive
allows buffering of streamed responses that don’t contain aContent-Length up to the specified maximum amount
of space. If the maximum buffer space is reached, the buffered content is discarded and the attempt to cache is
abandoned.

=⇒Note:
Using a nonzero value forMCACHEMAX STREAMINGBUFFERwill not delay the transmission
of the response to the client. As soon asMOD MEM CACHE copies a block of streamed content
into a buffer, it sends the block on to the next output filter for delivery to the client.

Enable caching of streamed responses up to 64KB:

MCacheMaxStreamingBuffer 65536

454 CHAPTER 10. APACHE MODULES

MCacheMinObjectSize Directive

Description: The minimum size (in bytes) of a document to be allowed in the cache
Syntax: MCacheMinObjectSize bytes
Default: MCacheMinObjectSize 0
Context: server config
Status: Experimental
Module: modmemcache

The MCACHEM INOBJECTSIZE directive sets the minimum size in bytes of a document for it to be considered
cacheable.

Example
MCacheMinObjectSize 10000

MCacheRemovalAlgorithm Directive

Description: The algorithm used to select documents for removal from the cache
Syntax: MCacheRemovalAlgorithm LRU|GDSF
Default: MCacheRemovalAlgorithm GDSF
Context: server config
Status: Experimental
Module: modmemcache

TheMCACHEREMOVAL ALGORITHM directive specifies the algorithm used to select documents for removal from the
cache. Two choices are available:

LRU(Least Recently Used)LRUremoves the documents that have not been accessed for the longest time.

GDSF(GreadyDual-Size) GDSFassigns a priority to cached documents based on the cost of a cache miss and the
size of the document. Documents with the lowest priority are removed first.

Example
MCacheRemovalAlgorithm GDSF

MCacheRemovalAlgorithm LRU

MCacheSize Directive

Description: The maximum amount of memory used by the cache in KBytes
Syntax: MCacheSize KBytes
Default: MCacheSize 100
Context: server config
Status: Experimental
Module: modmemcache

The MCACHESIZE directive sets the maximum amount of memory to be used by the cache, in KBytes (1024-byte
units). If a new object needs to be inserted in the cache and the size of the object is greater than the remaining
memory, objects will be removed until the new object can be cached. The object to be removed is selected using the
algorithm specified byMCACHEREMOVAL ALGORITHM.

10.38. APACHE MODULE MOD MEM CACHE 455

Example
MCacheSize 700000

=⇒Note
The MCACHESIZE value must be greater than the value specified by theMCACHEMAX OB-
JECTSIZE directive.

456 CHAPTER 10. APACHE MODULES

10.39 Apache Module modmime

Description: Associates the requested filename’s extensions with the file’s behavior (handlers and
filters) and content (mime-type, language, character set and encoding)

Status: Base
ModuleIdentifier: mimemodule
SourceFile: modmime.c

Summary

This module is used to associate various bits of" meta information" with files by their filename extensions. This infor-
mation relates the filename of the document to it’s mime-type, language, character set and encoding. This information
is sent to the browser, and participates in content negotiation, so the user’s preferences are respected when choosing
one of several possible files to serve. SeeMOD NEGOTIATION for more information about content negotiation (p.48)
.

The directivesADDCHARSET, ADDENCODING, ADDLANGUAGE andADDTYPE are all used to map file extensions
onto the meta-information for that file. Respectively they set the character set, content-encoding, content-language,
and MIME-type (content-type) of documents. The directiveTYPESCONFIG is used to specify a file which also maps
extensions onto MIME types.

In addition, MOD MIME may define the handler (p.66) and filters (p.68) that originate and process content. The
directivesADDHANDLER, ADDOUTPUTFILTER, andADDINPUTFILTER control the modules or scripts that serve
the document. TheMULTIVIEWSMATCH directive allowsMOD NEGOTIATION to consider these file extensions to be
included when testing Multiviews matches.

While MOD MIME associates meta-information with filename extensions, theCOREserver provides directives that are
used to associate all the files in a given container (e.g., <LOCATION>, <DIRECTORY>, or<FILES>) with particular
meta-information. These directives includeFORCETYPE, SETHANDLER, SETINPUTFILTER, andSETOUTPUTFIL -
TER. The core directives override any filename extension mappings defined inMOD MIME .

Note that changing the meta-information for a file does not change the value of theLast-Modified header. Thus,
previously cached copies may still be used by a client or proxy, with the previous headers. If you change the meta-
information (language, content type, character set or encoding) you may need to ’touch’ affected files (updating their
last modified date) to ensure that all visitors are receive the corrected content headers.

Directives

• AddCharset

• AddEncoding

• AddHandler

• AddInputFilter

• AddLanguage

• AddOutputFilter

• AddType

• DefaultLanguage

• ModMimeUsePathInfo

• MultiviewsMatch

• RemoveCharset

• RemoveEncoding

• RemoveHandler

10.39. APACHE MODULE MOD MIME 457

• RemoveInputFilter

• RemoveLanguage

• RemoveOutputFilter

• RemoveType

• TypesConfig

See also

• M IMEMAGICFILE

• ADDDEFAULTCHARSET

• FORCETYPE

• DEFAULTTYPE

• SETHANDLER

• SETINPUTFILTER

• SETOUTPUTFILTER

Files with Multiple Extensions

Files can have more than one extension, and the order of the extensions isnormally irrelevant. For example, if the file
welcome.html.fr maps onto content typetext/html and language French then the filewelcome.fr.html
will map onto exactly the same information. If more than one extension is given which maps onto the same type of
meta-information, then the one to the right will be used. For example, if.gif maps to the MIME-typeimage/gif
and.html maps to the MIME-typetext/html , then the filewelcome.gif.html will be associated with the
MIME-type text/html .

Care should be taken when a file with multiple extensions gets associated with both a MIME-type and a handler.
This will usually result in the request being by the module associated with the handler. For example, if the.imap
extension is mapped to the handlerimap-file (from MOD IMAP) and the.html extension is mapped to the MIME-
type text/html , then the fileworld.imap.html will be associated with both theimap-file handler and
text/html MIME-type. When it is processed, theimap-file handler will be used, and so it will be treated as a
MOD IMAP imagemap file.

Content encoding

A file of a particular MIME type can additionally be encoded a particular way to simplify transmission over the
Internet. While this usually will refer to compression, such asgzip , it can also refer to encryption, such apgp or to
an encoding such as UUencoding, which is designed for transmitting a binary file in an ASCII (text) format.

The HTTP/1.1 RFC20, section 14.11 puts it this way:

The Content-Encoding entity-header field is used as a modifier to the media-type. When present,
its value indicates what additional content codings have been applied to the entity-body, and thus what
decoding mechanisms must be applied in order to obtain the media-type referenced by the Content-Type
header field. Content-Encoding is primarily used to allow a document to be compressed without losing
the identity of its underlying media type.

20http://www.ietf.org/rfc/rfc2616.txt

http://www.ietf.org/rfc/rfc2616.txt

458 CHAPTER 10. APACHE MODULES

By using more than one file extension (see section above about multiple file extensions), you can indicate that a file is
of a particulartype, and also has a particularencoding.

For example, you may have a file which is a Microsoft Word document, which is pkzipped to reduce its size. If the
.doc extension is associated with the Microsoft Word file type, and the.zip extension is associated with the pkzip
file encoding, then the fileResume.doc.zip would be known to be a pkzip’ed Word document.

Apache sends aContent-encoding header with the resource, in order to tell the client browser about the encoding
method.

Content-encoding: pkzip

Character sets and languages

In addition to file type and the file encoding, another important piece of information is what language a particular
document is in, and in what character set the file should be displayed. For example, the document might be written
in the Vietnamese alphabet, or in Cyrillic, and should be displayed as such. This information, also, is transmitted in
HTTP headers.

The character set, language, encoding and mime type are all used in the process of content negotiation (See
MOD NEGOTIATION) to determine which document to give to the client, when there are alternative documents in
more than one character set, language, encoding or mime type. All filename extensions associations created withAD-
DCHARSET, ADDENCODING, ADDLANGUAGE andADDTYPE directives (and extensions listed in theM IMEMAG-
ICFILE) participate in this select process. Filename extensions that are only associated using theADDHANDLER,
ADDINPUTFILTER or ADDOUTPUTFILTER directives may be included or excluded from matching by using theMUL-
TIVIEWSMATCH directive.

Charset

To convey this further information, Apache optionally sends aContent-Language header, to specify the language
that the document is in, and can append additional information onto theContent-Type header to indicate the
particular character set that should be used to correctly render the information.

Content-Language: en, fr

Content-Type: text/plain; charset=ISO-8859-1

The language specification is the two-letter abbreviation for the language. Thecharset is the name of the particular
character set which should be used.

AddCharset Directive

Description: Maps the given filename extensions to the specified content charset
Syntax: AddCharset charset extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

TheADDCHARSETdirective maps the given filename extensions to the specified content charset. charset is the MIME
charset parameter of filenames containing extension. This mapping is added to any already in force, overriding any
mappings that already exist for the same extension.

10.39. APACHE MODULE MOD MIME 459

Example
AddLanguage ja .ja
AddCharset EUC-JP .euc
AddCharset ISO-2022-JP .jis

AddCharset SHIFT JIS .sjis

Then the documentxxxx.ja.jis will be treated as being a Japanese document whose charset isISO-2022-JP
(as will the documentxxxx.jis.ja). The ADDCHARSET directive is useful for both to inform the client about
the character encoding of the document so that the document can be interpreted and displayed appropriately, and
for content negotiation (p.48) , where the server returns one from several documents based on the client’s charset
preference.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also

• MOD NEGOTIATION

• ADDDEFAULTCHARSET

AddEncoding Directive

Description: Maps the given filename extensions to the specified encoding type
Syntax: AddEncoding MIME-enc extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

The ADDENCODING directive maps the given filename extensions to the specified encoding type. MIME-enc is the
MIME encoding to use for documents containing the extension. This mapping is added to any already in force,
overriding any mappings that already exist for the same extension.

Example
AddEncoding x-gzip .gz

AddEncoding x-compress .Z

This will cause filenames containing the.gz extension to be marked as encoded using thex-gzip encoding, and
filenames containing the.Z extension to be marked as encoded withx-compress .

Old clients expectx-gzip andx-compress , however the standard dictates that they’re equivalent togzip and
compress respectively. Apache does content encoding comparisons by ignoring any leadingx- . When responding
with an encoding Apache will use whatever form (i.e., x-foo or foo) the client requested. If the client didn’t
specifically request a particular form Apache will use the form given by theAddEncoding directive. To make this
long story short, you should always usex-gzip andx-compress for these two specific encodings. More recent
encodings, such asdeflate should be specified without thex- .

The extension argument is case-insensitive, and can be specified with or without a leading dot.

460 CHAPTER 10. APACHE MODULES

AddHandler Directive

Description: Maps the filename extensions to the specified handler
Syntax: AddHandler handler-name extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

Files having the name extension will be served by the specified handler-name (p.66) . This mapping is added to any
already in force, overriding any mappings that already exist for the same extension. For example, to activate CGI
scripts with the file extension.cgi , you might use:

AddHandler cgi-script .cgi

Once that has been put into your httpd.conf file, any file containing the.cgi extension will be treated as a CGI
program.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also

• SETHANDLER

AddInputFilter Directive

Description: Maps filename extensions to the filters that will process client requests
Syntax: AddInputFilter filter[;filter...] extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime
Compatibility: AddInputFilter is only available in Apache 2.0.26 and later.

ADDINPUTFILTER maps the filename extension extension to the filters (p.68) which will process client requests and
POST input when they are received by the server. This is in addition to any filters defined elsewhere, including the
SETINPUTFILTER directive. This mapping is merged over any already in force, overriding any mappings that already
exist for the same extension.

If more than one filter is specified, they must be separated by semicolons in the order in which they should process
the content. Both the filter and extension arguments are case-insensitive, and the extension may be specified with or
without a leading dot.

AddLanguage Directive

Description: Maps the given filename extension to the specified content language
Syntax: AddLanguage MIME-lang extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

The ADDLANGUAGE directive maps the given filename extension to the specified content language. MIME-lang is
the MIME language of filenames containing extension. This mapping is added to any already in force, overriding any
mappings that already exist for the same extension.

10.39. APACHE MODULE MOD MIME 461

Example
AddEncoding x-compress .Z
AddLanguage en .en

AddLanguage fr .fr

Then the documentxxxx.en.Z will be treated as being a compressed English document (as will the document
xxxx.Z.en). Although the content language is reported to the client, the browser is unlikely to use this information.
The ADDLANGUAGE directive is more useful for content negotiation (p.48) , where the server returns one from
several documents based on the client’s language preference.

If multiple language assignments are made for the same extension, the last one encountered is the one that is used.
That is, for the case of:

AddLanguage en .en
AddLanguage en-uk .en

AddLanguage en-us .en

documents with the extension.en would be treated as beingen-us .

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also

• MOD NEGOTIATION

AddOutputFilter Directive

Description: Maps filename extensions to the filters that will process responses from the server
Syntax: AddOutputFilter filter[;filter...] extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime
Compatibility: AddOutputFilter is only available in Apache 2.0.26 and later.

The ADDOUTPUTFILTER directive maps the filename extension extension to the filters (p.68) which will process
responses from the server before they are sent to the client. This is in addition to any filters defined elsewhere, including
SETOUTPUTFILTER andADDOUTPUTFILTERBYTYPE directive. This mapping is merged over any already in force,
overriding any mappings that already exist for the same extension.

For example, the following configuration will process all.shtml files for server-side includes and will then compress
the output usingMOD DEFLATE.

AddOutputFilter INCLUDES;DEFLATE shtml

If more than one filter is specified, they must be separated by semicolons in the order in which they should process
the content. Both the filter and extension arguments are case-insensitive, and the extension may be specified with or
without a leading dot.

See also

• REMOVEOUTPUTFILTER

462 CHAPTER 10. APACHE MODULES

AddType Directive

Description: Maps the given filename extensions onto the specified content type
Syntax: AddType MIME-type extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

TheADDTYPE directive maps the given filename extensions onto the specified content type. MIME-type is the MIME
type to use for filenames containing extension. This mapping is added to any already in force, overriding any mappings
that already exist for the same extension. This directive can be used to add mappings not listed in the MIME types file
(see theTYPESCONFIG directive).

Example
AddType image/gif .gif

=⇒It is recommended that new MIME types be added using theADDTYPE directive rather than
changing theTYPESCONFIG file.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also

• DEFAULTTYPE

• FORCETYPE

DefaultLanguage Directive

Description: Sets all files in the given scope to the specified language
Syntax: DefaultLanguage MIME-lang
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

The DEFAULTLANGUAGE directive tells Apache that all files in the directive’s scope (e.g., all files covered by the
current<DIRECTORY> container) that don’t have an explicit language extension (such as.fr or .de as configured
by ADDLANGUAGE) should be considered to be in the specified MIME-lang language. This allows entire directories
to be marked as containing Dutch content, for instance, without having to rename each file. Note that unlike using
extensions to specify languages,DEFAULTLANGUAGE can only specify a single language.

If no DEFAULTLANGUAGE directive is in force, and a file does not have any language extensions as configured by
ADDLANGUAGE, then that file will be considered to have no language attribute.

Example
DefaultLanguage en

See also

• MOD NEGOTIATION

10.39. APACHE MODULE MOD MIME 463

ModMimeUsePathInfo Directive

Description: TellsMOD MIME to treatpath info components as part of the filename
Syntax: ModMimeUsePathInfo On|Off
Default: ModMimeUsePathInfo Off
Context: directory
Status: Base
Module: modmime
Compatibility: Available in Apache 2.0.41 and later

The MODM IMEUSEPATH INFO directive is used to combine the filename with thepath info URL component to
apply MOD MIME ’s directives to the request. The default value isOff - therefore, thepath info component is
ignored.

This directive is recommended when you have a virtual filesystem.

Example
ModMimeUsePathInfo On

If you have a request for/bar/foo.shtml where /bar is a Location andMODM IMEUSEPATH INFO is
On, MOD MIME will treat the incoming request as/bar/foo.shtml and directives likeAddOutputFilter
INCLUDES .shtml will add the INCLUDESfilter to the request. IfMODM IMEUSEPATH INFO is not set, the
INCLUDESfilter will not be added.

See also

• ACCEPTPATH INFO

MultiviewsMatch Directive

Description: The types of files that will be included when searching for a matching file with MultiViews
Syntax: MultiviewsMatch Any|NegotiatedOnly|Filters|Handlers

[Handlers|Filters]
Default: MultiviewsMatch NegotiatedOnly
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime
Compatibility: Available in Apache 2.0.26 and later.

MULTIVIEWSMATCH permits three different behaviors for modnegotiation (p.472) ’s Multiviews feature. Multiviews
allows a request for a file,e.g. index.html , to match any negotiated extensions following the base request,e.g.
index.html.en , index.html.fr , or index.html.gz .

TheNegotiatedOnly option provides that every extension following the base name must correlate to a recognized
MOD MIME extension for content negotation,e.g.Charset, Content-Type, Language, or Encoding. This is the strictest
implementation with the fewest unexpected side effects, and is the default behavior.

To include extensions associated with Handlers and/or Filters, set theMULTIVIEWSMATCH directive to either
Handlers , Filters , or both option keywords. If all other factors are equal, the smallest file will be served,e.g. in
deciding betweenindex.html.cgi of 500 bytes andindex.html.pl of 1000 bytes, the.cgi file would win
in this example. Users of.asis files might prefer to use the Handler option, if.asis files are associated with the
asis-handler .

You may finally allowAny extensions to match, even ifMOD MIME doesn’t recognize the extension. This was the
behavior in Apache 1.3, and can cause unpredicatable results, such as serving .old or .bak files the webmaster never
expected to be served.

464 CHAPTER 10. APACHE MODULES

For example, the following configuration will allow handlers and filters to participate in Multviews, but will exclude
unknown files:

MultiviewsMatch Handlers Filters

See also

• OPTIONS

• MOD NEGOTIATION

RemoveCharset Directive

Description: Removes any character set associations for a set of file extensions
Syntax: RemoveCharset extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime
Compatibility: RemoveCharset is only available in Apache 2.0.24 and later.

The REMOVECHARSET directive removes any character set associations for files with the given extensions. This
allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the server
config files.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

Example
RemoveCharset .html .shtml

RemoveEncoding Directive

Description: Removes any content encoding associations for a set of file extensions
Syntax: RemoveEncoding extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

TheREMOVEENCODING directive removes any encoding associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config files.
An example of its use might be:

/foo/.htaccess:
AddEncoding x-gzip .gz
AddType text/plain .asc
<Files *.gz.asc >

RemoveEncoding .gz

</Files >

10.39. APACHE MODULE MOD MIME 465

This will causefoo.gz to be marked as being encoded with the gzip method, butfoo.gz.asc as an unencoded
plaintext file.

=⇒Note
REMOVEENCODING directives are processedafter any ADDENCODING directives, so it is
possible they may undo the effects of the latter if both occur within the same directory config-
uration.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

RemoveHandler Directive

Description: Removes any handler associations for a set of file extensions
Syntax: RemoveHandler extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

The REMOVEHANDLER directive removes any handler associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config files.
An example of its use might be:

/foo/.htaccess:
AddHandler server-parsed .html

/foo/bar/.htaccess:
RemoveHandler .html

This has the effect of returning.html files in the/foo/bar directory to being treated as normal files, rather than
as candidates for parsing (see theMOD INCLUDE module).

The extension argument is case-insensitive, and can be specified with or without a leading dot.

RemoveInputFilter Directive

Description: Removes any input filter associations for a set of file extensions
Syntax: RemoveInputFilter extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime
Compatibility: RemoveInputFilter is only available in Apache 2.0.26 and later.

The REMOVEINPUTFILTER directive removes any input filter associations for files with the given extensions. This
allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the server
config files.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

466 CHAPTER 10. APACHE MODULES

RemoveLanguage Directive

Description: Removes any language associations for a set of file extensions
Syntax: RemoveLanguage extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime
Compatibility: RemoveLanguage is only available in Apache 2.0.24 and later.

TheREMOVELANGUAGE directive removes any language associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config files.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

RemoveOutputFilter Directive

Description: Removes any output filter associations for a set of file extensions
Syntax: RemoveOutputFilter extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime
Compatibility: RemoveOutputFilter is only available in Apache 2.0.26 and later.

TheREMOVEOUTPUTFILTER directive removes any output filter associations for files with the given extensions. This
allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the server
config files.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

Example
RemoveOutputFilter shtml

See also

• ADDOUTPUTFILTER

RemoveType Directive

Description: Removes any content type associations for a set of file extensions
Syntax: RemoveType extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modmime

The REMOVETYPE directive removes any MIME type associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config files.
An example of its use might be:

/foo/.htaccess:
RemoveType .cgi

10.39. APACHE MODULE MOD MIME 467

This will remove any special handling of.cgi files in the/foo/ directory and any beneath it, causing the files to be
treated as being of theDEFAULTTYPE.

=⇒Note
REMOVETYPE directives are processedafter any ADDTYPE directives, so it is possible they
may undo the effects of the latter if both occur within the same directory configuration.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

TypesConfig Directive

Description: The location of themime.types file
Syntax: TypesConfig file-path
Default: TypesConfig conf/mime.types
Context: server config
Status: Base
Module: modmime

The TYPESCONFIG directive sets the location of the MIME types configuration file. File-path is relative to the
SERVERROOT. This file sets the default list of mappings from filename extensions to content types. Most administra-
tors use the providedmime.types file, which associates common filename extensions with IANA registered content
types. The current list is maintained at http://www.isi.edu/in-notes/iana/assignments/media-types/media-types. This
simplifies thehttpd.conf file by providing the majority of media-type definitions, and may be overridden byAD-
DTYPE directives as needed. You should not edit themime.types file, because it may be replaced when you upgrade
your server.

The file contains lines in the format of the arguments to anADDTYPE directive:

MIME-type [extension] ...

The case of the extension does not matter. Blank lines, and lines beginning with a hash character (#) are ignored.

=⇒Please donot send requests to the Apache HTTP Server Project to add any new entries
in the distributedmime.types file unless (1) they are already registered with IANA,
and (2) they use widely accepted, non-conflicting filename extensions across platforms.
category/x-subtype requests will be automatically rejected, as will any new two-letter
extensions as they will likely conflict later with the already crowded language and character
set namespace.

See also

• MOD MIME MAGIC

468 CHAPTER 10. APACHE MODULES

10.40 Apache Module modmime magic

Description: Determines the MIME type of a file by looking at a few bytes of its contents
Status: Extension
ModuleIdentifier: mimemagicmodule
SourceFile: modmime magic.c

Summary

This module determines the MIME type of files in the same way the Unixfile(1) command works: it looks at the
first few bytes of the file. It is intended as a" second line of defense" for cases thatMOD MIME can’t resolve.

This module is derived from a free version of thefile(1) command for Unix, which uses" magic numbers" and
other hints from a file’s contents to figure out what the contents are. This module is active only if the magic file is
specified by theM IMEMAGICFILE directive.

Directives

• MimeMagicFile

Format of the Magic File

The contents of the file are plain ASCII text in 4-5 columns. Blank lines are allowed but ignored. Commented lines
use a hash mark (#). The remaining lines are parsed for the following columns:

Column Description
1 byte number to begin checking from

" >" indicates a dependency upon the previous non-" >" line
2 type of data to match

byte single character
short machine-order 16-bit integer
long machine-order 32-bit integer
string arbitrary-length string
date long integer date (seconds

since Unix epoch/1970)
beshort big-endian 16-bit integer
belong big-endian 32-bit integer
bedate big-endian 32-bit integer date
leshort little-endian 16-bit integer
lelong little-endian 32-bit integer
ledate little-endian 32-bit integer

date
3 contents of data to match
4 MIME type if matched
5 MIME encoding if matched (optional)

For example, the following magic file lines would recognize some audio formats:

10.40. APACHE MODULE MOD MIME MAGIC 469

Sun/NeXT audio data
0 string .snd
>12 belong 1 audio/basic
>12 belong 2 audio/basic
>12 belong 3 audio/basic
>12 belong 4 audio/basic
>12 belong 5 audio/basic
>12 belong 6 audio/basic
>12 belong 7 audio/basic
>12 belong 23 audio/x-adpcm

Or these would recognize the difference between*.doc files containing Microsoft Word or FrameMaker documents.
(These are incompatible file formats which use the same file suffix.)

Frame
0 string \<MakerFile application/x-frame
0 string \<MIFFile application/x-frame
0 string \<MakerDictionary application/x-frame
0 string \<MakerScreenFon application/x-frame
0 string \<MML application/x-frame
0 string \<Book application/x-frame
0 string \<Maker application/x-frame

MS-Word
0 string \376\067\0\043 application/msword
0 string \320\317\021\340\241\261 application/msword
0 string \333\245-\0\0\0 application/msword

An optional MIME encoding can be included as a fifth column. For example, this can recognize gzipped files and set
the encoding for them.

gzip (GNU zip, not to be confused with
[Info-ZIP/PKWARE] zip archiver)

0 string \037\213 application/octet-stream x-gzip

Performance Issues

This module is not for every system. If your system is barely keeping up with its load or if you’re performing a web
server benchmark, you may not want to enable this because the processing is not free.

However, an effort was made to improve the performance of the originalfile(1) code to make it fit in a busy web
server. It was designed for a server where there are thousands of users who publish their own documents. This is
probably very common on intranets. Many times, it’s helpful if the server can make more intelligent decisions about
a file’s contents than the file name allows ...even if just to reduce the" why doesn’t my page work" calls when users
improperly name their own files. You have to decide if the extra work suits your environment.

Notes

The following notes apply to theMOD MIME MAGIC module and are included here for compliance with contributors’
copyright restrictions that require their acknowledgment.

470 CHAPTER 10. APACHE MODULES

=⇒mod mime magic: MIME type lookup via file magic numbers
Copyright (c) 1996-1997 Cisco Systems, Inc.
This software was submitted by Cisco Systems to the Apache Group in July 1997. Future
revisions and derivatives of this source code must acknowledge Cisco Systems as the original
contributor of this module. All other licensing and usage conditions are those of the Apache
Group.
Some of this code is derived from the free version of the file command originally posted to
comp.sources.unix. Copyright info for that program is included below as required.

=⇒- Copyright (c) Ian F. Darwin, 1987. Written by Ian F. Darwin.
This software is not subject to any license of the American Telephone and Telegraph Company
or of the Regents of the University of California.
Permission is granted to anyone to use this software for any purpose on any computer system,
and to alter it and redistribute it freely, subject to the following restrictions:

1. The author is not responsible for the consequences of use of this software, no matter how
awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by explicit claim or by
omission. Since few users ever read sources, credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be misrepresented as
being the original software. Since few users ever read sources, credits must appear in
the documentation.

4. This notice may not be removed or altered.

=⇒For compliance with Mr Darwin’s terms: this has been very significantly modified from the
free" file" command.

• all-in-one file for compilation convenience when moving from one version of Apache to
the next.

• Memory allocation is done through the Apache API’s pool structure.

• All functions have had necessary Apache API request or server structures passed to them
where necessary to call other Apache API routines. (i.e., usually for logging, files, or
memory allocation in itself or a called function.)

• struct magic has been converted from an array to a single-ended linked list because it
only grows one record at a time, it’s only accessed sequentially, and the Apache API has
no equivalent ofrealloc() .

• Functions have been changed to get their parameters from the server configuration in-
stead of globals. (It should be reentrant now but has not been tested in a threaded envi-
ronment.)

• Places where it used to print results to stdout now saves them in a list where they’re used
to set the MIME type in the Apache request record.

• Command-line flags have been removed since they will never be used here.

10.40. APACHE MODULE MOD MIME MAGIC 471

MimeMagicFile Directive

Description: Enable MIME-type determination based on file contents using the specified magic file
Syntax: MimeMagicFile file-path
Context: server config, virtual host
Status: Extension
Module: modmime magic

The M IMEMAGICFILE directive can be used to enable this module, the default file is distributed atconf/magic .
Non-rooted paths are relative to theSERVERROOT. Virtual hosts will use the same file as the main server unless a
more specific setting is used, in which case the more specific setting overrides the main server’s file.

Example
MimeMagicFile conf/magic

472 CHAPTER 10. APACHE MODULES

10.41 Apache Module modnegotiation

Description: Provides for content negotiation (p.48)
Status: Base
ModuleIdentifier: negotiationmodule
SourceFile: modnegotiation.c

Summary

Content negotiation, or more accurately content selection, is the selection of the document that best matches the clients
capabilities, from one of several available documents. There are two implementations of this.

• A type map (a file with the handlertype-map) which explicitly lists the files containing the variants.

• A MultiViews search (enabled by theMultiViews OPTIONS), where the server does an implicit filename
pattern match, and choose from amongst the results.

Directives

• CacheNegotiatedDocs

• ForceLanguagePriority

• LanguagePriority

See also

• OPTIONS

• MOD MIME

• Content Negotiation (p.48)

Type maps

A type map has a format similar to RFC822 mail headers. It contains document descriptions separated by blank lines,
with lines beginning with a hash character (’#’) treated as comments. A document description consists of several
header records; records may be continued on multiple lines if the continuation lines start with spaces. The leading
space will be deleted and the lines concatenated. A header record consists of a keyword name, which always ends in
a colon, followed by a value. Whitespace is allowed between the header name and value, and between the tokens of
value. The headers allowed are:

Content-Encoding: The encoding of the file. Apache only recognizes encodings that are defined by anAD-
DENCODING directive. This normally includes the encodingsx-compress for compress’d files, andx-gzip
for gzip’d files. Thex- prefix is ignored for encoding comparisons.

Content-Language: The language(s) of the variant, as an Internet standard language tag (RFC 176621). An
example isen , meaning English. If the variant contains more than one language, they are separated by a
comma.

Content-Length: The length of the file, in bytes. If this header is not present, then the actual length of the file is
used.

21http://www.ietf.org/rfc/rfc1766.txt

http://www.ietf.org/rfc/rfc1766.txt

10.41. APACHE MODULE MOD NEGOTIATION 473

Content-Type: The MIME media type of the document, with optional parameters. Parameters are separated from
the media type and from one another by a semi-colon, with a syntax ofname=value . Common parameters
include:

level an integer specifying the version of the media type. Fortext/html this defaults to 2, otherwise 0.

qs a floating-point number with a value in the range 0.0 to 1.0, indicating the relative ’quality’ of this variant
compared to the other available variants, independent of the client’s capabilities. For example, a jpeg file
is usually of higher source quality than an ascii file if it is attempting to represent a photograph. However,
if the resource being represented is ascii art, then an ascii file would have a higher source quality than a
jpeg file. All qs values are therefore specific to a given resource.

Example
Content-Type: image/jpeg; qs=0.8

URI: uri of the file containing the variant (of the given media type, encoded with the given content encoding). These
are interpreted as URLs relative to the map file; they must be on the same server (!), and they must refer to files
to which the client would be granted access if they were to be requested directly.

Body: New in Apache 2.0, the actual content of the resource may be included in the type-map file using the Body
header. This header must contain a string that designates a delimiter for the body content. Then all following
lines in the type map file will be considered part of the resource body until the delimiter string is found.

Example:
Body:----xyz----
<html >
<body >
<p>Content of the page. </p >
</body >
</html >

----xyz----

MultiViews

A MultiViews search is enabled by theMultiViews OPTIONS. If the server receives a request for
/some/dir/foo and /some/dir/foo doesnot exist, then the server reads the directory looking for all files
namedfoo.* , and effectively fakes up a type map which names all those files, assigning them the same media types
and content-encodings it would have if the client had asked for one of them by name. It then chooses the best match
to the client’s requirements, and returns that document.

CacheNegotiatedDocs Directive

Description: Allows content-negotiated documents to be cached by proxy servers
Syntax: CacheNegotiatedDocs On|Off
Default: CacheNegotiatedDocs Off
Context: server config, virtual host
Status: Base
Module: modnegotiation
Compatibility: The syntax changed in version 2.0.

474 CHAPTER 10. APACHE MODULES

If set, this directive allows content-negotiated documents to be cached by proxy servers. This could mean that clients
behind those proxys could retrieve versions of the documents that are not the best match for their abilities, but it will
make caching more efficient.

This directive only applies to requests which come from HTTP/1.0 browsers. HTTP/1.1 provides much better control
over the caching of negotiated documents, and this directive has no effect in responses to HTTP/1.1 requests.

Prior to version 2.0,CACHENEGOTIATEDDOCS did not take an argument; it was turned on by the presence of the
directive by itself.

ForceLanguagePriority Directive

Description: Action to take if a single acceptable document is not found
Syntax: ForceLanguagePriority None|Prefer|Fallback [Prefer|Fallback]
Default: ForceLanguagePriority Prefer
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modnegotiation
Compatibility: Available in version 2.0.30 and later

The FORCELANGUAGEPRIORITY directive uses the givenLANGUAGEPRIORITY to satisfy negotation where the
server could otherwise not return a single matching document.

ForceLanguagePriority Prefer usesLanguagePriority to serve a one valid result, rather than return-
ing an HTTP result 300 (MULTIPLE CHOICES) when there are several equally valid choices. If the directives below
were given, and the user’sAccept-Language header assigneden andde each as quality.500 (equally accept-
able) then the first matching variant,en , will be served.

LanguagePriority en fr de

ForceLanguagePriority Prefer

ForceLanguagePriority Fallback usesLANGUAGEPRIORITY to serve a valid result, rather than returning
an HTTP result 406 (NOT ACCEPTABLE). If the directives below were given, and the user’sAccept-Language
only permitted anes language response, but such a variant isn’t found, then the first variant from theLANGUAGEPRI-
ORITY list below will be served.

LanguagePriority en fr de

ForceLanguagePriority Fallback

Both options,Prefer andFallback , may be specified, so either the first matching variant fromLANGUAGEPRI-
ORITY will be served if more than one variant is acceptable, or first available document will be served if none of the
variants matched the client’s acceptable list of languages.

See also

• ADDLANGUAGE

10.41. APACHE MODULE MOD NEGOTIATION 475

LanguagePriority Directive

Description: The precendence of language variants for cases where the client does not express a preference
Syntax: LanguagePriority MIME-lang [MIME-lang] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modnegotiation

The LANGUAGEPRIORITY sets the precedence of language variants for the case where the client does not express a
preference, when handling a MultiViews request. The list of MIME-lang are in order of decreasing preference.

Example:
LanguagePriority en fr de

For a request forfoo.html , wherefoo.html.fr and foo.html.de both existed, but the browser did not
express a language preference, thenfoo.html.fr would be returned.

Note that this directive only has an effect if a ’best’ language cannot be determined by any other means or theFORCE-
LANGUAGEPRIORITY directive is notNone. Correctly implemented HTTP/1.1 requests will mean this directive has
no effect.

See also

• ADDLANGUAGE

476 CHAPTER 10. APACHE MODULES

10.42 Apache Module modnw ssl

Description: Enable SSL encryption for NetWare
Status: Base
ModuleIdentifier: nwsslmodule
SourceFile: modnw ssl.c
Compatibility: NetWare only

Summary

This module enables SSL encryption for a specified port. It takes advantage of the SSL encryption functionality that
is built into the NetWare operating system.

Directives

• NWSSLTrustedCerts

• SecureListen

NWSSLTrustedCerts Directive

Description: List of additional client certificates
Syntax: NWSSLTrustedCerts filename [filename] ...
Context: server config
Status: Base
Module: modnw ssl

Specifies a list of client certificate files (DER format) that are used when creating a proxied SSL connection. Each
client certificate used by a server must be listed separately in its own.der file.

SecureListen Directive

Description: Enables SSL encryption for the specified port
Syntax: SecureListen [IP-address:]portnumber Certificate-Name [MUTUAL]
Context: server config
Status: Base
Module: modnw ssl

Specifies the port and the eDirectory based certificate name that will be used to enable SSL encryption. An optional
third parameter also enables mutual authentication.

10.43. APACHE MODULE MOD PROXY 477

10.43 Apache Module modproxy

Description: HTTP/1.1 proxy/gateway server
Status: Extension
ModuleIdentifier: proxymodule
SourceFile: modproxy.c

Summary

! Warning
Do not enable proxying withPROXYREQUESTSuntil you have secured your server. Open
proxy servers are dangerous both to your network and to the Internet at large.

This module implements a proxy/gateway for Apache. It implements proxying capability forFTP, CONNECT(for
SSL),HTTP/0.9 , HTTP/1.0 , andHTTP/1.1 . The module can be configured to connect to other proxy modules
for these and other protocols.

This module was experimental in Apache 1.1.x. Improvements and bugfixes were made in Apache v1.2.x and
Apache v1.3.x, then the module underwent a major overhaul for Apache v2.0. The protocol support was upgraded to
HTTP/1.1 , and filter support was enabled.

During the overhaul process theMOD PROXY has been splitted into several module files. The accompanying modules
distributed with the httpd areMOD PROXY HTTP, MOD PROXY FTP andMOD PROXY CONNECT. Thus if you want
to use one or more of the particular proxy functions you have to loadMOD PROXY and the appropriate module(s) into
the server (either statically or dynamically via theLOADMODULE directive).

Please note that thecaching function present inMOD PROXY up to Apache v1.3.x has beenremoved from
MOD PROXY and will be incorporated into a new module,MOD CACHE. In other words: the Apache 2.0.x-Proxy
doesn’t cache at all - all caching functionality has been moved intoMOD CACHE, which is capable of caching any
content, not only content from proxy.

If you need to use SSL when contacting remote servers, have a look at theSSLProxy* directives inMOD SSL.

Directives

• AllowCONNECT

• NoProxy

• <Proxy>

• ProxyBadHeader

• ProxyBlock

• ProxyDomain

• ProxyErrorOverride

• ProxyIOBufferSize

• <ProxyMatch>

• ProxyMaxForwards

• ProxyPass

• ProxyPassReverse

• ProxyPreserveHost

• ProxyReceiveBufferSize

• ProxyRemote

478 CHAPTER 10. APACHE MODULES

• ProxyRemoteMatch

• ProxyRequests

• ProxyTimeout

• ProxyVia

See also

• MOD PROXY HTTP

• MOD PROXY FTP

• MOD PROXY CONNECT

• MOD SSL

Common configuration topics

• Forward and Reverse Proxies

• Controlling access to your proxy

• Why doesn’t file type xxx download via FTP?

• How can I force an FTP ASCII download of File xxx?

• How can I access FTP files outside of my home directory?

• How can I hide the FTP cleartext password in my browser’s URL line?

• Why does Apache start more slowly when using the proxy module?

• What other functions are useful for an intranet proxy server?

• How can I make the proxy talk HTTP/1.0 and disable keepalives?

Forward and Reverse Proxies

Apache can be configured in both a forward and reverse proxy configuration.

A forward proxy is an intermediate system that enables a browser to connect to a remote network to which it normally
does not have access. A forward proxy can also be used to cache data, reducing load on the networks between the
forward proxy and the remote webserver.

Apache’sMOD PROXY can be figured to behave like a forward proxy using thePROXYREMOTE directive. In addi-
tion, caching of data can be achieved by configuringMOD CACHE. Other dedicated forward proxy packages include
Squid22.

A reverse proxy is a webserver system that is capable of serving webpages sourced from other webservers - in addition
to webpages on disk or generated dynamically by CGI - making these pages look like they originated at the reverse
proxy.

When configured with the modcache module the reverse proxy can act as a cache for slower backend webservers.
The reverse proxy can also enable advanced URL strategies and management techniques, allowing webpages served
using different webserver systems or architectures to coexist inside the same URL space. Reverse proxy systems are
also ideal for implementing centralised logging websites with many or diverse website backends. Complex multi-tier
webserver systems can be constructed using anMOD PROXY frontend and any number of backend webservers.

The reverse proxy is configured using thePROXYPASSandPROXYPASSREVERSEdirectives. Caching can be enabled
using modcache as with the forward proxy.

22http://www.squid-cache.org/

http://www.squid-cache.org/

10.43. APACHE MODULE MOD PROXY 479

Controlling access to your proxy

You can control who can access your proxy via the<PROXY> control block using the following example:

<Proxy * >

Order Deny,Allow
Deny from all
Allow from 192.168.0

</Proxy >

When configuring a reverse proxy, access control takes on the attributes of the normal server<DIRECTORY> config-
uration.

Why doesn’t file type xxx download via FTP?

You probably don’t have that particular file type defined asapplication/octet-stream in your proxy’s
mime.types configuration file. A useful line can be

application/octet-stream bin dms lha lzh exe class tgz taz

How can I force an FTP ASCII download of File xxx?

In the rare situation where you must download a specific file using the FTPASCII transfer method (while the default
transfer is inbinary mode), you can overrideMOD PROXY’s default by suffixing the request with;type=a to force
an ASCII transfer. (FTP Directory listings are always executed in ASCII mode, however.)

How can I access FTP files outside of my home directory?

An FTP URI is interpreted relative to the home directory of the user who is logging in. Alas, to reach higher directory
levels you cannot use /../, as the dots are interpreted by the browser and not actually sent to the FTP server. To address
this problem, the so called Squid %2f hack was implemented in the Apache FTP proxy; it is a solution which is also
used by other popular proxy servers like the Squid Proxy Cache23. By prepending/%2f to the path of your request,
you can make such a proxy change the FTP starting directory to/ (instead of the home directory). For example, to
retrieve the file/etc/motd , you would use the URL:

ftp://user@host/%2f/etc/motd

How can I hide the FTP cleartext password in my browser’s URL line?

To log in to an FTP server by username and password, Apache uses different strategies. In absense of a user name and
password in the URL altogether, Apache sends an anomymous login to the FTP server,i.e.,

user: anonymous

password: apache proxy@

23http://www.squid-cache.org/

http://www.squid-cache.org/

480 CHAPTER 10. APACHE MODULES

This works for all popular FTP servers which are configured for anonymous access.

For a personal login with a specific username, you can embed the user name into the URL, like in:

ftp://username@host/myfile

If the FTP server asks for a password when given this username (which it should), then Apache will reply with a401
(Authorization required) response, which causes the Browser to pop up the username/password dialog. Upon entering
the password, the connection attempt is retried, and if successful, the requested resource is presented. The advantage
of this procedure is that your browser does not display the password in cleartext (which it would if you had used

ftp://username:password@host/myfile

in the first place).

=⇒Note
The password which is transmitted in such a way is not encrypted on its way. It travels between
your browser and the Apache proxy server in a base64-encoded cleartext string, and between
the Apache proxy and the FTP server as plaintext. You should therefore think twice before
accessing your FTP server via HTTP (or before accessing your personal files via FTP at all!)
When using unsecure channels, an eavesdropper might intercept your password on its way.

Why does Apache start more slowly when using the proxy module?

If you’re using thePROXYBLOCK directive, hostnames’ IP addresses are looked up and cached during startup for later
match test. This may take a few seconds (or more) depending on the speed with which the hostname lookups occur.

What other functions are useful for an intranet proxy server?

An Apache proxy server situated in an intranet needs to forward external requests through the company’s firewall.
However, when it has to access resources within the intranet, it can bypass the firewall when accessing hosts. The
NOPROXY directive is useful for specifying which hosts belong to the intranet and should be accessed directly.

Users within an intranet tend to omit the local domain name from their WWW requests, thus requesting
" http://somehost/" instead ofhttp://somehost.example.com/ . Some commercial proxy servers let them
get away with this and simply serve the request, implying a configured local domain. When thePROXYDOMAIN

directive is used and the server is configured for proxy service, Apache can return a redirect response and send the
client to the correct, fully qualified, server address. This is the preferred method since the user’s bookmark files will
then contain fully qualified hosts.

How can I make the proxy talk HTTP/1.0 and disable keepalives?

For circumstances where you have a application server which doesn’t implement keepalives or HTTP/1.1 properly,
there are 2 environment variables which when set send a HTTP/1.0 with no keepalive. These are set via theSETENV

directive.

These are theforce-proxy-request-1.0 andproxy-nokeepalive notes.

<Location /buggyappserver/ >

ProxyPass http://buggyappserver:7001/foo/
SetEnv force-proxy-request-1.0 1
SetEnv proxy-nokeepalive 1

</Location >

10.43. APACHE MODULE MOD PROXY 481

AllowCONNECT Directive

Description: Ports that are allowed toCONNECTthrough the proxy
Syntax: AllowCONNECT port [port] ...
Default: AllowCONNECT 443 563
Context: server config, virtual host
Status: Extension
Module: modproxy

TheALLOWCONNECTdirective specifies a list of port numbers to which the proxyCONNECTmethod may connect.
Today’s browsers use this method when ahttps connection is requested and proxy tunneling over HTTP is in effect.

By default, only the default https port (443) and the default snews port (563) are enabled. Use theALLOWCON-
NECT directive to override this default and allow connections to the listed ports only.

Note that you’ll need to haveMOD PROXY CONNECTpresent in the server in order to get the support for theCONNECT
at all.

NoProxy Directive

Description: Hosts, domains, or networks that will be connected to directly
Syntax: NoProxy host [host] ...
Context: server config, virtual host
Status: Extension
Module: modproxy

This directive is only useful for Apache proxy servers within intranets. TheNOPROXY directive specifies a list of
subnets, IP addresses, hosts and/or domains, separated by spaces. A request to a host which matches one or more of
these is always served directly, without forwarding to the configuredPROXYREMOTE proxy server(s).

Example
ProxyRemote * http://firewall.mycompany.com:81

NoProxy .mycompany.com 192.168.112.0/21

The host arguments to theNOPROXY directive are one of the following type list:

Domain A Domain is a partially qualified DNS domain name, preceded by a period. It represents a list of hosts which
logically belong to the same DNS domain or zone (i.e., the suffixes of the hostnames are all ending in Domain).

Examples
.com .apache.org.

To distinguish Domains from Hostnames (both syntactically and semantically; a DNS domain can have a DNS
A record, too!), Domains are always written with a leading period.

=⇒Note
Domain name comparisons are done without regard to the case, and Domains are always as-
sumed to be anchored in the root of the DNS tree, therefore two domains.MyDomain.com
and.mydomain.com. (note the trailing period) are considered equal. Since a domain com-
parison does not involve a DNS lookup, it is much more efficient than subnet comparison.

SubNet A SubNet is a partially qualified internet address in numeric (dotted quad) form, optionally followed by a
slash and the netmask, specified as the number of significant bits in the SubNet. It is used to represent a subnet
of hosts which can be reached over a common network interface. In the absence of the explicit net mask it is
assumed that omitted (or zero valued) trailing digits specify the mask. (In this case, the netmask can only be
multiples of 8 bits wide.) Examples:

482 CHAPTER 10. APACHE MODULES

192.168 or 192.168.0.0 the subnet 192.168.0.0 with an implied netmask of 16 valid bits (sometimes
used in the netmask form255.255.0.0)

192.168.112.0/21 the subnet192.168.112.0/21 with a netmask of 21 valid bits (also used in the
form 255.255.248.0)

As a degenerate case, aSubNetwith 32 valid bits is the equivalent to an IPAddr, while a SubNet with zero valid
bits (e.g., 0.0.0.0/0) is the same as the constantDefault , matching any IP address.

IPAddr A IPAddr represents a fully qualified internet address in numeric (dotted quad) form. Usually, this address
represents a host, but there need not necessarily be a DNS domain name connected with the address.

Example
192.168.123.7

=⇒Note
An IPAddr does not need to be resolved by the DNS system, so it can result in more effective
apache performance.

Hostname A Hostname is a fully qualified DNS domain name which can be resolved to one or more IPAddrs via
the DNS domain name service. It represents a logical host (in contrast to Domains, see above) and must be
resolvable to at least one IPAddr (or often to a list of hosts with different IPAddrs).

Examples
prep.ai.mit.edu

www.apache.org

=⇒Note
In many situations, it is more effective to specify an IPAddr in place of a Hostname since a
DNS lookup can be avoided. Name resolution in Apache can take a remarkable deal of time
when the connection to the name server uses a slow PPP link.
Hostname comparisons are done without regard to the case, and Hostnames are always as-
sumed to be anchored in the root of the DNS tree, therefore two hostsWWW.MyDomain.com
andwww.mydomain.com. (note the trailing period) are considered equal.

See also

• DNS Issues (p.139)

Proxy Directive

Description: Container for directives applied to proxied resources
Syntax: <Proxy wildcard-url > ... </Proxy >
Context: server config, virtual host
Status: Extension
Module: modproxy

Directives placed in<PROXY> sections apply only to matching proxied content. Shell-style wildcards are allowed.

For example, the following will allow only hosts inyournetwork.example.com to access content via your proxy
server:

10.43. APACHE MODULE MOD PROXY 483

<Proxy * >

Order Deny,Allow
Deny from all
Allow from yournetwork.example.com

</Proxy >

The following example will process all files in thefoo directory ofexample.com through theINCLUDESfilter
when they are sent through the proxy server:

<Proxy http://example.com/foo/* >

SetOutputFilter INCLUDES

</Proxy >

ProxyBadHeader Directive

Description: Determines how to handle bad header lines in a response
Syntax: ProxyBadHeader IsError|Ignore|StartBody
Default: ProxyBadHeader IsError
Context: server config, virtual host
Status: Extension
Module: modproxy
Compatibility: available in Apache 2.0.44 and later

ThePROXYBADHEADER directive determines the behaviour ofMOD PROXY if it receives syntactically invalid header
lines (i.e. containing no colon). The following arguments are possible:

IsError Abort the request and end up with a 502 (Bad Gateway) response. This is the default behaviour.

Ignore Treat bad header lines as if they weren’t sent.

StartBody When receiving the first bad header line, finish reading the headers and treat the remainder as body.
This helps to work around buggy backend servers which forget to insert an empty line between the headers and
the body.

ProxyBlock Directive

Description: Words, hosts, or domains that are banned from being proxied
Syntax: ProxyBlock *|word|host|domain [word|host|domain] ...
Context: server config, virtual host
Status: Extension
Module: modproxy

The PROXYBLOCK directive specifies a list of words, hosts and/or domains, separated by spaces. HTTP, HTTPS,
and FTP document requests to sites whose names contain matched words, hosts or domains areblockedby the proxy
server. The proxy module will also attempt to determine IP addresses of list items which may be hostnames during
startup, and cache them for match test as well. That may slow down the startup time of the server.

Example
ProxyBlock joes-garage.com some-host.co.uk rocky.wotsamattau.edu

484 CHAPTER 10. APACHE MODULES

rocky.wotsamattau.edu would also be matched if referenced by IP address.

Note thatwotsamattau would also be sufficient to matchwotsamattau.edu .

Note also that

ProxyBlock *

blocks connections to all sites.

ProxyDomain Directive

Description: Default domain name for proxied requests
Syntax: ProxyDomain Domain
Context: server config, virtual host
Status: Extension
Module: modproxy

This directive is only useful for Apache proxy servers within intranets. ThePROXYDOMAIN directive specifies the
default domain which the apache proxy server will belong to. If a request to a host without a domain name is encoun-
tered, a redirection response to the same host with the configured Domain appended will be generated.

Example
ProxyRemote * http://firewall.mycompany.com:81
NoProxy .mycompany.com 192.168.112.0/21

ProxyDomain .mycompany.com

ProxyErrorOverride Directive

Description: Override error pages for proxied content
Syntax: ProxyErrorOverride On|Off
Default: ProxyErrorOverride Off
Context: server config, virtual host
Status: Extension
Module: modproxy
Compatibility: Available in version 2.0 and later

This directive is useful for reverse-proxy setups, where you want to have a common look and feel on the error pages
seen by the end user. This also allows for included files (via modinclude’s SSI) to get the error code and act ac-
cordingly (default behavior would display the error page of the proxied server, turning this on shows the SSI Error
message).

ProxyIOBufferSize Directive

Description: Determine size of internal data throughput buffer
Syntax: ProxyIOBufferSize bytes
Default: ProxyIOBufferSize 8192
Context: server config, virtual host
Status: Extension
Module: modproxy

10.43. APACHE MODULE MOD PROXY 485

ThePROXYIOBUFFERSIZE directive adjusts the size of the internal buffer, which is used as a scratchpad for the data
between input and output. The size must be less or equal8192 .

In almost every case there’s no reason to change that value.

ProxyMatch Directive

Description: Container for directives applied to regular-expression-matched proxied resources
Syntax: <ProxyMatch regex > ... </ProxyMatch >
Context: server config, virtual host
Status: Extension
Module: modproxy

The<PROXYMATCH> directive is identical to the<PROXY> directive, except it matches URLs using regular ex-
pressions.

ProxyMaxForwards Directive

Description: Maximium number of proxies that a request can be forwarded through
Syntax: ProxyMaxForwards number
Default: ProxyMaxForwards 10
Context: server config, virtual host
Status: Extension
Module: modproxy
Compatibility: Available in Apache 2.0 and later

ThePROXYMAX FORWARDSdirective specifies the maximum number of proxies through which a request may pass,
if there’s noMax-Forwards header supplied with the request. This is set to prevent infinite proxy loops, or a DoS
attack.

Example
ProxyMaxForwards 15

ProxyPass Directive

Description: Maps remote servers into the local server URL-space
Syntax: ProxyPass [path] !|url
Context: server config, virtual host, directory
Status: Extension
Module: modproxy

This directive allows remote servers to be mapped into the space of the local server; the local server does not act as
a proxy in the conventional sense, but appears to be a mirror of the remote server. path is the name of a local virtual
path; url is a partial URL for the remote server and cannot include a query string.

Suppose the local server has addresshttp://example.com/ ; then

ProxyPass /mirror/foo/ http://backend.example.com/

will cause a local request forhttp://example.com/mirror/foo/bar to be internally converted into a proxy
request tohttp://backend.example.com/bar .

The! directive is useful in situations where you don’t want to reverse-proxy a subdirectory,e.g.

486 CHAPTER 10. APACHE MODULES

ProxyPass /mirror/foo/i !

ProxyPass /mirror/foo http://backend.example.com

will proxy all requests to/mirror/foo to backend.example.com exceptrequests made to/mirror/foo/i .

=⇒Note
Order is important. you need to put the exclusionsbeforethe general proxypass directive.

When used inside a<LOCATION> section, the first argument is ommitted and the local directory is obtained from the
<LOCATION>.

If you require a more flexible reverse-proxy configuration, see theREWRITERULE directive with the[P] flag.

ProxyPassReverse Directive

Description: Adjusts the URL in HTTP response headers sent from a reverse proxied server
Syntax: ProxyPassReverse [path] url
Context: server config, virtual host, directory
Status: Extension
Module: modproxy

This directive lets Apache adjust the URL in theLocation , Content-Location andURI headers on HTTP
redirect responses. This is essential when Apache is used as a reverse proxy to avoid by-passing the reverse proxy
because of HTTP redirects on the backend servers which stay behind the reverse proxy.

path is the name of a local virtual path. url is a partial URL for the remote server - the same way they are used for the
PROXYPASS directive.

For example, suppose the local server has addresshttp://example.com/ ; then

ProxyPass /mirror/foo/ http://backend.example.com/

ProxyPassReverse /mirror/foo/ http://backend.example.com/

will not only cause a local request for thehttp://example.com/mirror/foo/bar to be internally
converted into a proxy request tohttp://backend.example.com/bar (the functionality ProxyPass
provides here). It also takes care of redirects the serverbackend.example.com sends: when
http://backend.example.com/bar is redirected by him tohttp://backend.example.com/quux
Apache adjusts this tohttp://example.com/mirror/foo/quux before forwarding the HTTP redirect re-
sponse to the client. Note that the hostname used for constructing the URL is chosen in respect to the setting of the
USECANONICAL NAME directive.

Note that thisPROXYPASSREVERSE directive can also be used in conjunction with the proxy pass-through feature
(RewriteRule ... [P]) from MOD REWRITE because its doesn’t depend on a correspondingPROXYPASS

directive.

When used inside a<LOCATION> section, the first argument is ommitted and the local directory is obtained from the
<LOCATION>.

10.43. APACHE MODULE MOD PROXY 487

ProxyPreserveHost Directive

Description: Use incoming Host HTTP request header for proxy request
Syntax: ProxyPreserveHost On|Off
Default: ProxyPreserveHost Off
Context: server config, virtual host
Status: Extension
Module: modproxy
Compatibility: Available in Apache 2.0.31 and later.

When enabled, this option will pass the Host: line from the incoming request to the proxied host, instead of the
hostname specified in the proxypass line.

This option should normally be turnedOff . It is mostly useful in special configurations like proxied mass name-based
virtual hosting, where the original Host header needs to be evaluated by the backend server.

ProxyReceiveBufferSize Directive

Description: Network buffer size for proxied HTTP and FTP connections
Syntax: ProxyReceiveBufferSize bytes
Default: ProxyReceiveBufferSize 0
Context: server config, virtual host
Status: Extension
Module: modproxy

ThePROXYRECEIVEBUFFERSIZE directive specifies an explicit (TCP/IP) network buffer size for proxied HTTP and
FTP connections, for increased throughput. It has to be greater than512 or set to0 to indicate that the system’s
default buffer size should be used.

Example
ProxyReceiveBufferSize 2048

ProxyRemote Directive

Description: Remote proxy used to handle certain requests
Syntax: ProxyRemote match remote-server
Context: server config, virtual host
Status: Extension
Module: modproxy

This defines remote proxies to this proxy. match is either the name of a URL-scheme that the remote server supports,
or a partial URL for which the remote server should be used, or* to indicate the server should be contacted for all
requests. remote-server is a partial URL for the remote server. Syntax:

remote-server = scheme://hostname[:port]

scheme is effectively the protocol that should be used to communicate with the remote server; onlyhttp is supported
by this module.

Example
ProxyRemote http://goodguys.com/ http://mirrorguys.com:8000
ProxyRemote * http://cleversite.com

ProxyRemote ftp http://ftpproxy.mydomain.com:8080

488 CHAPTER 10. APACHE MODULES

In the last example, the proxy will forward FTP requests, encapsulated as yet another HTTP proxy request, to another
proxy which can handle them.

This option also supports reverse proxy configuration - a backend webserver can be embedded within a virtualhost
URL space even if that server is hidden by another forward proxy.

ProxyRemoteMatch Directive

Description: Remote proxy used to handle requests matched by regular expressions
Syntax: ProxyRemoteMatch regex remote-server
Context: server config, virtual host
Status: Extension
Module: modproxy

The PROXYREMOTEMATCH is identical to thePROXYREMOTE directive, except the first argument is a regular ex-
pression match against the requested URL.

ProxyRequests Directive

Description: Enables forward (standard) proxy requests
Syntax: ProxyRequests On|Off
Default: ProxyRequests Off
Context: server config, virtual host
Status: Extension
Module: modproxy

This allows or prevents Apache from functioning as a forward proxy server. (Setting ProxyRequests toOff does not
disable use of thePROXYPASS directive.)

In a typical reverse proxy configuration, this option should be set toOff .

In order to get the functionality of proxying HTTP or FTP sites, you need alsoMOD PROXY HTTP or MOD PROXY FTP

(or both) present in the server.

! Warning
Do not enable proxying withPROXYREQUESTSuntil you have secured your server. Open
proxy servers are dangerous both to your network and to the Internet at large.

ProxyTimeout Directive

Description: Network timeout for proxied requests
Syntax: ProxyTimeout seconds
Default: ProxyTimeout 300
Context: server config, virtual host
Status: Extension
Module: modproxy
Compatibility: Available in Apache 2.0.31 and later

This directive allows a user to specifiy a timeout on proxy requests. This is useful when you have a slow/buggy
appserver which hangs, and you would rather just return a timeout and fail gracefully instead of waiting however long
it takes the server to return.

10.43. APACHE MODULE MOD PROXY 489

ProxyVia Directive

Description: Information provided in theVia HTTP response header for proxied requests
Syntax: ProxyVia On|Off|Full|Block
Default: ProxyVia Off
Context: server config, virtual host
Status: Extension
Module: modproxy

This directive controls the use of theVia: HTTP header by the proxy. Its intended use is to control the flow of of
proxy requests along a chain of proxy servers. See RFC 261624 (HTTP/1.1), section 14.45 for an explanation ofVia:
header lines.

• If set toOff , which is the default, no special processing is performed. If a request or reply contains aVia:
header, it is passed through unchanged.

• If set toOn, each request and reply will get aVia: header line added for the current host.

• If set toFull , each generatedVia: header line will additionally have the Apache server version shown as a
Via: comment field.

• If set toBlock , every proxy request will have all itsVia: header lines removed. No newVia: header will
be generated.

24http://www.ietf.org/rfc/rfc2616.txt

http://www.ietf.org/rfc/rfc2616.txt

490 CHAPTER 10. APACHE MODULES

10.44 Apache Module modproxy connect

Description: MOD PROXY extension forCONNECTrequest handling
Status: Extension
ModuleIdentifier: proxyconnectmodule
SourceFile: proxyconnect.c

Summary

This modulerequiresthe service ofMOD PROXY. It provides support for theCONNECTHTTP method. This method
is mainly used to tunnel SSL requests through proxy servers.

Thus, in order to get the ability of handlingCONNECTrequests,MOD PROXY andMOD PROXY CONNECThave to be
present in the server.

! Warning
Do not enable proxying until you have secured your server (p.477) . Open proxy servers are
dangerous both to your network and to the Internet at large.

DirectivesThis module provides no directives.

See also

• ALLOWCONNECT

• MOD PROXY

10.45. APACHE MODULE MOD PROXY FTP 491

10.45 Apache Module modproxy ftp

Description: FTP support module forMOD PROXY

Status: Extension
ModuleIdentifier: proxyftp module
SourceFile: proxyftp.c

Summary

This modulerequiresthe service ofMOD PROXY. It provides support for the proxying FTP sites.

Thus, in order to get the ability of handling FTP proxy requests,MOD PROXY andMOD PROXY FTPhave to be present
in the server.

! Warning
Do not enable proxying until you have secured your server (p.477) . Open proxy servers are
dangerous both to your network and to the Internet at large.

DirectivesThis module provides no directives.

See also

• MOD PROXY

492 CHAPTER 10. APACHE MODULES

10.46 Apache Module modproxy http

Description: HTTP support module forMOD PROXY

Status: Extension
ModuleIdentifier: proxyhttp module
SourceFile: proxyhttp.c

Summary

This modulerequires the service ofMOD PROXY. It provides the features used for proxying HTTP requests.
MOD PROXY HTTP supports HTTP/0.9, HTTP/1.0 and HTTP/1.1. It doesnot provide any caching abilities. If you
want to set up a caching proxy, you might want to use the additional service of theMOD CACHE module.

Thus, in order to get the ability of handling HTTP proxy requests,MOD PROXY andMOD PROXY HTTP have to be
present in the server.

! Warning
Do not enable proxying until you have secured your server (p.477) . Open proxy servers are
dangerous both to your network and to the Internet at large.

DirectivesThis module provides no directives.

See also

• MOD PROXY

• MOD PROXY CONNECT

10.47. APACHE MODULE MOD REWRITE 493

10.47 Apache Module modrewrite

Description: Provides a rule-based rewriting engine to rewrite requested URLs on the fly
Status: Extension
ModuleIdentifier: rewritemodule
SourceFile: modrewrite.c
Compatibility: Available in Apache 1.3 and later

Summary

“The great thing about modrewrite is it gives you all the configurability and flexibility of Sendmail.
The downside to modrewrite is that it gives you all the configurability and flexibility of Sendmail.”

– Brian Behlendorf
Apache Group

“ Despite the tons of examples and docs, modrewrite is voodoo. Damned cool voodoo, but still
voodoo. ”

– Brian Moore
bem@news.cmc.net

Welcome to modrewrite, the Swiss Army Knife of URL manipulation!

This module uses a rule-based rewriting engine (based on a regular-expression parser) to rewrite requested URLs on
the fly. It supports an unlimited number of rules and an unlimited number of attached rule conditions for each rule to
provide a really flexible and powerful URL manipulation mechanism. The URL manipulations can depend on various
tests, for instance server variables, environment variables, HTTP headers, time stamps and even external database
lookups in various formats can be used to achieve a really granular URL matching.

This module operates on the full URLs (including the path-info part) both in per-server context (httpd.conf) and
per-directory context (.htaccess) and can even generate query-string parts on result. The rewritten result can lead
to internal sub-processing, external request redirection or even to an internal proxy throughput.

But all this functionality and flexibility has its drawback: complexity. So don’t expect to understand this entire module
in just one day.

This module was invented and originally written in April 1996 and gifted exclusively to the The Apache Group in July
1997 by

Ralf S. Engelschall 25

rse@engelschall.com 26

www.engelschall.com 27

Directives

• RewriteBase

• RewriteCond

• RewriteEngine

• RewriteLock

• RewriteLog

• RewriteLogLevel

25http://www.engelschall.com/
26mailto:rse@engelschall.com
27http://www.engelschall.com/

http://www.engelschall.com/
mailto:rse@engelschall.com
http://www.engelschall.com/

494 CHAPTER 10. APACHE MODULES

• RewriteMap

• RewriteOptions

• RewriteRule

Internal Processing

The internal processing of this module is very complex but needs to be explained once even to the average user to
avoid common mistakes and to let you exploit its full functionality.

API Phases

First you have to understand that when Apache processes a HTTP request it does this in phases. A hook for each of
these phases is provided by the Apache API. Modrewrite uses two of these hooks: the URL-to-filename translation
hook which is used after the HTTP request has been read but before any authorization starts and the Fixup hook which
is triggered after the authorization phases and after the per-directory config files (.htaccess) have been read, but
before the content handler is activated.

So, after a request comes in and Apache has determined the corresponding server (or virtual server) the rewriting
engine starts processing of all modrewrite directives from the per-server configuration in the URL-to-filename phase.
A few steps later when the final data directories are found, the per-directory configuration directives of modrewrite
are triggered in the Fixup phase. In both situations modrewrite rewrites URLs either to new URLs or to filenames,
although there is no obvious distinction between them. This is a usage of the API which was not intended to be this
way when the API was designed, but as of Apache 1.x this is the only way modrewrite can operate. To make this
point more clear remember the following two points:

1. Although modrewrite rewrites URLs to URLs, URLs to filenames and even filenames to filenames, the API
currently provides only a URL-to-filename hook. In Apache 2.0 the two missing hooks will be added to make
the processing more clear. But this point has no drawbacks for the user, it is just a fact which should be
remembered: Apache does more in the URL-to-filename hook than the API intends for it.

2. Unbelievably modrewrite provides URL manipulations in per-directory context,i.e., within .htaccess files,
although these are reached a very long time after the URLs have been translated to filenames. It has to be this
way because.htaccess files live in the filesystem, so processing has already reached this stage. In other
words: According to the API phases at this time it is too late for any URL manipulations. To overcome this
chicken and egg problem modrewrite uses a trick: When you manipulate a URL/filename in per-directory
context modrewrite first rewrites the filename back to its corresponding URL (which is usually impossible, but
see theRewriteBase directive below for the trick to achieve this) and then initiates a new internal sub-request
with the new URL. This restarts processing of the API phases.

Again modrewrite tries hard to make this complicated step totally transparent to the user, but you should remem-
ber here: While URL manipulations in per-server context are really fast and efficient, per-directory rewrites are
slow and inefficient due to this chicken and egg problem. But on the other hand this is the only way modrewrite
can provide (locally restricted) URL manipulations to the average user.

Don’t forget these two points!

Ruleset Processing

Now when modrewrite is triggered in these two API phases, it reads the configured rulesets from its configuration
structure (which itself was either created on startup for per-server context or during the directory walk of the Apache
kernel for per-directory context). Then the URL rewriting engine is started with the contained ruleset (one or more

10.47. APACHE MODULE MOD REWRITE 495

rules together with their conditions). The operation of the URL rewriting engine itself is exactly the same for both
configuration contexts. Only the final result processing is different.

The order of rules in the ruleset is important because the rewriting engine processes them in a special (and not very
obvious) order. The rule is this: The rewriting engine loops through the ruleset rule by rule (REWRITERULE directives)
and when a particular rule matches it optionally loops through existing corresponding conditions (RewriteCond
directives). For historical reasons the conditions are given first, and so the control flow is a little bit long-winded. See
Figure 1 for more details.

[Image not coverted]
Figure 1:The control flow through the rewriting ruleset

As you can see, first the URL is matched against thePatternof each rule. When it fails modrewrite immediately stops
processing this rule and continues with the next rule. If thePatternmatches, modrewrite looks for corresponding
rule conditions. If none are present, it just substitutes the URL with a new value which is constructed from the string
Substitutionand goes on with its rule-looping. But if conditions exist, it starts an inner loop for processing them in
the order that they are listed. For conditions the logic is different: we don’t match a pattern against the current URL.
Instead we first create a stringTestStringby expanding variables, back-references, map lookups,etc. and then we try
to matchCondPatternagainst it. If the pattern doesn’t match, the complete set of conditions and the corresponding
rule fails. If the pattern matches, then the next condition is processed until no more conditions are available. If all
conditions match, processing is continued with the substitution of the URL withSubstitution.

Quoting Special Characters

As of Apache 1.3.20, special characters inTestStringandSubstitutionstrings can be escaped (that is, treated as normal
characters without their usual special meaning) by prefixing them with a slosh (’\’) character. In other words, you
can include an actual dollar-sign character in aSubstitutionstring by using ’\$’; this keeps modrewrite from trying to
treat it as a backreference.

Regex Back-Reference Availability

One important thing here has to be remembered: Whenever you use parentheses inPatternor in one of theCond-
Pattern, back-references are internally created which can be used with the strings$N and%N(see below). These are
available for creating the stringsSubstitutionandTestString. Figure 2 shows to which locations the back-references
are transfered for expansion.

[Image not coverted]
Figure 2: The back-reference flow through a rule.

We know this was a crash course on modrewrite’s internal processing. But you will benefit from this knowledge when
reading the following documentation of the available directives.

Environment Variables

This module keeps track of two additional (non-standard) CGI/SSI environment variables namedSCRIPT URLand
SCRIPT URI. These contain thelogical Web-view to the current resource, while the standard CGI/SSI variables
SCRIPT NAMEandSCRIPT FILENAMEcontain thephysicalSystem-view.

Notice: These variables hold the URI/URLas they were initially requested, i.e., beforeany rewriting. This is important
because the rewriting process is primarily used to rewrite logical URLs to physical pathnames.

496 CHAPTER 10. APACHE MODULES

Example

SCRIPT_NAME=/sw/lib/w3s/tree/global/u/rse/.www/index.html
SCRIPT_FILENAME=/u/rse/.www/index.html
SCRIPT_URL=/u/rse/
SCRIPT_URI=http://en1.engelschall.com/u/rse/

Practical Solutions

We also have an URL Rewriting Guide (p.86) available, which provides a collection of practical solutions for URL-
based problems. There you can find real-life rulesets and additional information about modrewrite.

RewriteBase Directive

Description: Sets the base URL for per-directory rewrites
Syntax: RewriteBase URL-path
Default: See usage for information.
Context: directory, .htaccess
Override: FileInfo
Status: Extension
Module: modrewrite

The REWRITEBASE directive explicitly sets the base URL for per-directory rewrites. As you will see below,
REWRITERULE can be used in per-directory config files (.htaccess). There it will act locally, i.e., the local
directory prefix is stripped at this stage of processing and your rewriting rules act only on the remainder. At the end it
is automatically added back to the path. The default setting is;REWRITEBASE physical-directory-path

When a substitution occurs for a new URL, this module has to re-inject the URL into the server processing. To be
able to do this it needs to know what the corresponding URL-prefix or URL-base is. By default this prefix is the
corresponding filepath itself.But at most websites URLs are NOT directly related to physical filename paths, so
this assumption will usually be wrong! There you have to use theRewriteBase directive to specify the correct
URL-prefix.

=⇒If your webserver’s URLs arenot directly related to physical file paths, you have to use
REWRITEBASE in every.htaccess files where you want to useREWRITERULE directives.

For example, assume the following per-directory config file:

#
/abc/def/.htaccess -- per-dir config file for directory /abc/def
Remember: /abc/def is the physical path of /xyz, i.e., the server
has a ’Alias /xyz /abc/def’ directive e.g.
#

RewriteEngine On

let the server know that we were reached via /xyz and not
via the physical path prefix /abc/def
RewriteBase /xyz

now the rewriting rules
RewriteRule ˆoldstuff\.html$ newstuff.html

10.47. APACHE MODULE MOD REWRITE 497

In the above example, a request to/xyz/oldstuff.html gets correctly rewritten to the physical file
/abc/def/newstuff.html .

=⇒For Apache Hackers
The following list gives detailed information about the internal processing steps:

Request:
/xyz/oldstuff.html

Internal Processing:
/xyz/oldstuff.html -> /abc/def/oldstuff.html (per-server Alias)
/abc/def/oldstuff.html -> /abc/def/newstuff.html (per-dir RewriteRule)
/abc/def/newstuff.html -> /xyz/newstuff.html (per-dir RewriteBase)
/xyz/newstuff.html -> /abc/def/newstuff.html (per-server Alias)

Result:
/abc/def/newstuff.html

This seems very complicated but is the correct Apache internal processing, because the per-
directory rewriting comes too late in the process. So, when it occurs the (rewritten) request
has to be re-injected into the Apache kernel! BUT: While this seems like a serious overhead, it
really isn’t, because this re-injection happens fully internally to the Apache server and the same
procedure is used by many other operations inside Apache. So, you can be sure the design and
implementation is correct.

RewriteCond Directive

Description: Defines a condition under which rewriting will take place
Syntax: RewriteCond TestString CondPattern
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modrewrite

The REWRITECOND directive defines a rule condition. Precede aREWRITERULE directive with one or more
REWRITECOND directives. The following rewriting rule is only used if its pattern matches the current state of the
URI and if these additional conditions apply too.

TestStringis a string which can contains the following expanded constructs in addition to plain text:

• RewriteRule backreferences: These are backreferences of the form

$N

(0 <= N <= 9) which provide access to the grouped parts (parenthesis!) of the pattern from the corresponding
RewriteRule directive (the one following the current bunch ofRewriteCond directives).

• RewriteCond backreferences: These are backreferences of the form

%N

(1 <= N <= 9) which provide access to the grouped parts (parentheses!) of the pattern from the last matched
RewriteCond directive in the current bunch of conditions.

• RewriteMap expansions: These are expansions of the form

${mapname:key|default }
See the documentation for RewriteMap for more details.

498 CHAPTER 10. APACHE MODULES

• Server-Variables: These are variables of the form

%{ NAME OF VARIABLE }
whereNAME OF VARIABLEcan be a string taken from the following list:

HTTP headers: connection & request:
HTTP USERAGENT
HTTP REFERER
HTTP COOKIE
HTTP FORWARDED
HTTP HOST
HTTP PROXY CONNECTION
HTTP ACCEPT

REMOTE ADDR
REMOTE HOST
REMOTE USER
REMOTE IDENT
REQUESTMETHOD
SCRIPTFILENAME
PATH INFO
QUERY STRING
AUTH TYPE

server internals: system stuff: specials:
DOCUMENT ROOT
SERVERADMIN
SERVERNAME
SERVERADDR
SERVERPORT
SERVERPROTOCOL
SERVERSOFTWARE

TIME YEAR
TIME MON
TIME DAY
TIME HOUR
TIME MIN
TIME SEC
TIME WDAY
TIME

API VERSION
THE REQUEST
REQUESTURI
REQUESTFILENAME
IS SUBREQ

=⇒These variables all correspond to the similarly named HTTP MIME-headers, C variables of
the Apache server orstruct tm fields of the Unix system. Most are documented elsewhere
in the Manual or in the CGI specification. Those that are special to modrewrite include:

IS SUBREQWill contain the text" true" if the request currently being processed is a sub-
request," false" otherwise. Sub-requests may be generated by modules that need to
resolve additional files or URIs in order to complete their tasks.

API VERSION This is the version of the Apache module API (the internal interface between
server and module) in the current httpd build, as defined in include/apmmn.h. The
module API version corresponds to the version of Apache in use (in the release version
of Apache 1.3.14, for instance, it is 19990320:10), but is mainly of interest to module
authors.

THE REQUESTThe full HTTP request line sent by the browser to the server (e.g.,"GET
/index.html HTTP/1.1"). This does not include any additional headers sent by
the browser.

REQUESTURI The resource requested in the HTTP request line. (In the example above, this
would be" /index.html" .)

REQUESTFILENAME The full local filesystem path to the file or script matching the request.

Special Notes:

1. The variables SCRIPTFILENAME and REQUESTFILENAME contain the same value,i.e., the value of the
filename field of the internalrequest rec structure of the Apache server. The first name is just the
commonly known CGI variable name while the second is the consistent counterpart to REQUESTURI (which
contains the value of theuri field of request rec).

2. There is the special format:%{ENV:variable } wherevariable can be any environment variable. This is
looked-up via internal Apache structures and (if not found there) viagetenv() from the Apache server pro-
cess.

10.47. APACHE MODULE MOD REWRITE 499

3. There is the special format:%{HTTP:header } whereheadercan be any HTTP MIME-header name. This
is looked-up from the HTTP request. Example:%{HTTP:Proxy-Connection } is the value of the HTTP
header “Proxy-Connection: ”.

4. There is the special format%{LA-U:variable } for look-aheads which perform an internal (URL-based) sub-
request to determine the final value ofvariable. Use this when you want to use a variable for rewriting which
is actually set later in an API phase and thus is not available at the current stage. For instance when you want
to rewrite according to theREMOTEUSERvariable from within the per-server context (httpd.conf file) you
have to use%{LA-U:REMOTEUSER} because this variable is set by the authorization phases which comeafter
the URL translation phase where modrewrite operates. On the other hand, because modrewrite implements its
per-directory context (.htaccess file) via the Fixup phase of the API and because the authorization phases
comebeforethis phase, you just can use%{REMOTEUSER} there.

5. There is the special format:%{LA-F:variable } which performs an internal (filename-based) sub-request to
determine the final value ofvariable. Most of the time this is the same as LA-U above.

CondPatternis the condition pattern,i.e., a regular expression which is applied to the current instance of theTestString,
i.e., TestStringis evaluated and then matched againstCondPattern.

Remember: CondPatternis aperl compatible regular expressionwith some additions:

1. You can prefix the pattern string with a ’! ’ character (exclamation mark) to specify anon-matching pattern.

2. There are some special variants ofCondPatterns. Instead of real regular expression strings you can also use one
of the following:

• ’<CondPattern’ (is lexically lower)
Treats theCondPatternas a plain string and compares it lexically toTestString. True if TestStringis
lexically lower thanCondPattern.

• ’>CondPattern’ (is lexically greater)
Treats theCondPatternas a plain string and compares it lexically toTestString. True if TestStringis
lexically greater thanCondPattern.

• ’=CondPattern’ (is lexically equal)
Treats theCondPatternas a plain string and compares it lexically toTestString. True if TestStringis lexi-
cally equal toCondPattern, i.e the two strings are exactly equal (character by character). IfCondPattern
is just"" (two quotation marks) this comparesTestStringto the empty string.

• ’ -d’ (is directory)
Treats theTestStringas a pathname and tests if it exists and is a directory.

• ’ -f’ (is regularfile)
Treats theTestStringas a pathname and tests if it exists and is a regular file.

• ’ -s’ (is regular file withsize)
Treats theTestStringas a pathname and tests if it exists and is a regular file with size greater than zero.

• ’ -l’ (is symbolic link)
Treats theTestStringas a pathname and tests if it exists and is a symbolic link.

• ’ -F’ (is existing file via subrequest)
Checks ifTestStringis a valid file and accessible via all the server’s currently-configured access controls for
that path. This uses an internal subrequest to determine the check, so use it with care because it decreases
your servers performance!

• ’ -U’ (is existing URL via subrequest)
Checks ifTestStringis a valid URL and accessible via all the server’s currently-configured access controls
for that path. This uses an internal subrequest to determine the check, so use it with care because it
decreases your server’s performance!

500 CHAPTER 10. APACHE MODULES

=⇒Notice
All of these tests can also be prefixed by an exclamation mark (’!’) to negate their meaning.

Additionally you can set special flags forCondPatternby appending

[flags]

as the third argument to theRewriteCond directive.Flags is a comma-separated list of the following flags:

• ’nocase|NC ’ (no case)
This makes the test case-insensitive,i.e., there is no difference between ’A-Z’ and ’a-z’ both in the expanded
TestStringand theCondPattern. This flag is effective only for comparisons betweenTestStringandCondPattern.
It has no effect on filesystem and subrequest checks.

• ’ornext|OR ’ (or next condition)
Use this to combine rule conditions with a local OR instead of the implicit AND. Typical example:

RewriteCond %{REMOTE_HOST} ˆhost1.* [OR]
RewriteCond %{REMOTE_HOST} ˆhost2.* [OR]
RewriteCond %{REMOTE_HOST} ˆhost3.*
RewriteRule ...some special stuff for any of these hosts...

Without this flag you would have to write the cond/rule three times.

Example:

To rewrite the Homepage of a site according to the “User-Agent: ” header of the request, you can use the following:

RewriteCond %{HTTP_USER_AGENT} ˆMozilla.*
RewriteRule ˆ/$ /homepage.max.html [L]

RewriteCond %{HTTP_USER_AGENT} ˆLynx.*
RewriteRule ˆ/$ /homepage.min.html [L]

RewriteRule ˆ/$ /homepage.std.html [L]

Interpretation: If you use Netscape Navigator as your browser (which identifies itself as ’Mozilla’), then you get the
max homepage, which includes Frames,etc. If you use the Lynx browser (which is Terminal-based), then you get the
min homepage, which contains no images, no tables,etc. If you use any other browser you get the standard homepage.

RewriteEngine Directive

Description: Enables or disables runtime rewriting engine
Syntax: RewriteEngine on|off
Default: RewriteEngine off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modrewrite

TheREWRITEENGINE directive enables or disables the runtime rewriting engine. If it is set tooff this module does
no runtime processing at all. It does not even update theSCRIPT URxenvironment variables.

10.47. APACHE MODULE MOD REWRITE 501

Use this directive to disable the module instead of commenting out all theREWRITERULE directives!

Note that, by default, rewrite configurations are not inherited. This means that you need to have aRewriteEngine
on directive for each virtual host in which you wish to use it.

RewriteLock Directive

Description: Sets the name of the lock file used forREWRITEMAP synchronization
Syntax: RewriteLock file-path
Context: server config
Status: Extension
Module: modrewrite

This directive sets the filename for a synchronization lockfile which modrewrite needs to communicate with
REWRITEMAP programs. Set this lockfile to a local path (not on a NFS-mounted device) when you want to use a
rewriting map-program. It is not required for other types of rewriting maps.

RewriteLog Directive

Description: Sets the name of the file used for logging rewrite engine processing
Syntax: RewriteLog file-path
Context: server config, virtual host
Status: Extension
Module: modrewrite

TheREWRITELOG directive sets the name of the file to which the server logs any rewriting actions it performs. If the
name does not begin with a slash (’/ ’) then it is assumed to be relative to theServer Root. The directive should occur
only once per server config.

=⇒To disable the logging of rewriting actions it is not recommended to setFilename to
/dev/null , because although the rewriting engine does not then output to a logfile it still
creates the logfile output internally.This will slow down the server with no advantage to the
administrator! To disable logging either remove or comment out theREWRITELOG directive
or useRewriteLogLevel 0 !

=⇒Security

See the Apache Security Tips (p.41) document for details on why your security could be
compromised if the directory where logfiles are stored is writable by anyone other than the
user that starts the server.

Example
RewriteLog "/usr/local/var/apache/logs/rewrite.log"

RewriteLogLevel Directive

Description: Sets the verbosity of the log file used by the rewrite engine
Syntax: RewriteLogLevel Level
Default: RewriteLogLevel 0
Context: server config, virtual host
Status: Extension
Module: modrewrite

502 CHAPTER 10. APACHE MODULES

The REWRITELOGLEVEL directive sets the verbosity level of the rewriting logfile. The default level 0 means no
logging, while 9 or more means that practically all actions are logged.

To disable the logging of rewriting actions simply setLevelto 0. This disables all rewrite action logs.

=⇒Using a high value forLevelwill slow down your Apache server dramatically! Use the rewrit-
ing logfile at aLevelgreater than 2 only for debugging!

Example
RewriteLogLevel 3

RewriteMap Directive

Description: Defines a mapping function for key-lookup
Syntax: RewriteMap MapName MapType: MapSource
Context: server config, virtual host
Status: Extension
Module: modrewrite
Compatibility: The choice of different dbm types is available in Apache 2.0.41 and later

The REWRITEMAP directive defines aRewriting Mapwhich can be used inside rule substitution strings by the
mapping-functions to insert/substitute fields through a key lookup. The source of this lookup can be of various types.

TheMapNameis the name of the map and will be used to specify a mapping-function for the substitution strings of a
rewriting rule via one of the following constructs:

${ MapName: LookupKey}
${ MapName: LookupKey| DefaultValue}

When such a construct occurs the mapMapNameis consulted and the keyLookupKeyis looked-up. If the key is found,
the map-function construct is substituted bySubstValue. If the key is not found then it is substituted byDefaultValue
or by the empty string if noDefaultValuewas specified.

The following combinations forMapTypeandMapSourcecan be used:

• Standard Plain Text
MapType:txt , MapSource: Unix filesystem path to valid regular file

This is the standard rewriting map feature where theMapSourceis a plain ASCII file containing either blank
lines, comment lines (starting with a ’#’ character) or pairs like the following - one per line.

MatchingKey SubstValue

Example

##
map.txt -- rewriting map
##

Ralf.S.Engelschall rse # Bastard Operator From Hell
Mr.Joe.Average joe # Mr. Average

RewriteMap real-to-user txt:/path/to/file/map.txt

10.47. APACHE MODULE MOD REWRITE 503

• Randomized Plain Text
MapType:rnd , MapSource: Unix filesystem path to valid regular file

This is identical to the Standard Plain Text variant above but with a special post-processing feature: After
looking up a value it is parsed according to contained “| ” characters which have the meaning of “or”. In other
words they indicate a set of alternatives from which the actual returned value is chosen randomly. Although
this sounds crazy and useless, it was actually designed for load balancing in a reverse proxy situation where the
looked up values are server names. Example:

##
map.txt -- rewriting map
##

static www1|www2|www3|www4
dynamic www5|www6

RewriteMap servers rnd:/path/to/file/map.txt

• Hash File
MapType:dbm[= type] , MapSource: Unix filesystem path to valid regular file

Here the source is a binary format DBM file containing the same contents as aPlain Textformat file, but in a
special representation which is optimized for really fast lookups. Thetypecan be sdbm, gdbm, ndbm, or db
depending on compile-time settings (p.8) . If the type is ommitted, the compile-time default will be chosen.
You can create such a file with any DBM tool or with the following Perl script. Be sure to adjust it to create the
appropriate type of DBM. The example creates an NDBM file.

#!/path/to/bin/perl
##
txt2dbm -- convert txt map to dbm format
##

use NDBM_File;
use Fcntl;

($txtmap, $dbmmap) = @ARGV;

open(TXT, "<$txtmap") or die "Couldn’t open $txtmap!\n";
tie (%DB, ’NDBM_File’, $dbmmap,O_RDWR|O_TRUNC|O_CREAT, 0644)

or die "Couldn’t create $dbmmap!\n";

while (<TXT>) {
next if (/ˆ\s*#/ or /ˆ\s*$/);
$DB{$1} = $2 if (/ˆ\s*(\S+)\s+(\S+)/);

}

untie %DB;
close(TXT);

$ txt2dbm map.txt map.db

504 CHAPTER 10. APACHE MODULES

• Internal Function
MapType:int , MapSource: Internal Apache function

Here the source is an internal Apache function. Currently you cannot create your own, but the following func-
tions already exists:

– toupper:
Converts the looked up key to all upper case.

– tolower:
Converts the looked up key to all lower case.

– escape:
Translates special characters in the looked up key to hex-encodings.

– unescape:
Translates hex-encodings in the looked up key back to special characters.

• External Rewriting Program
MapType:prg , MapSource: Unix filesystem path to valid regular file

Here the source is a program, not a map file. To create it you can use the language of your choice,
but the result has to be a executable (i.e., either object-code or a script with the magic cookie trick
’#!/path/to/interpreter ’ as the first line).

This program is started once at startup of the Apache servers and then communicates with the rewriting engine
over itsstdin andstdout file-handles. For each map-function lookup it will receive the key to lookup as
a newline-terminated string onstdin . It then has to give back the looked-up value as a newline-terminated
string onstdout or the four-character string “NULL” if it fails (i.e., there is no corresponding value for the
given key). A trivial program which will implement a 1:1 map (i.e., key == value) could be:

#!/usr/bin/perl
$| = 1;
while (<STDIN>) {

...put here any transformations or lookups...
print $_;

}

But be very careful:

1. “Keep it simple, stupid” (KISS), because if this program hangs it will hang the Apache server when the
rule occurs.

2. Avoid one common mistake: never do buffered I/O onstdout ! This will cause a deadloop! Hence the
“$|=1 ” in the above example...

3. Use theREWRITELOCK directive to define a lockfile modrewrite can use to synchronize the communica-
tion to the program. By default no such synchronization takes place.

TheREWRITEMAP directive can occur more than once. For each mapping-function use oneREWRITEMAP directive
to declare its rewriting mapfile. While you cannotdeclarea map in per-directory context it is of course possible to
usethis map in per-directory context.

=⇒Note
For plain text and DBM format files the looked-up keys are cached in-core until themtime
of the mapfile changes or the server does a restart. This way you can have map-functions in
rules which are used forevery request. This is no problem, because the external lookup only
happens once!

10.47. APACHE MODULE MOD REWRITE 505

RewriteOptions Directive

Description: Sets some special options for the rewrite engine
Syntax: RewriteOptions Options
Default: RewriteOptions MaxRedirects=10
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modrewrite
Compatibility: MaxRedirects is available in Apache 2.0.45 and later

The REWRITEOPTIONS directive sets some special options for the current per-server or per-directory configuration.
TheOptionstrings can be one of the following:

inherit This forces the current configuration to inherit the configuration of the parent. In per-virtual-server context
this means that the maps, conditions and rules of the main server are inherited. In per-directory context this
means that conditions and rules of the parent directory’s.htaccess configuration are inherited.

MaxRedirects=number In order to prevent endless loops of internal redirects issued by per-directory
REWRITERULEs, MOD REWRITE aborts the request after reaching a maximum number of such redirects and
responds with an 500 Internal Server Error. If you really need more internal redirects than 10 per request, you
may increase the default to the desired value.

RewriteRule Directive

Description: Defines rules for the rewriting engine
Syntax: RewriteRule Pattern Substitution
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modrewrite
Compatibility: The cookie-flag is available in Apache 2.0.40 and later.

TheREWRITERULE directive is the real rewriting workhorse. The directive can occur more than once. Each directive
then defines one single rewriting rule. Thedefinition order of these rules isimportant , because this order is used
when applying the rules at run-time.

Patternis a perl compatible regular expression which gets applied to the current URL. Here “current” means the value
of the URL when this rule gets applied. This may not be the originally requested URL, because any number of rules
may already have matched and made alterations to it.

Some hints about the syntax of regular expressions:

506 CHAPTER 10. APACHE MODULES

=⇒
Text:

. Any single character
[chars] Character class: One of chars
[ˆchars] Character class: None of chars
text1|text2 Alternative: text1 or text2

Quantifiers:
? 0 or 1 of the preceding text
* 0 or N of the preceding text (N > 0)
+ 1 or N of the preceding text (N > 1)

Grouping:
(text) Grouping of text

(either to set the borders of an alternative or
for making backreferences where the Nth group can
be used on the RHS of a RewriteRule with $N)

Anchors:
ˆ Start of line anchor
$ End of line anchor

Escaping:
\char escape that particular char

(for instance to specify the chars ".[]()" etc.)

For more information about regular expressions have a look at the perl regular expression manpage (" perldoc
perlre28"). If you are interested in more detailed information about regular expressions and their variants (POSIX
regexetc.) have a look at the following dedicated book on this topic:

Mastering Regular Expressions
Jeffrey E.F. Friedl
Nutshell Handbook Series
O’Reilly & Associates, Inc. 1997
ISBN 1-56592-257-3

Additionally in modrewrite the NOT character (’! ’) is a possible pattern prefix. This gives you the ability to negate
a pattern; to say, for instance: “if the current URL doesNOT match this pattern”. This can be used for exceptional
cases, where it is easier to match the negative pattern, or as a last default rule.

=⇒Notice
When using the NOT character to negate a pattern you cannot have grouped wildcard parts
in the pattern. This is impossible because when the pattern does NOT match, there are no
contents for the groups. In consequence, if negated patterns are used, you cannot use$N in the
substitution string!

Substitutionof a rewriting rule is the string which is substituted for (or replaces) the original URL for whichPattern
matched. Beside plain text you can use

1. back-references$N to the RewriteRule pattern

2. back-references%Nto the last matched RewriteCond pattern

3. server-variables as in rule condition test-strings (%{VARNAME})

28http://www.perldoc.com/perl5.6.1/pod/perlre.html

http://www.perldoc.com/perl5.6.1/pod/perlre.html

10.47. APACHE MODULE MOD REWRITE 507

4. mapping-function calls (${mapname:key|default })

Back-references are$N (N=0..9) identifiers which will be replaced by the contents of theNth group of the matched
Pattern. The server-variables are the same as for theTestStringof aRewriteCond directive. The mapping-functions
come from theRewriteMap directive and are explained there. These three types of variables are expanded in the
order of the above list.

As already mentioned above, all the rewriting rules are applied to theSubstitution(in the order of definition in the
config file). The URL iscompletely replacedby theSubstitutionand the rewriting process goes on until there are no
more rules unless explicitly terminated by aL flag - see below.

There is a special substitution string named ’- ’ which means:NO substitution! Sounds silly? No, it is useful to
provide rewriting rules whichonly match some URLs but do no substitution,e.g., in conjunction with theC (chain)
flag to be able to have more than one pattern to be applied before a substitution occurs.

One more note: You can even create URLs in the substitution string containing a query string part. Just use a question
mark inside the substitution string to indicate that the following stuff should be re-injected into the QUERYSTRING.
When you want to erase an existing query string, end the substitution string with just the question mark.

=⇒Note
There is a special feature: When you prefix a substitution field with
http:// thishost[:thisport] then mod rewrite automatically strips it out. This auto-
reduction on implicit external redirect URLs is a useful and important feature when used in
combination with a mapping-function which generates the hostname part. Have a look at the
first example in the example section below to understand this.

=⇒Remember
An unconditional external redirect to your own server will not work with the prefix
http://thishost because of this feature. To achieve such a self-redirect, you have to
use theR-flag (see below).

Additionally you can set special flags forSubstitutionby appending

[flags]

as the third argument to theRewriteRule directive.Flags is a comma-separated list of the following flags:

• ’ redirect|R [=code]’ (force redirect)
PrefixSubstitutionwith http://thishost[:thisport]/ (which makes the new URL a URI) to force a
external redirection. If nocodeis given a HTTP response of 302 (MOVED TEMPORARILY) is used. If you
want to use other response codes in the range 300-400 just specify them as a number or use one of the following
symbolic names:temp (default),permanent , seeother . Use it for rules which should canonicalize the
URL and give it back to the client,e.g., translate “/˜ ” into “ /u/ ” or always append a slash to/u/ user, etc.

Note: When you use this flag, make sure that the substitution field is a valid URL! If not, you
are redirecting to an invalid location! And remember that this flag itself only prefixes the URL with
http://thishost[:thisport]/ , rewriting continues. Usually you also want to stop and do the redi-
rection immediately. To stop the rewriting you also have to provide the ’L’ flag.

• ’ forbidden|F ’ (force URL to beforbidden)
This forces the current URL to be forbidden,i.e., it immediately sends back a HTTP response of 403 (FORBID-
DEN). Use this flag in conjunction with appropriate RewriteConds to conditionally block some URLs.

• ’gone|G ’ (force URL to begone)
This forces the current URL to be gone,i.e., it immediately sends back a HTTP response of 410 (GONE). Use
this flag to mark pages which no longer exist as gone.

• ’proxy|P ’ (force proxy)
This flag forces the substitution part to be internally forced as a proxy request and immediately (i.e., rewriting

508 CHAPTER 10. APACHE MODULES

rule processing stops here) put through the proxy module (p.477) . You have to make sure that the substitution
string is a valid URI (e.g., typically starting withhttp:// hostname) which can be handled by the Apache
proxy module. If not you get an error from the proxy module. Use this flag to achieve a more powerful
implementation of the ProxyPass (p.477) directive, to map some remote stuff into the namespace of the local
server.

Notice: To use this functionality make sure you have the proxy module compiled into your Apache server
program. If you don’t know please check whethermod proxy.c is part of the “httpd -l ” output. If yes,
this functionality is available to modrewrite. If not, then you first have to rebuild the “httpd ” program with
mod proxy enabled.

• ’ last|L ’ (last rule)
Stop the rewriting process here and don’t apply any more rewriting rules. This corresponds to the Perllast
command or thebreak command from the C language. Use this flag to prevent the currently rewritten URL
from being rewritten further by following rules. For example, use it to rewrite the root-path URL (’/ ’) to a real
one,e.g., ’/e/www/ ’.

• ’next|N ’ (next round)
Re-run the rewriting process (starting again with the first rewriting rule). Here the URL to match is again not
the original URL but the URL from the last rewriting rule. This corresponds to the Perlnext command or the
continue command from the C language. Use this flag to restart the rewriting process,i.e., to immediately
go to the top of the loop.
But be careful not to create an infinite loop!

• ’chain|C ’ (chained with next rule)
This flag chains the current rule with the next rule (which itself can be chained with the following rule,etc.).
This has the following effect: if a rule matches, then processing continues as usual,i.e., the flag has no effect. If
the rule doesnot match, then all following chained rules are skipped. For instance, use it to remove the “.www”
part inside a per-directory rule set when you let an external redirect happen (where the “.www” part should not
to occur!).

• ’ type|T =MIME-type’ (force MIME type)
Force the MIME-type of the target file to beMIME-type. For instance, this can be used to simulate the
mod alias directive ScriptAlias which internally forces all files inside the mapped directory to have
a MIME type of “application/x-httpd-cgi ”.

• ’nosubreq|NS ’ (used only ifno internalsub-request)
This flag forces the rewriting engine to skip a rewriting rule if the current request is an internal sub-request.
For instance, sub-requests occur internally in Apache whenmod include tries to find out information about
possible directory default files (index.xxx). On sub-requests it is not always useful and even sometimes
causes a failure to if the complete set of rules are applied. Use this flag to exclude some rules.

Use the following rule for your decision: whenever you prefix some URLs with CGI-scripts to force them
to be processed by the CGI-script, the chance is high that you will run into problems (or even overhead) on
sub-requests. In these cases, use this flag.

• ’nocase|NC ’ (no case)
This makes thePatterncase-insensitive,i.e., there is no difference between ’A-Z’ and ’a-z’ whenPattern is
matched against the current URL.

• ’qsappend|QSA ’ (querystring append)
This flag forces the rewriting engine to append a query string part in the substitution string to the existing one
instead of replacing it. Use this when you want to add more data to the query string via a rewrite rule.

• ’noescape|NE ’ (no URI escaping of output)
This flag keeps modrewrite from applying the usual URI escaping rules to the result of a rewrite. Ordinarily,
special characters (such as ’%’, ’$’, ’;’, and so on) will be escaped into their hexcode equivalents (’%25’, ’%24’,
and ’%3B’, respectively); this flag prevents this from being done. This allows percent symbols to appear in the
output, as in

10.47. APACHE MODULE MOD REWRITE 509

RewriteRule /foo/(.*) /bar?arg=P1 \%3d$1 [R,NE]

which would turn ’/foo/zed ’ into a safe request for ’/bar?arg=P1=zed ’.

• ’passthrough|PT ’ (passthrough to next handler)
This flag forces the rewriting engine to set theuri field of the internalrequest rec structure to the value
of the filename field. This flag is just a hack to be able to post-process the output ofRewriteRule
directives byAlias , ScriptAlias , Redirect , etc. directives from other URI-to-filename translators.
A trivial example to show the semantics: If you want to rewrite/abc to /def via the rewriting engine of
mod rewrite and then/def to /ghi with mod alias :

RewriteRule ˆ/abc(.*) /def$1 [PT]

Alias /def /ghi

If you omit the PT flag then mod rewrite will do its job fine, i.e., it rewrites uri=/abc/... to
filename=/def/... as a full API-compliant URI-to-filename translator should do. Thenmod alias
comes and tries to do a URI-to-filename transition which will not work.

Note: You have to use this flag if you want to intermix directives of different modules which contain
URL-to-filename translators. The typical example is the use ofmod alias andmod rewrite ..

=⇒For Apache hackers
If the current Apache API had a filename-to-filename hook additionally to the URI-to-filename
hook then we wouldn’t need this flag! But without such a hook this flag is the only solution.
The Apache Group has discussed this problem and will add such a hook in Apache version 2.0.

• ’skip|S =num’ (skip next rule(s))
This flag forces the rewriting engine to skip the nextnumrules in sequence when the current rule matches. Use
this to make pseudo if-then-else constructs: The last rule of the then-clause becomesskip=N where N is the
number of rules in the else-clause. (This isnot the same as the ’chain—C’ flag!)

• ’env|E= VAR:VAL’ (setenvironment variable)
This forces an environment variable namedVAR to be set to the valueVAL, whereVAL can contain regexp
backreferences$N and%Nwhich will be expanded. You can use this flag more than once to set more than
one variable. The variables can be later dereferenced in many situations, but usually from within XSSI (via
<!--#echo var="VAR"-- >) or CGI (e.g. $ENV{’VAR’ }). Additionally you can dereference it in a
following RewriteCond pattern via%{ENV:VAR}. Use this to strip but remember information from URLs.

• ’cookie|CO= NAME:VAL:domain[:lifetime[:path]]’ (set cocookie)
This sets a cookie on the client’s browser. The cookie’s name is specified byNAMEand the value isVAL. The
domainfield is the domain of the cookie, such as ’.apache.org’,the optionallifetime is the lifetime of the cookie
in minutes, and the optionalpath is the path of the cookie

=⇒Note
Never forget thatPatternis applied to a complete URL in per-server configuration files.But in
per-directory configuration files, the per-directory prefix (which always is the same for a
specific directory!) is automatically removedfor the pattern matching and automatically
addedafter the substitution has been done.This feature is essential for many sorts of rewrit-
ing, because without this prefix stripping you have to match the parent directory which is not
always possible.
There is one exception: If a substitution string starts with “http:// ” then the directory prefix
will not be added and an external redirect or proxy throughput (if flagP is used!) is forced!

=⇒Note
To enable the rewriting engine for per-directory configuration files you need to set
“RewriteEngine On ” in these filesand “Options FollowSymLinks ” must be en-
abled. If your administrator has disabled override ofFollowSymLinks for a user’s direc-
tory, then you cannot use the rewriting engine. This restriction is needed for security reasons.

510 CHAPTER 10. APACHE MODULES

Here are all possible substitution combinations and their meanings:

Inside per-server configuration (httpd.conf)
for request “GET /somepath/pathinfo ”:

=⇒
Given Rule Resulting Substitution
-- ----------------------------------
ˆ/somepath(.*) otherpath$1 not supported, because invalid!

ˆ/somepath(.*) otherpath$1 [R] not supported, because invalid!

ˆ/somepath(.*) otherpath$1 [P] not supported, because invalid!
-- ----------------------------------
ˆ/somepath(.*) /otherpath$1 /otherpath/pathinfo

ˆ/somepath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo
via external redirection

ˆ/somepath(.*) /otherpath$1 [P] not supported, because silly!
-- ----------------------------------
ˆ/somepath(.*) http://thishost/otherpath$1 /otherpath/pathinfo

ˆ/somepath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo
via external redirection

ˆ/somepath(.*) http://thishost/otherpath$1 [P] not supported, because silly!
-- ----------------------------------
ˆ/somepath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo

via external redirection

ˆ/somepath(.*) http://otherhost/otherpath$1 [R] http://otherhost/otherpath/pathinfo
via external redirection
(the [R] flag is redundant)

ˆ/somepath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo
via internal proxy

Inside per-directory configuration for /somepath
(i.e., file .htaccess in dir /physical/path/to/somepath containing RewriteBase /somepath)
for request “GET /somepath/localpath/pathinfo ”:

10.47. APACHE MODULE MOD REWRITE 511

=⇒
Given Rule Resulting Substitution
-- ----------------------------------
ˆlocalpath(.*) otherpath$1 /somepath/otherpath/pathinfo

ˆlocalpath(.*) otherpath$1 [R] http://thishost/somepath/otherpath/pathinfo
via external redirection

ˆlocalpath(.*) otherpath$1 [P] not supported, because silly!
-- ----------------------------------
ˆlocalpath(.*) /otherpath$1 /otherpath/pathinfo

ˆlocalpath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo
via external redirection

ˆlocalpath(.*) /otherpath$1 [P] not supported, because silly!
-- ----------------------------------
ˆlocalpath(.*) http://thishost/otherpath$1 /otherpath/pathinfo

ˆlocalpath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo
via external redirection

ˆlocalpath(.*) http://thishost/otherpath$1 [P] not supported, because silly!
-- ----------------------------------
ˆlocalpath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo

via external redirection

ˆlocalpath(.*) http://otherhost/otherpath$1 [R] http://otherhost/otherpath/pathinfo
via external redirection
(the [R] flag is redundant)

ˆlocalpath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo
via internal proxy

Example:

We want to rewrite URLs of the form

/ Language/˜ Realname/.../ File

into

/u/ Username/.../ File . Language

We take the rewrite mapfile from above and save it under/path/to/file/map.txt . Then we only have to add
the following lines to the Apache server configuration file:

RewriteLog /path/to/file/rewrite.log
RewriteMap real-to-user txt:/path/to/file/map.txt
RewriteRule ˆ/([ˆ/]+)/˜([ˆ/]+)/(.*)$ /u/${real-to-user:$2|nobody}/$3.$1

512 CHAPTER 10. APACHE MODULES

10.48 Apache Module modsetenvif

Description: Allows the setting of environment variables based on characteristics of the request
Status: Base
ModuleIdentifier: setenvifmodule
SourceFile: modsetenvif.c

Summary

The MOD SETENVIF module allows you to set environment variables according to whether different aspects of the
request match regular expressions you specify. These environment variables can be used by other parts of the server
to make decisions about actions to be taken.

The directives are considered in the order they appear in the configuration files. So more complex sequences can be
used, such as this example, which setsnetscape if the browser is mozilla but not MSIE.

BrowserMatch ˆMozilla netscape

BrowserMatch MSIE !netscape

Directives

• BrowserMatch

• BrowserMatchNoCase

• SetEnvIf

• SetEnvIfNoCase

See also

• Environment Variables in Apache (p.61)

BrowserMatch Directive

Description: Sets environment variables conditional on HTTP User-Agent
Syntax: BrowserMatch regex [!]env-variable [= value]

[[!] env-variable [= value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modsetenvif

TheBROWSERMATCH is a special cases of theSETENV IF directive that sets environment variables conditional on the
User-Agent HTTP request header. The following two lines have the same effect:

BrowserMatchNoCase Robot is a robot

SetEnvIfNoCase User-Agent Robot is a robot

Some additional examples:

BrowserMatch ˆMozilla forms jpeg=yes browser=netscape
BrowserMatch "ˆMozilla/[2-3]" tables agif frames javascript

BrowserMatch MSIE !javascript

10.48. APACHE MODULE MOD SETENVIF 513

BrowserMatchNoCase Directive

Description: Sets environment variables conditional on User-Agent without respect to case
Syntax: BrowserMatchNoCase regex [!]env-variable [= value]

[[!] env-variable [= value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modsetenvif
Compatibility: Apache 1.2 and above (in Apache 1.2 this directive was found in the now-obsolete

mod browser module)

The BROWSERMATCHNOCASE directive is semantically identical to theBROWSERMATCH directive. However, it
provides for case-insensitive matching. For example:

BrowserMatchNoCase mac platform=macintosh

BrowserMatchNoCase win platform=windows

TheBROWSERMATCH andBROWSERMATCHNOCASE directives are special cases of theSETENV IF andSETENV-
IFNOCASE directives. The following two lines have the same effect:

BrowserMatchNoCase Robot is a robot

SetEnvIfNoCase User-Agent Robot is a robot

SetEnvIf Directive

Description: Sets environment variables based on attributes of the request
Syntax: SetEnvIf attribute regex [!]env-variable [= value]

[[!] env-variable [= value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modsetenvif

The SETENV IF directive defines environment variables based on attributes of the request. Theattributespecified in
the first argument can be one of three things:

1. An HTTP request header field (see RFC261629 for more information about these); for example:Host ,
User-Agent , Referer , and Accept-Language . A regular expression may be used to specify a set
of request headers.

2. One of the following aspects of the request:

• Remote Host - the hostname (if available) of the client making the request

• Remote Addr - the IP address of the client making the request

• Server Addr - the IP address of the server on which the request was received (only with versions later
than 2.0.43)

• Remote User - the authenticated username (if available)

• Request Method - the name of the method being used (GET, POST, et cetera)

29http://www.rfc-editor.org/rfc/rfc2616.txt

http://www.rfc-editor.org/rfc/rfc2616.txt

514 CHAPTER 10. APACHE MODULES

• Request Protocol - the name and version of the protocol with which the request was made (e.g.,
" HTTP/0.9" , " HTTP/1.1" , etc.)

• Request URI - the resource requested on the HTTP request line – generally the portion of the URL
following the scheme and host portion without the query string

3. The name of an environment variable in the list of those associated with the request. This allowsSETEN-
V IF directives to test against the result of prior matches. Only those environment variables defined by earlier
SetEnvIf[NoCase] directives are available for testing in this manner. ’Earlier’ means that they were defined
at a broader scope (such as server-wide) or previously in the current directive’s scope. Environment variables
will be considered only if there was no match among request characteristics and a regular expression was not
used for theattribute.

The second argument (regex) is a Perl compatible regular expression30. This is similar to a POSIX.2 egrep-style regular
expression. If theregexmatches against theattribute, then the remainder of the arguments are evaluated.

The rest of the arguments give the names of variables to set, and optionally values to which they should be set. These
take the form of

1. varname , or

2. ! varname , or

3. varname =value

In the first form, the value will be set to" 1" . The second will remove the given variable if already defined, and the
third will set the variable to the literal value given byvalue .

Example:
SetEnvIf Request URI " \.gif$" object is image=gif
SetEnvIf Request URI " \.jpg$" object is image=jpg
SetEnvIf Request URI " \.xbm$" object is image=xbm
:
SetEnvIf Referer www \.mydomain \.com intra site referral
:
SetEnvIf object is image xbm XBIT PROCESSING=1
:

SetEnvIf ˆTS* ˆ[a-z].* HAVE TS

The first three will set the environment variableobject is image if the request was for an image file, and the
fourth setsintra site referral if the referring page was somewhere on thewww.mydomain.com Web site.

The last example will set environment variableHAVETS if the request contains any headers that begin with" TS"
whose values begins with any character in the set [a-z].

See also

• Environment Variables in Apache (p.61) , for additional examples.

30http://www.pcre.org/

http://www.pcre.org/

10.48. APACHE MODULE MOD SETENVIF 515

SetEnvIfNoCase Directive

Description: Sets environment variables based on attributes of the request without respect to case
Syntax: SetEnvIfNoCase attribute regex [!]env-variable [= value]

[[!] env-variable [= value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: modsetenvif
Compatibility: Apache 1.3 and above

The SETENV IFNOCASE is semantically identical to theSETENV IF directive, and differs only in that the regular
expression matching is performed in a case-insensitive manner. For example:

SetEnvIfNoCase Host Apache \.Org site=apache

This will cause thesite environment variable to be set to"apache" if the HTTP request header fieldHost: was
included and containedApache.Org , apache.org , or any other combination.

516 CHAPTER 10. APACHE MODULES

10.49 Apache Module modso

Description: Loading of executable code and modules into the server at start-up or restart time
Status: Extension
ModuleIdentifier: somodule
SourceFile: modso.c
Compatibility: This is a Base module (always included) on Windows

Summary

On selected operating systems this module can be used to load modules into Apache at runtime via the Dynamic
Shared Object (p.45) (DSO) mechanism, rather than requiring a recompilation.

On Unix, the loaded code typically comes from shared object files (usually with.so extension), on Windows this
may either the.so or .dll extension.

! Warning
Apache 1.3 modules cannot be directly used with Apache 2.0 - the module must be modified
to dynamically load or compile into Apache 2.0.

Directives

• LoadFile

• LoadModule

Creating Loadable Modules for Windows

=⇒Note
The module name format changed for Windows with Apache 1.3.15 and 2.0 - the modules are
now named as modfoo.so
While modso still loads modules with ApacheModuleFoo.dll names, the new naming conven-
tion is preferred; if you are converting your loadable module for 2.0, please fix the name to this
2.0 convention.

The Apache module API is unchanged between the Unix and Windows versions. Many modules will run on Windows
with no or little change from Unix, although others rely on aspects of the Unix architecture which are not present in
Windows, and will not work.

When a module does work, it can be added to the server in one of two ways. As with Unix, it can be com-
piled into the server. Because Apache for Windows does not have theConfigure program of Apache for Unix,
the module’s source file must be added to the ApacheCore project file, and its symbols must be added to the
os\win32 \modules.c file.

The second way is to compile the module as a DLL, a shared library that can be loaded into the server at runtime, using
theLO A DMO D U L Edirective. These module DLLs can be distributed and run on any Apache for Windows installation,
without recompilation of the server.

To create a module DLL, a small change is necessary to the module’s source file: The module record must be exported
from the DLL (which will be created later; see below). To do this, add theAP MODULEDECLAREDATA(defined in
the Apache header files) to your module’s module record definition. For example, if your module has:

module foo module;

10.49. APACHE MODULE MOD SO 517

Replace the above with:

module AP MODULEDECLAREDATA foo module;

Note that this will only be activated on Windows, so the module can continue to be used, unchanged, with Unix if
needed. Also, if you are familiar with.DEF files, you can export the module record with that method instead.

Now, create a DLL containing your module. You will need to link this against the libhttpd.lib export library that is
created when the libhttpd.dll shared library is compiled. You may also have to change the compiler settings to ensure
that the Apache header files are correctly located. You can find this library in your server root’s modules directory.
It is best to grab an existing module .dsp file from the tree to assure the build environment is configured correctly, or
alternately compare the compiler and link options to your .dsp.

This should create a DLL version of your module. Now simply place it in themodules directory of your server root,
and use theLOADMODULE directive to load it.

LoadFile Directive

Description: Link in the named object file or library
Syntax: LoadFile filename [filename] ...
Context: server config
Status: Extension
Module: modso

The LoadFile directive links in the named object files or libraries when the server is started or restarted; this is used to
load additional code which may be required for some module to work.Filenameis either an absolute path or relative
to ServerRoot (p.288) .

For example:

LoadFile libexec/libxmlparse.so

LoadModule Directive

Description: Links in the object file or library, and adds to the list of active modules
Syntax: LoadModule module filename
Context: server config
Status: Extension
Module: modso

The LoadModule directive links in the object file or libraryfilenameand adds the module structure namedmoduleto
the list of active modules.Moduleis the name of the external variable of typemodule in the file, and is listed as the
Module Identifier (p.284) in the module documentation. Example:

LoadModule status module modules/mod status.so

loads the named module from the modules subdirectory of the ServerRoot.

518 CHAPTER 10. APACHE MODULES

10.50 Apache Module modspeling

Description: Attempts to correct mistaken URLs that users might have entered by ignoring capitaliza-
tion and by allowing up to one misspelling

Status: Extension
ModuleIdentifier: spelingmodule
SourceFile: modspeling.c

Summary

Requests to documents sometimes cannot be served by the core apache server because the request was misspelled or
miscapitalized. This module addresses this problem by trying to find a matching document, even after all other modules
gave up. It does its work by comparing each document name in the requested directory against the requested document
namewithout regard to case, and allowingup to one misspelling(character insertion / omission / transposition or
wrong character). A list is built with all document names which were matched using this strategy.

If, after scanning the directory,

• no matching document was found, Apache will proceed as usual and return a" document not found" error.

• only one document is found that" almost" matches the request, then it is returned in the form of a redirection
response.

• more than one document with a close match was found, then the list of the matches is returned to the client, and
the client can select the correct candidate.

Directives

• CheckSpelling

CheckSpelling Directive

Description: Enables the spelling module
Syntax: CheckSpelling on|off
Default: CheckSpelling Off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Extension
Module: modspeling
Compatibility: CheckSpelling was available as a separately available module for Apache 1.1, but was limited

to miscapitalizations. As of Apache 1.3, it is part of the Apache distribution. Prior to Apache
1.3.2, theCheckSpelling directive was only available in the" server" and" virtual host"
contexts.

This directive enables or disables the spelling module. When enabled, keep in mind that

• the directory scan which is necessary for the spelling correction will have an impact on the server’s performance
when many spelling corrections have to be performed at the same time.

• the document trees should not contain sensitive files which could be matched inadvertently by a spelling
" correction" .

• the module is unable to correct misspelled user names (as inhttp://my.host/˜apahce/), just file names
or directory names.

10.50. APACHE MODULE MOD SPELING 519

• spelling corrections apply strictly to existing files, so a request for the<Location /status > may get
incorrectly treated as the negotiated file"/stats.html" .

520 CHAPTER 10. APACHE MODULES

10.51 Apache Module modssl

Description: Strong cryptography using the Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols

Status: Extension
ModuleIdentifier: sslmodule
SourceFile: modssl.c

Summary

This module provides SSL v2/v3 and TLS v1 support for the Apache HTTP Server. It was contributed by Ralf S.
Engeschall based on his modssl project and originally derived from work by Ben Laurie.

This module relies on OpenSSL31 to provide the cryptography engine.

Further details, discussion, and examples are provided in the SSL documentation (p.150) .

Directives

• SSLCACertificateFile

• SSLCACertificatePath

• SSLCARevocationFile

• SSLCARevocationPath

• SSLCertificateChainFile

• SSLCertificateFile

• SSLCertificateKeyFile

• SSLCipherSuite

• SSLEngine

• SSLMutex

• SSLOptions

• SSLPassPhraseDialog

• SSLProtocol

• SSLProxyCACertificateFile

• SSLProxyCACertificatePath

• SSLProxyCARevocationFile

• SSLProxyCARevocationPath

• SSLProxyCipherSuite

• SSLProxyEngine

• SSLProxyMachineCertificateFile

• SSLProxyMachineCertificatePath

• SSLProxyProtocol

• SSLProxyVerify

• SSLProxyVerifyDepth

• SSLRandomSeed
31http://www.openssl.org/

http://www.openssl.org/

10.51. APACHE MODULE MOD SSL 521

• SSLRequire

• SSLRequireSSL

• SSLSessionCache

• SSLSessionCacheTimeout

• SSLVerifyClient

• SSLVerifyDepth

Environment Variables

This module provides a lot of SSL information as additional environment variables to the SSI and CGI namespace. The
generated variables are listed in the table below. For backward compatibility the information can be made available
under different names, too. Look in the Compatibility (p.159) chapter for details on the compatibility variables.

Variable Name: Value Type: Description:
HTTPS flag HTTPS is being used.
SSL PROTOCOL string The SSL protocol version (SSLv2,

SSLv3, TLSv1)
SSL SESSIONID string The hex-encoded SSL session id
SSL CIPHER string The cipher specification name
SSL CIPHER EXPORT string true if cipher is an export cipher
SSL CIPHER USEKEYSIZE number Number of cipher bits (actually used)
SSL CIPHER ALGKEYSIZE number Number of cipher bits (possible)
SSL VERSIONINTERFACE string The modssl program version
SSL VERSIONLIBRARY string The OpenSSL program version
SSL CLIENT MVERSION string The version of the client certificate
SSL CLIENT MSERIAL string The serial of the client certificate
SSL CLIENT S DN string Subject DN in client’s certificate
SSL CLIENT S DNx509 string Component of client’s Subject DN
SSL CLIENT I DN string Issuer DN of client’s certificate
SSL CLIENT I DNx509 string Component of client’s Issuer DN
SSL CLIENT V START string Validity of client’s certificate (start time)
SSL CLIENT V END string Validity of client’s certificate (end time)
SSL CLIENT A SIG string Algorithm used for the signature of

client’s certificate
SSL CLIENT A KEY string Algorithm used for the public key of

client’s certificate
SSL CLIENT CERT string PEM-encoded client certificate
SSL CLIENT CERTCHAINn string PEM-encoded certificates in client certifi-

cate chain
SSL CLIENT VERIFY string NONE, SUCCESS, GENEROUS or

FAILED: reason
SSL SERVERMVERSION string The version of the server certificate
SSL SERVERMSERIAL string The serial of the server certificate
SSL SERVERS DN string Subject DN in server’s certificate
SSL SERVERS DNx509 string Component of server’s Subject DN
SSL SERVERI DN string Issuer DN of server’s certificate
SSL SERVERI DNx509 string Component of server’s Issuer DN
SSL SERVERV START string Validity of server’s certificate (start time)
SSL SERVERV END string Validity of server’s certificate (end time)
SSL SERVERA SIG string Algorithm used for the signature of

server’s certificate

522 CHAPTER 10. APACHE MODULES

SSL SERVERA KEY string Algorithm used for the public key of
server’s certificate

SSL SERVERCERT string PEM-encoded server certificate
[wherex509is a component of a X.509 DN:C,ST,L,O,OU,CN,T,I,G,S,D,UID,Email]

Custom Log Formats

WhenMOD SSL is built into Apache or at least loaded (under DSO situation) additional functions exist for the Custom
Log Format (p.446) of MOD LOG CONFIG. First there is an additional “%{varname}x ” eXtension format function
which can be used to expand any variables provided by any module, especially those provided by modssl which can
you find in the above table.

For backward compatibility there is additionally a special “%{name}c ” cryptography format function provided. Infor-
mation about this function is provided in the Compatibility (p.159) chapter.

Example:

CustomLog logs/ssl request log \"%t %h %{SSL PROTOCOL}x %{SSL CIPHER}x

\"%r \" %b"

SSLCACertificateFile Directive

Description: File of concatenated PEM-encoded CA Certificates for Client Auth
Syntax: SSLCACertificateFile file-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets theall-in-onefile where you can assemble the Certificates of Certification Authorities (CA) whose
clientsyou deal with. These are used for Client Authentication. Such a file is simply the concatenation of the various
PEM-encoded Certificate files, in order of preference. This can be used alternatively and/or additionally toSSLCAC-
ERTIFICATEPATH.

Example
SSLCACertificateFile

/usr/local/apache/conf/ssl.crt/ca-bundle-client.crt

SSLCACertificatePath Directive

Description: Directory of PEM-encoded CA Certificates for Client Auth
Syntax: SSLCACertificatePath directory-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets the directory where you keep the Certificates of Certification Authorities (CAs) whose clients you
deal with. These are used to verify the client certificate on Client Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you can’t just
place the Certificate files there: you also have to create symbolic links namedhash-value.N . And you should always
make sure this directory contains the appropriate symbolic links. Use theMakefile which comes with modssl to
accomplish this task.

10.51. APACHE MODULE MOD SSL 523

Example
SSLCACertificatePath /usr/local/apache/conf/ssl.crt/

SSLCARevocationFile Directive

Description: File of concatenated PEM-encoded CA CRLs for Client Auth
Syntax: SSLCARevocationFile file-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets theall-in-onefile where you can assemble the Certificate Revocation Lists (CRL) of Certification
Authorities (CA) whoseclientsyou deal with. These are used for Client Authentication. Such a file is simply the
concatenation of the various PEM-encoded CRL files, in order of preference. This can be used alternatively and/or
additionally toSSLCAREVOCATIONPATH.

Example
SSLCARevocationFile

/usr/local/apache/conf/ssl.crl/ca-bundle-client.crl

SSLCARevocationPath Directive

Description: Directory of PEM-encoded CA CRLs for Client Auth
Syntax: SSLCARevocationPath directory-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets the directory where you keep the Certificate Revocation Lists (CRL) of Certification Authorities
(CAs) whose clients you deal with. These are used to revoke the client certificate on Client Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you have not
only to place the CRL files there. Additionally you have to create symbolic links namedhash-value.rN . And you
should always make sure this directory contains the appropriate symbolic links. Use theMakefile which comes
with MOD SSL to accomplish this task.

Example
SSLCARevocationPath /usr/local/apache/conf/ssl.crl/

SSLCertificateChainFile Directive

Description: File of PEM-encoded Server CA Certificates
Syntax: SSLCertificateChainFile file-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets the optionalall-in-one file where you can assemble the certificates of Certification Authorities
(CA) which form the certificate chain of the server certificate. This starts with the issuing CA certificate of of the

524 CHAPTER 10. APACHE MODULES

server certificate and can range up to the root CA certificate. Such a file is simply the concatenation of the various
PEM-encoded CA Certificate files, usually in certificate chain order.

This should be used alternatively and/or additionally toSSLCACERTIFICATEPATH for explicitly constructing the
server certificate chain which is sent to the browser in addition to the server certificate. It is especially useful to avoid
conflicts with CA certificates when using client authentication. Because although placing a CA certificate of the server
certificate chain intoSSLCACERTIFICATEPATH has the same effect for the certificate chain construction, it has the
side-effect that client certificates issued by this same CA certificate are also accepted on client authentication. That’s
usually not one expect.

But be careful: Providing the certificate chain works only if you are using asingle(either RSAor DSA) based server
certificate. If you are using a coupled RSA+DSA certificate pair, this will work only if actually both certificates use
thesamecertificate chain. Else the browsers will be confused in this situation.

Example
SSLCertificateChainFile /usr/local/apache/conf/ssl.crt/ca.crt

SSLCertificateFile Directive

Description: Server PEM-encoded X.509 Certificate file
Syntax: SSLCertificateFile file-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive points to the PEM-encoded Certificate file for the server and optionally also to the corresponding RSA
or DSA Private Key file for it (contained in the same file). If the contained Private Key is encrypted the Pass Phrase
dialog is forced at startup time. This directive can be used up to two times (referencing different filenames) when both
a RSA and a DSA based server certificate is used in parallel.

Example
SSLCertificateFile /usr/local/apache/conf/ssl.crt/server.crt

SSLCertificateKeyFile Directive

Description: Server PEM-encoded Private Key file
Syntax: SSLCertificateKeyFile file-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive points to the PEM-encoded Private Key file for the server. If the Private Key is not combined with the
Certificate in theSSLCERTIFICATEFILE, use this additional directive to point to the file with the stand-alone Private
Key. WhenSSLCERTIFICATEFILE is used and the file contains both the Certificate and the Private Key this directive
need not be used. But we strongly discourage this practice. Instead we recommend you to separate the Certificate
and the Private Key. If the contained Private Key is encrypted, the Pass Phrase dialog is forced at startup time. This
directive can be used up to two times (referencing different filenames) when both a RSA and a DSA based private key
is used in parallel.

Example
SSLCertificateKeyFile /usr/local/apache/conf/ssl.key/server.key

10.51. APACHE MODULE MOD SSL 525

SSLCipherSuite Directive

Description: Cipher Suite available for negotiation in SSL handshake
Syntax: SSLCipherSuite cipher-spec
Default: SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

This complex directive uses a colon-separatedcipher-specstring consisting of OpenSSL cipher specifications to con-
figure the Cipher Suite the client is permitted to negotiate in the SSL handshake phase. Notice that this directive can
be used both in per-server and per-directory context. In per-server context it applies to the standard SSL handshake
when a connection is established. In per-directory context it forces a SSL renegotation with the reconfigured Cipher
Suite after the HTTP request was read but before the HTTP response is sent.

An SSL cipher specification incipher-specis composed of 4 major attributes plus a few extra minor ones:

• Key Exchange Algorithm:
RSA or Diffie-Hellman variants.

• Authentication Algorithm:
RSA, Diffie-Hellman, DSS or none.

• Cipher/Encryption Algorithm:
DES, Triple-DES, RC4, RC2, IDEA or none.

• MAC Digest Algorithm:
MD5, SHA or SHA1.

An SSL cipher can also be an export cipher and is either a SSLv2 or SSLv3/TLSv1 cipher (here TLSv1 is equivalent
to SSLv3). To specify which ciphers to use, one can either specify all the Ciphers, one at a time, or use aliases to
specify the preference and order for the ciphers (see Table 1).

Tag Description
Key Exchange Algorithm:

kRSA RSA key exchange
kDHr Diffie-Hellman key exchange with RSA key
kDHd Diffie-Hellman key exchange with DSA key
kEDH Ephemeral (temp.key) Diffie-Hellman key exchange (no cert)
Authentication Algorithm:

aNULL No authentication
aRSA RSA authentication
aDSS DSS authentication
aDH Diffie-Hellman authentication
Cipher Encoding Algorithm:

eNULL No encoding
DES DES encoding
3DES Triple-DES encoding
RC4 RC4 encoding
RC2 RC2 encoding
IDEA IDEA encoding
MAC Digest Algorithm:
MD5 MD5 hash function
SHA1 SHA1 hash function

526 CHAPTER 10. APACHE MODULES

SHA SHA hash function
Aliases:

SSLv2 all SSL version 2.0 ciphers
SSLv3 all SSL version 3.0 ciphers
TLSv1 all TLS version 1.0 ciphers
EXP all export ciphers
EXPORT40 all 40-bit export ciphers only
EXPORT56 all 56-bit export ciphers only
LOW all low strength ciphers (no export, single DES)
MEDIUM all ciphers with 128 bit encryption
HIGH all ciphers using Triple-DES
RSA all ciphers using RSA key exchange
DH all ciphers using Diffie-Hellman key exchange
EDH all ciphers using Ephemeral Diffie-Hellman key exchange
ADH all ciphers using Anonymous Diffie-Hellman key exchange
DSS all ciphers using DSS authentication
NULL all ciphers using no encryption

Now where this becomes interesting is that these can be put together to specify the order and ciphers you wish to use.
To speed this up there are also aliases (SSLv2, SSLv3, TLSv1, EXP, LOW, MEDIUM, HIGH) for certain
groups of ciphers. These tags can be joined together with prefixes to form thecipher-spec. Available prefixes are:

• none: add cipher to list

• +: add ciphers to list and pull them to current location in list

• - : remove cipher from list (can be added later again)

• ! : kill cipher from list completely (cannot be added later again)

A simpler way to look at all of this is to use the “openssl ciphers -v ” command which pro-
vides a nice way to successively create the correctcipher-specstring. The defaultcipher-specstring is
“ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP ” which means the following: first, remove
from consideration any ciphers that do not authenticate, i.e. for SSL only the Anonymous Diffie-Hellman ciphers.
Next, use ciphers using RC4 and RSA. Next include the high, medium and then the low security ciphers. Finallypull
all SSLv2 and export ciphers to the end of the list.

$ openssl ciphers -v ’ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP’
NULL-SHA SSLv3 Kx=RSA Au=RSA Enc=None Mac=SHA1
NULL-MD5 SSLv3 Kx=RSA Au=RSA Enc=None Mac=MD5
EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1
...
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export
EXP-RC2-CBC-MD5 SSLv2 Kx=RSA(512) Au=RSA Enc=RC2(40) Mac=MD5 export
EXP-RC4-MD5 SSLv2 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export

The complete list of particular RSA & DH ciphers for SSL is given in Table 2.

Example
SSLCipherSuite RSA:!EXP:!NULL:+HIGH:+MEDIUM:-LOW

10.51. APACHE MODULE MOD SSL 527

Cipher-Tag Protocol Key Ex. Auth. Enc. MAC Type
RSA Ciphers:

DES-CBC3-SHA SSLv3 RSA RSA 3DES(168) SHA1
DES-CBC3-MD5 SSLv2 RSA RSA 3DES(168) MD5
IDEA-CBC-SHA SSLv3 RSA RSA IDEA(128) SHA1
RC4-SHA SSLv3 RSA RSA RC4(128) SHA1
RC4-MD5 SSLv3 RSA RSA RC4(128) MD5
IDEA-CBC-MD5 SSLv2 RSA RSA IDEA(128) MD5
RC2-CBC-MD5 SSLv2 RSA RSA RC2(128) MD5
RC4-MD5 SSLv2 RSA RSA RC4(128) MD5
DES-CBC-SHA SSLv3 RSA RSA DES(56) SHA1
RC4-64-MD5 SSLv2 RSA RSA RC4(64) MD5
DES-CBC-MD5 SSLv2 RSA RSA DES(56) MD5
EXP-DES-CBC-SHA SSLv3 RSA(512) RSA DES(40) SHA1 export
EXP-RC2-CBC-MD5 SSLv3 RSA(512) RSA RC2(40) MD5 export
EXP-RC4-MD5 SSLv3 RSA(512) RSA RC4(40) MD5 export
EXP-RC2-CBC-MD5 SSLv2 RSA(512) RSA RC2(40) MD5 export
EXP-RC4-MD5 SSLv2 RSA(512) RSA RC4(40) MD5 export
NULL-SHA SSLv3 RSA RSA None SHA1
NULL-MD5 SSLv3 RSA RSA None MD5
Diffie-Hellman Ciphers:

ADH-DES-CBC3-SHA SSLv3 DH None 3DES(168) SHA1
ADH-DES-CBC-SHA SSLv3 DH None DES(56) SHA1
ADH-RC4-MD5 SSLv3 DH None RC4(128) MD5
EDH-RSA-DES-CBC3-SHA SSLv3 DH RSA 3DES(168) SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 DH DSS 3DES(168) SHA1
EDH-RSA-DES-CBC-SHA SSLv3 DH RSA DES(56) SHA1
EDH-DSS-DES-CBC-SHA SSLv3 DH DSS DES(56) SHA1
EXP-EDH-RSA-DES-CBC-SHA SSLv3 DH(512) RSA DES(40) SHA1 export
EXP-EDH-DSS-DES-CBC-SHA SSLv3 DH(512) DSS DES(40) SHA1 export
EXP-ADH-DES-CBC-SHA SSLv3 DH(512) None DES(40) SHA1 export
EXP-ADH-RC4-MD5 SSLv3 DH(512) None RC4(40) MD5 export

SSLEngine Directive

Description: SSL Engine Operation Switch
Syntax: SSLEngine on|off
Default: SSLEngine off
Context: server config, virtual host
Status: Extension
Module: modssl

This directive toggles the usage of the SSL/TLS Protocol Engine. This is usually used inside a<V IRTUAL HOST>
section to enable SSL/TLS for a particular virtual host. By default the SSL/TLS Protocol Engine is disabled for both
the main server and all configured virtual hosts.

Example
<VirtualHost default :443 >
SSLEngine on
...

</VirtualHost >

528 CHAPTER 10. APACHE MODULES

SSLMutex Directive

Description: Semaphore for internal mutual exclusion of operations
Syntax: SSLMutex type
Default: SSLMutex none
Context: server config
Status: Extension
Module: modssl

This configures the SSL engine’s semaphore (aka. lock) which is used for mutual exclusion of operations which have
to be done in a synchronized way between the pre-forked Apache server processes. This directive can only be used in
the global server context because it’s only useful to have one global mutex. This directive is designed to closely match
the AcceptMutex32 directive

The following Mutextypesare available:

• none | no

This is the default where no Mutex is used at all. Use it at your own risk. But because currently the Mutex is
mainly used for synchronizing write access to the SSL Session Cache you can live without it as long as you
accept a sometimes garbled Session Cache. So it’s not recommended to leave this the default. Instead configure
a real Mutex.

• posixsem

This is an elegant Mutex variant where a Posix Semaphore is used when possible. It is only available when the
underlying platform and APR supports it.

• sysvsem

This is a somewhat elegant Mutex variant where a SystemV IPC Semaphore is used when possible. It is possible
to " leak" SysV semaphores if processes crash before the semaphore is removed. It is only available when the
underlying platform and APR supports it.

• sem

This directive tells the SSL Module to pick the" best" semaphore implementation available to it, choosing
between Posix and SystemV IPC, in that order. It is only available when the underlying platform and APR
supports at least one of the 2.

• pthread

This directive tells the SSL Module to use Posix thread mutexes. It is only available if the underlying platform
and APR supports it.

• fcntl:/path/to/mutex

This is a portable Mutex variant where a physical (lock-)file and thefcntl() fucntion are used as the Mu-
tex. Always use a local disk filesystem for/path/to/mutex and never a file residing on a NFS- or AFS-
filesystem. It is only available when the underlying platform and APR supports it. Note: Internally, the Process
ID (PID) of the Apache parent process is automatically appended to/path/to/mutex to make it unique, so
you don’t have to worry about conflicts yourself. Notice that this type of mutex is not available under the Win32
environment. There youhaveto use the semaphore mutex.

• flock:/path/to/mutex

This is similar to thefcntl:/path/to/mutex method with the exception that theflock() function is
used to provide file locking. It is only available when the underlying platform and APR supports it.

• file:/path/to/mutex

This directive tells the SSL Module to pick the" best" file locking implementation available to it, choosing
betweenfcntl andflock , in that order. It is only available when the underlying platform and APR supports
at least one of the 2.

32http://httpd.apache.org/docs-2.0/mod/mpmcommon.html#acceptmutex

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#acceptmutex

10.51. APACHE MODULE MOD SSL 529

• default | yes

This directive tells the SSL Module to pick the default locking implementation as determined by the platform
and APR.

Example
SSLMutex file:/usr/local/apache/logs/ssl mutex

SSLOptions Directive

Description: Configure various SSL engine run-time options
Syntax: SSLOptions [+|-] option ...
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Extension
Module: modssl

This directive can be used to control various run-time options on a per-directory basis. Normally, if multiple
SSLOptions could apply to a directory, then the most specific one is taken completely; the options are not merged.
However ifall the options on theSSLOptions directive are preceded by a plus (+) or minus (-) symbol, the options
are merged. Any options preceded by a+ are added to the options currently in force, and any options preceded by a-
are removed from the options currently in force.

The availableoptions are:

• StdEnvVars

When this option is enabled, the standard set of SSL related CGI/SSI environment variables are created. This
per default is disabled for performance reasons, because the information extraction step is a rather expensive
operation. So one usually enables this option for CGI and SSI requests only.

• CompatEnvVars

When this option is enabled, additional CGI/SSI environment variables are created for backward compatibility
to other Apache SSL solutions. Look in the Compatibility (p.159) chapter for details on the particular variables
generated.

• ExportCertData

When this option is enabled, additional CGI/SSI environment variables are created:SSL SERVERCERT,
SSL CLIENT CERTandSSL CLIENT CERTCHAINn (with n = 0,1,2,..). These contain the PEM-encoded
X.509 Certificates of server and client for the current HTTPS connection and can be used by CGI scripts for
deeper Certificate checking. Additionally all other certificates of the client certificate chain are provided, too.
This bloats up the environment a little bit which is why you have to use this option to enable it on demand.

• FakeBasicAuth

When this option is enabled, the Subject Distinguished Name (DN) of the Client X509 Certificate is translated
into a HTTP Basic Authorization username. This means that the standard Apache authentication methods can
be used for access control. The user name is just the Subject of the Client’s X509 Certificate (can be determined
by running OpenSSL’sopenssl x509 command:openssl x509 -noout -subject -in certifi-
cate.crt). Note that no password is obtained from the user. Every entry in the user file needs this password:
“xxj31ZMTZzkVA ”, which is the DES-encrypted version of the word ‘password ”. Those who live under
MD5-based encryption (for instance under FreeBSD or BSD/OS, etc.) should use the following MD5 hash of
the same word: “1OXLyS...$Owx8s2/m9/gfkcRVXzgoE/ ”.

530 CHAPTER 10. APACHE MODULES

• StrictRequire

Thisforcesforbidden access whenSSLRequireSSL orSSLRequire successfully decided that access should
be forbidden. Usually the default is that in the case where a “Satisfy any ” directive is used, and other
access restrictions are passed, denial of access due toSSLRequireSSL or SSLRequire is overridden (be-
cause that’s how the ApacheSatisfy mechanism should work.) But for strict access restriction you can
useSSLRequireSSL and/orSSLRequire in combination with an “SSLOptions +StrictRequire ”.
Then an additional “Satisfy Any ” has no chance once modssl has decided to deny access.

• OptRenegotiate

This enables optimized SSL connection renegotiation handling when SSL directives are used in per-directory
context. By default a strict scheme is enabled whereeveryper-directory reconfiguration of SSL parameters
causes afull SSL renegotiation handshake. When this option is used modssl tries to avoid unnecessary hand-
shakes by doing more granular (but still safe) parameter checks. Nevertheless these granular checks sometimes
maybe not what the user expects, so enable this on a per-directory basis only, please.

Example
SSLOptions +FakeBasicAuth -StrictRequire
<Files ˜ " \.(cgi|shtml)$" >
SSLOptions +StdEnvVars +CompatEnvVars -ExportCertData

<Files >

SSLPassPhraseDialog Directive

Description: Type of pass phrase dialog for encrypted private keys
Syntax: SSLPassPhraseDialog type
Default: SSLPassPhraseDialog builtin
Context: server config
Status: Extension
Module: modssl

When Apache starts up it has to read the various Certificate (seeSSLCERTIFICATEFILE) and Private Key (see
SSLCERTIFICATEKEYFILE) files of the SSL-enabled virtual servers. Because for security reasons the Private Key
files are usually encrypted, modssl needs to query the administrator for a Pass Phrase in order to decrypt those files.
This query can be done in two ways which can be configured bytype:

• builtin

This is the default where an interactive terminal dialog occurs at startup time just before Apache detaches from
the terminal. Here the administrator has to manually enter the Pass Phrase for each encrypted Private Key file.
Because a lot of SSL-enabled virtual hosts can be configured, the following reuse-scheme is used to minimize
the dialog: When a Private Key file is encrypted, all known Pass Phrases (at the beginning there are none, of
course) are tried. If one of those known Pass Phrases succeeds no dialog pops up for this particular Private
Key file. If none succeeded, another Pass Phrase is queried on the terminal and remembered for the next round
(where it perhaps can be reused).

This scheme allows modssl to be maximally flexible (because for N encrypted Private Key files youcanuse N
different Pass Phrases - but then you have to enter all of them, of course) while minimizing the terminal dialog
(i.e. when you use a single Pass Phrase for all N Private Key files this Pass Phrase is queried only once).

• exec:/path/to/program

Here an external program is configured which is called at startup for each encrypted Private Key file. It is
called with two arguments (the first is of the form “servername:portnumber ”, the second is either “RSA”
or “DSA”), which indicate for which server and algorithm it has to print the corresponding Pass Phrase to

10.51. APACHE MODULE MOD SSL 531

stdout . The intent is that this external program first runs security checks to make sure that the system is not
compromised by an attacker, and only when these checks were passed successfully it provides the Pass Phrase.

Both these security checks, and the way the Pass Phrase is determined, can be as complex as you like. Modssl
just defines the interface: an executable program which provides the Pass Phrase onstdout . Nothing more
or less! So, if you’re really paranoid about security, here is your interface. Anything else has to be left as an
exercise to the administrator, because local security requirements are so different.

The reuse-algorithm above is used here, too. In other words: The external program is called only once per
unique Pass Phrase.

Example:

SSLPassPhraseDialog exec:/usr/local/apache/sbin/pp-filter

SSLProtocol Directive

Description: Configure usable SSL protocol flavors
Syntax: SSLProtocol [+|-] protocol ...
Default: SSLProtocol all
Context: server config, virtual host
Override: Options
Status: Extension
Module: modssl

This directive can be used to control the SSL protocol flavors modssl should use when establishing its server environ-
ment. Clients then can only connect with one of the provided protocols.

The available (case-insensitive)protocols are:

• SSLv2

This is the Secure Sockets Layer (SSL) protocol, version 2.0. It is the original SSL protocol as designed by
Netscape Corporation.

• SSLv3

This is the Secure Sockets Layer (SSL) protocol, version 3.0. It is the successor to SSLv2 and the currently (as
of February 1999) de-facto standardized SSL protocol from Netscape Corporation. It’s supported by almost all
popular browsers.

• TLSv1

This is the Transport Layer Security (TLS) protocol, version 1.0. It is the successor to SSLv3 and currently (as
of February 1999) still under construction by the Internet Engineering Task Force (IETF). It’s still not supported
by any popular browsers.

• All

This is a shortcut for “+SSLv2 +SSLv3 +TLSv1 ” and a convinient way for enabling all protocols except
one when used in combination with the minus sign on a protocol as the example above shows.

Example
enable SSLv3 and TLSv1, but not SSLv2

SSLProtocol all -SSLv2

532 CHAPTER 10. APACHE MODULES

SSLProxyCACertificateFile Directive

Description: File of concatenated PEM-encoded CA Certificates for Remote Server Auth
Syntax: SSLProxyCACertificateFile file-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets theall-in-onefile where you can assemble the Certificates of Certification Authorities (CA) whose
remote serversyou deal with. These are used for Remote Server Authentication. Such a file is simply the concatenation
of the various PEM-encoded Certificate files, in order of preference. This can be used alternatively and/or additionally
to SSLPROXYCACERTIFICATEPATH.

Example
SSLProxyCACertificateFile

/usr/local/apache/conf/ssl.crt/ca-bundle-remote-server.crt

SSLProxyCACertificatePath Directive

Description: Directory of PEM-encoded CA Certificates for Remote Server Auth
Syntax: SSLProxyCACertificatePath directory-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets the directory where you keep the Certificates of Certification Authorities (CAs) whose remote
servers you deal with. These are used to verify the remote server certificate on Remote Server Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you can’t just
place the Certificate files there: you also have to create symbolic links namedhash-value.N . And you should always
make sure this directory contains the appropriate symbolic links. Use theMakefile which comes with modssl to
accomplish this task.

Example
SSLProxyCACertificatePath /usr/local/apache/conf/ssl.crt/

SSLProxyCARevocationFile Directive

Description: File of concatenated PEM-encoded CA CRLs for Remote Server Auth
Syntax: SSLProxyCARevocationFile file-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets theall-in-onefile where you can assemble the Certificate Revocation Lists (CRL) of Certification
Authorities (CA) whoseremote serversyou deal with. These are used for Remote Server Authentication. Such a file is
simply the concatenation of the various PEM-encoded CRL files, in order of preference. This can be used alternatively
and/or additionally toSSLPROXYCAREVOCATIONPATH.

Example
SSLProxyCARevocationFile

/usr/local/apache/conf/ssl.crl/ca-bundle-remote-server.crl

10.51. APACHE MODULE MOD SSL 533

SSLProxyCARevocationPath Directive

Description: Directory of PEM-encoded CA CRLs for Remote Server Auth
Syntax: SSLProxyCARevocationPath directory-path
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets the directory where you keep the Certificate Revocation Lists (CRL) of Certification Authorities
(CAs) whose remote servers you deal with. These are used to revoke the remote server certificate on Remote Server
Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you have not
only to place the CRL files there. Additionally you have to create symbolic links namedhash-value.rN . And you
should always make sure this directory contains the appropriate symbolic links. Use theMakefile which comes
with MOD SSL to accomplish this task.

Example
SSLProxyCARevocationPath /usr/local/apache/conf/ssl.crl/

SSLProxyCipherSuite Directive

Description: Cipher Suite available for negotiation in SSL proxy handshake
Syntax: SSLProxyCipherSuite cipher-spec
Default: SSLProxyCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

Equivalent toSSLCipherSuite , but for the proxy connection. Please refer toSSLCIPHERSUITE for additional
information.

SSLProxyEngine Directive

Description: SSL Proxy Engine Operation Switch
Syntax: SSLProxyEngine on|off
Default: SSLProxyEngine off
Context: server config, virtual host
Status: Extension
Module: modssl

This directive toggles the usage of the SSL/TLS Protocol Engine for proxy. This is usually used inside a<V IRTU-
AL HOST> section to enable SSL/TLS for proxy usage in a particular virtual host. By default the SSL/TLS Protocol
Engine is disabled for proxy image both for the main server and all configured virtual hosts.

Example
<VirtualHost default :443 >
SSLProxyEngine on
...

</VirtualHost >

534 CHAPTER 10. APACHE MODULES

SSLProxyMachineCertificateFile Directive

Description: File of concatenated PEM-encoded CA certificates for proxy server client certificates
Syntax: SSLProxyMachineCertificateFile filename
Context: server config
Override: Not applicable
Status: Extension
Module: modssl

This directive sets the all-in-one file where you keep the certificates of Certification Authorities (CAs) whose proxy
client certificates are used for authentication of the proxy server to remote servers.

This referenced file is simply the concatenation of the various PEM-encoded certificate files, in order of preference.
Use this directive alternatively or additionally toSSLProxyMachineCertificatePath .

Example:

SSLProxyMachineCertificatePath /usr/local/apache/conf/ssl.crt/

SSLProxyMachineCertificatePath Directive

Description: Directory of PEM-encoded CA certificates for proxy server client certificates
Syntax: SSLProxyMachineCertificatePath directory
Context: server config
Override: Not applicable
Status: Extension
Module: modssl

This directive sets the directory where you keep the certificates of Certification Authorities (CAs) whose proxy client
certificates are used for authentication of the proxy server to remote servers.

The files in this directory must be PEM-encoded and are accessed through hash filenames. Additionally, you must cre-
ate symbolic links namedhash-value .N . And you should always make sure this directory contains the appropriate
symbolic links. Use the Makefile which comes with modssl to accomplish this task.

Example:

SSLProxyMachineCertificatePath /usr/local/apache/conf/ssl.crt/

SSLProxyProtocol Directive

Description: Configure usable SSL protocol flavors for proxy usage
Syntax: SSLProxyProtocol [+|-] protocol ...
Default: SSLProxyProtocol all
Context: server config, virtual host
Override: Options
Status: Extension
Module: modssl

This directive can be used to control the SSL protocol flavors modssl should use when establishing its server environ-
ment for proxy . It will only connect to servers using one of the provided protocols.

Please refer toSSLPROTOCOL for additional information.

10.51. APACHE MODULE MOD SSL 535

SSLProxyVerify Directive

Description: Type of remote server Certificate verification
Syntax: SSLProxyVerify level
Default: SSLProxyVerify none
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

This directive sets the Certificate verification level for the remote server Authentication. Notice that this directive can
be used both in per-server and per-directory context. In per-server context it applies to the remote server authentication
process used in the standard SSL handshake when a connection is established. In per-directory context it forces a SSL
renegotation with the reconfigured remote server verification level after the HTTP request was read but before the
HTTP response is sent.

The following levels are available forlevel:

• none: no remote server Certificate is required at all

• optional: the remote servermaypresent a valid Certificate

• require: the remote serverhas topresent a valid Certificate

• optional no ca: the remote server may present a valid Certificate
but it need not to be (successfully) verifiable.

In practice only levelsnoneandrequire are really interesting, because leveloptional doesn’t work with all servers
and leveloptional no ca is actually against the idea of authentication (but can be used to establish SSL test pages,
etc.)

Example
SSLProxyVerify require

SSLProxyVerifyDepth Directive

Description: Maximum depth of CA Certificates in Remote Server Certificate verification
Syntax: SSLProxyVerifyDepth number
Default: SSLProxyVerifyDepth 1
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

This directive sets how deeply modssl should verify before deciding that the remote server does not have a valid
certificate. Notice that this directive can be used both in per-server and per-directory context. In per-server context
it applies to the client authentication process used in the standard SSL handshake when a connection is established.
In per-directory context it forces a SSL renegotation with the reconfigured remote server verification depth after the
HTTP request was read but before the HTTP response is sent.

The depth actually is the maximum number of intermediate certificate issuers, i.e. the number of CA certificates
which are max allowed to be followed while verifying the remote server certificate. A depth of 0 means that self-
signed remote server certificates are accepted only, the default depth of 1 means the remote server certificate can
be self-signed or has to be signed by a CA which is directly known to the server (i.e. the CA’s certificate is under
SSLPROXYCACERTIFICATEPATH), etc.

536 CHAPTER 10. APACHE MODULES

Example
SSLProxyVerifyDepth 10

SSLRandomSeed Directive

Description: Pseudo Random Number Generator (PRNG) seeding source
Syntax: SSLRandomSeed context source [bytes]
Context: server config
Status: Extension
Module: modssl

This configures one or more sources for seeding the Pseudo Random Number Generator (PRNG) in OpenSSL at
startup time (contextis startup) and/or just before a new SSL connection is established (contextis connect).
This directive can only be used in the global server context because the PRNG is a global facility.

The followingsourcevariants are available:

• builtin This is the always available builtin seeding source. It’s usage consumes minimum CPU cycles under
runtime and hence can be always used without drawbacks. The source used for seeding the PRNG contains
of the current time, the current process id and (when applicable) a randomly choosen 1KB extract of the inter-
process scoreboard structure of Apache. The drawback is that this is not really a strong source and at startup
time (where the scoreboard is still not available) this source just produces a few bytes of entropy. So you should
always, at least for the startup, use an additional seeding source.

• file:/path/to/source

This variant uses an external file/path/to/source as the source for seeding the PRNG. Whenbytesis spec-
ified, only the firstbytesnumber of bytes of the file form the entropy (andbytesis given to/path/to/source
as the first argument). Whenbytes is not specified the whole file forms the entropy (and0 is given to
/path/to/source as the first argument). Use this especially at startup time, for instance with an available
/dev/random and/or/dev/urandom devices (which usually exist on modern Unix derivates like FreeBSD
and Linux).

But be careful: Usually /dev/random provides only as much entropy data as it actually has, i.e. when you
request 512 bytes of entropy, but the device currently has only 100 bytes available two things can happen: On
some platforms you receive only the 100 bytes while on other platforms the read blocks until enough bytes
are available (which can take a long time). Here using an existing/dev/urandom is better, because it never
blocks and actually gives the amount of requested data. The drawback is just that the quality of the received
data may not be the best.

On some platforms like FreeBSD one can even control how the entropy is actually generated, i.e. by which
system interrupts. More details one can find underrndcontrol(8)on those platforms. Alternatively, when your
system lacks such a random device, you can use tool like EGD33 (Entropy Gathering Daemon) and run it’s client
program with theexec:/path/to/program/ variant (see below) or useegd:/path/to/egd-socket
(see below).

• exec:/path/to/program

This variant uses an external executable/path/to/program as the source for seeding the PRNG. When
bytesis specified, only the firstbytesnumber of bytes of itsstdout contents form the entropy. Whenbytesis
not specified, the entirety of the data produced onstdout form the entropy. Use this only at startup time when
you need a very strong seeding with the help of an external program (for instance as in the example above with
the truerand utility you can find in the modssl distribution which is based on the AT&Ttruerand library).
Using this in the connection context slows down the server too dramatically, of course. So usually you should
avoid using external programs in that context.

33http://www.lothar.com/tech/crypto/

http://www.lothar.com/tech/crypto/

10.51. APACHE MODULE MOD SSL 537

• egd:/path/to/egd-socket (Unix only)

This variant uses the Unix domain socket of the external Entropy Gathering Daemon (EGD) (see
http://www.lothar.com/tech /crypto/34) to seed the PRNG. Use this if no random device exists on your platform.

Example
SSLRandomSeed startup builtin
SSLRandomSeed startup file:/dev/random
SSLRandomSeed startup file:/dev/urandom 1024
SSLRandomSeed startup exec:/usr/local/bin/truerand 16
SSLRandomSeed connect builtin
SSLRandomSeed connect file:/dev/random

SSLRandomSeed connect file:/dev/urandom 1024

SSLRequire Directive

Description: Allow access only when an arbitrarily complex boolean expression is true
Syntax: SSLRequire expression
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

This directive specifies a general access requirement which has to be fulfilled in order to allow access. It’s a very
powerful directive because the requirement specification is an arbitrarily complex boolean expression containing any
number of access checks.

Theexpressionmust match the following syntax (given as a BNF grammar notation):

expr ::= "true" | "false"
| "!" expr
| expr "&&" expr
| expr "||" expr
| "(" expr ")"
| comp

comp ::= word "==" word | word "eq" word
| word "!=" word | word "ne" word
| word "<" word | word "lt" word
| word "<=" word | word "le" word
| word ">" word | word "gt" word
| word ">=" word | word "ge" word
| word "in" "{" wordlist "}"
| word "=˜" regex
| word "!˜" regex

wordlist ::= word
| wordlist "," word

word ::= digit

34http://www.lothar.com/tech/crypto/

http://www.lothar.com/tech/crypto/

538 CHAPTER 10. APACHE MODULES

| cstring
| variable
| function

digit ::= [0-9]+
cstring ::= "..."
variable ::= "%{" varname "}"
function ::= funcname "(" funcargs ")"

while for varname any variable from Table 3 can be used. Finally forfuncname the following functions are
available:

• file(filename)

This function takes one string argument and expands to the contents of the file. This is especially useful for
matching this contents against a regular expression, etc.

Notice thatexpressionis first parsed into an internal machine representation and then evaluated in a second step.
Actually, in Global and Per-Server Class contextexpressionis parsed at startup time and at runtime only the machine
representation is executed. For Per-Directory context this is different: hereexpressionhas to be parsed and immediately
executed for every request.

Example
SSLRequire (% {SSL CIPHER} !˜ m/ˆ(EXP|NULL)-/ \
and %{SSL CLIENT S DNO} eq "Snake Oil, Ltd." \
and %{SSL CLIENT S DNOU} in {"Staff", "CA", "Dev" } \
and %{TIME WDAY} >= 1 and %{TIME WDAY} <= 5 \
and %{TIME HOUR} >= 8 and %{TIME HOUR} <= 20) \
or %{REMOTEADDR} =˜ m/ˆ192 \.76 \.162 \.[0-9]+$/

Standard CGI/1.0 and Apache variables:

HTTP_USER_AGENT PATH_INFO AUTH_TYPE
HTTP_REFERER QUERY_STRING SERVER_SOFTWARE
HTTP_COOKIE REMOTE_HOST API_VERSION
HTTP_FORWARDED REMOTE_IDENT TIME_YEAR
HTTP_HOST IS_SUBREQ TIME_MON
HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY
HTTP_ACCEPT SERVER_ADMIN TIME_HOUR
HTTP:headername SERVER_NAME TIME_MIN
THE_REQUEST SERVER_PORT TIME_SEC
REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY
REQUEST_SCHEME REMOTE_ADDR TIME
REQUEST_URI REMOTE_USER ENV:variablename
REQUEST_FILENAME

SSL-related variables:

HTTPS SSL_CLIENT_M_VERSION SSL_SERVER_M_VERSION
SSL_CLIENT_M_SERIAL SSL_SERVER_M_SERIAL

10.51. APACHE MODULE MOD SSL 539

SSL_PROTOCOL SSL_CLIENT_V_START SSL_SERVER_V_START
SSL_SESSION_ID SSL_CLIENT_V_END SSL_SERVER_V_END
SSL_CIPHER SSL_CLIENT_S_DN SSL_SERVER_S_DN
SSL_CIPHER_EXPORT SSL_CLIENT_S_DN_C SSL_SERVER_S_DN_C
SSL_CIPHER_ALGKEYSIZE SSL_CLIENT_S_DN_ST SSL_SERVER_S_DN_ST
SSL_CIPHER_USEKEYSIZE SSL_CLIENT_S_DN_L SSL_SERVER_S_DN_L
SSL_VERSION_LIBRARY SSL_CLIENT_S_DN_O SSL_SERVER_S_DN_O
SSL_VERSION_INTERFACE SSL_CLIENT_S_DN_OU SSL_SERVER_S_DN_OU

SSL_CLIENT_S_DN_CN SSL_SERVER_S_DN_CN
SSL_CLIENT_S_DN_T SSL_SERVER_S_DN_T
SSL_CLIENT_S_DN_I SSL_SERVER_S_DN_I
SSL_CLIENT_S_DN_G SSL_SERVER_S_DN_G
SSL_CLIENT_S_DN_S SSL_SERVER_S_DN_S
SSL_CLIENT_S_DN_D SSL_SERVER_S_DN_D
SSL_CLIENT_S_DN_UID SSL_SERVER_S_DN_UID
SSL_CLIENT_S_DN_Email SSL_SERVER_S_DN_Email
SSL_CLIENT_I_DN SSL_SERVER_I_DN
SSL_CLIENT_I_DN_C SSL_SERVER_I_DN_C
SSL_CLIENT_I_DN_ST SSL_SERVER_I_DN_ST
SSL_CLIENT_I_DN_L SSL_SERVER_I_DN_L
SSL_CLIENT_I_DN_O SSL_SERVER_I_DN_O
SSL_CLIENT_I_DN_OU SSL_SERVER_I_DN_OU
SSL_CLIENT_I_DN_CN SSL_SERVER_I_DN_CN
SSL_CLIENT_I_DN_T SSL_SERVER_I_DN_T
SSL_CLIENT_I_DN_I SSL_SERVER_I_DN_I
SSL_CLIENT_I_DN_G SSL_SERVER_I_DN_G
SSL_CLIENT_I_DN_S SSL_SERVER_I_DN_S
SSL_CLIENT_I_DN_D SSL_SERVER_I_DN_D
SSL_CLIENT_I_DN_UID SSL_SERVER_I_DN_UID
SSL_CLIENT_I_DN_Email SSL_SERVER_I_DN_Email
SSL_CLIENT_A_SIG SSL_SERVER_A_SIG
SSL_CLIENT_A_KEY SSL_SERVER_A_KEY
SSL_CLIENT_CERT SSL_SERVER_CERT
SSL_CLIENT_CERT_CHAINn
SSL_CLIENT_VERIFY

SSLRequireSSL Directive

Description: Deny access when SSL is not used for the HTTP request
Syntax: SSLRequireSSL
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

This directive forbids access unless HTTP over SSL (i.e. HTTPS) is enabled for the current connection. This is very
handy inside the SSL-enabled virtual host or directories for defending against configuration errors that expose stuff
that should be protected. When this directive is present all requests are denied which are not using SSL.

Example
SSLRequireSSL

540 CHAPTER 10. APACHE MODULES

SSLSessionCache Directive

Description: Type of the global/inter-process SSL Session Cache
Syntax: SSLSessionCache type
Default: SSLSessionCache none
Context: server config
Status: Extension
Module: modssl

This configures the storage type of the global/inter-process SSL Session Cache. This cache is an optional facility
which speeds up parallel request processing. For requests to the same server process (via HTTP keep-alive), OpenSSL
already caches the SSL session information locally. But because modern clients request inlined images and other data
via parallel requests (usually up to four parallel requests are common) those requests are served bydifferentpre-forked
server processes. Here an inter-process cache helps to avoid unneccessary session handshakes.

The following two storagetypes are currently supported:

• none

This is the default and just disables the global/inter-process Session Cache. There is no drawback in functional-
ity, but a noticeable speed penalty can be observed.

• dbm:/path/to/datafile

This makes use of a DBM hashfile on the local disk to synchronize the local OpenSSL memory caches of the
server processes. The slight increase in I/O on the server results in a visible request speedup for your clients, so
this type of storage is generally recommended.

• shm:/path/to/datafile [(size)]

This makes use of a high-performance hash table (approx.sizebytes in size) inside a shared memory segment
in RAM (established via/path/to/datafile) to synchronize the local OpenSSL memory caches of the
server processes. This storage type is not available on all platforms.

Examples
SSLSessionCache dbm:/usr/local/apache/logs/ssl gcache data

SSLSessionCache shm:/usr/local/apache/logs/ssl gcache data(512000)

SSLSessionCacheTimeout Directive

Description: Number of seconds before an SSL session expires in the Session Cache
Syntax: SSLSessionCacheTimeout seconds
Default: SSLSessionCacheTimeout 300
Context: server config, virtual host
Status: Extension
Module: modssl

This directive sets the timeout in seconds for the information stored in the global/inter-process SSL Session Cache and
the OpenSSL internal memory cache. It can be set as low as 15 for testing, but should be set to higher values like 300
in real life.

Example
SSLSessionCacheTimeout 600

10.51. APACHE MODULE MOD SSL 541

SSLVerifyClient Directive

Description: Type of Client Certificate verification
Syntax: SSLVerifyClient level
Default: SSLVerifyClient none
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

This directive sets the Certificate verification level for the Client Authentication. Notice that this directive can be used
both in per-server and per-directory context. In per-server context it applies to the client authentication process used
in the standard SSL handshake when a connection is established. In per-directory context it forces a SSL renegotation
with the reconfigured client verification level after the HTTP request was read but before the HTTP response is sent.

The following levels are available forlevel:

• none: no client Certificate is required at all

• optional: the clientmaypresent a valid Certificate

• require: the clienthas topresent a valid Certificate

• optional no ca: the client may present a valid Certificate
but it need not to be (successfully) verifiable.

In practice only levelsnoneandrequire are really interesting, because leveloptional doesn’t work with all browsers
and leveloptional no ca is actually against the idea of authentication (but can be used to establish SSL test pages,
etc.)

Example
SSLVerifyClient require

SSLVerifyDepth Directive

Description: Maximum depth of CA Certificates in Client Certificate verification
Syntax: SSLVerifyDepth number
Default: SSLVerifyDepth 1
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: modssl

This directive sets how deeply modssl should verify before deciding that the clients don’t have a valid certificate.
Notice that this directive can be used both in per-server and per-directory context. In per-server context it applies to
the client authentication process used in the standard SSL handshake when a connection is established. In per-directory
context it forces a SSL renegotation with the reconfigured client verification depth after the HTTP request was read
but before the HTTP response is sent.

The depth actually is the maximum number of intermediate certificate issuers, i.e. the number of CA certificates
which are max allowed to be followed while verifying the client certificate. A depth of 0 means that self-signed client
certificates are accepted only, the default depth of 1 means the client certificate can be self-signed or has to be signed
by a CA which is directly known to the server (i.e. the CA’s certificate is underSSLCACERTIFICATEPATH), etc.

Example
SSLVerifyDepth 10

542 CHAPTER 10. APACHE MODULES

10.52 Apache Module modstatus

Description: Provides information on server activity and performance
Status: Base
ModuleIdentifier: statusmodule
SourceFile: modstatus.c

Summary

=⇒Warning: This document has not been updated to take into account changes made in the 2.0
version of the Apache HTTP Server. Some of the information may still be relevant, but please
use it with care.

The Status module allows a server administrator to find out how well their server is performing. A HTML page is
presented that gives the current server statistics in an easily readable form. If required this page can be made to
automatically refresh (given a compatible browser). Another page gives a simple machine-readable list of the current
server state.

The details given are:

• The number of children serving requests

• The number of idle children

• The status of each child, the number of requests that child has performed and the total number of bytes served
by the child (*)

• A total number of accesses and byte count served (*)

• The time the server was started/restarted and the time it has been running for

• Averages giving the number of requests per second, the number of bytes served per second and the average
number of bytes per request (*)

• The current percentage CPU used by each child and in total by Apache (*)

• The current hosts and requests being processed (*)

A compile-time option must be used to display the details marked" (*) " as the instrumentation required for obtaining
these statistics does not exist within standard Apache.

Directives

• ExtendedStatus

Enabling Status Support

To enable status reports only for browsers from the foo.com domain add this code to yourhttpd.conf configuration
file

<Location /server-status >
SetHandler server-status

Order Deny,Allow
Deny from all
Allow from .foo.com

</Location >

10.52. APACHE MODULE MOD STATUS 543

You can now access server statistics by using a Web browser to access the page
http://your.server.name/server-status

=⇒Note thatMOD STATUS will only work when you are running Apache in standalone (p.288)
mode and not inetd (p.288) mode.

Automatic Updates

You can get the status page to update itself automatically if you have a browser that supports" refresh" . Access the
pagehttp://your.server.name/server-status?refresh=N to refresh the page every N seconds.

Machine Readable Status File

A machine-readable version of the status file is available by accessing the page
http://your.server.name/server-status?auto . This is useful when automatically run, see
the Perl program in the/support directory of Apache,log server status .

=⇒It should be noted that if MOD STATUS is compiled into the server, its handler capability
is available inall configuration files, includingper-directory files (e.g., .htaccess). This
may have security-related ramifications for your site.

ExtendedStatus Directive

Description: Keep track of extended status information for each request
Syntax: ExtendedStatus On|Off
Default: ExtendedStatus Off
Context: server config
Status: Base
Module: modstatus
Compatibility: ExtendedStatus is only available in Apache 1.3.2 and later.

This setting applies to the entire server, and cannot be enabled or disabled on a virtualhost-by-virtualhost basis. The
collection of extended status information can slow down the server.

544 CHAPTER 10. APACHE MODULES

10.53 Apache Module modsuexec

Description: Allows CGI scripts to run as a specified user and Group
Status: Extension
ModuleIdentifier: suexecmodule
SourceFile: modsuexec.c
Compatibility: Available in Apache 2.0 and later

Summary

This module, in combination with the suexec support program (p.257) allows CGI scripts to run as a specified user
and Group.

Directives

• SuexecUserGroup

See also

• SuEXEC support (p.69)

SuexecUserGroup Directive

Description: User and group permissions for CGI programs
Syntax: SuexecUserGroup User Group
Context: server config, virtual host
Status: Extension
Module: modsuexec
Compatibility: SuexecUserGroup is only available in 2.0 and later.

The SUEXECUSERGROUP directive allows you to specify a user and group for CGI programs to run as. Non-CGI
requests are still processes with the user specified in the User directive. This directive replaces the Apache 1.3 config-
uration of using the User and Group directives inside of VirtualHosts.

Example
SuexecUserGroup nobody nogroup

10.54. APACHE MODULE MOD UNIQUE ID 545

10.54 Apache Module modunique id

Description: Provides an environment variable with a unique identifier for each request
Status: Extension
ModuleIdentifier: uniqueid module
SourceFile: moduniqueid.c

Summary

This module provides a magic token for each request which is guaranteed to be unique across" all" requests under
very specific conditions. The unique identifier is even unique across multiple machines in a properly configured cluster
of machines. The environment variableUNIQUEID is set to the identifier for each request. Unique identifiers are
useful for various reasons which are beyond the scope of this document.

DirectivesThis module provides no directives.

Theory

First a brief recap of how the Apache server works on Unix machines. This feature currently isn’t supported on
Windows NT. On Unix machines, Apache creates several children, the children process requests one at a time. Each
child can serve multiple requests in its lifetime. For the purpose of this discussion, the children don’t share any data
with each other. We’ll refer to the children as httpd processes.

Your website has one or more machines under your administrative control, together we’ll call them a cluster of ma-
chines. Each machine can possibly run multiple instances of Apache. All of these collectively are considered" the
universe" , and with certain assumptions we’ll show that in this universe we can generate unique identifiers for each
request, without extensive communication between machines in the cluster.

The machines in your cluster should satisfy these requirements. (Even if you have only one machine you should
synchronize its clock with NTP.)

• The machines’ times are synchronized via NTP or other network time protocol.

• The machines’ hostnames all differ, such that the module can do a hostname lookup on the hostname and receive
a different IP address for each machine in the cluster.

As far as operating system assumptions go, we assume that pids (process ids) fit in 32-bits. If the operating system
uses more than 32-bits for a pid, the fix is trivial but must be performed in the code.

Given those assumptions, at a single point in time we can identify any httpd process on any machine in the cluster
from all other httpd processes. The machine’s IP address and the pid of the httpd process are sufficient to do this. So
in order to generate unique identifiers for requests we need only distinguish between different points in time.

To distinguish time we will use a Unix timestamp (seconds since January 1, 1970 UTC), and a 16-bit counter. The
timestamp has only one second granularity, so the counter is used to represent up to 65536 values during a single
second. The quadruple(ip addr, pid, timestamp, counter)is sufficient to enumerate 65536 requests per second per
httpd process. There are issues however with pid reuse over time, and the counter is used to alleviate this issue.

When an httpd child is created, the counter is initialized with (current microseconds divided by 10) modulo 65536
(this formula was chosen to eliminate some variance problems with the low order bits of the microsecond timers on
some systems). When a unique identifier is generated, the time stamp used is the time the request arrived at the web
server. The counter is incremented every time an identifier is generated (and allowed to roll over).

The kernel generates a pid for each process as it forks the process, and pids are allowed to roll over (they’re 16-bits
on many Unixes, but newer systems have expanded to 32-bits). So over time the same pid will be reused. However
unless it is reused within the same second, it does not destroy the uniqueness of our quadruple. That is, we assume the

546 CHAPTER 10. APACHE MODULES

system does not spawn 65536 processes in a one second interval (it may even be 32768 processes on some Unixes, but
even this isn’t likely to happen).

Suppose that time repeats itself for some reason. That is, suppose that the system’s clock is screwed up and it revisits
a past time (or it is too far forward, is reset correctly, and then revisits the future time). In this case we can easily show
that we can get pid and time stamp reuse. The choice of initializer for the counter is intended to help defeat this. Note
that we really want a random number to initialize the counter, but there aren’t any readily available numbers on most
systems (i.e., you can’t use rand() because you need to seed the generator, and can’t seed it with the time because time,
at least at one second resolution, has repeated itself). This is not a perfect defense.

How good a defense is it? Suppose that one of your machines serves at most 500 requests per second (which is
a very reasonable upper bound at this writing, because systems generally do more than just shovel out static files).
To do that it will require a number of children which depends on how many concurrent clients you have. But we’ll
be pessimistic and suppose that a single child is able to serve 500 requests per second. There are 1000 possible
starting counter values such that two sequences of 500 requests overlap. So there is a 1.5% chance that if time (at one
second resolution) repeats itself this child will repeat a counter value, and uniqueness will be broken. This was a very
pessimistic example, and with real world values it’s even less likely to occur. If your system is such that it’s still likely
to occur, then perhaps you should make the counter 32 bits (by editing the code).

You may be concerned about the clock being" set back" during summer daylight savings. However this isn’t an issue
because the times used here are UTC, which" always" go forward. Note that x86 based Unixes may need proper
configuration for this to be true – they should be configured to assume that the motherboard clock is on UTC and
compensate appropriately. But even still, if you’re running NTP then your UTC time will be correct very shortly after
reboot.

The UNIQUEID environment variable is constructed by encoding the 112-bit (32-bit IP address, 32 bit pid, 32 bit
time stamp, 16 bit counter) quadruple using the alphabet[A-Za-z0-9@-] in a manner similar to MIME base64
encoding, producing 19 characters. The MIME base64 alphabet is actually[A-Za-z0-9+/] however+ and/ need
to be specially encoded in URLs, which makes them less desirable. All values are encoded in network byte ordering
so that the encoding is comparable across architectures of different byte ordering. The actual ordering of the encoding
is: time stamp, IP address, pid, counter. This ordering has a purpose, but it should be emphasized that applications
should not dissect the encoding. Applications should treat the entire encodedUNIQUEID as an opaque token, which
can be compared against otherUNIQUEID s for equality only.

The ordering was chosen such that it’s possible to change the encoding in the future without worrying about collision
with an existing database ofUNIQUEID s. The new encodings should also keep the time stamp as the first element,
and can otherwise use the same alphabet and bit length. Since the time stamps are essentially an increasing sequence,
it’s sufficient to have aflag secondin which all machines in the cluster stop serving and request, and stop using the old
encoding format. Afterwards they can resume requests and begin issuing the new encodings.

This we believe is a relatively portable solution to this problem. It can be extended to multithreaded systems like
Windows NT, and can grow with future needs. The identifiers generated have essentially an infinite life-time because
future identifiers can be made longer as required. Essentially no communication is required between machines in
the cluster (only NTP synchronization is required, which is low overhead), and no communication between httpd
processes is required (the communication is implicit in the pid value assigned by the kernel). In very specific situations
the identifier can be shortened, but more information needs to be assumed (for example the 32-bit IP address is overkill
for any site, but there is no portable shorter replacement for it).

10.55. APACHE MODULE MOD USERDIR 547

10.55 Apache Module moduserdir

Description: User-specific directories
Status: Base
ModuleIdentifier: userdirmodule
SourceFile: moduserdir.c

Summary

This module allows user-specific directories to be accessed using thehttp://example.com/˜user/ syntax.

Directives

• UserDir

See also

• Mapping URLs to the Filesystem (p.37)

• public html tutorial (p.205)

UserDir Directive

Description: Location of the user-specific directories
Syntax: UserDir directory-filename
Default: UserDir public html
Context: server config, virtual host
Status: Base
Module: moduserdir

TheUSERDIR directive sets the real directory in a user’s home directory to use when a request for a document for a
user is received.Directory-filenameis one of the following:

• The name of a directory or a pattern such as those shown below.

• The keyworddisabled . This turns offall username-to-directory translations except those explicitly named
with theenabled keyword (see below).

• The keyworddisabled followed by a space-delimited list of usernames. Usernames that appear in such a list
will neverhave directory translation performed, even if they appear in anenabled clause.

• The keywordenabled followed by a space-delimited list of usernames. These usernames will have directory
translation performed even if a global disable is in effect, but not if they also appear in adisabled clause.

If neither the enabled nor the disabled keywords appear in theUserdir directive, the argument is
treated as a filename pattern, and is used to turn the name into a directory specification. A request for
http://www.foo.com/˜bob/one/two.html will be translated to:

UserDir directive used Translated path
UserDir publichtml ˜bob/publichtml/one/two.html
UserDir /usr/web /usr/web/bob/one/two.html
UserDir /home/*/www /home/bob/www/one/two.html

The following directives will send redirects to the client:

548 CHAPTER 10. APACHE MODULES

UserDir directive used Translated path
UserDir http://www.foo.com/users http://www.foo.com/users/bob/one/two.html
UserDir http://www.foo.com/*/usr http://www.foo.com/bob/usr/one/two.html
UserDir http://www.foo.com/˜*/ http://www.foo.com/˜bob/one/two.html

=⇒Be careful when using this directive; for instance, "UserDir ./" would map
"/˜root" to "/" - which is probably undesirable. It is strongly recommended that
your configuration include a "UserDir disabled root" declaration. See also the
DIRECTORY directive and the Security Tips (p.41) page for more information.

Additional examples:

To allow a few users to haveUserDir directories, but not anyone else, use the following:

UserDir disabled

UserDir enabled user1 user2 user3

To allow most users to haveUserDir directories, but deny this to a few, use the following:

UserDir enabled

UserDir disabled user4 user5 user6

It is also possible to specify alternative user directories. If you use a command like:

Userdir public html /usr/web http://www.foo.com/

With a request for http://www.foo.com/˜bob/one/two.html, will try to find the page at ˜bob/publichtml/one/two.html
first, then /usr/web/bob/one/two.html, and finally it will send a redirect to http://www.foo.com/bob/one/two.html.

If you add a redirect, it must be the last alternative in the list. Apache cannot determine if the redirect succeeded or
not, so if you have the redirect earlier in the list, that will always be the alternative that is used.

See also

• public html tutorial (p.205)

10.56. APACHE MODULE MOD USERTRACK 549

10.56 Apache Module modusertrack

Description: Clickstreamlogging of user activity on a site
Status: Extension
ModuleIdentifier: usertrackmodule
SourceFile: modusertrack.c

Summary

Previous releases of Apache have included a module which generates a ’clickstream’ log of user activity on a site
using cookies. This was called the" cookies" module, modcookies. In Apache 1.2 and later this module has been
renamed the" user tracking" module, modusertrack. This module has been simplified and new directives added.

Directives

• CookieDomain

• CookieExpires

• CookieName

• CookieStyle

• CookieTracking

Logging

Previously, the cookies module (now the user tracking module) did its own logging, using theCOOKIELOG directive.
In this release, this module does no logging at all. Instead, a configurable log format file should be used to log user
click-streams. This is possible because the logging module now allows multiple log files. The cookie itself is logged
by using the text%{cookie }n in the log file format. For example:

CustomLog logs/clickstream "% {cookie }n %r %t"

For backward compatibility the configurable log module implements the oldCOOKIELOG directive, but this should
be upgraded to the aboveCUSTOMLOG directive.

2-digit or 4-digit dates for cookies?

(the following is from message<022701bda43d$9d32bbb0$1201a8c0@christian.office.sane.com> in the new-httpd
archives)

From: "Christian Allen" <christian@sane.com>
Subject: Re: Apache Y2K bug in mod_usertrack.c
Date: Tue, 30 Jun 1998 11:41:56 -0400

Did some work with cookies and dug up some info that might be useful.

True, Netscape claims that the correct format NOW is four digit dates, and
four digit dates do in fact work... for Netscape 4.x (Communicator), that
is. However, 3.x and below do NOT accept them. It seems that Netscape

550 CHAPTER 10. APACHE MODULES

originally had a 2-digit standard, and then with all of the Y2K hype and
probably a few complaints, changed to a four digit date for Communicator.
Fortunately, 4.x also understands the 2-digit format, and so the best way to
ensure that your expiration date is legible to the client’s browser is to
use 2-digit dates.

However, this does not limit expiration dates to the year 2000; if you use
an expiration year of "13", for example, it is interpreted as 2013, NOT
1913! In fact, you can use an expiration year of up to "37", and it will be
understood as "2037" by both MSIE and Netscape versions 3.x and up (not sure
about versions previous to those). Not sure why Netscape used that
particular year as its cut-off point, but my guess is that it was in respect
to UNIX’s 2038 problem. Netscape/MSIE 4.x seem to be able to understand
2-digit years beyond that, at least until "50" for sure (I think they
understand up until about "70", but not for sure).

Summary: Mozilla 3.x and up understands two digit dates up until "37"
(2037). Mozilla 4.x understands up until at least "50" (2050) in 2-digit
form, but also understands 4-digit years, which can probably reach up until
9999. Your best bet for sending a long-life cookie is to send it for some
time late in the year "37".

CookieDomain Directive

Description: The domain to which the tracking cookie applies
Syntax: CookieDomain domain
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modusertrack

This directive controls the setting of the domain to which the tracking cookie applies. If not present, no domain is
included in the cookie header field.

The domain stringmust begin with a dot, andmust include at least one embedded dot. That is," .foo.com" is legal,
but " foo.bar.com" and" .com" are not.

CookieExpires Directive

Description: Expiry time for the tracking cookie
Syntax: CookieExpires expiry-period
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modusertrack

When used, this directive sets an expiry time on the cookie generated by the usertrack module. Theexpiry-periodcan
be given either as a number of seconds, or in the format such as" 2 weeks 3 days 7 hours" . Valid denominations are:
years, months, weeks, days, hours, minutes and seconds. If the expiry time is in any format other than one number
indicating the number of seconds, it must be enclosed by double quotes.

If this directive is not used, cookies last only for the current browser session.

10.56. APACHE MODULE MOD USERTRACK 551

CookieName Directive

Description: Name of the tracking cookie
Syntax: CookieName token
Default: CookieName Apache
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modusertrack

This directive allows you to change the name of the cookie this module uses for its tracking purposes. By default the
cookie is named"Apache" .

You must specify a valid cookie name; results are unpredictable if you use a name containing unusual characters. Valid
characters include A-Z, a-z, 0-9," " , and" -" .

CookieStyle Directive

Description: Format of the cookie header field
Syntax: CookieStyle Netscape|Cookie|Cookie2|RFC2109|RFC2965
Default: CookieStyle Netscape
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modusertrack

This directive controls the format of the cookie header field. The three formats allowed are:

• Netscape, which is the original but now deprecated syntax. This is the default, and the syntax Apache has
historically used.

• Cookieor RFC2109, which is the syntax that superseded the Netscape syntax.

• Cookie2or RFC2965, which is the most current cookie syntax.

Not all clients can understand all of these formats. but you should use the newest one that is generally acceptable to
your users’ browsers.

CookieTracking Directive

Description: Enables tracking cookie
Syntax: CookieTracking on|off
Default: CookieTracking off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: modusertrack

When the user track module is compiled in, and" CookieTracking on" is set, Apache will start sending a user-tracking
cookie for all new requests. This directive can be used to turn this behavior on or off on a per-server or per-directory
basis. By default, compiling modusertrack will not activate cookies.

552 CHAPTER 10. APACHE MODULES

10.57 Apache Module modvhost alias

Description: Provides for dynamically configured mass virtual hosting
Status: Extension
ModuleIdentifier: vhostaliasmodule
SourceFile: modvhostalias.c

Summary

This module creates dynamically configured virtual hosts, by allowing the IP address and/or theHost: header of the
HTTP request to be used as part of the pathname to determine what files to serve. This allows for easy use of a huge
number of virtual hosts with similar configurations.

=⇒Note
If MOD ALIAS or MOD USERDIR are used for translating URIs to filenames,
they will override the directives ofMOD VHOST ALIAS described below. For
example, the following configuration will map /cgi-bin/script.pl to
/usr/local/apache2/cgi-bin/script.pl in all cases:

ScriptAlias /cgi-bin/ /usr/local/apache2/cgi-bin/

VirtualScriptAlias /never/found/%0/cgi-bin/

Directives

• VirtualDocumentRoot

• VirtualDocumentRootIP

• VirtualScriptAlias

• VirtualScriptAliasIP

See also

• USECANONICAL NAME

• Dynamically configured mass virtual hosting (p.120)

Directory Name Interpolation

All the directives in this module interpolate a string into a pathname. The interpolated string (henceforth called
the " name") may be either the server name (see theUSECANONICAL NAME directive for details on how this is
determined) or the IP address of the virtual host on the server in dotted-quad format. The interpolation is controlled
by specifiers inspired byprintf which have a number of formats:

%% insert a%

%p insert the port number of the virtual host
%N.M insert (part of) the name

N andMare used to specify substrings of the name.N selects from the dot-separated components of the name, andM
selects characters within whateverNhas selected.Mis optional and defaults to zero if it isn’t present; the dot must be
present if and only ifMis present. The interpretation is as follows:

10.57. APACHE MODULE MOD VHOST ALIAS 553

0 the whole name
1 the first part
2 the second part
-1 the last part
-2 the penultimate part
2+ the second and all subsequent parts
-2+ the penultimate and all preceding parts
1+ and-1+ the same as0

If Nor Mis greater than the number of parts available a single underscore is interpolated.

Examples

For simple name-based virtual hosts you might use the following directives in your server configuration file:

UseCanonicalName Off

VirtualDocumentRoot /usr/local/apache/vhosts/%0

A request for http://www.example.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/www.example.com/directory/file.html .

For a very large number of virtual hosts it is a good idea to arrange the files to reduce the size of thevhosts directory.
To do this you might use the following in your configuration file:

UseCanonicalName Off

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2

A request forhttp://www.domain.example.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/example.com/d/o/m/domain/directory/file.html .

A more even spread of files can be achieved by hashing from the end of the name, for example:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2

The example request would come from/usr/local/apache/vhosts/example.com/n/i/a/domain/directory/file.html .

Alternatively you might use:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+

The example request would come from/usr/local/apache/vhosts/example.com/d/o/m/ain/directory/file.html .

For IP-based virtual hosting you might use the following in your configuration file:

UseCanonicalName DNS
VirtualDocumentRootIP /usr/local/apache/vhosts/%1/%2/%3/%4/docs

VirtualScriptAliasIP /usr/local/apache/vhosts/%1/%2/%3/%4/cgi-bin

A request for http://www.domain.example.com/directory/file.html would be satis-
fied by the file /usr/local/apache/vhosts/10/20/30/40/docs/directory/file.html
if the IP address of www.domain.example.com were 10.20.30.40. A request for

554 CHAPTER 10. APACHE MODULES

http://www.domain.example.com/cgi-bin/script.pl would be satisfied by executing the
program/usr/local/apache/vhosts/10/20/30/40/cgi-bin/script.pl .

If you want to include the. character in aVirtualDocumentRoot directive, but it clashes with a%directive, you
can work around the problem in the following way:

VirtualDocumentRoot /usr/local/apache/vhosts/%2.0.%3.0

A request forhttp://www.domain.example.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/domain.example/directory/file.html .

TheLOGFORMAT directives%Vand%Aare useful in conjunction with this module.

VirtualDocumentRoot Directive

Description: Dynamically configure the location of the document root for a given virtual host
Syntax: VirtualDocumentRoot interpolated-directory |none
Default: VirtualDocumentRoot none
Context: server config, virtual host
Status: Extension
Module: modvhostalias

TheV IRTUAL DOCUMENTROOT directive allows you to determine where Apache will find your documents based on
the value of the server name. The result of expandinginterpolated-directoryis used as the root of the document tree
in a similar manner to theDOCUMENTROOT directive’s argument. Ifinterpolated-directoryis none thenV IRTUAL -
DOCUMENTROOT is turned off. This directive cannot be used in the same context asV IRTUAL DOCUMENTROOTIP.

VirtualDocumentRootIP Directive

Description: Dynamically configure the location of the document root for a given virtual host
Syntax: VirtualDocumentRootIP interpolated-directory |none
Default: VirtualDocumentRootIP none
Context: server config, virtual host
Status: Extension
Module: modvhostalias

The V IRTUAL DOCUMENTROOTIP directive is like theV IRTUAL DOCUMENTROOT directive, except that it uses the
IP address of the server end of the connection for directory interpolation instead of the server name.

VirtualScriptAlias Directive

Description: Dynamically configure the location of the CGI directory for a given virtual host
Syntax: VirtualScriptAlias interpolated-directory |none
Default: VirtualScriptAlias none
Context: server config, virtual host
Status: Extension
Module: modvhostalias

TheV IRTUAL SCRIPTALIAS directive allows you to determine where Apache will find CGI scripts in a similar manner
to V IRTUAL DOCUMENTROOT does for other documents. It matches requests for URIs starting/cgi-bin/ , much
like SCRIPTALIAS /cgi-bin/ would.

10.57. APACHE MODULE MOD VHOST ALIAS 555

VirtualScriptAliasIP Directive

Description: Dynamically configure the location of the cgi directory for a given virtual host
Syntax: VirtualScriptAliasIP interpolated-directory |none
Default: VirtualScriptAliasIP none
Context: server config, virtual host
Status: Extension
Module: modvhostalias

TheV IRTUAL SCRIPTALIAS IP directive is like theV IRTUAL SCRIPTALIAS directive, except that it uses the IP address
of the server end of the connection for directory interpolation instead of the server name.

556 CHAPTER 10. APACHE MODULES

10.58 Apache Module beos

Description: This Multi-Processing Module is optimized for BeOS.
Status: MPM
ModuleIdentifier: mpmbeosmodule
SourceFile: beos.c

Summary

This Multi-Processing Module (MPM) is the default for BeOS. It uses a single control process creates threads to handle
requests.

Directives

• CoreDumpDirectory (p.559)

• Group (p.560)

• Listen (p.560)

• ListenBacklog (p.561)

• MaxClients (p.562)

• MaxMemFree (p.562)

• MaxRequestsPerThread

• MaxSpareThreads (p.563)

• MinSpareThreads (p.564)

• PidFile (p.564)

• ScoreBoardFile (p.565)

• SendBufferSize (p.565)

• StartThreads (p.566)

• User (p.568)

See also

• Setting which addresses and ports Apache uses (p.58)

MaxRequestsPerThread Directive

Description: Limit on the number of requests that an individual thread will handle during its life
Syntax: MaxRequestsPerThread number
Default: MaxRequestsPerThread 0
Context: server config
Status: MPM
Module: beos

The MAX REQUESTSPERTHREAD directive sets the limit on the number of requests that an individual server thread
will handle. AfterMAX REQUESTSPERTHREAD requests, the thread will die. IfMAX REQUESTSPERTHREAD is 0,
then the thread will never expire.

SettingMAX REQUESTSPERTHREAD to a non-zero limit has two beneficial effects:

• it limits the amount of memory that a thread can consume by (accidental) memory leakage;

10.58. APACHE MODULE BEOS 557

• by giving threads a finite lifetime, it helps reduce the number of threads when the server load reduces.

=⇒Note:
For KEEPALIVE requests, only the first request is counted towards this limit. In effect, it
changes the behavior to limit the number ofconnectionsper thread.

558 CHAPTER 10. APACHE MODULES

10.59 Apache Module mpmcommon

Description: A collection of directives that are implemented by more than one multi-processing mod-
ule (MPM)

Status: MPM

Directives

• AcceptMutex

• BS2000Account

• CoreDumpDirectory

• Group

• Listen

• ListenBackLog

• LockFile

• MaxClients

• MaxMemFree

• MaxRequestsPerChild

• MaxSpareThreads

• MinSpareThreads

• PidFile

• ScoreBoardFile

• SendBufferSize

• ServerLimit

• StartServers

• StartThreads

• ThreadLimit

• ThreadsPerChild

• User

AcceptMutex Directive

Description: Method that Apache uses to serialize multiple children accepting requests on network sockets
Syntax: AcceptMutex Default|method
Default: AcceptMutex Default
Context: server config
Status: MPM
Module: LEADER, PERCHILD, PREFORK, THREADPOOL, WORKER

TheACCEPTMUTEX directives sets the method that Apache uses to serialize multiple children accepting requests on
network sockets. Prior to Apache 2.0, the method was selectable only at compile time. The optimal method to use is
highly architecture and platform dependent. For further details, see the performance tuning (p.74) documentation.

If this directive is set toDefault , then the compile-time selected default will be used. Other possible methods are
listed below. Note that not all methods are available on all platforms. If a method is specified which is not available, a
message will be written to the error log listing the available methods.

10.59. APACHE MODULE MPM COMMON 559

flock uses theflock(2) system call to lock the file defined by theLOCKFILE directive.

fcntl uses thefcntl(2) system call to lock the file defined by theLOCKFILE directive.

posixsem uses POSIX compatible semaphores to implement the mutex.

pthread uses POSIX mutexes as implemented by the POSIX Threads (PThreads) specification.

sysvsem uses SySV-style semaphores to implement the mutex.

If you want to find out the compile time chosen default for your system, you may set yourLOGLEVEL to debug .
Then the defaultACCEPTMUTEX will be written into theERRORLOG.

BS2000Account Directive

Description: Define the non-privileged account on BS2000 machines
Syntax: BS2000Account account
Context: server config
Status: MPM
Module: PERCHILD, PREFORK

Compatibility: Only available for BS2000 machines

The BS2000ACCOUNT directive is available for BS2000 hosts only. It must be used to define the account number
for the non-privileged apache server user (which was configured using theUSER directive). This is required by the
BS2000 POSIX subsystem (to change the underlying BS2000 task environment by performing a sub-LOGON) to
prevent CGI scripts from accessing resources of the privileged account which started the server, usuallySYSROOT.

=⇒Note
Only oneBS2000Account directive can be used.

See also

• Apache EBCDIC port (p.233)

CoreDumpDirectory Directive

Description: Directory where Apache attempts to switch before dumping core
Syntax: CoreDumpDirectory directory
Default: See usage for the default setting
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM WINNT, PERCHILD, PREFORK, THREADPOOL, WORKER

This controls the directory to which Apache attempts to switch before dumping core. The default is in theSERVER-
ROOT directory, however since this should not be writable by the user the server runs as, core dumps won’t normally
get written. If you want a core dump for debugging, you can use this directive to place it in a different location.

=⇒Core Dumps on Linux
If Apache starts as root and switches to another user, the Linux kerneldisablescore dumps even
if the directory is writable for the process. Apache (2.0.46 and later) reenables core dumps on
Linux 2.4 and beyond, but only if you explicitly configure aCOREDUMPDIRECTORY.

560 CHAPTER 10. APACHE MODULES

Group Directive

Description: Group under which the server will answer requests
Syntax: Group unix-group
Default: Group #-1
Context: server config
Status: MPM
Module: BEOS, LEADER, MPMT OS2, PERCHILD, PREFORK, THREADPOOL, WORKER

Compatibility: Only valid in global server config since Apache 2.0

The GROUP directive sets the group under which the server will answer requests. In order to use this directive, the
server must be run initially asroot . If you start the server as a non-root user, it will fail to change to the specified
group, and will instead continue to run as the group of the original user. Unix-group is one of:

A group name Refers to the given group by name.

followed by a group number. Refers to a group by its number.

Example
Group www-group

It is recommended that you set up a new group specifically for running the server. Some admins use usernobody ,
but this is not always possible or desirable.

! Security
Don’t setGROUP (or USER) to root unless you know exactly what you are doing, and what
the dangers are.

Special note: Use of this directive in<V IRTUAL HOST> is no longer supported. To configure your server for suexec
(p. 544) useSUEXECUSERGROUP.

=⇒Note
Although theGROUP directive is present in theBEOS andMPMT OS2 MPMs, it is actually a
no-op there and only exists for compatibility reasons.

Listen Directive

Description: IP addresses and ports that the server listens to
Syntax: Listen [IP-address:]portnumber
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM NETWARE, MPM WINNT, MPMT OS2, PERCHILD, PREFORK, THREAD-

POOL, WORKER

Compatibility: Required directive since Apache 2.0

TheL ISTEN directive instructs Apache to listen to only specific IP addresses or ports; by default it responds to requests
on all IP interfaces.L ISTEN is now a required directive. If it is not in the config file, the server will fail to start. This
is a change from previous versions of Apache.

TheL ISTEN directive tells the server to accept incoming requests on the specified port or address-and-port combina-
tion. If only a port number is specified, the server listens to the given port on all interfaces. If an IP address is given as
well as a port, the server will listen on the given port and interface.

10.59. APACHE MODULE MPM COMMON 561

Multiple L ISTEN directives may be used to specify a number of addresses and ports to listen to. The server will
respond to requests from any of the listed addresses and ports.

For example, to make the server accept connections on both port 80 and port 8000, use:

Listen 80

Listen 8000

To make the server accept connections on two specified interfaces and port numbers, use

Listen 192.170.2.1:80

Listen 192.170.2.5:8000

IPv6 addresses must be surrounded in square brackets, as in the following example:

Listen [fe80::a00:20ff:fea7:ccea]:80

See also

• DNS Issues (p.139)

• Setting which addresses and ports Apache uses (p.58)

ListenBackLog Directive

Description: Maximum length of the queue of pending connections
Syntax: ListenBacklog backlog
Default: ListenBacklog 511
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM NETWARE, MPM WINNT, MPMT OS2, PERCHILD, PREFORK, THREAD-

POOL, WORKER

The maximum length of the queue of pending connections. Generally no tuning is needed or desired, however on
some systems it is desirable to increase this when under a TCP SYN flood attack. See the backlog parameter to the
listen(2) system call.

This will often be limited to a smaller number by the operating system. This varies from OS to OS. Also note that
many OSes do not use exactly what is specified as the backlog, but use a number based on (but normally larger than)
what is set.

LockFile Directive

Description: Location of the accept serialization lock file
Syntax: LockFile filename
Default: LockFile logs/accept.lock
Context: server config
Status: MPM
Module: LEADER, PERCHILD, PREFORK, THREADPOOL, WORKER

The LOCKFILE directive sets the path to the lockfile used when Apache is used with anACCEPTMUTEX value of
eitherfcntl or flock . This directive should normally be left at its default value. The main reason for changing it is

562 CHAPTER 10. APACHE MODULES

if the logs directory is NFS mounted, sincethe lockfile must be stored on a local disk. The PID of the main server
process is automatically appended to the filename.

! Security
It is best toavoid putting this file in a world writable directory such as/var/tmp because
someone could create a denial of service attack and prevent the server from starting by creating
a lockfile with the same name as the one the server will try to create.

See also

• ACCEPTMUTEX

MaxClients Directive

Description: Maximum number of child processes that will be created to serve requests
Syntax: MaxClients number
Default: See usage for details
Context: server config
Status: MPM
Module: BEOS, LEADER, PREFORK, THREADPOOL, WORKER

TheMAX CLIENTS directive sets the limit on the number of simultaneous requests that will be served. Any connection
attempts over theMAX CLIENTS limit will normally be queued, up to a number based on theL ISTENBACKLOG

directive. Once a child process is freed at the end of a different request, the connection will then be serviced.

For non-threaded servers (i.e., PREFORK), MAX CLIENTS translates into the maximum number of child processes that
will be launched to serve requests. The default value is256 ; to increase it, you must also raiseSERVERL IMIT .

For threaded and hybrid servers (e.g. BEOS or WORKER) MAX CLIENTS restricts the total number of threads that
will be available to serve clients. The default value forBEOS is 50 . For hybrid MPMs the default value is16
(SERVERL IMIT) multiplied by the value of25 (THREADSPERCHILD). Therefore, to increaseMAX CLIENTS to a
value that requires more than 16 processes, you must also raiseSERVERL IMIT .

MaxMemFree Directive

Description: Maximum amount of memory that the main allocator is allowed to hold without calling
free()

Syntax: MaxMemFree KBytes
Default: MaxMemFree 0
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM NETWARE, PREFORK, THREADPOOL, WORKER

The MAX MEMFREE directive sets the maximum number of free Kbytes that the main allocator is allowed to hold
without callingfree() . When not set, or when set to zero, the threshold will be set to unlimited.

10.59. APACHE MODULE MPM COMMON 563

MaxRequestsPerChild Directive

Description: Limit on the number of requests that an individual child server will handle during its life
Syntax: MaxRequestsPerChild number
Default: MaxRequestsPerChild 10000
Context: server config
Status: MPM
Module: LEADER, MPM NETWARE, MPM WINNT, MPMT OS2, PERCHILD, PREFORK, THREADPOOL,

WORKER

TheMAX REQUESTSPERCHILD directive sets the limit on the number of requests that an individual child server pro-
cess will handle. AfterMAX REQUESTSPERCHILD requests, the child process will die. IfMAX REQUESTSPERCHILD

is 0, then the process will never expire.

=⇒Different default values
The default value forMPM NETWARE andMPM WINNT is 0.

SettingMAX REQUESTSPERCHILD to a non-zero limit has two beneficial effects:

• it limits the amount of memory that process can consume by (accidental) memory leakage;

• by giving processes a finite lifetime, it helps reduce the number of processes when the server load reduces.

=⇒Note
For KEEPALIVE requests, only the first request is counted towards this limit. In effect, it
changes the behavior to limit the number ofconnectionsper child.

MaxSpareThreads Directive

Description: Maximum number of idle threads
Syntax: MaxSpareThreads number
Default: See usage for details
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM NETWARE, MPMT OS2, PERCHILD, THREADPOOL, WORKER

Maximum number of idle threads. Different MPMs deal with this directive differently.

ForPERCHILD the default isMaxSpareThreads 10 . This MPM monitors the number of idle threads on a per-child
basis. If there are too many idle threads in that child, the server will begin to kill threads within that child.

For WORKER, LEADER and THREADPOOL the default isMaxSpareThreads 250 . These MPMs deal with idle
threads on a server-wide basis. If there are too many idle threads in the server then child processes are killed until the
number of idle threads is less than this number.

For MPM NETWARE the default isMaxSpareThreads 100 . Since this MPM runs a single-process, the spare
thread count is also server-wide.

BEOS and MPMT OS2 work similar to MPM NETWARE. The default forBEOS is MaxSpareThreads 50 . For
MPMT OS2 the default value is10 .

564 CHAPTER 10. APACHE MODULES

=⇒Restrictions
The range of theMAX SPARETHREADSvalue is restricted. Apache will correct the given value
automatically according to the following rules:

• PERCHILD requiresMAX SPARETHREADS to be less or equal thanTHREADL IMIT .

• MPM NETWARE wants the value to be greater thanM INSPARETHREADS.

• For LEADER, THREADPOOL andWORKER the value must be greater or equal than the
sum ofM INSPARETHREADS andTHREADSPERCHILD .

See also

• M INSPARETHREADS

• STARTSERVERS

MinSpareThreads Directive

Description: Minimum number of idle threads available to handle request spikes
Syntax: MinSpareThreads number
Default: See usage for details
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM NETWARE, MPMT OS2, PERCHILD, THREADPOOL, WORKER

Minimum number of idle threads to handle request spikes. Different MPMs deal with this directive differently.

PERCHILD uses a default ofMinSpareThreads 5 and monitors the number of idle threads on a per-child basis. If
there aren’t enough idle threads in that child, the server will begin to create new threads within that child. Thus, if you
setNUMSERVERSto 10 and aM INSPARETHREADS value of5, you’ll have at least 50 idle threads on your system.

WORKER, LEADER and THREADPOOL use a default ofMinSpareThreads 75 and deal with idle threads on a
server-wide basis. If there aren’t enough idle threads in the server then child processes are created until the number of
idle threads is greater than number.

MPM NETWARE uses a default ofMinSpareThreads 10 and, since it is a single-process MPM, tracks this on a
server-wide bases.

BEOS and MPMT OS2 work similar to MPM NETWARE. The default forBEOS is MinSpareThreads 1 . For
MPMT OS2 the default value is5.

See also

• MAX SPARETHREADS

• STARTSERVERS

PidFile Directive

Description: File where the server records the process ID of the daemon
Syntax: PidFile filename
Default: PidFile logs/httpd.pid
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM WINNT, MPMT OS2, PERCHILD, PREFORK, THREADPOOL, WORKER

The PIDFILE directive sets the file to which the server records the process id of the daemon. If the filename is not
absolute then it is assumed to be relative to theSERVERROOT.

10.59. APACHE MODULE MPM COMMON 565

Example
PidFile /var/run/apache.pid

It is often useful to be able to send the server a signal, so that it closes and then re-opens itsERRORLOG andTRANS-
FERLOG, and re-reads its configuration files. This is done by sending a SIGHUP (kill -1) signal to the process id listed
in thePIDFILE.

ThePIDFILE is subject to the same warnings about log file placement and security (p.41) .

=⇒Note
As of Apache 2 it is recommended to use only the apachectl (p.243) script for (re-)starting or
stopping the server.

ScoreBoardFile Directive

Description: Location of the file used to store coordination data for the child processes
Syntax: ScoreBoardFile file-path
Default: ScoreBoardFile logs/apache status
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM WINNT, PERCHILD, PREFORK, THREADPOOL, WORKER

Apache uses a scoreboard to communicate between its parent and child processes. Some architectures require a file to
facilitate this communication. If the file is left unspecified, Apache first attempts to create the scoreboard entirely in
memory (using anonymous shared memory) and, failing that, will attempt to create the file on disk (using file-based
shared memory). Specifying this directive causes Apache to always create the file on the disk.

Example
ScoreBoardFile /var/run/apache status

File-based shared memory is useful for third-party applications that require direct access to the scoreboard.

If you use aSCOREBOARDFILE then you may see improved speed by placing it on a RAM disk. But be careful that
you heed the same warnings about log file placement and security (p.41) .

See also

• Stopping and Restarting Apache (p.17)

SendBufferSize Directive

Description: TCP buffer size
Syntax: SendBufferSize bytes
Default: SendBufferSize 0
Context: server config
Status: MPM
Module: BEOS, LEADER, MPM NETWARE, MPM WINNT, MPMT OS2, PERCHILD, PREFORK, THREAD-

POOL, WORKER

The server will set the TCP buffer size to the number of bytes specified. Very useful to increase past standard OS
defaults on high speed high latency (i.e., 100ms or so, such as transcontinental fast pipes).

If set to the value of0, the server will use the OS deault.

566 CHAPTER 10. APACHE MODULES

ServerLimit Directive

Description: Upper limit on configurable number of processes
Syntax: ServerLimit number
Default: See usage for details
Context: server config
Status: MPM
Module: LEADER, PERCHILD, PREFORK, THREADPOOL, WORKER

For the PREFORK MPM, this directive sets the maximum configured value forMAX CLIENTS for the lifetime of
the Apache process. For theWORKER MPM, this directive in combination withTHREADL IMIT sets the maximum
configured value forMAX CLIENTS for the lifetime of the Apache process. Any attempts to change this directive
during a restart will be ignored, butMAX CLIENTS can be modified during a restart.

Special care must be taken when using this directive. IfSERVERL IMIT is set to a value much higher than necessary,
extra, unused shared memory will be allocated. If bothSERVERL IMIT andMAX CLIENTS are set to values higher than
the system can handle, Apache may not start or the system may become unstable.

With the PREFORKMPM, use this directive only if you need to setMAX CLIENTS higher than 256 (default). Do not
set the value of this directive any higher than what you might want to setMAX CLIENTS to.

With WORKER, LEADER andTHREADPOOL use this directive only if yourMAX CLIENTS andTHREADSPERCHILD

settings require more than 16 server processes (default). Do not set the value of this directive any higher than the
number of server processes required by what you may want forMAX CLIENTS andTHREADSPERCHILD .

With thePERCHILD MPM, use this directive only if you need to setNUMSERVERShigher than 8 (default).

=⇒Note
There is a hard limit ofServerLimit 20000 compiled into the server. This is intended to
avoid nasty effects caused by typos.

See also

• Stopping and Restarting Apache (p.17)

StartServers Directive

Description: Number of child server processes created at startup
Syntax: StartServers number
Default: See usage for details
Context: server config
Status: MPM
Module: LEADER, MPMT OS2, PREFORK, THREADPOOL, WORKER

TheSTARTSERVERSdirective sets the number of child server processes created on startup. As the number of processes
is dynamically controlled depending on the load, there is usually little reason to adjust this parameter.

The default value differs from MPM to MPM. ForLEADER, THREADPOOL and WORKER the default is
StartServers 3 . For PREFORKdefaults to5 and forMPMT OS2 to 2.

StartThreads Directive

Description: Number of threads created on startup
Syntax: StartThreads number
Default: See usage for details
Context: server config
Status: MPM
Module: BEOS, MPM NETWARE, PERCHILD

10.59. APACHE MODULE MPM COMMON 567

Number of threads created on startup. As the number of threads is dynamically controlled depending on the load, there
is usually little reason to adjust this parameter.

ForPERCHILD the default isStartThreads 5 and this directive tracks the number of threads per process at startup.

For MPM NETWARE the default isStartThreads 50 and, since there is only a single process, this is the total
number of threads created at startup to serve requests.

For BEOS the default isStartThreads 10 . It also reflects the total number of threads created at startup to serve
requests.

ThreadLimit Directive

Description: Sets the upper limit on the configurable number of threads per child process
Syntax: ThreadLimit number
Default: See usage for details
Context: server config
Status: MPM
Module: LEADER, MPM WINNT, PERCHILD, THREADPOOL, WORKER

Compatibility: Available forMPM WINNT in Apache 2.0.41 and later

This directive sets the maximum configured value forTHREADSPERCHILD for the lifetime of the Apache process.
Any attempts to change this directive during a restart will be ignored, butTHREADSPERCHILD can be modified during
a restart up to the value of this directive.

Special care must be taken when using this directive. IfTHREADL IMIT is set to a value much higher than
THREADSPERCHILD , extra unused shared memory will be allocated. If bothTHREADL IMIT and THREADSPER-
CHILD are set to values higher than the system can handle, Apache may not start or the system may become unstable.
Do not set the value of this directive any higher than your greatest predicted setting ofTHREADSPERCHILD for the
current run of Apache.

The default value forTHREADL IMIT is 1920 when used withMPM WINNT and64 when used with the others.

=⇒Note
There is a hard limit ofThreadLimit 20000 (or ThreadLimit 15000 with
MPM WINNT) compiled into the server. This is intended to avoid nasty effects caused by typos.

ThreadsPerChild Directive

Description: Number of threads created by each child process
Syntax: ThreadsPerChild number
Default: See usage for details
Context: server config
Status: MPM
Module: LEADER, MPM WINNT, THREADPOOL, WORKER

This directive sets the number of threads created by each child process. The child creates these threads at startup and
never creates more. If using an MPM likeMPM WINNT, where there is only one child process, this number should be
high enough to handle the entire load of the server. If using an MPM likeWORKER, where there are multiple child
processes, thetotal number of threads should be high enough to handle the common load on the server.

The default value forTHREADSPERCHILD is 64 when used withMPM WINNT and25 when used with the others.

568 CHAPTER 10. APACHE MODULES

User Directive

Description: The userid under which the server will answer requests
Syntax: User unix-userid
Default: User #-1
Context: server config
Status: MPM
Module: LEADER, PERCHILD, PREFORK, THREADPOOL, WORKER

Compatibility: Only valid in global server config since Apache 2.0

TheUSERdirective sets the user ID as which the server will answer requests. In order to use this directive, the server
must be run initially asroot . If you start the server as a non-root user, it will fail to change to the lesser privileged
user, and will instead continue to run as that original user. If you do start the server asroot , then it is normal for the
parent process to remain running as root. Unix-userid is one of:

A username Refers to the given user by name.

followed by a user number. Refers to a user by its number.

The user should have no privileges that result in it being able to access files that are not intended to be visible to the
outside world, and similarly, the user should not be able to execute code that is not meant for HTTP requests. It is
recommended that you set up a new user and group specifically for running the server. Some admins use usernobody ,
but this is not always desirable, since thenobody user can have other uses on the system.

! Security
Don’t setUSER (or GROUP) to root unless you know exactly what you are doing, and what
the dangers are.

With the PERCHILD MPM, which is intended to server virtual hosts run under different user IDs, theUSER directive
defines the user ID for the main server and the fallback for<V IRTUAL HOST> sections without anASSIGNUSERID
directive.

Special note: Use of this directive in<V IRTUAL HOST> is no longer supported. To configure your server for suexec
(p. 69) useSUEXECUSERGROUP.

=⇒Note
Although theUSER directive is present in theBEOS and MPMT OS2 MPMs, it is actually a
no-op there and only exists for compatibility reasons.

10.60. APACHE MODULE LEADER 569

10.60 Apache Module leader

Description: An experimental variant of the standardWORKER MPM
Status: MPM
ModuleIdentifier: mpmleadermodule
SourceFile: leader.c

Summary

! Warning
This MPM is experimental, so it may or may not work as expected.

This is an experimental variant of the standardWORKERMPM. It uses a Leader/Followers design pattern to coordinate
work among threads. For more info, see http://deuce.doc.wustl.edu/doc/pspdfs/lf.pdf.

To use theLEADER MPM, add--with-mpm=leader to the configure script’s arguments when building the httpd.

This MPM depends on APR’s atomic compare-and-swap operations for thread synchronization. If you are compiling
for an x86 target and you don’t need to support 386s, or you are compiling for a SPARC and you don’t need to run on
pre-UltraSPARC chips, add--enable-nonportable-atomics=yes to the configure script’s arguments. This
will cause APR to implement atomic operations using efficient opcodes not available in older CPUs.

Directives

• AcceptMutex (p.558)

• CoreDumpDirectory (p.559)

• Group (p.560)

• Listen (p.560)

• ListenBacklog (p.561)

• LockFile (p.561)

• MaxClients (p.562)

• MaxMemFree (p.562)

• MaxRequestsPerChild (p.563)

• MaxSpareThreads (p.563)

• MinSpareThreads (p.564)

• PidFile (p.564)

• ScoreBoardFile (p.565)

• SendBufferSize (p.565)

• ServerLimit (p.566)

• StartServers (p.566)

• ThreadLimit (p.567)

• ThreadsPerChild (p.567)

• User (p.568)

570 CHAPTER 10. APACHE MODULES

10.61 Apache Module mpmnetware

Description: Multi-Processing Module implementing an exclusively threaded web server optimized
for Novell NetWare

Status: MPM
ModuleIdentifier: mpmnetwaremodule
SourceFile: mpmnetware.c

Summary

This Multi-Processing Module (MPM) implements an exclusively threaded web server that has been optimized for
Novell NetWare.

The main thread is responsible for launching child worker threads which listen for connections and serve them when
they arrive. Apache always tries to maintain several spare or idle worker threads, which stand ready to serve incoming
requests. In this way, clients do not need to wait for a new child threads to be spawned before their requests can be
served.

The STARTTHREADS, M INSPARETHREADS, MAX SPARETHREADS, and MAX THREADS regulate how the main
thread creates worker threads to serve requests. In general, Apache is very self-regulating, so most sites do not need
to adjust these directives from their default values. Sites with limited memory may need to decreaseMAX THREADS

to keep the server from thrashing (spawning and terminating idle threads). More information about tuning process
creation is provided in the performance hints (p.74) documentation.

MAX REQUESTSPERCHILD controls how frequently the server recycles processes by killing old ones and launching
new ones. On the NetWare OS it is highly recommended that this directive remain set to 0. This allows worker threads
to continue servicing requests indefinitely.

Directives

• Listen (p.560)

• ListenBacklog (p.561)

• MaxMemFree (p.562)

• MaxRequestsPerChild (p.563)

• MaxSpareThreads (p.563)

• MaxThreads

• MinSpareThreads (p.564)

• SendBufferSize (p.565)

• StartThreads (p.566)

• ThreadStackSize

See also

• Setting which addresses and ports Apache uses (p.58)

10.61. APACHE MODULE MPM NETWARE 571

MaxThreads Directive

Description: Set the maximum number of worker threads
Syntax: MaxThreads number
Default: MaxThreads 2048
Context: server config
Status: MPM
Module: mpmnetware

TheMAX THREADS directive sets the desired maximum number worker threads allowable. The default value is also
the compiled in hard limit. Therefore it can only be lowered, for example:

MaxThreads 512

ThreadStackSize Directive

Description: Determine the stack size for each thread
Syntax: ThreadStackSize number
Default: ThreadStackSize 65536
Context: server config
Status: MPM
Module: mpmnetware

This directive tells the server what stack size to use for each of the running threads. If you ever get a stack overflow
you will need to bump this number to a higher setting.

572 CHAPTER 10. APACHE MODULES

10.62 Apache Module mpmtos2

Description: Hybrid multi-process, multi-threaded MPM for OS/2
Status: MPM
ModuleIdentifier: mpmmpmt os2module
SourceFile: mpmtos2.c

Summary

The Server consists of a main, parent process and a small, static number of child processes.

The parent process’s job is to manage the child processes. This involves spawning children as required to ensure there
are alwaysSTARTSERVERSprocesses accepting connections.

Each child process consists of a a pool of worker threads and a main thread that accepts connections and passes them
to the workers via a work queue. The worker thread pool is dynamic, managed by a maintenance thread so that the
number of idle threads is kept betweenM INSPARETHREADS andMAX SPARETHREADS.

Directives

• Group (p.560)

• Listen (p.560)

• ListenBacklog (p.561)

• MaxRequestsPerChild (p.563)

• MaxSpareThreads (p.563)

• MinSpareThreads (p.564)

• PidFile (p.564)

• SendBufferSize (p.565)

• StartServers (p.566)

• User (p.568)

See also

• Setting which addresses and ports Apache uses (p.58)

10.63. APACHE MODULE PERCHILD 573

10.63 Apache Module perchild

Description: Multi-Processing Module allowing for daemon processes serving requests to be assigned
a variety of different userids

Status: MPM
ModuleIdentifier: mpmperchildmodule
SourceFile: perchild.c

Summary

! This MPM does not currently work on most platforms. Work is ongoing to make it functional.

This Multi-Processing Module (MPM) implements a hybrid multi-process, multi-threaded web server. A fixed number
of processes create threads to handle requests. Fluctuations in load are handled by increasing or decreasing the number
of threads in each process.

Directives

• AcceptMutex (p.558)

• AssignUserID

• BS2000Account (p.559)

• ChildPerUserID

• CoreDumpDirectory (p.559)

• Group (p.560)

• Listen (p.560)

• ListenBacklog (p.561)

• LockFile (p.561)

• MaxRequestsPerChild (p.563)

• MaxSpareThreads (p.563)

• MaxThreadsPerChild

• MinSpareThreads (p.564)

• NumServers

• PidFile (p.564)

• ScoreBoardFile (p.565)

• SendBufferSize (p.565)

• ServerLimit (p.566)

• StartThreads (p.566)

• ThreadLimit (p.567)

• User (p.568)

See also

• Setting which addresses and ports Apache uses (p.58)

574 CHAPTER 10. APACHE MODULES

How it works

A single control process launches the number of child processes indicated by theNUMSERVERSdirective at server
startup. Each child process creates threads as specified in theSTARTTHREADS directive. The individual threads then
listen for connections and serve them when they arrive.

Apache always tries to maintain a pool of spare or idle server threads, which stand ready to serve incoming requests.
In this way, clients do not need to wait for new threads to be created. For each child process, Apache assesses
the number of idle threads and creates or destroys threads to keep this number within the boundaries specified by
M INSPARETHREADS andMAX SPARETHREADS. Since this process is very self-regulating, it is rarely necessary to
modify these directives from their default values. The maximum number of clients that may be served simultaneously
is determined by multiplying the number of server processes that will be created (NUMSERVERS) by the maximum
number of threads created in each process (MAX THREADSPERCHILD).

While the parent process is usually started as root under Unix in order to bind to port 80, the child processes and threads
are launched by Apache as a less-privileged user. TheUSER andGROUP directives are used to set the privileges of
the Apache child processes. The child processes must be able to read all the content that will be served, but should
have as few privileges beyond that as possible. In addition, unless suexec (p.69) is used, these directives also set the
privileges which will be inherited by CGI scripts.

MAX REQUESTSPERCHILD controls how frequently the server recycles processes by killing old ones and launching
new ones.

Working with different user-IDs

The PERCHILD MPM adds the extra ability to specify that particular processes should serve requests under different
user-IDs. These user-IDs can then be associated with specific virtual hosts. You have to use oneCHILD PERUSERID
directive for every user/group combination you want to be run. Then you can tie particular virtual hosts to that user
and group IDs.

The following example runs 7 child processes. Two of them are run underuser1 /group1 . The next four are run
underuser2 /group2 and the remaining process uses theUSERandGROUPof the main server:

Global config
NumServers 7
ChildPerUserID user1 group1 2

ChildPerUserID user2 group2 4

Using unbalanced numbers of processes as above is useful, if the particular virtual hosts produce different load. The
assignment to the virtual hosts is easily done as in the example below. In conclusion with the example above the
following assumes, thatserver2 has to serve about twice of the hits ofserver1 .

10.63. APACHE MODULE PERCHILD 575

Example
NameVirtualHost *

<VirtualHost * >

ServerName fallbackhost
no assignment; use fallback

</VirtualHost >

<VirtualHost * >

ServerName server1
AssignUserID user1 group1

</VirtualHost >

<VirtualHost * >

ServerName server2
AssignUserID user2 group2

</VirtualHost >

AssignUserID Directive

Description: Tie a virtual host to a user and group ID
Syntax: AssignUserID user-id group-id
Context: virtual host
Status: MPM
Module: perchild

Tie a virtual host to a specific user/group combination. Requests addressed to the virtual host where this directive
appears will be served by a process running with the specified user and group ID.

The user and group ID has to be assigned to a number of children in the global server config using theCHILD PE-
RUSERID directive. See the section above for a configuration example.

ChildPerUserID Directive

Description: Specify user ID and group ID for a number of child processes
Syntax: ChildPerUserID user-id group-id num-children
Context: server config
Status: MPM
Module: perchild

Specify a user ID and group ID for a number of child processes. The third argument, num-children, is the number of
child processes to start with the specified user and group. It doesnot represent a specific child number. In order to use
this directive, the server must be run initially asroot . If you start the server as a non-root user, it will fail to change
to the lesser privileged user.

If the total number of child processes, found by totaling all of the third arguments to allCHILD PERUSERID directives
in the config file, is less thanNUMSERVERS, then all remaining children will inherit theUSER andGROUP settings
from the main server. See the section above for a configuration example.

! Security
Don’t set user-id (or group-id) toroot unless you know exactly what you are doing, and what
the dangers are.

576 CHAPTER 10. APACHE MODULES

MaxThreadsPerChild Directive

Description: Maximum number of threads per child process
Syntax: MaxThreadsPerChild number
Default: MaxThreadsPerChild 64
Context: server config
Status: MPM
Module: perchild

This directive sets the maximum number of threads that will be created in each child process. To increase this value
beyond its default, it is necessary to change the value of theTHREADL IMIT directive and stop and re-start the server.

NumServers Directive

Description: Total number of children alive at the same time
Syntax: NumServers number
Default: NumServers 2
Context: server config
Status: MPM
Module: perchild

TheNUMSERVERSdirective determines the number of children alive at the same time. This number should be large
enough to handle the requests for the entire site. To increase this value beyond the value of8, it is necessary to change
the value of theSERVERL IMIT directive and stop and re-start the server. See the section above for a configuration
example.

10.64. APACHE MODULE PREFORK 577

10.64 Apache Module prefork

Description: Implements a non-threaded, pre-forking web server
Status: MPM
ModuleIdentifier: mpmprefork module
SourceFile: prefork.c

Summary

This Multi-Processing Module (MPM) implements a non-threaded, pre-forking web server that handles requests in a
manner similar to Apache 1.3. It is appropriate for sites that need to avoid threading for compatibility with non-thread-
safe libraries. It is also the best MPM for isolating each request, so that a problem with a single request will not affect
any other.

This MPM is very self-regulating, so it is rarely necessary to adjust its configuration directives. Most important is that
MAX CLIENTS be big enough to handle as many simultaneous requests as you expect to receive, but small enough to
assure that there is enough physical RAM for all processes.

Directives

• AcceptMutex (p.558)

• BS2000Account (p.559)

• CoreDumpDirectory (p.559)

• Group (p.560)

• Listen (p.560)

• ListenBacklog (p.561)

• LockFile (p.561)

• MaxClients (p.562)

• MaxMemFree (p.562)

• MaxRequestsPerChild (p.563)

• MaxSpareServers

• MinSpareServers

• PidFile (p.564)

• ScoreBoardFile (p.565)

• SendBufferSize (p.565)

• ServerLimit (p.566)

• StartServers (p.566)

• User (p.568)

See also

• Setting which addresses and ports Apache uses (p.58)

578 CHAPTER 10. APACHE MODULES

How it Works

A single control process is responsible for launching child processes which listen for connections and serve them
when they arrive. Apache always tries to maintain several spare or idle server processes, which stand ready to serve
incoming requests. In this way, clients do not need to wait for a new child processes to be forked before their requests
can be served.

The STARTSERVERS, M INSPARESERVERS, MAX SPARESERVERS, andMAX CLIENTS regulate how the parent pro-
cess creates children to serve requests. In general, Apache is very self-regulating, so most sites do not need to adjust
these directives from their default values. Sites which need to serve more than 256 simultaneous requests may need
to increaseMAX CLIENTS, while sites with limited memory may need to decreaseMAX CLIENTS to keep the server
from thrashing (swapping memory to disk and back). More information about tuning process creation is provided in
the performance hints (p.74) documentation.

While the parent process is usually started asroot under Unix in order to bind to port 80, the child processes are
launched by Apache as a less-privileged user. TheUSER andGROUP directives are used to set the privileges of the
Apache child processes. The child processes must be able to read all the content that will be served, but should have
as few privileges beyond that as possible.

MAX REQUESTSPERCHILD controls how frequently the server recycles processes by killing old ones and launching
new ones.

MaxSpareServers Directive

Description: Maximum number of idle child server processes
Syntax: MaxSpareServers number
Default: MaxSpareServers 10
Context: server config
Status: MPM
Module: prefork

TheMAX SPARESERVERSdirective sets the desired maximum number ofidle child server processes. An idle process
is one which is not handling a request. If there are more thanMAX SPARESERVERSidle, then the parent process will
kill off the excess processes.

Tuning of this parameter should only be necessary on very busy sites. Setting this parameter to a large number is almost
always a bad idea. If you are trying to set the value lower thanM INSPARESERVERS, Apache will automatically adjust
it to M INSPARESERVERS + 1.

See also

• M INSPARESERVERS

• STARTSERVERS

MinSpareServers Directive

Description: Minimum number of idle child server processes
Syntax: MinSpareServers number
Default: MinSpareServers 5
Context: server config
Status: MPM
Module: prefork

TheM INSPARESERVERSdirective sets the desired minimum number ofidle child server processes. An idle process is
one which is not handling a request. If there are fewer thanM INSPARESERVERSidle, then the parent process creates
new children at a maximum rate of 1 per second.

10.64. APACHE MODULE PREFORK 579

Tuning of this parameter should only be necessary on very busy sites. Setting this parameter to a large number is
almost always a bad idea.

See also

• MAX SPARESERVERS

• STARTSERVERS

580 CHAPTER 10. APACHE MODULES

10.65 Apache Module threadpool

Description: Yet another experimental variant of the standardWORKER MPM
Status: MPM
ModuleIdentifier: mpmthreadpoolmodule
SourceFile: threadpool.c

Summary

! Warning
This MPM is a developer playground and highly experimental, so it may or may not work as
expected.

This is an experimental variant of the standard worker MPM. Rather than queuing connections like the worker MPM,
theTHREADPOOLMPM queues idle worker threads and hands each accepted connection to the next available worker.

The THREADPOOL MPM can’t match the performance of theWORKER MPM in benchmark testing. As of 2.0.39,
some of the key load-throtting concepts from theTHREADPOOLMPM have been incorporated into theWORKERMPM.
The THREADPOOL code is useful primarily as a research platform. For general-purpose use and for any production
environments, useWORKER instead.

Directives

• AcceptMutex (p.558)

• CoreDumpDirectory (p.559)

• Group (p.560)

• Listen (p.560)

• ListenBacklog (p.561)

• LockFile (p.561)

• MaxClients (p.562)

• MaxMemFree (p.562)

• MaxRequestsPerChild (p.563)

• MaxSpareThreads (p.563)

• MinSpareThreads (p.564)

• PidFile (p.564)

• ScoreBoardFile (p.565)

• SendBufferSize (p.565)

• ServerLimit (p.566)

• StartServers (p.566)

• ThreadLimit (p.567)

• ThreadsPerChild (p.567)

• User (p.568)

10.66. APACHE MODULE MPM WINNT 581

10.66 Apache Module mpmwinnt

Description: This Multi-Processing Module is optimized for Windows NT.
Status: MPM
ModuleIdentifier: mpmwinnt module
SourceFile: mpmwinnt.c

Summary

This Multi-Processing Module (MPM) is the default for the Windows NT operating systems. It uses a single control
process which launches a single child process which in turn creates threads to handle requests

Directives

• CoreDumpDirectory (p.559)

• Listen (p.560)

• ListenBacklog (p.561)

• MaxRequestsPerChild (p.563)

• PidFile (p.564)

• ScoreBoardFile (p.565)

• SendBufferSize (p.565)

• ThreadLimit (p.567)

• ThreadsPerChild (p.567)

582 CHAPTER 10. APACHE MODULES

10.67 Apache Module worker

Description: Multi-Processing Module implementing a hybrid multi-threaded multi-process web
server

Status: MPM
ModuleIdentifier: mpmworker module
SourceFile: worker.c

Summary

This Multi-Processing Module (MPM) implements a hybrid multi-process multi-threaded server. By using threads to
serve requests, it is able to serve a large number of requests with less system resources than a process-based server.
Yet it retains much of the stability of a process-based server by keeping multiple processes available, each with many
threads.

The most important directives used to control this MPM areTHREADSPERCHILD , which controls the number of
threads deployed by each child process andMAX CLIENTS, which controls the maximum total number of threads that
may be launched.

Directives

• AcceptMutex (p.558)

• CoreDumpDirectory (p.559)

• Group (p.560)

• Listen (p.560)

• ListenBacklog (p.561)

• LockFile (p.561)

• MaxClients (p.562)

• MaxMemFree (p.562)

• MaxRequestsPerChild (p.563)

• MaxSpareThreads (p.563)

• MinSpareThreads (p.564)

• PidFile (p.564)

• ScoreBoardFile (p.565)

• SendBufferSize (p.565)

• ServerLimit (p.566)

• StartServers (p.566)

• ThreadLimit (p.567)

• ThreadsPerChild (p.567)

• User (p.568)

See also

• Setting which addresses and ports Apache uses (p.58)

10.67. APACHE MODULE WORKER 583

How it Works

Each process has a fixed number of threads. The server adjusts to handle load by increasing or decreasing the number
of processes.

A single control process is responsible for launching child processes. Each child process creates a fixed number of
threads as specified in theTHREADSPERCHILD directive. The individual threads then listen for connections and serve
them when they arrive.

Apache always tries to maintain a pool of spare or idle server threads, which stand ready to serve incoming requests.
In this way, clients do not need to wait for a new threads or processes to be created before their requests can be served.
The number of processes that will initially launched is set by theSTARTSERVERSdirective. Then during operation,
Apache assesses the total number of idle threads in all processes, and forks or kills processes to keep this number
within the boundaries specified byM INSPARETHREADS andMAX SPARETHREADS. Since this process is very self-
regulating, it is rarely necessary to modify these directives from their default values. The maximum number of clients
that may be served simultaneously (i.e., the maximum total number of threads in all processes) is determined by the
MAX CLIENTS directive, while the maximum number of processes that can be launched is set by theSERVERL IMIT

directive.SERVERL IMIT multiplied byTHREADSPERCHILD must be greater than or equal toMAX CLIENTS

A typical configuration of the process-thread controls in theWORKER MPM could look as follows:

StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25

ServerLimit 16

While the parent process is usually started asroot under Unix in order to bind to port 80, the child processes and
threads are launched by Apache as a less-privileged user. TheUSERandGROUPdirectives are used to set the privileges
of the Apache child processes. The child processes must be able to read all the content that will be served, but should
have as few privileges beyond that as possible. In addition, unless suexec (p.69) is used, these directives also set the
privileges which will be inherited by CGI scripts.

MAX REQUESTSPERCHILD controls how frequently the server recycles processes by killing old ones and launching
new ones.

584 CHAPTER 10. APACHE MODULES

Chapter 11

Developer Documentation

585

586 CHAPTER 11. DEVELOPER DOCUMENTATION

11.1 Developer Documentation for Apache 2.0

Many of the documents on these Developer pages are lifted from Apache 1.3’s documentation. While they are all being
updated to Apache 2.0, they are in different stages of progress. Please be patient, and point out any discrepancies or
errors on the developer/ pages directly to the dev@httpd.apache.org1 mailing list.

Topics

• Apache 1.3 API Notes (p.587)

• Apache 2.0 Hook Functions (p.607)

• Request Processing in Apache 2.0 (p.614)

• How filters work in Apache 2.0 (p.618)

• Converting Modules from Apache 1.3 to Apache 2.0 (p.610)

• Debugging Memory Allocation in APR (p.603)

• Documenting Apache 2.0 (p.606)

• Apache 2.0 Thread Safety Issues (p.??)

External Resources

• Tools provided by Ian Holsman:

– Apache 2 cross reference2

– Autogenerated Apache 2 code documentation3

• Module Development Tutorials by Kevin O’Donnell

– Integrating a module into the Apache build system4

– Handling configuration directives5

• Some notes on Apache module development by Ryan Bloom6

1http://httpd.apache.org/lists.html#http-dev
2http://lxr.webperf.org/
3http://docx.webperf.org/
4http://threebit.net/tutorials/apache2modules/tut1/tutorial1.html
5http://threebit.net/tutorials/apache2modules/tut2/tutorial2.html
6http://www.onlamp.com/pub/ct/38

http://httpd.apache.org/lists.html#http-dev
http://lxr.webperf.org/
http://docx.webperf.org/
http://threebit.net/tutorials/apache2_modules/tut1/tutorial1.html
http://threebit.net/tutorials/apache2_modules/tut2/tutorial2.html
http://www.onlamp.com/pub/ct/38

11.2. APACHE 1.3 API NOTES 587

11.2 Apache 1.3 API notes

! Warning
This document has not been updated to take into account changes made in the 2.0 version of
the Apache HTTP Server. Some of the information may still be relevant, but please use it with
care.

These are some notes on the Apache API and the data structures you have to deal with,etc. They are not yet nearly
complete, but hopefully, they will help you get your bearings. Keep in mind that the API is still subject to change as
we gain experience with it. (See the TODO file for whatmightbe coming). However, it will be easy to adapt modules
to any changes that are made. (We have more modules to adapt than you do).

A few notes on general pedagogical style here. In the interest of conciseness, all structure declarations here are
incomplete – the real ones have more slots that I’m not telling you about. For the most part, these are reserved to one
component of the server core or another, and should be altered by modules with caution. However, in some cases, they
really are things I just haven’t gotten around to yet. Welcome to the bleeding edge.

Finally, here’s an outline, to give you some bare idea of what’s coming up, and in what order:

• Basic concepts.

– Handlers, Modules, and Requests

– A brief tour of a module

• How handlers work

– A brief tour of therequest rec

– Where requestrec structures come from

– Handling requests, declining, and returning error codes

– Special considerations for response handlers

– Special considerations for authentication handlers

– Special considerations for logging handlers

• Resource allocation and resource pools

• Configuration, commands and the like

– Per-directory configuration structures

– Command handling

– Side notes — per-server configuration, virtual servers,etc.

Basic concepts

We begin with an overview of the basic concepts behind the API, and how they are manifested in the code.

Handlers, Modules, and Requests

Apache breaks down request handling into a series of steps, more or less the same way the Netscape server API does
(although this API has a few more stages than NetSite does, as hooks for stuff I thought might be useful in the future).
These are:

• URI -> Filename translation

588 CHAPTER 11. DEVELOPER DOCUMENTATION

• Auth ID checking [is the user who they say they are?]

• Auth access checking [is the user authorizedhere?]

• Access checking other than auth

• Determining MIME type of the object requested

• ‘Fixups’ – there aren’t any of these yet, but the phase is intended as a hook for possible extensions likeSETENV,
which don’t really fit well elsewhere.

• Actually sending a response back to the client.

• Logging the request

These phases are handled by looking at each of a succession ofmodules, looking to see if each of them has a handler
for the phase, and attempting invoking it if so. The handler can typically do one of three things:

• Handlethe request, and indicate that it has done so by returning the magic constantOK.

• Decline to handle the request, by returning the magic integer constantDECLINED. In this case, the server
behaves in all respects as if the handler simply hadn’t been there.

• Signal an error, by returning one of the HTTP error codes. This terminates normal handling of the request,
although an ErrorDocument may be invoked to try to mop up, and it will be logged in any case.

Most phases are terminated by the first module that handles them; however, for logging, ‘fixups’, and non-access
authentication checking, all handlers always run (barring an error). Also, the response phase is unique in that modules
may declare multiple handlers for it, via a dispatch table keyed on the MIME type of the requested object. Modules
may declare a response-phase handler which can handleanyrequest, by giving it the key*/* (i.e., a wildcard MIME
type specification). However, wildcard handlers are only invoked if the server has already tried and failed to find a
more specific response handler for the MIME type of the requested object (either none existed, or they all declined).

The handlers themselves are functions of one argument (arequest rec structure. vide infra), which returns an
integer, as above.

A brief tour of a module

At this point, we need to explain the structure of a module. Our candidate will be one of the messier ones, the CGI
module – this handles both CGI scripts and theSCRIPTALIAS config file command. It’s actually a great deal more
complicated than most modules, but if we’re going to have only one example, it might as well be the one with its
fingers in every place.

Let’s begin with handlers. In order to handle the CGI scripts, the module declares a response handler for them.
Because ofSCRIPTALIAS, it also has handlers for the name translation phase (to recognizeSCRIPTALIASed URIs),
the type-checking phase (anySCRIPTALIASed request is typed as a CGI script).

The module needs to maintain some per (virtual) server information, namely, theSCRIPTALIASes in effect; the module
structure therefore contains pointers to a functions which builds these structures, and to another which combines two
of them (in case the main server and a virtual server both haveSCRIPTALIASes declared).

Finally, this module contains code to handle theSCRIPTALIAS command itself. This particular module only declares
one command, but there could be more, so modules havecommand tableswhich declare their commands, and describe
where they are permitted, and how they are to be invoked.

A final note on the declared types of the arguments of some of these commands: apool is a pointer to aresource pool
structure; these are used by the server to keep track of the memory which has been allocated, files opened,etc., either
to service a particular request, or to handle the process of configuring itself. That way, when the request is over (or, for
the configuration pool, when the server is restarting), the memory can be freed, and the files closed,en masse, without
anyone having to write explicit code to track them all down and dispose of them. Also, acmd parms structure

11.2. APACHE 1.3 API NOTES 589

contains various information about the config file being read, and other status information, which is sometimes of
use to the function which processes a config-file command (such asSCRIPTALIAS). With no further ado, the module
itself:

/* Declarations of handlers. */

int translate scriptalias (request rec *);
int type scriptalias (request rec *);
int cgi handler (request rec *);

/* Subsidiary dispatch table for response-phase
* handlers, by MIME type */

handler rec cgi handlers[] = {
{ "application/x-httpd-cgi", cgi handler },
{ NULL }

};

/* Declarations of routines to manipulate the
* module’s configuration info. Note that these are
* returned, and passed in, as void *’s; the server
* core keeps track of them, but it doesn’t, and can’t,
* know their internal structure.
*/

void *make cgi server config (pool *);
void *merge cgi server config (pool *, void *, void *);

/* Declarations of routines to handle config-file commands */

extern char *script alias(cmd parms *, void *per dir config, char
*fake, char *real);

command rec cgi cmds[] = {
{ "ScriptAlias", script alias, NULL, RSRC CONF, TAKE2,

"a fakename and a realname" },

{ NULL }
};

module cgi module = {

STANDARD_MODULE_STUFF,
NULL, /* initializer */
NULL, /* dir config creator */
NULL, /* dir merger */
make_cgi_server_config, /* server config */
merge_cgi_server_config, /* merge server config */
cgi_cmds, /* command table */
cgi_handlers, /* handlers */
translate_scriptalias, /* filename translation */
NULL, /* check_user_id */
NULL, /* check auth */
NULL, /* check access */
type_scriptalias, /* type_checker */
NULL, /* fixups */
NULL, /* logger */
NULL /* header parser */

};

590 CHAPTER 11. DEVELOPER DOCUMENTATION

How handlers work

The sole argument to handlers is arequest rec structure. This structure describes a particular request which
has been made to the server, on behalf of a client. In most cases, each connection to the client generates only one
request rec structure.

A brief tour of the request rec

The request rec contains pointers to a resource pool which will be cleared when the server is finished handling
the request; to structures containing per-server and per-connection information, and most importantly, information on
the request itself.

The most important such information is a small set of character strings describing attributes of the object being re-
quested, including its URI, filename, content-type and content-encoding (these being filled in by the translation and
type-check handlers which handle the request, respectively).

Other commonly used data items are tables giving the MIME headers on the client’s original request, MIME headers
to be sent back with the response (which modules can add to at will), and environment variables for any subprocesses
which are spawned off in the course of servicing the request. These tables are manipulated using theap table get
andap table set routines.

=⇒Note that theContent-type header valuecannotbe set by module content-handlers using
the ap table *() routines. Rather, it is set by pointing thecontent type field in the
request rec structure to an appropriate string.e.g.,

r- >content type = "text/html";

Finally, there are pointers to two data structures which, in turn, point to per-module configuration structures. Specifi-
cally, these hold pointers to the data structures which the module has built to describe the way it has been configured
to operate in a given directory (via.htaccess files or<DIRECTORY> sections), for private data it has built in the
course of servicing the request (so modules’ handlers for one phase can pass ‘notes’ to their handlers for other phases).
There is another such configuration vector in theserver rec data structure pointed to by therequest rec , which
contains per (virtual) server configuration data.

Here is an abridged declaration, giving the fields most commonly used:

11.2. APACHE 1.3 API NOTES 591

struct request rec {
pool *pool;
conn rec *connection;
server rec *server;

/* What object is being requested */

char *uri;
char *filename;
char *path info;

char *args; /* QUERY_ARGS, if any */
struct stat finfo; /* Set by server core;

* st_mode set to zero if no such file */

char *content type;
char *content encoding;

/* MIME header environments, in and out. Also,
* an array containing environment variables to
* be passed to subprocesses, so people can write
* modules to add to that environment.
*
* The difference between headers out and
* err headers out is that the latter are printed
* even on error, and persist across internal
* redirects (so the headers printed for
* ER R O RDO C U M E N Thandlers will have them).
*/

table *headers in;
table *headers out;
table *err headers out;
table *subprocess env;

/* Info about the request itself... */

int header_only; /* HEAD request, as opposed to GET */
char *protocol; /* Protocol, as given to us, or HTTP/0.9 */
char *method; /* GET, HEAD, POST, etc. */
int method_number; /* M_GET, M_POST, etc. */

/* Info for logging */

char *the request;
int bytes sent;

/* A flag which modules can set, to indicate that
* the data being returned is volatile, and clients
* should be told not to cache it.
*/

int no cache;

/* Various other config info which may change
* with .htaccess files
* These are config vectors, with one void*
* pointer for each module (the thing pointed
* to being the module’s business).
*/

void *per_dir_config; /* Options set in config files, etc. */
void *request_config; /* Notes on *this* request */

};

592 CHAPTER 11. DEVELOPER DOCUMENTATION

Where request rec structures come from

Most request rec structures are built by reading an HTTP request from a client, and filling in the fields. However,
there are a few exceptions:

• If the request is to an imagemap, a type map (i.e., a *.var file), or a CGI script which returned a local
‘Location:’, then the resource which the user requested is going to be ultimately located by some URI other
than what the client originally supplied. In this case, the server does aninternal redirect, constructing a new
request rec for the new URI, and processing it almost exactly as if the client had requested the new URI
directly.

• If some handler signaled an error, and anErrorDocument is in scope, the same internal redirect machinery
comes into play.

• Finally, a handler occasionally needs to investigate ‘what would happen if’ some other request were run. For
instance, the directory indexing module needs to know what MIME type would be assigned to a request for each
directory entry, in order to figure out what icon to use.

Such handlers can construct asub-request, using the functions ap sub req lookup file ,
ap sub req lookup uri , and ap sub req method uri ; these construct a newrequest rec
structure and processes it as you would expect, up to but not including the point of actually sending a response.
(These functions skip over the access checks if the sub-request is for a file in the same directory as the original
request).

(Server-side includes work by building sub-requests and then actually invoking the response handler for them,
via the functionap run sub req).

Handling requests, declining, and returning error codes

As discussed above, each handler, when invoked to handle a particularrequest rec , has to return anint to indicate
what happened. That can either be

• OK– the request was handled successfully. This may or may not terminate the phase.

• DECLINED– no erroneous condition exists, but the module declines to handle the phase; the server tries to find
another.

• an HTTP error code, which aborts handling of the request.

Note that if the error code returned isREDIRECT, then the module should put aLocation in the request’s
headers out , to indicate where the client should be redirectedto.

Special considerations for response handlers

Handlers for most phases do their work by simply setting a few fields in therequest rec structure (or, in the case
of access checkers, simply by returning the correct error code). However, response handlers have to actually send a
request back to the client.

They should begin by sending an HTTP response header, using the functionap send http header . (You don’t
have to do anything special to skip sending the header for HTTP/0.9 requests; the function figures out on its own that
it shouldn’t do anything). If the request is markedheader only , that’s all they should do; they should return after
that, without attempting any further output.

Otherwise, they should produce a request body which responds to the client as appropriate. The primitives for this are
ap rputc andap rprintf , for internally generated output, andap send fd , to copy the contents of someFILE
* straight to the client.

11.2. APACHE 1.3 API NOTES 593

At this point, you should more or less understand the following piece of code, which is the handler which handlesGET
requests which have no more specific handler; it also shows how conditionalGETs can be handled, if it’s desirable
to do so in a particular response handler –ap set last modified checks against theIf-modified-since
value supplied by the client, if any, and returns an appropriate code (which will, if nonzero, be USELOCAL COPY).
No similar considerations apply forap set content length , but it returns an error code for symmetry.

int default handler (request rec *r)
{

int errstatus;
FILE *f;

if (r- >method number != M GET) return DECLINED;
if (r- >finfo.st mode == 0) return NOT FOUND;

if ((errstatus = ap set content length (r, r- >finfo.st size))
|| (errstatus = ap set last modified (r, r- >finfo.st mtime)))
return errstatus;

f = fopen (r- >filename, "r");

if (f == NULL) {
log reason("file permissions deny server access", r- >filename,
r);
return FORBIDDEN;

}
register timeout ("send", r);
ap send http header (r);

if (!r- >header only) send fd (f, r);
ap pfclose (r- >pool, f);
return OK;

}

Finally, if all of this is too much of a challenge, there are a few ways out of it. First off, as shown above, a response
handler which has not yet produced any output can simply return an error code, in which case the server will automati-
cally produce an error response. Secondly, it can punt to some other handler by invokingap internal redirect ,
which is how the internal redirection machinery discussed above is invoked. A response handler which has internally
redirected should always returnOK.

(Invokingap internal redirect from handlers which arenot response handlers will lead to serious confusion).

Special considerations for authentication handlers

Stuff that should be discussed here in detail:

• Authentication-phase handlers not invoked unless auth is configured for the directory.

• Common auth configuration stored in the core per-dir configuration; it has accessorsap auth type ,
ap auth name, andap requires .

• Common routines, to handle the protocol end of things, at least for HTTP basic authentication
(ap get basic auth pw, which sets theconnection- >user structure field automatically, and
ap note basic auth failure , which arranges for the properWWW-Authenticate: header to be sent
back).

594 CHAPTER 11. DEVELOPER DOCUMENTATION

Special considerations for logging handlers

When a request has internally redirected, there is the question of what to log. Apache handles this by bundling
the entire chain of redirects into a list ofrequest rec structures which are threaded through ther- >prev and
r- >next pointers. Therequest rec which is passed to the logging handlers in such cases is the one which was
originally built for the initial request from the client; note that thebytes sent field will only be correct in the last
request in the chain (the one for which a response was actually sent).

Resource allocation and resource pools

One of the problems of writing and designing a server-pool server is that of preventing leakage, that is, allocating
resources (memory, open files,etc.), without subsequently releasing them. The resource pool machinery is designed
to make it easy to prevent this from happening, by allowing resource to be allocated in such a way that they are
automaticallyreleased when the server is done with them.

The way this works is as follows: the memory which is allocated, file opened,etc., to deal with a particular request are
tied to aresource poolwhich is allocated for the request. The pool is a data structure which itself tracks the resources
in question.

When the request has been processed, the pool iscleared. At that point, all the memory associated with it is released
for reuse, all files associated with it are closed, and any other clean-up functions which are associated with the pool
are run. When this is over, we can be confident that all the resource tied to the pool have been released, and that none
of them have leaked.

Server restarts, and allocation of memory and resources for per-server configuration, are handled in a similar way.
There is aconfiguration pool, which keeps track of resources which were allocated while reading the server config-
uration files, and handling the commands therein (for instance, the memory that was allocated for per-server module
configuration, log files and other files that were opened, and so forth). When the server restarts, and has to reread the
configuration files, the configuration pool is cleared, and so the memory and file descriptors which were taken up by
reading them the last time are made available for reuse.

It should be noted that use of the pool machinery isn’t generally obligatory, except for situations like logging handlers,
where you really need to register cleanups to make sure that the log file gets closed when the server restarts (this is
most easily done by using the functionap pfopen , which also arranges for the underlying file descriptor to be closed
before any child processes, such as for CGI scripts, areexec ed), or in case you are using the timeout machinery (which
isn’t yet even documented here). However, there are two benefits to using it: resources allocated to a pool never leak
(even if you allocate a scratch string, and just forget about it); also, for memory allocation,ap palloc is generally
faster thanmalloc .

We begin here by describing how memory is allocated to pools, and then discuss how other resources are tracked by
the resource pool machinery.

Allocation of memory in pools

Memory is allocated to pools by calling the functionap palloc , which takes two arguments, one being a pointer
to a resource pool structure, and the other being the amount of memory to allocate (inchar s). Within handlers for
handling requests, the most common way of getting a resource pool structure is by looking at thepool slot of the
relevantrequest rec ; hence the repeated appearance of the following idiom in module code:

11.2. APACHE 1.3 API NOTES 595

int my handler(request rec *r)
{

struct my structure *foo;
...

foo = (foo *)ap palloc (r- >pool, sizeof(my structure));

}

Note thatthere is noap pfree – ap palloc ed memory is freed only when the associated resource pool is cleared.
This means thatap palloc does not have to do as much accounting asmalloc() ; all it does in the typical case is
to round up the size, bump a pointer, and do a range check.

(It also raises the possibility that heavy use ofap palloc could cause a server process to grow excessively large.
There are two ways to deal with this, which are dealt with below; briefly, you can usemalloc , and try to be sure that
all of the memory gets explicitlyfree d, or you can allocate a sub-pool of the main pool, allocate your memory in the
sub-pool, and clear it out periodically. The latter technique is discussed in the section on sub-pools below, and is used
in the directory-indexing code, in order to avoid excessive storage allocation when listing directories with thousands
of files).

Allocating initialized memory

There are functions which allocate initialized memory, and are frequently useful. The functionap pcalloc has the
same interface asap palloc , but clears out the memory it allocates before it returns it. The functionap pstrdup
takes a resource pool and achar * as arguments, and allocates memory for a copy of the string the pointer points to,
returning a pointer to the copy. Finallyap pstrcat is a varargs-style function, which takes a pointer to a resource
pool, and at least twochar * arguments, the last of which must beNULL. It allocates enough memory to fit copies
of each of the strings, as a unit; for instance:

ap pstrcat (r- >pool, "foo", "/", "bar", NULL);

returns a pointer to 8 bytes worth of memory, initialized to"foo/bar" .

Commonly-used pools in the Apache Web server

A pool is really defined by its lifetime more than anything else. There are some static pools in httpmain which are
passed to various non-httpmain functions as arguments at opportune times. Here they are:

permanent pool never passed to anything else, this is the ancestor of all pools

pconf • subpool of permanentpool

• created at the beginning of a config" cycle" ; exists until the server is terminated or restarts; passed to all
config-time routines, either via cmd->pool, or as the" pool *p" argument on those which don’t take pools

• passed to the module init() functions

ptemp • sorry I lie, this pool isn’t called this currently in 1.3, I renamed it this in my pthreads development. I’m
referring to the use of ptrans in the parent... contrast this with the later definition of ptrans in the child.

• subpool of permanentpool

• created at the beginning of a config" cycle" ; exists until the end of config parsing; passed to config-time
routinesvia cmd->temppool. Somewhat of a" bastard child" because it isn’t available everywhere. Used
for temporary scratch space which may be needed by some config routines but which is deleted at the end
of config.

596 CHAPTER 11. DEVELOPER DOCUMENTATION

pchild • subpool of permanentpool

• created when a child is spawned (or a thread is created); lives until that child (thread) is destroyed

• passed to the module childinit functions

• destruction happens right after the childexit functions are called... (which may explain why I think
child exit is redundant and unneeded)

ptrans • should be a subpool of pchild, but currently is a subpool of permanentpool, see above

• cleared by the child before going into the accept() loop to receive a connection

• used as connection->pool

r- >pool • for the main request this is a subpool of connection->pool; for subrequests it is a subpool of the
parent request’s pool.

• exists until the end of the request (i.e., ap destroysub req, or in childmain after processrequest has
finished)

• note that r itself is allocated from r->pool; i.e., r->pool is first created and then r is the first thing palloc()d
from it

For almost everything folks do,r- >pool is the pool to use. But you can see how other lifetimes, such as pchild, are
useful to some modules... such as modules that need to open a database connection once per child, and wish to clean
it up when the child dies.

You can also see how some bugs have manifested themself, such as settingconnection- >user to a value from
r- >pool – in this case connection exists for the lifetime ofptrans , which is longer thanr- >pool (especially if
r- >pool is a subrequest!). So the correct thing to do is to allocate fromconnection- >pool .

And there was another interesting bug inMOD INCLUDE / MOD CGI. You’ll see in those that they do this test to decide
if they should user- >pool or r- >main- >pool . In this case the resource that they are registering for cleanup is
a child process. If it were registered inr- >pool , then the code wouldwait() for the child when the subrequest
finishes. WithMOD INCLUDE this could be any old#include , and the delay can be up to 3 seconds... and happened
quite frequently. Instead the subprocess is registered inr- >main- >pool which causes it to be cleaned up when
the entire request is done –i.e., after the output has been sent to the client and logging has happened.

Tracking open files, etc.

As indicated above, resource pools are also used to track other sorts of resources besides memory. The most common
are open files. The routine which is typically used for this isap pfopen , which takes a resource pool and two strings
as arguments; the strings are the same as the typical arguments tofopen , e.g.,

...
FILE *f = ap pfopen (r- >pool, r- >filename, "r");

if (f == NULL) { ... } else { ... }

There is also aap popenf routine, which parallels the lower-levelopen system call. Both of these routines arrange
for the file to be closed when the resource pool in question is cleared.

Unlike the case for memory, thereare functions to close files allocated withap pfopen , andap popenf , namely
ap pfclose andap pclosef . (This is because, on many systems, the number of files which a single process
can have open is quite limited). It is important to use these functions to close files allocated withap pfopen and
ap popenf , since to do otherwise could cause fatal errors on systems such as Linux, which react badly if the same
FILE* is closed more than once.

(Using theclose functions is not mandatory, since the file will eventually be closed regardless, but you should
consider it in cases where your module is opening, or could open, a lot of files).

11.2. APACHE 1.3 API NOTES 597

Other sorts of resources – cleanup functions

More text goes here. Describe the the cleanup primitives in terms of which the file stuff is implemented; also,
spawn process .

Pool cleanups live untilclear pool() is called: clear pool(a) recursively callsdestroy pool() on all
subpools ofa; then calls all the cleanups fora; then releases all the memory fora. destroy pool(a) calls
clear pool(a) and then releases the pool structure itself.i.e., clear pool(a) doesn’t deletea, it just frees up
all the resources and you can start using it again immediately.

Fine control – creating and dealing with sub-pools, with a note on sub-requests

On rare occasions, too-free use ofap palloc() and the associated primitives may result in undesirably profligate
resource allocation. You can deal with such a case by creating asub-pool, allocating within the sub-pool rather than
the main pool, and clearing or destroying the sub-pool, which releases the resources which were associated with it.
(This really is a rare situation; the only case in which it comes up in the standard module set is in case of listing
directories, and then only withvery large directories. Unnecessary use of the primitives discussed here can hair up
your code quite a bit, with very little gain).

The primitive for creating a sub-pool isap make sub pool , which takes another pool (the parent pool) as an argu-
ment. When the main pool is cleared, the sub-pool will be destroyed. The sub-pool may also be cleared or destroyed
at any time, by calling the functionsap clear pool andap destroy pool , respectively. (The difference is that
ap clear pool frees resources associated with the pool, whileap destroy pool also deallocates the pool itself.
In the former case, you can allocate new resources within the pool, and clear it again, and so forth; in the latter case,
it is simply gone).

One final note – sub-requests have their own resource pools, which are sub-pools of the resource pool for the main
request. The polite way to reclaim the resources associated with a sub request which you have allocated (using the
ap sub req ... functions) isap destroy sub req , which frees the resource pool. Before calling this function,
be sure to copy anything that you care about which might be allocated in the sub-request’s resource pool into someplace
a little less volatile (for instance, the filename in itsrequest rec structure).

(Again, under most circumstances, you shouldn’t feel obliged to call this function; only 2K of memory or so are
allocated for a typical sub request, and it will be freed anyway when the main request pool is cleared. It is only
when you are allocating many, many sub-requests for a single main request that you should seriously consider the
ap destroy ... functions).

Configuration, commands and the like

One of the design goals for this server was to maintain external compatibility with the NCSA 1.3 server — that is,
to read the same configuration files, to process all the directives therein correctly, and in general to be a drop-in
replacement for NCSA. On the other hand, another design goal was to move as much of the server’s functionality into
modules which have as little as possible to do with the monolithic server core. The only way to reconcile these goals
is to move the handling of most commands from the central server into the modules.

However, just giving the modules command tables is not enough to divorce them completely from the server core. The
server has to remember the commands in order to act on them later. That involves maintaining data which is private to
the modules, and which can be either per-server, or per-directory. Most things are per-directory, including in particular
access control and authorization information, but also information on how to determine file types from suffixes, which
can be modified byADDTYPE andDEFAULTTYPE directives, and so forth. In general, the governing philosophy is
that anything whichcanbe made configurable by directory should be; per-server information is generally used in the
standard set of modules for information likeALIASes andREDIRECTs which come into play before the request is tied
to a particular place in the underlying file system.

Another requirement for emulating the NCSA server is being able to handle the per-directory configuration files,

598 CHAPTER 11. DEVELOPER DOCUMENTATION

generally called.htaccess files, though even in the NCSA server they can contain directives which have nothing at
all to do with access control. Accordingly, after URI -> filename translation, but before performing any other phase,
the server walks down the directory hierarchy of the underlying filesystem, following the translated pathname, to
read any.htaccess files which might be present. The information which is read in then has to bemergedwith the
applicable information from the server’s own config files (either from the<DIRECTORY> sections inaccess.conf ,
or from defaults insrm.conf , which actually behaves for most purposes almost exactly like<Directory / >).

Finally, after having served a request which involved reading.htaccess files, we need to discard the storage
allocated for handling them. That is solved the same way it is solved wherever else similar problems come up, by
tying those structures to the per-transaction resource pool.

Per-directory configuration structures

Let’s look out how all of this plays out inmod mime.c , which defines the file typing handler which emulates the
NCSA server’s behavior of determining file types from suffixes. What we’ll be looking at, here, is the code which
implements theADDTYPE andADDENCODING commands. These commands can appear in.htaccess files, so
they must be handled in the module’s private per-directory data, which in fact, consists of two separate tables for
MIME types and encoding information, and is declared as follows:

typedef struct {
table *forced_types; /* Additional AddTyped stuff */
table *encoding_types; /* Added with AddEncoding... */

} mime_dir_config;

When the server is reading a configuration file, or<DIRECTORY> section, which includes one of the MIME module’s
commands, it needs to create amime dir config structure, so those commands have something to act on. It does
this by invoking the function it finds in the module’s ‘create per-dir config slot’, with two arguments: the name of the
directory to which this configuration information applies (orNULL for srm.conf), and a pointer to a resource pool
in which the allocation should happen.

(If we are reading a.htaccess file, that resource pool is the per-request resource pool for the request; otherwise
it is a resource pool which is used for configuration data, and cleared on restarts. Either way, it is important for the
structure being created to vanish when the pool is cleared, by registering a cleanup on the pool if necessary).

For the MIME module, the per-dir config creation function justap palloc s the structure above, and a creates a
couple of tables to fill it. That looks like this:

void *create mime dir config (pool *p, char *dummy)
{

mime dir config *new =

(mime dir config *) ap palloc (p, sizeof(mime dir config));

new- >forced types = ap make table (p, 4);
new- >encoding types = ap make table (p, 4);

return new;

}

Now, suppose we’ve just read in a.htaccess file. We already have the per-directory configuration structure for the
next directory up in the hierarchy. If the.htaccess file we just read in didn’t have anyADDTYPE or ADDENCOD-
ING commands, its per-directory config structure for the MIME module is still valid, and we can just use it. Otherwise,
we need to merge the two structures somehow.

11.2. APACHE 1.3 API NOTES 599

To do that, the server invokes the module’s per-directory config merge function, if one is present. That function takes
three arguments: the two structures being merged, and a resource pool in which to allocate the result. For the MIME
module, all that needs to be done is overlay the tables from the new per-directory config structure with those from the
parent:

void *merge mime dir configs (pool *p, void *parent dirv, void
*subdirv)
{

mime dir config *parent dir = (mime dir config *)parent dirv;
mime dir config *subdir = (mime dir config *)subdirv;
mime dir config *new =

(mime dir config *)ap palloc (p, sizeof(mime dir config));

new- >forced types = ap overlay tables (p, subdir- >forced types,

parent dir- >forced types);

new- >encoding types = ap overlay tables (p, subdir- >encoding types,

parent dir- >encoding types);

return new;

}

As a note – if there is no per-directory merge function present, the server will just use the subdirectory’s configuration
info, and ignore the parent’s. For some modules, that works just fine (e.g., for the includes module, whose per-
directory configuration information consists solely of the state of theXBITHACK), and for those modules, you can
just not declare one, and leave the corresponding structure slot in the module itselfNULL.

Command handling

Now that we have these structures, we need to be able to figure out how to fill them. That involves processing the
actualADDTYPE andADDENCODING commands. To find commands, the server looks in the module’s command
table. That table contains information on how many arguments the commands take, and in what formats, where it is
permitted, and so forth. That information is sufficient to allow the server to invoke most command-handling functions
with pre-parsed arguments. Without further ado, let’s look at theADDTYPE command handler, which looks like this
(theADDENCODING command looks basically the same, and won’t be shown here):

char *add type(cmd parms *cmd, mime dir config *m, char *ct, char *ext)
{

if (*ext == ’.’) ++ext;
ap table set (m- >forced types, ext, ct);
return NULL;

}

This command handler is unusually simple. As you can see, it takes four arguments, two of which are pre-parsed
arguments, the third being the per-directory configuration structure for the module in question, and the fourth being
a pointer to acmd parms structure. That structure contains a bunch of arguments which are frequently of use to
some, but not all, commands, including a resource pool (from which memory can be allocated, and to which cleanups
should be tied), and the (virtual) server being configured, from which the module’s per-server configuration data can
be obtained if required.

Another way in which this particular command handler is unusually simple is that there are no error conditions which
it can encounter. If there were, it could return an error message instead ofNULL; this causes an error to be printed out

600 CHAPTER 11. DEVELOPER DOCUMENTATION

on the server’sstderr , followed by a quick exit, if it is in the main config files; for a.htaccess file, the syntax
error is logged in the server error log (along with an indication of where it came from), and the request is bounced
with a server error response (HTTP error status, code 500).

The MIME module’s command table has entries for these commands, which look like this:

command rec mime cmds[] = {
{ "AddType", add type, NULL, OR FILEINFO, TAKE2,

"a mime type followed by a file extension" },

{ "AddEncoding", add encoding, NULL, OR FILEINFO, TAKE2,

"an encoding (e.g. , gzip), followed by a file extension" },

{ NULL }
};

The entries in these tables are:

• The name of the command

• The function which handles it

• a (void *) pointer, which is passed in thecmd parms structure to the command handler — this is useful in
case many similar commands are handled by the same function.

• A bit mask indicating where the command may appear. There are mask bits corresponding to each
AllowOverride option, and an additional mask bit,RSRCCONF, indicating that the command may appear
in the server’s own config files, butnot in any.htaccess file.

• A flag indicating how many arguments the command handler wants pre-parsed, and how they should be passed
in. TAKE2 indicates two pre-parsed arguments. Other options areTAKE1, which indicates one pre-parsed
argument,FLAG, which indicates that the argument should beOn or Off , and is passed in as a boolean flag,
RAWARGS, which causes the server to give the command the raw, unparsed arguments (everything but the
command name itself). There is alsoITERATE, which means that the handler looks the same asTAKE1,
but that if multiple arguments are present, it should be called multiple times, and finallyITERATE2, which
indicates that the command handler looks like aTAKE2, but if more arguments are present, then it should be
called multiple times, holding the first argument constant.

• Finally, we have a string which describes the arguments that should be present. If the arguments in the actual
config file are not as required, this string will be used to help give a more specific error message. (You can safely
leave thisNULL).

Finally, having set this all up, we have to use it. This is ultimately done in the module’s handlers, specifically for its
file-typing handler, which looks more or less like this; note that the per-directory configuration structure is extracted
from therequest rec ’s per-directory configuration vector by using theap get module config function.

11.2. APACHE 1.3 API NOTES 601

int find ct(request rec *r)
{

int i;
char *fn = ap pstrdup (r- >pool, r- >filename);
mime dir config *conf = (mime dir config *)

ap get module config(r- >per dir config, &mime module);

char *type;

if (S ISDIR(r- >finfo.st mode)) {
r- >content type = DIR MAGICTYPE;
return OK;

}
if((i=ap rind(fn,’.’)) < 0) return DECLINED;
++i;

if ((type = ap table get (conf- >encoding types, &fn[i])))
{

r- >content encoding = type;

/* go back to previous extension to try to use it as a type */
fn[i-1] = ’ \0’;
if((i=ap rind(fn,’.’)) < 0) return OK;
++i;

}
if ((type = ap table get (conf- >forced types, &fn[i])))
{

r- >content type = type;

}
return OK;

}

Side notes – per-server configuration, virtual servers,etc.

The basic ideas behind per-server module configuration are basically the same as those for per-directory configuration;
there is a creation function and a merge function, the latter being invoked where a virtual server has partially overridden
the base server configuration, and a combined structure must be computed. (As with per-directory configuration, the
default if no merge function is specified, and a module is configured in some virtual server, is that the base configuration
is simply ignored).

The only substantial difference is that when a command needs to configure the per-server private module data, it needs
to go to thecmd parms data to get at it. Here’s an example, from the alias module, which also indicates how a
syntax error can be returned (note that the per-directory configuration argument to the command handler is declared
as a dummy, since the module doesn’t actually have per-directory config data):

602 CHAPTER 11. DEVELOPER DOCUMENTATION

char *add redirect(cmd parms *cmd, void *dummy, char *f, char *url)
{

server rec *s = cmd- >server;
alias server conf *conf = (alias server conf *)

ap get module config(s- >module config,&alias module);

alias entry *new = ap push array (conf- >redirects);

if (!ap is url (url)) return "Redirect to non-URL";

new- >fake = f; new- >real = url;
return NULL;

}

11.3. DEBUGGING MEMORY ALLOCATION IN APR 603

11.3 Debugging Memory Allocation in APR

The allocation mechanism’s within APR have a number of debugging modes that can be used to assist in finding
memory problems. This document describes the modes available and gives instructions on activating them.

Available debugging options

Allocation Debugging - ALLOC DEBUG

=⇒Debugging support: Define this to enable code which helps detect re-use offree() d memory
and other such nonsense.

The theory is simple. TheFILL BYTE(0xa5) is written over allmalloc ’d memory as we receive it, and is writ-
ten over everything that we free up during aclear pool . We check that blocks on the free list always have the
FILL BYTE in them, and we check duringpalloc() that the bytes still haveFILL BYTE in them. If you ever
see garbage URLs or whatnot containing lots of0xa5 s then you know something used data that’s been freed or
uninitialized.

Malloc Support - ALLOC USE MALLOC

=⇒If defined all allocations will be done withmalloc() andfree() d appropriately at the end.

This is intended to be used with something like Electric Fence or Purify to help detect memory problems. Note that
if you’re using efence then you should also add inALLOCDEBUG. But don’t add inALLOCDEBUGif you’re using
Purify becauseALLOCDEBUGwould hide all the uninitialized read errors that Purify can diagnose.

Pool Debugging - POOLDEBUG

=⇒This is intended to detect cases where the wrong pool is used when assigning data to an object
in another pool.

In particular, it causes thetable {set,add,merge }n routines to check that their arguments are safe for the
apr table t they’re being placed in. It currently only works with the unix multiprocess model, but could be
extended to others.

Table Debugging - MAKE TABLE PROFILE

=⇒Provide diagnostic information about maketable() calls which are possibly too small.

This requires a recent gcc which supportsbuiltin return address() . The errorlog output will be a message
such as:

table push: apr table t created by 0x804d874 hit limit of 10

Usel *0x804d874 to find the source that corresponds to. It indicates that aapr table t allocated by a call at
that address has possibly too small an initialapr table t size guess.

604 CHAPTER 11. DEVELOPER DOCUMENTATION

Allocation Statistics - ALLOC STATS

=⇒Provide some statistics on the cost of allocations.

This requires a bit of an understanding of how alloc.c works.

Allowable Combinations

Not all the options outlined above can be activated at the same time. the following table gives more information.

ALLOC DEBUG ALLOC USE
MALLOC

POOL DEBUG MAKE TABLE
PROFILE

ALLOC STATS

ALLOC DEBUG - No Yes Yes Yes
ALLOC USE
MALLOC

No - No No No

POOL DEBUG Yes No - Yes Yes
MAKE TABLE
PROFILE

Yes No Yes - Yes

ALLOC STATS Yes No Yes Yes -

Additionally the debugging options are not suitable for multi-threaded versions of the server. When trying to debug
with these options the server should be started in single process mode.

Activating Debugging Options

The various options for debugging memory are now enabled in theapr general.h header file in APR. The various
options are enabled by uncommenting the define for the option you wish to use. The section of the code currently
looks like this (contained in srclib/apr/include/aprpools.h)

11.3. DEBUGGING MEMORY ALLOCATION IN APR 605

/*
#define ALLOC DEBUG
#define POOL DEBUG
#define ALLOC USEMALLOC
#define MAKE TABLE PROFILE
#define ALLOC STATS
/

typedef struct ap pool t {
union block hdr *first;
union block hdr *last;
struct cleanup *cleanups;
struct process chain *subprocesses;
struct ap pool t *sub pools;
struct ap pool t *sub next;
struct ap pool t *sub prev;
struct ap pool t *parent;
char *free first avail;

#ifdef ALLOC USEMALLOC

void *allocation list;

#endif
#ifdef POOL DEBUG

struct ap pool t *joined;

#endif

int (*apr abort)(int retcode);
struct datastruct *prog data;

} ap pool t;

To enable allocation debugging simply move the#define ALLOC DEBUGabove the start of the comments block
and rebuild the server.

=⇒Note
In order to use the various options the servermust be rebuilt after editing the header file.

606 CHAPTER 11. DEVELOPER DOCUMENTATION

11.4 Documenting Apache 2.0

Apache 2.0 uses Doxygen7 to document the APIs and global variables in the the code. This will explain the basics of
how to document using Doxygen.

Brief Description

To start a documentation block, use/**
To end a documentation block, use*/

In the middle of the block, there are multiple tags we can use:

Description of this functions purpose
@param parameter name description
@return description

@deffunc signature of the function

Thedeffunc is not always necessary. DoxyGen does not have a full parser in it, so any prototype that use a macro
in the return type declaration is too complex for scandoc. Those functions require adeffunc . An example (using
> rather than>):

/**
* return the final element of the pathname
* @param pathname The path to get the final element of
* @return the final element of the path
* @tip Examples:
* <pre >
* "/foo/bar/gum" -> "gum"
* "/foo/bar/gum/" -> ""
* "gum" -> "gum"
* "wi \\n32\\stuff" -> "stuff"
* </pre >
* @deffunc const char * ap filename of pathname(const char *pathname)

*/

At the top of the header file, always include:

/**
* @package Name of library header

*/

Doxygen uses a new HTML file for each package. The HTML files are named{Nameof library header}.html, so try
to be concise with your names.

For a further discussion of the possibilities please refer to the Doxygen site8.

7http://www.doxygen.org/
8http://www.doxygen.org/

http://www.doxygen.org/
http://www.doxygen.org/

11.5. APACHE 2.0 HOOK FUNCTIONS 607

11.5 Apache 2.0 Hook Functions

! Warning
This document is still in development and may be partially out of date.

In general, a hook function is one that Apache will call at some point during the processing of a request. Modules can
provide functions that are called, and specify when they get called in comparison to other modules.

Creating a hook function

In order to create a new hook, four things need to be done:

Declare the hook function

Use theAP DECLAREHOOKmacro, which needs to be given the return type of the hook function, the name of the
hook, and the arguments. For example, if the hook returns anint and takes arequest rec * and anint and is
calleddo something , then declare it like this:

AP DECLAREHOOK(int, do something, (request rec *r, int n))

This should go in a header which modules will include if they want to use the hook.

Create the hook structure

Each source file that exports a hook has a private structure which is used to record the module functions that use the
hook. This is declared as follows:

APRHOOKSTRUCT(

APRHOOKLINK(do something)
...

)

Implement the hook caller

The source file that exports the hook has to implement a function that will call the hook. There are currently three
possible ways to do this. In all cases, the calling function is calledap run hookname() .

Void hooks

If the return value of a hook isvoid , then all the hooks are called, and the caller is implemented like this:

AP IMPLEMENTHOOKVOID(do something, (request rec *r, int n), (r, n))

The second and third arguments are the dummy argument declaration and the dummy arguments as they will be used
when calling the hook. In other words, this macro expands to something like this:

608 CHAPTER 11. DEVELOPER DOCUMENTATION

void ap run do something(request rec *r, int n)
{

...
do something(r, n);

}

Hooks that return a value

If the hook returns a value, then it can either be run until the first hook that does something interesting, like so:

AP IMPLEMENTHOOKRUNFIRST(int, do something, (request rec *r, int n),

(r, n), DECLINED)

The first hook that doesnot returnDECLINEDstops the loop and its return value is returned from the hook caller.
Note thatDECLINEDis the tradition Apache hook return meaning" I didn’t do anything" , but it can be whatever suits
you.

Alternatively, all hooks can be run until an error occurs. This boils down to permittingtwo return values, one of which
means" I did something, and it was OK" and the other meaning" I did nothing" . The first function that returns a
value other than one of those two stops the loop, and its return is the return value. Declare these like so:

AP IMPLEMENTHOOKRUNALL(int, do something, (request rec *r, int n),

(r, n), OK, DECLINED)

Again,OKandDECLINEDare the traditional values. You can use what you want.

Call the hook callers

At appropriate moments in the code, call the hook caller, like so:

int n, ret;
request rec *r;

ret=ap run do something(r, n);

Hooking the hook

A module that wants a hook to be called needs to do two things.

Implement the hook function

Include the appropriate header, and define a static function of the correct type:

static int my something doer(request rec *r, int n)
{

...
return OK;

}

11.5. APACHE 2.0 HOOK FUNCTIONS 609

Add a hook registering function

During initialisation, Apache will call each modules hook registering function, which is included in the module struc-
ture:

static void my register hooks()
{

ap hook do something(my something doer, NULL, NULL, HOOK MIDDLE);

}
mode MODULEVAREXPORT mymodule =
{

...
my register hooks /* register hooks */

};

Controlling hook calling order

In the example above, we didn’t use the three arguments in the hook registration function that control calling order.
There are two mechanisms for doing this. The first, rather crude, method, allows us to specify roughly where the
hook is run relative to other modules. The final argument control this. There are three possible values:HOOKFIRST ,
HOOKMIDDLEandHOOKLAST.

All modules using any particular value may be run in any order relative to each other, but, of course, all modules using
HOOKFIRST will be run beforeHOOKMIDDLEwhich are beforeHOOKLAST. Modules that don’t care when they
are run should useHOOKMIDDLE. (I spaced these out so people could do stuff likeHOOKFIRST-2 to get in slightly
earlier, but is this wise? - Ben)

Note that there are two more values,HOOKREALLYFIRST andHOOKREALLYLAST. These should only be used
by the hook exporter.

The other method allows finer control. When a module knows that it must be run before (or after) some other modules,
it can specify them by name. The second (third) argument is a NULL-terminated array of strings consisting of the
names of modules that must be run before (after) the current module. For example, suppose we want" mod xyz.c"
and" mod abc.c" to run before we do, then we’d hook as follows:

static void register hooks()
{

static const char * const aszPre[] = { "mod xyz.c", "mod abc.c",
NULL };

ap hook do something(my something doer, aszPre, NULL, HOOK MIDDLE);

}

Note that the sort used to achieve this is stable, so ordering set byHOOKORDERis preserved, as far as is possible.

Ben Laurie, 15th August 1999

610 CHAPTER 11. DEVELOPER DOCUMENTATION

11.6 Converting Modules from Apache 1.3 to Apache 2.0

This is a first attempt at writing the lessons I learned when trying to convert themod mmapstatic module to
Apache 2.0. It’s by no means definitive and probably won’t even be correct in some ways, but it’s a start.

The easier changes ...

Cleanup Routines

These now need to be of typeapr status t and return a value of that type. Normally the return value will be
APRSUCCESSunless there is some need to signal an error in the cleanup. Be aware that even though you signal an
error not all code yet checks and acts upon the error.

Initialisation Routines

These should now be renamed to better signify where they sit in the overall process. So the name gets a small change
from mmapinit to mmappost config . The arguments passed have undergone a radical change and now look
like

• apr pool t *p

• apr pool t *plog

• apr pool t *ptemp

• server rec *s

Data Types

A lot of the data types have been moved into the APR9. This means that some have had a name change, such as the
one shown above. The following is a brief list of some of the changes that you are likely to have to make.

• pool becomesapr pool t

• table becomesapr table t

The messier changes...

Register Hooks

The new architecture uses a series of hooks to provide for calling your functions. These you’ll need to add to your
module by way of a new function,static void register hooks(void) . The function is really reasonably
straightforward once you understand what needs to be done. Each function that needs calling at some stage in the
processing of a request needs to be registered, handlers do not. There are a number of phases where functions can be
added, and for each you can specify with a high degree of control the relative order that the function will be called in.

This is the code that was added tomod mmapstatic :

9http://apr.apache.org/

http://apr.apache.org/

11.6. CONVERTING MODULES FROM APACHE 1.3 TO APACHE 2.0 611

static void register_hooks(void)
{

static const char * const aszPre[]={ "http_core.c",NULL };
ap_hook_post_config(mmap_post_config,NULL,NULL,HOOK_MIDDLE);
ap_hook_translate_name(mmap_static_xlat,aszPre,NULL,HOOK_LAST);

};

This registers 2 functions that need to be called, one in thepost config stage (virtually every module will need
this one) and one for thetranslate name phase. note that while there are different function names the format of
each is identical. So what is the format?

ap hook phase name(function name, predecessors, successors, position);

There are 3 hook positions defined...

• HOOKFIRST

• HOOKMIDDLE

• HOOKLAST

To define the position you use the position and then modify it with the predecessors and successors. Each of the
modifiers can be a list of functions that should be called, either before the function is run (predecessors) or after the
function has run (successors).

In the mod mmapstatic case I didn’t care about thepost config stage, but themmapstatic xlat must
be called after the core module had done it’s name translation, hence the use of the aszPre to define a modifier to the
positionHOOKLAST.

Module Definition

There are now a lot fewer stages to worry about when creating your module definition. The old defintion looked like

612 CHAPTER 11. DEVELOPER DOCUMENTATION

module MODULE_VAR_EXPORT module_name_module =
{

STANDARD_MODULE_STUFF,
/* initializer */
/* dir config creater */
/* dir merger --- default is to override */
/* server config */
/* merge server config */
/* command handlers */
/* handlers */
/* filename translation */
/* check_user_id */
/* check auth */
/* check access */
/* type_checker */
/* fixups */
/* logger */
/* header parser */
/* child_init */
/* child_exit */
/* post read-request */

};

The new structure is a great deal simpler...

module MODULE_VAR_EXPORT module_name_module =
{

STANDARD20_MODULE_STUFF,
/* create per-directory config structures */
/* merge per-directory config structures */
/* create per-server config structures */
/* merge per-server config structures */
/* command handlers */
/* handlers */
/* register hooks */

};

Some of these read directly across, some don’t. I’ll try to summarise what should be done below.

The stages that read directly across :

/* dir config creater */ /* create per-directory config structures */

/* server config */ /* create per-server config structures */

/* dir merger */ /* merge per-directory config structures */

/* merge server config */ /* merge per-server config structures */

/* command table */ /* command apr table t */

/* handlers */ /* handlers */

The remainder of the old functions should be registered as hooks. There are the following hook stages defined so far...

11.6. CONVERTING MODULES FROM APACHE 1.3 TO APACHE 2.0 613

ap hook post config this is where the oldinit routines get registered

ap hook http method retrieve the http method from a request. (legacy)

ap hook open logs open any specified logs

ap hook auth checker check if the resource requires authorization

ap hook access checker check for module-specific restrictions

ap hook check user id check the user-id and password

ap hook default port retrieve the default port for the server

ap hook pre connection do any setup required just before processing, but after accepting

ap hook process connection run the correct protocol

ap hook child init call as soon as the child is started

ap hook create request ??

ap hook fixups last chance to modify things before generating content

ap hook handler generate the content

ap hook header parser lets modules look at the headers, not used by most modules, because they use
post read request for this

ap hook insert filter to insert filters into the filter chain

ap hook log transaction log information about the request

ap hook optional fn retrieve retrieve any functions registered as optional

ap hook post read request called after reading the request, before any other phase

ap hook quick handler called before any request processing, used by cache modules.

ap hook translate name translate the URI into a filename

ap hook type checker determine and/or set the doc type

614 CHAPTER 11. DEVELOPER DOCUMENTATION

11.7 Request Processing in Apache 2.0

! Warning
Warning - this is a first (fast) draft that needs further revision!

Several changes in Apache 2.0 affect the internal request processing mechanics. Module authors need to be aware of
these changes so they may take advantage of the optimizations and security enhancements.

The first major change is to the subrequest and redirect mechanisms. There were a number of different code paths in
Apache 1.3 to attempt to optimize subrequest or redirect behavior. As patches were introduced to 2.0, these optimiza-
tions (and the server behavior) were quickly broken due to this duplication of code. All duplicate code has been folded
back intoap process internal request() to prevent the code from falling out of sync again.

This means that much of the existing code was ’unoptimized’. It is the Apache HTTP Project’s first goal to cre-
ate a robust and correct implementation of the HTTP server RFC. Additional goals include security, scalability and
optimization. New methods were sought to optimize the server (beyond the performance of Apache 1.3) without
introducing fragile or insecure code.

The Request Processing Cycle

All requests pass throughap process request internal() in request.c , including subrequests and redi-
rects. If a module doesn’t pass generated requests through this code, the author is cautioned that the module may be
broken by future changes to request processing.

To streamline requests, the module author can take advantage of the hooks offered to drop out of the request cycle
early, or to bypass core Apache hooks which are irrelevant (and costly in terms of CPU.)

The Request Parsing Phase

Unescapes the URL

The request’sparsed uri path is unescaped, once and only once, at the beginning of internal request processing.

This step is bypassed if the proxyreq flag is set, or theparsed uri.path element is unset. The module has no
further control of this one-time unescape operation, either failing to unescape or multiply unescaping the URL leads
to security reprecussions.

Strips Parent and This Elements from the URI

All /../ and/./ elements are removed byap getparents() . This helps to ensure the path is (nearly) absolute
before the request processing continues.

This step cannot be bypassed.

Initial URI Location Walk

Every request is subject to anap location walk() call. This ensures that<LOCATION> sections are consis-
tently enforced for all requests. If the request is an internal redirect or a sub-request, it may borrow some or all of
the processing from the previous or parent request’s aplocationwalk, so this step is generally very efficient after
processing the main request.

11.7. REQUEST PROCESSING IN APACHE 2.0 615

translate name

Modules can determine the file name, or alter the given URI in this step. For example,MOD VHOST ALIAS will
translate the URI’s path into the configured virtual host,MOD ALIAS will translate the path to an alias path, and if the
request falls back on the core, theDOCUMENTROOT is prepended to the request resource.

If all modulesDECLINE this phase, an error 500 is returned to the browser, and a" couldn’t translate name" error is
logged automatically.

Hook: map to storage

After the file or correct URI was determined, the appropriate per-dir configurations are merged together. For example,
MOD PROXY compares and merges the appropriate<PROXY> sections. If the URI is nothing more than a local
(non-proxy)TRACErequest, the core handles the request and returnsDONE. If no module answers this hook withOK
or DONE, the core will run the request filename against the<DIRECTORY> and<FILES> sections. If the request
’filename’ isn’t an absolute, legal filename, a note is set for later termination.

URI Location Walk

Every request is hardened by a secondap location walk() call. This reassures that a translated request is still
subjected to the configured<LOCATION> sections. The request again borrows some or all of the processing from its
previouslocation walk above, so this step is almost always very efficient unless the translated URI mapped to a
substantially different path or Virtual Host.

Hook: header parser

The main request then parses the client’s headers. This prepares the remaining request processing steps to better serve
the client’s request.

The Security Phase

Needs Documentation. Code is:

616 CHAPTER 11. DEVELOPER DOCUMENTATION

switch (ap_satisfies(r)) {
case SATISFY_ALL:
case SATISFY_NOSPEC:

if ((access_status = ap_run_access_checker(r)) != 0) {
return decl_die(access_status, "check access", r);

}

if (ap_some_auth_required(r)) {
if (((access_status = ap_run_check_user_id(r)) != 0)

|| !ap_auth_type(r)) {
return decl_die(access_status, ap_auth_type(r)

? "check user. No user file?"
: "perform authentication. AuthType not set!",
r);

}

if (((access_status = ap_run_auth_checker(r)) != 0)
|| !ap_auth_type(r)) {
return decl_die(access_status, ap_auth_type(r)

? "check access. No groups file?"
: "perform authentication. AuthType not set!",
r);

}
}
break;

case SATISFY_ANY:
if (((access_status = ap_run_access_checker(r)) != 0)) {

if (!ap_some_auth_required(r)) {
return decl_die(access_status, "check access", r);

}

if (((access_status = ap_run_check_user_id(r)) != 0)
|| !ap_auth_type(r)) {
return decl_die(access_status, ap_auth_type(r)

? "check user. No user file?"
: "perform authentication. AuthType not set!",
r);

}

if (((access_status = ap_run_auth_checker(r)) != 0)
|| !ap_auth_type(r)) {
return decl_die(access_status, ap_auth_type(r)

? "check access. No groups file?"
: "perform authentication. AuthType not set!",
r);

}
}
break;

}

11.7. REQUEST PROCESSING IN APACHE 2.0 617

The Preparation Phase

Hook: type checker

The modules have an opportunity to test the URI or filename against the target resource, and set mime information
for the request. BothMOD MIME andMOD MIME MAGIC use this phase to compare the file name or contents against
the administrator’s configuration and set the content type, language, character set and request handler. Some modules
may set up their filters or other request handling parameters at this time.

If all modulesDECLINEthis phase, an error 500 is returned to the browser, and a" couldn’t find types" error is logged
automatically.

Hook: fixups

Many modules are ’trounced’ by some phase above. The fixups phase is used by modules to ’reassert’ their ownership
or force the request’s fields to their appropriate values. It isn’t always the cleanest mechanism, but occasionally it’s
the only option.

The Handler Phase

This phase isnot part of the processing inap process request internal() . Many modules pre-
pare one or more subrequests prior to creating any content at all. After the core, or a module calls
ap process request internal() it then callsap invoke handler() to generate the request.

Hook: insert filter

Modules that transform the content in some way can insert their values and override existing filters, such that if the
user configured a more advanced filter out-of-order, then the module can move its order as need be. There is no result
code, so actions in this hook better be trusted to always succeed.

Hook: handler

The module finally has a chance to serve the request in its handler hook. Note that not every prepared request is sent to
the handler hook. Many modules, such asMOD AUTOINDEX, will create subrequests for a given URI, and then never
serve the subrequest, but simply lists it for the user. Remember not to put required teardown from the hooks above
into this module, but register pool cleanups against the request pool to free resources as required.

618 CHAPTER 11. DEVELOPER DOCUMENTATION

11.8 How filters work in Apache 2.0

! Warning
This is a cut ’n paste job from an email (<022501c1c529$f63a9550$7f00000a@KOJ>) and
only reformatted for better readability. It’s not up to date but may be a good start for further
research.

Filter Types

There are three basic filter types (each of these is actually broken down into two categories, but that comes later).

CONNECTIONFilters of this type are valid for the lifetime of this connection. (AP FTYPECONNECTION,
AP FTYPENETWORK)

PROTOCOLFilters of this type are valid for the lifetime of this request from the point of view of the client, this
means that the request is valid from the time that the request is sent until the time that the response is received.
(AP FTYPEPROTOCOL, AP FTYPETRANSCODE)

RESOURCEFilters of this type are valid for the time that this content is used to satisfy a request. For simple requests,
this is identical toPROTOCOL, but internal redirects and sub-requests can change the content without ending
the request. (AP FTYPERESOURCE, AP FTYPECONTENTSET)

It is important to make the distinction between a protocol and a resource filter. A resource filter is tied to a specific
resource, it may also be tied to header information, but the main binding is to a resource. If you are writing a filter and
you want to know if it is resource or protocol, the correct question to ask is:" Can this filter be removed if the request
is redirected to a different resource?" If the answer is yes, then it is a resource filter. If it is no, then it is most likely
a protocol or connection filter. I won’t go into connection filters, because they seem to be well understood. With this
definition, a few examples might help:

Byterange We have coded it to be inserted for all requests, and it is removed if not used. Because this filter is active
at the beginning of all requests, it can not be removed if it is redirected, so this is a protocol filter.

http header This filter actually writes the headers to the network. This is obviously a required filter (except in the
asis case which is special and will be dealt with below) and so it is a protocol filter.

Deflate The administrator configures this filter based on which file has been requested. If we do an internal redirect
from an autoindex page to an index.html page, the deflate filter may be added or removed based on config, so
this is a resource filter.

The further breakdown of each category into two more filter types is strictly for ordering. We could remove it, and
only allow for one filter type, but the order would tend to be wrong, and we would need to hack things to make it work.
Currently, theRESOURCEfilters only have one filter type, but that should change.

How are filters inserted?

This is actually rather simple in theory, but the code is complex. First of all, it is important that
everybody realize that there are three filter lists for each request, but they are all concatenated to-
gether. So, the first list isr- >output filters , then r- >proto output filters , and finally
r- >connection- >output filters . These correspond to theRESOURCE, PROTOCOL, andCONNECTION
filters respectively. The problem previously, was that we used a singly linked list to create the filter stack, and
we started from the" correct" location. This means that if I had aRESOURCEfilter on the stack, and I added a

11.8. HOW FILTERS WORK IN APACHE 2.0 619

CONNECTIONfilter, theCONNECTIONfilter would be ignored. This should make sense, because we would insert the
connection filter at the top of thec- >output filters list, but the end ofr- >output filters pointed to the
filter that used to be at the front ofc- >output filters . This is obviously wrong. The new insertion code uses
a doubly linked list. This has the advantage that we never lose a filter that has been inserted. Unfortunately, it comes
with a separate set of headaches.

The problem is that we have two different cases were we use subrequests. The first is to insert more data into a
response. The second is to replace the existing response with an internal redirect. These are two different cases and
need to be treated as such.

In the first case, we are creating the subrequest from within a handler or filter. This means that the next filter should
be passed tomake sub request function, and the last resource filter in the sub-request will point to the next filter
in the main request. This makes sense, because the sub-request’s data needs to flow through the same set of filters as
the main request. A graphical representation might help:

Default_handler --> includes_filter --> byterange --> ...

If the includes filter creates a sub request, then we don’t want the data from that sub-request to go through the includes
filter, because it might not be SSI data. So, the subrequest adds the following:

Default_handler --> includes_filter -/-> byterange --> ...
/

Default_handler --> sub_request_core

What happens if the subrequest is SSI data? Well, that’s easy, theincludes filter is a resource filter, so it will
be added to the sub request in between theDefault handler and thesub request core filter.

The second case for sub-requests is when one sub-request is going to become the real request. This happens whenever
a sub-request is created outside of a handler or filter, and NULL is passed as the next filter to themake sub request
function.

In this case, the resource filters no longer make sense for the new request, because the resource has changed. So,
instead of starting from scratch, we simply point the front of the resource filters for the sub-request to the front of the
protocol filters for the old request. This means that we won’t lose any of the protocol filters, neither will we try to send
this data through a filter that shouldn’t see it.

The problem is that we are using a doubly-linked list for our filter stacks now. But, you should notice that it is possible
for two lists to intersect in this model. So, you do you handle the previous pointer? This is a very difficult question
to answer, because there is no" right" answer, either method is equally valid. I looked at why we use the previous
pointer. The only reason for it is to allow for easier addition of new servers. With that being said, the solution I chose
was to make the previous pointer always stay on the original request.

This causes some more complex logic, but it works for all cases. My concern in having it move to the sub-request, is
that for the more common case (where a sub-request is used to add data to a response), the main filter chain would be
wrong. That didn’t seem like a good idea to me.

Asis

The final topic. :-) ModAsis is a bit of a hack, but the handler needs to remove all filters except for connection filters,
and send the data. If you are usingMOD ASIS, all other bets are off.

620 CHAPTER 11. DEVELOPER DOCUMENTATION

Explanations

The absolutely last point is that the reason this code was so hard to get right, was because we had hacked so much
to force it to work. I wrote most of the hacks originally, so I am very much to blame. However, now that the
code is right, I have started to remove some hacks. Most people should have seen that thereset filters and
add required filters functions are gone. Those inserted protocol level filters for error conditions, in fact, both
functions did the same thing, one after the other, it was really strange. Because we don’t lose protocol filters for
error cases any more, those hacks went away. TheHTTP HEADER, Content-length , andByterange filters are
all added in theinsert filters phase, because if they were added earlier, we had some interesting interactions.
Now, those could all be moved to be inserted with theHTTP IN , CORE, andCOREIN filters. That would make the
code easier to follow.

Chapter 12

Glossary and Index

621

622 CHAPTER 12. GLOSSARY AND INDEX

12.1 Glossary

This glossary defines some of the common terminology related to Apache in particular, and web serving in general.
More information on each concept is provided in the links.

Definitions

Authentication The positive identification of a network entity such as a server, a client, or a user.
See: Authentication, Authorization, and Access Control (p.185)

Access Control The restriction of access to network realms. In an Apache context usually the restriction of access to
certainURLs.
See: Authentication, Authorization, and Access Control (p.185)

Algorithm An unambiguous formula or set of rules for solving a problem in a finite number of steps. Algorithms for
encryption are usually called Ciphers.

APache eXtension Tool (apxs)A perl script that aids in compiling module sources into Dynamic Shared Objects
(DSOs) and helps install them in the Apache Web server.
See: Manual Page: apxs (p.245)

Certificate A data record used for authenticating network entities such as a server or a client. A certificate contains
X.509 information pieces about its owner (called the subject) and the signingCertificate Authority(called the
issuer), plus the owner’s public key and the signature made by the CA. Network entities verify these signatures
using CA certificates.
See: SSL/TLS Encryption (p.150)

Certification Authority (CA) A trusted third party whose purpose is to sign certificates for network entities it has
authenticated using secure means. Other network entities can check the signature to verify that a CA has
authenticated the bearer of a certificate.
See: SSL/TLS Encryption (p.150)

Certificate Signing Request (CSR)An unsigned certificate for submission to aCertification Authority, which signs
it with thePrivate Keyof their CACertificate. Once the CSR is signed, it becomes a real certificate.
See: SSL/TLS Encryption (p.150)

Cipher An algorithm or system for data encryption. Examples are DES, IDEA, RC4, etc.
See: SSL/TLS Encryption (p.150)

Ciphertext The result after Plaintext is passed through a Cipher.
See: SSL/TLS Encryption (p.150)

Common Gateway Interface (CGI) A standard definition for an interface between a web server and an external
program that allows the external program to service requests. The interface was originally defined by NCSA1

but there is also an RFC project2.
See: Dynamic Content with CGI (p.189)

Configuration Directive See: Directive

Configuration File A text file containing Directives that control the configuration of Apache.
See: Configuration Files (p.20)

CONNECT An HTTP method for proxying raw data channels over HTTP. It can be used to encapsulate other proto-
cols, such as the SSL protocol.

1http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
2http://cgi-spec.golux.com/

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://cgi-spec.golux.com/

12.1. GLOSSARY 623

Context An area in the configuration files where certain types of directives are allowed.
See: Terms Used to Describe Apache Directives (p.285)

Digital Signature An encrypted text block that validates a certificate or other file. ACertification Authoritycreates
a signature by generating a hash of thePublic Keyembedded in aCertificate, then encrypting the hash with its
own Private Key. Only the CA’s public key can decrypt the signature, verifying that the CA has authenticated
the network entity that owns theCertificate.
See: SSL/TLS Encryption (p.150)

Directive A configuration command that controls one or more aspects of Apache’s behavior. Directives are placed in
the Configuration File
See: Directive Index (p.629)

Dynamic Shared Object (DSO) Modules compiled separately from the Apache httpd binary that can be loaded on-
demand.
See: Dynamic Shared Object Support (p.45)

Environment Variable (env-variable) Named variables managed by the operating system shell and used to store
information and communicate between programs. Apache also contains internal variables that are referred to as
environment variables, but are stored in internal Apache structures, rather than in the shell environment.
See: Environment Variables in Apache (p.61)

Export-Crippled Diminished in cryptographic strength (and security) in order to comply with the United States’
Export Administration Regulations (EAR). Export-crippled cryptographic software is limited to a small key
size, resulting inCiphertextwhich usually can be decrypted by brute force.
See: SSL/TLS Encryption (p.150)

Filter A process that is applied to data that is sent or received by the server. Input filters process data sent by the
client to the server, while output filters process documents on the server before they are sent to the client. For
example, theINCLUDESoutput filter processes documents for Server Side Includes.
See: Filters (p.68)

Fully-Qualified Domain-Name (FQDN) The unique name of a network entity, consisting of a hostname and a do-
main name that can resolve to an IP address. For example,wwwis a hostname,example.com is a domain
name, andwww.example.com is a fully-qualified domain name.

Handler An internal Apache representation of the action to be performed when a file is called. Generally, files have
implicit handlers, based on the file type. Normally, all files are simply served by the server, but certain file types
are" handled" separately. For example, thecgi-script handler designates files to be processed as CGIs.
See: Apache’s Handler Use (p.66)

Header The part of the HTTP request and response that is sent before the actual content, and that contains meta-
information describing the content.

.htaccessA configuration file that is placed inside the web tree and applies configuration directives to the directory
where it is placed and all sub-directories. Despite its name, this file can hold almost any type of directive, not
just access-control directives.
See: Configuration Files (p.20)

httpd.conf The main Apache configuration file. The default location is
/usr/local/apache2/conf/httpd.conf , but it may be moved using run-time or compile-
time configuration.
See: Configuration Files (p.20)

HyperText Transfer Protocol (HTTP) The standard transmission protocol used on the World Wide Web. Apache
implements version 1.1 of the protocol, referred to as HTTP/1.1 and defined by RFC 26163.

3http://ietf.org/rfc/rfc2616.txt

http://ietf.org/rfc/rfc2616.txt

624 CHAPTER 12. GLOSSARY AND INDEX

HTTPS The HyperText Transport Protocol (Secure), the standard encrypted communication mechanism on the World
Wide Web. This is actually just HTTP over SSL.
See: SSL/TLS Encryption (p.150)

Method In the context of HTTP, an action to perform on a resource, specified on the request line by the client. Some
of the methods available in HTTP areGET, POST, andPUT.

Message DigestA hash of a message, which can be used to verify that the contents of the message have not been
altered in transit.
See: SSL/TLS Encryption (p.150)

MIME-type A way to describe the kind of document being transmitted. Its name comes from that fact that its format
is borrowed from the Multipurpose Internet Mail Extensions. It consists of a major type and a minor type,
separated by a slash. Some examples aretext/html , image/gif , andapplication/octet-stream .
In HTTP, the MIME-type is transmitted in theContent-Type header.
See: modmime (p.456)

Module An independent part of a program. Much of Apache’s functionality is contained in modules that you can
choose to include or exclude. Modules that are compiled into the Apache httpd binary are calledstatic modules,
while modules that are stored separately and can be optionally loaded at run-time are calleddynamic modulesor
DSOs. Modules that are included by default are calledbase modules. Many modules are available for Apache
that are not distributed as part of the Apache HTTP Server tarball. These are referred to asthird-party modules.
See: Module Index (p.626)

Module Magic Number (MMN) Module Magic Number is a constant defined in the Apache source code that is
associated with binary compatibility of modules. It is changed when internal Apache structures, function calls
and other significant parts of API change in such a way that binary compatibility cannot be guaranteed any more.
On MMN change, all third party modules have to be at least recompiled, sometimes even slightly changed in
order to work with the new version of Apache.

OpenSSL The Open Source toolkit for SSL/TLS
see http://www.openssl.org/

Pass PhraseThe word or phrase that protects private key files. It prevents unauthorized users from encrypting them.
Usually it’s just the secret encryption/decryption key used for Ciphers.
See: SSL/TLS Encryption (p.150)

Plaintext The unencrypted text.

Private Key The secret key in a Public Key Cryptography system, used to decrypt incoming messages and sign
outgoing ones.
See: SSL/TLS Encryption (p.150)

Proxy An intermediate server that sits between the client and theorigin server. It accepts requests from clients,
transmits those requests on to the origin server, and then returns the response from the origin server to the
client. If several clients request the same content, the proxy can deliver that content from its cache, rather than
requesting it from the origin server each time, thereby reducing response time.
See: modproxy (p.477)

Public Key The publicly available key in a Public Key Cryptography system, used to encrypt messages bound for its
owner and to decrypt signatures made by its owner.
See: SSL/TLS Encryption (p.150)

Public Key Cryptography The study and application of asymmetric encryption systems, which use one key for en-
cryption and another for decryption. A corresponding pair of such keys constitutes a key pair. Also called
Asymmetric Cryptography.
See: SSL/TLS Encryption (p.150)

12.1. GLOSSARY 625

Regular Expression (Regex)A way of describing a pattern in text - for example," all the words that begin with the
letter A" or " every 10-digit phone number" or even" Every sentence with two commas in it, and no capital letter
Q" . Regular expressions are useful in Apache because they let you apply certain attributes against collections of
files or resources in very flexible ways - for example, all .gif and .jpg files under any" images" directory could
be written as"/images/.*(jpg|gif)$" . Apache uses Perl Compatible Regular Expressions provided by
the PCRE4 library.

Reverse Proxy A proxy server that appears to the client as if it is anorigin server. This is useful to hide the real
origin server from the client for security reasons, or to load balance.

Secure Sockets Layer (SSL)A protocol created by Netscape Communications Corporation for general communica-
tion authentication and encryption over TCP/IP networks. The most popular usage isHTTPS, i.e. the HyperText
Transfer Protocol (HTTP) over SSL.
See: SSL/TLS Encryption (p.150)

Server Side Includes (SSI)A technique for embedding processing directives inside HTML files.
See: Introduction to Server Side Includes (p.195)

SessionThe context information of a communication in general.

SSLeay The original SSL/TLS implementation library developed by Eric A. Young

Symmetric Cryptography The study and application ofCiphersthat use a single secret key for both encryption and
decryption operations.
See: SSL/TLS Encryption (p.150)

Tarball A package of files gathered together using thetar utility. Apache distributions are stored in compressed tar
archives or using pkzip.

Transport Layer Security (TLS) The successor protocol to SSL, created by the Internet Engineering Task Force
(IETF) for general communication authentication and encryption over TCP/IP networks. TLS version 1 and is
nearly identical with SSL version 3.
See: SSL/TLS Encryption (p.150)

Uniform Resource Locator (URL) The name/address of a resource on the Internet. This is the com-
mon informal term for what is formally called a Uniform Resource Identifier. URLs are usually
made up of a scheme, likehttp or https , a hostname, and a path. A URL for this page is
http://httpd.apache.org/docs-2.0/glossary.html .

Uniform Resource Identifier (URI) A compact string of characters for identifying an abstract or physical resource.
It is formally defined by RFC 23965. URIs used on the world-wide web are commonly referred to as URLs.

Virtual Hosting Serving multiple websites using a single instance of Apache.IP virtual hostingdifferentiates be-
tween websites based on their IP address, whilename-based virtual hostinguses only the name of the host and
can therefore host many sites on the same IP address.
See: Apache Virtual Host documentation (p.114)

X.509 An authentication certificate scheme recommended by the International Telecommunication Union (ITU-T)
which is used for SSL/TLS authentication.
See: SSL/TLS Encryption (p.150)

4http://www.pcre.org/
5http://www.ietf.org/rfc/rfc2396.txt

http://www.pcre.org/
http://www.ietf.org/rfc/rfc2396.txt

626 CHAPTER 12. GLOSSARY AND INDEX

12.2 Module Index

Below is a list of all of the modules that come as part of the Apache distribution. See also the complete alphabetical
list of all Apache directives (p.629) .

See also

• Multi-Processing Modules (MPMs) (p.60)

• Directive Quick Reference (p.638)

Core Features and Multi-Processing Modules

core (p. 288) Core Apache HTTP Server features that are always available

mpm common (p. 558) A collection of directives that are implemented by more than one multi-processing module
(MPM)

beos (p. 556) This Multi-Processing Module is optimized for BeOS.

leader (p. 569) An experimental variant of the standardWORKER MPM

mpm netware (p. 570) Multi-Processing Module implementing an exclusively threaded web server optimized for
Novell NetWare

mpmt os2 (p. 572) Hybrid multi-process, multi-threaded MPM for OS/2

perchild (p. 573) Multi-Processing Module allowing for daemon processes serving requests to be assigned a variety
of different userids

prefork (p. 577) Implements a non-threaded, pre-forking web server

threadpool (p. 580) Yet another experimental variant of the standardWORKER MPM

mpm winnt (p. 581) This Multi-Processing Module is optimized for Windows NT.

worker (p. 582) Multi-Processing Module implementing a hybrid multi-threaded multi-process web server

Other Modules

mod access(p. 325) Provides access control based on client hostname, IP address, or other characteristics of the
client request.

mod actions (p. 329) This module provides for executing CGI scripts based on media type or request method.

mod alias (p. 331) Provides for mapping different parts of the host filesystem in the document tree and for URL
redirection

mod asis (p. 335) Sends files that contain their own HTTP headers

mod auth (p. 337) User authentication using text files

mod auth anon (p. 340) Allows " anonymous" user access to authenticated areas

mod auth dbm (p. 343) Provides for user authentication using DBM files

mod auth digest (p. 346) User authentication using MD5 Digest Authentication.

mod auth ldap (p. 351) Allows an LDAP directory to be used to store the database for HTTP Basic authentication.

12.2. MODULE INDEX 627

mod autoindex (p. 361) Generates directory indexes, automatically, similar to the Unixls command or the Win32
dir shell command

mod cache (p. 372) Content cache keyed to URIs.

mod cern meta (p. 377) CERN httpd metafile semantics

mod cgi (p. 379) Execution of CGI scripts

mod cgid (p. 382) Execution of CGI scripts using an external CGI daemon

mod charset lite (p. 383) Specify character set translation or recoding

mod dav (p. 386) Distributed Authoring and Versioning (WebDAV6) functionality

mod dav fs (p. 390) filesystem provider forMOD DAV

mod deflate (p. 391) Compress content before it is delivered to the client

mod dir (p. 396) Provides for" trailing slash" redirects and serving directory index files

mod disk cache (p. 397) Content cache storage manager keyed to URIs

mod echo (p. 402) A simple echo server to illustrate protocol modules

mod env (p. 403) Modifies the environment which is passed to CGI scripts and SSI pages

mod example (p. 405) Illustrates the Apache module API

mod expires (p. 407) Generation ofExpires HTTP headers according to user-specified criteria

mod ext filter (p. 410) Pass the response body through an external program before delivery to the client

mod file cache (p. 416) Caches a static list of files in memory

mod headers (p. 419) Customization of HTTP request and response headers

mod imap (p. 423) Server-side imagemap processing

mod include (p. 427) Server-parsed html documents (Server Side Includes)

mod info (p. 436) Provides a comprehensive overview of the server configuration

mod isapi (p. 437) ISAPI Extensions within Apache for Windows

mod ldap (p. 441) LDAP connection pooling and result caching services for use by other LDAP modules

mod log config (p. 446) Logging of the requests made to the server

mod logio (p. 451) Logging of input and output bytes per request

mod mem cache (p. 452) Content cache keyed to URIs

mod mime (p. 456) Associates the requested filename’s extensions with the file’s behavior (handlers and filters) and
content (mime-type, language, character set and encoding)

mod mime magic (p. 468) Determines the MIME type of a file by looking at a few bytes of its contents

mod negotiation (p. 472) Provides for content negotiation (p.48)

mod nw ssl (p. 476) Enable SSL encryption for NetWare

mod proxy (p. 477) HTTP/1.1 proxy/gateway server

6http://www.webdav.org/

http://www.webdav.org/

628 CHAPTER 12. GLOSSARY AND INDEX

mod proxy connect (p. 490) MOD PROXY extension forCONNECTrequest handling

mod proxy ftp (p. 491) FTP support module forMOD PROXY

mod proxy http (p. 492) HTTP support module forMOD PROXY

mod rewrite (p. 493) Provides a rule-based rewriting engine to rewrite requested URLs on the fly

mod setenvif (p. 512) Allows the setting of environment variables based on characteristics of the request

mod so (p. 516) Loading of executable code and modules into the server at start-up or restart time

mod speling (p. 518) Attempts to correct mistaken URLs that users might have entered by ignoring capitalization
and by allowing up to one misspelling

mod ssl (p. 520) Strong cryptography using the Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols

mod status (p. 542) Provides information on server activity and performance

mod suexec (p. 544) Allows CGI scripts to run as a specified user and Group

mod unique id (p. 545) Provides an environment variable with a unique identifier for each request

mod userdir (p. 547) User-specific directories

mod usertrack (p. 549) Clickstreamlogging of user activity on a site

mod vhost alias (p. 552) Provides for dynamically configured mass virtual hosting

12.3. DIRECTIVE INDEX 629

12.3 Directive Index

Each Apache directive available in the standard Apache distribution is listed here. They are described using a consistent
format, and there is a dictionary (p.285) of the terms used in their descriptions available.

A Directive Quick-Reference (p.638) is also available giving details about each directive in a summary form.

• AcceptMutex (p.558)

• AcceptPathInfo (p.289)

• AccessFileName (p.290)

• Action (p.329)

• AddAlt (p. 363)

• AddAltByEncoding (p.364)

• AddAltByType (p.364)

• AddCharset (p.458)

• AddDefaultCharset (p.291)

• AddDescription (p.364)

• AddEncoding (p.459)

• AddHandler (p.460)

• AddIcon (p.365)

• AddIconByEncoding (p.365)

• AddIconByType (p.366)

• AddInputFilter (p.460)

• AddLanguage (p.460)

• AddModuleInfo (p.436)

• AddOutputFilter (p.461)

• AddOutputFilterByType (p.291)

• AddType (p.462)

• Alias (p.331)

• AliasMatch (p.332)

• Allow (p. 325)

• AllowCONNECT (p.481)

• AllowEncodedSlashes (p.292)

• AllowOverride (p.292)

• Anonymous (p.341)

• AnonymousAuthoritative (p.341)

• AnonymousLogEmail (p.342)

• AnonymousMustGiveEmail (p.342)

• AnonymousNoUserID (p.342)

• AnonymousVerifyEmail (p.342)

• AssignUserID (p.575)

• AuthAuthoritative (p.337)

630 CHAPTER 12. GLOSSARY AND INDEX

• AuthDBMAuthoritative (p.343)

• AuthDBMGroupFile (p.344)

• AuthDBMType (p.344)

• AuthDBMUserFile (p.345)

• AuthDigestAlgorithm (p.347)

• AuthDigestDomain (p.347)

• AuthDigestFile (p.348)

• AuthDigestGroupFile (p.348)

• AuthDigestNcCheck (p.348)

• AuthDigestNonceFormat (p.349)

• AuthDigestNonceLifetime (p.349)

• AuthDigestQop (p.349)

• AuthDigestShmemSize (p.349)

• AuthGroupFile (p.338)

• AuthLDAPAuthoritative (p.357)

• AuthLDAPBindDN (p.357)

• AuthLDAPBindPassword (p.357)

• AuthLDAPCharsetConfig (p.357)

• AuthLDAPCompareDNOnServer (p.358)

• AuthLDAPDereferenceAliases (p.358)

• AuthLDAPEnabled (p.358)

• AuthLDAPFrontPageHack (p.359)

• AuthLDAPGroupAttribute (p.359)

• AuthLDAPGroupAttributeIsDN (p.359)

• AuthLDAPRemoteUserIsDN (p.359)

• AuthLDAPUrl (p. 360)

• AuthName (p.293)

• AuthType (p.294)

• AuthUserFile (p.338)

• BrowserMatch (p.512)

• BrowserMatchNoCase (p.513)

• BS2000Account (p.559)

• CacheDefaultExpire (p.374)

• CacheDirLength (p.397)

• CacheDirLevels (p.398)

• CacheDisable (p.374)

• CacheEnable (p.374)

• CacheExpiryCheck (p.398)

• CacheFile (p.417)

• CacheForceCompletion (p.375)

• CacheGcClean (p.398)

12.3. DIRECTIVE INDEX 631

• CacheGcDaily (p.399)

• CacheGcInterval (p.399)

• CacheGcMemUsage (p.399)

• CacheGcUnused (p.400)

• CacheIgnoreCacheControl (p.375)

• CacheIgnoreNoLastMod (p.375)

• CacheLastModifiedFactor (p.376)

• CacheMaxExpire (p.376)

• CacheMaxFileSize (p.400)

• CacheMinFileSize (p.400)

• CacheNegotiatedDocs (p.473)

• CacheRoot (p.400)

• CacheSize (p.401)

• CacheTimeMargin (p.401)

• CGIMapExtension (p.294)

• CharsetDefault (p.384)

• CharsetOptions (p.384)

• CharsetSourceEnc (p.384)

• CheckSpelling (p.518)

• ChildPerUserID (p.575)

• ContentDigest (p.294)

• CookieDomain (p.550)

• CookieExpires (p.550)

• CookieLog (p.448)

• CookieName (p.551)

• CookieStyle (p.551)

• CookieTracking (p.551)

• CoreDumpDirectory (p.559)

• CustomLog (p.448)

• Dav (p.388)

• DavDepthInfinity (p.388)

• DavLockDB (p.390)

• DavMinTimeout (p.388)

• DefaultIcon (p.366)

• DefaultLanguage (p.462)

• DefaultType (p.295)

• DeflateBufferSize (p.393)

• DeflateCompressionLevel (p.393)

• DeflateFilterNote (p.394)

• DeflateMemLevel (p.394)

• DeflateWindowSize (p.395)

632 CHAPTER 12. GLOSSARY AND INDEX

• Deny (p.327)

• Directory (p.295)

• DirectoryIndex (p.396)

• DirectoryMatch (p.297)

• DocumentRoot (p.297)

• EnableMMAP (p.297)

• EnableSendfile (p.298)

• ErrorDocument (p.299)

• ErrorLog (p.300)

• Example (p.406)

• ExpiresActive (p.408)

• ExpiresByType (p.408)

• ExpiresDefault (p.409)

• ExtendedStatus (p.543)

• ExtFilterDefine (p.413)

• ExtFilterOptions (p.414)

• FileETag (p.300)

• Files (p.301)

• FilesMatch (p.302)

• ForceLanguagePriority (p.474)

• ForceType (p.302)

• Group (p.560)

• Header (p.420)

• HeaderName (p.366)

• HostnameLookups (p.303)

• IdentityCheck (p.303)

• IfDefine (p.303)

• IfModule (p.304)

• ImapBase (p.425)

• ImapDefault (p.426)

• ImapMenu (p.426)

• Include (p.305)

• IndexIgnore (p.367)

• IndexOptions (p.367)

• IndexOrderDefault (p.370)

• ISAPIAppendLogToErrors (p.439)

• ISAPIAppendLogToQuery (p.439)

• ISAPICacheFile (p.439)

• ISAPIFakeAsync (p.440)

• ISAPILogNotSupported (p.440)

• ISAPIReadAheadBuffer (p.440)

12.3. DIRECTIVE INDEX 633

• KeepAlive (p.305)

• KeepAliveTimeout (p.306)

• LanguagePriority (p.475)

• LDAPCacheEntries (p.444)

• LDAPCacheTTL (p.444)

• LDAPOpCacheEntries (p.444)

• LDAPOpCacheTTL (p.444)

• LDAPSharedCacheSize (p.445)

• LDAPTrustedCA (p.445)

• LDAPTrustedCAType (p.445)

• Limit (p. 306)

• LimitExcept (p.307)

• LimitRequestBody (p.307)

• LimitRequestFields (p.308)

• LimitRequestFieldSize (p.308)

• LimitRequestLine (p.309)

• LimitXMLRequestBody (p.309)

• Listen (p.560)

• ListenBackLog (p.561)

• LoadFile (p.517)

• LoadModule (p.517)

• Location (p.309)

• LocationMatch (p.311)

• LockFile (p.561)

• LogFormat (p.449)

• LogLevel (p.311)

• MaxClients (p.562)

• MaxKeepAliveRequests (p.312)

• MaxMemFree (p.562)

• MaxRequestsPerChild (p.563)

• MaxRequestsPerThread (p.556)

• MaxSpareServers (p.578)

• MaxSpareThreads (p.563)

• MaxThreads (p.571)

• MaxThreadsPerChild (p.576)

• MCacheMaxObjectCount (p.452)

• MCacheMaxObjectSize (p.453)

• MCacheMaxStreamingBuffer (p.453)

• MCacheMinObjectSize (p.454)

• MCacheRemovalAlgorithm (p.454)

• MCacheSize (p.454)

634 CHAPTER 12. GLOSSARY AND INDEX

• MetaDir (p.377)

• MetaFiles (p.378)

• MetaSuffix (p.378)

• MimeMagicFile (p.471)

• MinSpareServers (p.578)

• MinSpareThreads (p.564)

• MMapFile (p.417)

• ModMimeUsePathInfo (p.463)

• MultiviewsMatch (p.463)

• NameVirtualHost (p.312)

• NoProxy (p.481)

• NumServers (p.576)

• NWSSLTrustedCerts (p.476)

• Options (p.313)

• Order (p.327)

• PassEnv (p.403)

• PidFile (p.564)

• ProtocolEcho (p.402)

• Proxy (p.482)

• ProxyBadHeader (p.483)

• ProxyBlock (p.483)

• ProxyDomain (p.484)

• ProxyErrorOverride (p.484)

• ProxyIOBufferSize (p.484)

• ProxyMatch (p.485)

• ProxyMaxForwards (p.485)

• ProxyPass (p.485)

• ProxyPassReverse (p.486)

• ProxyPreserveHost (p.487)

• ProxyReceiveBufferSize (p.487)

• ProxyRemote (p.487)

• ProxyRemoteMatch (p.488)

• ProxyRequests (p.488)

• ProxyTimeout (p.488)

• ProxyVia (p.489)

• ReadmeName (p.370)

• Redirect (p.332)

• RedirectMatch (p.333)

• RedirectPermanent (p.333)

• RedirectTemp (p.334)

• RemoveCharset (p.464)

12.3. DIRECTIVE INDEX 635

• RemoveEncoding (p.464)

• RemoveHandler (p.465)

• RemoveInputFilter (p.465)

• RemoveLanguage (p.466)

• RemoveOutputFilter (p.466)

• RemoveType (p.466)

• RequestHeader (p.421)

• Require (p.314)

• RewriteBase (p.496)

• RewriteCond (p.497)

• RewriteEngine (p.500)

• RewriteLock (p.501)

• RewriteLog (p.501)

• RewriteLogLevel (p.501)

• RewriteMap (p.502)

• RewriteOptions (p.505)

• RewriteRule (p.505)

• RLimitCPU (p.315)

• RLimitMEM (p. 315)

• RLimitNPROC (p.316)

• Satisfy (p.316)

• ScoreBoardFile (p.565)

• Script (p.330)

• ScriptAlias (p.334)

• ScriptAliasMatch (p.334)

• ScriptInterpreterSource (p.317)

• ScriptLog (p.380)

• ScriptLogBuffer (p.381)

• ScriptLogLength (p.381)

• ScriptSock (p.382)

• SecureListen (p.476)

• SendBufferSize (p.565)

• ServerAdmin (p.318)

• ServerAlias (p.318)

• ServerLimit (p.566)

• ServerName (p.318)

• ServerPath (p.319)

• ServerRoot (p.319)

• ServerSignature (p.320)

• ServerTokens (p.320)

• SetEnv (p.403)

636 CHAPTER 12. GLOSSARY AND INDEX

• SetEnvIf (p.513)

• SetEnvIfNoCase (p.515)

• SetHandler (p.321)

• SetInputFilter (p.321)

• SetOutputFilter (p.322)

• SSIEndTag (p.433)

• SSIErrorMsg (p.433)

• SSIStartTag (p.434)

• SSITimeFormat (p.434)

• SSIUndefinedEcho (p.435)

• SSLCACertificateFile (p.522)

• SSLCACertificatePath (p.522)

• SSLCARevocationFile (p.523)

• SSLCARevocationPath (p.523)

• SSLCertificateChainFile (p.523)

• SSLCertificateFile (p.524)

• SSLCertificateKeyFile (p.524)

• SSLCipherSuite (p.525)

• SSLEngine (p.527)

• SSLMutex (p.528)

• SSLOptions (p.529)

• SSLPassPhraseDialog (p.530)

• SSLProtocol (p.531)

• SSLProxyCACertificateFile (p.532)

• SSLProxyCACertificatePath (p.532)

• SSLProxyCARevocationFile (p.532)

• SSLProxyCARevocationPath (p.533)

• SSLProxyCipherSuite (p.533)

• SSLProxyEngine (p.533)

• SSLProxyMachineCertificateFile (p.534)

• SSLProxyMachineCertificatePath (p.534)

• SSLProxyProtocol (p.534)

• SSLProxyVerify (p.535)

• SSLProxyVerifyDepth (p.535)

• SSLRandomSeed (p.536)

• SSLRequire (p.537)

• SSLRequireSSL (p.539)

• SSLSessionCache (p.540)

• SSLSessionCacheTimeout (p.540)

• SSLVerifyClient (p.541)

• SSLVerifyDepth (p.541)

12.3. DIRECTIVE INDEX 637

• StartServers (p.566)

• StartThreads (p.566)

• SuexecUserGroup (p.544)

• ThreadLimit (p.567)

• ThreadsPerChild (p.567)

• ThreadStackSize (p.571)

• TimeOut (p.322)

• TransferLog (p.449)

• TypesConfig (p.467)

• UnsetEnv (p.404)

• UseCanonicalName (p.322)

• User (p.568)

• UserDir (p.547)

• VirtualDocumentRoot (p.554)

• VirtualDocumentRootIP (p.554)

• VirtualHost (p.323)

• VirtualScriptAlias (p.554)

• VirtualScriptAliasIP (p.555)

• XBitHack (p.435)

638 CHAPTER 12. GLOSSARY AND INDEX

12.4 Directive Quick Reference

The directive quick reference shows the usage, default, status, and context of each Apache configuration directive. For
more information about each of these, see the Directive Dictionary (p.285) .

The first column gives the directive name and usage. The second columns shows the default value of the directive, if
a default exists. If the default is too large to display, the first characters will be followed by" +" .

The third and fourth columns list the contexts where the directive is allowed and the status of the directive according
to the legend tables below.

s serverconfig
v virtualhost
d directory
h .htaccess

C Core
M MPM
B Base
E Extension
X Experimental

AcceptMutex Default|method Default s M
Method that Apache uses to serialize multiple children accepting requests on network sockets p.558
AcceptPathInfo On|Off|Default Default svdh C
Resources accept trailing pathname information p. 289
AccessFileName filename [filename]htaccess sv C
Name of the distributed configuration file p. 290
Action action-type cgi-script svdh B
Activates a CGI script for a particular handler or content-type p.329
AddAlt string file [file] ... svdh B
Alternate text to display for a file, instead of an icon selected by filename p.363
AddAltByEncoding string MIME-encoding [MIME-encoding] ... svdh B
Alternate text to display for a file instead of an icon selected by MIME-encoding p.364
AddAltByType string MIME-type [MIME-type] ... svdh B
Alternate text to display for a file, instead of an icon selected by MIME content-type p.364
AddCharset charset extension [extension] ... svdh B
Maps the given filename extensions to the specified content charset p.458
AddDefaultCharset On|Off|charset Off svdh C
Default character set to be added for a response without an explicit character set p.291
AddDescription string file [file] ... svdh B
Description to display for a file p. 364
AddEncoding MIME-enc extension [extension] ... svdh B
Maps the given filename extensions to the specified encoding type p.459
AddHandler handler-name extension [extension] ... svdh B
Maps the filename extensions to the specified handler p.460
AddIcon icon name [name] ... svdh B
Icon to display for a file selected by name p. 365
AddIconByEncoding icon MIME-encoding [MIME-encoding] ... svdh B
Icon to display next to files selected by MIME content-encoding p.365
AddIconByType icon MIME-type [MIME-type] ... svdh B
Icon to display next to files selected by MIME content-type p.366
AddInputFilter filter[;filter...] extension [extension]
...

svdh B

Maps filename extensions to the filters that will process client requests p.460
AddLanguage MIME-lang extension [extension] ... svdh B
Maps the given filename extension to the specified content language p.460
AddModuleInfo module-name string sv E
Adds additional information to the module information displayed by the server-info handler p.436
AddOutputFilter filter[;filter...] extension [extension]
...

svdh B

Maps filename extensions to the filters that will process responses from the server p.461

12.4. DIRECTIVE QUICK REFERENCE 639

AddOutputFilterByType filter[;filter...] MIME-type
[MIME-type] ...

svdh C

assigns an output filter to a particular MIME-type p. 291
AddType MIME-type extension [extension] ... svdh B
Maps the given filename extensions onto the specified content type p.462
Alias URL-path file-path|directory-path sv B
Maps URLs to filesystem locations p. 331
AliasMatch regex file-path|directory-path sv B
Maps URLs to filesystem locations using regular expressions p.332

Allow from all|host|env=env-variable
[host|env=env-variable] ...

dh B

Controls which hosts can access an area of the server p.325
AllowCONNECT port [port] ... 443 563 sv E
Ports that are allowed toCONNECTthrough the proxy p.481
AllowEncodedSlashes On|Off Off sv C
Determines whether encoded path separators in URLs are allowed to be passed through p.292
AllowOverride All|None|directive-type [directive-type] ... All d C
Types of directives that are allowed in.htaccess files p.292
Anonymous user [user] ... dh E
Specifies userIDs that areallowed access without password verification p.341
Anonymous Authoritative On|Off Off dh E
Configures if authorization will fall-through to other methods p.341
Anonymous LogEmail On|Off On dh E
Sets whether the password entered will be logged in the error log p.342
Anonymous MustGiveEmail On|Off On dh E
Specifies whether blank passwords are allowed p. 342
Anonymous NoUserID On|Off Off dh E
Sets whether the userID field may be empty p. 342
Anonymous VerifyEmail On|Off Off dh E
Sets whether to check the password field for a correctly formatted email address p.342
AssignUserID user-id group-id v M
Tie a virtual host to a user and group ID p. 575
AuthAuthoritative On|Off On dh B
Sets whether authorization and authentication are passed to lower level modules p.337
AuthDBMAuthoritative On|Off On dh E
Sets whether authentication and authorization will be passwed on to lower level modules p.343
AuthDBMGroupFile file-path dh E
Sets the name of the database file containing the list of user groups for authentication p.344
AuthDBMType default|SDBM|GDBM|NDBM|DB default dh E
Sets the type of database file that is used to store passwords p.344
AuthDBMUserFile file-path dh E
Sets thename of a database file containing the list of users and passwords for authentication p.345
AuthDigestAlgorithm MD5|MD5-sess MD5 dh X
Selects the algorithm used to calculate the challenge and response hases in digest authentication p.347
AuthDigestDomain URI [URI] ... dh X
URIs that are in the same protection space for digest authentication p.347
AuthDigestFile file-path dh X
Location of the text file containing the list of users and encoded passwords for digest authentication p.348
AuthDigestGroupFile file-path dh X
Name of the text file containing the list of groups for digest authentication p.348
AuthDigestNcCheck On|Off Off s X
Enables or disables checking of the nonce-count sent by the server p.348
AuthDigestNonceFormat format dh X
Determines how the nonce is generated p. 349
AuthDigestNonceLifetime seconds 300 dh X
How long the server nonce is valid p. 349
AuthDigestQop none|auth|auth-int [auth|auth-int] auth dh X
Determines the quality-of-protection to use in digest authentication p.349
AuthDigestShmemSize size 1000 s X
The amount of shared memory to allocate for keeping track of clients p.349
AuthGroupFile file-path dh B
Sets the name of a text file containing the list of user groups for authentication p.338
AuthLDAPAuthoritative on|off on dh X
Prevent other authentication modules from authenticating the user if this one fails p.357

640 CHAPTER 12. GLOSSARY AND INDEX

AuthLDAPBindDN distinguished-name dh X
Optional DN to use in binding to the LDAP server p. 357
AuthLDAPBindPassword password dh X
Password used in conjuction with the bind DN p. 357
AuthLDAPCharsetConfig file-path s X
Language to charset conversion configuration file p. 357
AuthLDAPCompareDNOnServer on|off on dh X
Use the LDAP server to compare the DNs p. 358
AuthLDAPDereferenceAliases never|searching|finding|always Always dh X
When will the module de-reference aliases p. 358

AuthLDAPEnabled on|off on dh X
Turn on or off LDAP authentication p. 358
AuthLDAPFrontPageHack on|off off dh X
Allow LDAP authentication to work with MS FrontPage p.359
AuthLDAPGroupAttribute attribute dh X
LDAP attributes used to check for group membership p.359
AuthLDAPGroupAttributeIsDN on|off on dh X
Use the DN of the client username when checking for group membership p.359
AuthLDAPRemoteUserIsDN on|off off dh X
Use the DN of the client username to set the REMOTEUSER environment variable p.359
AuthLDAPUrl url dh X
URL specifying the LDAP search parameters p. 360
AuthName auth-domain dh C
Authorization realm for use in HTTP authentication p.293
AuthType Basic|Digest dh C
Type of user authentication p. 294
AuthUserFile file-path dh B
Sets the name of a text file containing the list of users and passwords for authentication p.338
BrowserMatch regex [!]env-variable [= value]
[[!] env-variable [= value]] ...

svdh B

Sets environment variables conditional on HTTP User-Agent p.512
BrowserMatchNoCase regex [!]env-variable [= value]
[[!] env-variable [= value]] ...

svdh B

Sets environment variables conditional on User-Agent without respect to case p.513
BS2000Account account s M
Define the non-privileged account on BS2000 machines p.559
CacheDefaultExpire seconds 3600 (one hour) sv X
The default duration to cache a document when no expiry date is specified. p.374
CacheDirLength length 2 sv X
The number of characters in subdirectory names p. 397
CacheDirLevels levels 3 sv X
The number of levels of subdirectories in the cache. p.398
CacheDisable url-string sv X
Disable caching of specified URLs p. 374
CacheEnable cache type url-string sv X
Enable caching of specified URLs using a specified storage manager p.374
CacheExpiryCheck On|Off On sv X
Indicates if the cache observes Expires dates when seeking files p.398
CacheFile file-path [file-path] ... s X
Cache a list of file handles at startup time p. 417
CacheForceCompletion Percentage 60 sv X
Percentage of document served, after which the server will complete caching the file even if the request is cancelled. p.375
CacheGcClean hours url-string ? sv X
The time to retain unchanged cached files that match a URL p.398
CacheGcDaily time ? sv X
The recurring time each day for garbage collection to be run. (24 hour clock) p.399
CacheGcInterval hours sv X
The interval between garbage collection attempts. p. 399
CacheGcMemUsage KBytes ? sv X
The maximum kilobytes of memory used for garbage collection p.399
CacheGcUnused hours url-string ? sv X
The time to retain unreferenced cached files that match a URL. p.400
CacheIgnoreCacheControl On|Off Off sv X
Ignore the fact that the client requested the content not be cached. p.375

12.4. DIRECTIVE QUICK REFERENCE 641

CacheIgnoreNoLastMod On|Off Off sv X
Ignore the fact that a response has no Last Modified header. p.375
CacheLastModifiedFactor float 0.1 sv X
The factor used to compute an expiry date based on the LastModified date. p.376
CacheMaxExpire seconds 86400 (one day) sv X
The maximum time in seconds to cache a document p.376
CacheMaxFileSize bytes 1000000 sv X
The maximum size (in bytes) of a document to be placed in the cache p.400
CacheMinFileSize bytes 1 sv X
The minimum size (in bytes) of a document to be placed in the cache p.400
CacheNegotiatedDocs On|Off Off sv B
Allows content-negotiated documents to be cached by proxy servers p.473
CacheRoot directory sv X
The directory root under which cache files are stored p.400
CacheSize KBytes 1000000 sv X
The maximum amount of disk space that will be used by the cache in KBytes p.401
CacheTimeMargin ? ? sv X
The minimum time margin to cache a document p. 401
CGIMapExtension cgi-path .extension dh C
Technique for locating the interpreter for CGI scripts p.294
CharsetDefault charset svdh X
Charset to translate into p. 384
CharsetOptions option [option] ... DebugLevel=0 NoImpl + svdh X
Configures charset translation behavior p. 384
CharsetSourceEnc charset svdh X
Source charset of files p. 384
CheckSpelling on|off Off svdh E
Enables the spelling module p. 518
ChildPerUserID user-id group-id num-children s M
Specify user ID and group ID for a number of child processes p.575
ContentDigest On|Off Off svdh C
Enables the generation ofContent-MD5 HTTP Response headers p.294
CookieDomain domain svdh E
The domain to which the tracking cookie applies p. 550
CookieExpires expiry-period svdh E
Expiry time for the tracking cookie p. 550
CookieLog filename sv B
Sets filename for the logging of cookies p. 448
CookieName token Apache svdh E
Name of the tracking cookie p. 551
CookieStyle Netscape|Cookie|Cookie2|RFC2109|RFC2965 Netscape svdh E
Format of the cookie header field p. 551
CookieTracking on|off off svdh E
Enables tracking cookie p. 551
CoreDumpDirectory directory s M
Directory where Apache attempts to switch before dumping core p.559
CustomLog file|pipe format|nickname [env=[!]environment-variable] sv B
Sets filename and format of log file p. 448
Dav On|Off|provider-name Off d E
Enable WebDAV HTTP methods p. 388
DavDepthInfinity on|off off svd E
Allow PROPFIND, Depth: Infinity requests p. 388
DavLockDB file-path sv E
Location of the DAV lock database p. 390
DavMinTimeout seconds 0 svd E
Minimum amount of time the server holds a lock on a DAV resource p.388
DefaultIcon url-path svdh B
Icon to display for files when no specific icon is configured p.366
DefaultLanguage MIME-lang svdh B
Sets all files in the given scope to the specified language p.462
DefaultType MIME-type text/plain svdh C
MIME content-type that will be sent if the server cannot determine a type in any other way p.295
DeflateBufferSize value 8096 sv E
Fragment size to be compressed at one time by zlib p.393

642 CHAPTER 12. GLOSSARY AND INDEX

DeflateCompressionLevel value sv E
How much compression do we apply to the output p. 393
DeflateFilterNote [type] notename sv E
Places the compression ratio in a note for logging p. 394
DeflateMemLevel value 9 sv E
How much memory should be used by zlib for compression p.394
DeflateWindowSize value 15 sv E
Zlib compression window size p. 395

Deny from all|host|env=env-variable [host|env=env-variable]
...

dh B

Controls which hosts are denied access to the server p.327
<Directory directory-path > ... </Directory > sv C
Enclose a group of directives that apply only to the named file-system directory and sub-directories p.295
DirectoryIndex local-url [local-url] ... index.html svdh B
List of resources to look for when the client requests a directory p.396
<DirectoryMatch regex > ... </DirectoryMatch > sv C
Enclose directives that apply to file-system directories matching a regular expression and their subdirectories p.297
DocumentRoot directory-path /usr/local/apache/h + sv C
Directory that forms the main document tree visible from the web p.297
EnableMMAP On|Off On svdh C
Use memory-mapping to read files during delivery p. 297
EnableSendfile On|Off On svdh C
Use the kernel sendfile support to deliver files to the client p.298
ErrorDocument error-code document svdh C
What the server will return to the client in case of an error p.299

ErrorLog file-path|syslog[:facility] logs/errorlog (Uni + sv C
Location where the server will log errors p. 300
Example svdh X
Demonstration directive to illustrate the Apache module API p.406
ExpiresActive On|Off svdh E
Enables generation ofExpires headers p. 408
ExpiresByType MIME-type <code >seconds svdh E
Value of theExpires header configured by MIME type p.408
ExpiresDefault <code >seconds svdh E
Default algorithm for calculating expiration time p. 409
ExtendedStatus On|Off Off s B
Keep track of extended status information for each request p.543
ExtFilterDefine filtername parameters s E
Define an external filter p. 413
ExtFilterOptions option [option] ... DebugLevel=0 NoLogS + d E
ConfigureMOD EXT FILTER options p. 414
FileETag component ... INode MTime Size svdh C
File attributes used to create the ETag HTTP response header p.300
<Files filename > ... </Files > svdh C
Contains directives that apply to matched filenames p.301
<FilesMatch regex > ... </FilesMatch > svdh C
Contains directives that apply to regular-expression matched filenames p.302
ForceLanguagePriority None|Prefer|Fallback
[Prefer|Fallback]

Prefer svdh B

Action to take if a single acceptable document is not found p.474
ForceType MIME-type|None dh C
Forces all matching files to be served with the specified MIME content-type p.302
Group unix-group #-1 s M
Group under which the server will answer requests p. 560
Header set|append|add|unset|echo header [value
[env=[!]variable]]

svdh E

Configure HTTP response headers p. 420
HeaderName filename svdh B
Name of the file that will be inserted at the top of the index listing p.366
HostnameLookups On|Off|Double Off svd C
Enables DNS lookups on client IP addresses p. 303
IdentityCheck On|Off Off svd C
Enables logging of the RFC1413 identity of the remote user p.303
<IfDefine [!]parameter-name > ... </IfDefine > svdh C
Encloses directives that will be processed only if a test is true at startup p.303

12.4. DIRECTIVE QUICK REFERENCE 643

<IfModule [!]module-name > ... </IfModule > svdh C
Encloses directives that are processed conditional on the presence or absence of a specific module p.304
ImapBase map|referer|URL http://servername/ svdh B
Defaultbase for imagemap files p. 425
ImapDefault error|nocontent|map|referer|URL nocontent svdh B
Default action when an imagemap is called with coordinates that are not explicitly mapped p.426
ImapMenu none|formatted|semiformatted|unformatted svdh B
Action if no coordinates are given when calling an imagemap p.426
Include file-path|directory-path svd C
Includes other configuration files from within the server configuration files p.305
IndexIgnore file [file] ... svdh B
Adds to the list of files to hide when listing a directory p.367
IndexOptions [+|-]option [[+|-]option] ... svdh B
Various configuration settings for directory indexing p.367
IndexOrderDefault Ascending|Descending
Name|Date|Size|Description

Ascending Name svdh B

Sets the default ordering of the directory index p. 370
ISAPIAppendLogToErrors on|off off svdh B
RecordHSEAPPENDLOGPARAMETERrequests from ISAPI extensions to the error log p.439
ISAPIAppendLogToQuery on|off on svdh B
RecordHSEAPPENDLOGPARAMETERrequests from ISAPI extensions to the query field p.439
ISAPICacheFile file-path [file-path] ... sv B
ISAPI .dll files to be loaded at startup p. 439
ISAPIFakeAsync on|off off svdh B
Fake asynchronous support for ISAPI callbacks p. 440
ISAPILogNotSupported on|off off svdh B
Log unsupported feature requests from ISAPI extensions p.440
ISAPIReadAheadBuffer size 49152 svdh B
Size of the Read Ahead Buffer sent to ISAPI extensions p.440
KeepAlive On|Off On sv C
Enables HTTP persistent connections p. 305
KeepAliveTimeout seconds 15 sv C
Amount of time the server will wait for subsequent requests on a persistent connection p.306
LanguagePriority MIME-lang [MIME-lang] ... svdh B
The precendence of language variants for cases where the client does not express a preference p.475
LDAPCacheEntries number 1024 s X
Maximum number of entires in the primary LDAP cache p.444
LDAPCacheTTL seconds 600 s X
Time that cached items remain valid p. 444
LDAPOpCacheEntries number 1024 s X
Number of entries used to cache LDAP compare operations p.444
LDAPOpCacheTTL seconds 600 s X
Time that entries in the operation cache remain valid p.444
LDAPSharedCacheSize bytes 102400 s X
Size in bytes of the shared-memory cache p. 445
LDAPTrustedCA directory-path/filename s X
Sets the file containing the trusted Certificate Authority certificate or database p.445
LDAPTrustedCAType type s X
Specifies the type of the Certificate Authority file p. 445
<Limit method [method] ... > ... </Limit > svdh C
Restrict enclosed access controls to only certain HTTP methods p.306
<LimitExcept method [method] ... > ... </LimitExcept > svdh C
Restrict access controls to all HTTP methods except the named ones p.307
LimitRequestBody bytes 0 svdh C
Restricts the total size of the HTTP request body sent from the client p.307
LimitRequestFields number 100 s C
Limits the number of HTTP request header fields that will be accepted from the client p.308
LimitRequestFieldsize bytes s C
Limits the size of the HTTP request header allowed from the client p.308
LimitRequestLine bytes 8190 s C
Limit the size of the HTTP request line that will be accepted from the client p.309
LimitXMLRequestBody bytes 1000000 svdh C
Limits the size of an XML-based request body p. 309
Listen [IP-address:]portnumber s M
IP addresses and ports that the server listens to p. 560

644 CHAPTER 12. GLOSSARY AND INDEX

ListenBacklog backlog s M
Maximum length of the queue of pending connections p.561
LoadFile filename [filename] ... s E
Link in the named object file or library p. 517
LoadModule module filename s E
Links in the object file or library, and adds to the list of active modules p.517
<Location URL-path|URL > ... </Location > sv C
Applies the enclosed directives only to matching URLs p.309
<LocationMatch regex > ... </LocationMatch > sv C
Applies the enclosed directives only to regular-expression matching URLs p.311
LockFile filename logs/accept.lock s M
Location of the accept serialization lock file p. 561
LogFormat format|nickname [nickname] " %h %l %u %t\" %r\" + sv B
Describes a format for use in a log file p. 449
LogLevel level warn sv C
Controls the verbosity of the ErrorLog p. 311
MaxClients number s M
Maximum number of child processes that will be created to serve requests p.562
MaxKeepAliveRequests number 100 sv C
Number of requests allowed on a persistent connection p.312
MaxMemFree KBytes 0 s M
Maximum amount of memory that the main allocator is allowed to hold without callingfree() p. 562
MaxRequestsPerChild number 10000 s M
Limit on the number of requests that an individual child server will handle during its life p.563
MaxRequestsPerThread number 0 s M
Limit on the number of requests that an individual thread will handle during its life p.556
MaxSpareServers number 10 s M
Maximum number of idle child server processes p. 578
MaxSpareThreads number s M
Maximum number of idle threads p. 563
MaxThreads number 2048 s M
Set the maximum number of worker threads p. 571
MaxThreadsPerChild number 64 s M
Maximum number of threads per child process p. 576
MCacheMaxObjectCount value 1009 s X
The maximum number of objects allowed to be placed in the cache p.452
MCacheMaxObjectSize bytes 10000 s X
The maximum size (in bytes) of a document allowed in the cache p.453
MCacheMaxStreamingBuffer size in bytes the smaller of 1000 + s X
Maximum amount of a streamed response to buffer in memory before declaring the response uncacheable p.453
MCacheMinObjectSize bytes 0 s X
The minimum size (in bytes) of a document to be allowed in the cache p.454
MCacheRemovalAlgorithm LRU|GDSF GDSF s X
The algorithm used to select documents for removal from the cache p.454
MCacheSize KBytes 100 s X
The maximum amount of memory used by the cache in KBytes p.454
MetaDir directory .web svdh E
Name of the directory to find CERN-style meta information files p.377
MetaFiles on|off off svdh E
Activates CERN meta-file processing p. 378
MetaSuffix suffix .meta svdh E
File name suffix for the file containg CERN-style meta information p.378
MimeMagicFile file-path sv E
Enable MIME-type determination based on file contents using the specified magic file p.471
MinSpareServers number 5 s M
Minimum number of idle child server processes p. 578
MinSpareThreads number s M
Minimum number of idle threads available to handle request spikes p.564
MMapFile file-path [file-path] ... s X
Map a list of files into memory at startup time p. 417
ModMimeUsePathInfo On|Off Off d B
Tells MOD MIME to treatpath info components as part of the filename p.463
MultiviewsMatch Any|NegotiatedOnly|Filters|Handlers
[Handlers|Filters]

NegotiatedOnly svdh B

The types of files that will be included when searching for a matching file with MultiViews p.463

12.4. DIRECTIVE QUICK REFERENCE 645

NameVirtualHost addr[:port] s C
Designates an IP address for name-virtual hosting p. 312
NoProxy host [host] ... sv E
Hosts, domains, or networks that will be connected to directly p.481
NumServers number 2 s M
Total number of children alive at the same time p. 576
NWSSLTrustedCerts filename [filename] ... s B
List of additional client certificates p. 476
Options [+|-]option [[+|-]option] ... All svdh C
Configures what features are available in a particular directory p.313

Order ordering Deny,Allow dh B
Controls the default access state and the order in whichALLOW andDENY are evaluated. p.327
PassEnv env-variable [env-variable] ... svdh B
Passes environment variables from the shell p. 403
PidFile filename logs/httpd.pid s M
File where the server records the process ID of the daemon p.564
ProtocolEcho On|Off sv X
Turn the echo server on or off p. 402
<Proxy wildcard-url > ... </Proxy > sv E
Container for directives applied to proxied resources p.482
ProxyBadHeader IsError|Ignore|StartBody IsError sv E
Determines how to handle bad header lines in a response p.483
ProxyBlock *|word|host|domain [word|host|domain] ... sv E
Words, hosts, or domains that are banned from being proxied p.483
ProxyDomain Domain sv E
Default domain name for proxied requests p. 484
ProxyErrorOverride On|Off Off sv E
Override error pages for proxied content p. 484
ProxyIOBufferSize bytes 8192 sv E
Determine size of internal data throughput buffer p. 484
<ProxyMatch regex > ... </ProxyMatch > sv E
Container for directives applied to regular-expression-matched proxied resources p.485
ProxyMaxForwards number 10 sv E
Maximium number of proxies that a request can be forwarded through p.485
ProxyPass [path] !|url svd E
Maps remote servers into the local server URL-space p.485
ProxyPassReverse [path] url svd E
Adjusts the URL in HTTP response headers sent from a reverse proxied server p.486
ProxyPreserveHost On|Off Off sv E
Use incoming Host HTTP request header for proxy request p.487
ProxyReceiveBufferSize bytes 0 sv E
Network buffer size for proxied HTTP and FTP connections p.487
ProxyRemote match remote-server sv E
Remote proxy used to handle certain requests p. 487
ProxyRemoteMatch regex remote-server sv E
Remote proxy used to handle requests matched by regular expressions p.488
ProxyRequests On|Off Off sv E
Enables forward (standard) proxy requests p. 488
ProxyTimeout seconds 300 sv E
Network timeout for proxied requests p. 488
ProxyVia On|Off|Full|Block Off sv E
Information provided in theVia HTTP response header for proxied requests p.489
ReadmeName filename svdh B
Name of the file that will be inserted at the end of the index listing p.370
Redirect [status] URL-path URL svdh B
Sends an external redirect asking the client to fetch a different URL p.332
RedirectMatch [status] regex URL svdh B
Sends an external redirect based on a regular expression match of the current URL p.333
RedirectPermanent URL-path URL svdh B
Sends an external permanent redirect asking the client to fetch a different URL p.333
RedirectTemp URL-path URL svdh B
Sends an external temporary redirect asking the client to fetch a different URL p.334
RemoveCharset extension [extension] ... vdh B
Removes any character set associations for a set of file extensions p.464

646 CHAPTER 12. GLOSSARY AND INDEX

RemoveEncoding extension [extension] ... vdh B
Removes any content encoding associations for a set of file extensions p.464
RemoveHandler extension [extension] ... vdh B
Removes any handler associations for a set of file extensions p.465
RemoveInputFilter extension [extension] ... vdh B
Removes any input filter associations for a set of file extensions p.465
RemoveLanguage extension [extension] ... vdh B
Removes any language associations for a set of file extensions p.466
RemoveOutputFilter extension [extension] ... vdh B
Removes any output filter associations for a set of file extensions p.466
RemoveType extension [extension] ... vdh B
Removes any content type associations for a set of file extensions p.466
RequestHeader set|append|add|unset header [value] svdh E
Configure HTTP request headers p. 421
Require entity-name [entity-name] ... dh C
Selects which authenticated users can access a resource p.314
RewriteBase URL-path dh E
Sets the base URL for per-directory rewrites p. 496

RewriteCond TestString CondPattern svdh E
Defines a condition under which rewriting will take place p.497
RewriteEngine on|off off svdh E
Enables or disables runtime rewriting engine p. 500
RewriteLock file-path s E
Sets the name of the lock file used forREWRITEMAP synchronization p.501
RewriteLog file-path sv E
Sets the name of the file used for logging rewrite engine processing p.501
RewriteLogLevel Level 0 sv E
Sets the verbosity of the log file used by the rewrite engine p.501
RewriteMap MapName MapType: MapSource sv E
Defines a mapping function for key-lookup p. 502
RewriteOptions Options MaxRedirects=10 svdh E
Sets some special options for the rewrite engine p. 505
RewriteRule Pattern Substitution svdh E
Defines rules for the rewriting engine p. 505
RLimitCPU seconds|max [seconds|max] svdh C
Limits the CPU consumption of processes launched by Apache children p.315
RLimitMEM bytes|max [bytes|max] svdh C
Limits the memory consumption of processes launched by Apache children p.315
RLimitNPROC number|max [number|max] svdh C
Limits the number of processes that can be launched by processes launched by Apache children p.316
Satisfy Any|All All dh C
Interaction between host-level access control and user authentication p.316
ScoreBoardFile file-path logs/apachestatus s M
Location of the file used to store coordination data for the child processes p.565
Script method cgi-script svd B
Activates a CGI script for a particular request method. p.330
ScriptAlias URL-path file-path|directory-path sv B
Maps a URL to a filesystem location and designates the target as a CGI script p.334
ScriptAliasMatch regex file-path|directory-path sv B
Maps a URL to a filesystem location using a regular expression and designates the target as a CGI script p.334
ScriptInterpreterSource Registry|Registry-Strict|Script Script svdh C
Technique for locating the interpreter for CGI scripts p.317
ScriptLog file-path sv B
Location of the CGI script error logfile p. 380
ScriptLogBuffer bytes 1024 sv B
Maximum amount of PUT or POST requests that will be recorded in the scriptlog p.381
ScriptLogLength bytes 10385760 sv B
Size limit of the CGI script logfile p. 381
ScriptSock file-path logs/cgisock sv B
The name of the socket to use for communication with the cgi daemon p.382
SecureListen [IP-address:]portnumber Certificate-Name
[MUTUAL]

s B

Enables SSL encryption for the specified port p. 476
SendBufferSize bytes 0 s M
TCP buffer size p. 565

12.4. DIRECTIVE QUICK REFERENCE 647

ServerAdmin email-address sv C
Email address that the server includes in error messages sent to the client p.318
ServerAlias hostname [hostname] ... v C
Alternate names for a host used when matching requests to name-virtual hosts p.318
ServerLimit number s M
Upper limit on configurable number of processes p. 566
ServerName fully-qualified-domain-name[:port] sv C
Hostname and port that the server uses to identify itself p.318
ServerPath URL-path v C
Legacy URL pathname for a name-based virtual host that is accessed by an incompatible browser p.319
ServerRoot directory-path /usr/local/apache s C
Base directory for the server installation p. 319
ServerSignature On|Off|EMail Off svdh C
Configures the footer on server-generated documents p.320
ServerTokens Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full Full s C
Configures theServer HTTP response header p. 320
SetEnv env-variable value svdh B
Sets environment variables p. 403
SetEnvIf attribute regex [!]env-variable [= value]
[[!] env-variable [= value]] ...

svdh B

Sets environment variables based on attributes of the request p.513
SetEnvIfNoCase attribute regex [!]env-variable [= value]
[[!] env-variable [= value]] ...

svdh B

Sets environment variables based on attributes of the request without respect to case p.515
SetHandler handler-name|None svdh C
Forces all matching files to be processed by a handler p.321
SetInputFilter filter[;filter...] svdh C
Sets the filters that will process client requests and POST input p.321
SetOutputFilter filter[;filter...] svdh C
Sets the filters that will process responses from the server p.322
SSIEndTag tag " –>" sv B
String that ends an include element p. 433
SSIErrorMsg message " [an error occurred + svdh B
Error message displayed when there is an SSI error p. 433
SSIStartTag tag " <!–#" sv B
String that starts an include element p. 434
SSITimeFormat formatstring " %A, %d-%b-%Y %H:%M + svdh B
Configures the format in which date strings are displayed p.434
SSIUndefinedEcho string " (none)" sv B
String displayed when an unset variable is echoed p. 435
SSLCACertificateFile file-path sv E
File of concatenated PEM-encoded CA Certificates for Client Auth p.522
SSLCACertificatePath directory-path sv E
Directory of PEM-encoded CA Certificates for Client Auth p.522
SSLCARevocationFile file-path sv E
File of concatenated PEM-encoded CA CRLs for Client Auth p.523
SSLCARevocationPath directory-path sv E
Directory of PEM-encoded CA CRLs for Client Auth p.523
SSLCertificateChainFile file-path sv E
File of PEM-encoded Server CA Certificates p. 523
SSLCertificateFile file-path sv E
Server PEM-encoded X.509 Certificate file p. 524
SSLCertificateKeyFile file-path sv E
Server PEM-encoded Private Key file p. 524
SSLCipherSuite cipher-spec ALL:!ADH:RC4+RSA:+H + svdh E
Cipher Suite available for negotiation in SSL handshake p.525
SSLEngine on|off off sv E
SSL Engine Operation Switch p. 527
SSLMutex type none s E
Semaphore for internal mutual exclusion of operations p.528
SSLOptions [+|-] option ... svdh E
Configure various SSL engine run-time options p. 529
SSLPassPhraseDialog type builtin s E
Type of pass phrase dialog for encrypted private keys p.530

648 CHAPTER 12. GLOSSARY AND INDEX

SSLProtocol [+|-] protocol ... all sv E
Configure usable SSL protocol flavors p. 531
SSLProxyCACertificateFile file-path sv E
File of concatenated PEM-encoded CA Certificates for Remote Server Auth p.532
SSLProxyCACertificatePath directory-path sv E
Directory of PEM-encoded CA Certificates for Remote Server Auth p.532
SSLProxyCARevocationFile file-path sv E
File of concatenated PEM-encoded CA CRLs for Remote Server Auth p.532
SSLProxyCARevocationPath directory-path sv E
Directory of PEM-encoded CA CRLs for Remote Server Auth p.533
SSLProxyCipherSuite cipher-spec ALL:!ADH:RC4+RSA:+H + svdh E
Cipher Suite available for negotiation in SSL proxy handshake p.533
SSLProxyEngine on|off off sv E
SSL Proxy Engine Operation Switch p. 533
SSLProxyMachineCertificateFile filename s E
File of concatenated PEM-encoded CA certificates for proxy server client certificates p.534
SSLProxyMachineCertificatePath directory s E
Directory of PEM-encoded CA certificates for proxy server client certificates p.534
SSLProxyProtocol [+|-] protocol ... all sv E
Configure usable SSL protocol flavors for proxy usage p.534
SSLProxyVerify level none svdh E
Type of remote server Certificate verification p. 535
SSLProxyVerifyDepth number 1 svdh E
Maximum depth of CA Certificates in Remote Server Certificate verification p.535
SSLRandomSeed context source [bytes] s E
Pseudo Random Number Generator (PRNG) seeding source p.536
SSLRequire expression dh E
Allow access only when an arbitrarily complex boolean expression is true p.537
SSLRequireSSL dh E
Deny access when SSL is not used for the HTTP request p.539
SSLSessionCache type none s E
Type of the global/inter-process SSL Session Cache p.540
SSLSessionCacheTimeout seconds 300 sv E
Number of seconds before an SSL session expires in the Session Cache p.540
SSLVerifyClient level none svdh E
Type of Client Certificate verification p. 541
SSLVerifyDepth number 1 svdh E
Maximum depth of CA Certificates in Client Certificate verification p.541
StartServers number s M
Number of child server processes created at startup p. 566
StartThreads number s M
Number of threads created on startup p. 566
SuexecUserGroup User Group sv E
User and group permissions for CGI programs p. 544
ThreadLimit number s M
Sets the upper limit on the configurable number of threads per child process p.567
ThreadsPerChild number s M
Number of threads created by each child process p. 567
ThreadStackSize number 65536 s M
Determine the stack size for each thread p. 571
TimeOut seconds 300 s C
Amount of time the server will wait for certain events before failing a request p.322
TransferLog file|pipe sv B
Specify location of a log file p. 449
TypesConfig file-path conf/mime.types s B
The location of themime.types file p. 467
UnsetEnv env-variable [env-variable] ... svdh B
Removes variables from the environment p. 404
UseCanonicalName On|Off|DNS On svd C
Configures how the server determines its own name and port p.322
User unix-userid #-1 s M
The userid under which the server will answer requests p.568
UserDir directory-filename public html sv B
Location of the user-specific directories p. 547

12.4. DIRECTIVE QUICK REFERENCE 649

VirtualDocumentRoot interpolated-directory |none none sv E
Dynamically configure the location of the document root for a given virtual host p.554
VirtualDocumentRootIP interpolated-directory |none none sv E
Dynamically configure the location of the document root for a given virtual host p.554
<VirtualHost addr[:port] [addr[:port]] ... > ...
</VirtualHost >

s C

Contains directives that apply only to a specific hostname or IP address p.323
VirtualScriptAlias interpolated-directory |none none sv E
Dynamically configure the location of the CGI directory for a given virtual host p.554
VirtualScriptAliasIP interpolated-directory |none none sv E
Dynamically configure the location of the cgi directory for a given virtual host p.555
XBitHack on|off|full off svdh B
Parse SSI directives in files with the execute bit set p. 435

	Release Notes
	Upgrading to 2.0 from 1.3
	Overview of new features in Apache 2.0
	The Apache Software License, Version 1.1

	Using the Apache HTTP Server
	Compiling and Installing
	Starting Apache
	Stopping and Restarting
	Configuration Files
	Configuration Sections
	Server-Wide Configuration
	Log Files
	Mapping URLs to Filesystem Locations
	Security Tips
	Dynamic Shared Object (DSO) Support
	Content Negotiation
	Custom Error Responses
	Binding
	Multi-Processing Modules (MPMs)
	Environment Variables in Apache
	Apache's Handler Use
	Filters
	suEXEC Support
	Apache Performance Tuning
	URL Rewriting Guide

	Apache Virtual Host documentation
	Apache Virtual Host documentation
	Name-based Virtual Host Support
	Apache IP-based Virtual Host Support
	Dynamically configured mass virtual hosting
	VirtualHost Examples
	An In-Depth Discussion of Virtual Host Matching
	File Descriptor Limits
	Issues Regarding DNS and Apache

	Apache Server Frequently Asked Questions
	Frequently Asked Questions
	Support - Frequently Asked Questions
	Error Messages - Frequently Asked Questions

	Apache SSL/TLS Encryption
	Apache SSL/TLS Encryption
	SSL/TLS Strong Encryption: An Introduction
	SSL/TLS Strong Encryption: Compatibility
	SSL/TLS Strong Encryption: How-To
	SSL/TLS Strong Encryption: FAQ

	Guides, Tutorials, and HowTos
	How-To / Tutorials
	Authentication, Authorization and Access Control
	Apache Tutorial: Dynamic Content with CGI
	Apache Tutorial: Introduction to Server Side Includes
	Apache Tutorial: .htaccess files
	Per-user web directories
	Apache Tutorials

	Platform-specific Notes
	Platform Specific Notes
	Using Apache with Microsoft Windows
	Compiling Apache for Microsoft Windows
	Using Apache With Novell NetWare
	Running a High-Performance Web Server on HPUX
	The Apache EBCDIC Port

	Apache HTTP Server and Supporting Programs
	Server and Supporting Programs
	httpd - Apache Hypertext Transfer Protocol Server
	ab - Apache HTTP server benchmarking tool
	apachectl - Apache HTTP Server Control Interface
	apxs - APache eXtenSion tool
	dbmmanage - Manage user authentication files in DBM format
	htdigest - manage user files for digest authentication
	htpasswd - Manage user files for basic authentication
	logresolve - Resolve IP-addresses to hostnames in Apache log files
	rotatelogs - Piped logging program to rotate Apache logs
	suexec - Switch user before executing external programs
	Other Programs

	Apache Miscellaneous Documentation
	Apache Miscellaneous Documentation
	International Customized Server Error Messages
	Connections in the FIN_WAIT_2 state and Apache
	Known Problems in Clients
	Descriptors and Apache
	PATH_INFO Changes in the CGI Environment

	Apache modules
	Terms Used to Describe Modules
	Terms Used to Describe Directives
	Apache Module core
	Apache Module mod_access
	Apache Module mod_actions
	Apache Module mod_alias
	Apache Module mod_asis
	Apache Module mod_auth
	Apache Module mod_auth_anon
	Apache Module mod_auth_dbm
	Apache Module mod_auth_digest
	Apache Module mod_auth_ldap
	Apache Module mod_autoindex
	Apache Module mod_cache
	Apache Module mod_cern_meta
	Apache Module mod_cgi
	Apache Module mod_cgid
	Apache Module mod_charset_lite
	Apache Module mod_dav
	Apache Module mod_dav_fs
	Apache Module mod_deflate
	Apache Module mod_dir
	Apache Module mod_disk_cache
	Apache Module mod_echo
	Apache Module mod_env
	Apache Module mod_example
	Apache Module mod_expires
	Apache Module mod_ext_filter
	Apache Module mod_file_cache
	Apache Module mod_headers
	Apache Module mod_imap
	Apache Module mod_include
	Apache Module mod_info
	Apache Module mod_isapi
	Apache Module mod_ldap
	Apache Module mod_log_config
	Apache Module mod_logio
	Apache Module mod_mem_cache
	Apache Module mod_mime
	Apache Module mod_mime_magic
	Apache Module mod_negotiation
	Apache Module mod_nw_ssl
	Apache Module mod_proxy
	Apache Module mod_proxy_connect
	Apache Module mod_proxy_ftp
	Apache Module mod_proxy_http
	Apache Module mod_rewrite
	Apache Module mod_setenvif
	Apache Module mod_so
	Apache Module mod_speling
	Apache Module mod_ssl
	Apache Module mod_status
	Apache Module mod_suexec
	Apache Module mod_unique_id
	Apache Module mod_userdir
	Apache Module mod_usertrack
	Apache Module mod_vhost_alias
	Apache Module beos
	Apache Module mpm_common
	Apache Module leader
	Apache Module mpm_netware
	Apache Module mpmt_os2
	Apache Module perchild
	Apache Module prefork
	Apache Module threadpool
	Apache Module mpm_winnt
	Apache Module worker

	Developer Documentation
	Developer Documentation for Apache 2.0
	Apache 1.3 API notes
	Debugging Memory Allocation in APR
	Documenting Apache 2.0
	Apache 2.0 Hook Functions
	Converting Modules from Apache 1.3 to Apache 2.0
	Request Processing in Apache 2.0
	How filters work in Apache 2.0

	Glossary and Index
	Glossary
	Module Index
	Directive Index
	Directive Quick Reference

