Messaging: Creating a
Secure Channel


NOTE
Click on the lower part of this page to jump to the Contents at a Glance page.


WAPTE
*\\R\ (' /l’ Cf’AA

N
N
o
Ly
-
(=5
T

Encryption Overview

hen you mention encryption, images of spies and secret
agents come to mind. You may visualize spies in trench
coats meeting beneath street lamps on foggy evenings to
talk in whispered tongues. This is Hollywood’s version
of encryption. Reality splits in two directions. First,
encryption is a great deal more boring than ever
depicted in any film. Creating and breaking codes is
tedious work wherein many hours are spent getting
nowhere. Second, encryption is a weapon. The U.S.
government has classified encryption as munitions.
Stringent laws prevent it from being exported overseas

and govern its uses internally.

To understand why this is the case, it is important to
classify what encryption is and to view it in historical

perspective.



NOTE
Click anywhere on this page to jump to the Contents at a Glance page.


616 Part III: Messaging: Creating a Secure Channel

What Is Encryption?

Simply put, encryption is the art of hiding a message within another, or making a message
unreadable to all but the intended party. This can be accomplished in innumerable ways. One
of the most rudimentary techniques is hiding a message within another. The following are two
poems from Brad Truitt (reprinted with permission of the author):

Untitled Fourteen

Plastic butterfly frozen

In flight with nowhere to go
Chewing on plastic nectar
Telling the real flowers no
Under the pain and primer
Rests some type of molded paste
Every now and then someone
Asks if you’re more than a waste
Let their questions go ignored
But offer a paradox

Under your plastic, are your

Memories governed by clocks?

The Ballad of Johnny B. Gutt

Hypocrisy is my lifeblood

And anger is how things are viewed.
Racism is my long fingers and
Decadence provides me with food.
Do you dare doubt my principles,
Realizing the cheer they give?

Indeed, you had better think twice



Encryption Overview 617

Noting that I know where you live.
Kindness is a most useless tool

In that it never built a thing.
Narrow-mindedness, though, is a
Gift that will never fail to sing.

Although they appear to be mediocre poems in nature, notice that selecting the first character
of each line translates into a message: Picture Album and Hard Drinking, respectively.

Lewis Carroll is known to have used this method of writing to hide the names of girls within
his works. This method of encryption is extremely vulnerable. Its only strength lies in the fact
that you hope no one will take the time to examine it carefully, for it is plainly written in sight
for anyone to see. Once someone figures out the secret, however, it can be applied to every
message intercepted. Security here is meaning]ess.

Other measures must be used if the security of the data is truly important. Two of the most
common methods of encryption are substitution and transposition.

Transposition

In transposition, the same characters that make up the message are still used, but their order is
jumbled in a way that makes it difficult to read the message. Suppose, for example, that you
want to encrypt the message: Trucks and vehicles with trailers use right lane. The message can
be written in two columns in the following manner:

T r
u c
k s

a
n d

v
e h



618 Part III: Messaging: Creating a Secure Channel

w i
t h
t
r a
i 1
e r
s
u s
e
r i
g h
t
1 a
n e

If you print the first column of the message, followed by the second column, it becomes: Tuk
n vhee wt talr uergtlnresadvhee ihtalr s ih ae. This is much more difficult to read and takes
some time to break the code.

The code becomes more difficult if you add additional columns and stagger their order. By
using five columns and staggering the order in which they are presented, the code becomes:

5 3 1 4 2

T r u C k

s a n d
v e h i

c | e s

w i t h



Encryption Overview 619

e r s u
s e r i
g h t 1
a n e

This translates into: uaeetas tekdi luilr vlirrehnenhshi r T's cwtesga. Because the exact same
message you are trying to send is still here, the only key to deciphering it is figuring out the
number of columns used to create it and the order in which they are being presented.

Deciphering
For practice, assume that transposition was used, and the message you find is:

E NYIN BHA RWD OE T AU NENTEERW EINFWA ALMTPDOSHR TAAR

You now must ascertain two things: the number of columns that were used and the order in
which the columns were placed. The length of the string is 55 characters, and if you assume
that five columns were used, each column will consist of eleven characters:

1 2 3 4 5
E R E P
\4 I D
N D N N (@)
Y F F S
I (@) N \4
N T A
E
T E A T
H R L A
A \4 M A
U T R

Regardless of the order in which you arrange the columns, it fails to be intelligible—an
indication that five is not the correct number of columns. Increasing the number to eight
renders the following:



620

Part III: Messaging: Creating a Secure Channel

1 2 5 6 7 8
E D T I L H
B E N M

N 0] E F T
R 4 P T
I N 4 A D A
N R T F 0] A
4 N E A S R

By mixing the order of the columns about and concentrating on making a legible word in the
first row, it is possible to produce the following:

3 6 4 7 2 5 8 1
D I A L T H E
N M E R
0] F T E N
4 P R T

A N D 4 A I
T F 0] R A N
A N S 4 E R

In other words, dial the number of the new party and wait for an answer. The CD included
with this book contains a DOS-executable file called ENCRYPT, in which you can choose
Transposition from the menu and practice encrypting and decrypting messages. ENCRYPT is
hard coded to use the same transposition method utilized in the previous example, where the
column ordering becomes: 8-5-1-3-6-2-4-7. This means that the first column of the encrypted
message was the eighth column of the original message; the second column of the encrypted
message was the fifth column of the original message; and so on. The following screen shots
illustrate this in action.



Encryption Overview

621

ENCRYPTION MENU Honday HNovember B6, 1995 13:33
Utility from Internet Security Professional Reference

1 Transposition

2 Caesar Cipher

3 Homoalphabetic Cipher
4 Uigenere

MWhich method: 1
E — encyrpt or D - decrypt: e
Phrase: MORE THAN ZBA TECHNICAL BREAKDUT SESSIONS WILL BE PRESENTED
Result: AE TNBN BCKSLEWNCB SETRZMNEEWFDT AOILSO HRS EEBIASIRHTLUD E

Figure 10.1
Encrypting a message with
transcription.

ENCRYPTION MEHU Honday MNovember B6, 1995 13:37
Utility from Internet Security Professional Reference

1 Transposition

2 Caesar Cipher

3 Honmoalphabetic Cipher
4 Uigenere

Which method: 1
E — encyrpt or D - decrypt: D
Phrase: AE TNBN BCKSLEMNCB SETRZMEEWFDT AOILS0 HRS EEAIASIRHTLUD E
Result: MORE THAN ZBA TECHNICAL BREAKODUT SESSIONS WILL BE PRESENTED

Substitution

Figure 10.2

Decrypting a message with
transcription.

Substitution differs from transposition in one key way: with transposition, all characters from
the original message are still there; with substitution, none of them are. Substitution replaces
each character of the original message with another. Breaking the code is based upon ascertain-

ing which character the one you are seeing is replacing.

Caesar Cipher

Julius Caesar was one of the first to use substitution encryption to send messages to troops
during war. The substitution method he is credited with involves advancing each character

three spaces in the alphabet. Thus:



622

(®s

Part III: Messaging: Creating a Secure Channel

DIAL THE NUMBER OF THE NEW PARTY AND WAIT FOR AN ANSWER
becomes
GLDO WKH QXPEHU RI WKH QHZ SDUWB DQG ZDLW IRU DQ DQVZHU

Note that at the end of the alphabet, characters wrap back around to the beginning; thus, Z
becomes C, Y becomes B, and so on.

This encrypting method serves its purpose well, but once one figures out that they need only
subtract three characters from each given to obtain the correct answer, the code loses all
security. A modification of this is allowing the number of characters shifted to differ for each
message. In so doing, the number of possibilities changes from 1 to 26 and becomes increas-
ingly more difficult.

Figure 10.3 shows an example of the ENCRYPT utility included on the CD with this book,
and uses a modified version of the Caesar Cipher to change a message 10 spaces. Figure 10.4
shows its counterpart, decrypting the same message.

Figllre 1 0'3 ENCRHPTIDNUQET?tQ from Internet Security g?zgzgsi:ﬁ:?“:::eggéc;SQS trizd
Encrypting using a
modified version of the
Caesar CZ.P/%’}". 1 Transposition

2 Caesar Cipher
3 Honoalphabetic Cipher
4 Uigenere

HWhich method: Z
E - encyrpt or D — decrypt: e
Alter the text by what value (1 - 25): 18
Phrase: TRUCKS AND VEHICLES WITH TRAILERS USE RIGHT LANE
Result: DBEMUC KXN FORSMUOC GSDR DBKSVOBC ECO BSORD VKXD

Although this method is stronger than always shifting three characters, it is still relatively easy
to break. The only unknown that must be determined is the number of places in the alphabet
to switch each character. Because there are only 25 possibilities, a routine can be written to
quickly run through all feasible combinations and print the results, as follows:

DBEMUC KXN FORSMVOC GSDR DBKSVOBC ECO BSQRD VKXO
ECFNVD LYO GPSTNWPD HTES ECLTWPCD FDP CTRSE WLYP
FDGOWE MZP HQTUOXQE IUFT FDMUXQDE GEQ DUSTF XMZQ

GEHPXF NAQ IRUVPYRF JVGU GENVYREF HFR EVTUG YNAR



Encryption Overview

HFIQYG OBR JSVWQZSG KWHV HFOWZSFG IGS FWUVH ZOBS
IGJRZH PCS KTWXRATH LXIW IGPXATGH JHT GXVWI APCT
JHKSAI QDT LUXYSBUI MYJX JHQYBUHI KIU HYWX] BQDU
KILTBJ REU MVYZTCV] NZKY KIRZCVI] LJV IZXYK CREV
LJMUCK SFV NWZAUDWK OALZ LJSADWJK MKW JAYZL DSFW
MKNVDL TGW OXABVEXL PBMA MKTBEXKL NLX KBZAM ETGX
NLOWEM UHX PYBCWFYM QCNB NLUCFYLM OMY LCABN FUHY
OMPXFN VIY QZCDXGZN RDOC OMVDGZMN PNZ MDBCO GVIZ
PNQYGO WJZ RADEYHAO SEPD PNWEHANO QOA NECDP HWJA
QORZHP XKA SBEFZIBP TFQE QOXFIBOP RPB OFDEQ IXKB
RPSAIQ YLB TCFGAJCQ UGRF RPYGJCPQ SQC PGEFR JYLC
SQTBJR ZMC UDGHBKDR VHSG SQZHKDQR TRD QHFGS KZMD
TRUCKS AND VEHICLES WITH TRAILERS USE RIGHT LANE
USVDLT BOE WFIJDMFT XJUI USBJMFST VTF SJHIU MBOF
VTWEMU CPF XGJKENGU YKV] VTCKNGTU WUG TKIJV NCPG
WUXFNV DQG YHKLFOHV ZLWK WUDLOHUV XVH ULJKW ODQH
XVYGOW ERH ZILMGPIW AMXL XVEMPIVW YWI VMKLX PERI
YWZHPX FSI AIMNHQJX BNYM YWENQJWX ZX] WNLMY QFS]
ZXAIQY GTJ] BKNOIRKY COZN ZXGORKXY AYK XOMNZ RGTK
AYBJRZ HUK CLOPJSLZ DPAO AYHPSLYZ BZL YPNOA SHUL
BZCKSA IVL DMPQKTMA EQBP BZIQTMZA CAM ZQOPB TIVM

CADLTB JWM ENQRLUNB FRCQ CAJRUNAB DBN ARPQC UJWN

Running such a routine quickly reveals the correct translation of the code, as it is the only

sentence that is readable of the lot.

623



624 Part III: Messaging: Creating a Secure Channel

Flgllre 1 0'4 ENCRHPTIDNU!ET?tg from Internet Security gﬁzgzgsi:3:7“32¥3225c;995 e
Decrypting using a
modified version of the
Caesar Cipher. 1 Transposition

2 Caesar Cipher
3 Honoalphabetic Cipher
4 Vigenere

Hhich method: 2
E - encyrpt or D — decrypt: D
Alter the text by what value (1 - 25): 18
Phrase: DBEMUC KXN FORSMVOC GSDR DBKSVOBC ECO BSORD VKXD
Result: TRUCKS AND VEHICLES WITH TRAILERS USE RIGHT LANE

Monoalphabetic Substitutions

Monoalphabetic substitutions, or ciphers, are more difficult to break than their Caesarean
counterparts. Here, each character can stand for another—including itself—and there is no
reason why one replaces another. Monoalphabetic substitutions are often found in newspaper
leisure sections under the name Cryptoquotes, or something similar.

In the following example, the code used is:

A-P N-Y
B-R 0=S
C-0 P-V
D-D Q=X
E-U R-]
F-C N/
G-=E T-B
H-L U=W
I-A V=N
J=T W-Q
K=M X=H
LI Y-K

M-=F Z=G



Encryption Overview 625

Thus, the message:
DIAL THE NUMBER OF THE NEW PARTY AND WAIT FOR AN ANSWER
becomes:

DAPI BLU YWFRU]J SC BLU YUQ VPJBK PYD QPAB CSJ PY PYZQUJ

This code is much more difficult to break, as each character now has 26 possibilities. A
program can be written that will try every possibility for each character and print the results.
You can then read all the entries and look for the one that makes sense, or you can apply some
rules to the sentence.

One such method is looking for small words and trying substitutions on them. It is safe to
assume that one of the three-letter words in the sentence is “THE.” Four possibilities exist, and
thus four substitution trials:

DAPI BLU YWFRUJ SC BLU YUQ VPJBK PYD QPAB CS]J PY PYZQUJ
THE E THE E T T E

or

DAPI BLU YWFRUJ SC BLU YUQ VPJBK PYD QPAB CS] PYPYZQUJ
HT H H THE T E T T EH

or

DAPI BLU YWFRUJ SC BLU YUQ VPJBK PYD QPAB CS] PYPYZQUJ

ET H H T THE T TETE

or

DAPI BLU YWEFRUJ SC BLU YUQ VPJBK PYD QPAB CS] PYPYZQUJ

E HT E THE E

The third scenario is immediately dismissed, as there is no two-letter word TE. The fourth
scenario is immediately dismissed as well, for there is no two-letter word HT. That leaves the
first and second scenarios as possiblities. Of the two, the first is far and away the most com-
plete and the one upon which a decryption expert would focus.

The next area to focus upon is the two-letter words, now represented as SC and PY. These
cannot be BE, TO, or AT, as they do not contain either a “T” or an “E”. That leaves few other
possibilities, and through some trial and error, their identity can be ascertained, such that the
code now appears as the following:

DAPI BLU YWFRUJ SC BLU YUQ VPJBK PYD QPAB CSJ PY PYZQUJ
A THE N E OF THENE AT AN ATFO AN AN E

Assuming that PYD must be AND, and CS]J is FOR:



626 Part III: Messaging: Creating a Secure Channel

DAPI BLU YWFRUJ SC BLU YUQ VPJBK PYD QPAB CSJ PY PYZQUJ
D A THE N ER OF THE NE ART AND A T FOR AN AN ER

It is only a matter of time and trial and error until the rest of the puzzle falls into place.

Another Way

In modern English, there is a propensity to use some characters more than others. The “Q”,
for example, is rarely used. When it is used, it must be followed by a “U”. According to
Cryptography: An Introduction to Computer Security (Seberry and Pieprzyk, Prentice Hall,
1989), the following relative frequency of use can be applied to each letter:

E 1275 U 3.00
T 9.25 M 2.75
R 8.50 P 275
N 7.75 Y 225
1 7.75 G 2.00
O 7.50 W 1.50
A 725 vV 1.50
S 6.00 B 135
D 4.25 K 0.50
L 3.75 X 0.50
H 3.50 Q 0.50
C 3.50 J 025
F 3.00 Z 025

The number of times each character appears in the encrypted message is as follows:

A Mo
N 0
oo
P 6
Q3
1 R 1

O O ™o g 0O 9w
S NN RN

0 S 2



Encryption Overview 627

H 0 T 0
1 Us
] 4 V1
K 1 W1
L 2 X 0
Z 1 Y5

Naturally, the larger the piece of encrypted data, the more true it will be to the frequency chart.
Nevertheless, applying it to this message, the most frequently used characters in the code are:

B,J,P,U,and Y.

If the frequency theory is correct, these should be replaceable with:

E, T, R, N, and [—not necessarily in that order.

The most common characters in the actual, unencrypted message are:
A,E,N,R,and T.

Thus, four of the five characters that should be there, match up with the characters that are
there. This is a respectable beginning. Again, the larger the encrypted text, the more likely the
frequency distribution is to be accurate.

Practice

Figure 10.5 shows an example of encrypting a message by using the ENCRYPT udility found
on the CD accompanying this book. Figure 10.6 shows unencrypting it with monoalphabetic

substitution.
ENCRYPTION MEHWU Honday MNovember B6, 1995 17:43 Flgllre 1 0'5
Utility from Internet Security Professional Reference Enﬂyptlng a me.vmge wzth
monoalphabetic
encryption.

1 Transposition

2 Caesar Cipher

3 Homoalphabetic Cipher
4 Vigenere

Which method: 3
E — encyrpt or D — decrypt: e
Phrase: TRUCKS AND VEHICLES WITH TRAILERS USE RIGHT LAWE
Result: BJHOMZ PYD NULADIUZ OABL BJPAIUJZ WZU JAELE IPYU




628 Part III: Messaging: Creating a Secure Channel

Figure 10.6 ENCRYPTION MENU Monday Hovenber A7, 1995 14:24
. Hility from Internet Security Professional Reference
Decrypting a
monoalphabetic encryption
mfﬁﬂgf- 1 Transposition

2 Caesar Cipher
3 Honoalphabetic Cipher
4 Vigenere

Hhich method: 3
E - encyrpt or D — decrypt: d
Phrase: BJHOMZ PYD NULADIUZ OABL BJPAIUJZ WZU JAELB IPYU
Result: TRUCKS AND VEHICLES WITH TRAILERS USE RIGHT LANE

Vigenere Encryption

With standard monoalphabetic encryption, the key to breaking the code is figuring out what
each character stands for. Once done, the code is solved, for each character maintains its same
meaning throughout the duration of the encryption. Vigenere encryption adds one more level of
difficulty, in that the value of each character is different each time it is used.

The key to understanding the way this is done is knowing that Vigenere adds something to the
equation none of the others have thus far: a key. The key is a word or phrase that is used to encrypt
and decrypt the message. To understand the way this works, consider the following matrix:

>
[o0]
o
o
m
N
{2]
=
]
[
o
-
=
=
(=]
-l
(=]
0
7]
-
c
<<
=
><
=<
IN

NKXEKICHMBPROBIPMOIZEINFXICHITI®MIMIOIE @ >
N<X=E<CHWIOUVOZ=ZTrXCHIOGTMOO®W>
PN<X<X=E<CHOWIOUVOZ=ZrXCHIOGTMOO®
WIE>PN<LS<KX=E<CHWIOUVOZ=rXLHIOTMOO
OWPN<S<X=E<CHMOMIOUVOZ=EZrXCHIGOGTMO
OO0OWPN<L<X=E<CH®WIOUVOZ=ZrXoLCHIOTM
MOOWPN<LS<X=E<CHAHNOWIOUTVOZ=ZrXCHIOT
MTMUOOWPN<X=<CHAHNOWIOUTOZ=ZrXLHAIO®D
T MOOTWPN<LSX=T<CH®MWIO TOZ=rX0LHTI
IO TMTMOOWPN<LX=E<CHNMWIOUVOZ=r X H
HI O TMOOWPN<LS<X=E<CHNOMIOTVO=Z=Z=rX=o
CHIOTMMUOUOOWIPN<LS<X=T<CH®OWIOTUTVOZ=ZrX
ACHIOTMMUOUOWPN<LSX=E<CH®®WIOTVOZ=r
FrXCHIOTMMOOWPEPN<LS<X=ET<CH®MWIOTUTOZZ=
ErXCHIOTMTMUOOWPIPN<XX=E<CAH®»®IO VO =
ZErXCHIOTMUOUOWPN<LSX=E<CAH®IOTO
OZ=E=rXCHIOTMUOOWIPN<LXX=T<CH®IOTDO
VPOZ=E=rXCHIOTMUOOBIPN<LS<X=]T<CH®IO
O VOZErXARCHIOGTMOOWPIPN<XX=E]<C-H®mD
IO VOZ=E=r XCHIOTMOOWPN<LSX=ET<CH®
NWIOVOZ=ErXRCHIOGTMOOWIPN<LSX=E<CH
4 MW IO VOZ=ZrXCHIOGTMOOW®W» N<XSZ=<C
CHWIO VTOZ=rXCHIOTMOO®TP»N<XX=EI
<CH®WIOUVOZENrACHIOGTMOO T®PN<XS=
=E<CH®WIO UVOZ=rXOCHIOGTMMOOT>ITN<X
X=E<CHWIOUTVOZ=ZrXACHIOTMOO ®>N <
< X=E<CHOWIOUVOZErXRNCHIOGTMOO®®>IN



Encryption Overview 629

When encrypting a character using this matrix, compare it with a matching character in the
key, and find where the two correspond to ascertain the encryption character. Although it
seems complicated, it is really very simple. Note the following example:

Key: OPPORTUNITY
Phrase: PUBLISHING
Result: DJQZZLBVVZ

Looking at the matrix, the O and P match up with a result of D. Likewise, P and U match up
with a result of ], and so on, for the duration of the encryption. When the phrase to be
encrypted is longer than the key—as is almost always the case—then the key repeats itself over

and over. Thus, OPPORTUNITY really is
OPPORTUNITYOPPORTUNITYOPPORTUNITY, and so on.

To decrypt the message, you must know the key that was used to create the encryption.
Although not impossible, without this vital piece of information, it becomes extremely difficult
to break the code.

The following example shows a phrase that has been used throughout this chapter encrypted
with a key:

Key: OPPORTUNITY
Phrase: DIAL THE NUMBER OF THE NEW PARTY AND WAIT FOR AN ANSWER

Result: RXPZIMBR(GSAQTF1HZ-BAC.CTKIIUEBR8OCS.NTCG(YMF/PB1THFEXP

Notice that in the complete version of the matrix, spaces and other punctuation are also
included. The following shows three attempts to decrypt the message without knowing the
correct key:

Attempt One

Key: CONSIDER

Phrase: RXPZIMBR(GSAQTF1HZ-BAC.CTK1IUEBR8OCS.NTCG(YMF/PB1THFEXP
Result: PJCHCJXA&SFIIQB FL JSZDLRW$QMBXAPAPA&KPLE_LUXFLKIFUNWUL
Attempt Two

Key: ORANGEBOOK

Phrase: RXPZIMBR(GSAQTF1HZ-BAC.CTKI1IUEBR8OCS.NTCG(YMF/PB1THFEXP

Result:
DGPMEIAD_WEJQGZGGLRMLHPNGJUGUNARBWOGZFSS_YZZEON#]TOEK]



630

Part III: Messaging: Creating a Secure Channel

Attempt Three

Key: OPPORTUNITIES

Phrase: RXPZ1IMBR(GSAQTF1HZ-BAC.CTK1IUEBR8OCS.NTCG(YMF/PBLDNQIAP
Result: DIAL THE NKWYFQ”TI_HNU_UPS#TFQKY$BUZ&JBOR_KVM_CT

Notice the previous example. Although the guess to the key’s identity is very close, the result is
accurate only to the extent of the accuracy in the first occurrence of the guess. Nowhere else in
the phrase are the correct characters decrypted, even though the guess is extremely close.

Figures 10.7 and 10.8 show examples of using the ENCRYPT utility to encrypt and then
decrypt a message.

Fi ure 10 7 EHCRYPTION MENU Monday Hovenber B7, 1995 15:34
g . Hility from Internet Security Professional Reference

Encrypting a message with
Vigenere encryption.

1 Transposition

2 Caesar Cipher

2 Honoalphabetic Cipher
4 Vigenere

Hhich nethod: 4
E - encyrpt or D — decrypt: e
Key: SAVE OUR SOFTHARE
Phrase: TRUCKS AND VEHICLES WITH TRAILERS USE RIGHT LANE
Result : LRPG*G4R-V.AXD ITPHSSA(HB13JONEARISMSZS 1HAY3ZZFGA

Fi ure 10 8 ENCRYPTION MENU Monday Hovenber 87, 1995 15:36
g . MHility from Internet Security Professional Reference

Decrypting a message with
Vigenere encryption.

1 Transposition

2 Caesar Cipher

2 Honoalphabetic Cipher
4 Uigenere

Hhich nethod: 4
E - encyrpt or D — decrypt: D
Key: SAVE OUR SOFTHWARE
Phrase : LRPG=G4R-U.AXDITPHSSACHELIJONEARTISHMSZS IMAY32ZFGA
Result: TRUCKS AND VEHICLES HITH TRAILERS USE RIGHT LANE




Encryption Overview 631

To make the message even more secure, encrypt the same message a number of times, using a
different key each time, as illustrated in the following. Each of the keys here are coming from
portions of newspaper headlines, making it easy for others to use the same keys.

Key: SAVE OUR SOFTWARE
Phrase: TRUCKS AND VEHICLES WITH TRAILERS USE RIGHT LANE
Result: LRPG*G4R-V.AXDITPWS5A (HB13JONEARJ$MSZ$1WAY32ZFGA

Key: MOB ACTIVITY
Phrase: LRPG*G4R-V.AXDITPWS5A (HB13JONEARJ$MSZ$1WAY32ZFGA
Result: XFQ&*IGZBDAYJRJ3PYL=VOAZ=AK.NGTZE,FQL226AAF:UNZY

Key: SOCIAL PROBLEMS
Phrase: XFQ&*IGZBDAYJRJ3PYL=VOAZ=AK.NGTZE,FQL226AAF :UNZY
Result: PTS.*T&SRBJNDBEDAT=G_PQKBV2ZYLNG4FB+ACDBLJFMFNA

To take the final result back to the original message, someone trying to break the code must
now decrypt it three times, knowing three sets of keys. This is a very difficult task, indeed.



WAPTE

) )
N 2
S 23
ac
=
[~
<L

PGP

GP (Pretty Good Privacy) is a software encryption
program that enables users to create secure messages and
communicate securely over insecure communication
links, such as e-mail and netnews. PGP uses various
forms of encryption and combines messages with a
simple packet format to provide a simple and efficient
security mechanism for the transmission of messages over

the Internet and other networks.

This chapter explains PGP 2.6.2, gives a little history
and background, and talks about the different security
methods PGP provides. The chapter explains the use of
PGP “keys” and discusses security concerns with PGP

and known attacks against PGP.



NOTE
Click anywhere on this page to jump to the Contents at a Glance page.


634

Part III: Messaging: Creating a Secure Channel

It is important for a system administrator to understand the security requirements and
implications of using PGP. Because it is such a popular program, many users may want to use
it. Instead of each user having his or her own copy, it is worthwhile to make it available
system-wide. Understanding how the program works and how it needs to be maintained will
help an administrator perform the job in an effective, educated manner.

PGP Overview

The PGP program has become the de facto standard for public key cryptography and message
security worldwide. The program has evolved since its first release, and is now very popular.
Hundreds of thousands of copies of PGP are known to have been distributed from public sites
worldwide. Although it is impossible to know exactly how many copies of PGP exist, or how
many people use PGP on a regular basis, it is easy to see that PGP is the most widely used
security program on the Internet. On many Usenet newsgroups or popular e-mail lists, for
example, a high number of posts use PGP. This section describes the history of PGP and
explains other background information about the program.

Security is a trade-off between the cost of the data being protected and the cost it takes an
attacker to get that data. Protecting data worth only a dime with a security system that costs a
million dollars to break is obviously a bad investment. On the other hand, the protection of
data worth a million dollars with a security system that costs a dime to crack is a serious
problem. The trade-off is to find the balance—the cost to an attacker to compromise the
security protecting data, and the worth of the data to its owner. The cost to break a security
system can be measured in many ways, which includes the amount of computer time necessary
to perform the security break.

PGP is currently believed by many to be the best and most cost-effective security program
available. It uses some of the best known encryption technology, and provides security that, it
is believed, governments cannot break. Moreover, because the source code is available many
people have looked at the program in search of bugs and security flaws; all of them have been
corrected as they have been found.

History of PGP

PGP version 1.0 was first released in the summer of 1991 in the United States through an ftp
site and a Usenet news posting. This program used a home-brewed secret-key encryption
scheme called Bass-O-Matic and implemented the Rivest, Shamir, and Adelmen (RSA) public-
key encryption system. Unfortunately the Bass-O-Matic system was less than secure. The idea,
however—to provide a simple program that provides the user with strong encryption, and to
make it available to everyone—was genius.

The original PGP was created by Philip Zimmermann, a political activist turned programmer
and cryptographer. Philip started his work on PGP when the United States Congress started



PGP 635

considering restricting freedoms on computers. As a result, Philip decided to write a program
that could protect the privacy of electronic communications to thwart the draconian laws that
were under consideration. The result was PGP 1.0.

In September 1992, PGP 2.0 was released in Europe. A group of programmers took the ideas
from the earlier 1.0 release, added some features, put in a real cryptographic system, and
released a new version of PGP. The 2.0 release also replaced the Bass-O-Matic encryption
scheme with IDEA, a professionally developed cryptosystem. The IDEA Cipher is a block
cipher similar to the Data Encryption Standard (DES), except that it has a larger key and is

believed to be more secure.

With the release of PGP 2.0, the program started gaining popularity. Computer users around
the world started using PGP to protect their communications from electronic eavesdroppers or
would-be counterfeiters. The program’s simplicity and ease-of-use made the program popular
with many different skill levels of computer users.

One of the problems that held back the use of PGP is that patents exist on the RSA
cryptosystem in the United States. Because PGP did not have a license, it was claimed that
PGP violated the RSA patents. One solution was found by a company called ViaCrypt, which
started selling a commercial version of PGP. ViaCrypt was licensed to sell software that uses
the RSA patent, so they could legally sell PGP.

Another problem holding back the use of PGP is the United Stated International Traffic and
Arms Regulations, or ITAR. The ITAR rules limit the exportability of military munitions,
such as guns and nuclear weapons. Unfortunately, cryptographic systems, encryption systems,
and so forth, are also considered munitions under ITAR. Therefore, exporting programs that
use cryptography, such as PGP, could be considered arms smuggling.

Finally, in June 1994, the Massachusetts Institute of Technology released a free version of PGP
for United States citizens that had an RSA license, thereby freeing PGP from its “forbidden-
ware” status and allowing anyone in the United States to use it. Since this time, PGP’s
acceptance and use has grown dramatically. Many say that it has become the de facto standard
for public key cryptography in the world.

Why Use PGP?

People use PGP for a variety of reasons. Most people use PGP because they want to protect
their electronic files and communications. These reasons might include:

If you do not want your messages to fall into the hands of other companies
If you want to keep your files private from crackers
If you believe you have the right to private conversations

If you want a simple method to authenticate messages



636

Part III: Messaging: Creating a Secure Channel

PGP is also easier to use than any current alternative. The command-line interface and time
it takes to start using the program is practically zero. The commercially available Privacy-
Enhanced Mail (PEM), for example, requires a user to generate a key and then wait to get it
signed by a Certification Authority before the key can be used in communications. PGP,
however, needs to only generate a key and then the user can immediately start using PGP
features.

PGP has a large and growing number of users worldwide. If you want to encrypt your commu-
nications, it is most useful if your intended correspondents are also using the same encryption
programs. Because PGP has become the de facto standard in electronic privacy, you should use
the same technology to ensure that files will be compatible.

Short Encryption Review

Although the science of encryption is explained in Chapter 10, a few definitions in this chapter
help you understand how PGP works.

Secret Key Encryption

Secret Key Encryption (SKE), also called Conventional Encryption, is defined as a cryptosystem
in which the same key is used to encrypt and decrypt a message. In other words, a key turns a
message into a seemingly random stream of bits. Later, some other user uses that same key to
turn the random stream of bits back into the original message. SKE systems are fast and
provide a high degree of security for the number of bits in the key.

Public Key Encryption

Public Key Encryption (PKE) defines a set of encryption schemes (cryptosystems) in which two
keys are involved. When a user encrypts a message in one key to create an output ciphertext,
decryption of that ciphertext requires the use of the second key to obtain the original message.
The two keys are created to form a mathematical relationship; part of this relationship is that
knowledge of one key, the secret key, is computationally infeasible to obtain by possession of
the other key, the public key.

The term computationally infeasible means a process that is not time-invariant. In general, this
means that it is difficult to perform the operation in question. However, what is difficult in the
year 1996 may not be difficult in the year 2000. When an algorithm is computationally
infeasible to break, it means that it is computationally infeasible today, and is expected to be
easier to break in the future.

Current Public Key cryptosystems are based on difficult mathematical problems. The RSA
cryptosystem, for example, is based on the difficulty of factoring a large number that is the
product of two large prime numbers. In such a system as RSA, creating the private key from



PGP 637

the public key is only known to be as difficult as factoring the public key modulus into the two
prime numbers. An RSA public key is made of the following two parts:

Modulus
Exponent

The modulus is the product of two large primes and is the basis for a mathematical system
called a group. The exponent is chosen at key creation time to fit a particular mathematical
relationship with the secret key.

The public key can be safely given to anyone who wants it. It can be published, and knowledge
of that key does not break the security of the system. PGP keeps two key rings, a public key
ring and a secret key ring, to maintain a cache of known public and secret keys. More on this
later in the section “PGP Key rings.”

The biggest problems with PKE systems are that Public Key systems are slow, cumbersome,
and require large keys to maintain decent levels of security. As of this writing, the time it
would take to brute-force a 128-bit IDEA key is about as long as it would take to factor a
3,000-bit RSA key. To “brute-force” a key, every possible key is tried to find the correct one.
Moreover, a single RSA encryption, which can only be performed over data as large as the
keysize, can take many orders of magnitude more time than a conventional encryption system
with a much smaller key.

PGP How-To

This section contains a step-by-step example showing how to use PGP. It assumes that the user
already has a working PGP program. Many of the details are left for later sections; this is only a
quick explanation of what to do and in what order.

Before You Use PGP

The first step in using PGP is obtaining a PGP binary. Binary distributions are available for
platforms such as DOS and Mac. However PGP is only available in source code for Unix and
some other systems. As a result, users must compile PGP themselves before it can be used.
PGP 2.6.2 has been ported to many operating systems, and it builds cleanly on most Unix
systems.

A few items should be collected before PGP is used. You will be able to use PGP after you have
done the following:

Obtained a PGP binary

Created the PGPPATH directory



638

Part III: Messaging: Creating a Secure Channel

Set the PGPPATH variable
Chosen a pass phrase

The PGP program depends on some system state to operate. On most platforms, the system
state is an environment variable—the PGPPATH environment variable—that tells PGP where
to look for its other files.

An environment variable is usually set upon system startup or user initialization depending
upon the system in use. On a DOS system, for example, the PGPPATH variable can be set in
CONFIG.SYS as follows:

set PGPPATH=C:\PGP

When using a Unix system, the means to set the environment variable is dependent upon the
shell in use. When using the Bourne Shell, PGPPATH is set as follows:

PGPPATH=/home/user/.pgp; export PGPPATH
When using the C Shell, PGPPATH can be set using setenv, as follows:

setenv PGPPATH /home/user/.pgp

If you want to keep PGP special files in a special directory, you need to set PGPPATH to
point to that directory. PGP will look in the appropriate place for its configuration and data
files. By default, PGP will use the current working directory to hold all data files unless
PGPPATH is set.

Note The exception is in Unix: PGP will use the .pgp subdirectory of the user’s home
directory, $HOME/.pgp. This directory must be created by the user. PGP will not
create this directory and will print an error if it does not exist.

Next, you need to decide on a pass phrase to use. The pass phrase should be hard to forget and
difficult to guess. This pass phrase will be your key to PGP, and knowledge of the pass phrase
allows others to create and access messages as if they were you. Think of the pass phrase as the
PIN on a bank card; access to a bank account depends entirely on the security of the PIN and
access to the bank card. The difference is that there are many more ways to obtain the PGP
equivalent of the PIN and bank card than there are in the physical version, but the threat to
the user data security can be the same.

The best pass phrases are relatively long and complex. They should contain uppercase and
lowercase letters, and each pass phrase should contain some numeric or punctuation characters.
A sentence of 8-10 words is long enough to be impossible to guess but short enough that most
people should be able to remember it. One way to come up with a sentence is to look in the
dictionary at random and combine 8—10 words with articles and punctuation to make a
coherent sentence. Once created, this sentence then becomes the pass phrase.



PGP 639

A long pass phrase should be used because it is more difficult to guess a long pass phrase and it
is also more difficult to create a program to try every possible pass phrase. For example, if a
pass phrase were only eight characters long, it would be simple to write a program to try all
eight-character pass phrases. Moreover, this cracking program would run in a reasonably short
amount of time.

Assume, for example, an eight-character pass phrase using only letters and numbers. This
would mean there are 2x10'* possible pass phrases. Assuming one million checks per second, it
would take 2x10° seconds, or just under seven years. However, it is still best to choose longer
pass phrases to help protect against these attacks.

Generate a PGP Key

The first step in using PGP is to generate a PGP Key. PGP uses these keys when performing
operations to secure messages. It is important that you choose an appropriate name for your
PGP key and that you choose a memorable pass phrase when creating the key.

Warning When generating a key it is important to remember the pass phrase. The pass
phrase is used to lock the secret portion of the key when it is created, and is later
used to unlock the key. A forgotten pass phrase cannot be recovered by anyone.

~> mkdir .pgp

~> pgp -kg

Pretty Good Privacy(tm) 2.6.2 - Public-Key Encryption for the Masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/14 08:12 GMT

Pick your RSA key size:

1) 512 bits- Low commercial grade, fast but less secure

2) 768 bits- High commercial grade, medium speed, good security

3) 1024 bits- "Military" grade, slow, highest security

Choose 1, 2, or 3, or enter desired number of bits: 3

Generating an RSA Key with a 1024-Bit Modulus.

You need a user ID for your public key. The desired form for this
user ID is your name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-mail address.

For example: John Q. Smith <12345.6789@compuserve.com>

Enter a user ID for your public key: Ruth Thomas <tara@mail.Free.NET>

You need a pass phrase to protect your RSA secret key. Your pass
phrase can be any sentence or phrase and may have many
words, spaces, punctuation, or any other printable characters.

Enter pass phrase:



640

Part III: Messaging: Creating a Secure Channel

Enter same pass phrase again:
Note that key generation is a lengthy process.

We need to generate 784 random bits. This is done by measuring the
time intervals between your keystrokes. Please enter some random text
on your keyboard until you hear the beep:

0 * -Enough, thank you.

*k k*k

Key generation completed.
Listing the public key ring would give this output:

Type bits/keyID Date User ID
pub 1024/D@C6326D 1995/11/14 Ruth Thomas <tara@mail.Free.NET>

Distributing the Public Key

After a key has been created, you should obtain the fingerprint and extract the key so that it
can be sent to others. Only when someone else has the public key can it effectively be used to
sign messages. Moreover, only with the public key can messages be encrypted.

The fingerprint verifies the key.

~? pgp -kvc tara

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, that is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/19 05:01 GMT

Key ring: '/tmp/pubring.pgp', looking for user ID "tara".

Type bits/keyID Date User ID

pub 1024/D0C6326D 1995/11/14 Ruth Thomas <tara@mail.Free.NET>

Key fingerprint = B@ 22 D9 02 16 25 ED 6E 89 EF OF 9D A5 5F 9A 1B

When a key is extracted, it is copied out of the public key ring into a keyfile that can then be
sent to others.

~> pgp -kxa tara /tmp/keys.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/19 05:00 GMT

Extracting from key ring: 'pubring.pgp', userid "tara".

Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024 -bit key, Key ID D0C6326D, created 1995/11/14



PGP 641

Transport armor file: /tmp/keys.asc

Key extracted to file '/tmp/keys.asc'.

You can distribute the key either via e-mail, finger, the public keyservers, or a number of other
means. The keyfile contains your public key certificate . It looks like this:

Version: 2.6.2

MQCNAZCOUCOAAAEEANMB5MYnk+d0i67fpDZbhTT2/Xx00KL7umESWWAZYyna22dhHP
BX6ME40Hqy5h1SkXtA4VinQvAWaNWh1TXLo46SEnzNTQKr3hXD5P7008F40MjMjT
N5QTG+4ZG6BT1NhOGN/Fv1r16JgWEK4bZrBS6sx9JAg1mH]nQkj /XP7QxjJtAAUR
tCBSAXROIFRob21hcyA8dGFYYUBtYW1sLkZyZWUuTkVUPg==

=327B

Signing a Message

After your key has been distributed, you can sign messages. A signature is a digital stamp on a
message that shows others that you have processed that message. A signature can have many
meanings, but the important point is that if the message is modified at all, the signature will no
longer be valid. For example, a signature can mean that the signer created the message, or it
can mean that the signer saw the message, such as a digital notary. A signature enables you to
check whether a message is authentic and has not been tampered with in transit.

Another use of a signature is called non-repudiation, in which a recipient of a message can
prove that the sender actually sent the message. This is useful for signatures on digital con-
tracts, for example, to show that a signature is really valid, rather than forged, on a document.

The following example shows how to sign a file.

~> pgp -sat message

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/19 05:17 GMT

A secret key is required to make a signature.
You need a pass phrase to unlock your RSA secret key. Key for user ID "Ruth Thomas
<tara@mail.Free.NET>"

Enter pass phrase:

Pass phrase is good.

Key for user ID: Ruth Thomas <tara@mail.Free.NET> \\
1024-bit key, Key ID D0C6326D, created 1995/11/14
Just a moment....

Clear signature file: message.asc



642

Part III: Messaging: Creating a Secure Channel

This message can then be sent to another user:

This is a signed message. Actually, this is a clearsigned message.
You can read the contents of the message and also verify the
signature. It should be noted that although you can read this
message, it is not really a plain-text message; it is a PGP file.

The PGP header and footer should not be removed by hand, since the
message may have been quoted by PGP. For example, lines that begin
with a dash (-) or lines that begin with the string: "From " will be
quoted by PGP.

- this line originally had a leading dash, but PGP added a second one.
Messages should be input to PGP and only the output from PGP, which
is the original message, should be used as input to other processors.
Moreover, only the output of PGP should be trusted to be the signed
message.

Version: 2.6.2

1QCVAWUBMK692z0j /XP7QxjJtAQFzJAP/ejfuughrVs7CRGDARAWEW1QLk4112gs9
41vxbGgRcitbfNd/RG98sb1LMsgtmFqFALit+Wi7L5P6P4NHY TTwhvoYtruQ999Hi
cBUoQrT3Lna6q+FELIE7ulH79alaKE9quTq6d3fsW+SghowoMpnTejuUnV+q1DX0
cZ17Jg9fhpY=

=HwTy

Adding Someone Else’s Key

Before you can encrypt a message for someone else, you first need to have all the recipient’s
keys on the public key ring. Through various key management methods, you can obtain other
users’ keys and, after they are obtained, the keys can be added to the public key ring. For
example, a user could add this key block:

Version: 2.6.2

mA@BmA1irCXPAAAAECXRpUP0S80ENOVWYEkpaZm4YXKu1khXZi/+6UfgPqkMXXASQX
79qilRqTEMDM1sdq9+n4VWpvXZAktYPmZb3VOBbCmL3JLKDGbCexjjqb62yoMDho
K1zBsGrxAAURtB5EZXJ1ayBBdGtpbnMgPHdhcmxvemRATULIULKVEVT6JAJUCBRAU
Y2P/xS1HbQ2/kGOBAahpA/0Zh4oLeYMLFcijL1tTo6FuDuPas6eGy+da51HOPUTt
719gDZ0@Ad j vVEDGiQdAGSITRjcrK1ITABxjolUZegN9T/C+iPbx6ui3fz8ymeG2yxL
vcl3/neq3mvkzhqlLPPjqFOAWLYDBP0Z6143IpAKpPTtwsoU+1Y8LOQAkOMJZSuaef
nYKAVQIFEC4DyWVVBWb6TQx04QEBSJ8B/jjZ5HTyh3erVBTZ+GUPE7Cc1Ifs5YEH/
g2j8eMLTkOgWirUKfwL61RZaD80I0bahsjTOYknEm98py8gvI2tiAXmJAJUCBRAt
yXNVZXmEuMepZt@BATVSA/wLyVgn7mCDITuhT9771JHFMwkUaW7s2hb888W1i4P8u
+tUpoQ19vkmNBQtk/iH5uGBBJ IKBLAWSNgAGixUPDgudXPfDx /G3XG6pHfiH2Sj0
AUVZzjHdXUa4+9+Sx51sx/ZKyg2b6w9eg@1iCnHpoEBPIW614NbuzI3k7ysbZ9mud



PGP 643

sQ==
=KKAa

Assume that this is in a file called warlord.asc. This file can then be added to the public key
ring using the command:

~> pgp -ka warlord.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government. \
Current time: 1995/11/19 05:36 GMT

Looking for new keys...
pub  709/C1BO6AF1 1992/09/25 Derek Atkins <warlord@MIT.EDU>

Checking signatures...

Keyfile contains:
1 new key(s)

One or more of the new keys are not fully certified.
Do you want to certify any of these keys yourself (y/N)? No

Now the public key ring looks like this:

Type bits/keyID Date User ID
pub  709/C1BO6AF1 1992/09/25 Derek Atkins <warlord@MIT.EDU>
pub 1024/D@C6326D 1995/11/14 Ruth Thomas <tara@mail.Free.NET>

Encrypting a Message

When someone else’s key is on the key ring, it is simple to encrypt a message to that user. If
the file message, for example, contains the plaintext to encrypt, you can encrypt the file to the
user “warlord” by using this command:

~> pgp -eat message warlord

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/19 05:39 GMT

Recipients' public key(s) will be used to encrypt.
Key for user ID: Derek Atkins <warlord@VIT.EDU>
709-bit key, Key ID C1BO6AF1, created 1992/09/25



044

Part III: Messaging: Creating a Secure Channel

WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "Derek Atkins <warlord@MIT.EDU>".

Are you sure you want to use this public key (y/N)? yes

Transport armor file: message.asc

The dot (.) on a line by itself is printed by PGP to inform the user that the RSA encryption has
proceeded. Because RSA is a slow operation, PGP prints the dot to inform you that it is still
processing the message. Otherwise, users might incorrectly believe that PGP is not working.
After PGP has finished with the RSA encryption, it writes the output file, message.asc, which

can be sent to your recipients:

Version: 2.6.2

hGUDOHQrXMGwavEBASMEKWBMTfmgAA+wL j eQMbWB1QtVTMo9xR/eo3bRODbgcJsZ8
mKNTfbGFAX1ibtP165WI+xNAwjFSYNVZdaH7nFURDAOOAwW4AWNUzMhEGHQzTjTpYFI6
dnPfurDTjqYAAABWINTWYTHzmuXJLWUEQSIWIvXxTG48uCPgBYQXrS1mf8eR15RME
F7K8SRs090pqZQwUyLXGEVkwffIiMuvdpezvr4QCSPtB190T/Yj34HwYTKQcDOJw
rrAKdtXmU@Pg1lMn8vmudo8VcaRcVL20pY1aB9g==

=Vmuz

Decrypting and Verifying a Message

When a PGP message is received, it must be decrypted and verified before another user can
read it. To decrypt a message that you received, you must possess at least one of the secret keys
for which the public key was used to encrypt the message. To verify a message, you must have
the public key of the signatory on the public key ring.

For example, assume that Ruth Thomas received the following message in the mail. She saved
it to the file message.asc.

----- BEGIN PGP MESSAGE- - - - -
Version: 2.6.2

hIwDSP9c/tDGMm@BBADBIYp90oH1gSyt2LM5ECMd6ZWF3MX+qyHX3eQEr3fhAcc2M
PoN+98n1dVnmpF5pthU1u/Rj00+t8BaSrho0Qa6inipyV+2nDR32WUU3wgjmmKCe
Mg1fi+4uD/6bv3TiKEKGJDhtg5YY3NFsirDJ@g6eP+qcX0dApxnbHAYBCAUUIQYA
AAFIm9tP8K9XRqVPeMJFfMGpDWhU1ZR1Fea49060s24+f7K9OYNLWMRS /Kz/QNhYr
8i5LL7ZGs+SjxmqIl4FZ8gZkUj7Ebulif4xc8HNbrkKX0094TUvVCWBKRXZ4LvVOukT
5n5032vTgZssTDezRncg2w40vqcqlmUpMolDWhCFR4zJ7TnC7dpGPIW7 /MmxZI+k
Yx40v06515Zngj3MgEVEdwu3ATrzkiz/jmP6q+MoSJEP7a4/G87MLHLGgk1/hf60
yoLdcG6AQAUIJd4QR3jFpMOwixuUuprddPM9A2elslLdzZZBghmNaSACRKPe2y801
1GE6pwz+GOE9varzBbehWSXrj j771xMhNOgGUA1XcK938+wX@Cpxu88vFPAeLNyS
70+GaKpxjg6H2pJd57xeBd+0zkcyi2YgQiewUtiS0ki6rjA7CwopCyFMoJA==
=TPGz



PGP 645

Ruth can try to decrypt this message and print it on-screen:

~> pgp -m message.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/19 05:47 GMT

File is encrypted. Secret key is required to read it.
Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024-bit key, Key ID D0C6326D, created 1995/11/14

You need a pass phrase to unlock your RSA secret key.

Enter pass phrase: Pass phrase is good. Just a moment.

File has signature. Public key is required to check signature.
Good signature from user "Derek Atkins <warlord@MIT.EDU>".
Signature made 1995/11/19 05:45 GMT

WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "Derek Atkins <warlord@MIT.EDU>".

But you previously approved using this public key anyway.

Plaintext message follows...

This message has been signed by Derek Atkins, and is encrypted to the
user Ruth Thomas. If you are reading this message, then you must have decrypted
it using Ruth's Secret Key. You can verify this message using Derek's Public Key.

Done...hit any key
Save this file permanently (y/N)? no

If Ruth does not plan to read the message right away, but instead wants to decrypt the message
onto the disk, she does not have to use the option shown earlier. Instead, the command to
decrypt it to disk is as follows:

pgp message.asc

This command decrypts the contents of the file message.asc and places the output into a file
called message. Ruth can read the file later; it has the contents of the original text file.

PGP Keys

Keys are probably the most important concept in PGP. A PGP key is a public keypair that is

created by a user for a specific purpose. In general, a user creates a keypair for use as a general



646 Part III: Messaging: Creating a Secure Channel

contact with the rest of the world. All outgoing messages are signed using this key, and all
incoming messages are encrypted using this key. Key management can be a little confusing at
first. The following sections will clarify the use and purpose of keys.

What’s in a Name?

The previous examples show how easy it is to generate a key. It also shows how easy it is to put
any name on a key. The example shows a key being generated in the name of “Ruth Thomas
<tara@mail.Free. NET>.” It would be just as easy to generate a key in the name of “William
Clinton <President@Whitehouse. GOV>.” This is not a joke; a key was actually created with
this name on it. Of course, it does not belong to the President, but others may not know this if
they just see the key on the network.

PGP provides you with a number of ways to name a key. You need to understand how each of
the different names can and should be used. You can generate a key with any name on it; this
name is called the userid on the key.

A key can have many userids on it. In general, a userid has the form Real Name
<email@mail.site>, combining the user’s real name and e-mail address in a single, compact
string. For example, Ruth Thomas created a keypair for herself for use with her Internet
address at free.net. As shown earlier, she created a 1,024-bit key on November 14, 1995.

Because the same key can be used with multiple addresses, you might want to have multiple
names on the same key to denote its use at multiple sites. You can add userids to your own key
by using PGP to edit the key ring. If Ruth wants to use the same key at her other e-mail
address, <rthomas@school.edu>, she can add it as a secondary userid on her key.

PGP keys each have another name that you cannot control: the keyid. The keyid of a key is a
numerical string that is obtained from the key parameters and is used internally by PGP to
access the key in question. By design, the keyid is supposed to resemble slightly the actual key,
but in reality the keyid differs for each key.

The keyid is a 64-bit quantity, although only 32 bits are printed to the user in hex format.
Whenever a userid is required by PGP, the keyid can be used in its place. To specify to PGP
that a string is a keyid, it should be prepended with the string “0x”, to denote a hex string.
Ruth’s key can also be called 0xD0C6326D.

The problem with the keyid is that it is currently the lowest 64 bits of the public key modulus.
There is a known attack in which someone could generate another keypair of a different size,
but with identical keyid and userid. By cursory examination it is difficult to tell which key you
are using, and it becomes impossible to tell PGP which key you want because PGP can only

index off of the userid and keyid.

Unfortunately there is no defense against this attack at this time. Future versions of PGP may
try to handle this case. Because it is relatively easy to create a new key with the same keyID, the



PGP 647

need arose for a cryptographically secure fingerprint of a key. This key fingerprint is unique
and cannot be easily forged. This value can be used as a key verification string; if the userid,
keyid, keysize, and fingerprint all match then a user is sure he or she has the correct key. Key
fingerprints can be trusted because they are made with the same hash algorithm, MDS5, that
PGP uses for message integrity.

However, matching the numeric values on a key is not good enough to trust that key. It also
becomes important to check the name on the key. Anyone can create a key that says that it
belongs to the President, however it is highly unlikely that any of those keys actually belong to
the Commander in Chief. Therefore, you, the user, must use other means to validate the name
on a key. How to validate a key is covered in the section, “The Web of Trust.”

PGP Key Rings

PGP requires users to keep a local cache of keys. This cache is called the user’s key ring. Each
user has at least two key rings: a public key ring and a secret key ring. Each key ring is used to
store a set of keys that are used for specific purposes. It is important to keep both key rings
secure, however; tampering with a public key ring can cause you to incorrectly verify signatures
or encrypt messages to the wrong recipients.

Public Key Rings
The public key ring stores all the public keys, userids, signatures, and trust parameters for all the
parties with whom you communicate. Whenever PGP looks for a key to verify a signature or
encrypt a message, it looks in your public key ring. This means that you have to keep their
public key ring up to date, cither by frequently asking communiques to update your keys, or
by accessing the PGP Public Keyservers.

Trust parameters are stored in the public key ring, so it is not feasible to share key rings
between people. Moreover, PGP does not handle multiple key rings propetly, so creating a
site-wide key ring to store keys is not easy to do with the current releases. This is a known bug
in PGP. Until multiple key rings are supported in a future version, the best way to distribute
keys is to use a keyserver. One security concern with public key rings is that a compromised
public key ring can lead to false positive signature verification or, worse, encrypted messages
for the wrong parties. An attacker could change the trust parameters that are stored in the
public key ring, or change the actual key material stored therein. These attacks are described in
detail in the section, “Public Key Ring Attacks.”

When it was designed, the key rings were meant to hold only a few keys of close friends and
associates. Unfortunately, it is clear from current usage that this design assumption is limited.
Many people keep their key ring full of keys for people whom they have never met and with
whom they have never communicated. Unfortunately this can cause problems, mostly due to
replication of information and the time required to access the key ring. The recommended
procedure is to keep the key ring as small as possible, and fetch required keys as necessary from
a keyserver or site-wide key ring.



648 Part III: Messaging: Creating a Secure Channel

Secret Key Rings

The secret key ring is where personal secrets are stored for PGP. When you generate a key, the
parts that you must not divulge are stored in the secret key ring. The data that needs to be kept
private is encrypted, so access to the secret key ring does not automatically grant use of its
secrets. However, if an attacker can gain access to the secret key ring, he or she has one less
obstacle in the way to forge signatures and decrypt messages.

Because secret keys are not transmitted between people, the only keys that are supposed to be
on a user’s secret key ring are his or her own secret keys. Because secret keys are protected by a
pass phrase, simple transmission of the contents of a secret key ring will not allow access to the
key material.

It is not recommended to share a secret key between parties, although at times it might be
required. In particular, when you have a secret key that belongs to an organization, it might be
worthwhile for multiple members of that organization to have access to the secret key. This
means that any single individual can act fully on behalf of that organization, however.

Sometimes it might be useful to have a secret key without a pass phrase. For example, it might
be worthwhile to have a server with a secret key acting on behalf of a group of people. In
particular, you could run an encrypted mailing list in which the mailserver has its own key,
and has the public keys for all list members. List members encrypt messages in the mailserver’s
key and mail it to the list. The list processor decrypts the message and then re-encrypts it for
each list member using his or her public keys. At this point the list server could sign the
message with the list key, but that is not necessary. In such a situation, where a server process
needs access to a secret key, it is desirable to have no pass phrase on the key.

Because it is possible to have multiple secret keys on a secret key ring, PGP has an option to
specify the userid of the secret key you want to use. Whenever PGP needs to choose a secret
key to use, it will choose the first key on the key ring, which is usually the most recent key to
be created. You can override this by supplying the userid to PGP using the -u option, and it
will use the secret key that has the appropriate userid.

The Web of Trust

It is said that, using the appropriate intermediaries, it takes six handshakes to get from any one
person on earth to any other person on earth. This is a web of introducers, where each person
acts as an introducer to the next person in the chain. PGP uses a similar method to introduce
new keys, using key signatures as a form of introduction. When someone signs a key, he or she
become a potential introducer for that key. For example, suppose Alice signs Bob’s key, and
Bob signs Charlie’s key. Alice now has a certification path to Charlie. Alice now has a means of
knowing that Charlie’s key really is Charlie’s because it has a signature of Bob on it, and Alice
knows that Bob’s key really belongs to Bob. This is a way to provide transitive trust in keys.



PGP 649

There is clearly a problem in this design. What happens if someone is acting as an introducer
but does not really know the person he claims to know? For example, what if Bob is com-
pletely careless and signed Doug’s key, even though it claimed to be Charlie’s. Not only would
Bob think that this key belongs to Chatlie (even though it is Doug claiming to be Charlie), but

if there were no measurement of trust, Alice would believe it, too.

This is where the PGP Web of Trust comes into play. With the Web of Trust, users define the
amount of trust they put into a key to act as an introducer for them. In the preceding example,
Alice can put as much trust as she wants in Bob’s key, and should only trust a key if she trusts
Bob to sign other’s keys correctly. If Alice knows that Bob is lax about verifying keys, she
would clearly not trust Bob to act as an introducer. As a result Alice would not trust the key
that Bob signed for Doug, claiming to be Chatlie.

Of course, the Web of Trust is not foolproof. If someone is fooled into signing a wrong key,
it can cause others to believe it incorrectly. The PGP Web of Trust can be thought of as a
reputation system, where people are reputed to give good signatures, and others are reputed to
give bad signatures. The system can fail when false positive reputations exist.

Degrees of Trust

The Web of Trust starts with a user’s own keypair. PGP assumes that if you have the secret key
for a keypair, you can trust it. This is because you can verify the key at any time by creating a
signature and verifying it. This is called Ultimate Trust. Any keys signed by an Ultimately
Trusted key are trusted to be valid keys.

For each valid key, the user is asked to assign a level of trust in that key. This trust value
defines how much the user trusts that key as an introducer. This can get confusing because
PGP uses the same terms to define trust in a key’s validity as it uses to define the amount of
trust as an introducer. There are four levels of trust:

Complete trust
Marginal trust
No trust
Unknown trust

In addition to defining trust in keys as introducers, users define the number of “completes”
and “marginals” needed to trust the validity in a key. By default, PGP requires one complete or
two marginal signatures, where a complete signature is a signature by a key that is completely
trusted as an introducer, and a marginal signature is a signature by a key that is marginally
trusted as an introducer. These values can be set by the user to define how many complete and
marginal signatures are required to trust the validity of a key.



650

Part III: Messaging: Creating a Secure Channel

This process continues until a user-defined level is reached. The default value is four levels of
recursion, or nesting, in the search of the key ring. If Alice signs Bob, Bob signs Charlie,
Charlie signs Dave, Dave signs Elena, and Elena signs Frank, Alice could only get as far as
Elena, and could not trust Frank because there are too many steps. Moreover, this all depends
on the trust that Alice has in all of the signers in the line. In general, it is not recommended to
put trust in keys belonging to users you do not know.

Key Management

To manage keys, PGP has developed an extensive set of key management functions. Many
would say that this is the most confusing part of PGP, which is probably right. However, PGP
key management is not so complicated that it takes a Unix guru to understand it. With some
time exploring and with some careful explanations, anyone can understand it.

The important point regarding key management is that all PGP key management functions are
invoked by PGP command lines that begin with the -k option. The arguments listed in table
11.1 follow this option and tell PGP which key management function is requested. Arguments
listed with brackets are optional.

Table 11.1
Key Management Functions
Option Description
pgp -kg [length] [ebits] [-u userid] Generates your own unique public/secret
key pair
pgp -ka keyfile [key ring] Adds a key file’s contents to your public or

secret key ring

pgp -kx userid keyfile [key ring] Extracts (copies) a key from your public or
secret key ring

pgp -ks her_userid [-u your_userid] [key ring] ~ Signs someone else’s public key on your

public key ring
pgp -kv[v] [userid] [key ring] Views the contents of your public key ring
pgp -ke [userid] [key ring] Checks signatures on your public key ring
pgp -kr userid [key ring] Removes a key or a user ID from your

public or secret key ring

pgp -krs userid [key ring] Removes selected signatures from a userid
on a key ring



PGP 651

Option Description

pgp -kvc [userid] [key ring] Views fingerprints for keys on your key
ring

pgp -kd userid [key ring] Disables or revokes a key

pgp -ke your_userid [key ring] Edits your user ID or pass phrase

Key Generation

The first thing any PGP user needs to do is create a keypair. When you generate a key (that is,
an RSA keypair), you are asked for the keysize, the name on the key, a pass phrase, and then
for some random keystrokes. The key parameters are used to generate the actual bits that will
be your PGP key.

The keysize is directly proportional to the security of the key, and indirectly proportional to
the time it takes to use that key. Larger keys are more secure, but they require more time to
use. Because the time differential affects only the key owner, a key owner who wants a longer
key will pay the penalty himself, whereas everyone else who uses that key will see a marginal

penalty.

The name on the key is the userid. It is the printable string that is supposed to tell others who
owns this key. By convention, the userid is a name and an e-mail address, such as the string
Derek Atkins <warlord@MIT.EDU>. A key can have multiple names, which means that its

owner has different names.

After the key parameters have been defined, PGP will ask the user for a pass phrase. This pass
phrase will later be used to unlock the secret key. This provides an extra level of security when
the secret key is used because the pass phrase is required to sign or decrypt messages using that
keypair. Through the pass phrase, an attacker who obtains the on-disk portion of the secret key
ring cannot use its contents because they are encrypted using the pass phrase. An attacker
needs to have the contents of the secret key ring and the pass phrase in which is it encrypted to
steal the secret key.

After the pass phrase, PGP asks for random keystrokes. These keystrokes are timed, and the
inter-keystroke timing is used to generate random numbers. These random numbers are used
to generate the primes that comprise the RSA keypair. The longer the keypair, the more
random data that is required to generate it, and the more keystrokes are required.

To generate a key, use the -kg option to PGP. The first example is a repeat of the first example
in this chapter, but each step is explained. First, the user must create the directory to hold the
keypair. PGP uses the PGPPATH environment variable to hold the name of this directory. If
PGPPATH is not set, PGP will use a reasonable default. In DOS PGP will use the current



652

Part III: Messaging: Creating a Secure Channel

working directory; in Unix it will use the .pgp directory in the user’s home directory. Because
PGP does not make this directory, the user needs to create it first:

~> mkdir .pgp

After the PGPPATH directory is created, the user can generate a key. PGP will prompt for all
the information that is required. A key is generated by using the -kg option:

~> pgp -kg

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/14 08:12 GMT

Pick your RSA key size:

1) 512 bits- Low commercial grade, fast but less secure

2) 768 bits- High commercial grade, medium speed, good security

3) 1024 bits- "Military" grade, slow, highest security

Choose 1, 2, or 3, or enter desired number of bits: 3

At this point, PGP wants to know the size of the key to generate. PGP will present you with
three built-in sizes: 512, 768, and 1,024 bits. The larger the keysize, the more secure the key
will be but the longer it will take the user to actually use the key. Although it is technically
feasible to use arbitrarily large keys, the time it would take to actually perform various options
using very large keys far outweighs the security benefit of the use of the larger key.

In the preceding sample command list, the user has chosen the built-in keysize of 1,024 bits by
choosing option 3. Alternatively, the user could have typed in the actual size of the key to
generate. PGP will generate keys of any length between 384 and 2,048 bits in length. A user
need only type the number of bits requested instead of the built-in values.

Generating an RSA key with a 1024-bit modulus.

You need a user ID for your public key. The desired form for this
user ID is your name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-mail address.

For example: John Q. Smith <12345.6789@compuserve.com>

Enter a user ID for your public key:

Ruth Thomas <tara@mail.Free.NET>

Creating the PGP userid

The next piece of information is the userid on the key. The userid should be a string that
contains the name of the user of the key as well as an electronic address where that user can be
reached. The suggested format appears in the preceding sample command list: the user’s name
followed by the e-mail address in angle-brackets.

Next, PGP will ask for a pass phrase. The pass phrase is used by PGP to encrypt the secret key
before it is written to disk. Later, the user will be required to type the pass phrase before he or



PGP

she can use the secret key to sign or decrypt messages. A lost pass phrase cannot be recovered;
for this reason, it is imperative that users choose a pass phrase that is easy to remember. Never
write down the pass phrase.

Warning Choose a pass phrase that is easy to remember and hard to guess. PGP accepts
pass phrases over 100 characters long, which provides you with enough space to
make pass phrases as long as you want. The longer the pass phrase, the harder it is
to brute force by trying all possible keys. Good pass phrases consist of both upper-
and lowercase letters and some punctuation and numeric characters. A medium-
length sentence with capitalization and punctuation usually makes a good pass
phrase.

It is important that users do not forget their pass phrases. A secret key cannot be recovered if
the pass phrase is lost. Nothing in the world can be done for a user who forgets his or her pass
phrase. Make sure that pass phrases can be remembered. One of the benefits of having such a
long pass phrase is that it can be English words in a meaningful English sentence; which makes
remembering the phrase much simpler.

You need a pass phrase to protect your RSA secret key.
Your pass phrase can be any sentence or phrase and may have many
words, spaces, punctuation, or any other printable characters.

Enter pass phrase:
Enter same pass phrase again:
Note that key generation is a lengthy process.

We need to generate 784 random bits. This is done by measuring the
time intervals between your keystrokes. Please enter some random text on your
keyboard until you hear the beep:

0 * -Enough, thank you.

* Kk kk

Key generation completed.

After the pass phrase is entered, PGP will ask for a lot of random keystrokes. While the user
types the keystrokes, it measures the inter-keystroke timings to get random data. Because
people type at an inconsistent speed, PGP can use the time between each keystroke and use the
variance as a source of randomness. It then uses that randomness to generate two large prime
numbers, which become the RSA keypair. A user can specify almost all the appropriate data on
the command-line. The following example will generate a key of only 512 bits, which is a
relatively insecure length. The name of the President is used as the userid to show how easy it
is to create a key in someone else’s name.

~> pgp -kg 512 -u 'William Clinton <President@Whitehouse.GOV>'
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94

653



654

Part III: Messaging: Creating a Secure Channel

Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.

Current time: 1995/11/14 08:16 GMT

Generating an RSA key with a 512-bit modulus.

Generating RSA key-pair with UserID "William Clinton <President@Whitehouse.GOV>".
\\

You need a pass phrase to protect your RSA secret key.
Your pass phrase can be any sentence or phrase and may have many
words, spaces, punctuation, or any other printable characters.

Enter pass phrase:
Enter same pass phrase again:
Note that key generation is a lengthy process.

We need to generate 576 random bits. This is done by measuring the
time intervals between your keystrokes. Please enter some random text on your
keyboard until you hear the beep:

0 * -Enough, thank you.

*kk*k

Key generation completed.

This key ring now looks like this:

Type bits/keyID Date User ID

pub 512/97D45291 1995/11/14 William Clinton <President@Whitehouse.GOV>
pub  709/C1BO6AF1 1992/09/25 Derek Atkins <warlord@MIT.EDU>

pub 1024/D0C6326D 1995/11/14 Ruth Thomas <tara@mail.Free.NET>

Adding Keys to the Public Key Ring

To use a key to encrypt a message or verify a signature, it must be on a public key ring. There
are a number of ways to acquire a key, and they all involve just a few steps. The first step is to
obtain the key. This can be done via e-mail, ftp, a keyserver, a floppy, or by typing the key.
After you have a key, you tell PGP to add it to your key ring using the -ka option.

When you first use PGP, it is helpful to add the keys that are in the PGP release to your
personal key ring. One reason is that the PGP release is signed by at least one of these keys,
usually; adding the key to the public key ring enables users to check the signature on the PGP
distribution. The keys are held in a file called keys.asc:

~> pgp -ka keys.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 18:01 GMT



PGP 655

Looking for new keys...

pub 1024 /0DBF906D 1994/08/27 Jeffrey I. Schiller <jis@mit.edu>

pub  512/4DQOC4EE1 1992/09/10 Jeffrey I. Schiller <jis@mit.edu>

pub 1024/0778338D 1993/09/17 Philip L. Dubois <dubois@csn.org>

pub 1024 /FBBB8AB1 1994/05/07 Colin Plumb <colin@nyx.cs.du.edu>

pub 1024 /C7A966DD 1993/05/21 Philip R. Zimmermann <prz@acm.org>
pub 1024 /8DE722D9 1992/07/22 Branko Lankester <branko@hacktic.nl>
pub 1024/9D997D47 1992/08/02 Peter Gutmann <pguti@cs.aukuni.ac.nz>
pub 1019/7D63A5C5 1994/07/04 Hal Abelson <hal@mit.edu>

Checking signatures...
pub 1024 /0DBF906D 1994/08/27 Jeffrey I. Schiller <jis@mit.edu>

sig! C7A966DD 1994/08/28 Philip R. Zimmermann <prz@acm.org>
sig! C1BO6AF1 1994/08/29 Derek Atkins <warlord@MIT.EDU>

sig! 4DQC4EE1 1994/08/27 Jeffrey I. Schiller <jis@mit.edu>

pub  512/4DQOC4EE1 1992/09/10 Jeffrey I. Schiller <jis@mit.edu>
sig! 4DQC4EE1 1994/06/27 Jeffrey I. Schiller <jis@mit.edu>
sig! C1BO6AF1 1994/06/19 Derek Atkins <warlord@MIT.EDU>

sig! C7A966DD 1994/05/07 Philip R. Zimmermann <prz@acm.org>
pub 1024/0778338D 1993/09/17 Philip L. Dubois <dubois@csn.org>
sig! C7A966DD 1993/10/19 Philip R. Zimmermann <prz@acm.org>
pub 1024 /FBBB8AB1 1994/05/07 Colin Plumb <colin@nyx.cs.du.edu>
sig! C7A966DD 1994/05/07 Philip R. Zimmermann <prz@acm.org>
sig! FBBB8AB1 1994/05/07 Colin Plumb <colin@nyx.cs.du.edu>

pub 1024 /C7A966DD 1993/05/21 Philip R. Zimmermann <prz@acm.org>
sig! ODBF906D 1994/08/30 Jeffrey I. Schiller <jis@mit.edu>
sig! 4DQC4EE1 1994/05/26 Jeffrey I. Schiller <jis@mit.edu>
sig! C7A966DD 1994/05/07 Philip R. Zimmermann <prz@acm.org>
pub 1024 /8DE722D9 1992/07/22 Branko Lankester <branko@hacktic.nl>
sig! C7A966DD 1994/05/07 Philip R. Zimmermann <prz@acm.org>
sig! 8DE722D9 1993/11/06 Branko Lankester <branko@hacktic.nl>
pub 1024/9D997D47 1992/08/02 Peter Gutmann <pguti@cs.aukuni.ac.nz>
sig! C7A966DD 1994/02/06 Philip R. Zimmermann <prz@acm.org>
pub 1019/7D63A5C5 1994/07/04 Hal Abelson <hal@mit.edu>

sig! ODBF906D 1994/09/03 Jeffrey I. Schiller <jis@mit.edu>
sig! C7A966DD 1994/07/28 Philip R. Zimmermann <prz@acm.org>
pub  709/C1BO6AF1 1992/09/25 Derek Atkins <warlord@MIT.EDU>

sig! ODBF906D 1994/08/30 Jeffrey I. Schiller <jis@mit.edu>
sig! 4DQC4EE1 1994/06/19 Jeffrey I. Schiller <jis@mit.edu>
sig! C7A966DD 1994/05/07 Philip R. Zimmermann <prz@acm.org>

Keyfile contains:
8 new key(s)

One or more of the new keys are not fully certified.
Do you want to certify any of these keys yourself (y/N)? No

After a new key is added, you usually are asked if you want to certify it, or sometimes how
much trust should be put in a key to sign other keys. When you sign a key, you make a
statement about the authenticity of that key. A signature states that you believe that the userid
on the key actually names the user or group who has the secret key.



656

Part III: Messaging: Creating a Secure Channel

Users should never sign arbitrary keys. You should never sign a key without first verifying its
authenticity by using the key fingerprint and talking to the key’s owner. Whether a key should
be trusted as an introducer is really a question in your trust in the key and the owner of the
key. Do you believe that this key really belongs to the person whose userid is on the key? Do
you know this person? Do you trust this person to sign other keys properly? Do you know if
the user is easily spoofed? How much do you trust him or her to sign keys consistently? Ask
yourself these questions before trusting a key as an introducer.

Extracting Keys from the Public Key Ring

To exchange PGP Public keys, you exchange PGP keyfiles. A keyfile is similar to a key ring,
except that it has no trust information or other bits that might be considered personal or
confidential.

When extracting keys from a key ring into a keyfile, PGP will extract exactly one key, or every
key, into the keyfile. PGP will extract the first key that matches the userid. For example, Ruth
could extract her key using the following command:

~> pgp -kxa tara tara.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 18:10 GMT

Extracting from key ring: '/tmp/pubring.pgp', userid "tara".

Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024 -bit key, Key ID D0C6326D, created 1995/11/14

Transport armor file: tara.asc

Key extracted to file 'tara.asc'.

Ruth now has a file called tara.asc that contains her public key. She can send this key to other
people using e-mail, netnews, the keyservers, or any other key distribution mechanism.
Sometimes it is useful to extract the whole key ring into a keyfile. For example, a key ring can
be extracted to move it from one location to another. To extract the whole key ring into a
keyfile, use a null userid, which can be obtained by using two sets of quotes:

~> pgp -kxa "" mykeys.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 18:13 GMT



PGP 657

Transport armor file: mykeys.asc

Key extracted to file 'mykeys.asc'.

The file mykeys.asc now contains the full contents of the key ring and can be sent to anyone
just like in the previous example. In both of these examples, it was known that the key or keys
were being extracted so that they could be sent elsewhere. Sometimes, however, it is necessary
to extract a key in a form on which PGP can operate.

PGP can treat keyfiles like key rings because the formats are the same. Usually, this distinction
is clear and important. At times, however, the distinction between key rings and keyfiles
should be overlooked. When you want to treat a keyfile as a key ring, it must be in binary
format. This means that you cannot use the -a option when generating the keyfile/key ring.

If you want to send a subset of a key ring in a single keyfile, for example, you need to extract
each key, one-by-one, into a keyfile. PGP treats this keyfile as a key ring and all the keys can be
extracted into another keyfile to send. The following example shows a simple Unix shell script
that extracts a set of keys into a file named keys.asc, which can be sent via e-mail to someone
else. First PGP extracts the requested keys into a keyfile called keyfile.pgp. Next, PGP treats
that keyfile as a key ring and extracts the keys into an armored keyfile called keys.asc.

#!/bin/sh

rm -f keyfile.pgp

for user in useri1 user2 user3; do
pgp -kx $user keyfile.pgp;
done

pgp -kxa " keys.asc keyfile.pgp

rm -f keyfile.pgp

You can now e-mail the output file, keys.asc, to the intended recipients so that they can add it
to their key rings using pgp -ka.

o« e
Signing Keys
A signature on a key is an important statement that a user can make about that key. In general,
a signature on a key means that the signer has verified, to some degree, that the key actually
belongs to the user whose userid is on the key. PGP uses signatures to build up trust in a key.
In general, the more signatures on a key, the more likely that it will be trusted. The mere
existence of signatures on a key, however, is not enough to force PGP to trust the key as valid.

A key signature is a binding between the key parameters (the RSA modulus and exponent,

in the RSA case) with the userid that is being signed. If userids are added or changed, the
signature will fail. Users should never sign a key without first verifying it. Methods of verifica-
tion are discussed in the section, “Key Fingerprints and Verifying Keys.”

When a key has been verified, a user may choose to sign it. Signing a key involves using a
secret key to sign the public key parameters and the userid of the public key to be signed. To



658

Part III: Messaging: Creating a Secure Channel

sign a key, use the -ks option in PGP. For example, Ruth could sign the key of the userid
warlord in this manner:

~> pgp -ks warlord

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 18:42 GMT

Looking for key for user 'warlord':

Key for user ID: Derek Atkins <warlord@VIT.EDU>
709-bit key, Key ID C1BO6AF1, created 1992/09/25
Key fingerprint = AQ@ 9A 7E 2F 97 31 63 83 (8 7B 9C 8E DE OE 8D F9

READ CAREFULLY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solemnly certify that
the above public key actually belongs to the user specified by the
above user ID (y/N)? yes

You need a pass phrase to unlock your RSA secret key.
Key for user ID "Ruth Thomas <tara@mail.Free.NET>"

Enter pass phrase: Pass phrase is good. Just a moment....
Key signature certificate added.

Next, PGP will go through the key ring and validate the trust parameters of the keys. Because
Ruth’s own key is ultimately trusted, Ruth’s signature implies that warlord’s key is valid to
Ruth. In other words, PGP makes the assertion that a user who signs keys will not fool him- or
herself into signing false keys. With this method, a signature by a user’s own key is enough to
trust its validity.

When keys become trusted as valid, the keys can then act as introducers. PGP examines the
key ring and asks you to place a trust on valid keys. How much do you trust a key to sign other
keys? For each valid key, PGP will ask this question. Using these answers, more keys can
become trusted as valid, and so on. This is how the web of trust is built.

For each valid key, PGP enables you to specify four trust values that specify how much you
trust the key as an introducer. A value of one (1) means that you do not know how much trust
to place in the key. Therefore that key is not used to compute validity trust values. A trust
value of two (2) means that you do not trust the key as an introducer. When these values are
used on a valid key, PGP ignores signatures on other keys made by this one, so these values
apply nothing towards the trust in another key.

The trust value of three (3) denotes marginal trust in a key acting as an introducer; a value of
four (4) denotes complete trust in a key acting as an introducer. PGP will add together the



PGP 659

number of completely trusted signatures and marginally trusted signatures and compare the
values to the number of completes and marginals needed to fully trust a key as valid. By
default, PGP requires one completely trusted signature or two marginally trusted signatures to
validate a key. These numbers can be changed through two configuration file options:

COMPLETESNEEDED and MARGINALS_NEEDED.

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on available
evidence. If you think it does, then based on your estimate of

that person's integrity and competence in key management, answer

the following question:

Would you trust "Derek Atkins <warlord@VIT.EDU>"
to act as an introducer and certify other people's public keys to you?
(1=I don't know. 2=No. 3=Usually. 4=Yes, always.) ? 4

Make a determination in your own mind whether this key actually

belongs to the person whom you think it belongs to, based on available evidence.
If you think it does, then based on your estimate of that person's integrity and
competence in key management, answer the following question:

Would you trust "Jeffrey I. Schiller <jis@mit.edu>"
to act as an introducer and certify other people's public keys to you?
(1=I don't know. 2=No. 3=Usually. 4=Yes, always.) ? 4

Sometimes users are known personally and they can be trusted to sign keys properly. When
this is the case, you can assign a trust value on that key to always sign keys properly. In general,
this trust value should be used on keys for which you have validated the owner and when you
know the other user to be trustworthy. For example, Ruth could have visited MIT and met
both Derek and Jeff. During this meeting, she determined that both are completely trust-
worthy and decided that they will always sign keys properly.

Occasionally PGP will ask whether a key can be used as an introducer even when you do not
know the owner. In this case, you should choose how much trust you have in the key owner,
even though you haven’t met him or her. In general, it is best not to put complete trust in a
key of an unknown individual. If Ruth had never met Phil Zimmermann, and if she never had
the chance to learn his signing habits, she might only have marginal trust in the key, which she
can indicate by choosing the value of trust she wants to place on the key. The next part of this
example outlines the trust settings for the individual Ruth has never met:

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on
available evidence. If you think it does, then based on your
estimate of that person's integrity and competence in key management,
answer the following question:

Would you trust "Philip R. Zimmermann <prz@acm.org>"
to act as an introducer and certify other people's public keys to you?
(1=I don't know. 2=No. 3=Usually. 4=Yes, always.) ? 3



660

Part III: Messaging: Creating a Secure Channel

Make a determination in your own mind whether this key actually

belongs to the person whom you think it belongs to, based on available evidence.
If you think it does, then based on your estimate of that person's integrity and
competence in key management, answer the following question:

Would you trust "Jeffrey I. Schiller <jis@mit.edu>"
to act as an introducer and certify other people's public keys to you?
(1=I don't know. 2=No. 3=Usually. 4=Yes, always.) ? 2

The choices of trust are personal value judgments based both on the key and the key’s owner.
Sometimes you may have multiple keys but only one of them would be useful to someone else.
In the example you’ve followed in this chapter, Ruth should assign no trust to Jeff’s second key
because it is an old key that has been replaced by a new one. Unfortunately, PGP does not
inform you that a key is a duplicate of another key with the same name, so you need to be
aware of situations that may have multiple keys with the same name on them.

Viewing the Contents of a Key Ring

Many times it is useful to see what keys exist on a key ring. PGP enables users to view key rings
in multiple formats. The first format, -kv, is a short format, where only the key information
and userids are printed. The second format, -kvv, is the long format, and it also shows signa-
tures on keys.

~> pgp -kv

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 19:02 GMT

Key ring: '/tmp/pubring.pgp'

Type bits/keyID Date User ID

pub 1024 /0DBF906D 1994/08/27 Jeffrey I. Schiller <jis@mit.edu>

pub  512/4DOC4EE1 1992/09/10 Jeffrey I. Schiller <jis@mit.edu>

pub 1024/0778338D 1993/09/17 Philip L. Dubois <dubois@csn.org>

pub 1024 /FBBB8AB1 1994/05/07 Colin Plumb <colin@nyx.cs.du.edu>

pub 1024/C7A966DD 1993/05/21 Philip R. Zimmermann <prz@acm.org>
pub 1024/8DE722D9 1992/07/22 Branko Lankester <branko@hacktic.nl>
pub 1024/9D997D47 1992/08/02 Peter Gutmann <pguti@cs.aukuni.ac.nz>
pub 1019/7D63A5C5 1994/07/04 Hal Abelson <hal@mit.edu>

pub 512/97D45291 1995/11/14 William Clinton <President@Whitehouse.GOV>
pub  709/C1BO6AF1 1992/09/25 Derek Atkins <warlord@MIT.EDU>

pub 1024/D0C6326D 1995/11/14 Ruth Thomas <tara@mail.Free.NET>

11 matching keys found.

One interesting quirk you should know about the user interface is that PGP will print out all
keys that match the userid, whereas most other functions will choose the first key that matches
the userid. In other words, the userid is treated as a substring that is matched against the keys
in the key ring. This capability lets you print out a set of keys. For example, you can print out
all the keys for people at mit.edu.



PGP 661

~> pgp -kvv mit.edu

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 19:05 GMT

Key ring: '/tmp/pubring.pgp', looking for user ID "mit.edu".

Type bits/keyID Date User ID

pub 1024 /0DBF906D 1994/08/27 Jeffrey I. Schiller <jis@mit.edu>
sig C7A966DD Philip R. Zimmermann <prz@acm.org>
sig C1B0O6AF1 Derek Atkins <warlord@MIT.EDU>

sig 4DQC4EE1 Jeffrey I. Schiller <jis@mit.edu>
pub  512/4DOC4EE1 1992/09/10 Jeffrey I. Schiller <jis@mit.edu>
sig 4DQC4EE1 Jeffrey I. Schiller <jis@mit.edu>
sig C1B0O6AF1 Derek Atkins <warlord@MIT.EDU>

sig C7A966DD Philip R. Zimmermann <prz@acm.org>
pub 1019/7D63A5C5 1994/07/04 Hal Abelson <hal@mit.edu>

sig ODBF906D Jeffrey I. Schiller <jis@mit.edu>
sig C7A966DD Philip R. Zimmermann <prz@acm.org>
pub  709/C1BO6AF1 1992/09/25 Derek Atkins <warlord@MIT.EDU>

sig DOC6326D Ruth Thomas <tara@mail.Free.NET>
sig ODBF906D Jeffrey I. Schiller <jis@mit.edu>
sig 4DQC4EE1 Jeffrey I. Schiller <jis@mit.edu>
sig C7A966DD Philip R. Zimmermann <prz@acm.org>

4 matching keys found.

You can also list every key in a key ring other than the default. Leaving off the userid works for

the default key ring. However, if an alternate key ring is supplied, you need to supply a userid.
A NULL userid, “ 7, will match all keys, which will list the full contents.

Removing Keys and Signatures

Occasionally an extra key will be added to a key ring, or keys will have unverifiable signatures
on them. Although these data on the key ring cannot cause any problems, it is sometimes
useful to remove extraneous keys and signatures to reduce the size of data sent to others.

Fortunately, PGP lets you remove keys and signatures from keys in a key ring. The key
management function -kr removes a key; the function -krs lets you remove the signatures on a
key. PGP will first ask if you want to proceed to make sure you really want to remove the data.
At times, PGP will walk you through to the appropriate key to find the exact data you want to
remove.

When you remove a key, specify the userid of the key you want to remove. For example, two
keys exist for Jeffrey I. Schiller on the key ring and Ruth wants only the most recent key. She
wants to remove his second key. Unfortunately, both keys have the same name, so she needs to
specify the keyid of the key to remove:



662 Part III: Messaging: Creating a Secure Channel

~> pgp -kr 0x4D@C4EE1

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 23:08 GMT

Removing from key ring: '/tmp/pubring.pgp', userid "Ox4D@C4EE1".

Key for user ID: Jeffrey I. Schiller <jis@mit.edu>
512-bit key, Key ID 4DQC4EE1, created 1992/09/10

Are you sure you want this key removed (y/N)? yes

Key removed from key ring.

When you remove a signature, specify the userid of the key that incorporates the signature. For
each signature on that key, PGP will ask whether it should be removed. When Ruth removed
Jeffrey’s key, some unknown signatures were left on the key ring. She now needs to remove the
extraneous signatures on the keys. For example, an extra signature exists on the key for Derek
Atkins; Ruth needs to remove this extra signature:

~> pgp -krs warlord

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 23:13 GMT

Removing signatures from userid 'warlord' in key ring
' /tmp/pubring.pgp’

Key for user ID: Derek Atkins <warlord@VIT.EDU>
709-bit key, Key ID C1BO6AF1, created 1992/09/25

Key has 4 signature(s):

sig D0C6326D Ruth Thomas <tara@mail.Free.NET>
Remove this signature (y/N)? <Enter>

sig ODBF906D Jeffrey I. Schiller <jis@mit.edu>
Remove this signature (y/N)? no

sig 4DQC4EEA (Unknown signator, can't be checked)
Remove this signature (y/N)? yes

sig C7A966DD Philip R. Zimmermann <prz@acm.org>

Remove this signature (y/N)? <Enter>

1 key signature(s) removed.

When you remove signatures from a key, PGP will ask you whether each signature, in turn,
should be removed. The default answer is no; press Enter to move to the next signature.



PGP 663

Key Fingerprints and Verifying Keys
The most important part of the key verification process is knowing whether the person or
entity behind the userid actually has the secret key of this keypair. This is an important
concept, and should not be taken lightly. It is not important that the name on the key be the

actual name of the person who uses the key; what is important is that the person using the key
can be reached using the name on the key, and has the secret part of the key.

The best way to know whether a key is correct is to watch it being created. This remedy,
however, isn’t that realistic. The next best way to verify a key and its owner is to have the key
owner give you the key in person, on a floppy disk. This process requires that you know the
person, can meet him or her in person, or can match the key to the individual by name. These
methods are called in-band key verification, in which you get the key and verification informa-
tion at the same time using the same key distribution methods.

PGP provides another way to verify a key out of band. You can use any key distribution
method to obtain the key, such as by downloading it from an untrusted keyserver, and then
verify the key using the trusted information. This way you can obtain key verification out of
band, either through a phone call, a letter, or some other means of communicating with the
other party, regardless of what key distribution method is used.

Sometimes a key is validated inappropriately. Either a key was changed in transit, or a user was
fooled by social engineering to validate a key. Social engineering is where an attacker uses
social means, such as posing as someone else, in order to gain the desired results. In such cases,
the falsely validated key can wreak havoc among users who trust the signer’s fooled owner.
Unfortunately, there is no automatic means to verify the verification.

The most secure way to get this information is when the userid on a key matches the real name
of a person. It is possible for that person to supply documents verifying his identity, and then
provide a means to verify the key he is presenting as his own. The way to verify a key is
through the key fingerprint.

A key fingerprint is a cryptographic hash of the key parameters of a public key, printed in a
form that is easy to write down, copy, or speak. To obtain a key fingerprint, PGP is called with
the -kvc option.

~> pgp -kvc warlord

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 23:26 GMT

Key ring: '/tmp/pubring.pgp', looking for user ID "warlord".
Type bits/keyID Date User ID
pub  709/C1BO6AF1 1992/09/25 Derek Atkins <warlord@MIT.EDU>



664

Part III: Messaging: Creating a Secure Channel

Key fingerprint = AQ 9A 7E 2F 97 31 63 83 (8 7B 9C 8E DE QE 8D F9
1 matching key found.

First, the key owner obtains the fingerprint when the key is created and writes it down. Then,
when anyone wants to verify the key, he or she contacts the key owner who transfers the
fingerprint. Then the end user can check the fingerprint, keysize, key creation date, and userid
against the information obtained from the key’s owner. If everything matches, then the key has
been verified and it is OK to sign it.

Revoking Your Key

When you know that your key has been compromised, you should revoke it. A key has been
compromised when an attacker has the opportunity to access the full key. This can happen
when you are careless with the secret key ring and pass phrase, or if the attacker has spent
enough computer time to derive the secret key from the public key.

Warning You should never type a pass phrase in clear-text over the network. Pass
phrases should always be typed at a keyboard that is directly connected to the CPU
running PGP. Unfortunately, a pass phrase might be typed in the wrong window, at
the wrong time, or even in the wrong program.

No matter what the cause of a compromised key, a key compromise, or revocation, certificate
should be issued and sent to everyone who might be using the key. A revocation certificate
behaves like a signature on the user’s own key, which tells PGP not to use the key for any
security methods. A revoked key will remain on the key ring, and it can be viewed, extracted,
and e-mailed just like a normal key.

~> pgp -kd president

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/21 23:29 GMT

Key for user ID: William Clinton <President@Whitehouse.GOV>
512-bit key, Key ID 97D45291, created 1995/11/14

Do you want to permanently revoke your public key
by issuing a secret key compromise certificate
for "William Clinton <President@Whitehouse.GOV>" (y/N)? yes

When you ask PGP to revoke a key, it first asks you to verify your decision. You should revoke
a key only when you think the key has been compromised or when you never want that key to
be used again.



PGP 665

When you verify this revocation, PGP asks for the pass phrase on the secret key. You need the
secret key to create a revocation certificate, which means that the pass phrase on the key is
required.

You need a pass phrase to unlock your RSA secret key.
Key for user ID "William Clinton <President@Whitehouse.GOV>"

Enter pass phrase:
Pass phrase is good. Just a moment....
Key compromise certificate created.

Finally, the compromise certificate is created and added to the secret key ring. You can later
extract the key and send it to others to propagate the revocation certificate. Only when other
users obtain the revocation certificate will they actually know not to use the key.

Basic Message Operations

PGP can perform a number of security operations on files and messages. The most interesting
operations are message encryption and digital signatures, which are listed in table 11.2.

Table 11.2
Message Encryption and Digital Signatures
Operation Parameters Message Operations
pgp -c text file Encrypts with conventional encryption only
pgp -s text file [-u your_userid] Signs a plaintext file with your secret key

(produces text file.pgp)

pgp -e text file her_userid [other userids] ~ Encrypts a plaintext file with recipient’s public
key (produces text file.pgp)

pgp -es text file her_userid [other userids] Signs a plaintext file with your secret key, and
[-u your_userid] then encrypts it with recipient’s public key,
producing a .pgp file

pgp ciphertext file [plaintext file] Decrypts or checks a signature for a ciphertext
(.pgp) file

PGP: Program or Filter?

PGP is a program that takes input files, performs a set of operations, and writes an output file.
Although this process resembles the functions of a program, PGP can also be thought of as a
filter—you give it some input, it processes it and gives you some output. By looking at PGP
this way you can see how easily it can be integrated into other programs.



666

Part III: Messaging: Creating a Secure Channel

Because PGP 2.6.2 is only distributed as an application program, not as a library, this chapter
describes only the application user interface. Some applications that use PGP as a filter are
mentioned at the end of this chapter, but most of the effort is spent in explaining the PGP user
interface.

To use PGP in filter-mode, PGP should be run with the -f option. This tells PGP to use
standard input and standard output for its main functional I/O. The use of filter-mode can
change the arguments to various PGP functions because input and/or output files are no
longer required. Command examples in this chapter try to explain what happens when PGP is
used as a filter.

Compressing the Message

Whenever possible, PGP attempts to compress a message before sending it. This reduces the
size of most messages sent by PGP. Of course, PGP compresses messages inside encryption,
although it compresses outside a signature, thereby nesting the various operations on a message
in the best possible order.

In other words, a PGP signed message first is signed, and then compressed; a PGP encrypted
message first is compressed and then encrypted. When PGP combines signatures and encryp-
tion, compression happens between the two operations, after the signature is created but before
the encryption takes place.

Compression is turned on by default and can be turned off using the COMPRESS option in
the configuration file or by using the command-line option:

+compress=off

Processing Text and Binary Files

Files PGP creates are inherently in binary format, although PGP can process both binary and
text files. Binary files are easy to work with because PGP can process the file byte-by-byte.
When a text file must be processed, PGP needs to process the file with some special operations
for it to transfer properly.

PGP has a canonical format for text files using a special character set and line ending conven-
tion. When processing a text file, PGP automatically converts messages from the local charac-
ter set to ISO Latin-1, an international standard character set. It also uses a carriage return and
newline at the end of each line. These text transformations are done before other processing
can proceed.

When the PGP file is decrypted and verified, PGP converts the canonical message back into
the local character set and local line ending convention. This way a message will never lose its
characteristics across various platforms and interoperability can be achieved.



PGP 667

PGP requires you to specify when a text file is the desired file to process and which text-
filtering options should be performed. PGP attempts to verify that a file is actually a text file
and not a binary file by reading a few bytes of data and testing it. Therefore, it is safe to turn
on textmode for non-text files.

To turn on textmode, you add the -t option to PGP. This option specifies that PGP should
attempt to process the input file as a text file. If the input is binary, PGP will treat it as binary
without the textmode filters.

The TEXTMODE configuration option can also be turned on in the configuration file so that
PGP always attempts to use textmode when possible. When this setup is used, you can turn off
textmode on the command line:

+textmode=off

Sending PGP Messages via E-Mail

The files that PGP produces are generally binary files because the PGP protocol is inherently a
binary protocol. However, PGP provides a mechanism to encode its binary output in ASCII
armor, to protect it from transmission over links that require ASCII data, such as e-mail and
netnews. This armor protects a PGP file during transport so that it will not be modified in
transit.

Whenever PGP is asked to output PGP data, be it a message or a key, and the -a option is
used, PGP will encode the output in ASCII armor. Usually you should use the -a option when
creating messages for transmission to other users. Whenever you use ASCII armor, you should
remember to use a MIME Transfer-Encoding of 7 bits.

Armor mode can be turned on by default using the ARMOR option in the configuration file.
When this is done, Armor mode will always be used. To get binary output, you can turn off
Armor mode on the command line:

+armor=off

You can also control the number of lines of armor that will be put in a single file. Because
armorlines are 64 characters wide, you can effectively control the size of the output files. This
is useful because some mailer software refuses to allow large messages through; large data need
to be broken into multiple files to be sent successfully.

The number of lines of ASCII armor is controlled by the ARMORLINES configuration
option. By default, armorlines is set to 720 lines per file. Users can set the number of
armorlines to any non-negative integer value. A value of zero (0) will force PGP to output
into a single armor file no matter how large the data size. Sometimes it is useful to set the
ARMORLINES value in the configuration file to a useful size (if 720 lines does not suffice)
and specify zero lines on the command line when a single output file is required:

+armorlines=0



668 Part III: Messaging: Creating a Secure Channel

Conventional Encryption

Sometimes you need to encrypt a message in a pass phrase using conventional encryption. This
approach does not provide any key management because PGP converts the pass phrase into an
IDEA key and uses that key to encrypt the message. IDEA is a secret key cipher that uses a
128-bit key and encrypts in 8-byte blocks. In general, this mode of operation is not used
because it requires manual, out-of-band key distribution. It is useful, however, as a more secure
version of crypt, a Unix encryption tool, at times when you want to encrypt messages to
yourself using some chosen pass phrase independent of your private key.

Warning Do not use the same pass phrase that is used on the secret key. The new pass
phrase should be chosen especially for this file, and a different pass phrase should
be used for each file encrypted using conventional encryption. The following
sample command lines show the setup and use of a new pass phrase:

~> pgp -C message

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/27 18:58 GMT

You need a pass phrase to encrypt the file.
Enter pass phrase:

Enter same pass phrase again: Just a moment....
Ciphertext file: message.pgp

When you use conventional encryption, PGP asks for a pass phrase twice. The second query is
to ensure that the pass phrase has been typed properly by the user. The pass phrase is then used
to encrypt the message.

In the sample file used throughout the chapter, the output file, message.pgp, contains the
encrypted file. It is in binary format, so it cannot be sent to someone else. To send the file to
someone else, it should have been wrapped in ASCII armor, using the -a option:

pgp -ca filename

Signing a Message
To sign a message, you use your secret key to encrypt a digital hash of the message. The
signature is attached to the message, and other users can later verify the signature. Using the

Web of Trust, a recipient can be assured that the message originated from the appropriate user
by using the trust of validity on a key/userid pair.

In general, a message is signed to protect it from tampering when it is transmitted to someone
else. For this reason, signatures are usually created with ASCII armor for protection during
transmission. The following commands show the process:



PGP 669

~> pgp -sa message

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/27 19:05 GMT

A secret key is required to make a signature.
You need a pass phrase to unlock your RSA secret key.
Key for user ID "Ruth Thomas <tara@mail.Free.NET>"

Enter pass phrase: Pass phrase is good.

Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024-bit key, Key ID D0C6326D, created 1995/11/14
Just a moment....

Transport armor file: message.asc

The file message.asc now contains the signed message encoded in ASCII armor. This file can
then be transmitted to recipients who can verify that the message originated with the appropri-
ate user and that the message was not changed in any way during transmission. The following
output is the message that was just signed:

----- BEGIN PGP MESSAGE- - - - -
Version: 2.6.2

owHrzZJ jKzMpgsIv7j8f/mH8XjhnlMjI2cjD/L7yjyviXo/Hgn+77rjx7ihc/ytFi
0jWKqz6/hYP/HM+SdPXak2asUXcj7Yqr2qrqro/2f6C84eXknSmgqm7ri3hw2iDzv
LiG6L477NYcXr/7VhqeyD6fXdHMdcFSwLLWzEeSrvBC88t1LK9ENPALL9btOR(88
KpHik3B1g7fCr5qHGVHLSZPWHE11z00tLKk5MT2UAgpCMzGIFIEpUKM5MZz@tNUYDK
6SkoeJaAJFLzkvNTgOKZeQqOwc6engqJRbn5RQo1+QoFRTklgck1XJk1Cm1F+bkK
JUWJecWsmeXFmf15E03J+aU5KQoZiWWpCkmpaXkKxal5JQqlxZ156chm6SgklZZw
IWQAFSSmJwLtKQG5CV1vokdSZ15iUaVCWmZ0qiIXAA==

=UK7f

Encrypting a Message Using Public Key

In general, whenever someone mentions that a message is “PGP-encrypted,” he or she means
that the message was encrypted using Public Key Encryption. A message of this form is actually
encrypted using a secret-key cipher, such as IDEA, using a randomly generated key. PGP takes
that key and uses Public Key Encryption to transmit that key to all the intended recipients.

When PGP is told to encrypt using Public Key via the -e option, PGP takes the list of recipi-
ents, finds their public keys in the public key ring, generates the random session key, and
encrypts the session key in each public key. Finally, PGP encrypts the message in the session
key.

When the session key is encrypted, PGP adds random padding. Even if you use the same
public key twice, the data that is sent will differ. If random padding did not occur, a message
encrypted to multiple people would be vulnerable to a mathematical derivation of the session



670

Part III: Messaging: Creating a Secure Channel

key used in the message. To eliminate this risk, PGP never creates the same output twice when
encrypting a message. Not only does it defeat the math attack against the session key, but users
also have plausible deniability about even encrypting a message because they cannot re-create
the same ciphertext from the same plaintext. They can plausibly deny the fact that they created
the message because they cannot create the exact same ciphertext output more than once.

~> pgp -ea message warlord tara jis

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/27 19:41 GMT

Recipients' public key(s) will be used to encrypt.
Key for user ID: Derek Atkins <warlord@VIT.EDU>
709-bit key, Key ID C1BO6AF1, created 1992/09/25

Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024 -bit key, Key ID D0C6326D, created 1995/11/14

Key for user ID: Jeffrey I. Schiller <jis@mit.edu>
1024 -bit key, Key ID ODBF906D, created 1994/08/27

Transport armor file: message.asc

When you encrypt messages, it is important to know who the recipient will be. PGP tries to
use the key you specify, but it works only if you can specify a unique key. If the name re-
quested matches multiple keys on the key ring, only the first matching key will be used. PGP
does not prompt you to choose, nor does it even mention that there was an ambiguity. It is up
to you to read the PGP output and recognize when the wrong key is being used. This minor
problem should be fixed in a future release.

Signing and Encrypting Messages

Various PGP options can be combined to perform multiple operations on a single message.
The signing and encryption of a message can easily be performed in a single step by combining
options on the command line. When options are combined on the command line, a hierarchy
is used to determine which option is executed first. In this example, PGP first signs the
message, and then encrypts the signed message.

~> pgp -sea message prz

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/27 19:45 GMT



PGP 671

A secret key is required to make a signature.
You need a pass phrase to unlock your RSA secret key.
Key for user ID "Ruth Thomas <tara@mail.Free.NET>"

Enter pass phrase:

Because a signature is involved, PGP asks for a pass phrase, which must be the pass phrase of
the secret key. PGP then uses this pass phrase to unlock the secret key and generate the
signature on the message.

Pass phrase is good.

Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024-bit key, Key ID D0C6326D, created 1995/11/14
Just a moment....

Recipients' public key(s) will be used to encrypt.
Key for user ID: Philip R. Zimmermann <prz@acm.org>
1024-bit key, Key ID C7A966DD, created 1993/05/21

WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "Philip R. Zimmermann <prz@acm.org>".

Are you sure you want to use this public key (y/N)? yes

Transport armor file: message.asc

Finally, PGP notifies you which keys are being used to encrypt the message and places the
output into the appropriate file. This file can subsequently be transferred to someone else who
must first decrypt the message before verifying the signature and reading its contents.

Decrypting and Verifying Messages

When you receive a PGP message, you usually want to use PGP to unpackage it and retrieve
the data. This might involve decrypting the message, or verifying the signature on the message.
This is the default operation with PGP. It will try to decode the PGP message and decrypt

and/or verify the message as necessary and capable.

~>pgp message.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/27 19:52 GMT

File is encrypted. Secret key is required to read it.
Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024-bit key, Key ID DOC6326D, created 1995/11/14



672

Part III: Messaging: Creating a Secure Channel

You need a pass phrase to unlock your RSA secret key.
Enter pass phrase:

PGP first attempts to decrypt the example message because it is encrypted. The message was
encrypted for Ruth; she can enter her secret key pass phrase to decrypt the message. The pass
phrase opens the secret key, and the secret key opens the message. With a successful pass
phrase, PGP can continue processing the message.

Pass phrase is good. Just a moment......

File has signature. Public key is required to check signature.
Good signature from user "Derek Atkins <warlord@MIT.EDU>".
Signature made 1995/11/27 19:52 GMT

Plaintext filename: message

The message was signed, so PGP attempts to verify the signature with the private key, assum-
ing it is on the public key ring. In this case, the message was signed by Derek Atkins, and the
message was not modified during transport. PGP will report the validity of the signature as
best it can.

Finally, PGP deposits the decrypted, validated message into the output file. In this case, the file
message contains the original message that was encrypted and signed. You can then read,
process, or use the file.

Sometimes it is not possible to read a message. The message may have been encrypted using a
key or set of keys you don’t have. In this case, PGP tries to tell you who can decrypt the
message.

~> pgp -m message.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/29 19:01 GMT

File is encrypted. Secret key is required to read it.
This message can only be read by:

Philip R. Zimmermann <prz@acm.org>

Jeffrey I. Schiller <jis@mit.edu>

Derek Atkins <warlord@MIT.EDU>

You do not have the secret key needed to decrypt this file.

For a usage summary, type: pgp -h
For more detailed help, consult the PGP User's Guide.

Another situation in which you might not be able to decrypt a message is when the message is

signed by a key that is not on the key ring. In this case, PGP asks for an alternate key ring, and
if one is not supplied PGP will not verify the signature. It still attempts to output the message,
if possible.



PGP 673

~> pgp -m message.asc

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/29 19:10 GMT

File has signature. Public key is required to check signature.
Key matching expected Key ID 82FF3459 not found in file '/tmp/pubring.pgp'.
Enter public key filename: <Enter>

WARNING: Can't find the right public key--can't check signature integrity.

Plaintext message follows...

This is a signed message which is signed by an unknown key

Done...hit any key
Save this file permanently (y/N)? <Enter>

PGP tries to report any error conditions, although it is not perfect. It probably will inform you
of an invalid signature, a signature by an untrusted key, or reveal other types of problems. To
understand the cause of encryption and decryption problems, you need to be aware of the
types of messages PGP supplies.

Advanced Message Operations

Some functions of PGP are slightly more advanced and intricate. Although the concepts
mentioned in this section might be simple, their application and implication are much more
difficult to grasp. The most important thing to remember is that whenever PGP operates on a
file, the output is a PGP file. The following table lists most of the useful advanced commands.

Command Parameters Description

pgp -sat text file Clearsigns a text message

pgp -sb text file Creates a separate signature for a file
pgp -m For Her Eyes Only mode

pgp -w filename Wipes file clean



674 Part III: Messaging: Creating a Secure Channel

Clearsigning
Clearsigning a message is the addition of a digital signature to a message that has been left in
text form so that it can be read without the need for PGP. In the future, PGP should be
combined with Multimedia Internet Mail Enhancements (MIME) to sign messages, but at this
time PGP has its own method. Clearsigning can only sign text files. If a binary file is chosen,
PGP will revert to a normal signature on the file instead of clearsigning it.

When PGP clearsigns a message, the output is a PGP file that is partially protected in ASCII
armor. Clearsigning does not armor the message itself, only the signature on the message. The
message must be capable of being transported without armor protection. Although PGP does
not wrap the clearsigned message in armor, it may quote parts of the message. In particular,
PGP will quote lines that have a leading dash, or start with the string “From .” When PGP
quotes a line, it adds a leading dash (-) followed by a space.

Note that the output of clearsigning a message is a PGP file, not a text file. Even though the
output is readable using a text editor or mail reader, the actual text may be modified by

the signer (that is, quoted), so anything that depends on the text itself should be used only
on the output from PGP. For example, a clearsigned PostScript file may not execute on the
remote side due to the clearsigned quoting until PGP is used to retrieve the original text.

It is important that you understand the distinction between a PGP file and a text file. Though
a clearsigned message is readable, it is not necessarily the original message sent. You should
always run PGP on clearsigned messages and use the output from PGP as the original message;
never use the contents of a clearsigned message and run PGP just to verify the signature.
Instead, you should always use PGP to unquote the clearsigned message before running the
text file through any other processor.

~> pgp -sat message

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/19 05:17 GMT

A secret key is required to make a signature.
You need a pass phrase to unlock your RSA secret key.
Key for user ID "Ruth Thomas <tara@mail.Free.NET>"

Enter pass phrase:

Because a signature is requested, PGP asks for the pass phrase of the secret key. By default,
PGP uses the first secret key on the secret key ring, which is the most recently created key. As
an alternative, you can also specify the secret key used to sign the message by using the -u
command-line option or by specifying the MYNAME variable in the configuration file.



PGP 675

Pass phrase is good.

Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024-bit key, Key ID D0C6326D, created 1995/11/14
Just a moment....

Clear signature file: message.asc

Detached Signatures

A detached signature is a signature that is stored separately from the file it is meant to protect—
the original file is unmodified. This scenario is usually used to sign files in-place, such as
package distributions and system programs. Any time you want to sign a message but not
require the recipient to use PGP on the original file, you probably want to use detached
signatures.

A detached signature has the same information as a normal signature: who signed the file,
when it was signed, and signature data. The difference is that the signature file and signed file
must be transmitted separately. If the signed file is an executable program, this may be the
most useful way to verify the program. For example, you could sign the PGP binary using a
separate signature so that someone can later verify the signature on the binary. To generate a
separate signature, use the -sb option to PGP:

~> pgp -sba text file

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/27 20:09 GMT

A secret key is required to make a signature.
You need a pass phrase to unlock your RSA secret key.
Key for user ID "Ruth Thomas <tara@mail.Free.NET>

Enter pass phrase:

PGP will ask for the pass phrase of the current secret key. This pass phrase will open the key so
that it can be used to generate the signature. When the key is successfully opened, PGP will
put the signature in a separate file, leaving the original file intact.

Pass phrase is good.

Key for user ID: Ruth Thomas <tara@mail.Free.NET>
1024-bit key, Key ID D0C6326D, created 1995/11/14
Just a moment....

Transport armor file: text file.asc

The output message is just the signature on the original file. The original file can be a text file,
a binary file, an executable, or anything else. A signature looks like this:

Version: 2.6.2



676

Part III: Messaging: Creating a Secure Channel

1QCVAwWUAMLoa4kj /XP7QxjJtAQEzMgP/Z1QRGio1xYPxJnTaflxhmX5s5b66WN6Z
PMZo3LcO/K6HWFuunLOu@qt6rwKOHd5gm83GEV6Xic8MwraYT347hY86QWYFbw7A
aEAXQPY1PNK8YD6ZPm38ChXXjAzqEEYHYO10KBASFGKUEpv1GhpYAuau@FwftZVN
r/e1rB6/2A8=

=15Fb

For Her Eyes Only

PGP contains an internal pager that can be used to view the program’s output. When you
decrypt a message, you can use this option to send the output to the screen, rather than save it
to a file. When PGP finishes showing the plaintext, it asks you whether you want to save the
message to a file. In this manner, you can decrypt and read a message without saving it off to a
file. The -m option tells PGP to use the pager to view the output.

Sometimes the message that is being sent is so sensitive that the sender believes it should only
be displayed on-screen and not saved to a file. In other words, the message is meant to be read
only. When encrypting a message, you can set a flag in the message to tell PGP to print out the
message on the recipient’s screen without allowing him or her to save it to a file. To mark a
message For Her Eyes Only, the -m option should be given to PGP when the message is
encrypted. On decryption, PGP will only use the pager and will not enable the user to save the
output to a file.

Note Although PGP tries to prevent recipients from saving messages encoded For Her
Eyes Only, it cannot prohibit it. The reader can work around this limitation by using
screen dump programs or other text collection means that vary from system to
system. For Her Eyes Only is meant as a hint for the recipient and should be used as
a means to keep a user from accidentally saving a message to a file.

Wiping Files

PGP can also wipe files clean. In the file systems of most machines, a directory contains a list
of pointers to files. When a file is removed, the pointer to the data on disk is removed from the
list of files and the space that the file occupies is marked as unused. The actual file, however,
still sits on the disk and remains there until another file writes over the same spot on the disk.

Sometimes data encrypted with PGP is so important that you might not want it to remain on
the disk in clear text. Fortunately, PGP lets you wipe the file off the disk. When the -w option
is used, PGP wipes the source file before removing it from the directory list. The result is data
on the disk appears as pseudo-random numbers before it is deleted, thwarting would-be
crackers who might be looking for the original file on the disk.

When pgp -w is used alone, this option will wipe and remove a file. When used in conjunction
with other options, -w will wipe and remove the original file:



PGP 677

~>1ls -1
total 1
-rW-rw-r- - 1 warlord users 26 Nov 27 13:35 origin

~> pgp -w origin

Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil's Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.

Export of this software may be restricted by the U.S. government.
Current time: 1995/11/27 21:35 GMT

File origin wiped and deleted.
~>1ls -1
total 0

The PGP Configuration File

When you want to configure PGP, you can use a file to specify options other than the defaults
for various values that PGP uses. Each user is allowed to have a configuration file that PGP
will read on startup to define how it behaves for that user. The configuration file specifies
items such as the default number of lines of armor or the default key to use.

The default configuration file is called config.txt and is located in the directory in the
PGPPATH environment variable. On Unix systems, the default PGPPATH is the .pgp
directory in the user’s home directory, SHOME/.pgp. Various OS systems have various
options for the configuration filename. In Unix, for example, you can use the file .pgprc
in the PGPPATH directory. When using DOS, you can use the file named pgp.ini.

PGP also supports a system-wide configuration file, which can be used to set up defaults for all
users of a system. The user’s local configuration file will override the options set in the system
configuration file. The system configuration file location is set at compile-time. In Unix, the

default location is /usr/local/lib/pgp; in VMS, the default is PGP$LIBRARY.

Three types of values are required by configuration variables: Boolean, integer, and string. A
Boolean is a yes/no value, and is denoted either by “true” and “false,” or “on” and “off.” An
integer value is a number; some numbers must be non-negative. A string is a series of characters
up to the next newline.

Table 11.3 contains configuration keywords that PGP supports. These keywords can be put
into the configuration file, which is normally the file config.txt in the PGPPATH directory.
PGP also accepts these configuration values on the command line by preceding the configura-
tion option with a plus (+) and following it with an equal sign (=) and its value. This is
described in more detail later in this chapter.



678 Part III: Messaging: Creating a Secure Channel

Table 11.3

Configuration Keywords for PGP Startup

Name

Type

Default

Effect

ARMOR

Boolean

off

When this option is on, data is output
encoded in ASCII armor.

ARMORLINES

integer

720

The number of lines to put in a single
ASCII armor block. If there are more
than this number of lines, PGP will
break up the message into multiple
output files.

BAKRING

string

The directory in which PGP should
store backup key rings. In general, this
is used to keep a backup key ring on a
floppy disk. PGP will then compare
the data on the normal key ring with
the data in the backup key ring and
report errors when they do not match.

CERT_DEPTH

integer

The maximum depth for which
certification is valid in the web of
trust. This is the maximum level of
recursion that PGP will allow.

CHARSET

string

noconv

The character set to use when display-
ing messages locally. PGP internally
uses the Latin-1 charset and converts
to external character sets as appropri-
ate. By default, no conversion is done
except for MS-DOS, which uses the
default charset cp850, not noconv.

CLEARSIG

Boolean

on

When possible, clearsign text mes-
sages. If this is off, never clearsign
messages. Clearsigning is only possible
on text messages when signing with
ASCII armor.

COMMENT

string

When defined, this string will be put
in the headers of ASCII armor.

COMPLETES_NEEDED

integer

The number of completely trusted key
certifications needed to trust the
validity of a public key.




PGP

Name

Type

Default

Effect

COMPRESS

Boolean

on

When turned on, try to compress all
messages when possible. Clearsigned
and separate-signature messages are not
compressed, but any normal operation
will be compressed.

ENCRYPTTOSELF

Boolean

off

Automatically add the originator to the
list of recipients when using public key
encryption.

INTERACTIVE

Boolean

off

Interactively add keys to the system. By
default PGP will add keys in a lump to
the key ring. This option allows users to
interactively decide which keys to add
and which not to add.

KEEPBINARY

Boolean

off

Keep a binary version of the file around.
When decrypting an ASCII armor file,
PGP will save the binary contents of the
ASCII armor to a file.

LANGUAGE

string

en

What language to use when printing
messages to the user. By default the
program uses English.

MARGINALS_NEEDED

integer

2

The number of marginally trusted key
certifications needed to trust the validity
of a key.

MYNAME

string

The name of the key to use when
signing messages. By default, PGP will
use the first key on the secret key ring,
which is usually the most recently
generated key.

PAGER

string

The pager program to use when
printing messages in For Her Eyes Only
mode. This option will override the
environment variable, PAGER, which
in turn overrides the default pager. The
default pager is the internal pager except
under VMS, which uses Type/Page. Set
the PAGER configuration variable to

continues

679



680

Part III: Messaging: Creating a Secure Channel

Table 11.3, Continued
Configuration Keywords for PGP Startup

Name

Type Default

Effect

“pgp” to override the environment
variable and use the internal pager.

PUBRING

string

Specifies the location of the public
key ring. By default, PGP will look
in the PGPPATH directory for the
file pubring.pgp. This variable will
override the file $PGPPATH/
pubring.pgp; PGP will use this file
instead.

RANDSEED

string

Specifies the location of the random
number seed file. By default, PGP
will look in the PGPPATH directory
for randseed.bin. As with
PUBRING, PGP will use this file
instead of looking in PGPPATH.

SECRING

string

Specifies the location of the secret
key ring file. By default, this option
looks in the PGPPATH directory for
the file secring.pgp. PGP will use
this file instead of looking in

PGPPATH.

SHOWPASS

Boolean off

When on, show the pass phrase as it
is being typed. By default, this
option is off to protect your pass
phrase from being read while you

type it.

TEXTMODE

Boolean off

When turned on, assume a file is a
text file. PGP will always check to
verify if it is a text file, and will turn
off textmode if it is not.

T™MP

string

The directory where temporary files
are created. PGP will try to choose a
reasonable default if it is not set in
the configuration file. On Unix
systems, PGP uses the contents of
the TMP environment variable; on



PGP 681

Name Type Default Effect

VMS, PGP will use the contents of
SYS$SCRATCH; on DOS, the

current directory is used.

TZFIX integer 0 The number of hours to add to the
time to get GMT. This is needed
only if the TZ environment variable
does not work.

VERBOSE integer 1 The verbosity level of PGP. The
more verbose, the more debugging
information and progress informa-
tion is printed to the user. Verbose
level 0 is quiet mode, and verbose
level 2 provides extra runtime
information.

PGP also supports a number of configuration options that only make sense on the command
line. Table 11.4 lists these options. As you saw in table 11.3, these options are also used by
putting a plus sign before the name, and following it with an equal sign and the value. For
example, to turn off compression you can add +compress=off to the command line.

Table 11.4
Configuration Options for PGP
Name Type Default Effect
BATCHMODE Boolean off Process the current request as a batch

request. This is useful for servers and
to perform default operations without
asking for user input.

FORCE Boolean off When turned on, force PGP to answer
questions using default values. This
option forces PGP to perform the
default actions instead of asking the
user. In general, this is used with
BATCHMODE for system servers
that want to use PGP.

MAKERANDOM integer Output a file of random bytes, using
the length of this variable.




682

Part III: Messaging: Creating a Secure Channel

If you want to use PGP as a random number generator, for instance, it can be configured to
make a file of random numbers. You can specify this using the makerandom option. For
example, to generate 1k of random data into a file named output.bin, you would use this
command:

pgp +makerandom=1024 output.bin\\

The configuration options are best used by setting the preferred default options in the configu-
ration file and then using the command-line options to change the defaults when necessary.
For example, a suggested mode is to specify TEXTMODE and ARMOR to be true in the
configuration file, and use +armor=off or +textmode=off on the command line when textmode
or armor mode or both are not desired.

Security of PGP

The use of a security program does not ensure that your communications will be secure. You
can have the most secure lock on the front door of your house, and a prowler can still crawl in
through an open window. Similarly, your computer can be just as vulnerable, even when using

PGP.

A number of known attacks exist against PGP; the next few sections cover many of them.
However, this is by no means a complete list. Attacks may be found in the future that break all
public key cryptography. This list tries to give you a taste of what you need to protect your
communications.

The Brute Force Attack

The most direct attack against PGP is to brute force the keys that are used. Because PGP 2.6.2
uses two cryptographic algorithms, it is appropriate to look at the security of both algorithms.
For public key cryptography, PGP uses the RSA algorithm; for secret key cryptography, it uses
IDEA.

Brute Force on RSA Keys

For RSA keys, the best brute force attack known is to try to factor them. RSA keys are gener-
ated so that they are difficult to factor. Moreover, factoring large numbers is still a new art.

The most recent, and largest, RSA key to be factored is RSA-129 in April, 1994. RSA-129 is
the original RSA challenge number that was created in 1977 when the RSA algorithm was
devised. It is a 129-decimal digit RSA key, which is equivalent to about 425 bits. A worldwide
effort to factor the number used the resources of 1,600 computers for over eight months of real
time. This figures out to 4,600 MIPS-years; a MIPS-year is the amount of data a 1 MIPS

machine could process in one year.



PGP 683

For example, a Pentium 100 is approximately 125 MIPS (according to Intel). If one Pentium
100 machine were to run full time for one full year on a problem, it would donate 125 MIPS-
years. At this rate, it would take one machine just about 37 years to break RSA-129. Alterna-
tively, 100 machines could break the code in just over 4 months, which is about half the time
of the actual project.

A newer factoring algorithm exists than the one used in the RSA-129 project. This newer
algorithm is much faster, and is believed to be able to factor RSA-129 in about a quarter of the
time. It is uncertain how this new algorithm will perform, and there is currently a project
underway to factor RSA-130, a sister challenge to RSA-129. As of this writing, many comput-
ers around the world are working on factoring this number. The results may not be known for
some time.

Currently, PGP uses keys between 512 and 2,048 bits. The larger the key the harder it is to
factor. At the same time, increasing the keysize increases the time it takes to use that key. To
date, a 512-bit key is believed to give about one year of security; access to 100 Pentium 100
machines should take at least a year to crack a 512-bit RSA key. If that is true, then a 1,024-bit
key, given today’s newest algorithms, will be secure for the next 10,000 years, assuming no
more increases in technology. If technology increases, less time will be required.

Brute Forcing IDEA Keys

There are no known attacks against IDEA keys at this time. The best that can be done is trying
all 2'%, or 3.4%x10%, keys. Given the difficulty in performing this test, it is actually easier to try
to break the RSA keys that are used to encrypt the IDEA keys in PGP. It has been estimated
that the difficulty in breaking IDEA is about the same difficulty as factoring a 3,000-bit RSA
key.

Secret Keys and Pass Phrases

The security of the PGP secret key ring is based on two things: access to the secret key ring
data and knowledge of the pass phrase that is used to encrypt each secret key. Possession of
both parts is needed to use the secret key. This also leads to a number of attacks, however.

If PGP is used on a multiuser system, access to the secret key ring is possible. Through cache
files, network sniffing, or a multitude of other attacks, a secret key ring can be obtained just by
watching the network or reading through the disks. This leaves only the pass phrase to protect
the data in the secret key ring, which means an attacker needs to obtain only the pass phrase to
break the security of PGP.

Moreover, on a multiuser system, the link between the keyboard and the CPU is probably
insecure. Watching the keystrokes would be easy for anyone who has physical access to the
network connecting the user’s keyboard to the mainframe being used. For example, users
might be logged in from a public cluster of client terminals, where the connecting network can
be sniffed for pass phrases. Alternatively, users might be dialing up via modem, in which case



684

Part III: Messaging: Creating a Secure Channel

an eavesdropper could listen in on their keystrokes. In either case, running PGP on a multiuser
machine is insecure.

Of course, the most secure way to run PGP is on a personal machine that no one else uses and
is not connected to the network; in other words, a laptop or home computer. Users must
balance the cost of a secure environment with that of secure communications. The recom-
mended way to use PGP is always on a secure machine in a secure environment, where the user
has control over the machine.

The key to the best type of security is that the connection between the keyboard and the CPU
be secure. This is accomplished either by encryption or better yet by a direct, uninterruptible
connection. Workstations, PCs, Macs, laptops—all fit into the category of secure machines.
The secure environment is much more difficult to show and is not explored here.

Public Key Ring Attacks

Because of the importance and dependence on the public key ring, PGP is susceptible to a
number of attacks against the key ring. First, the key ring is checked only when it changes.
When new keys or signatures are added, PGP will attempt to verify them. However it will flag
the checked signatures on the key ring so it will not validate them again. If someone modifies
the key ring and sets the bits appropriately on signatures, they will not be checked.

Another attack against the key ring focuses on the process PGP uses to set a bit for the validity
trust in a key. When new signatures arrive on a key, PGP computes the validity of the key by
using the Web of Trust values described earlier. PGP then caches the validity on the public key
ring. An attacker could modify this bit on the key ring to force a user to trust the validity in an
invalid key. For example, by setting this flag an attacker could make the user believe that a key
belongs to Alice even though there are not enough signatures to prove that validity.

Another attack against PGP’s public key ring may occur because the trust of a key as an
introducer is also cached on the public key ring. This value defines how much trust is put in
this key’s signatures, so it is possible to force PGP to accept invalid keys as valid by signing
them with the key with the invalid trust parameter. If a key were modified to be a fully trusted
introducer, any keys that were signed by that key would be trusted as valid. Therefore, an
attacker could force the user to believe that a forged key is valid by signing it with the modified
key.

The biggest problem with the public key ring is that all of these bits are not only cached on the
key ring, but they are not protected in any way on the key ring! Anyone who has read the PGP
source code and has access to the public key ring can use a binary file editor to change any of
these bits, and the key ring owner would never notice the change. Fortunately, PGP provides a
way to recheck the keys on the key ring. By using the -kc and -km options together, a user can
tell PGP to perform a key maintenance pass over the whole key ring. The former option tells
PGP to check keys and signatures. It will go through the key ring and recheck every signature.



PGP

When all the signatures have been checked, PGP will perform a maintenance check ( -km) and
recompute the validity of all the keys.

Unfortunately there is no way to completely recheck all of the trust bytes on keys. This is a
bug. There should be a command to tell PGP to ignore all trust bytes and ask the user for trust
starting with the ultimate keys—those on the secret key ring. Perhaps a future version of PGP
will fix this problem. If a key is modified to be a trusted introducer, there is no easy way for
you to find the change and fix it. Running the key and maintenance checks will revert the
validity of a key, but not the trust value. Only running pgp -ke on a key will enable you to edit
the trust parameters, and this cannot be done automatically.

Program Security

If someone has access to the PGP binary, he or she can change it and do whatever they want it
to do. If this meddler can replace your PGP binary from right underneath your nose, your
trust in PGP would then be based on your trust in that person or your ability to actually verify
the program. For example, an attacker with such access could change PGP to always validate
signatures, even if the signature is invalid. PGP could be modified to always send a cleartext
copy of all messages straight to the NSA. These kinds of attacks are difficult to detect and
difficult to counteract. PGP needs to be a part of the trusted code base; if you cannot trust
your PGP binary, then you cannot trust its output.

The best way to trust the PGP binary is to build it from sources yourself. That is not always
possible, however. Alternatives involve watching it being built or getting it from a trusted
source. It helps to look at the size and date of the binary. Using other trusted programs like
md5sum can help. But this just pushes the problems down to another layer. If you cannot
trust the PGP program, there is not much you can do.

Other Attacks Against PGP

Other attacks are possible against PGP, but they are not discussed here. It has never been
proven that the cryptographic algorithms used in PGP are secure. It is possible that the
mathematics used in PGP, which are believed to be secure, may be simple to break. Factoring
attacks against RSA could improve, or someone could find a hold in IDEA.

Not enough is known about the mathematics behind cryptography to know what is and is not
secure. In fact, it is known that nothing can be completely secure. Given enough computer
power it is possible to break any form of cryptography. The question is if the cost of the time
and effort to break the code is worth the cost of the data that is being protected. Note that the
cost of the effort to break a code will only decrease as time moves on because the computer
power keeps increasing and costs continue to decrease. For now, the cryptographer is still

ahead of the cryptanalyist.

685



686 Part III: Messaging: Creating a Secure Channel

PGP Add-Ons

PGP is an extremely useful program, but unfortunately it still is very difficult to use. It
provides so much functionality that it has become cumbersome and confusing to new users.
The current release of PGP is definitely not something that this author’s mother could use.
However, there are a number of add-ons that can help.

Many people have written front-end applications or programs that provide additional features
to make PGP easier to use, easier to integrate, or provide PGP with some useful additional
functions. This chapter cannot include an exhaustive list, but does mention many of the most
recent and most useful add-ons.

PGP Public Keyservers

One problem with PGP is that it is difficult to find the public key for a person without first
contacting him or her. If people who use PGP aren’t signing public postings, such as on
Usenet, you need to be able to obtain public keys without interacting with everyone involved.
The Public Keyservers serve this purpose.

The Public Keyservers are a network of machines that contain a list of all the published PGP
public keys. You can publish your public key by sending it to any one of the keyservers.
Because all the keyservers talk to each other, new keys and key updates are propagated to all
the keyservers. When you want to obtain a key, you can access a keyserver and be sure the
published key that matches the query will be there.

To update a key, the only thing you need to do is extract and send in the new key. The
keyservers will merge the existing and new keys together. New signatures will be added to the
existing key, and new userids will be prepended. Key revocations are treated the same way. Just
send in the key with the revocation certificate and it will be propagated to all the keyservers,
thereby revoking the key.

Warning Keep in mind that keyservers are not trusted machines. You should never trust a
key just because it came from a keyserver. Trust should be based solely on the
signatures on the key, not on the basis of the keyserver.

Keyservers support only a few commands: Add, Get, MGet, Index, Verbose Index, and Help.
All keyserver commands are sent in the subject of an e-mail message; the message body is
ignored for all commands except Add. For the Add command, you must send your public keys
(extracted using pgp -kxa, sent as plain text) as the message body. You can use the Get
command to obtain a key from the keyserver by supplying an argument: “get userid”. Mget lets
you request a number of keys using a regular expression. Index and Verbose Index let you
search for keys that are available.



PGP 687

The easiest way to learn more about the public keyservers is to ask them for assistance. You can
send a message to the keyserver network using the address <pgp-public-keys@keys.pgp.net>.
Send an e-mail with a subject of “help” to obtain a full help message in response.

PGPMenu: A Menu Interface to PGP for Unix

Because PGP can be so difficult to use for beginner users, PGPMenu was written to help
people use PGP and to minimize the steep learning curve. PGPMenu is a menu-based interface
for PGP’s message handling, key management, and configuration options.

The program was implemented for a Unix-based system. It is written in PERL, and is the only
TTY-based interface—not a graphical interface. It might not be pretty, but PGPMenu
provides an easy way for novices to start using PGP.

When the program starts, it reads in your PGP Configuration file and presents a menu of
options. The main menu enables you to use the PGP message security operations. Most PGP
operations are supported on this menu. You can also call up the key management or configura-
tion menus.

The key management menu enables you to maintain key rings. You can add, sign, extract keys,
send keys to the keyserver network, and even get keys signed via MITSign if it is available.

Of course, PGPMenu can help you generate keys, and will even help select an appropriate
username. The interface allows you to access the PGP functions without requiring you to
remember the nuances of the PGP command-line interface.

The PGPMenu configuration menu also lets you control some of the values that can be stored
in the config.txt file. You can change a number of configuration options and even save them to
the config.txt file for later use.

More information about PGPMenu can be found on the World Wide Web via the following
URL:

http://www.mit.edu:8001/people/warlord/pgpmenu.html

MITSign: A Kerberized PGP Key Signer

One major problem with PGP is that the Web of Trust does not easily scale. One feature of
Privacy Enhanced Mail (PEM, one of the secure mail standards) is that it has a certification
hierarchy, where certification authorities (CA) sign keys to validate them. When a key is signed
by a CA, other users can verify the key by following a certification path down to the CA and
then to the key in question.

When a site has an existing Kerberos installation, MITSign lets the existing security infrastruc-
ture provide a certification authority for PGP. Kerberos is a network authentication system
that was developed at MIT’s Project Athena. It uses DES to encrypt network authentication
tickets, which, in turn, are used to authenticate a client to a server. A trusted server, the
Kerberos server, acts as an introducer between all clients and servers on the network.



688

Part III: Messaging: Creating a Secure Channel

The keysigner accepts a Kerberos authentication from a user and compares the authentication
to the userid on the PGP key. Using a set of rules, the keysigner decides whether to sign the
PGP key based on the authentication, Kerberos name, PGP userid, site specifics, and other
rules.

In this manner, the creation of a PGP CA is simplified by using the existing Kerberos infra-
structure at a site. For example, both MIT and Stanford have keysigners running. If there is a
path between the MIT and Stanford keysigner keys, then it becomes possible to validate keys
between both sites because MIT users are signed by the MIT key, and Stanford users are
signed by the Stanford key. This reduces the number of trusted keys necessary to validate user
keys.

Note See Chapter 9 for more information about Kerberos.

More information about MITSign can be found on the World Wide Web via the
following URL:

http://www.mit.edu:8001/people/warlord/mitsign.html

Windows Front-Ends

A number of front-end applications are available for Microsoft Windows that provide various
interfaces to PGP. Unfortunately, there is no native Windows PGP application, so the front-
end programs are the best interfaces for Windows users.

All windows front-ends are built on top of the DOS PGP executable. They read the text
output messages from PGP and interpret them for the user. These messages can then be
presented more graphically. This approach is a simple way to use PGP and to interface it with
other programs.

So many Windows front-ends to PGP exist that it would take another chapter to describe
them. A helpful list of PGP utilities is available on the World Wide Web through the follow-
ing URL address:

http://world.std.com/~franl/pgp/utilities.html

Unix Mailers

PGP has been integrated into a number of mailers for various flavors of Unix. There are too
many variations to go into all of them here, but suffice it to say that someone has either
completed or is working on an integration tool for most major popular mailers.

As of this writing, it is known that interfaces exist and work for emacs mailers and the elm
mailer agent(2.4pl24). Scripts that tie into pine and mh are also available. More information
about these can also be found at the previous page on the World Wide Web:

http://world.std.com/~franl/pgp/utilities.html



PGP 689

Mac PGP

For Macintosh users, a native MacPGP program can be used. Unlike the Windows front-end
applications, MacPGP is a native PGP application with a Macintosh interface. This program
enables you to directly operate on files. The best part about the recent versions of MacPGP is
that it can interface to other programs using Apple Events. One such program is the Eudora
mailer for Macintosh. Using Apple Events, Eudora can ask PGP to sign, verify, encrypt, or
decrypt messages. This way the functions of PGP can be added to other applications.

More information about MacPGP can be found on the World Wide Web via the following
URL:

http://web.mit.edu/network/pgp.html






	Part 3: Messaging: Creating a Secure Channel
	Chapter 10: Encryption Overview
	Chapter 11: PGP


