Managing Internet Security

Understanding TCP/IP
Understanding and Creating Daemons
Using UUCP

Audit Trails

RFC 1244—The Site Security Handbook

NOTE
Click on the lower part of this page to jump to the Contents at a Glance page.

Understanding TCP/IP

CP/IP is a set of data communications protocols. These
protocols allow for the routing of information from one
machine to another, the delivery of e-mail and news,

even the use of remote login capabilities.

The name TCP/IP refers to the two major protocols,

Transmission Control Protocol and Internet Protocol.
Although there are many other protocols that provide
services that operate over TCP/IP, these are the most

common.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

Part I: Managing Internet Security

The History of TCP/IP

Internetworking with TCP/IP has been around for many years—almost as many years as Unix
has been available. TCP/IP, or Transmission Control Protocol/Internet Protocol, grew out of
the work that was done with the Defense Advanced Research Projects Agency, or DARPA. In
1969, DARPA sponsored a project that became known as the ARPANET. This network
mainly provided high-bandwidth connectivity between the major computing sites in govern-
ment, educational, and research laboratories.

The ARPANET provided those users with the ability to transfer e-mail and files from one site
to another, while DARPA provided the research funding for the entire project. Through the
evolution of the project, it became clear that a wide range of benefits and advantages were
available, and that it was possible to provide cross-country network links.

During the 1970s, DARPA continued to fund and encourage research on the ARPANET,
which consisted chiefly of point-to-point leased line interconnections. DARPA also started
pushing for research into alternate forms of communication links, such as satellites and radio.
It was during this time that the framework for a common set of networking technologies
started to form. The result was TCP/IP. In an attempt to increase acceptance and use of these
protocols, DARPA provided a low-cost implementation of them to the user community. This
implementation was targeted chiefly at the University of California at Berkeley’s BSD Unix
implementation.

DARPA funded the creation of the company Bolt Beranek and Newman Inc. (BBN) to
develop the implementation of TCP/IP on BSD Unix. This development project came at the
time when many sites were in the process of adopting and developing local area network
technologies, which were based closely on extensions of the previous single computer environ-
ments that were already in use. By January 1983, all the computers connected to the
ARPANET were running the new TCP/IP protocols. In addition, many sites that were not
connected to the ARPANET also were using the TCP/IP protocols.

Because the ARPANET generally was limited to a select group of government departments
and agencies, the National Science Foundation created the NSFNet that also was using the
successful ARPANET protocols. This network, which in some ways was an extension of the
ARPANET, consisted of a backbone network connecting all the super-computer centers within

the United States and a series of smaller networks that were then connected to the NSFNet
backbone.

Because of the approaches taken with NSFNet, numerous network topologies are available,
and TCP/IP is not restricted to any single one. This means that TCP/IP can run on token
ring, Ethernet and other bus topologies, point-to-point leased lines, and more. However,
TCP/IP has been closely linked with Ethernet—so much so that the two were used almost
interchangeably.

Understanding TCP/IP

Since that time, the use of TCP/IP has increased at a phenomenal rate, and the number of
connections to the Internet, or this global network of networks, has also increased at an almost
exponential rate. A countless number of people are making a living off the Internet, and with
the current trends in information dissemination, it likely will touch the lives of every person in
the developed world at some time.

TCP/IP, however, is not a single protocol. In fact, it consists of a number of protocols, each
providing some very specific services. The remainder of this chapter examines how addressing
is performed in TCP/IP, network configuration, the files controlling how TCP/IP can be used,
and many of the various administrative commands and daemons.

Note A daemon is a program that runs to perform a specific function. Unlike many
commands that execute and exit, a daemon performs its work and waits for more.
For example, sendmail is a daemon. It remains active even if there is no mail to be
processed.

Exploring Addresses, Subnets, and
Hostnames

Each machine on the Internet must have a distinctly different address, like your postal address,
so that information destined for it can be successfully delivered. This address scheme is
controlled by the Internet Protocol (IP).

Each machine has its own IP address, and that IP address consists of two parts: the network
portion and the host portion. The network part of the address is used to describe the network
on which the host resides, and the host portion is used to identify the particular host. To
ensure that network addresses are unique, a central agency is responsible for the assignment
of those addresses.

Because the original Internet designers did not know how the Internet would grow, they
decided to design an address scheme flexible enough to handle a larger network with many
hosts or a smaller network with only a few hosts. This addressing scheme introduces address
classes, of which there are four.

IP addresses can be expressed in several different forms. First is the dotted decimal notation,
which shows a decimal number with each byte separated by a period, as in 192.139.234.102.
Alternatively, this address also can be expressed as a single hexadecimal number such as
0xCO8BEAGG. The most commonly used address format, however, is the dotted decimal
notation.

Part I: Managing Internet Security

Address Classes

As mentioned, there are four major address classes: class A, B, C, and D. Classes A, B, and C
are used to identify the computers that share a common network. A class D, or multicast
address, is used to identify a set of computers that all share a common protocol. Because the
first three classes are more commonly used, this chapter focuses on them. Regardless of the
address class, each address consists of 32 bits, or 4 bytes. Each byte is commonly referred to as
an octet, so an IP address consists of four octets.

Each octet can have a value from 0 to 255. Certain values, however, have a special meaning
that is shown in table 1.1 later in this chapter.

Class A Addresses

In a class A address, the first octet represents the network portion, and the remaining three

identify the host (see fig. 1.1).

Bits 1 9 17 25 31
[of netid | hostid |

Figure 1.1
The class A address format.

This address class means that this network can have millions of hosts because there are 24 bits
available to specify the host address. In figure 1.1, you see that the first bit of the first octet is
set to 0. This means that the network portion of the address must be less than 128. Actually,
the network portion of a class A address ranges from 1 to 127.

Class B Addresses

A class B address is similar in structure to a class A, with the exception that a class B address
uses two octets for the network portion and two octets for the host portion (see fig. 1.2). This
means that there can be more class B networks, each with thousands of hosts.

As illustrated in figure 1.2, the configuration of the class B address is such that each portion
shares the same amount of the address. The first two bits of the network address are set to 1
and 0, meaning that the network address ranges from 128 to 191. With this format, each
network can have thousands of hosts.

Bits 1 9 17 25 31

Figure 1.2 BE — 5
The class B address format. neti osti

Understanding TCP/IP

Class C Addresses

A class C address uses three octets for the network portion, and one octet for the host. The
result is that there can be more class C networks, each with a small number of hosts. Because
the maximum value of a single octet is 255, and there are two reserved values, there can be 253
hosts for a class C network. This network format is illustrated in figure 1.3.

17 25 31

Bits 1 9
[1]1]0] netid [hosia |

Figure 1.3
The class C address format.

As illustrated in figure 1.3, the first two bits of the network address are set to one. This means
that the network address for a class C network ranges from 192 to 223. The remaining values
from 224 to 255 are used in the fourth address class.

Special Addresses

It has been mentioned that there are several different addresses reserved for special purposes.
These addresses are listed in table 1.1.

Table 1.1
Reserved Addresses
Dotted Decimal Address ~ Explanation
0.0.0.0 All hosts broadcast address for old Sun networks.
num.num.num.0 Identifies the entire network.
num.num.num.255 All hosts on the specified network. (Broadcast Address)
255.255.255.255 All hosts broadcast for current networks.

These reserved addresses cannot be used to address any host or network. They have been
specifically reserved. There can be other reserved addresses depending upon other factors,
which you will see later in this chapter.

Subnets

Each host on a network has a specific IP address to enable other hosts to communicate with it.
Depending upon the class of network, there can be anywhere from 253 to millions of hosts on
a network. It would not be practical, however, for a class A or class B address to be restricted to
one network with thousands or millions of hosts. To solve this problem, subnets were devel-
oped to split the host portion of the address into additional networks.

10

Part I: Managing Internet Security

Subnets work by taking the host portion of the address and splitting it through the use of a
netmask. The netmask essentially moves the dividing line between the network and the hosts
from one place to another within the address. This has the effect of increasing the number of
available networks, but reduces the number of hosts that can be connected to each network.

The use of subnets does provide advantages. Many smaller organizations can only obtain a class
C address, yet they have several distinct offices that must be linked together. If they only have
one IP address, a router will not connect the two locations because the router requires that
each network has a distinct address. By splitting the network into subnets, they can use a
router to connect the two networks because they now have distinctly different network
addresses.

The subnet is interpreted through the netmask, or subnet mask. If the bit is on in the netmask,
that equivalent bit in the address is interpreted as a network bit. If the bit is off, it is considered
part of the host address. It is important to note that the subnet is known only locally; to the
rest of the Internet, the address looks like a standard IP address.

As noted in the following table, each class of IP addresses has a default netmask associated
with it.

Table 1.2
Standard Netmasks
Address Class Default Netmask
A 255.0.0.0
B 255.255.0.0
C 255.255.255.0

To fully understand and appreciate how this works, consider an example. Assume that you
have a network address of 198.53.64.0, and you want to break this up into subnets. To further
subdivide this class C network, you must use some of the bits in the host portion, or last byte,
of the address as part of the network portion. Although this increases the number of networks
you can have, it decreases the number of hosts that can be on each subnet.

The Internet RFC 950 also requires that the first and last division of each subnet be reserved.
This means that the actual number of useable subnets is two less than the total number of
divisions. For example, if you want to split your class C network into two divisions, you
cannot connect any hosts. If you want to have six subnets, then you must split your network
into eight divisions.

The following example illustrates how the bits in the last octet are set, and how many subnets
and hosts can be created for each. The variable portion that represents the bits used for the
host portion is identified by the letter V.

Understanding TCP/IP 11

8 7 6 5 4 3 2 1 Divisions Subnets Hosts/Subnets

FVVVVV VY 2 0 0
FFV VVV VY 4 2 62
FFFVVV VYV 8 6 30
FFFFVV VYV 16 14 14
FFFFFV VYV 32 30 6
FFFFFF VYV 64 62 2
FFFFFFFV 128 126 0

The preceding example shows that you can effectively only use a minimum division of four
with two subnets and 62 hosts per net, or a maximum of 64 divisions, which results in 62
subnets of two hosts each. The first example could be used for two separate ethernets, while
the second could be used for a series of point-to-point protocol links.

However, the selection of the type of subnets that should be chosen is determined by the
maximum number of users that will be required on any subnet, and the minimum number of
subnets required.

The possible network portions formed in the development of your divisions are formed by
evaluating the values of the fixed portion of the last byte. Looking back to the last example,
you see that to split our class C address into eight divisions, or 6 subnets, you need to fix the
first three bits in the last octet. The network portions are formed through the evaluation of the
non-fixed portion of the last byte. Consider the following example, which lists the bit combi-
nations and illustrates how the class address is split into the subnets.

Network Host
8 7 6,5 4 3 2 1 Decimal Values

96
128
160
192

As shown in the preceding example, the top three bits—S8, 7, and 6—are fixed in that they are
used as part of the host address. This means that the available networks become the following:

Network

N.O.P.32
N.O.P.64
N.O.P.96

N.O.P.128

12

Part I: Managing Internet Security

N.O.P.160
N.O.P.192

The standard netmask for a class C address is 255.255.255.0. For our subnetted network, the
first three bytes remain the same. The fourth byte is created by setting the network portion to
Is and the host portion to zero. Looking back at the preceding example, you see what the
network addresses will be. You use the same format for determining the netmask. This means
that the netmasks for these subnets are the following:

Network Broadcast Netmask

N.O.P.32 N.O.P.31 255.255.255.32
N.O.P.64 N.O.P.63 255.255.255.64
N.O.P.96 N.O.P.95 255.255.255.96

N.O.P.128 N.O.P.127 255.255.255.128
N.O.P.160 N.O.P.159 255.255.255.160
N.O.P.192 N.O.P.191 255.255.255.192

The end result is that you have split this class C address into six subnetworks, thereby increas-
ing your available address space without having to apply for an additional network address.

When looking at the netmask, it is easy to see why many administrators stick with byte-
oriented netmasks—they are much easier to understand. By using a bit-oriented approach to
the netmask, however, many different configurations can be achieved. Using a netmask of
255.255.255.192 on a class C address, for example, creates four subnets. The same netmask
on a class B address, however, creates more than a thousand subnets!

Hostnames

Each device connected to the Internet must be assigned a unique IP address, but IP addresses
can be difficult to remember. Consequently, each device is generally assigned a hostname,
which is used to access that device. The network does not require the use of names, but they
do make the network easier to use.

For TCP/IP to work properly, the hostname must be translated into the corresponding IP
address. This can be accomplished through several different methods, including looking up
the hostname in a file called the host table or resolving it through the use of the Domain Name

Service (DNS).

Understanding TCP/IP 13

Note Methods for translating the hostname into the corresponding IP address and DNS
are discussed later in this chapter.

Within each organization, the hostname must be unique. The hostname consists of two pieces:
the actual hostname and the TCP/IP domain. The domain is assigned by a central registry
depending on the country you are in and the type of organization you are registering. The
most commonly used domains are .com, .edu, and .gov for commercial, educational, and
government institutions within the United States. While it is possible to obtain a domain using
these outside the United States, it is best not to.

For organizations outside the United States, there may be other rules governing how domains
are assigned. For example, a company in Canada named Widgets Inc. could apply for
widgets.ca, where .ca denotes that the organization is in Canada. If the same company was in
the United Kingdom, then the domain would likely be widgets.co.uk, indicating that it is a
commercial organization within the United Kingdom.

Regarding the actual names for the given hosts, the Internet Request for Comments (RFC)
number 1178 provides some excellent guidelines regarding how to name systems. Here are
some guidelines you should remember:

Use real words that are short, easy to spell, and easy to remember. The point of using
hostnames instead of IP addresses is that they are easier to use. If hostnames are difficult
to spell and remember, they defeat their own purpose.

Use theme names. All hosts in a group could be named after human movements such as
fall, jump, or hop, or cartoon characters, foods, or other groupings. Theme names are
much easier to think up than unrestricted names.

Avoid using project names, personal names, acronyms, or other such cryptic jargon. This
type of hostname typically is renamed in the future, which can sometimes be more
difficult than it sounds.

Note The only requirement is that the hostname be unique within the domain. A well-
chosen name, however, can save future work and make the user community
happier.

The hostname of your computer can be determined by using the hostname command, as
shown in the following:

$ hostname
oreo.widgets.ca
$

On some TCP/IP implementations, the hostname command does not print the information as
shown above, but only prints the actual name of the system. The output of hostname is the
name of the system and the TCP/IP domain name.

14 Part I: Managing Internet Security

Working with Network Interfaces

Each device that is to be connected to a network must have a network interface. This network
interface must be consistent with the media on which the network is running. A network card
for token ring, for example, cannot be connected to a thin coaxial cable network.

The following are the commonly used network types:

Media Type
Token Ring
Thinnet (RG-58U Coax Cable)
Ethernet (RG-8U Coaxial cable)
Twisted Pair Cable
Fiber Optics
Each network interface has a name for the device and an IP address. If there is more than one

network interface in a device, each network interface must be part of a different network. That
is, the IP addresses must be different, as shown in figure 1.4.

Figure 1.4

Network interfaces.

192.1.2.3

Desktop
computer

192.1.2.4
Minicomputer
<« 192.1.1.3

Token Ring

Desktop
computer

192.1.1.2

The exact name used for each device is vendor implemented, and often is different depending
upon the type of interface that is in use. Table 1.3 lists some of the network interface names
that are used, and on what systems those names are found.

Understanding TCP/IP
Table 1.3
Network Interface Names
Interface Name Operating System
le0 SunOS 4.1.3
wdn0,e3a,sl0,pppl ~ SCO Unix
du0 DEC Ultrix

Consequently, as the system is configured, the network administrator must decide what the
name of the device is, or must understand how to query the system to determine the name of
the device. Having this information is essential to successfully configuring the network
interface.

Configuration Using ifconfig

Except for Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol (PPP) interfaces,
the ifconfig command is used to configure the interface, including its IP address, broadcast
address, netmask, and whether or not the interface is operational. There are some variations to
this command, so it is wise to check out your system’s documentation when setting up your
interface.

Normally ifconfig is used at boot time to configure the interface. ifconfig also can be used after
the system is running to change the IP address, or other interface configuration information.

The command syntax for ifconfig is as follows:

ifconfig interface address-family address destination-address parameters

The interface value identifies the name of the interface that is being configured—wdn0, for
example. The address family identifies the type of addressing used for this interface. Currently,
the only value supported for this argument is inet.

The address value can consist of a hostname that is found in /etc/hosts, or an Internet address
expressed in dot notation. If the name form is used and the hostname is not found in the /etc/
hosts file, an error is returned.

Table 1.4 lists the commonly available parameters that can be configured with ifconfig.

15

16

Part I: Managing Internet Security

Table 1.4

ifconfig Commands

Command

Function

up

down

trailers

-trailers

arp
-arp

metric N

debug
-debug
netmask MASK

dest-address

broadcast

This marks the interface as being up, or operational. When the first
address of the interface is configured, the interface is marked as up.
It also can be used to reset an interface after it was previously marked
down.

This marks an interface down. When the interface is marked down,
the system does not attempt to transmit messages through that
interface. If possible, the interface will be reset to prevent the
reception of incoming packets as well. Use of this command does
not automatically disable the routes that use this interface.

This requests the use of a trailer-link-level encapsulation when
transmitting. If the interface is capable of supporting trailers, the
system encapsulates the outgoing messages in a manner that mini-
mizes the number of memory-to-memory copy operations per-
formed by the receiver.

Disables the use of trailer encapsulation.

This enables the use of the Address Resolution Protocol in mapping
between network-level addresses and link-level addresses.

This disables the use of the Address Resolution Protocol.

This sets the routing metric for this interface, which is by default 0.
The routing metric is used by the route daemon, routed. The higher
the metric, the less favorable the route is.

This enables network-driver-level debugging.
This disables driver-dependent debugging code.

This specifies how much of the address is used for the division of a
network into subnets. The netmask contains 1s for the bit positions
that are used for the network and subnet parts, and Os for the host
portion.

This specifies the destination address of the correspondent on the
other end of a point-to-point link.

Specifies the address to use when sending a packet to all of the hosts
on a network. The default value is the network portion and all 1s for
the host portion. If the network portion is 192.139.234, for
example, then the broadcast address is 192.139.234.255.

Understanding TCP/IP 17

The following illustrates using ifconfig on an SCO system that has only one interface:

ifconfig 1lo@ localhost
ifconfig wdn@ 198.73.138.2 -trailers netmask 255.255.255.0 broadcast
0% 198.73.138.255

The preceding code has two lines. The first illustrates defining the localhost loopback interface,
and the second defines an interface named wdnO using an IP address of 198.73.138.2. The
trailer encapsulation option is turned off (-trailers), the netmask is 255.255.255.0, and the
broadcast address is the default, using all 1s for the host portion.

The following code illustrates using ifconfig on a SunOS 4.1.3 system:

ifconfig le@ 198.73.138.6 -trailers netmask Oxffffff@® broadcast 198.73.138.6

The options used on the SunOS system are the same as with SCO systems, except that the
netmask defined on the Sun system uses a hexadecimal notation rather than the dot notation.

Note The use of the ifconfig is restricted to the super-user when used to configure the
interface. A normal user can use the ifconfig command to query the status of the
interface.

Reviewing the Network Configuration
Files

A large number of files assist in the configuration and control of TCP/IP on the system. Next,
this chapter examines those files, their use, and their formats. Understanding the services that
are controlled from these files is essential to locate hidden security problems later. Some of
these files also have inherent security problems, which will also be discussed.

The /etc/hosts File

The purpose of the /etc/hosts file is to provide a simple hostname to IP address resolution.
Remember that TCP/IP only requires the use of IP addresses. The use of hostnames is for your
convenience and ease of use. When a hostname is used, TCP/IP examines the contents of the /
etc/hosts file (assuming that Domain Name Service is not in use) to find the IP address for the
host.

The format of an entry in the /etc/hosts file is:

address official name alias ...

The columns refer to the IP address, the official or fully qualified domain name (FQDN), and
any aliases for the machine. This is illustrated in the sample hosts file shown here:

Part I: Managing Internet Security

IP ADDRESS FQDN ALIASES
127.0.0.1 localhost

192.139.234.50 gateway.widgets.ca gateway
142.77.252.6 gateway.widgets.ca router
142.77.17.1 nb.ottawa.uunet.ca

198.73.137.1 gateway.widgets.ca ppp1
198.73.137.2 newton.widgets.ca newton
198.73.137.50 gateway.widgets.ca net2

The aliases include the short form of the hostname, as well as any other names for the host.
The routines that search this file skip text that follows a “#”, which represents a comment, as
well as blank lines.

Note The network configuration files all support the use of comments with the “#”
symbol. This allows the network administrator to document changes and notes.

The /etc/ethers File

After the IP address is known, TCP/IP converts this to the actual ethernet hardware address
when the host is on the local network. This can be done by using the Address Resolution
Protocol (ARP), or by creating a list of all of the ethernet addresses in the file /etc/ethers. The
format of this file is the ethernet address followed by the official hostname, as illustrated here:

Ethernet Address Hostname
8:0:20:0:fc:6f laidbak
2:7:1:1:18:27 grinch
0:aa:0:2:30:55 slaid
e0:0:c0:1:85:23 lancelot

The information in this file actually is used by the Reverse Address Resolution Protocol
daemon, rarpd, which is explained later in this chapter. The ethernet address notation used is
x:x:X:X:x:X, where x is a hexadecimal number representing one byte in the address. The address
bytes are always in network order, and there should be an entry in the hosts file for each device
in this file.

The /etc/networks File

This file provides a list of IP addresses and names for networks on the Internet. Each line
provides the information for a specific network, as shown here:

NETWORK NAME IP ADDRESS
loopback 127
Ottawa.widgets.ca 192.139.234
Toronto.widgets.ca 192.139.235
WAN.widgets.ca 198.73.137
Lab.widgets.ca 198.73.138

Montreal.widgets.ca 198.73.139

Understanding TCP/IP 19

Each entry in the file consists of the network IP address, the name for the network, any aliases,
and comments.

The /etc/protocols File

The /etc/protocols file provides a list of known DARPA Internet protocols. This file should
not be changed, as it gives the information provided by the DDN Network Information

Center. As shown here, each line contains the protocol name, the protocol number, and any
aliases for the protocol.

Internet (IP) protocols

#

ip
icmp
ggp
tep
egp
pup
udp
hello

o W=

8

12
17
63

IP
ICMP
GGP
TCP
EGP
PUP
UDP

HELLO

#
#
#
#
#
#
#
#

internet protocol, pseudo protocol number
internet control message protocol

gateway to gateway protocol

transmission control protocol

Exterior Gateway Protocol

PARC universal packet protocol

user datagram protocol

HELLO Routing Protocol

The /etc/services File

The /etc/service file provides a list of the available services on the host. For each service, a line
in the file should be present that provides the following information:

Official service name

Port number

Protocol name

Aliases

As with the other files, each entry is separated by a space or tab. The port number and protocol

name are considered a single item, as a slash (/) is used to separate them. A portion of the /etc/
services file is shown in the following:

#

Network services,

#

echo
echo
discard
discard
systat
ftp
telnet
smtp

7/tcp
7 /udp
9/tcp
9/udp
11/tcp
21/tcp
23/tcp
25/tcp

sink
sink

users

mail

Internet style

null
null

20

Part I: Managing Internet Security

time 37/tcp timserver

time 37/udp timserver

rlp 39/udp resource # resource location
whois 43/tcp nicname

domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver

It’s obvious that this file relies upon information from /etc/protocols to function. If the service
is not available, or you want to remove support for a specific service, then the appropriate line
can be commented out using the comment symbol. In many cases, however, the file /etc/
inetd.conf also has to be updated to disable support for a given protocol.

The /etc/inetd.conf File

The inetd.conf file is used to provide the information to the inetd command. As discussed later
in the chapter, inetd is the Internet super-server. It listens on a specified TCP/IP port and
starts the appropriate command when a connection is requested on that port. This saves system
resources by only starting the daemons when they are needed.

The following illustrates an inetd.conf file from an SCO system, along with the file format.

#

ftp stream tep nowait NOLUID /etc/ftpd -1 -v ftpd
telnet stream tep nowait NOLUID /etc/telnetd telnetd
shell stream tep nowait NOLUID /etc/rshd rshd
login stream tep nowait NOLUID /etc/rlogind rlogind
exec stream tcp nowait NOLUID /etc/rexecd rexecd
finger stream tcp nowait NOUSER /etc/fingerd fingerd

The SCO inetd.conf file differs from the format of most systems because of the C2 security
components found in the SCO Unix operating system. Specifically, SCO requires the Login
UID, or LUID, to be set for each user who accesses the system. Because setting the LUID
should not be done until a user actually logs in, the LUID must not be set when the daemon
starts up. This is accomplished by using the NOLUID parameter in the file.

The following illustrates the standard inetd.conf file that is found on most other Unix systems.

#

ftp stream tep nowait root /usr/etc/in.ftpd in.ftpd
telnet stream tcp nowait root /usr/etc/in.telentd in.telentd
shell stream tep nowait root /usr/etc/in.rshd in.rshd
login stream tecp nowait root /usr/etc/in.rlogind in.rlogind
exec stream tep nowait root /usr/etc/in.rexecd in.rexecd

finger stream tcp nowait nobody /usr/etc/in.fingerd in.fingerd

Understanding TCP/IP 21

Understanding the Network Access Files

Two files can have a significant impact on the security of your system. These files are the /etc/
hosts.equiv and the .rhosts files.

/etc/hosts.equiv File

The /etc/hosts.equiv file contains a list of trusted hosts. This file is used by the r* commands
rlogin, rcp, remd, and rsh, and is discussed in detail later in this chapter. The format of this file
consists of a list of machine names, one per line, as illustrated here:

localhost

oreo
wabbit.widgets.ca
chare

chelsea

widgets

pirate

Tip It's a good habit to use a fully qualified name, but if the domain is omitted, TCP/IP
adds it to the hostname when validating the remote system.

The .rhosts File

The .thosts file that is used in the user’s HOME directory accomplishes a similar purpose to
letc/hosts.equiv. The file format is the same, with one notable exception. The hosts.equiv file
is used to provide equivalence between hosts, while the .rhosts file is used to provide equiva-
lence between users. The .rhosts file is appended to the information found in /etc/hosts.equiv
when checking for equivalence.

Note The hosts.equiv file is not used for the root user. The only file processed in this case
is /.rhosts.

User and Host Equivalency

Host Equivalency, or Trusted Host Access, is configured by the system administrator by using
the file /etc/hosts.equiv. This file consists of hostnames, one per line.

Tip | Itisagood idea to document in the file who the network administrator is, as
comments can be included by using the comment symbol (#).

Each entry in the hosts.equiv file is trusted. That is, users on the named machine can access
their equivalent accounts on this machine without a password. This is not applicable for
root, however, as will be explained later. Figure 1.5 will be used in the discussion of user
equivalency.

22

Part I: Managing Internet Security

Figure 1.5

A sample network.

host = oreo

E user = chare
host = wabbit
user = chare

The two machines shown in figure 1.5, oreo and wabbit, both have a user named chare. If the
user chare currently is logged into wabbit, and issues the command

$ rlogin oreo

with host equivalency established, then chare will be logged into oreo without being asked for
his password. If host equivalency is not there, chare will be asked for his password on the
remote machine.

The following must be considered with /etc/hosts.equiv:
It assumes that you trust ALL the users on the remote machine.
Root is never trusted through the use of this file.

There is a second format for the hosts.equiv file, known as .rhosts, which was shown previ-
ously. This format lists a system name and a user name. With the addition of the user name,
the user is allowed to log in with any user name found in /etc/passwd.

User equivalence is a mechanism in which the same user is known to all of the machines in the
network. This makes the network administrator’s job easier in the long run. It should be
considered absolutely necessary for environments where NFES is used or is planned.

To configure user equivalence, the user creates a file in his home directory called .rhosts. This
file must be writeable only by the owner of the file. If it is not, then the file is ignored for
validation purposes. As with the hosts.equiv file, this file contains a system name per line, but
generally also includes the name of the user who is being equivalenced.

Understanding TCP/IP

Examining TCP/IP Daemons

Because of the varying implementations of TCP/IP that are available, a wide range of daemons
can comprise the system. As many as possible are listed here along with a brief explanation of
what they do. If they are operating system specific, the operating system version information
also is included.

Many of the TCP/IP daemons are named with the name of the service they provide followed
by the letter “d,” as in bootpd. This convention is used to indicate that this command is a
daemon.

The slink Daemon

The slink daemon provides the necessary components to link the STREAMS modules required
for streams TCP/IP. When the system is started, a configuration file, typically /etc/strcf, is
processed, thus establishing the links between STREAMS modules for each of the network
devices present in the system.

This daemon is found only on versions of Unix that use STREAMS-based TCP/IP, such as
most System V derivatives.

The Idsocket Daemon

The ldsocket command initializes the System V STREAMS TCP/IP Berkeley networking
compatibility interface. This daemon also is found only on System V-based implementations
of TCP/IP, as the BSD-based versions do not use a STREAMS-based implementation. As the
ldsocket program is loaded, a file, generally /etc/sockcf, is processed, and the streams modules
are loaded and configured to provide the socket style interface.

The cpd Daemon

This is a copy protection daemon that is specific to the Santa Cruz Operation versions of
TCP/IP. When TCP/IP starts, it registers with the copy protection daemon. When the cpd
receives a datagram from a remote system with the same serial number, a warning message is
printed advising the system administrator of the problem. SCO is the only system with this
feature.

The Line Printer Daemon (Ipd)

The Ipd is the line printer daemon, or spool area handler, and is executed at boot time. It
accepts incoming print jobs on a specific TCP/IP port, and queues the print job for printing
on the local or remote system. The printer configuration information is stored in the file /etc/
printcap, and the access control to the printer is maintained through the file /etc/hosts.Ipd.

24

Part I: Managing Internet Security

The SNMP Daemon (snmpd)

The SNMP daemon is an implementation of the Internet Simple Network Management
Protocol, as defined in RFCs 1155-1157, 1213, and 1227. While this daemon is capable of
receiving information from SNMP agents on other systems, many systems do not include
SNMP Management software.

The RARP Daemon (rarpd)

The RARP command is a daemon that responds to Reverse Address Resolution Protocol
(RARP) requests. Other systems typically use RARP at boot time to discover their (32 bit) IP
address given their (48 bit) Ethernet address. The booting machine sends its Ethernet address
in an RARP request message. For the request to be answered, the system running rarpd must
have the machine’s name-to-IP-address entry in the /etc/hosts file or must be available from
the domain name server and its name-to-Ethernet-address entry must exist in the /etc/ethers
file. Using the above two sources, rarpd maps this Ethernet address into the corresponding IP
address.

The BOOTP Daemon (bootpd)

The BOOTP daemon implements an Internet Boot Protocol server as defined in RFC 951
and RFC 1048. The bootpd daemon is started by the inetd super-server when a boot request
arrives. If bootpd does not receive another boot request within 15 minutes of the last one it
received, it exits to conserve system resources. The Internet Boot Protocol server is designed
to provide network information to the client. This information can include, but is not
restricted to, the client’s IP address, netmask, broadcast address, domain server address, router
address, etc.

The ROUTE Daemon (routed)

The routed daemon is invoked at boot time to manage the Internet Routing Tables. The
routed daemon uses a variant of the Xerox NS Routing Information Protocol to maintain
up-to-date kernel Routing Table entries. In normal operation, routed listens on the UDP
socket 520 to provide the route service for routing information packets. If the host is an
internetwork router, it periodically supplies copies of its routing tables to any directly con-
nected hosts and networks.

The netstat command, which is discussed later in this chapter, is used to print the routing
tables on a host. The netstat command is shown here:

Understanding TCP/IP 25

$ netstat -r
Routing tables

Destination Gateway Flags Refs Use Interface
nb.ottawa.uunet. gateway UH 0 1 du0
localhost.0.0.12 localhost.0.0.127. UH 3 0 100
topgun gateway UH 1 3218 dut
default gateway UG 1 669360 du0
Lab.widgets.ca gateway V] 8 3340413 wdn@
Ottawa.widgets.ca gateway V] 10 2083505 iato

$

The list identifies the gateway that is used to reach a specific destination network, along with
the status of the route (flags). It also includes how many connections are in use through that
gateway, the number of packets through the gateway, and the name of the interface in this
machine that connects the machine to the network.

Most systems are capable of handling dynamic and static routes. The dynamic routes are
handled by the routed daemon. As the routes change, the routed daemon updates the tables
and informs other hosts as needed. The static routes generally are manipulated by hand using
the route command, and generally are not controlled by the routed daemon.

The Domain Name Service Daemon (named)

named is the Internet Domain Name Server, and it is the second mechanism available to
provide hostname to IP address resolution. The daemon can serve in a variety of roles,
including primary, secondary, caching, and as a slave, depending upon the requirements of the
network administrator. If the /etc/hosts file is not used, and domain name service (DNS) is
configured, then the system makes requests to the DNS to provide the IP address for a
hostname. If the local DNS does not know the IP address for the specified host, it queries
other name servers until it obtains the address.

The user command nslookup is used to query the DNS server for a given piece of information.
The following illustrates using the nslookup command to find the IP address for the hostname
gatekeeper.dec.com.

$ nslookup gatekeeper.dec.com
Server: gateway.widgets.ca
Address: 192.139.234.50
Non-authoritative answer:
Name: gatekeeper.dec.com
Address: 16.1.0.2

$

In this output, the domain name server gateway.widgets.ca cannot provide an authoritative
response because it is not the authoritative master for the dec.com domain. The end result is
that you learn the IP address for gatekeeper.dec.com is, in fact, 16.1.0.2.

Part I: Managing Internet Security

The System Logger Daemon (syslogd)

This daemon is responsible for logging various system messages in a set of files described by the
syslogd configuration file /etc/syslog.conf. Each message is saved on a single line in the file and
can contain a wide variety of information. The syslog daemon receives information sent to it
and saves the messages in its log file. Information can consist of informational, error, status,
and debug messages. Each message also can have a level of severity associated with it.

Inetd—The Super-Server

The inetd super-server listens on multiple TCP/IP ports for incoming connection requests.
When the request is received, it spawns the appropriate server. The use of a super-server allows
other servers to spawn only when needed, thereby saving system resources. When the connec-
tion is terminated, the spawned server terminates.

Typically, servers that are started through inetd include fingerd, ftpd, rexecd, rlogind, and

others. inetd, however, cannot be used for servers like named, routed, rwhod, sendmail, or any
RES or NES server.

The RWHO Daemon (rwhod)

The RWHO daemon maintains the database used by the rwho and ruptime commands. Its
operation is predicated by its capability to broadcast messages on a network. rwho operates by
periodically querying the state of the system and broadcasting that information on the net-
work. It also listens for rwho messages produced by other systems, so it can update its database
of remote server information.

It is important to note that this service takes up more and more bandwidth as the number of
hosts grows. For large networks, the cost in network traffic becomes prohibitive.

Exploring TCP/IP Utilities

TCP/IP commands can be split into three categories:
Those that are used to administer the TCP/IP network at one level or another
User commands that can be considered applications unto themselves

Third-party applications that have been implemented by using one or more of the
services provided by TCP/IP, such as client-server databases

Understanding TCP/IP

Administration Commands

This section examines some of the commands that are used to administer the TCP/IP services
provided in a system. Many of the commands can be executed by either a regular user or the
super-user, but some features are restricted due to the nature of the command. An understand-
ing of the commands available to administer TCP/IP, however, is important for the adminis-
trator and helpful for the user.

The ping Command

The ping command is used to send Internet Control Message Protocol (ICMP) packets from
one host to another. ping transmits packets using the ICMP ECHO_REQUEST command
and expects to get an ICMP ECHO_REPLY in response to each transmitted packet. The
name ping comes from the sonar detection device that uses a sound pulse resembling a ping to
locate targets in the surrounding area. In this case, the sound pulses are ICMP packets to a
target host.

The following illustrates using ping with a responding host and using ping with a
nonresponding host. Under normal circumstances, ping does not terminate, but broadcasts
packets until the user stops it, typically through an interrupt signal such as Control+C.

$ ping shylock

PING shylock (192.139.234.12): 56 data bytes

64 bytes from shylock (192.139.234.12): icmp_seq=0 ttl=254 time=10 ms
64 bytes from shylock (192.139.234.12): icmp_seq=1 ttl=254 time=10 ms
64 bytes from shylock (192.139.234.12): icmp_seq=2 ttl=254 time=10 ms
64 bytes from shylock (192.139.234.12): icmp_seq=3 ttl=254 time=10 ms

— shylock ping statistics —

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 10/10/10 ms

$

The ping command has a wide variety of options that can be used to help locate potential
problems in the connections. These options and their explanation are shown in table 1.5.

Table 1.5
ping Options
Option Description
-c count This instructs ping to continue sending packets until count requests have

been sent and received.
-d This option turns on the debug option for the socket being used.

-f This is a flood ping. It causes ping to output packets as fast as they come
back from the remote host or 100 times per second, whichever is faster.

continues

28

Part I: Managing Internet Security

Table 1.5, Continued
ping Options

Option

Description

-i seconds

-n

-p pattern

<

-r

-s packetsize

-V

In this mode, each request is shown with a period, and for each response,
a backspace is printed. Only the super-user can use this option. For
obvious reasons, this can be very hard on a network and should be used
with caution.

This option instructs ping to wait the specified number of seconds
between transmitting each packet. This option cannot be used with the -f
option.

Numeric mode only. Normally ping attempts to resolve the IP address for
a hostname. This option instructs ping to print the IP addresses and not
look up the symbolic names. This is important if for some reason the local
name server is not available.

This enables the user to specify up to 16 pad bytes to be added to the
packet. This is useful for diagnosing data-dependent problems in a
network. Using -p ff, for example, causes the transmitted packet to be
filled with all 1s.

Normally, ping reports each response received. This option puts ping into
quiet mode. The result is that it prints the summary information at
startup and completion of the command.

This adds the ICMP RECORD_ROUTE option to the
ECHO_REQUEST packet. This asks for the route to be recorded in the
packet, which ping then prints when the packet is returned. There is only
room for nine routes in each packet, and many hosts ignore or discard this
option.

This causes ping to bypass the normal routing tables that would be used
to transmit a packet. For this to work, the host must be on a directly
attached network. If the target host is not, an error is printed by ping.

This enables the user to specify the number of data bytes that are to be
sent. The default is 56 bytes, which translates into 64 ICMP data bytes
when combined with the 8 bytes of ICMP header of data.

This puts ping into verbose mode. It instructs ping to print all ICMP
packets returned other than ECHO_RESPONSE packets.

The following demonstrates the -q option for ping. With this example, ping prints only the

startup and summary information.

Understanding TCP/IP 29

$ ping -q ftp.widgets.ca
PING chelsea.widgets.ca (198.73.138.6): 56 data bytes

-- chelsea.widgets.ca ping statistics --

7 packets transmitted, 7 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms

$

These examples are not representative of all implementations of ping. The following illustrates
the output of ping on BSD versions of Unix.

% /usr/etc/ping gateway
gateway.widgets.ca is alive

For the BSD Unix users, the ping command generally does not print the information that was
illustrated in preceding code. The preceding example serves to illustrate that even different
versions of TCP/IP have been implemented differently.

When ping is used for fault isolation, it should first be run on the local host to ensure that the

network interface is up and running. The ping program is intended for use in network testing,

measurement, and management. Because of the load it can impose on the network, however, it
is not wise to use ping during normal working hours or from automated test scripts.

The ruptime and rwho Commands

The ruptime command uses the facilities of the rwhod server to show the status of the local

machines on the network. It prints a status line for each host in its database. This database is
built by using broadcast rwho packets, once every one to three minutes. Machines that have
not reported a status for five minutes are reported as down. The output of ruptime is shown

here.

$ ruptime

chelsea up 17+01:28, 0 users, load 0.00, 0.00, 0.00
daffy up 29+06:11, 0 users, load 1.00, 1.00, 1.00
gateway up 16+14:34, 1 user, load 1.00, 1.05, 1.02
mallow up 5+12:46, 0 users, load 0.00, 0.00, 0.00
oreo up 19+13:13, 1 user, load 2.00, 2.00, 1.33
ovide up 4+04:54, 1 user, load 1.14, 1.16, 1.17
wabbit down 107+01:33

$

If the rwhod server is not running on any of the hosts in your network, then ruptime reports
the status message no hosts!!! and exits. In the preceding example, the system wabbit appears
to be down. This might be accurate, but it also might be that the rwhod server has exited or is
no longer running on the system.

Normally, the ruptime output is sorted by hostname, but the following options alter the
output format of ruptime.

30

Part I: Managing Internet Security

Table 1.6

ruptime Options

Option Description

-a Includes all users in ruptime output. (Users idle for more than an hour are not
usually counted in the user list.)

-1 Sorts the output by load average.

-t Sorts the output by uptime.

-u Sorts the output by the number of users.
-1 Reverses the sort order.

The rwho command lists the users who currently are logged in on each of the servers in the
network. The rwho command reports the users who are logged in on hosts that are responding
to and transmitting rwhod packets. The output of the rwho command is shown here:

$ rwho

chare oreo:ttyp0 Oct 9 14:58 :01
root ovide:tty08 Oct 4 18:05
topgun gateway:tty2A Oct 9 13:54

$

In this output, the name of the user is shown as well as the system name, the port he is logged
in on, and the date he logged in to the system. This looks like the output from the who
command, except the system name is included in the port information.

The ifconfig Command

The ifconfig command has been presented in some detail, but this section illustrates some
additional uses for it. By using ifconfig, for example, it is possible to query the interface to find
out how it has been configured, as shown here:

$ /etc/ifconfig wdn@

wdn@: flags=23<UP,BROADCAST,NOTRAILERS>

inet 198.73.138.2 netmask ffffff00 broadcast 198.73.138.255
$

This output shows that the interface is up, it does not use trailer encapsulation, and it identi-
fies the addresses and netmask currently used by the interface. Any interface that is configured
on the system can be queried in this manner.

The following illustrates marking an interface down, verifying that information, and then
marking the interface up.

Understanding TCP/IP 31

ifconfig du@

du@: flags=51<UP,POINTOPOINT,RUNNING>

inet 142.77.252.6 --> 142.77.17.1 netmask ffff0000
ifconfig du@ down

ifconfig du@

du@: flags=50<POINTOPOINT,RUNNING>

inet 142.77.252.6 --> 142.77.17.1 netmask ffff0000
ping toradm

PING toradm.widgets.ca (142.77.253.13): 56 data bytes
ping: sendto: Network is unreachable

ping: wrote toradm.widgets.ca 64 chars, ret=-1
ping: sendto: Network is unreachable

ping: wrote toradm.widgets.ca 64 chars, ret=-1
ping: sendto: Network is unreachable

ping: wrote toradm.widgets.ca 64 chars, ret=-1

-- toradm.widgets.ca ping statistics --

3 packets transmitted, @ packets received, 100% packet loss

ifconfig du@ up

ifconfig du@

du@: flags=51<UP,POINTOPOINT,RUNNING>

inet 142.77.252.6 —> 142.77.17.1 netmask ffff0000

ping toradm

PING toradm.widgets.ca (142.77.253.13): 56 data bytes

64 bytes from toradm.widgets.ca (142.77.253.13): icmp_seq=0 ttl=251 time=610 ms
64 bytes from toradm.widgets.ca (142.77.253.13): icmp_seq=1 ttl=251 time=630 ms

-- toradm.widgets.ca ping statistics --

3 packets transmitted, 2 packets received, 33% packet loss
round-trip min/avg/max = 610/620/630 ms

#

In this example, the interface being affected is a point-to-point protocol link, which is illus-
trated in the output of ifconfig. When the interface is marked down, packets will not be
transmitted on that link, as shown using ping. When the interface is later marked up, traffic
once again flows on that link.

The use of ifconfig to configure an interface is restricted to the super-user. Any user on the
system, however, can use ifconfig to query the interface for its current operating statistics.

The finger Command

By default, finger lists the login name, full name, terminal name and terminal write status (as
a “*” before the terminal name if write permission is denied), idle time, login time, office
location, and phone number (if known) for each current user.

Note Idle time is minutes if it is a single integer, hours and minutes if a colon (:) is
present, or days and hours if a “d” is present.

32

Part I: Managing Internet Security

Longer format also exists and is used by finger whenever a list of names is given. (Account
names as well as first and last names of users are accepted.) This is a multiline format; it
includes all the information described earlier as well as the user’s home directory, login shell,
any plan the user has placed in the .plan file in her home directory, and the project on which
she is working from the .project file that is also in her home directory. The output of finger is
illustrated here:

$ finger chare

Login name: chare (messages off) In real life: Chris Hare
Directory: /u/chare Shell: /bin/ksh

On since Oct 8 22:06:31 on ttypo@

Project: Not assigned to one (yet).

Plan:

To complete the currently assigned tasks.

In the preceding code, the output from this finger command is for a user who is currently
logged into the system. Notice the (messages off) text. This indicates that any attempts to
contact this user with the write command will fail because the user does not allow writes to her
terminal. When the user is not logged in, the output is different, as shown here:

$ finger andrewg

Login name: andrewg In real life: Andrew Goodier
Directory: /u/andrewg Shell: /bin/ksh

Last login Sun Sep 18 22:08

No Plan.

$

The following table lists the options that typically are available on the finger command.

Table 1.7

finger Options
Option Description
-b Briefer output format
-f Suppresses the printing of the header line (short formart)
-i Provides a quick list of users with idle times
-1 Forces long output format
-p Suppresses printing of the .plan files
-q Provides a quick list of users
-s Forces short output format

-w Forces narrow format list of specified users

Understanding TCP/IP

It is important for you to recognize that the finger command allows the distribution of
valuable user information, such as user names and home directories. For this reason, many sites
choose to disable the finger daemon and remove the finger command entirely.

The netstat Command

The netstat command is used to query the network subsystem regarding certain types of
information. netstat, for example, can be used to print the routing tables, active connections,
streams in use (on those systems that use streams), and more. netstat prints the information in
a symbolic format that is easier for the user to understand. The options for netstat are listed in

table 1.8.

Table 1.8
netstat Options

Option Description

-A Shows the addresses of any associated protocol control blocks. This
option is primarily used for debugging only.

-a Instructs netstat to show the status of all sockets. Normally, the
sockets associated with server processes are not shown.

-i Shows the state of the interfaces that have been autoconfigured.
Those interfaces that have been configured after the initial boot of the
system are not shown in the output.

-m Prints the network memory usage.

-n Causes netstat to print the actual addresses instead of interpreting

-r

-f address-family

-I interface

-p protocol-name

-S

-t

them and displaying a symbol such as a host or network name.
Prints the routing tables.

Causes netstat to print only the statistics and control block informa-
tion for the named address family. Currently, the only address family
supported is inet.

Shows the interface state for only the named interface.

Limits the statistics and protocol control block information to the
named protocol.

Causes netstat to show the per protocol statistics.

Replaces the queue length information with timer information in the
output displays.

34

Part I: Managing Internet Security

The output from netstat in the following code illustrates the retrieval of interface statistics
from the interfaces on the system.

$ netstat -i

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
le0 1500 198.73.138.0 chelsea 2608027 26 1421823 1 2632 0

100 1536 loopback 127.0.0.1 765364 0 765364 0 0 0

$ netstat -in

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
le0 1500 198.73.138.0 198.73.138.6 2608082 26 1421862 1 2632 0

100 1536 127.0.0.0 127.0.0.1 765364 0 765364 0 0 0

$

In the second invocation of netstat in the preceding code, the use of the -n option is employed.
This causes netstat to print the address instead of the symbolic name that was printed in

the first invocation of netstat. This information is dependent upon the link level driver for

the interface. If that driver does not attach itself to the ifstats structure in the kernel, then the
phrase No Statistics Available is printed.

In the output of netstat shown in the preceding example, columns of information are shown.
These columns and their meanings are listed in table 1.9.

Table 1.9

netstat Column Headings

Column Description

Name The name of the configured interface
Mtu The maximum transmission unit for the interface
Net/Dest The network that this interface serves

Address The IP Address of the interface

Ipkes The number of received packets

Lerrs The number of packets that have been mangled when received
Opkts The number of transmitted packets

Oerrs The number of packets that were damaged when transmitted

Collisions The number of collisions recorded by this interface on the network

Keep in mind that the notion of errors is somewhat ill-defined according to many of the
manual pages for netstat, calling into question the validity of the values in the error columns.
In addition, with the tables always being updated, the information presented is, like the output
of ps, only a snapshot of the status at any given interval.

Understanding TCP/IP

One of the common uses of netstat is to find out if there are any network memory allocation
y ry
problems. This is achieved using the command netstat -m, as shown here:

$ netstat -m
streams allocation:

config alloc free total max fail
streams 292 93 199 53882 112 0
queues 1424 452 972 122783 552 0
mblks 5067 279 478820 190677 706 0
dblks 4054 279 377515 804030 706 0
class 0, 4 bytes 652 55 597 475300 277 0
class 1, 16 bytes 652 8 644 2404108 62 0
class 2, 64 bytes 768 22 746 9964817 232 0
class 3, 128 bytes 872 138 734 1223784 386 0
class 4, 256 bytes 548 34 514 230688 75 0
class 5, 512 bytes 324 12 312 92565 76 0
class 6, 1024 bytes 107 0 107 1226009 49 0
class 7, 2048 bytes 90 0 90 182978 67 0
class 8, 4096 bytes 41 10 31 3781 13 0

total configured streams memory: 1166.73KB
streams memory in use: 98.44KB

maximum streams memory used: 409.22KB

$

This output is from an SCO Unix 3.2 version 4.2 system. If there are any non-zero values in
the fail column, then it is important to readjust the number configured. When the configured
number of data blocks is reached, a failure is generated. This means that a TCP/IP application
or service could not get the needed resources. The only way to correct this problem in the
short term is to reboot the machine. Over the long run, the only way to prevent these failures
is to adjust the values and relink the kernel. The output of netstat -m on a SunOS system is
similar in content to the SCO systems.

The netstat command also can be used to list all the sockets that are on the system using the -a
option. This option is illustrated here:

$ netstat -a
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

ip 0 0 *.* *,*

tep 0 28672 oreo.20 topgun.4450 ESTABLISHED
tep 0 286 oreo.telnet topgun.4449 ESTABLISHED
tep 0 0 oreo.ftp topgun.4438 ESTABLISHED
tep 0 0 oreo.1725 gateway.telnet ESTABLISHED
tcp 0 0 *.printer *, * LISTEN

tcp 0 0 *.pop *, * LISTEN

tcp 0 0 *.smtp *, * LISTEN

tcp 0 0 *.finger *, * LISTEN

tcp 0 0 *.exec *, * LISTEN

tcp 0 0 *.login *, * LISTEN

tcp 0 0 *.shell *, * LISTEN

tcp 0 0 *.telnet *, * LISTEN

36

tep 0
udp 0
udp 0
$

0
0
0

Part I: Managing Internet Security

*. ftp * ¥ LISTEN
*.snmp * %
*.who *,*

This output shows the status of the currently connected sockets and to what they are con-
nected. For the TCP sockets, the status of the socket is reported in the output. The state is one
of the following listed in table 1.10.

Table 1.10
TCP Socket Explanations
State Meaning
CLOSED The socket is not being used.
LISTEN The socket is listening for an incoming connection.
SYN_SENT The socket is actively trying to establish a connection.
SYN_RECIEVED The initial synchronization of the connection is underway.
ESTABLISHED The connection has been established.
CLOSE_WAIT The remote has shut down: we are waiting for the socket to close.
FIN_WAIT_1 The socket is closed, and the connection is being shut down.
CLOSING The socket is closed, and the remote is being shutdown. The
acknowledgment of the close is pending.
LAST_ACK The rmote has shut down and closed. They are waiting for us to
acknowledge the close.
FIN_WAIT_2 The socket is closed, and we are waiting for the remote to shut
down.
TIME_WAIT The socket is waiting after the close for the remote shutdown

transmission.

With this information, it is easy to tell what state the connection is in and how to trace the

connection through the various stages of operation.

The traceroute Command

The traceroute command is used to trace the route that a packet must take to reach the
destination machine. This command works by utilizing the time-to-live (TTL) field in the IP
packet to elicit an ICMP TIME_EXCEEDED response from each gateway along the path to
the remote host. The following code uses the traceroute command:

Understanding TCP/IP 37

traceroute toradm.widgets.ca

traceroute to toradm.widgets.ca (142.77.253.13), 30 hops max, 40 byte packets
1 gateway (198.73.138.50) 10 ms 10 ms 10 ms

nb.ottawa.uunet.ca (142.77.17.1) 260 ms 300 ms 270 ms
gw.ottawa.uunet.ca (142.77.16.3) 240 ms 240 ms 270 ms
wf.toronto.uunet.ca (142.77.59.1) 280 ms 260 ms 310 ms
alternet-gw.toronto.uunet.ca (142.77.1.202) 250 ms 260 ms 250 ms
nb1.toronto.uunet.ca (142.77.1.201) 260 ms 250 ms 260 ms

toradm (142.77.253.13) 880 ms 720 ms 490 ms

FTNO O~ WN

As in the preceding example, the traceroute command attempts to trace the route that an IP
packet would follow to some Internet host. The command works by sending probes until the
maximum number of probes has been sent, or the remote responds with an ICMP PORT
UNREACHABLE message.

In the output of the traceroute command in the preceding example, the times following the
hostname are the round trip times for the probe. From this output, you can see that for a
packet to travel from the originating host (oreo.widgets.ca), it must travel through seven hosts
to reach the destination system, toradm.widgets.ca. The following illustrates another invoca-
tion of traceroute:

traceroute gatekeeper.dec.com
traceroute to gatekeeper.dec.com (16.1.0.2), 30 hops max, 40 byte packets
1 gateway (198.73.138.50) 10 ms 10 ms 10 ms

2 nb.ottawa.uunet.ca (142.77.17.1) 250 ms 240 ms 240 ms

3 gw.ottawa.uunet.ca (142.77.16.3) 270 ms 220 ms 240 ms

4 wf.toronto.uunet.ca (142.77.59.1) 260 ms 270 ms 250 ms

5 alternet-gw.toronto.uunet.ca (142.77.1.202) 250 ms 260 ms 260 ms
6 Falls-Church1.VA.ALTER.NET (137.39.7.1) 470 ms 960 ms 810 ms

7 Falls-Church4.VA.ALTER.NET (137.39.8.1) 760 ms 750 ms 830 ms

8 Boonel.VA.ALTER.NET (137.39.43.66) 910 ms 810 ms 760 ms

9 San-Jose3.CA.ALTER.NET (137.39.128.10) 930 ms 870 ms 850 ms

10 * * Palo-Alto1.CA.ALTER.NET (137.39.101.130) 930 ms

11 gatekeeper.dec.com (16.1.0.2) 830 ms 910 ms 830 ms
#

In this case, hop 10 did not report right away, but rather printed two asterisks before printing
the gateway name and the round trip time. When traceroute does not receive a response within
three seconds, it prints an asterisk. If no response from the gateway is received, then three
asterisks are printed.

Note Because of the apparent network load that traceroute can create, it should only be
used for manual fault isolation or troubleshooting. This command should not be
executed from cron or from within any automated test scripts.

Part I: Managing Internet Security

The arp Command

The arp command displays and modifies the Internet-to-Ethernet address translation table,
which normally is maintained by the address resolution protocol (ARP). When a hostname is
the only argument, arp displays the current ARP entry for that host. If the host is not in the
current ARP table, then arp displays a message to that effect. The following illustrates using
arp to find the Ethernet address for a specific host.

$ arp gateway

gateway (198.73.138.50) at 0:0:c0:11:57:4c
$ arp ovide

ovide (198.73.138.101) -- no entry

This illustrates the behavior of arp when no arguments are present. arp behaves a little differ-
ently, however, when options are combined. The available options for arp are defined in table
1.11.

Table 1.11
arp Options
Option Description
-a Lists all the entries on the current ARP table.
-d host Deletes the corresponding entry for host from the ARP table.

-s host address ~ Creates an entry in the ARP table for the named [temp] [pub] [trail]host,
using an Ethernet address. If the keyword [temp] is included, the entry
is temporary. Otherwise, the entry is permanent. The [pub] keyword
indicates that the ARP entry will be published. Use of the [trail] keyword
implies that trailer encapsulation is to be used.

-ffile Instructs arp to read the named file and create ARP table entries for each
of the named hosts in the file.

The most commonly used option with arp is -a, which prints the entire ARP table, and is
illustrated here:

$ arp -a

ovide.widgets.ca (198.73.138.101) at 0:0:c0:c6:4f:71
gateway.widgets.ca (198.73.138.50) at 0:0:c0:11:57:4c
chelsea.widgets.ca (198.73.138.6) at 8:0:20:2:94:bf
fremen.widgets.ca (198.73.138.54) at 0:0:3b:80:2:e5%

ARP is most commonly used to help debug and diagnose network connection problems. arp
can help in that regard by assigning the Ethernet address for a given host. This is done by
using the -s option, as shown here:

Understanding TCP/IP 39

$ arp gateway

gateway (198.73.138.50) at 0:0:c0:11:57:4c

arp -s ovide 0:0:c0:c6:4f:71

arp -a

ovide.widgets.ca (198.73.138.101) at 0:0:c0:c6:4f:71 permanent
gateway.widgets.ca (198.73.138.50) at 0:0:c0:11:57:4c

#

This example illustrates adding an entry to the arp table. If you could not communicate with
the remote host before the arp table entry was created, then you might have an addressing
problem. If you still cannot communicate with the remote host after establishing the arp entry,
then the problem is more likely to be hardware.

The dig Command

The Domain Information Groper, dig, is a flexible command-line tool that can be used to
gather information from the Domain Name System servers. The dig tool can operate in simple
interactive mode, where it satisfies a single query, and a batch mode, in which multiple
requests are satisfied.

The dig tool requires a slightly modified version of the BIND resolver library to gather count
and time statistics. Otherwise, it is a straightforward effort of parsing arguments and setting
appropriate parameters. The output of dig can be rather convoluted, as shown here:

dig gatekeeper.dec.com

; <<>> DiG 2.0 <<>> gatekeeper.dec.com

;3 ->>HEADER<<- opcode: QUERY , status: NOERROR, id: 6
;; flags: gr rd ra ; Ques: 1, Ans: 1, Auth: 2, Addit: 2
;5 QUESTIONS:

HH gatekeeper.dec.com, type = A, class = IN

;5 ANSWERS:
gatekeeper.dec.com. 150369 A 16.1.0.2

;3 AUTHORITY RECORDS:
DEC. com. 166848 NS GATEKEEPER.DEC.COM.
DEC. com. 166848 NS CRL.DEC.COM.

;5 ADDITIONAL RECORDS:
GATEKEEPER.DEC.COM. 150369 A 16.1.0.2
CRL.DEC.COM. 166848 A 192.58.206.2

;5 Sent 1 pkts, answer found in time: 400 msec

;5 FROM: oreo.widgets.ca to SERVER: default — 192.139.234.50
;5 WHEN: Mon Oct 10 15:07:41 1994

;5 MSG SIZE sent: 36 rcvd: 141

#

Part I: Managing Internet Security

In the output shown here, the dig command searches the Domain Name Server records
looking for gatekeeper.dec.com. A DNS record is found and reported to the user. Conse-
quently, the dig command can be used to help resolve difficult name server problems.

User Commands

Just as there are a number of commands to assist the system administrator in the management
of the system and network, there are a number of commands that are used by the users to get
the information they want and to perform the tasks they need. Although a user can execute
some of the administration commands you have seen, the real work is done with commands
you are about to examine: telnet, ftp, and the Berkeley r-commands.

The Berkeley r-Commands

The first of the commands examined here falls into the set called the Berkeley r-commands.
These are the rlogin, rcp, and rsh/remd commands. They are called the Berkeley r-commands
because they all start with the letter r, and they originated from the University of California at
Berkeley. The successful use of the command in this section is dependent upon user and host
equivalency being properly configured. Most users have difficulty with these commands
because their network administrators have not properly configured the host and user
equivalency.

rlogin

The rlogin command connects your local session to a remote session on a different host. To
initiate a remote terminal session, use the following command:

rlogin remote

This command starts a connection to the rlogind server on the remote host, as illustrated here:

$ rlogin gateway

Last successful login for chare: Sun Oct 09 16:16:03 EDT 1994 on ttyp1
Last unsuccessful login for chare: Tue Sep 27 07:18:54 EDT 1994 on ttyp@
SCO UNIX System V/386 Release 3.2

Copyright (C) 1976-1989 UNIX System Laboratories, Inc.

Copyright (C) 1980-1989 Microsoft Corporation

Copyright (C) 1983-1992 The Santa Cruz Operation, Inc.

All Rights Reserved

gateway

Terminal type is dialup
$

The terminal type of the remote connection is the same as the terminal type that is in use for
the current connections, unless modified by the user’s shell startup files. All of the character
echoing is done at the remote site, so except for delays, the use of the rlogin is transparent to
the user. Termination of the connection is made either by logging out of the remote host, or
through the termination character, which is -. (tilde period).

Understanding TCP/IP 41

rcp

The rcp, or remote copy, command enables the user to copy a file from one host to another.
rcp copies files between two machines. Each file or directory argument is either a remote
filename of the form “rhost:path”, or a local filename (containing no .’ characters, or a °/’
before any).

The syntax of the command is as follows:

rcp [-

p] filel file2
rep [-p1I

-r 1 file ... directory

The remote file must be specified using the syntax:

hostname:filename

The named file is copied to or from the remote system depending upon whether the source or
destination file is remote. The following illustrates copying a file from the local host to the
remote:

$ rcp test.new chelsea:test.new
$

When the filename, as illustrated in the preceding example, does not begin with a slash (/), the
file is copied in a directory relative to your home directory on the remote system. The rcp
command behaves like the cp command in that the file could be called by a different name on
the remote system.

If the -r option is specified and any of the source files are directories, rcp copies each subtree
rooted at that name; in this case, the destination must be a directory. By default, the mode and
owner of file2 are preserved if the file already existed; otherwise, the mode of the source file
modified by the umask on the destination host is used.

The -p option causes rcp to attempt to preserve (duplicate) in its copies the modification times
and modes of the source files, ignoring the umask. The following illustrates using rcp with the
-r option to copy a directory tree:

$ pwd

/u/chare

$ 1lc tmp

arp.ADMN bootpd dig.new route.new

arp.new bootpd.ADMN rarpd.new routed.new

$rcp -r chelsea:/tmp tmp

$ 1f tmp

arp.ADMN bootpd dig.new route.new test.new
arp.new bootpd.ADMN rarpd.new routed.new tmp/

$

After executing the rcp command in the preceding example, a new directory is created called
tmp in /u/chare/tmp. This directory contains the contents of the /tmp directory on host
chelsea.

42

Part I: Managing Internet Security

rsh, remsh, and rcmd

These three commands all perform a similar function, which is to execute a command on a
remote system. Interactive commands are not good candidates for this type of execution.

The rsh implementation of remote execution is not to be confused with the restricted shell
(rsh) that exists on System V Unix systems. Likewise, some System V Unixes use remsh instead
of rsh also. Typically, the systems that use rsh for remote execution are BSD-based Unix
systems. rsh works by connecting to the specified hostname and executing the specified
command. rsh copies its standard input to the remote command, the standard output of the
remote command to its standard output, and the standard error of the remote command to its
standard error. Interrupt, quit, and terminate signals are propagated to the remote command;
rsh normally terminates when the remote command does.

The command syntax of rsh is as follows:

rsh [-1 username] [-n] hostname [command]
rsh hostname [-1 username] [-n] [command]

The execution of a command involves entering the name of the host where the command is to
be executed and the name of the command. Running rsh with no command argument has the
effect of logging you into the remote system by using rlogin. The following example illustrates
using rsh to execute commands:

% rsh oreo date

Mon Oct 10 17:23:43 EDT 1994
% rsh oreo hostname
oreo.widgets.ca

%

There are only two options to rsh, as shown in table 1.12.

Table 1.12
rsh Options

Option Description

-l username Use username as the remote username instead of your local username. In the
absence of this option, the remote username is the same as your local
username.

-n Redirect the input of rsh to /dev/null. You sometimes need this option to
avoid unfortunate interactions between rsh and the shell that invokes it. If; for
example, you are running rsh and start an rsh in the background without
redirecting its input away from the terminal, it will block even if no reads are
posted by the remote command. The -n option prevents this.

Understanding TCP/IP

Virtually any command on the remote system can be executed. Commands that rely upon
terminal characteristics or a level of user interaction, however, are not good candidates for the
use of rsh.

The remd command is virtually identical to the rsh except that it typically is found on System
V systems. Actually, the rcmd has the same options and operates the same fashion as the rsh
command under BSD Unix . The following illustrates remd accessing a remote system by not
specifying a command when starting rcmd:

$ rcmd chelsea
Last login: Mon Oct 10 17:18:10 from oreo.widgets.ca
Sun0S Release 4.1 (GENERIC) #1: Wed Mar 7 10:59:35 PST 1990

%

The use of rsh/remd can be of value when you want to run a command on the remote system
without having to log into that system. Some system administrators use it to see what processes
are running on a remote system, as shown here:

$ rcmd gateway ps -ef | more

UID PID PPID C STIME TTY TIME COMMAND
root 0 0 0 Sep 22 ? 0:00 sched
root 1 0 0 Sep 22 ? 23:36 /etc/init -a
root 2 0 0 Sep 22 ? 0:00 vhand
root 221 1 0 Sep 22 ? 0:00 strerr
root 150 1 0 Sep 22 ? 7:51 Jetc/cron
root 212 1 0 Sep 22 ? 0:35 cpd
root 156 1 0 Sep 22 ? 3:21 /usr/lib/lpsched
root 214 1 @ Sep 22 ? 0:00 slink
root 317 315 0 Sep 22 ? 0:00 nfsd 4
root 256 1 @ Sep 22 ? 0:00 /usr/lib/lpd start

topgun 5740 1 0 10:30:51 2A 0:19 /etc/pppd 198.73.137.101: log /usr/lib/

Oppp/ppp-users/topgun/log debug 2 nolgm

root 306 1 0 Sep 22 ? 0:00 pcnfsd
root 17008 234 0 Sep 29 ? 0:07 telnetd
root 17009 17008 0@ Sep 29 po 0:02 -sh
root 286 1 0 Sep 22 ? 0:05 snmpd

Terminal Emulation Using telnet

The rlogin command allows for a connection from one system to another. rlogin, however,
requires the user to have an account on the remote machine and host equivalency to have been
configured. telnet, on the other hand, does not need either of those things.

The telnet command uses the TELNET protocol to establish a connection from the client to a
telnetd server on the remote system. Unlike rlogin, telnet has a host mode where it is con-
nected to the remote system, and command mode where the user can enter commands and
interact with the TELNET protocol to change how the connection is handled.

44

Part I: Managing Internet Security

To create a telnet connection, the user enters the telnet command, with or without a
hostname. When telnet is started with a hostname, a connection to the remote host is estab-
lished. After the connection is established, the user must then provide a login name and
password to access the remote system. This is illustrated in the following:

$ telnet chelsea

Trying 198.73.138.6...

Connected to chelsea.widgets.ca.
Escape character is '*]'.

SunOS Unix(chelsea.widgets.ca)

login: chare

Password:

Last login: Mon Oct 10 17:33:35 from oreo.widgets.ca

SunOS Release 4.1 (GENERIC) #1: Wed Mar 7 10:59:35 PST 1990

%

Command mode is entered either by starting telnet with no arguments, or by entering
Control+], which is the telnet ‘escape’ key. This control key instructs telnet to enter command
mode, as shown here:

chelsea.widgets.ca%
telnet> ?
Commands may be abbreviated. Commands are:

close close current connection

logout forcibly log out remote user and close the connection
display display operating parameters

mode try to enter line or character mode ('mode ?' for more)
open connect to a site

quit exit telnet

send transmit special characters ('send ?' for more)

set set operating parameters ('set ?' for more)

unset unset operating parameters ('unset ?' for more)
status print status information

toggle toggle operating parameters ('toggle ?' for more)

slc change state of special characters ('slc ?' for more)
z suspend telnet

! invoke a subshell

environ change environment variables ('environ ?' for more)

? print help information

telnet>

In the preceding example, the switch to command mode is performed and is indicated by the
telnet> prompt. Once in command mode, there are a number of commands that can be used
to alter or reconfigure the current session. The actual number of commands available in
command mode is far too numerous to be discussed here.

Understanding TCP/IP

telnet, however, has another useful feature. It is to allow the connection to a specific TCP port
on a system, which may or may not be remote. The following example illustrates a connection
to the SMTP port, port 25, on the local system:

$ telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.widgets.ca.

Escape character is '"]'.

220 oreo.widgets.ca Server SMTP (Complaints/bugs to: postmaster)
helo

250 oreo.widgets.ca - you are a charlatan

help

214-The following commands are accepted:

214-helo noop mail data rcpt help quit rset expn vrfy

214-

214 Send complaints/bugs to: postmaster

quit

221 oreo.widgets.ca says goodbye to localhost.0.0.127.in-addr.arpa at Mon Oct 10
20:35:24.

Connection closed by foreign host.

$

Although this is a useful feature to have when debugging connection problems, it also enables
a user to forge e-mail by giving it directly to the SMTP or sendmail daemon. Actually, most
TCP/IP daemons can be connected to by using telnet with the port number, which might
allow for other security mechanisms to be breached, particularly with sendmail.

File Transfers with FTP

FTP is the ARPANET File Transfer Program that uses the File Transfer Protocol to allow for
the verified transfer of a file from one PC to another. To reduce the chance of confusion, ftp
usually refers to the program, while FTP refers to the protocol that is used to transfer the files.

The client host that ftp is to communicate with is normally provided on the command line. If
so, ftp will immediately try to connect with the ftp server on that system. If a connection is
established, then the user must log in to access the system. Logging in can be achieved either
by having a valid account on the system, or through accessing a server that allows anonymous
ftp access. Accessing an ftp server through anonymous mode is illustrated in the following:

$ ftp ftp.widgets.ca

Connected to chelsea.widgets.ca.

220 chelsea.widgets.ca FTP server (SunOS 4.1) ready.
Name (ftp.widgets.ca:chare): anonymous

331 Guest login ok, send ident as password.
Password:

230 Guest login ok, access restrictions apply.

ftp> quit

221 Goodbye.

$

45

46

Part I: Managing Internet Security

Note When configuring a server for anonymous ftp access, be sure to create the file /etc/
ftpusers. This file contains a list of usernames, one per line, who are not allowed to
access the ftp server. On any ftp server that supports anonymous ftp, access to the
server as the root user should not be permitted.

By not restricting access through certain accounts, anyone, once one machine is compromised,
can gain access to the anonymous ftp server and complete the transaction shown in the
following example:

$ ftp ftp.widgets.ca

Connected to chelsea.widgets.ca.

220 chelsea.widgets.ca FTP server (SunOS 4.1) ready.
Name (ftp.widgets.ca:chare): root

331 Password required for root.

Password:

230 User root logged in.

ftp> cd /etc

250 CWD command successful.

ftp> lcd /tmp

Local directory now /tmp

ftp> get passwd passwd.ccca

local: passwd.ccca remote: passwd

200 PORT command successful.

150 ASCII data connection for passwd (198.73.138.2,1138) (736 bytes).
226 ASCII Transfer complete.

753 bytes received in 0.01 seconds (74 Kbytes/s)

ftp> quit
221 Goodbye.
$

The user who made this connection now has your password file. This type of connection can
be prevented by creating the /etc/ftpusers file, as shown in the following:

cd /etc

s -1 ftpusers

-rw-r--r-- 1 root 10 Oct 10 20:53 ftpusers
cat ftpusers

root

uucp

#

Now when a user tries to access the system by using the root account, he does not get the
chance to enter a root password because ftp informs him that root access through ftp is not
allowed, as shown in the following:

$ ftp ftp.widgets.ca

Connected to chelsea.widgets.ca.

220 chelsea.widgets.ca FTP server (SunOS 4.1) ready.
Name (ftp.widgets.ca:chare): root

530 User root access denied.

Understanding TCP/IP 47

Login failed.

ftp> quit
221 Goodbye.
$

Another problem with ftp is the.netrc file that enables users to automate a file transfer. The
reason this file is a problem is because users can insert login and password information in the
file. The ftp client aborts the use of the file if it finds that it is readable by anyone other than
the owner, but even that is not enough because the file can still leave security holes wide open.

The .netrc file resides in the user’s home directory and can contain information for accessing
more than one system. Consider the sample .netrc file shown here:

$ cat .netrc
machine yosemite.widgets.ca login chare password yippee
default login anonymous password chare@widgets.ca

The file format of the .netrc file is to include the information for each machine on a single
line. The first entry of this file, for example, shows the connection to a machine called
yosemite.widgets.ca. When this machine name is provided as an argument to ftp, the .netrc file
is checked, and the login information here is used to access the system. The second entry is
used as the default. If the system is not found explicitly, then use the anonymous entry to
allow for anonymous access to the ftp site.

As mentioned, the ftp command does perform a security check on the .netrc. If the file is
readable by anyone other than the owner, the connection is not established. This is illustrated
in the following:

$ ftp yosemite.widgets.ca

Connected to yosemite.widgets.ca.

220 yosemite.widgets.ca FTP server (Version 5.60 #1) ready.
Error - .netrc file not correct mode.

Remove password or correct mode.

Remote system type is Unix.

Using binary mode to transfer files.

ftp> quit

221 Goodbye.

$ 1s -1 .netrc

-rW-r--r-- 1 chare group 103 Oct 10 21:16 .netrc
$

In the preceding example, the connection to yosemite is not made because the permissions on
the .netrc file are incorrect. After the permissions are changed, the connection can be estab-
lished without incident, as shown in the following:

$ 1s -1 .netrc

-rW-r--r-- 1 chare group 103 Oct 10 21:16 .netrc
$ chmod 600 .netrc

$ 1s -1 .netrc

SPW- - - - 1 chare group 103 Oct 10 21:16 .netrc

48

Part I: Managing Internet Security

149% ftp gateway.widgets.ca

Connected to gateway.widgets.ca.

220 gateway.widgets.ca FTP server (Version 5.60 #1) ready.
331 Password required for chare.

230 User chare logged in.

Remote system type is Unix.

Using binary mode to transfer files.

ftp>

Tip It's a good idea to teach users who want to use the .netrc file about security. By
improperly setting the permissions on the file, users can prevent themselves from
accessing the remote machine using the auto-login features, but can still allow
someone else access by giving that person their login name and password.

Understanding and Creating

Daemons

he most secretive, yet most productive, application or
service on a Unix system is the daemon process. A
daemon, pronounced “demon,” process is secretive
because it runs in the background, and often does not
indicate its presence in any significant way. Without it,
most Unix systems would cease to function. Programmers
write daemons to carry out a function with little or no
intervention by users or system administrators. In fact,

many daemons require no intervention at all!

The services offered by daemon processes are important to
understand, because the potential security violation may

be through a program that masquarades as a daemon.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

Part I: Managing Internet Security

What Is a Daemon?

A daemon process is a process that is not associated with a user, but performs system-wide
functions, such as administration and control, network services, execution of time-dependent
activities, and print services. To qualify as a daemon process, several criteria must be met: the
process must not be associated with a user’s terminal session; and it must continue after the
user logs off.

From the rudimentary process management knowledge you have read about so far, you know
that each process a user starts is terminated by the init program when the user exits. The init
program is the most famous of all system daemons. This approach, illustrated in figure 2.1,
allows for proper management of the process table.

.
Flgure 2.1 Copy program
. context
The process life cycle.
Process table Execute child
entry created process
$ date Mon Aug 28 19:45:14 EST 1995
Remove process Program
table entry terminates

Clear memory

Although daemon processes are almost completely invisible, they do provide some level of
service to users. Daemon processes accept user requests and process them; they also respond to
various events and conditions. They are often inactive, however, and are designed to be called
into service only when required. By using a daemon instead of starting a new process for every
instance, system load is reduced, and large programs that take time to get started will not slow
down the user or the operation.

A daemon can be distinguished from other programs on the system by examining the process
table—the ps command displays this table. The distinguishing characteristic of a daemon is
that the TTY column does not reflect the controlling terminal name. The following portion of
the process table shows this difference:

nms# ps -aux | more
USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND

root 257 7.9 0.0 12 87?7 S Aug 22 47:24 update

root 1 0.0 0.0 52 0 ? IW Aug 22 0:02 /sbin/init -

root 289 0.0 0.0 40 0 ? IW Aug 22 0:00 - sxp.9600 ttya (getty)
root 79 0.0 0.0 16 0? I Aug 22 0:00 (biod)

root 2 0.0 0.0 0 02 Aug 22 0:00 pagedaemon

Understanding and Creating Daemons

root 51 0.0 0.0 68
root 56 0.0 0.7 84
root 288 0.0 0.0 40
bin 58 0.0 0.0 36
root 0 0.0 0.0 0
root 60 0.0 0.0 40
root 73 0.0 0.5 48
root 76 0.0 0.4 216
root 120 0.0 0.0 28
root 93 0.0 0.4 68
root 101 0.0 0.0 160
root 62 0.0 0.0 40
root 119 0.0 0.0 72

51

o ? IW Aug 22 0:25 portmap
212 ? S Aug 22 1:15 ypserv
0 co IW Aug 22 0:00 - cons8 console (getty)
0 ? IW Aug 22 0:00 ypbind
07? D Aug 22 1:31 swapper
0 7? IW Aug 22 0:00 rpc.ypupdated
140 ? S Aug 22 1:01 in.routed
128 ? S Aug 22 0:38 in.named
0? I Aug 22 0:00 (nfsd)
120 ? Aug 22 1:14 syslogd
0 7? IW Aug 22 0:02 /usr/lib/sendmail -bd -q
0 ? IW Aug 22 0:00 keyserv
0 ? IW Aug 22 0:00 rpc.lockd

The daemon is the process with a question mark “?” as the controlling terminal name. The

controlling terminal is identified in the “T'T” or “T'TY” column of the ps output. Whenever

this is found in a process entry, the process is a daemon. You can see that most of the processes

in this part of the process table are in fact daemon processes.

Daemon processes usually do not accumulate very much CPU in the short run, unless they

have a lot of processing to do when they start. It usually takes a tremendous amount of time

for these daemon processes to equal the CPU requirements that many other processes accumu-

late in a minute or two.

The daemon processes shown in the ps output were likely started as part of the system’s boot

process. The files required to boot the system and start these daemons for the SunOS 4.1.3
and SunOS 4.1.4 systems are listed in table 2.1.

Table 2.1
SunOS 4.1.x Startup Daemons
File Name Daemon Description
letc/rc update Periodically updates the super block
cron Executes commands at specified dates and times
in.rwhod System status server
inetd Internet services daemon
lpd Printer daemon
letc/rc.local portmap TCP/IP port to RPC program number mapper
ypserv NIS server
ypxfrd NIS transfer server
rpc.ypupdated NIS update server
ypbind NIS domain binding agent
keyserv Server for storing public and private keys
in.routed Network routing daemon
in.named Internet domain name server

continues

Part I: Managing Internet Security

Table 2.1, Continued

SunOS 4.1.x Startup Daemons

File Name Daemon Description
biod Asynchronous block I/0 daemons
syslogd Logs system messages
auditd Controls the generation and location of audit trail files
sendmail Sends mail over the Internet
ndbootd ND boot block server
nfsd Client file system requests
rpc.mountd NEFES mount request server
rarpd TCP/IP Reverse Address Resolution Protocol server
bootparamd Boot parameter server
rpc.statd Network status monitor
rpc.lockd Network lock daemon
automount Automatically mounts NFS file systems
snmpd Daemon that responds to SNMP requests

As you can see in the SunOS 4.1.x configuration, an extensive list of daemons are started to

service users and provide system-level services. Notice that these daemons are started from only

two startup files. This setup makes the maintenance of the SunOS system easier because the

startup routines aren’t scattered all over the place. Obviously, this is an important benefit when

you need to make changes to the startup process, such as add new daemons, modify the
operation of existing ones, or remove unneeded daemons.

It is important to consider that the startup procedures of the various Unix flavors often are
very different depending upon the heritage. SunOS 4.1.x, for example, is derived from the
Berkeley Software Distribution (BSD) code and as such bears little or no resemblence to the
startup procedure seen in Solaris 2.x, which is based upon the Unix System Laboriatories Unix
System V Release 4.

The same is true when comparing Unix System V Release 3.2 and Release 4.0 These differ-
ences are important to note, because they make it easier to hide inconspicuous programs for

later action.

Table 2.2 lists daemons that are used to start and operate the HP-UX operating system on a
Hewlett-Packard HP9000 Series 700 workstation.

Understanding and Creating Daemons 53

Table 2.2
HP-UX Startup Daemons
File Name Daemon Description
letc/rc lpsched Printer daemon
cron Executes commands at specified dates and times
vtdaemon Responds to vt requests
envd System physical environment daemon
rbootd Remote boot server
syslogd Logs system messages
/etc/netlinkrc nettl Controls network tracing and logging
inetd Internet services daemon
/etc/audiorc Aserver Audio server
/etc/netbsdsrc gated Network routing daemon
named Internet domain name server
rwhod System status server
sendmail Sends mail over the Internet
letc/netnfsrc portmap TCP/IP port to RPC program number mapper
ypserv NIS server
ypbind NIS domain binding agent
rpc.mountd NEFS mount request server
nfsd Client file system requests
biod Asynchronous block I/O daemons
penfsd (PC)NES authentication and print request server
rpc.lockd Network lock daemon
rpc.statd Network status monitor
/etc/netnmrc snmpd Daemon that responds to SNMP requests

The HP-UX startup sequence makes use of a large number of files, each of which are tightly

linked to a given subsystem. For example, the file netlinkrc is used to start the network
processes. With this type of startup file layout, it is much harder to locate the daemons and to

modify the system startup procedure.

Regardless of the Unix implementation being considered, the use of the /etc/rc file to start the
system is common. Consider the list of files required to start the daemons on an SCO
OpenServer 5.0 system. Table 2.3 lists the daemons and their start up file locations.

SCO Unix products use a file system structure that is grouped by the desired run level. Run

levels, their meanings, and how to switch between them are discussed in the section, “Unix

Run Levels.”

Part I: Managing Internet Security

Table 2.3
SCO Unix Startup Daemons
Filename Daemon Description
letc/rc2.d//0IMOUNTESYS uditd Reads audit collection files generated

by the audit subsystem and compact
the records

letc/rc2.d/P75cron cron Executes commands at specified dates
and times
letc/rc2.d/P86mmdf deliver Handles the management of all mail
delivery
Jetc/rc2.d/S801p Ipsched Printer daemon
Jetc/rc2.d/S84rpcinit portmap TCP/IP port to RPC program number
mapper
rwalld Network rwall server
rusersd Network user name server
rexd RPC-based remote execution server
letc/rc2.d/S85nis ypserv NIS server and binder processes
ypbind NIS server and binder processes
letc/rc2.d/S85tcp maskreply Sends gratuitous ICMP mask reply
syslogd Logs system messages
inetd Internet services daemon
snmpd Daemon that responds to SNMP
requests
named Internet domain name server
routed Network routing daemon
irdd Internet Router Discovery daemon
gated Network routing daemon
rarpd TCP/IP Reverse Address Resolution
Protocol server
timed Time server daemon
rwhod System status server
Ipd Printer daemon
letc/rc2.d/S89nfs nfsd Client file system requests
mountd NES mount request server
penfsd (PC)NES authentication and print
Request server
biod Asynchronous block I/0 daemons
automount Automatically mounts NFS file systems
statd Network status monitor

lockd Network lock daemon

Understanding and Creating Daemons

Like the HP-UX implementation, a number of SCO Unix startup scripts are used to start
daemons. Each script essentially is dedicated to starting the daemons for a specific function
group. This is not necessarily bad design, but it requires a detailed level of understanding of
the underlying system structure.

The following sections examine what each of these daemons offers to the system and to the
users of that system.

Examining the System Daemons

A number of system daemons can exist in a Unix system. Some are only found in a specific
version of Unix, but many daemons are common to all versions of Unix. This section discusses
many of the common daemons and describes their function on the system.

[] []

init
The init daemon is known as the parent process for all the processes on the system. It performs
a broad range of functions that are vital to the operation of a Unix system.

The most commonly known purpose of the init process is to boot the system. The method init
uses to boot the system differs among Unix versions. The BSD and XENIX init programs, for
example, do not work the same way as the System V implementation. The System V init
program relies on the file /etc/inittab to provide details of how init is to govern the startup and
initialization of the various services on the system. The init process is commonly known as
“init” because of its role in the initialization of various processes during system operation.

The init program considers the system to be in a run level at any given time. Run levels are the
operating states of the system. For the purposes of this section, a run level can be viewed as a
software configuration; each configuration allows only a selected group of processes to exist.

swapper

Some Unix system administrators refer to swapper as a daemon, and others do not. The
swapper process is responsible for scheduling the use of memory by the various processes on the
system. The swapper process is actually part of the kernel, so you could say that it is not a
daemon after all.

update and bdflush

update and bdflush are similar commands that periodically execute the sync system call to flush
disk buffers. These daemons execute every 30 seconds. Users and system administrators rely on
these daemons to update the file system in case of a crash. Although two commands are listed,

your system will see one or the other, but rarely both.

56

Part I: Managing Internet Security

The lpd daemon is part of the BSD print services. It listens for and accepts connections via
TCP/IP to submit a print request. The Ipd daemon relies on the LPD protocol to accept the

job, and submit it to the requested printer. This daemon was almost exclusively found on
BSD-based systems until the more popular System V derivatives started adding similar services.

Note Some System V implementations have an lpd daemon but still require the use of the
System V print spooler for the job to be printed.

Ipsched

The lpsched daemon is the System V version of the print spooler. It performs the same tasks as
the BSD lpd program, but in a much different format. Despite Ipsched’s inability to communi-
cate directly via the LPD protocol, it is still considered stronger than Ipd because of its
flexibility with printer interface scripts.

Note Some Ipsched implementations, such as found on Solaris 2.x, are capable of
receiving LPD requests.

cpd and sco_cpd (SCO)

The cpd and sco_cpd daemons are the license managers for SCO products. They are similar to
license managers on other implementations of Unix in that they ensure that all products on the
local network have unique serial numbers. With the release of SCO OpenServer 5.0, the
license managers support shrink-wrapped software and operating system software.

cron

The cron daemon is the automated task scheduler; it runs scheduled jobs at the requested time.
A user may want to execute a number of jobs at regular intervals, for example. To do this, a
crontab file is created resembling the following:

0,15,30,45 * * * * [usr/stats/bin/getstats borderi.ottawa
@ 3 * * @ /usr/stats/bin/merge borderi.ottawa
®@ 4 * * @ /usr/stats/bin/ar borderi.ottawa

This specification identifies when the job is to be executed and what the command to be
executed is. The cron daemon builds an internal list of the jobs to be executed, and runs them
at the requested time intervals.

Understanding and Creating Daemons 57

syslog
The syslog daemon is a UDP/IP service that allows information and status messages for different
network services to be logged through a central logging mechanism. The syslog daemon is

controlled through the file /etc/syslog.conf and can write messages of different types into
different log files. A sample syslog.conf file is shown here:

user.* /usr/log/user_logs
kern.* /usr/log/kernel_logs
daemon. * /usr/log/messages
mail.debug /usr/log/mail
lpr.debug /usr/log/mail
cron.debug /usr/log/cron
news.debug /7usr/log/news

auth.* /usr/log/authenticate

local3.debug /usr/log/wrapper
local7.debug /usr/log/backbone
*.critical /usr/log/critical
*.emerg *

Note Although you may have more than 16 entries in your syslog configuration file, many
implementations of syslog can only open a maximum of 16 log files.

The syslog.conf file lists the facility priority level of the message, and where that message is to
be stored when received. Any message that is received with a priority level of critical, for
example, is written to the file /ust/log/critical.

syslogd reads and forwards system messages to the appropriate log files, to users, or to both,
depending on the priority of a message and the system facility from which it originates. The
following output lists sample syslog entries that show different types of information captured

by syslogd.

Aug 26 05:21:37 nms in.tftpd[14037]: connect from C7-1.vcr.home.org

Aug 26 09:47:03 nms sendmail[14344]: AA14344: message-id=<9508261345.AA14344@nms
0O .home.org>

Aug 26 09:47:03 nms sendmail[14344]: AA14344: from=stats, size=149, class=0

Aug 26 09:47:05 nms sendmail[14347]: AA14344: to=stats@home.org, delay=00:01
0:32, stat=Sent

Aug 26 11:00:01 nms cron: > CMD: 14426 c /usr/stats/bin/getstats borderi.
O.montreal

Aug 26 11:00:01 nms cron:
Aug 26 11:00:01 nms cron:
Aug 26 11:00:53 nms cron:
Aug 26 11:01:39 nms cron:
Aug 26 11:02:02 nms cron:
Aug 26 11:04:33 nms cron:

stats 14426 c Sat Aug 26 11:00:01 1995
noc 14421 ¢ Sat Aug 26 11:00:01 1995 Exit status 1
stats 14422 ¢ Sat Aug 26 11:00:53 1995
stats 14423 ¢ Sat Aug 26 11:01:39 1995
stats 14426 c Sat Aug 26 11:02:02 1995
stats 14425 ¢ Sat Aug 26 11:04:33 1995

AN NN AN ANV

58

Part I: Managing Internet Security

The sample log entries also show you what information is saved by syslog: a time stamp, the
name of the machine where the message originated, the command and PID, and the message.

Note Manual syslog entries can be made using the logger command, discussed later in
this chapter.

sendmail

The sendmail daemon is the common Mail Transport Agent included with current versions of
Unix. Because this program is a daemon, it listens for and accepts incoming e-mail connections
from external systems. This daemon receives and subsequently delivers messages to local or
remote users. sendmail is not intended to function as a user interface, but rather as the
processing agent for user mail programs such as elm, pine, mailx, and mush.

The sendmail program functions in two modes: incoming and outgoing. It accepts mail from
internal and external sources and processes it according to the rules found in the /etc/
sendmail.cf configuration file. The format of and options for the /etc/sendmail.cf configura-
tion file are far too complex to cover here.

The sendmail program is capable of accepting TCP/IP connections on port 25. The following
output illustrates a connection to sendmail on this port.

nms% telnet nms 25

Trying 198.53.64.4

Connected to nms.

Escape character is '*]'.

220 nms.home.org Sendmail 4.1/ch-950121.1 ready at Sat, 26 Aug
95 11:28:36 EDT

help

214-Commands:

214- HELO MAIL RCPT DATA RSET
214- NOOP QUIT HELP VRFY EXPN
214-For more info use "HELP <topic>".

214 -smtp

214-To report bugs in the implementation contact Sun Microsystems
214-Technical Support.

214-For local information contact postmaster at this site.

214 End of HELP info

quit

221 nms.home.org closing connection

Connection closed by foreign host.

nms%

The system administrator can test his or her configuration from the sendmail command
directly. Unfortunately, this capability can also be used by the wily hacker to create a false mail
message that looks like it came from somewhere else.

Understanding and Creating Daemons 59

getty

The getty daemon is responsible for providing a login prompt on terminals and on serial devices
directly connected to the system; getty is also responsible for providing a login prompt on the
console. The getty command is started by the init process, and is part of the login->shell->logout
process. It is important to note that when you log in through telnet, getty is not involved in
the process. The telnet server, telnetd, displays the login message and collects the user name
from the user.

rlogind

The rlogind daemon is the server side to the client rlogin program. It provides a remote login
facility with authentication based on privileged port numbers and hostname-username pairs.
rlogind is executed by the Internet daemon, inetd, when it receives a service request at the port
indicated in the services database for login using the TCP/IP protocol.

deliver

The deliver daemon manages all mail delivery in the MMDF mail system. deliver does not
deliver mail directly, but instead calls on MMDF channel programs to handle actual delivery.
deliver’s actions are guided by the MMDF configuration file, /ust/mmdf/mmdftailor, and by
command-line options. This daemon also maintains a cache of host information on a per-
channel basis, so that mail for unavailable hosts can be skipped until the host is available.

inetd

The inetd daemon listens on multiple ports for incoming connection requests. When it receives
a request, inetd spawns the appropriate server. The use of a “super-server” allows other servers
to be spawned only when needed and to terminate when they have satisfied a particular
request. The following servers are normally started by inetd: fingerd, ftpd, rexecd, rlogind,
rshd, talkd, telnetd, and tftpd. inetd can also start several internal services: these are described
in inetd.conf, which is typically found in the /etc directory. Do not arrange for inetd to start
named, routed, rwhod, sendmail, pppd, or any NFS server.

routed

The routed daemon is invoked by root at boot time to manage the Internet Routing Tables
(usually during init 2). The routed daemon uses a variant of the Xerox NS Routing Informa-
tion Protocol to maintain up-to-date kernel Routing Table entries. If the host is an
internetwork router, routed periodically supplies copies of its Routing Tables to hosts and
networks that are directly connected.

60 Part I: Managing Internet Security

nfsd

The nfsd daemon starts the NFS server daemons that handle client file system requests. The
nfsd daemon is a user application entry point into the kernel-based NFS server. Depending on
the option or options used, server daemons are started to handle:

Only NES requests sent over UDP.
Only NES requests sent over TCP.

UDP requests. Depending on the option or options used, server daemons are started to
handle only NES requests sent over UDP or only NES requests sent over TCP.

mountd

The mountd daemon is an RPC server that responds to file system mount requests. It reads the
file /etc/exports to determine which file systems are available to which machines and users.
This daemon also provides information regarding clients with mounted file systems. This
information can be printed using the showmount command.

pcnfsd

The penfsd daemon is an RPC server that supports ONC clients on PC (DOS, OS/2, and
Macintosh) systems. There are two implementations of the PC-NFS protocol: Version 1 and
Version 2. Version 2 supports extended printing features. It reads the configuration file /etc/
penfsd.conf if present, and then services RPC requests directed to program number 150001.
Many releases of the pcnfsd daemon support both version 1 and version 2 of the penfsd
protocol.

statd, rpc.statd

The statd and rpc.statd daemons are RPC servers that function as the RPC status monitor. It
interacts with the lockd server to provide crash and recovery functions for the locking services
on NEFS. It is common to see either statd or rpc.statd but not both on your system.

lockd, rpc.lockd

The lockd daemon processes lock requests that are either sent locally by the kernel or remotely
by another lock daemon. lockd forwards lock requests for remote data to the server site’s lock
daemon. lockd then requests the status monitor daemon, statd or rpc.statd, for monitor
service. The reply to the lock request will not be sent to the kernel until the status daemon and
the server site’s lock daemon have replied.

Understanding and Creating Daemons

Creating Daemons with the Bourne Shell

If you are a system administrator, you probably have no problems thinking up countless
programs you would like to have. You also probably know of a number of tasks you wish were
simpler.

In many cases, a daemon can be written to do the job for you. To help you understand how to
write a daemon using the Bourne or Korn shells, suppose you want to build a monitor
program.

For a system administrator, one of the most precious resources is disk space. If a root file
system is filled, it can result in a severe failure or yet another minor annoyance. Fortunately,
you can build a monitor program that runs a daemon to monitor and report on available disk
space.

Before you dig in working with code, plan on setting some parameters for the program:
It must be able to read a configuration file.
It must be able to handle System V and BSD versions of df.
It must be able to function with or without the Unix syslog facility.

With these requirements in mind, consider how this daemon will be implemented in the
Bourne shell. The purpose of this exercise is not to teach programming in the Bourne shell,
but to identify issues you need to consider when writing a daemon, such as handling input and
output, and signals.

Handling Input and Output

The daemon process often is not associated with any specific terminal, so it must be able to
write messages to a screen somewhere if desired. Assume that this program will be operating as
the root user, and therefore will be able to access the system console.

Remember that three file descriptors are opened for each shell: standard input, which is
normally the keyboard; standard output, which is normally the monitor; and standard error,
which is used for error messages and is also directed to the monitor.

0 standard input
1 standard output
2 standard error

To send a message to standard error, you indicate the file descriptor that the message is to be
sent to by using the following notation:

echo "error!" >&2

Part I: Managing Internet Security

This example prints “error!” on the standard error device.

This daemon will not need access to standard input for any reason, so you can close standard
input, and still keep standard output and standard error available if required. By closing
standard input you save a file descriptor that would otherwise be taken in the open file table;
you also prevent users from being able to thwart the daemon by attempting to interact with it.

To close file descriptors use the notation:

exec >&-

This closes the standard output file. To close standard input, use the notation:

exec <&-

Handling Messages

You now need to consider where messages will be sent when the program generates them. One
setup is to specify a device in the program where messages will be sent, such as /dev/console.
The following syntax redirects both standard error and standard output to /dev/console:

exec >/dev/console

or

exec 2>&1 >/dev/console

Handling Signals

Handling signals is also important because you want to prevent the program from terminating
for any reason other than a system shutdown. To do this, you must use the kill command to
trap signals that can be sent to the script.

Programmers often use signals as a mechanism of communicating with the program. The
program’s response to the signal can be to ignore the request, perform the default action, or to
perform some other action. The command to trap signals is trap:

trap "" signal numbers

This sample command executes the command between the quotes when the specified signal
number is received. Because the command list is empty, the signal is ignored. Table 2.4 lists
different signals.

Understanding and Creating Daemons

Table 2.4

Standard Unix Signals
Name Number Description
SIGHUP 1 Hangup
SIGINT 2 Interrupt
SIGQUIT 3 Quit
SIGILL 4 Illegal instruction
SIGTRAP 5 Trace trap
SIGABRT 6 Abort
SIGEMT 7 Emulator trap
SIGFPE 8 Arithmetic exception
SIGKILL 9 Kill (cannot be caught, blocked, or ignored)
SIGBUS 10 Bus error
SIGSEGV 11 Segmentation violation
SIGSYS 12 Bad argument to system call
SIGPIPE 13 Werite on a pipe or other socket with no one to read it
SIGALRM 14 Alarm clock
SIGTERM 15 Software termination signal
SIGURG 16 Urgent condition present on socket
SIGSTOP 17 Stop (cannot be caught, blocked, or ignored)
SIGTSTP 18 Stop signal generated from keyboard
SIGCONT 19 Continue after stop
SIGCHLD 20 Child status has changed
SIGTTIN 21 Background read attempted from control terminal
SIGTTOU 22 Background write attempted to control terminal
SIGIO 23 1/O is possible on a descriptor
SIGXCPU 24 Cpu time limit exceeded
SIGXFSZ 25 File size limit exceeded
SIGVTALRM 26 Virtual time alarm
SIGPROF 27 Profiling timer alarm
SIGWINCH 28 Window changed
SIGLOST 29 Resource lost
SIGUSR1 30 User-defined signal 1
SIGUSR2 31 User-defined signal 2

63

Part I: Managing Internet Security

This list may not include all the available signals for your implementation of Unix. To see a
definitive list of all the signals in use by your system, check the file /usr/include/signal.h or use
the man command to read the online manual page for the signal library function.

The dfmon Program

The program that you have read about to this point is shown in Listing 2.1 and Listing 2.2 at
the end of the chapter. Listing 2.1 contains the entire Bourne shell source code for the
daemon. It has been tested on numerous platforms including SunOS 4.1.3 and 4.1.4, SCO
OpenServer 5.0, HP-UX 9.0, SCO Unix 3.2 Version 4.0, and BSDI Version 2.0.

This Bourne shell daemon sends little or no output to the standard input/output channels.
With the exception of text that is printed during the startup of the program, the only other
text generated is saved through the syslog service, or into a file directly.

Your dfmon program is added to the system startup scripts for the machine on which it will
run. The script could be /etc/rclocal or /etc/rc2.d/S89dfmon. The exact location of the
startup files differs from one Unix implementation to another.

The dfmon program starts by reading the configuration file that is defined in the shell script.
This configuration file defines the operating environment for the script. The variables defined
in the configuration file are shown in Listing 2.2. dfmon puts most of the system specific
components of the program inside a shell function for each specific operating system. The
majority of the differences among Unix implementations are in the df output, which is a direct
problem for this script.

When the df output for the file system has been determined, it is examined and compared with
the low and critical free space values from the configuration file. The available space is checked
first against the value for the critical level. If the available space is less than the desired amount,
the logger command is used to send a warning message to the syslog daemon, or a warning is
sent to the system user using the wall command.

If the available disk space is greater than the critical level, then the low level is checked. If the
value is less than the low level for the file system, the same procedure is followed.

The logger command provides the capability for non-compiled programs to send messages to
the syslog daemon for logging and potential action. The command line looks like this:

/usr/bin/logger -t "dfmon" -p $SYSLOG_FAC.crit "CRITICAL Alarm : $FILESYS space:
OFree=$FREE"

This command line creates the following message in the system syslog file:

Aug 26 15:16:39 hp dfmon: CRITICAL Alarm : / space: Free=1093530

Understanding and Creating Daemons 65

This program enables any system administrator to record important system events in the
syslog. Remember though, that if the syslog daemon is not running when the logger command
is executed, the information sent by the logger is ignored.

For systems that do not have syslog, or when the system administrator chooses not to use
syslog, this daemon is capable of saving the information to a file and sending a warning
message to users who are logged in using the wall command, as seen in this example:

Sun Aug 27 17:47:35 EDT 1995 Starting Disk Monitor Daemon

Broadcast Message from chrish (pty/ttys@) Sun Aug 27 17:47:35...
Sun Aug 27 17:47:35 EDT 1995 hp dfmon: CRITICAL Alarm : / space: Free=1093048

This section has shown you how to create a daemon using the Bourne/Korn shell language.
Many system administrators, however, do not use the shells for this type of activity because it
still relies on the services of other programs, which may not be available. For this reason, you
also need to know how to create daemons using PERL.

Creating Daemons with PERL

The PERL programming language, a cross between the capabilities and syntax of the Bourne/
Korn shell and the syntax and facilities of C, is a strong environment for building daemons.
Like the earlier discussion, this section uses a practical example to help you follow the con-
struction of a daemon in PERL. However, this is not meant as a tutorial for the PERL
language. This section considers similar issues as the Bourne shell, but with the idiosyncrasies
of the PERL language.

For administrators responsible for maintaining a Unix system, a large amount of concern is
focused on the currently executing processes. This is especially true of processes that are started
when the system is brought up that should never exit. No matter how hard you try to keep
these processes running, sometimes it just isn’t possible. Several reasons include maximum
parameters being reached, programming errors, or a system resource that isn’t available when

needed.

One way of combating this situation, which may not work depending upon the process
involved, is to use the /etc/inittab file on System V systems. The /etc/inittab file contains a list
of processes that are to be executed when the system enters a run level. This file also contains
information on what to do when the process exits. A sample /etc/inittab file is shown here:

ck:234:bootwait:/etc/asktimerc </dev/console >/dev/console 2>&1
ack:234:wait:/etc/authckrc </dev/console >/dev/console 2>&1
brc::bootwait:/etc/brc 1> /dev/console 2>&1
mt:23:bootwait:/etc/brc </dev/console >/dev/console 2>&1
is:S:initdefault:

ro:056:wait:/etc/rc@ 1> /dev/console 2>&1 </dev/console

Part I: Managing Internet Security

ri:1:wait:/etc/rc1 1> /dev/console 2>&1 </dev/console

1
r2:2:wait:/etc/rc2 1> /dev/console 2>&1 </dev/console
r3:3:wait:/etc/rc3 1> /dev/console 2>&1 </dev/console
sd:Q:wait:/etc/uadmin 2 @ >/dev/console 2>&1 </dev/console
fw:5:wait:/etc/uadmin 2 2 >/dev/console 2>&1 </dev/console
rb:6:wait:/etc/uadmin 2 1 >/dev/console 2>&1 </dev/console
c0:2345:respawn:/etc/getty tty01 sc_m

col:1:respawn:/bin/sh -c "sleep 20; exec /etc/getty tty@1 sc_m"

The inittab file consists of four colon separated fields:

ck:234:bootwait:/etc/asktimerc </dev/console >/dev/console 2>&1
Oidentifier:run levels:action:command

This is a powerful capability, but it is found only on System V variants of Unix. Another
drawback is that there is no indication with /etc/inittab and the init command that the process
has exited and restarted unless the process continuously dies and init prints a message on the
console. The message typically is something like Command is respawning too rapidly. How
can you provide a system independent method of monitoring and restarting critical system
processes? The answer is procmon.

Note BSD-based operating systems, such as SunOS, BSD/OS from BSD Inc., and FreeBSD
do not use /etc/inittab to control processes spawned by init.

Handling Input and Output

As with the shell, PERL uses the same three standard input and output files: standard input,
known as STDIN; standard output, known as STDOUT; and standard error, known as
STDERR. Another similarity with the shell is the method of writing information into these
streams. The printing of information to an open file descriptor such as STDOUT is accom-
plished by using the PERL command print or printf, as shown in this example.

printf STDOUT "This is a test\n";

The PERL language has a C language syntax for many of its commands. The preceding
example prints the text “This is a test” followed by a newline on the standard output device.
To print the same message only on standard error, use the command:

printf STDERR "This is a test\n";

Any file descriptor or file handle name can be used in place of STDOUT and STDERR,
provided it has been opened for write first. If the corresponding file has not been opened, the
text cannot be seen anywhere.

Understanding and Creating Daemons 67

It may also be necessary to close one or more of the standard I/O streams to prevent unwanted
text from “leaking” into places where it is not desired. A good programmer would not allow
this to happen anyway. To close a file descriptor such as STDOUT in PERL, use the following

command:

close(STDOUT) ;

If these standard 17O file descriptors are not needed to communicate with the “outside” world,
then they can be closed. This means that all output from the program must be directed
specifically to the location where you want it to go.

Handling Signals

Handling the types of signals that can be generated by this daemon must be included in the
PERL program. Failure to capture the signals may result in the program terminating early for
an unknown reason. If, for example, your program uses pipe to communicate with other
programs, it may terminate abnormally if the other program wasn’t ready. Catching the
SIGPIPE signal will prevent the program from terminating.

Trapping a signal in PERL requires that you write a signal handler to respond to the signal, or
set it to be ignored, as in the following example:

$SIG{"PIPE"} = "IGNORE"; # signal value 13

In this case, the SIGPIPE signal will be ignored. This means that if the program receives a
signal SIGPIPE, it is ignored and does not cause the program to terminate.

The procmon Program

The procmon program is a PERL script that is started during system startup and runs for the
life of the system. It has been written to be a system daemon, and it behaves as such. The
purpose of this program is to monitor the operation of a set of defined processes; if they are
not present in the process list, procmon restarts them. This daemon is also designed to log its
actions, such as when the process fails and the time it is restarted. A sample of procmon’s
monitoring log, created by using the Unix syslog facility, is shown here:

Feb 20 07:31:21 nic procmon[943]:
Feb 20 07:31:21 nic procmon[943]:
Feb 20 07:31:22 nic procmon[943]: Command File: /etc/procmon.cmd
Feb 20 07:31:22 nic procmon[943]: Loop Delay = 300

1: Process Monitor started

1
1
1

Feb 20 07:31:22 nic procmon[943]: Adding named to stored process list

1
1
1
1

Loaded config file /etc/procmon.cfg

Feb 20 07:31:22 nic procmon[943]: Monitoring : 1 processes
Feb 20 07:31:22 nic procmon[943]: named running as PID 226
Feb 20 07:36:22 nic procmon[943]: named running as PID 226
Feb 20 07:41:23 nic procmon[943]: named running as PID 226

68

Part I: Managing Internet Security

This syslog output shows procmon as it starts and records what it is doing with named. This
setup is helpful for troubleshooting. You need to have as much logging information as possible
about the process you were monitoring.

The benefit of a program such as this one is most noticeable when the program is started at
system boot time. How the program starts depends on the Unix variant you are using. On
System V systems, the command line shown here is added to /etc/rc2 or to a file in /etc/rc2.d
directory, which is the preferred method. BSD-based systems use the same command, but in
the /etc/rc.local directory.

/usr/local/bin/procmon &

procmon is in fact a daemon process. It handles all the system signals, and disconnects itself
from a controlling terminal. When procmon starts, it prints a line indicating what configura-
tion parameters it is using, and then quietly moves to the background. All logging at this point
is performed by the Unix syslog facility. The output that is printed when using the
procmon.cmd file is as follows:

Found /etc/procmon.cfg ... loading ...

When using the program defaults, this is what you will see:

no config file... using defaults ...

Two configuration files are used by procmon: procmon.cfg and procmon.cmd. Only the
procmon.cmd file is absolutely necessary. If procmon.cfg exists, it will be used to alter the base
configuration of the program.

The default configuration file is /etc/procmon.cfg. If this file is not found when procmon
starts, it uses the default parameters built into the program. This configuration file enables the
system administrator to change the location of the procmon.cmd file and to change the delay
between checking the commands in the list.

If no /etc/procmon.cfg file is found, procmon uses the /etc directory to look for the
procmon.cmd file, and a default delay of five minutes between checks. Notice that the delay
value is in seconds not minutes. The /etc/procmon.cfg file is processed by procmon, and the
needed values are checked for validity before they are used. This means that comments using
the “#” symbol are supported, so long as “#” is the first character on the line. The procmon.cfg
file is shown as follows:

#

Configuration file for procmon.
#

#

5 minute delay

#

delay_between = 300;

#

69

Understanding and Creating Daemons

where is the process list file?
#

ConfigDir = "/etc";

The reason for the use of this configuration file is so that the parameters of the program can be
modified without the need to change the source code. The delay_between variable is used to
define the amount of delay between processing the list of commands. For example, if the
delay_between variable is 300, a pause of 300 seconds takes place between processing.

The ConfigDir variable tells procmon where the procmon.cmd file is located. procmon
defaults to /etc.

While it is possible to use the PERL require command to instruct PERL to read the named
file, procmon.cfg, into the current program, this can cause potential security problems. If the
configuration file is attacked, for example, a PERL program could be put into place by the wily
hacker, thereby granting them access to the system.

Consequently, it is better to read the configuration file, process the entries, and validate the
data values before using them. In our procom script, if the delay_between value contains
anything other than a number, the value is not used, and a default of 300 seconds replaces the
requested value. The same is true for ConfigDir: if the value is not a directory, the default of
/etc is used.

The procmon.cmd file contains the list of processes that are to be monitored. This file contains
two exclamation mark (!) separated fields: the first is the pattern to search for in the process
list; the second is the name of the command to execute if the pattern is not found.

named !/etc/named
cron!/etc/cron

This file indicates that procmon will be watching for named and cron. If named is not in the
process list, the command /etc/named is started. The same holds true for the cron command.
The purpose of using a configuration file for this information is to allow the system adminis-
trator to configure this file on the fly. If the contents of this file change, the procmon daemon
must be restarted to read the changes.

Some startup messages are recorded by syslog when procmon starts. The appropriate informa-
tion is substituted for the values in <value>; the <timestamp> is replaced by the current time
through syslog.; <PID> is the process identification number of the procmon process, and
<system_name> is the name of the system.

timestamp system_name procmon[PID]: Process Monitor started
timestamp system_name procmon[PID]: Loaded config file value
timestamp system_name procmon[PID]: Command File: value
timestamp system_name procmon[PID]: Loop Delay = value

timestamp
timestamp

system_name
system_name

procmon[PID]:
procmon[PID]:

Adding value
Monitoring

to stored process list
value processes

70

Part I: Managing Internet Security

Monitoring messages are printed during the monitoring process. These messages represent the
status of the monitored processes:

timestamp system_name procmon[PID]: process running as PID PID
This record is printed after every check, and indicates that the monitored
process is running.

timestamp system_name procmon[PID]: process is NOT running
This record is printed when the monitored process cannot be found in the
process list.

timestamp system_name procmon[PID]: Last Failure of process @ time
This record is printed to record when the last (previous) failure of the
process was.

timestamp system_name procmon[PID]: issuing start_command to system
This record is printed before the identified command is executed.

timestamp system_name procmon[PID]: start_command returns return_code

This last message is printed after the command has been issued to the system. The syslog may
be able to give you clues regarding the status of the system after the command was issued.
Actual procmon syslog entries are included here:

Feb 20 07:31:21 nic procmon[943]: Process Monitor started

Feb 20 07:31:21 nic procmon[943]: Loaded config file /etc/procmon.cfg
Feb 20 07:31:22 nic procmon[943]: Command File: /etc/procmon.cmd

Feb 20 07:31:22 nic procmon[943]: Loop Delay = 300

Feb 20 07:31:22 nic procmon[943]: Adding named to stored process list
Feb 20 07:31:22 nic procmon[943]: Monitoring : 1 processes

Feb 20 07:31:22 nic procmon[943]: named running as PID 226

Feb 20 07:36:22 nic procmon[943]: named 1is NOT running

Feb 20 07:36:24 nic procmon[943]: Last Failure of named , @ Sun Feb 12 13:29:02
OEST 1995

Feb 20 07:36:26 nic procmon[943]: issuing /etc/named to system

Feb 20 07:36:42 nic procmon[943]: /etc/named returns 0

Feb 20 07:41:22 nic procmon[943]: named running as PID 4814

The procmon code displayed earlier has been written to run on System V systems. It has been
in operation successfully since December 18, 1994. However, some enhancements could be
made to the program. For example, it makes sense to report a critical message in syslog if the
command returns anything other than 0. This is because a non-zero return code generally
indicates that the command did not start. Another improvement would be to include a BSD

option to parse the Ps output, and add an option in the configuration file to choose System V
or BSD.

Understanding and Creating Daemons 71

Unix Run Levels

Run levels, which are equivalent to system operation levels, have not been around as long as
Unix. In fact, they are a recent development with System V. Early versions of System V did
not include the concept of run-levels. A run level is an operating state that determines which
facilities will be available for use. There are three primary run levels: halt, single-user, and
multiuser, although there can be more.

The run level is adjustable by sending a signal to init. Whether this can be done depends on
the version of Unix in use, and the version of init. Many Unix versions only have single-user,
or system maintenance, and multiuser modes.

On SunOS 4.1.x systems, for example, init terminates multiuser operations and resumes
single-user mode if it is sent a terminate (SIGTERM) signal with ‘kill -TERM 1’. If processes
are outstanding because they’re deadlocked (due to hardware or software failure), init does not
wait for all of them to die (which might take forever), but times out after 30 seconds and
prints a warning message.

When init is sent a terminal stop (SIGTSTP) signal using ‘kill -TSTP 1’, it ceases to create
new processes, and allows the system to slowly die away. If this is followed by a hang-up signal
with ‘kill -HUP’ 1 init will resume full multi-user operations; For a terminate signal, again
with ‘kill -TERM 1’, init will initiate a single-user shell. This mechanism of switching between
multiuser and single-user modes is used by the reboot and halt commands.

The process differs greatly on System V systems, where there can be many different run levels.
The run levels available under SCO OpenServer 5.0 are shown in table 2.5.

Table 2.5
SCO OpenServer 5.0 Run Levels

Run Level Explanation

0 Shuts down the machine so that the power can be removed safely. Has the
machine remove power if it can. This state can be executed only from the
console.

1 Puts the system in single-user mode. Unmounts all file systems except the

root file system. All user processes are killed except those connected to the
console. This state can be executed only from the console.

2 Puts the system in multiuser mode. All multiuser environment terminal
processes and daemons are spawned. This state is commonly referred to as
multiuser mode.

continues

72

Part I: Managing Internet Security

Table 2.5, Continued
SCO OpenServer 5.0 Run Levels

Run Level Explanation

3,4 These run levels, while being multiuser also, can be customized by the
administrator to offer additional services. They are not necessary for system
operation and are not normally used.

5 Stops the Unix system and goes to the firmware monitor.

6 Stops the Unix system and reboots to the run-level defined by the initdefault
entry in /etc/inittab.

a,b,c Processes only those /etc/inittab entries having the a, b, or ¢ run-level set.
These are pseudo-states that may be defined to run certain commands, but
do not cause the current run-level to change.

9 Q Re-examines /etc/inittab.

s, S Enters single-user mode. When this occurs, the terminal that executed this
command becomes the system console. This is the only run-level that doesn’t
require the existence of a properly formatted /etc/inittab file. If ¢his file does
not exist, then by default the only legal run-level that init can enter is the
single-user mode. When the system enters S or s, all mounted file systems
remain mounted and only processes spawned by init are killed.

As is evident, the differences in the services available with the different run levels are extensive.
For most Unix systems, however, networking and non-root file systems are generally only
available when operating in multiuser mode.

To switch run levels in the System V universe, run the command init, or telinit with the new
run level. Afterward, the system prints the new run level information on the console and starts
the process of switching to the new run level. To switch, the system reads the /etc/inittab file
and executes commands that have the same run level. The /etc/inittab file consists of colon
delimited records:

ck:234:bootwait:/etc/asktimerc </dev/console >/dev/console 2>&1
identifier:run levels:action:command

These fields consist of a unique identifier for the record, the run levels that this item is to be
processed for, the action (what is to be done), and the command to be executed. init processes
this file when it enters the given run level. The action field can consist of the following:

boot. The entry is to be processed only at init’s boot-time read of the inittab file. init is
to start the process, not wait for its termination; and when it dies, not restart the process.
For this instruction to be meaningful, the run level should be the default or it must

Understanding and Creating Daemons

match init’s run-level at boot time. This action is useful for an initialization function
following a hardware reboot of the system.

bootwait. The entry is to be processed the first time init goes from single-user to multi-
user state after the system is booted. (If the value of initdefault is set to 2, the process will
run right after the boot.) init starts the process, waits for its termination and, when it
dies, does not restart the process.

initdefault. An entry with this action is only scanned when init is first started. init uses
this entry, if it exists, to determine which run level to enter first. It does this by taking
the highest run level specified in the run level field and using that as its initial level. If
the run level field is empty, it is interpreted as 0123456, which causes init to enter run
level 6. If init does not find an initdefault entry in /etc/inittab, it will request an initial
run level from the user at reboot time.

off. If the process associated with this entry is currently running, send the warning
signal (SIGTERM) and wait 20 seconds before forcibly terminating the process via the
kill signal (SIGKILL). If the process is nonexistent, ignore the entry.

once. When init enters a run level that matches the entry’s run level, init is to start the
process and not wait for its termination. When it dies, do not restart the process. If upon
entering a new run level, when the process is still running from a previous run level
change, the program will not be restarted.

ondemand. This instruction is really a synonym for the respawn action. It is function-
ally identical to respawn but is given a different keyword to separate it from run levels.
This is used only with the a, b, or ¢ values described in the run level field.

powerfail. Execute the process associated with this entry only when init receives a
power fail signal.

powerwait. Execute the process associated with this entry only when init receives a
power fail signal, but wait until it terminates before continuing any processing of inittab.

respawn. If the process does not exist, then start the process; do not wait for its
termination (continue scanning the inittab file). When the process dies, restart the
process. If the process currently exists, then do nothing and continue scanning the
inittab file.

sysinit. init executes these entries when the system first goes to single-user mode after
being rebooted. It does not execute these entries if the system is subsequently put in
single-user mode from any run-level 1 through 6. Entries with sysinit in their action field
do not specify a run level in their run level field.

wait. When init enters the run level that matches the entry’s run level, start the process
and wait for its termination. All subsequent reads of the inittab file while init is in the
same run level will cause init to ignore this entry.

73

74 Part I: Managing Internet Securit
ging y

The init command will not report the run level it is operating in after it has switched run
levels. For example, when switiching from single-user to multiuser mode, init many report this
bay printing something like

init: Run-Level 2

before continuing. Currently, the only way to see what run level init is in is to use the com-
mand who. In addition to showing you who is logged on the system, this command is capable
of showing the run level the system is currently operating in. To view the run level, use the
option, -r. The output of this command is shown as follows:

$ who -r
run-level 2 Aug 27 21:31 2 0 S
$

According to this output, the current run level is 2. The date refers to when the system entered
that run level; the digits to the right show the current, oldest, and last run level.

[) []
(@ Program Listings
Each of the following code lists are programs discussed earlier in this chapter. Fortunately, you
do not have to type these lists by hand; they are included on the disc at the back of this book.

Listing 2.1—The dfmon Program

This program and its output are discussed in the section on writing daemons in the Bourne/
Korn shell. To use dfmon, install it /ust/local/bin, and add it to one of the system startup
scripts. On the next reboot, dfmon will start up and commence monitoring your available disk
space.

When installing dfmon.sh, do not execute it as root. Because none of the commands in the
script are restricted, it is not necessary for the script to run as root. In fact, allowing it to run as
root may contribute to lowering your security level. This is because the dfmon.sh script uses
the Bourne/Korn shell source command to load in the configuration file.

This command simply “includes” the contents of the named file into the shell, and could be
used to circumvent the system. If you must run dfmon.sh as root, be sure to put the configu-
ration file in a protected directory, and use the appropriate file permissions to prevent non-root
users from accessing it.

#!/bin/sh

#

This is a shell program to monitor the available disk space on a system
and report when it reaches a lower limit.

#

Understanding and Creating Daemons 75

The script is intended to run on both System V and BSD systems, and handle
the different forms of df that exist"on both platforms.

#

Configuration

CONFIG=<path>/dfmon.cfg

CONFIG=./dfmon.cfg

#

Load hn the configuration file using the source (.) command.

NOTE

THE DFMON.SH PROGRAM SHOULD NOT BE EXECUTED AS ROOT.

#

. $CONFIG

#

With the configuration file loaded, we now start the daemon process. To do
this we run the balance of the command in a subshell, so the parent
process can exit.

#

echo "'date’ Starting Disk Monitor Daemon"

(

#

Ignore TRAPS, so we can't be killed with anything but a kill -9 ...
#

NOTE:

on HP-UX, traps 11, 18 cannot be specified in the trap list

on SCO, traps 11, 20-25 cannot be specified in the trap list

trap """ 1234567 8 10 12 13 14 15 16 17 18 19

#

Assemble our environment

PATH=/usr/bin:/bin:/etc:/sbin:/usr/sbin

IFS=" "

Comment this on systems that do not use dynamically loaded libraries like
Sun-based systems.

unset LD_LIBRARY

#

NOTE:

Even though the PATH variable has been explicity set, the commands
executed in this script are specified using their exact path.

Even though the intent behind this program is to function as a daemon,

the standard I/0 files will not be closed as the standard I/0 path is used
to communicate between the main program and the loaded shell functions that
are found in the configuration file.

We need to get the df output first, and feed it into a while loop for
processing.

Here we run the correct version of the df_function, so that we get the
information we want from the non-standard, non-compatible versions of
df that are in existence. (And they say that there is a standard!).

FoF o I O O I O O I O I O W I

76

Part I: Managing Internet Security

while :
do
for filesystem in '/etc/mount | /usr/bin/cut -d" " -f$MOUNT_POS'
do
case $DF_TYPE in
HPUX)
LOGGER=/usr/bin/logger
RESULTS="'df_hpux $filesystem';;
SCO_UNIX)
LOGGER=/usr/bin/logger
RESULTS="'df_sco_unix $filesystem';;
Sun0Ss)
LOGGER=/usr/ucb/logger
RESULTS="df_sunos $filesystem';;
BSDI)
LOGGER=/usr/bin/logger
RESULTS="df_bsdi $filesystem';;
LINUX)
LOGGER=/usr/bin/logger
RESULTS="'df_linux $filesystem';;
esac
set $RESULTS

FILESYS=$1
FREE=$2
TOTAL=$3
USED=%$4

#
we need to check the file system to determine what type of
control we want to place upon it. For example, if the file system
is root, then the ROOT_LOW and ROOT_CRITICAL values are used for the
monitoring alarms.
case "$FILESYS" in
A
LOW=$ROOT_LOW
CRITICAL=$ROOT_CRITICAL;;
"/usr")
LOW=$USR_LOW
CRITICAL=$USR_CRITICAL;;
"/var")
LOW=$VAR_LOW
CRITICAL=$VAR_CRITICAL;;
*)
LOW=$0THER_LOW
CRITICAL=$0THER_CRITICAL;;

@
w
QO
o

look at the bytes free versus the total bytes available
if the free space is lower than the lower water mark
from the config file, then sound the alarm, if and only
if the disk filesystem is alarmed.

I oW O K

Understanding and Creating Daemons

if syslog is in use, use the logger command to send a message
and save it in the syslog. Otherwise, use the name of the
log file from the config file, and log the problem to the file,
to the console device, and to the user identified in the config
file.
#
we will use a special facility so that these messages can be
appropriately handled.
#
The CRITICAL level is checked first because it will be the lower of
the two test values.
#
if ["$FREE" -le "$CRITICAL"]
then
#
It is a critical level, so use syslog to record the alarm
#
if ["$USE_SYSLOG" = "YES"]
then

#

Use the logger command to send the information to
the syslog daemon.

#

/usr/bin/logger -t "dfmon" -p $SYSLOG_FAC.crit "CRITICAL Alarm :

O$FILESYS space: Free=$FREE"
else
#
It is critical, but we do not have syslog, so we
use our fake_syslog function.
#
fake_syslog "CRITICAL Alarm : $FILESYS space: Free=$FREE"

fi
#
It isn't crtical, so lets check it against our low level alarm.
#
elif ["$FREE" -le "$LOW"]
then
#

Yes - it is a low level alarm, so use syslog to report
the alarm.
#
if ["$USE_SYSLOG" = "YES"]
then
#
Use the logger command to send the information to
the syslog daemon.
#

/usr/bin/logger -t "dfmon" -p $SYSLOG_FAC.emerg "WARNING Alarm :

O$FILESYS space: Free=$FREE"
else
#
syslog is not available, so mimic it using the
fake syslog function.
#

77

Part I: Managing Internet Security

fake_syslog "CRITICAL Alarm : $FILESYS space: Free=$FREE"

fi
fi
done
#
Delay the number of seconds identified by PASS_DELAY in the config
file.
#
sleep $PASS_DELAY
#

this constitutes the end of the daemon code. This will execute until
the system is halted, or until a user kills it.
#

done

) &

end of the road

Listing 2.2—The dfmon Configuration File

This listing shows a sample configuration for dfmon, called dfmon.cfg. The dfmon.cfg file is
used to add new shell functions to provide support for other versions of Unix. The configura-
tion file should be installed in a protected directory, and use appropriate file permissions, such
as a mode of 600 and an owner of root, thereby preventing any non-root user from being able
to access the file. You might want to make some changes (as noted in the text) for different
operating systems and desired modes of operation.

#

User Configurable Parameters

#

#

Homm e e el

DF_TYPE

HPUX HP-X 9.x

SCO_UNIX

Sun0S Sun0S 4.1.[34]

BSDI BSDI 2.0

LINUX Linux Slackware 2.0

#

Select the proper system from the above list. If nothing is an exact match
but there is a close approximation, then try it first. If nothing works,
then you will have to build your own df_func. The df_func are found later
in this file.

#

DF_TYPE=Sun0S

#

MOUNT_POS is the position where the mount point is found in the output from
the mount command. On most System V systems, a value of 1 is desired;

on many BSD type systems, a value of 3 is desired.

MOUNT_P0S=3

Understanding and Creating Daemons

#

-

Warning Alarms

#

This section identifies the disk space, in blocks, that should be considered
a problem.

#

There are only FOUR specific possibilities without changing the original
program. These identify the LOW and CRITICAL disk space values for the
#

Root

usr

var

all other

#

filesystems. Support for other specific names will require modification
within the actual dfmon program itself.

#

root filesystem levels

#

ROOT_LOW=1100000
ROOT_CRITICAL=1100000

#

usr filesystem levels
#

USR_LOW=1000
USR_CRITICAL=100

#

var filesystem levels
#

VAR_LOW=1000
VAR_CRITICAL=100

#

all other filesystem levels
#

OTHER_LOW=1000
OTHER_CRITICAL=100

#

-

#

USE_SYSLOG

#

This determines if the syslog daemon should be used to record the alarms. If
the value is YES, then syslog is used. If the value is NO, then the dfmon
program uses a function called fask_syslog to save the information in a log
file and write the alarm information to the console device of the system

and mail it to the identified user.

#

USE_SYSLOG=NO

#

SYSLOG_FAC is applicable only if the value of USE_SYSLOG is YES. It identifies
the syslog facility that should be used to log these messages.

#

Part I: Managing Internet Security

SYSLOG_FAC=user

#

FAKE_SYSLOG_FILE is the path and name of a file that should be used to
save the syslog like messages in. This is used only if the value of

USE_SYSLOG is NO.

FAKE_SYSLOG=/var/log/dfmon.log

FAKE_SYSLOG=/usr/adm/dfmon.log

#

PASS_DELAY is the amount of time in seconds that the dfmon program is to pause
before it executes again. The default is 15 minutes, or 900 seconds.
#

PASS_DELAY=900

Shell Functions

The following shell functions provide support for the df command on the
followng systems. They should not require modification. If you do
make changes that you think should be passed on to the author, please
send them to chrish@unilabs.org.

Because we don't want to chew up too many CPU cycles in doing this, please
make your functions as tight as possible. For example, the HP-UX version of
the df (df_hpux) uses only three external commands: only one of which would
be executed more than once for a multiple filesystem machine.

Hewlett-Packard HP-UX Version 9.0

Sample df output
/ (/dev/dsk/c201d6s0) : 1053202 blocks 127796 i-nodes
1768252 total blocks 142080 total i-nodes
538224 used blocks 14284 used i-nodes
10 percent minfree

f_hpux()

I O I I I I I I oI oI I I oI I I I I I I I I I I I I I Ik

This function will take the output from the HP-UX 9.x df command and return
the number of blocks free, used, and total available.
#

set 'df -t $1°'

FILESYS=8$1

FREE=$3

TOTAL=$7

shift 9

USED=$4

echo "$FILESYS $FREE $TOTAL $USED"

return

}
#

Understanding and Creating Daemons

SCO UNIX (OpenServer 5.0)

~

(/dev/root): 282716 blocks 64603 i-nodes
total: 751704 blocks 93968 i-nodes

f_sco_unix()

I A QI I I I W I

This function will take the output from the SCO UNIX df command and return
the number of blocks free, used, and total available.

#

set 'df -t $1'

FILESYS=$1

FREE=%$4

TOTAL=%$9

echo "$FILESYS $FREE $TOTAL 0"

return

}

#

#

Sun0S 4.1.[34]

#

Filesystem kbytes used avail capacity Mounted on
/dev/sd0a 30528 11086 16390 40% /

/dev/sd0g 1505102 1221718 132874 90% /usr

/dev/sdod 9818 13 8824 0% /export
/dev/sdoe 31615 9 28445 0% /export/swap
/dev/sd0h 230158 196033 11110 95% /home

#

df_sunos()

{

#

This function will take the output from the SunOS 4.1.x df command and return
the number of blocks free, used, and total available.
#

set 'df $1'

shift 8

FILESYS=$5

FREE=$3

TOTAL=$1

USED=%2

echo "$FILESYS $FREE $TOTAL $USED"

return

BSDI 2.0

Filesystem kbytes used avail capacity Mounted on
/dev/sd0@a 30528 11086 16390 40% /
/dev/sd@h 230158 196033 11110 95% /home

82

Part I: Managing Internet Security

df_bsdi()

{

#

This function will take the output from the BSDI 2.x df command and return
the number of blocks free, used, and total available.
#

set 'df $1'

shift 8

FILESYS=$5

FREE=$3

TOTAL=%$1

USED=%2

echo "$FILESYS $FREE $TOTAL $USED"

return

Support Functions

I I I Ik

The fake_syslog function will accept the provided arguments, and create a
syslog like entry in the named support file.
fake_syslog()

It is important to do these things:
1. Write the message to the fake syslog file
2. Use the wall command to send a message to everyone

If the file exists, then we will append to it. If not, then the first
write to the file using echo will create the file.

The text being written is passed as an argument to the function.

I I I I I I I I I I A

MESSAGE=$*

#

Write the message to the file along with the date and name of the system.
#

echo "'date’ “uname -n’ dfmon: $MESSAGE" >> $FAKE_SYSLOG

#

Send a message using the WALL command.

#

echo "'date’ ‘uname -n’ dfmon: $MESSAGE" | wall
}

Listing 2.3—The procmon Command

The procmon command was presented in the section covering daemon programming with
PERL. This command must be executed as root, so it and its configuration files should be
protected appropriately.

Understanding and Creating Daemons 83

#!/usr/local/bin/perl
#

I+

This program requires the PERL ctime(PERL) library for generating date
strings in the standard ctime format. To prevent tampering with the
Ctime library file from affecting the operation of this script, it has
been included at the end of the actual procmon program.

Any future changes to the ctime.pl script will need to be applied to the
version in this file, although it appears to operate without difficulty.

require "ctime.pl";

This program requires the syslog(PERL) library for successful delivery
of logging information to syslog on the host machine. What syslog does
with the information is up to syslog and the how the administrator

has it configured.

To prevent tampering with the syslog library file from affecting the
operation of this script, it has been included at the end of the actual
procmon program.

Any future changes to the syslog.pl script will need to be applied to the
version in this file, although it appears to operate without difficulty.

require "syslog.pl";

These changes are to reduce the likelihood of problems because of tampered
scripts.

Look to see if the confiuration file for the process monitor is
present in /etc. If so, then load in the configuration file.

If not, then use the default values, included here.

-3 3R I o3 I I o I I o I I I oI W I o W I o I I oI I I o W I - W W

if (-e "./procmon.cfg")
{
printf STDOUT "Found /etc/procmon.cfg ... loading ...\n";
($delay_between, $ConfigDir) = &readconfig ("./procmon.cfg");
}

else
{
printf STDOUT "no config file ... using defaults ...\n";

$delay between = 300;
$ConfigDir = "/etc";
}

printf STDOUT "procmon: using delay of $delay_between seconds\n";
printf STDOUT "procmon: using config dir of $ConfigDir\n";

#
This is the name of this program. DO NOT CHANGE THIS.

84

Part I: Managing Internet Security

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

, yes this is right!

NOoO OO WN =

8

9, can't be caught anyway
10

11

12

13

14

15

16

17

18

18, yes this is right too!
19

20

21, AT&T UNIX/PC only!
22

23

24

25

26

27

28

#

$program = "procmon";

#

This is the name of the process list and command file
#

$command_file = "$ConfigDir/procmon.cmd";
#

Establish the signal handler

#

$SIG{'HUP'} = "IGNORE"; # signal
$SIG{'INT'} = "IGNORE"; # signal
$SIG{'QUIT'} = "IGNORE"; # signal
$SIG{'ILL'} = "IGNORE"; # signal
$SIG{'TRAP'} = "IGNORE"; # signal
$SIG{'IOT'} = "IGNORE"; # signal
$SIG{'ABRT'} = "IGNORE"; # signal
$SIG{'EMT'} = "IGNORE"; # signal
$SIG{'FPE'} = "IGNORE"; # signal
$SIG{'KILL'} = "DEFAULT"; # signal
$SIG{'BUS'} = "IGNORE"; # signal
$SIG{'SEGV'} = "IGNORE"; # signal
$SIG{'SYS'} = "IGNORE"; # signal
$SIG{"PIPE"} = "IGNORE"; # signal
$SIG{'ALRM'} = "IGNORE"; # signal
$SIG{'TERM'} = "DEFAULT"; # signal
$SIG{'USR1'} = "IGNORE"; # signal
$SIG{'USR2'} = "IGNORE"; # signal
$SIG{'CLD'} = "IGNORE"; # signal
$SIG{'CHLD'} = "IGNORE"; # signal
$SIG{'PWR'} = "IGNORE"; # signal
$SIG{'WINCH'} = "IGNORE"; # signal
$SIG{'PHONE'} = "IGNORE"; # signal
$SIG{'POLL'} = "DEFAULT"; # signal
$SIG{'STOP'} = "IGNORE"; # signal
$SIG{'TSTP'} = "IGNORE"; # signal
$SIG{'CONT'} = "IGNORE"; # signal
$SIG{'TTIN'} = "IGNORE"; # signal
$SIG{'TTOU'} = "IGNORE"; # signal
$SIG{'VTALRM'} = "IGNORE"; # signal
$SIG{'PROF'} = "IGNORE"; # signal

I3 I I W I R

Close Standard
These lines of
close(STDIN);

close(STDOUT);
close(STDERR);

value

Input and Standard output

code have been commented out

29

for testing purposes.

Understanding and Creating Daemons

#

Open syslog for recording the startup messages as debug messages
#

&openlog($program, "ndelay,pid", "user");

#

Record the startup of the monitor

#

&syslog(info, "Process Monitor started");

&syslog(info, "Command File: $command_file");

&syslog(info, "Loop Delay = $delay_between");

#
Open the list of processes to be monitored.
#
if (-e "$command_file")
{
open(LIST, "$command_file");
}
else
{
&syslog(crit, "CAN'T LOAD COMMAND FILE : $command_file: does not exist");
exit(2);
}
#
exit(0);
while (<LIST>)
{
chop;
#

We split because each entry has the name of the command that would be

present in a ps -e listing, and the name of the command that is used to
start it should it not be running.

#

An exclamation point is used between the two fields in the file.

#

($process_name, $start_process) = split(/!/,$_);

&syslog(info, "Adding $process_name to stored process list");

#

Save the name of the process being monitored into an array.

#

@process_list = (@process_list, $process_name);

#

Save the start command in an associative array using the process_name

as the key.

#

$start_commands{$process_name} = $start_process;

#

The associative array last_failure is used to store the last failure time
of the indicated process.

#

$last_failure{$process_name} = "NEVER";

#

The associative array last _start is used to store the time the process
was last started.

85

86

Part I: Managing Internet Security

#
$last_start{$process_name} = "UNKNOWN";
}
$num_processes = @process_list;
&syslog(info, "Monitoring : $num_processes processes");

#
Loop forever
#
while (1 == 1)
{
EACH_PROCESS:
foreach $process_name (@process_list)
{
#
This program was originally written for AT&T System V UNIX
and derivatives. (Someday I will port it to BSD versions!)
#
open(PS, "ps -e | grep $process_name ") |, &syslog(warn, "can't create
OPS pipe : $!");
while (<PS>)

{
chop;

$_name = "";
#

There are a log of spaces in the PS output, so these have to
be squeezed to one space.

#
tr/a-zA-Z0-9?:/ /cs;
#
Read the PS list and process the information
#
($junk, $_pid, $_tty, $ time, $ _name) = split(/ /,$_);
#
Check to see if we have any information
#
if ($_name ne "")
{
#
We likely have the process running
#
#
From here we go to the next process, as it is still
running, and we have made a syslog entry to that
effect.
#
&syslog("info", "$process_name running as PID $_pid");
close(PS);
next EACH_PROCESS;
}
#

The process is not running, so record an entry in

Understanding and Creating Daemons 87

syslog.

#

}

close(PS);

&syslog("crit", "$process_name is NOT running");

#

When did the process last fail? Saving this allows the

system administrator to keep tabs on the failure rate of

the process.

#

&syslog("crit", "Last Failure of $process_name, @
O$last_failure{$process_name}");

chop($current_time = &ctime(time));

#
Set the last failure to the current time.
#
$last_failure{$process_name} = $current_time;
#

If we have a command to execute to restart the service,
execute the command.

#

defined($start_commands{$process_name}))

if (
{
#
Record the sequence of event to restart the
service in syslog.
#

&syslog("crit", "issuing $start_commands{$process_name} to system");

Execute the system command, and save the return code to decide
if it was a clean start.

retcode = system("$start_commands{$process_name}");

Record the return code in syslog

I I I MO I I I W

&syslog("info", "$start_commands{$process_name} returns $retcode");
#
Calculate the time in ctime(3C) format
chop($current_time = &ctime(time));

$last_start{$process_name} = $current_time;

Save the return code - it is in the standard format, so must be
divided by 256 to get the real return value.

I I I I

$retcode = $retcode / 256;

}
#

From here we have processed each of the commands in the monitoring list.
We will now pause for station identification
#

88

Part I: Managing Internet Security

$secs = sleep($delay_between);

}

sub sig_handler

{

local ($sig) = @_;

&closelog();

&openlog($program, "ndelay,cons,pid", "user");

&syslog("crit", "PROCESS MONITOR: SIGNAL CAUGHT SIG$sig- TERMINATING");
&closelog();

exit(0);

}

;# ctime.pl is a simple PERL emulation for the well-known ctime(3C) function.
J#

3

;# Waldemar Kebsch, Federal Republic of Germany, November 1988

;# kebsch.pad@nixpbe.UUCP

;# Modified March 1990, Feb 1991 to properly handle timezones

;# SRCSfile: ctime.pl,v $$Revision: 4.0.1.1 $$Date: 92/06/08 13:38:06 $

s # Marion Hakanson (hakanson@cse.ogi.edu)

Oregon Graduate Institute of Science and Technology

#include <ctime.pl> # see the -P and -I option in perl.man
$Date = &ctime(time);

CONFIG: {
package ctime;

@oW = ('Sun', 'Mon','Tue', 'Wed','Thu','Fri','Sat"');
@Moy = ('dan','Feb','Mar','Apr', 'May', 'dun',
'Jul','Aug', 'Sep','Oct','Nov', 'Dec');

sub ctime {
package ctime;

local($time) = @_;
local($[) = 0;
local($sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $isdst);

Determine what time zone is in effect.
Use GMT if TZ is defined as null, local time if TZ undefined.
There's no portable way to find the system default timezone.

$TZ = defined ($ENV{'TZ'}) ? ($ENV{'TZ'} ? SENV{'TZ'} : 'GMT') : '';
($sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $isdst) =
($TZ eq 'GMT') ? gmtime($time) : localtime($time);

Hack to deal with 'PST8PDT' format of TZ
Note that this can't deal with all the esoteric forms, but it
does recognize the most common: [:]STDoff[DST[off][,rule]]

FHoF: I I FE I I I I I F: I I O I I I I I I I I o I I I I I o I I o I I I I I I I

Understanding and Creating Daemons 89

if($TZ=~/~([":\d+\ -, 1{3,}) ([+-1?2\d{1,2} (:\d{1,2}){0,2}) (["\d+\-,]1{3,})?/){
$TZ = $isdst ? $4 : $1;

I

$TZ .= ' ' unless $TZ eq '';

$year += ($year < 70) ? 2000 : 1900;
sprintf("%s %S %2d %2d:%02d:%02d %s%4d\n",
$DoW[$wday], $MoY[$mon], $mday, $hour, $min, $sec, $TZ, $year);

syslog.pl

$Log: syslog.pl,v $
Revision 4.0.1.1 92/06/08 13:48:05 1wall
patch20: new warning for ambiguous use of unary operators

Revision 4.0 91/03/20 01:26:24 1lwall
4.0 baseline.

Revision 3.0.1.4 90/11/10 ©01:41:11 1lwall
patch38: syslog.pl was referencing an absolute path

Revision 3.0.1.3 90/10/15 17:42:18 1lwall
patch29: various portability fixes

Revision 3.0.1.1 90/08/09 03:57:17 1lwall
patch19: Initial revision

Revision 1.2 90/06/11 18:45:30 18:45:30 root ()
- Changed 'warn' to 'mail}warning' in test call (to give example of
facility specification, and because 'warn' didn't work on HP-UX).
- Fixed typo in &openlog ("ncons" should be "cons").
- Added (package-global) $maskpri, and &setlogmask.
In &syslog:
- put argument test ahead of &connect (why waste cycles?),
- allowed facility to be specified in &syslog's first arg (temporarily
overrides any $facility set in &openlog), just as in syslog(3C),
- do a return @ when bit for $numpri not set in log mask (see syslog(3C)),
- changed $whoami code to use getlogin, getpwuid($<) and 'syslog'
(in that order) when $ident is null,
- made PID logging consistent with syslog(3C) and subject to $lo_pid only,
- fixed typo in "print CONS" statement ($<facility should be <$facility).
- changed \n to \r in print CONS (\r is useful, $message already has a \n).
- Changed &xlate to return -1 for an unknown name, instead of croaking.

tom christiansen <tchrist@convex.com>
modified to use sockets by Larry Wall <lwall@jpl-devvax.jpl.nasa.gov>
NOTE: openlog now takes three arguments, just like openlog(3)

90

I3 I I O I I W I I W I I W I W I R

Part I: Managing Internet Security

call syslog() with a string priority and a list of printf() args
like syslog(3)

usage: require 'syslog.pl';

then (put these all in a script to test function)

do openlog($program, 'cons,pid', 'user');

do syslog('info','this is another test');

do syslog('mail}warning', 'this is a better test: %d', time);
do closelog();

do syslog('debug', 'this is the last test');
do openlog("$program $$", 'ndelay', 'user');
do syslog('notice', 'fooprogram: this is really done');

$! = 55;
do syslog('info', 'problem was %m'); # %m == $! in syslog(3)

package syslog;

$host = 'localhost' unless $host; # set $syslog'host to change

require 'syslog.ph';

$maskpri = &LOG_UPTO(&LOG_DEBUG);

sub main'openlog {

($ident, $logopt, $facility) = @ ; # package vars
$lo_pid = $logopt =~ /\bpid\b/;

$lo_ndelay = $logopt =~ /\bndelay\b/;

$lo_cons = $logopt =~ /\bcons\b/;

$lo_nowait = $logopt =~ /\bnowait\b/;

&connect if $lo_ndelay;

sub main'closelog {

$facility = $ident = '';
&disconnect;

sub main'setlogmask {

local($oldmask) = $maskpri;
$maskpri = shift;
$oldmask;

sub main'syslog {

local($priority) = shift;
local($mask) = shift;

Understanding and Creating Daemons 91

local($message, $whoami);
local(@words, $num, $numpri, $numfac, $sum);
local($facility) = $facility; # may need to change temporarily.

die "syslog: expected both priority and mask" unless $mask && $priority;

@words = split(/\W+/, $priority, 2);# Allow "level" or "level,facility".
undef $numpri;
undef $numfac;
foreach (@words) {
$num = &xlate($_); # Translate word to number.
if (/"kern$/ || $num < 0) {
die "syslog: invalid level/facility: $_\n";
}
elsif ($num <= &LOG_PRIMASK) {
die "syslog: too many levels given: $_\n" if defined($numpri);
$numpri = $num;
return @ unless &LOG_MASK($numpri) & $maskpri;

}

else {
die "syslog: too many facilities given: $_\n" if defined($numfac);
$facility = $_;
$numfac = $num;

}

3
die "syslog: level must be given\n" unless defined($numpri);

if (!defined($numfac)) { # Facility not specified in this call.
$facility = 'user' unless $facility;

$numfac = &xlate($facility);

3

&connect unless $connected;
$whoami = $ident;

if (!$ident && $mask =~ /~(\S.*):\s?(.*)/) {
$whoami = $1;

$mask = $2;

}

unless ($whoami) {
($whoami = getlogin) ;|
($whoami = getpwuid($<))
($whoami = 'syslog');

}
$whoami .= "[$$]" if $lo_pid;
$mask =~ s/%m/$!/g;

$mask .= "\n" unless $mask =~ /\n$/;
$message = sprintf ($mask, @_);

92

Part I: Managing Internet Security

$sum = $numpri + $numfac;
unless (send(SYSLOG, "<$sum>$whoami: $message",0)) {
if ($lo_cons) {
if ($pid = fork) {
unless ($lo_nowait) {
do {$died = wait;} until $died == $pid |, $died < 0;
}
}
else {
open(CONS, ">/dev/console");
print CONS "<$facility.$priority>$whoami: $message\r";
exit if defined $pid; # if fork failed, we're parent
close CONS;
}

}

sub xlate {
local($name) = @ _;
$name =~ y/a-z/A-Z/;
$name = "LOG_$name" unless $name =~ /~LOG_/;
$name = "syslog'$name";
eval(&$name) || -1;

}

sub connect {
$pat = 'S n C4 x8';

$af_unix = 1;
$af_inet = 2;

$stream = 1;
$datagram = 2;
($name,$aliases,$proto) = getprotobyname('udp');
$udp = $proto;

($name,$aliase,$port,$proto) = getservbyname('syslog','udp');
$syslog = $port;

if (chop($myname = 'hostname')) {
($name,$aliases,$addrtype,$length,@addrs) = gethostbyname($myname);
die "Can't lookup $myname\n" unless $name;

@bytes = unpack("C4",$addrs[0]);

}

else {
@bytes

}

$this = pack($pat, $af_inet, 0, @bytes);

(0,0,0,0);

sub

sub

Understanding and Creating Daemons 93

if ($host =~ /~\d+\./) {

@bytes = split(/\./,$host);

I
else {

($name,$aliases,$addrtype,$length,@addrs) = gethostbyname($host);
die "Can't lookup $host\n" unless $name;

@bytes = unpack("C4",$addrs[0]);

3
$that = pack($pat,$af_inet,$syslog,@bytes);

socket (SYSLOG,$af_inet,$datagram,$udp) | die "socket: $!\n";
bind (SYSLOG,$this) || die "bind: $!\n";
connect (SYSLOG,$that) || die "connect: $!\n";

local($old) = select(SYSLOG); $, = 1; select($old);
$connected = 1;

disconnect {
close SYSLOG;
$connected = 0;

main'readconfig {
This will read in the named configuration file and check it for
validity.
local ($configfile) = @_;
if (! -r $configfile)
{
$delay between = 300;
$configbir = "/etc";
return($delay_between, $ConfigDir);
}
open(CFG, $configfile);
while (<CFG>)

{

next if ($_ =~ /"#/);
chop;

if ($_ =~ /delay_between/)
{

($var, $value) = split(/=/);
if ($value !~ /[a-zA-Z]/)
{
$delay between
3
else
{
$delay between
3

$value;

300;

}
if ($_ =~ /ConfigDir/)

{

Part I: Managing Internet Security

if ($_ =~ /ConfigDir/)
{
($var, $value) = split(/=/);
if (-d $value)
{
$Configbhir = $value;
}
else
{
$ConfigDir = "/etc";
}
}

}
return($delay_between, $ConfigDir);

Listing 2.4—The procmon.cfg File

The sample configuration file shown here is used to provide the operating parameters for the
procmon script. It can only accept two configuration parameters, as follows:

delay_between. The number of seconds to wait between checks in the process list

ConfigDir. The name of the directory where procmon should look to find the configu-
ration file and the command file, procmon.cmd.

#

Configuration file for procmon.
#

#

5 minute delay

#

delay_between = 300;

#

where is the process list file?
#

$Configbir = "/etc";

Using UUCP

UCP (Unix to Unix CoPy) is used for transferring files from
one system to another. The copy may result in other work
being done on one of the systems, such as invoking mail or
news programs, which is discussed later in this chapter.
Basically, UUCP is a collection of programs that are capable
of the following:

u Transferring files between Unix systems

B Executing commands on remote systems

Although UUCP is not in as widespread use as TCP/IP, it is
still available on your system. Without knowledge of this, it is
possible for the experienced hacker to access your files using
UUCP. It is shipped with standard logins and permissions
established. This chapter presents what UUCP is, how it

works, and how to configure it correctly.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

Part I: Managing Internet Security

The History of UUCP

Unlike many other networking environments, UUCP requires no special hardware. Its
simplicity is due in part to its age: UUCP formed the basis for communication on USENET
and early networks. The first network many Unix people worked on was a collection of
XENIX and Unix machines joined together with serial cables and UUCP. Although various
protocols can be run on LANs (local area networks), UUCP has traditionally been used in long
haul dial-up networks. That is, call the remote machine when there is something for it;
otherwise, UUCP does nothing.

UUCEP has been used in many different situations. Large financial organizations, for example,
used it to send daily processing information to a central computer; sales and distribution
companies used UUCP to send inventory and pricing information to remote offices. Although
UUCP made these transfers simple, this type of networking still involved cooperation between
system administrators.

Two versions of UUCP are currently being shipped. The first UUCP was written by Mike
Lesk of AT&T as a research project. During and after the project, UUCP became such a
success that Mike joined with David Nowitz and Greg Chesson to build the version of UUCP
that was shipped with Version 7 Unix, and subsequently became known as Version 2 UUCP.
This version is still shipped by some vendors, and many older Unix systems have this version.

With the release of System V Release 3 from AT&T, a new UUCP version was released that
was known by a number of names, most notably the Basic Networking Ultilities, or
HoneyDanBer (HDB) UUCP. HDB UUCP was written in 1983 by Peter Honeyman, David
A. Nowitz, and Brian E. Redman. They named this version after the login names they used on
the system (Honey, Dan, Ber). HDB provides additional capabilities, such as newer modem
and network support, and corrects design deficiencies of Version 2.

For the most part, communication between different UUCP versions is transparent after they
have been configured. Although many of the features have not changed, the names and layouts
of many of the configuration files have changed. As a result, it is easy to tell which version you
have. If you see a file named L.sys in the directory /ust/lib/uucp, you have Version 2. A file
named Systems in this directory is only found on HoneyDanBer UUCP. No /ust/lib/uucp
directory means that you don’t have UUCP installed. Table 3.1 shows a list of the file names
that make up each version, and their use.

Table 3.1
Comparison of Version 2 and BNU Files
Version 2 Files BNU/HDB Files Description
L-devices Devices Contains a description of the devices

that are attached to your system.

Using UUCP

Version 2 Files BNU/HDB Files Description

L-dialcodes Dialcodes Uses text to designate areas instead of the
actual area codes. This file describes that text.

Dialers Contains the commands needed to get a
modem or other device to make a call.

Maxuuscheds Contains a number that is the maximum
number of uuscheds that can be running at
one time.

Maxuuxqts The same as Maxuuscheds, but it is for uuxqt.

USERFILE Permissions Contains the needed information to
control the security of your machine.

Poll You can elect to call sites at specific times,
which is polling. This file describes who is
called, and when.

Sysfiles Used to configure separate Systems files for
cu and uucico.

L.sys Systems Contains the list of systems you can call, or
that you know about, and how to contact
them. It contains phone numbers, user
names, and passwords.

Uutry Shell command to test chat scripts by
calling the remote system.

remote.unknown Shell command to record calls from
unknown systems.

uucheck Checks the UUCP directories and Permis
sions file for proper setup and consistency.

uucico uucico The UUCICO program. This is the heart of
the UUCP system.

uuclean uucleanup General clean-up tool.

uudemon.admin
uudemon.cleanu
uudemon.hour

uudemon.poll

Shell command to send UUCP status
information to the system administrator.
Shell command to do general UUCP system
cleanup tasks.

Shell command to run the UUCP
scheduler.

Shell command to call (or poll) the

specified systems at the designated hours
(see Poll).

uudemon.day

UUCP maintenance tasks to be run once
per day.

continues

97

Part I: Managing Internet Security

Table 3.1, Continued
Comparison of Version 2 and BNU Files

Version 2 Files BNU/HDB Files Description

uudemon.kr Runs uucico once per hour and processes all
pending work.

uudemon.wk UUCP maintenance tasks to be performed
once per week.
uugetty Alternate getty program.
uusched The uucp scheduler.
uutry A debugging program.

uusub Defines a UUCP sub-network and monitors
the traffic between the hosts.

uuxqt uuxqt Executes jobs on your system that are
required as part of the transfer.

SEQF The sequence number for the next job.
L_stat System status file.

L_sub UUCP connection statistics.

R_stat Request status file.

R_sub UUCP traffic statistics.

Not all of the functionality or corresponding programs and files in table 3.1 exist between
implementations. One implementation has one file or program, and the other does not.

The UUCP Network

The UUCP network consists of a group of machines connected by some communication
mechanism that uses UUCP to transfer files and information. A sample network is depicted in

figure 3.1.

This UUCP network consists of a gateway that provides UUCP services via dialup at 19.2
Kbaud to the machine unilabs. In turn, unilabs offers dedicated UUCP connections over direct
serial cables to the machines bugs, thumper, and wabbit.

Machines are connected via a modem and phone line, a direct connection—serial cable—
between machines in close proximity, or some form of a leased line in the case of distant
systems. If desired, UUCP can even be deployed over TCP/IP.

Using UUCP

Often the machines in a UUCP network are different models or use different operating system
versions. The network in figure 3.1 has SunOS, SCO Unix, Motorola Unix, AT&T Unix,
Spectrix XENIX, and SCO XENIX in it. Even though all the machines are running Unix, each
version has a unique form of UUCP; the only was to ensure network communication is
through sysop cooperation.

Figure 3.1
A sample UUCP network.

£ N
Modem

H

PA—
Modem

thumper

wabbit

bugs

How UUCP Works

A UUCP job is submitted by a user through the commands uucp, uux, or uuto. These
commands create a job file in the /usr/spool/uucp/sysname directory. The program uucico
then runs at some point and calls the remote system. The uucico program then logs in and
transfers the files; afterward, the program uuxqt is run to complete the processing on the
remote system. UUCP is a batch-processing service: it may take a while for the job to be
processed, depending on whether the system administrator restricted the times when the
uucico daemon executes.

UUCP, like most networking tools, has a specific form of machine addressing. This form is
commonly referred to bang addressing. Machines in the UUCP command are separated by “!”
(pronounced “bang”), with the file name as the final component, as in this syntax:

thumper!unilabs!choreo!/tmp/transfer

99

100

Part I: Managing Internet Security

A file travels from the machine thumper, to unilabs, to choreo, where it ends up as the file
/tmp/transfer. UUCP commands do not understand Internet or Domain addressing, which is
typically used in TCP/IP and many mail applications. Internet addressing uses the “@” symbol
to separate machine and user:

chare@unilabs.org

«p»

Users who are working with the C shell know that the
When you use the UUCP commands, remember to ‘escape’ the

has special meaning for that shell.
(C"’

with a backslash to prevent
the C shell from interpreting the “!”, as shown in this example:

thumper\!unilabs\!choreo\!/tmp/transfer
Note You can execute a UUCP command, but whether the remote system will carry out

your request depends on the level of security that has been established on the
remote system.

Naming Your Host

Before you read about the process of naming your system, you first need to understand the
various names your system already has. In addition to the name your machine uses for
networking purposes (issue the uname command to see what this is), it has a system name that
describes the operating system. You can find the system name by issuing uname with the -s
option (although this can often be overridden). Sample output of the uname command
follows:

pc:~# uname

Linux

pc:~# uname -s

Linux

pc:~# uname -a

Linux pc 1.0.9 #3 Tue Sep 13 04:45:23 CDT 1994 1486
pc:~#

This name is not part of UUCP but is inherent in the operating system itself. Yet another
name for your system, called the nodename or hostname, appears when you issue the uname -n
command, or the hostname command on those systems that support it:

pc:~# uname -n

pc

pc:~# hostname
pc

pc:~#

Many implementations of UUCP limit the number of characters allowable in the UUCP name
to six or seven; because of this, the UUCP name may not even be the same as the node name.

Using UUCP 101

Even though you can use longer names in the commands, the names of the different machines
should be unique for the first seven characters. Consider two machines named “gateway1” and
“gateway2.” They are the same for the first seven characters; transactions for one machine
could possibly be delivered to the other in error.

The Naming Process

If you are not connected to Usenet or the Internet, you basically have free license on what you
call your machines. If you are part of Usenet, however, you should contact your Usenet
hookup and ask them to check whether the name you want is already in use. Alternatively, you
can contact a local UUCP registry, which will verify that the machine that you are connecting
doesn’t have a name conflict with someone else’s machine. Always try to choose a name for
your Usenet machine that describes the organization. For example, UniLabs Research Group
initially started with the name “unilabs.uucp” for Internet work, and has since registered into
the .org network domain. The name, unilabs, had to first be processed by the Canadian UUCP
Registry to verify that the name didn’t conflict.

Regardless of the existence of the Usenet connection, try to choose meaningful names. Resist
the common urge to use names such as “hostl,” “server22,” and “scol111,” which do little to
describe their purpose. Many organizations follow a common theme to describe their ma-
chines. For example, one company the author was involved with initially used cookie names
(oreo, pirate, chipsahoy) for their machines, but has since started to incorporate cartoon
characters (goofy, mickey, tazDevil).

A side effect of using obscure names is that it is harder for the system administrator to remem-
ber which machine serves what purpose. Commonly used names, such as ftp, will highlight
these services provided by a particular machine, and invite attention.

The actual mechanism of changing or setting the system name depends on the Unix derivative
you are using. On SCO Unix, for example, the name is generally compiled into the kernel;
SCO XENIX uses the file /etc/systemid. Check your system documentation to determine the
method in which the system name is defined.

The System V Basic Networking
Utilities UUCP

With the release of System V Release 3 from AT&T, a new UUCP version appeared. This
version is known by a number of names, most notably the Basic Networking Utilities, or
HoneyDanBer (HDB) UUCP. HDB provides capabilities that version 2 UUCP lacks, and
corrects some design deficiencies of version 2. Additional functions include the support for
newer modems and networks.

102

Part I: Managing Internet Security

The fastest way to know if you have Version 2 or BNU is to look in the directory, /ust/lib/
uucp, or /etc/uucp. If you see a file named “Systems,” then you have BNU. If you find “L.sys,”
then you have the Version 2 implementation of UUCP, which is described later in the chapter.

UUCP File Layout

UUCRP is set up in three directories: /ust/bin, /ust/lib/uucp, and /ust/spool/uucp. A brief
description of each file can be found in the following output:

/usr/bin
This contains the user commands, such as
cu * interactive dialup access
uucp * job scheduler
uudecode * decode files
uuencode * encode files

uulog * show UUCP log files
uuname * get UUCP names
uupick * pick files

uustat * get UUCP status
uuto * send files

uux * command execution

/usr/lib/uucp or /etc/uucp

Devices * Device Configuration
Dialcodes * Dial code prefix expansion
Dialers * dialer programs
Maxuuscheds * configuration parameters
Maxuuxqgts * configuration parameters
Permissions * Security Controls

Poll * Polling configuration
Sysfiles * file configuration

Systems * Calling System information
Uutry * debuging/text program
remote.unknown * handle unknown callers
uucheck * check configuration files
uucico * transfer program

uucleanup * maintenance program

uudemon.admin
uudemon.clean
uudemon.hour
uudemon.poll
uugetty
uusched

uutry

uuxqt

u *

maintenance program
maintenance program
maintenance program
maintenance program

UUCP getty program

UUCP job scheduler
debuging/text program
remote execution program

The location of your system’s UUCP files depends on the operating system that you are
running. Most System V implementations, for example, have UUCP files in /ust/lib/uucp.
Many BSD versions use the directory /etc/uucp. Your system may have other related files in

Using UUCP 103

these directories. For example, SCO Unix has a number of files, such as binary dialer programs
for specific modems, in these directories.

Configuring UUCP

Only three files must be modified to bring up a UUCP connection:
Devices
Systems
Permissions

Even if you leave all of the other files the same as they were shipped from the vendor, changing
only these three files results in a functioning UUCP system. To make these modifications
easier, the files are typically shipped full of comments; you may never need to use any docu-
mentation.

The Devices File

Before a connection can be established, the modem and serial devices that can be used must be
defined. These devices range from serial lines direct to another computer, to modems, and
UUCEP over TCP/IP or X.25 connections. The Devices file controls what physical devices are
available for carrying UUCP connections, and their configuration parameters. Each entry
consists of these fields:

Name Device dialer-port speed dialer-token pairs
HAYES tty2A - Any hayes \T

Each field is required, and must contain either a value or a placeholder (a hyphen). The fields,
allowable values, and their purposes are listed in table 3.2.

Table 3.2
The BNU Devices File

Field Name Allowed Values Description

Name This field is the name or type of the device.
In the preceding example, the name HAYES
is used.

ACU This is an Automatic Call Unit, or modem. The
modem may be directly attached to the com-
puter, or accessed through a LAN switch,
according to the UUCP documentation. ACUs
or modems are usually attached directly to the
system.

continues

104

Part I: Managing Internet Security

Table 3.2, Continued
The BNU Devices File

Field Name

Allowed Values

Description

Direct

sysname

This field indicates that this is a Direct link to a
remote system, modem, or LAN Switch. The
uucico program does not use lines of this type,
only cu does. Note the capital D; this is an
important note when looking at the available
dialers. In the case of modems, a Direct line is
also defined so that a command like “cu -1 tey??”
will work. This entry is also useful for configur-
ing the modem.

This field is an entry for connection to a specific
system, perhaps using some other specialized
dialer for routing through a LAN switch.

Device

This is the actual device that is used to establish
the connection. For direct serial and modem
links, this field contains the name of the actual
device. For TCP connections, this field will say
“TCP.”

dialer-port

This is a carryover from the days when the
dialer was separate from the modem. This is an
optional field, and may be used if the Name
keyword is “ACU” and the dialer is an 801
dialer. If you don’t have an 801 dialer, puta
hyphen (-) in this field.

speed

a single speed
a range
Any

This is the speed that connections will be
accepted at for this device. It may a single
speed, such as 2400, or the word “Any”,
which will match any requested speed, as
defined in the Systems file. The speed may
also be a range of values indicated by value—
value, as in 300—2400.

dialer-token pairs

This field identifies the dialer program that
will be used in conjunction with a specific
modem dialer. The token parameter identifies
what type of processing is to be used on the
phone number. Often no token is used. The
two tokens available are \T, which advises
uucico that the phone number should be
processed using the dialcodes file, and \D,

Using UUCP 105

Field Name Allowed Values Description

which indicates that the phone number in the
Systems file is to be used. The dialer program
named in this field can be a binary program in
some implementations of UUCP, direct for
use with direct serial connections, or the name
of a dialer program (found in the Dialers file).

Sample Device file entries and explanations are shown here:

Name /Type Device Dialer Speed dialer-token
INTACU ttyo1 - 1200 intacu

This entry defines a device named INTACU, which is accessed through /dev/tty01, using the
intacu dialer program, at only 1200 baud.

TBIT tty17 - Any TBIT

This entry defines a device named TBIT, which is accessed through /dev/tty17 using the TBIT
dialer program. This entry allows any connect speed requested in the Systems file.

bugs tty21 - 9600 direct

This entry defines a device named bugs, which is a name of one of the machines in the author’s
local UUCP network. The dialer program is direct, indicating that this is a direct connection,
and connections are done at 9600 baud only. It is common for the device in a dedicated
connection to be named the same as the remote system in order to establish system specific
values, or enable certain permissions.

TCP TCP,e - Any TCP 540

« »

The preceding entry defines a device used for TCP/IP connections using the “e” protocol.
There is no dialer port, and any speed can be used. The TCP in the dialer field indicates that
this is a TCP connection to be made on the port specified in the token field, TCP port 540.

Now that the entry in the Devices file has been created, file ownership must be discussed.
UUCEP requires that the Device files it uses are owned by UUCP, and have a group of UUCP.
Failure to do this will result in errors about not being able to access the device in question.

Evaluating the owner and group is done using the Is command. If the group owner for the
device, such as /dev/ttyl7, is not set to uucp, it is possible for connection problems with the
device to occur.

106 Part I: Managing Internet Security

Testing the Connection

Before you read about setting up the Systems file, you can test the existing connection using
the cu command. Assume you are using the following device definition in the Devices file:

bugs tty21 - 9600 direct
Direct tty21 - 9600 direct

To test the connection to see if it is live, the use of cu is required, as illustrated in the following
output (comments are marked in []):

charee@unilabs> cu -1 tty21

Connected [The Connected prompt indicates that we have
connected to the DEVICE, not necessarily to the
remote system.]

<RETURN> [Get the remote hosts attention]

login: anon [login]

Welcome to Unilabs Research

CONNECTED TO : bugs.unilabs.org

anon@bugs>

anon@bugs> date

Tue Dec 29 21:00:11 EST 1992
anon@bugs> exit

bugs!login:
~[unilabs]. [To disconnect from the remote system after logging
out, use the ~. command of cu to terminate the
connection.]
Disconnected [The connection to the device is closed.]
chare@unilabs>

If no communication is established with the remote machine, you should debug the actual
connection by verifying the media used to make the connection. In the preceding example,
debugging involves making sure the cable is plugged in at both ends, that the other machine is
running, and the port is enabled for login. If that doesn’t correct the problem, then it may be a
communication issue regarding the cable. For example, the cable does not have enough RS-
232 signals to establish communication between the modem and the computer system.
Whatever the reason, when the connection is verified as working, you can continue with the

setup of the UUCP files.

The Dialers File

The Dialers file contains a series of characters that are sent to a modem to initiate a phone call.
In some UUCP implementations, such as SCO Unix, dialer programs may also be a binary
program. SCO also provides a mechanism that uses a binary program and a custom dialer

Using UUCP 107

script to communicate with the modem. It is more common, however, to see dialer scripts
developed and implemented through the Dialers file. Each entry in the Dialers file has three
parts:

Type 801 Chat Script

hayes =y, "" \dAT\r\c OK\r ATL1M1\r\c OK\r \EATDT,,\T\r\c CONNECT
intacu ==-, "" \K\dEN\dAT\r\c : Q\c + \021\c "" \pEN\c + \0041 + AT\r\c :
D\T\r\c COMPLETE

TBIT =W-, "' ATZ\r\c OK\r A\pA\pA\pT OK ATQ4EQXQ OK\r

ATS53=1548=1850=255851=2555101=0S111=30\r\c OK\r ATDT\T\r\c CONNECT

The Type field defines the type of device. For example, the hayes entry defines a Hayes 2400
baud modem; intacu defines a 1200 baud internal modem; and TBIT defines a Telebit
Trailblazer Plus. The second field provides the translations for the 801 dialer codes. This field
isn’t used anymore, and is typically filled with =,-,. The third field is a chat script that works
similarly to the chat script in the Systems file, discussed later in this chapter. The chat script is
a series of expect-send pairs, meaning expect this, and when it is received, send this. The
special characters, preceded with a backslash (\), are defined in table 3.3.

Table 3.3

Dialer File Special Characters
Sequence Description
\p Pause (approximately 1/4—1/2 second delay)
\d Delay (2 seconds)
\D Phone number/token
\T Phone number with Dialcodes and character translation
\N Insert a Null byte
\K Insert a break
\E Turn on echo checking (for slow devices)
\e Turn off echo checking
\r Insert a Carriage return
\c Do not insert a new-line
\n Send new-line

\nnn Send octal number

108

Part I: Managing Internet Security

To see how this dialer script functions, look at the operation of the Hayes dialer entry.

Expect Send

"" (nothing) \dAT\r\c (delay, send AT)
OK\r ATLIM1\r\c

OK\r \EATDT,,\T\r\c

CONNECT

This chat script is being used to communicate and configure the modem prior to making the
call. In the 4 send sequence, when the modem is sent the string “\AEATDT,,\T\r\c”, it is being
told to turn on echo, and to dial the phone number. The dialer token \T causes the phone
number to be put in place when the script is actually used.

The Systems File

Now that the device has been defined in Devices, and the connection to the device, either
modem, or remote system has been verified using the cu command, the Systems file can be set
up to allow calls to be made by uucico and cu.

The Systems file defines the names of the UUCP systems that your system can connect to. In
other words, you don’t have to make an entry for every machine that might call you (you can
use anonymous UUCP), but only for those machines that you want to call your machine. Each
entry is in the format:

System_Name Schedule Type Speed Phone_Number Login_script
For example, consider this entry in unilabs’ system file:
gateway Any INTACU 1200 9999999 "" \d\r\d\r ogin: nuucp22 word: testing

The System_Name (gateway) is the name of the remote machine you are trying to contact.
Many UUCP implementations truncate the system name to seven characters. For this reason,
this name should be unique to seven characters. More modern systems, however, allow the use
of longer names.

Time_ro_Call is the calling schedule for this machine. That is, you can restrict when this
machine can be called. This can be handy if the link between the machines is expensive. This
field can contain a number of different values and components, including the day of the week,
and the start and end hour. The time or schedule field uses the following values to indicate the
day of the week:

Mo Monday
Tu Tuesday
We Wednesday

Th Thursday

Using UUCP

Fr Friday

Sa Saturday

Su Sunday

Any Any day of the week, at any time

Never For machines that call you, but you don’t call
Wk Any weekday excluding Saturday and Sunday

The time specification for the start and end time is given using the 24-hour clock to distin-
guish between 5:00 a.m. and 5:00 p.m. The specification can span midnight, as in 2310-0700,
allowing calls from 11:10 p.m. to 7:00 a.m. You should, however, consider how you select
times with uucico. uucico itself interprets the times on a same day basis. In the previous
example, uucico interprets the times to allow calls from 0000-0700, and 2310-2359 on the
same day. This is really only a problem if you combine the time with a specification such as
Wk, or specific days. For example, Wk2310-0700 works for Mon—Fri, but does not allow calls
after 2359 Friday night, until 0000 Monday morning. Consequently, careful thought must be
given to the call specification.

The schedule fields can have only a day specification, with no time value, which means that
the system can call any time of the day. The time subfields, however, must have a day specifica-
tion. If you want to allow calls between 2310-0700 every day of the week, for example, you
would use the specification Any2310-0700 in the schedule field.

It also is possible to have multiple calling periods for a single system by separating each of the
periods with a comma. Suppose, for example, that you want to allow calling only between
2300-0700 weekdays, and any time on the weekends. This would be written as Wk2300-
0700,SaSu. This multiple time specification is not supported in all implementations. Conse-
quently, some experimentation may be required.

The schedule field also may specify an optional retry number, which is used to change the
default number of minutes before another attempt will be made to call this system. BNU
systems default to a ten-minute delay (600 seconds), which increases with each unsuccessful
connection. To specify this retry, follow the schedule with a semicolon, and the retry period in
minutes, as in Any;2—a retry period of 2 minutes. This doesn’t invoke uucico any quicker,
but instructs uucico the next time it is invoked to wait for this period of time to elapse before
attempting to connect again.

The Type field specifies the name of the device that will be used; this device must also appear
in the Devices file. Any name defined in the Devices file is valid here. To use a TCP connec-
tion, the device named here is TCP, and includes the protocol to be used. After the device is

named, an optional field enables you to specify the protocol for the call. The default is to use
protocol “g,” which is not terribly efficient when using a high-speed reliable transport such as

109

110

Part I: Managing Internet Security

TCP/IP. For this purpose, the “e” protocol was created. Available protocols are discussed in
the final part of this chapter. In addition, the TLI and TLIS transports can also be used with
correct configuration.

The Speed field is used to define the speed of the connection to this system. This is defined in
baud for the connection. No keywords are permitted.

Phone is the actual number to dial and is used with modems. Direct connections mark this
field with a hyphen (). The phone number can include any number of things, including
dialcodes and support for calling card numbers. If, for example, you must dial 9 to get an
outside line, you need to pause the dialer to wait for the secondary dial tone. The equal sign
(=) is placed in the number to provide a delay. To access an outside line, 9= can be placed in
the phone number. In some implementations of modem software, the comma generates a
pause. It might be necessary to review your modem’s documentation to determine the charac-
ter for a delay.

The phone number may also contain an English word dialcode listed in the Dialcodes file. You
can use English to describe each phone number and who it is for, and then let the system
expand the listing into the actual numerical area code. Unfortunately, this helpful feature is
not automatic. You need to list the area codes you want in the Systems file. This new file,
Dialcodes, is described later in this chapter. Dialcodes are English words that can be used in
place of area codes and dialing prefixes. The following sample file has two fields: the first is the
English keyword, and the second is the dialstring that will be substituted:

toronto 9=1-416

When you specify the following phone number in the Systems file:
toronto5551212

it will be expanded to the following prior to dialing:
9=1-4165551212

In the original paper of Version 2 UUCP (written by David Nowitz), the Dialcodes file was
originally intended to allow for the use of the same Systems files at different sites, simply by
using different Dialcode files. The advantage to using this format is that only the Dialcodes file
has to be different for the given site.

Some sample phone numbers are listed here:

4581422
14084291786

These two examples are simple phone numbers. The following number uses the comma to
create a pause for a secondary dialtone.

9,,5551212
9,,06135551212, ,,,,,,,123456789012

Using UUCP 111

The preceding number uses several pauses to wait for a calling card tone before a calling card
code is entered. The following example shows a number with a dialcode that will be expanded
to provide the area code. See the section on Dialcodes for more information.

chicago8101242

The UUCP Chat Script

The final and possibly most difficult part of a UUCP entry is the chat script. The chat script is
a combination of expect-send pairs that define the login sequence to gain access to the remote
computer. Each pair is separated by a space, with optional subexpect-subsend pairs separated
by hyphens. Consider the following example:

login: -BREAK-login: nuucp word: loginAok

uucico expects the remote system to print login:. If it doesn’t see one within a predefined
period of time, send a BREAK signal, and expect login:. The BREAK signal is a modem break,
which may wake up a getty running on the remote system, or cause that getty to switch speeds
to something more reasonable. When your system sees the login:, it sends nuucp, and waits for
the word: string. When your system receives see it, you send loginAok, which is your password.
When the script completes all these steps successfully, your workstation has logged in to the
system.

If you don’t use the subexpect-subsend pairs, such as in the following command, you might
not be able to log in if the system answers at a different speed from the speed at which you are
calling. This type of mixup would prevent you from seeing the login prompt.

login: nuucp word: loginAok

Suppose, for example, that you are calling at 1200 baud, and the remote system answers at
2400 baud. You would need to send a BREAK twice, assuming that the related gettydefs entry
goes from 2400->300->1200. Your chat script would look like this:

login: -BREAK-1login: -BREAK-login: nuucp word: loginAok

The difference to note between the primary expect-send and the subexpect-subsend is that the
subexepect-subsend will only be used if the expect string is 7oz received. It should be pointed
out that uucico stops looking at the incoming characters after a match is found for the expect
text. However, it is commonplace to use the last text expected to ensure that the send sequence
isn’t sent to the remote system too soon.

Before you can define the chat script, you need at least the uucp login name and password you
use to access the remote system. You should then use the cu command to contact the remote
system to find out what you need to define for the script. A sample session’s output look likes
this:

112

Part I: Managing Internet Security

chare@unilabs> cu -1 tty21
Connected

<send NEWLINE>
login: nuucp
Welcome to Unilabs Research

Shere=bugs

To create a chat script for the system bugs, which is directly connected to the sample system,
the setup looks like this:

expect nothing
send newline
expect login:
send nuucp

This setup translates into a chat script that looks like this:
"" \r\c login: nuucp

The pair of double quotes means “expect nothing”; \r\c is “send newline.” These special
characters are used in chat scripts along with the extra characters listed in table 3.4.

Table 3.4
Chat Script Special Characters

Sequence Meaning

«»

Expect null string

EOT Send an End Of Transmission character

BREAK Send a BREAK signal (may not be implemented on all systems)

@ Same as BREAK

\b Send a backspace

\c Suppress newline at the end of the string

\d Delay for one second

\E Start echo checking. (From now on, whenever a character is transmit-

ted, it will wait for the character to be received before doing anything
else.) Not implemented on all systems

\e Turn echo check off
\K Same as BREAK (BNU only)

\n Send newline or linefeed character

Using UUCP 113

Sequence Meaning

\N Send a NULL character (BNU only)

\0 Send a NULL character

\p Pause for a fraction of a second (BNU only)

\r Send a carriage return

\s Send a space character

\t Send a tab character

\\ Send a \ character

\nnn Translate the octal digits nnn into a single ASCII character and sends

that character

The chat script used in the preceding example is very simple. Chat scripts get much more

complicated depending on the intended connection. The following sample chat scripts range
from the simple to the complex:

in:--in: nuucp word: panzer

@

Expect in: if not received, send a NULL string (newline)
send nuucp
expect word
send panzer

ogin:-@-ogin:-BREAK-ogin: -BREAK-ogin: uucp word: frogin

expect nothing

send @ (equivalent to BREAK)

expent ogin: if not received, send BREAK, maximum of two times
send uucp

expect word:

send frogin

"" \r\d\r\d ogin:-BREAK-ogin: -BREAK-ogin: anon

expect nothing

send newline

delay

send newline

delay

expect ogin: if not received, send BREAK, maximum of two times send anon

"" \r\d service: uucp ogin: mimi word: guesswho

expect nothing
send newline
delay

expect service
send uucp

114

Part I: Managing Internet Security

expect ogin:
send mimi
expect word
send guesswho

Warning When you use UUCP over TCP/IP, do not include BREAKS or other subexpect-
subsend combinations. They are not needed and can often lead to problems in
establishing a connection.

Now that you know how the System file is formatted, here are some additional examples.
(Notice that these examples also include UUCP over TCP/IP. This configuration is described
later in this chapter.)

sosco Any,15 TBIT 9600 14084291786 "" \r\d\r\d ogin:-BREAK-ogin:-BREAK-ogin: uusls
unilabs.org Any TBIT 1200 5551211 "" \r\d\r\d ogin: nuucp word: nothing

uunet.ca Any TBIT 19200 5551210U "" \r\d service: uucp ogin: mimi word: none
uunet.ca Any TCP,e Any - ogin: mimi word: none

sffoo Any STARLAN - sffoo in:—in: nuucp word: nuucp

Testing the Connection—Using uucico

Now that the Systems file is set up, it is important to verify that your configuration to this
point is correct. The uucico command is used with the -x option to specify a debug level, or
with the uutry (Uutry on some systems) command.

The most difficult part of working with uucico is interpreting its error messages. Sometimes
their messages are Greek to even the most experienced system administrator. To test the
connection and the uucico process, you can use the -x# option with uucico. This option prints
debug information on-screen. The # is a debug level, ranging from 1 to 9, with 9 being the
maximum amount of debugging information available. From implementation to implementa-
tion, the amount of information provided at various levels depends on how the programmers
coded it when they modified UUCP for their vendor. The following debug output illustrates a

terminal session:

chare@unilabs> /usr/lib/uucp/uucico -r1 -x9 -sbugs
conn (bugs)

Device Type bugs wanted

getto ret -1

Call Failed: DEVICE LOCKED

Conversation Complete: Status FAILED

The debug output displayed is created by using the option -x followed by a level number. The
higher the number, the higher the level of debug information that is printed. As mentioned
earlier, the highest value is 9. In the following example, the connection to the remote system
named bugs failed because the device is locked, meaning someone else is using the device. The
only recourse you have is to wait until the device is free. Another attempt at establishing
communications with the remote system is shown in the following:

Using UUCP 115

chare@unilabs> /usr/lib/uucp/uucico -ri1 -x9 -sthumper
conn(thumper)

Device Type thumper wanted

getto ret -1

Call Failed: CAN'T ACCESS DEVICE

Conversation Complete: Status FAILED

Note that the preceding example displayed a different error message: CAN' T ACCESS DEVICE.
To correct this problem, suspect that the owner and group owner for the associated device file
is incorrect. For example, if the connection attempts to use /dev/tty16 when connecting, check
the ownership using the Is -1 command. If the owner is not uucp, the UUCP-related programs
will not be able to open the device. Reviewing the permissions for the associated device using
the Is -] command shows that the owner of the device file is root, not uucp. As a result, uucp
couldn’t open the device. The following setup shows the next attempt at contacting the remote
system:

chare@unilabs> /usr/lib/uucp/uucico -r1 -x9 -sbugs
conn(bugs)

Device Type bugs wanted

getto ret 6

expect: ("")

got it

sendthem (DELAY

“MDELAY

~MAM)

expect: (ogin:)

“M~Jroot@bugs> *M*J~"M~Jroot@bugs> root@bugs> timed out
Call Failed: LOGIN FAILED

Conversation Complete: Status FAILED

Security Concerns during Log Off

Whenever UUCP is used, security must be considered for the host system. To illustrate how
the use of UUCP can create security problems, suppose that when the last user to use the port
exited, he or she didn’t log out, and the remote system is not set up to drop the line when the
connection closes. This type of scenario should be immediately reported to the system admin-
istrator of the other machine. Note that in this example you could not access the machine
because it couldn’t successfully complete the chat script.

chare@unilabs> /usr/lib/uucp/uucico -r1 -x9 -sbugs
conn(bugs)

Device Type bugs wanted

getto ret 6

expect: ("")

got it

sendthem (DELAY

“MDELAY

~MAM)

expect: (ogin:)

“M~Jroot@bugs> *M*J~"M~Jroot@bugs> root@bugs> timed out

116

Part I: Managing Internet Security

Call Failed: LOGIN FAILED
Conversation Complete: Status FAILED

When this occurs, anyone who placed a call to this machine gets a terminal session with a shell
and the access privileges of the last user, which is root in this case.

Correcting the problem involves making sure that your cable has the appropriate RS-232
signals to receive Carrier Detect, and the hardware flow control signals. It is also important to
ensure that the correct device is being used. On SCO Systems, for example, the /dev/ttyla
device does not use modem control signals; therefore, a modem on this device will not hang up
properly. This is solved by using the /dev/tty1A device.

This is only an example because the actual device name used on your system may be different
for operating system implementation.

A successful UUCP transaction is shown in the following sequence of commands (the author’s
comments are enclosed in brackets):

chare@unilabs> /usr/lib/uucp/uucico -r1 -x9 -sbugs
conn (bugs)

[Connection wanted for bugs]

Device Type bugs wanted

[I want a device type known as bugs to make the connection]
getto ret 6

[Set the speed]

expect: ("")

[Start the chat script - expect nothing]

got it

[0K]

sendthem (DELAY

“MDELAY

~MAM)

[Send \d\r\d\r]

expect: (ogin:)

“M~Jlogin:got it

[0K]

sendthem (unilabs~M)

imsg > *M*J"M~Jlogin: login: unilabs~M~JWelcome to Unilabs Research"M~J"M~J
M SPECTRIX Microsystems Inc.

~d) Xenix-68000 Vers. 3.0 Release 1.0

Ji el eV

M~JCONNECTED TO : thumper.unilabs.org (613) 834-1439"M"JSYS

MANAGER : Chris Hare “M~JMAIL TO H

charee@unilabs*M*JWARNING : Full System Security is

operational. M*M*JPRIMARY ON-LINE STORAGE~M~J"~PShere~@Login

Successful: System=0 bugs

[Login established]

imsg >"PROK"@imsg >"PPg~@wmesg 'U'g

Proto started g

[Protocol negotiation]

Using UUCP 117

wmesg 'H'
[I have no work - request hangup]
wmesg 'H'Y

[Remote has no work - hang up]
send 00 0,imsg >"P~"I"H*"~I"P"B"Q"""R"_HY"~@imsg
>"@r@"er@"ee*@"e*@e e @*ere @@ @e"e"e*@e"e*@"e~@"@"@*@"A*R"X"@"_vJ
~@"AAn"@"@~@2"@e*@"e*@ }"e~@~e*@"@"@*@"@*P"I"*"H"I*P~I"*"H~I~P0O00000
~@Conversation Complete: Status SUCCEEDED

[Call terminated]

Through this seemingly simple transaction, you now know that the UUCP connection is
working. An important transaction on the first imsg line takes place concerning the validation
of the calling systems. This transaction ensures that the two machines know each other.

The slave machine, usually the one being called, prints the message Shere=nodename, which
means “system here”—mnodename is its machine name. The master usually replies with
Snodename -Qseq - xnum. nodename is the master’s nodename; seq is the sequence number or zero
if not used; and zum is the level of debugging in effect. This is not consistent across implemen-
tations; as in the earlier example, the slave only prints Shere.

If the two machines agree to talk to each other, the slave prints the message ROK, and the call
continues. Another place to look for debugging information is in the Log files that are kept by
the various UUCP commands. These are presented later in this chapter under the heading
“UUCP Log Files.”

During the debugging process, it may be necessary to circumvent the normal retry mechanism
so that you can fix a problem and immediately call back. UUCP status files are kept on a
machine-by-machine basis in the directory /ust/spool/uucp/.Status. Currently this directory on
this system has the following files that record status information on these three systems:

$1s -1

total 3

SPW-rW-rw- 1 uucp other 32 Dec 30 00:04 bugs
SPW-rW-rw- 1 uucp other 45 Dec 30 00:11 thumper
SPW-rW-rw- 1 uucp other 38 Dec 30 00:11 wabbit

The status file looks like this:

Type Count Time Retry Status System
0 0 725691861 0 SUCCESSFUL bugs
6 1 725692313 300 LOGIN FAILED wabbit

These two examples were retrieved from separate files. The fields are defined as follows:
Type. A code that indicates the status of the job. This is explained in the status field.

count. The number of call attempts made by the local system. This is incremented each
time uucico tries to call the remote system.

118

Part I: Managing Internet Security

time. The time in seconds since January 1, 1970, when this system was last called.
Listing 1 at the end of the chapter has a program called gtimes that will print the correct
text for this time.

retry. When should the system retry the connection again. This value is stored in
seconds.

status. A text description of the status of the last call.
system. The name of the system.

Status files are updated and removed periodically during the normal course of operation. In the
event that UUCP fails abnormally, however, you may have to remove status files. In the case of
the line for the system wabbitt, you won’t be able to call this system for 300 seconds. To
circumvent this retry limit, remove the status file for the desired system from /ust/spool/uucp/
.Status/system. This will make uucp think that there wasn’c a problem, and the call will be
made immediately.

Permissions File

Now that the Device and Systems entries are configured and verified, the next step is to
examine the security of the UUCP system. The normal user account protections are still in
place with most UUCP accounts. One account that deviates from standard security is anony-
mous UUCP access, if you allow it. The login/password combination may differ from normal
protection mechanisms. For this and other reasons, you should always configure your UUCP
accounts to include passwords: This makes it harder for the bad guys to break into your system
through UUCP. The standard issues surrounding passwords should still be considered,

however.

The structure of the Permissions file enables you to control which authorizations are given to
the remote system when that system calls you, and also which authorizations you have when

you call a remote system. As an administrator, you may choose to use only the default values

for each of the fields in the file. A sample Permissions file entry appears here:

LOGNAME=choreo \

REQUEST=yes \

SENDFILES=yes \

READ=/ \

NOREAD=/etc \
WRITE=/tmp:/usr/tmp:/usr/spool/uucppublic \
CALLBACK=no \

COMMANDS=ALL

The backslashes on each line indicate that the line continues as if it were all on one line. This
example does not include all of the options, and this in a non-default entry. (Each option is
explained shortly.) The default permissions associated with a login are shown as follows:

Using UUCP

Default Permissions
READ=/usr/spool/uucppublic
WRITE=/usr/spool/uucppublic
REQUEST=no

SENDFILES=call
COMMANDS=rmail

Each entry must have either a LOGNAME or MACHINE option, or both. The LOGNAME
option indicates that this entry is used when the system calls in and logs in using the logname
specified. MACHINE entries are for when users on your system CALL the remote machine,
and not for when the remote machine calls you: that is covered by LOGNAME. LOGNAME
and MACHINE entries may be combined, but they don’t have to be. However, if you want
complete control over systems that access your machine using UUCP, separate login ids and
combined LOGNAME/MACHINE entries are necessary in the Permissions file. All of the
keyword options that can be used are defined in table 3.5. The L in the CLASS column
indicates that the option applies to LOGNAME entries. M is for MACHINE entries, and
both means that the option is applicable to both.

Table 3.5
Permissions File Keyword Definitions
Option Class Definition
LOGNAME L Specifies the login ids for remote sites that access the
local site.

LOGNAME=thumper
LOGNAME=thumper:wabbit

MACHINE M When the named machine calls your computer, this
option specifies the conditions that are in effect.
MACHINE=wabbit
MACHINE=wabbit:bugs

REQUEST M, L This option determines whether the remote system can
set up UUCP transfers from your computer system.
Allowable values are “yes” or “no”.
REQUEST=no
REQUEST=yes

SENDFILES L The value of this option determines whether the called
site can execute locally queued jobs during a session. A
value of “yes” means that your system may send jobs
queued for the remote site as long as it is logged in
using one of the names specified in the LOGNAME
field. The default value is “call,” which means that the
queued files are sent only when the local system calls
the remote system.

continues

119

120

Part I: Managing Internet Security

Table 3.5, Continued

Permissions File Keyword Definitions

Option

Class

Definition

SENDFILES=yes
SENDFILES=call

READ

Names the directories that uucico can read from when
requesting files. The default is to use /ust/spool/
uucppublic. Multiple directories can be named by
putting colons between directory names.
READ=/tmp:/ust/tmp:/ust/spool/uucppublic
READ-=/

NOREAD

Names the directories that are to be excluded from the
READ list.
NOREAD-=/etc

WRITE

Names the directories that uucico can write to for
depositing files. As with READ, the default directory
is /ust/spool/uucppublic.
WRITE=/tmp:/ust/tmp:/ust/spool/uucppublic
WRITE=/

NWRITE

Identifies the directories that are excluded in the
WRITE list.
NOWRITE=/etc:/bin:/usr/bin

CALLBACK

Setting this value to “yes” instructs the local system to
call the calling system back before allowing any work
to be done. This is a good feature for enhanced
security. Just make sure you don’t set both systems to
CALLBACK=yes, or nothing will get done.
CALLBACK=no

CALLBACK-=yes

COMMANDS

Defines the commands that the remote system can
execute locally. The defaults are different from system
to system, and are defined in the source code for uuxqt.
Multiple commands can be listed by separating each
with a colon. The keyword ALL is allowable and
permits the use of all commands. Keep in mind,
however, that this is a security problem. Do not
include uucp as a command, unless you will allow
other users to route UUCP jobs through your machine.

Using UUCP

Option Class Definition

COMMANDS=rmail
COMMANDS=rmail:rnews:uucp
COMMANDS=ALL

VALIDATE L Helps validate the calling system when potentially
dangerous commands are executed. The value is a list
of system names that are permitted to use this logname.
Multiple names may be used.

VALIDATE=unilabs
VALIDATE=unilabs:wabbit

MYNAME M Used to circumvent the name length restrictions that
were discussed earlier. Note, however, that MYNAME
is used only when the local machine calls out, and not
when a remote machine calls in.

MYNAME-=testdrive

PUBDIR M, L Specifies the name of the directory used for the
public UUCP directory. Typically this is /ust/spool/
uucppublic.

PUBIDR=/usr/ftp

Keep in mind the following rules when defining Permissions entries for systems:
Blanks are not allowed before or after the equal sign in the assignment.

Multiple option=value pairs can be combined on a single line, but they must be
separated by a space.

Each line is one entry, although the line can be continued onto the next line by using the
backslash (\) as a continuation character.

Comment lines start with a pound (#) symbol, and end with a newline.
Remote system names may appear in one and only one LOGNAME entry.

Some sample Permissions entries are shown as follows:

#
For ANONYMOUS LOGINS
#

LOGNAME=nuucp

With this entry, any machine that calls in and logs in using the
login name nuucp will use this LOGNAME entry, which sets the
default values for the remote machine.

121

122 Part I: Managing Internet Security

#
For dealing with wabbit - AT&T 7300
#
LOGNAME=wabbit \
MACHINE=wabbit \
REQUEST=yes \
SENDFILES=yes \
READ=/ \
NOREAD=/etc \
WRITE=/tmp:/usr/tmp:/usr/spool/uucppublic \
COMMANDS=ALL
This entry is used when "wabbit" logs in to your machine, or when
you call wabbit. In both cases, the permissions are extensive and
very liberal. If you manage both machines, this shouldn't be a
problem. Notice that even though wabbit can read files from any
directory, access to /etc/ has been explicitly blocked off to
prevent the retrieval of the password file.

Some advanced security measures can be put into place to further protect your system from
“marauders.” The SENDFILES, REQUEST, VALIDATE, and CALLBACK options are, after
proper login and password controls, the next step in UUCP security measures. VALIDATE
validates the hostname of the calling system, and terminates the call if the caller does not have
one of the listed hostnames. The following line shows how this option is used:

LOGNAME=choreo VALIDATE=choreo:gateway

If a system logs in to the machine using the logname of choreo, but it isn’t the machine choreo
or a gateway, the call will be terminated. To further inform you of who is calling, the CALL-
BACK feature can be used. With this option, the calling system is told during the negotiation
that your system must call them back. Your system terminates the call, and then uses the
information in the Systems file to call the remote machine. In this case, no work will take place
until your system calls back the remote machine. The CALLBACK feature can also be used to
determine who will pay for the phone call.

The SENDFILES option determines whether your system will send locally queued work after
the remote has finished with its requests. Suppose, for example, that a machine called wabbit
and another called thumper are communicating. A user on thumper initiates a request to send
a file to wabbit. A user on wabbit starts a UUCP job to send a file to thumper. The Permis-
sions entry for thumper on the machine wabbit has SENDFILES=call. The system thumper
calls wabbit, logs in, and sends the file to wabbit. The call is terminated at this point, even
though wabbit has a job to send to thumper. The call is terminated because the
SENDFILES=call option indicates that jobs will NOT be sent to the remote machine if it
calls; only if the local machine calls the remote machine.

In addition to SENDFILES, you can set the value REQUEST=no so that remote systems
cannot request files from you. With both SENDFILES and REQUEST set this way, your
system is pretty much in control of what is going on, regardless of the CALLBACK and
VALIDATE values. The reason: all work destined for outside of your system must originate
with your system.

Using UUCP 123

Note Two things to watch for when using SENDFILES and CALLBACK: if both systems are
set CALLBACK=yes, or one system is set CALLBACK=yes and the other is
SENDFILES=call, no work will be performed in either case.

Allowing Anonymous UUCP Access

As in any situation where unathenticated, or anonymous access to a system is granted, there are
certain risks to be borne, and certain steps to take in protecting your assets. This is also true for
UUCP. You might need to set up anonymous UUCP access at some point, or disable it. Being
able to deal with either case results from a through knowledge of the security problems for
such a setup, and how they can be minimized with a proper Permissions entry. During
anonymous UUCP setup, you need to include two steps. The first step is to define a generic
entry in Permissions:

#

For ANONYMOUS LOGINS
#

LOGNAME=nuucp

Make sure a user login account exists on your system called nuucp, and executes the uucico
program as its login shell. If this account doesn’t exist, make one. By defining only the
LOGNAME option, any system that calls and uses the login name “nuucp” is granted only
the DEFAULT permissions:

READ=/usr/spool/uucppublic
WRITE=/usr/spool/uucppublic
REQUEST=no

SENDFILES=call
COMMANDS=rmail

With this configuration, the amount of information users can get is limited. You probably will
be setting up anonymous UUCP so that employees or outside users can download informa-
tion. If this is the case, you may want to change REQUEST =yes.

The second step concerns checking for or creating a file in the /ust/lib/uucp /directory called
“remote.unknown.” The normal mode of operation in BNU requires that machines must exist
in each other’s Systems files for the conversation to be successful. If a machine name does not
exist, the program searches for remote.unknown. If it is found and is executable, the call is
connected, the contents of the file are executed, and the call is then terminated. A sample
remote.unknown file is listed here:

#!/bin/sh

#ident "@(#)uucp:remote.unknown 2.3"
FOREIGN=/usr/spool/uucp/.Admin/Foreign

echo "“date’: call from system $1" >> $FOREIGN

124 Part I: Managing Internet Security

For each unknown system that is it is missing from the Systems file, the remote.unknown
script is executed. To prevent this from occurring, remove the execute bits using the chmod
command. This allows calls from all unknown systems.

UUCP Log Files

To track what happens on a system, UUCP keeps records of its transactions in a number of
different log files; the command that is currently executing determines which log file is used.

All UUCP log files are stored in the /usr/spool/uucp/.Log subdirectory. This structure has a
directory for each of the uucp commands you want to track: uucp, uucico, uux, uuxqt, and a
file in each subdirectory for each system you interact with. With this information, you can see
a record of the transactions for a given system at any time.

Usually the log file that is examined the most is the uucico command’s log file, with the
following syntax:

user machine date time PID seq comment

A log file entry with information in each of these fields would indicate that a conversation was
in progress, as illustrated in the following excerpt:

uucp gateway (12/30-22:04:06,1429,0) SUCCEEDED (call to gateway)

uucp gateway (12/30-22:04:12,1429,0) OK (startup)

chare gateway gatewayN7bdo (12/30-22:04:12,1429,0) REQUEST (unilabs!D.unila9309b03
---> gateway!D.unila9309b03 (chare))

chare gateway gatewayN7bd® (12/30-22:04:30,1429,1) REQUEST (unilabs!D.gatew7bdobo3
---> gateway!X.gatewayN7bd@ (chare))

uucp gateway (12/30-22:04:37,1429,2) OK (conversation complete tty@1 75)

The log file indicates that a call to a machine gateway started at 22:04 on 12/30, and a connec-
tion was established (OK (startup)). A REQUEST was made to transfer a file
(unilabs!unila9309b03) to gateway for user chare. A second file was transferred (notice that the
SEQ number following the PID has incremented by one), and finally the call was terminated
after the files successfully transferred.

Log files are the best way to spot trouble, as shown in this example:

uucp thumper (12/30-20:41:03,1213,0) CONN FAILED (CAN'T ACCESS DEVICE)
uucp thumper (12/30-21:11:03,1280,0) FAILED (generic open)
uucp thumper (12/30-21:11:03,1280,0) CONN FAILED (CAN'T ACCESS DEVICE)
uucp thumper (12/30-21:41:03,1351,0) FAILED (generic open)
uucp thumper (12/30-21:41:03,1351,0) CONN FAILED (CAN'T ACCESS DEVICE)
uucp thumper (12/30-22:11:04,1464,0) FAILED (generic open)
uucp thumper (12/30-22:11:04,1464,0) CONN FAILED (CAN'T ACCESS DEVICE)

The log file indicates that a number of unsuccessful attempts have been made to contact the
remote machine thumper. This probably should be investigated because the error message

Using UUCP 125

indicates that there is a problem accessing the device. This could be the result of a problem
with permissions, ownership, or hardware.

The uux logs show what requests were queued on the local system, as illustrated here. There
would be few error messages written to this file:

user machine jobid date time pid SEQ comment
news gateway gatewayd7bcf (12/30-18:30:18,926,0) QUEUED (rnews)
chare gateway gatewayN7bd@ (12/30-22:03:22,1425,0) QUEUED (rmail rdpub.com!martha)

The log for uuxqt is similar, in that it simply records which commands were executed at the
request of a remote system. The error messages described in table 3.6 would most commonly
show up in the .Log/uucico/system file.

Table 3.6
UUCP Error Messages
Error Message Description
ASSERT ERROR An ASSERT error occurred. The message will be

stored in the Admins/errors file. See the documenta-
tion for the ASSERT messages for your version of

UUCP.

BAD LOGIN/MACHINE COMBINATION The node name and/or login name used by the
calling machine aren’t permitted in the Permissions
file.

CALLBACK REQUIRED The remote system requires a callback.

CAN'T ACCESS FILE Either the device doesn’t exist, or the permissions are
wrong.

DEVICE FAILED The attempt to open the device using the open(2)

system call failed.

DEVICE LOCKED The requested device is currently in use.

DIALER SCRIPT FAILED The script in the Dialers file was not negotiated
successfully.

LOGIN FAILED The login for the given machine failed. It could be a

wrong login/password, wrong number, a very slow
machine, or failure in getting through the chat
script.

NO CALL (RETRY TIME NOT REACHED) Default time for the System status file has not been
reached. Remove this file if you want uucico to try
again sooner.

continues

126 Part I: Managing Internet Security

Table 3.6, Continued
UUCP Error Messages

Error Message

Description

NO DEVICES AVAILABLE

There may be no valid device for calling the system.
Check that the device named in Systems has a
corresponding entry in Devices.

OK

Things are working perfectly.

REMOTE DOES NOT KNOW ME

The remote system doesn’t have the name of your
system in its Systems file.

REMOTE HAS A LCK FILE FOR ME

The remote may be trying to call you, or has a lock
file leftover from a previous attempt.

REMOTE REJECT AFTER LOGIN

Your system was logged in, but had insufficient
permissions on the remote system.

REMOTE REJECT, UNKNOWN MESSAGE

The remote system rejected your call with a non-
standard message. The remote may be running a
hacked UUCP implementation.

SUCCEEDED

Self-explanatory.

SYSTEM NOT IN Systems

One of your users made a request for a system that
was not defined in the Systems file.

TALKING

A conversation is currently in progress.

WRONG MACHINE NAME

The machine you called is using a different name
from the name your system has for it.

WRONG TIME TO CALL

The Systems file doesn’t allow a call at this time.

A wide variety of programs and even troubleshooting can benefit from the use of the log files.
They are not only a source of debugging information, but also a valuable resource in tracking
connect times to other systems, and lists of files that have been sent and received.

Maintenance

Now that you have UUCP running, you need to maintain it. Log files constantly consume
disk space. Unless they are cleaned out on some type of schedule, they will expand to fill your
hard disk. To prevent this, usually a crontab file is supplied for the uucp owner. A sample uucp
crontab file is shown in the following:

Using UUCP 127

Here are some sample UUCP crontab entries that are used to start the
various UUCP maintenance commands, that were described earlier.

45 23 * * * ylimit 5000; /bin/su uucp -c "/usr/lib/uucp/uudemon.cleanup" > /dev/
Onull 2>&1

41,11 * * * * Jusr/lib/uucp/uudemon.hour > /dev/null

0,15,30,45 * * * * Jusr/lib/uucp/uudemon.poll > /dev/null

The shell scripts uudemon.poll, uucleanup, uudemon.cleanu, and uudemon.hour are provided
by Unix vendors to help the system administrator maintain his or her UUCP system. Each of
these programs is called at various intervals to perform specific maintenance tasks.

The uudemon.poll program looks at the Poll file, as shown in the following, to determine
what, if any, systems should be called:

Lines starting with # are ignored.
NOTE a tab must follow the machine name

gateway 012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23
thumper 012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23
wabbit 012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23

If a system should be called, this program schedules a dummy job to “fake” uucico into
thinking that there is work to be done. This is primarily used to “poll” other UUCP systems
that do not regularly call your system.

The uucleanup program, typically started by uudemon.cleanup, cleans up the UUCP spool
directory (/usr/spool/uucp typically) somewhat intelligently. For systems that cannot be
reached, a mail message is sent back to the originator. uucleanup works by deleting locally
created rnews files, executing remotely created rnews files, and removing everything that
shouldn’t be there. A number of options are used to alter the processing done by uucleanup.
Unfortunately, each version of uucleanup is different, and you will be forced to check your
vendor’s documentation for your version’s methods.

The uustat command enables the user or the system administrator to obtain various statistics
on how the UUCP system is operating. This command can also be used to cancel individual
UUCEP jobs by using the -k option. To kill UUCP jobs with the uustat command, you must
know the UUCP job number, and be the owner of the job, or root.

choreoN90@cf 02/08-09:09 S choreo chare 27332 D.unila96b2919
02/08-09:09 S choreo chare rmail chare

uustat -kchoreoN9@cf
Job: choreoN90@cf successfully killed

What uustat will not do is cancel all requests or cancel multiple UUCP jobs based on a user or
a system.

128 Part I: Managing Internet Security

Configuring Version 2 UUCP

Version 2 UUCP is not as common since BNU (Basic Networking Ultilities) and

HoneyDanBer UUCP were introduced, although it still can be found on some older versions
of Unix.

What Is Version 2 UUCP?

Version 2 UUCP was the first commercial release of UUCP that was included in Unix. It was
used widely within AT&T and other organizations until the Basic Networking Utilities were
developed. Version 2 was the predominant version of UUCP shipped with the BSD Unix

implementation for many years.

To determine if you have Version 2 UUCP, look in /ust/lib/uucp or /etc/uucp. If you find a
file called L.sys, then you have Version 2 UUCP. If you find a file called Systems, then you
have the Basic Networking Utilities.

File Layout

Version 2 UUCP has a directory structure similar to that of HDB UUCP, with the majority
of differences at the file level. Table 3.7 depicts the file layout seen in a typical version 2

implementation.
Table 3.7
UUCTP File Descriptions
Directory and File Description
/bin Contains the cu command. Note that this command is in a
different place than HDB.
/ust/bin Contains the user commands. Keep in mind that many Version

2 UUCTP sites do not have the uuencode and uudecode com-
mands. Commands in this directory include the following:

uucp * job scheduler

uulog * show UUCP log files
uuname *get UUCP names
uupick * pick files

uustat * get UUCP status

uuto * end files

uux * command execution
uusub * manage a UUCP sub-net

work

Using UUCP

Directory and File

Description

[ust/lib/uucp or /etc/uucp

The UUCP llbrary and configuration file directory.

129

L-devices device configuration

L-dialcodes cialcode expansion file

USERFILE security controls

L.Cmds security controls

L.sys calling system information

L_stat, R_stat \ statistics files used by the uustat

command

L_sub, R_sub \ traffic statistics used by the uusub
command

uucheck check configuration files

uucico transfer program

uusched UUCP job scheduler

uuxqt remote execution program

uuclean * administration support command

Now that you know the differences between Version 2 UUCP and BSD, configuring Version
2 UUCP should be easier.

Configuring UUCP

To use Version 2 UUCP, the following files must be configured for a minimal UUCP
network. These files must be configured before you can initiate a call to a remote system using
either cu or uucico.

L.sys
L-devices
USERFILE
L.cmds

The L-devices File

The L-devices file contains descriptions for devices that Version 2 UUCP can use to make
connections to remote systems. An L-devices entry looks like this:

Type Device Call-unit Speed
ACU tty000 - 1200

The Type field is usually the type of link that is being used for this device. ACU (automatic call
unit or modem) and DIR (direct) are usually the only types supported. Multiple entries of the
same type may be listed in the file. In fact, there may be other types supported, depending on
the operating system version. For example, BSD Unix supports TCP (TCP/IP) and PAD

130

Part I: Managing Internet Security

(X.25). Very few implementations of Version 2 UUCP actually support any device types other
than ACU and DIR.

The Device field is the name of the physical device that is used to establish the link. The Ca//-
unit field is used only if you are using a Bell 801 dialer and separate modem. You would put
the device for the data line in the device field, and the name of the device for the dialer. These
dialers are not commonly used any longer and have been replaced with the “smart” modem.

The Speed field is the connect speed for this device. Like the entries in the BNU Devices file,
the Speed field may contain a range of values, such as 1200-2400, so that connections from
1200 to 2400 baud will work.

Testing the Connection

Before you continue with the Version 2 UUCP configuration, you first need to evaluate the
continuity of the connection between these systems. To do this, use the cu command. This
command is in the /bin directory in Version 2 UUCP, and the /usr/bin directory in HDB. To
run cu on a Version 2 UUCP system, the syntax is as follows:

cu -1 ttyo1

Substitute the appropriate device name in the command line for ttyO1. If you get a connected
message, you can attempt to log in to the remote system. If you receive an error message such
as NO DEVICE AVAILABLE or REQUESTED DEVICE NAME UNKNOWN, you do not have the L-devices
file configured properly. The following output shows a sample cu connection:

Comments are marked in []

chare@unilabs> cu -1 tty21

Connected

[The Connedt prompt indicates that you have connected to the DEVICE, not
necessarily to the remote system.]

<RETURN>

login: anon

Welcome to Unilabs Research

CONNECTED TO : bugs.unilabs.org

anon@bugs>

anon@bugs> date

Tue Dec 29 21:00:11 EST 1992
anon@bugs> exit

bugs!login:

~[unilabs].

[To disconnect from the remote system after logging out, use the ~.
command of cu to terminate the connection.]

Disconnected

Using UUCP 131

chare@unilabs>

In this example, the connected prompt printed by the cu command indicates that a connection
has been established to the device. After the Enter key is pressed several times, a login message
prints from the remote system. After providing a login name, you can establish a session
successfully on the remote end. With the knowledge that the connection works, the cu
connection is then terminated using the tilde period (-.) sequence.

The next step in setting up Version 2 UUCP is to configure the L.sys file to allow for auto-
mated connections.

The L.sys File

The L.sys file is essentially the same as the Systems file in HDB UUCP. The format of each
entry is as follows:

System Schedule Device Speed Phone Chat-script
xray Wk0800-1700 ACU 1200 5551234 ogin: anon

The System field identifies what system this entry is used to contact. It must be unique to seven
characters for the entries in this file. Schedule identifies when you can call the remote system,
and uses a series of times and related keywords. The Schedule field can be used to control the
cost of a calling system if telephone links are expensive. The contents of this field may contain
the following:

Field Contents Description

start-end The starting hour and ending hour based on the 24-
hour clock; 0800 is 8:00 a.m., and 2000 is 8:00 p.m.

Any No limit on calling.
Never No calling permitted.
Wk Restrict calling to weekdays: Monday to Friday.

Mo, Tu, We, Th, Fr, Sa, Su Days of the week.

These components can be combined to build a restrictive definition. For example, if you want
to allow calling only between 8:00 a.m. and 11:00 a.m. on Saturday and Sunday, the appropri-
ate entry would be as follows:

SaSu0800-1100

An optional retry subfield can be included by following the schedule with a comma and a time
period in seconds. This is the delay period used after an unsuccessful call, not the amount of
time after which uucico restarts automatically.

132

Part I: Managing Internet Security

The Device type in V2 is restricted to one of the device types allowed in L-devices; either ACU
or DIR. When a call is made to the remote system, the device entry is checked against device
entries in the L-devices file. If multiple entries exist for a device, the first available device will

be used.

The Speed field identifies the baud rate to be used when calling the remote system. A corre-
sponding entry in the L-devices file for this speed must exist. The phore number is the actual
number to call to connect with the remote system. This field contains a hyphen if it is for a
direct link to a remote system.

The Chat-script field is used to negotiate the login to the remote system. This entry consists of
a series of expect-send sequences. The chat script is a combination of expect-send pairs that
define the login sequence to gain access to the remote computer. Each pair is separated by a
space, with optional subexpect-subsend pairs separated by hyphens. Consider the following
example:

login: -BREAK-login: nuucp word: loginAok

uucico expects the remote system to print login:. If you don’t see one within a predefined
period of time, send a BREAK signal and expect login:. The BREAK signal is a modem break,
which may wake up a getty running on the remote system, or cause the getty to switch speeds
to something more reasonable for your system. When your system sees the login: prompt, your
system sends nuucp, and then waits for the word: string. When you or your system sees it, send
loginAok, which is your password. When the script successfully completes, you have logged in
to the system.

You may not be able to log in if the system answers at a different speed from the speed at
which your system is calling. This little glitch would prevent you from seeing the login
prompt. For example, if you are calling at 1200 baud, and the remote system answers at 2400
baud, you need to send a BREAK twice, assuming that the related gettydefs entry says go from
2400->300->1200. Therefore, the chat script would look like this:

login: -BREAK-1login: -BREAK-login: nuucp word: loginAok

The difference between the primary expect-send and the subexpect-subsend is that the
subexepect-subsend will only be used if the expect strings are ot received.

The uucico program stops looking at the incoming characters when a match is found for the
expect text. It is common, however, to use the last text expected to ensure that the send
sequence isn’t sent to the remote system too soon.

Before you can define the chat script, you need at the very least the uucp login name and
password, which you will use to access the remote system. You should use the cu command to
contact the remote system to find out what you need to define for the script. A sample session
appears here:

charee@unilabs> cu -1 tty21

Using UUCP 133

Connected

<send NEWLINE>
login: nuucp
Welcome to Unilabs Research

Shere=bugs

To create a chat script for the system bugs, which is directly connected to your system, describe
it this way:

expect nothing
send newline
expect login:
send nuucp

This would translate into a chat script that looks like this:
"" \r\c login: nuucp

The pair of double quotes means “expect nothing;” \r\c is “send newline.” These special
characters are two of a number of characters used in chat scripts—table 3.3 lists the others. It is

wise to avoid the use of subexpect-subsend pairs unless needed, because they can often lead to
problems in establishing a connection.

Testing the Connection with uucico

When the L-devices and L.sys files have been configured, communication can then be evalu-
ated with the uucico program’s debug option. The process uucico uses is essentially the same
for Version 2 and HDB. When the call is initiated, uucico keeps track of the process by
creating a status file for the machine in the /usr/spool/uucp directory. This status file is called
STST.machine name. The status file contains the details of the last connection. If the status file
is present when the remote system calls in, the connection is dropped after telling the remote
that there is a LOCK file. If the status file is there when you want to make an outgoing call,

the call is prevented, and a message is logged saying there is a status file to prevent the call. The
contents of the status file look like this:

pointer to error code
number of calls

I

I

| time of last call

I |

I |

1 729570390 LOGIN FAILED unilabs
1 I

1 I

status i

system

|
|
|
|
|
|
|
|
:
4

134

Part I: Managing Internet Security

The error code is explained in the status part of the entry, which eliminates the need for
interpreting the error code manually.

When the status file exists, any other jobs queued for the affected system do not result in a call
until the retry time period has been reached. To circumvent this, you can remove the status

file.

Version 2 Permissions

In HDB UUCP, one file essentially controls access to commands and files on your system.
Version 2 UUCP uses as many as five files; three files are used in the typical configuration:

USERFILE
L.cmds

SQFILE

USERFILE

USERFILE controls access to the files on your system for both remote and local users. It is
highly recommended that for each entry in your /etc/passwd file, you create an entry in
USERFILE. The code listing section at the end of the chapter includes genUSER, which
generates a default USERFILE. The following sample USERFILE is created by genUSER:

root, /usr/spool/uucppublic /

daemon, /usr/spool/uucppublic /

bin, /usr/spool/uucppublic /bin

sys, /usr/spool/uucppublic /

adm, /usr/spool/uucppublic /usr/adm

uucp, /usr/spool/uucppublic /usr/lib/uucp/uucico
nuucp, /usr/spool/uucppublic /usr/lib/uucp/uucico
uucpadm, /usr/spool/uucppublic /usr/lib/uucp

1p, /usr/spool/uucppublic /bin

tutor, /usr/spool/uucppublic

install, /usr/spool/uucppublic

chare, /usr/spool/uucppublic

Like the entries in the HDB Permissions files, each USERFILE entry defines a number of
constraints for file transfer, including:

Which files on the system can be accessed for UUCP by a local user. Both USERFILE
and Unix file permissions must be satisfied for the request to succeed.

Which files can be accessed by a remote system.

Using UUCP 135

The login name the remote system must use when calling in.

The callback configuration the local machine uses to call back and confirm the remote
machine’s identity.

Not all constraints must be configured, but keep in mind that the fewer the constraints you
implement, the greater the risk of a security violation.

USERFILE entries consist of:
username,system [c] pathname(s)

uu10@1,thumper /usr/spool/uucppublic /usr/tmp
uu102,bugs ¢ /u/tmp

The wusername (uu101, uul02) defines the name that must be used to log in to the local system.
This username must be configured in the ./etc.passwd file using a shell of /usr/lib/uucp/uucico.

The system portion defines the name of the remote system. The callback flag, shown as a single
“c” separated by a space, is similar to the CALLBACK option in HDB UUCP. If the letter ‘¢’
exists after the system name, then when your system answers a call from the remote system,
your system will hang up the phone, and then call the remote system back. In this way you can
validate the identity of the remote system.

The pathname component(s) is a space-delimited absolute pathname list of directories that are
accessible by the remote machine.

Unfortunately, the USERFILE is unnecessarily complicated. The system administrator usually
has to spend many hours debugging relatively simple problems. In many cases, the only clue
that there is a problem is a loss of security, which usually isn’t visible until data has already
been compromised on your system!

To maintain consistent security and avoid the headaches associated with debugging
USERFILE, keep these suggestions in mind when using uucico:

Whenever uucp and uux are run by users, and when uusico runs in Master mode, only
the username portion of the USERFILE entry is used.

When uucico runs in Slave mode, only the system name part of the entry is used.
Remember that in the course of any conversation, uucico can switch between slave and
master any number of times.

In the USERFILE file on systems that use any version other than BSD 4.2 and BSD 4.3,
there must be an entry that has no system name, and an entry with no user name. In
BSD 4.2 and 4.3, these entries can be combined into one entry. The non-system name

136

Part I: Managing Internet Security

entity is used when uucico is in Slave mode and has already searched the USERFILE and
cannot find a matching entry. The non-username entry is used by uucp, uux, uuxqt, and
uucico when in Master mode, only when it cannot find a matching username (in the
directory /etc/passwd).

The exact operation and use of USERFILE can differ greatly depending on the implementa-
tion of Version 2 UUCP you receive. For this reason, make sure you check the documentation
shipped with your operating system.

The following descriptions are for some special USERFILE entries. If no username is specified
in the entry, as in the following, any user on the system can request outbound transfers of any
file on your system.

,Xray /

If you don’t want to use an entry like this, you will need an entry for EVERY user on your
system.

To allow uuxqt file access while uucico is in Slave mode, an entry with no system name must
exist in the USERFILE:

nuucp, /usr/spool/uucppublic

This entry is used even when uuxqt is started on your local system! Based on what has been
presented thus far, you would think that this entry would mean that any system logging in
with a username of nuucp will have access to ./ust/spool/uucppublic. Although this may seem
intuitive, this isn’t exactly true. When the local uucico is in Slave mode, on/y the system name
is used to validate file transfers that are requests.

You can also grant individual users special access permissions for certain systems, and then
combine the system name and user name entry in the USERFILE file, but you should also
have that system call in with its own login name and password. Here is one example:

uu101,thumper /usr/spool/uucppublic/ /usr/tmp /u/src

It is not uncommon to see people set up entries that look like this:

nuucp, /usr/spool/uucppublic
nuucp, thumper /usr/spool/uucppublic
nuucp,bugs /usr/spool/uucppublic

There is a problem with this arrangement however. There is nothing to prevent someone from
changing the name of his or her system and then calling your system. The reason why this is a
problem is that uucico doesn’t use the login name when in Slave mode. The best way to limit
this danger is to set up individual UUCP login names for each system that will be calling you.

Using UUCP 137

L.cmds

The next component in the issue of security is that of remote command execution, which is
defined in the L.cmds file. Typically, the administrator will restrict commands that can be run
by a remote system. The L.cmds file is used to limit commands from the remote system. If the
command in question is not listed in this file, execution of it via uux is denied. Usually,
L.cmds contains one command : rmail.

The L.cmds on most systems contain the following entries:

rmail
/usr/1lib/uucp/uucico

This setup indicates that both the rmail and uucico commands can be executed by uux. Be
careful when adding commands to this file. Even innocuous commands such as cat can be
dangerous to your system.

SQFILE

Finally, SQFILE is used to track conversations that have taken place between machines. This is
an optional file, and if you want to use conversation counts, you must create it in /ust/lib/
uucp. SQFILE must be owned by uucp, and have a file mode of 400. For this to work,
SQFILE has an entry in it for each file that your system wants to have conversation checks
with. The remote system must also be configured to use SQFILE.

When the file is created, edit it to include the names of the files you want to monitor, one
system per line. After the first call, uucico adds the number of conversations, and the date and
time of the last contact.

When one system calls another, uucico compares the SQFILE information on the two systems.
If they don’t agree, the login fails. The log files on the calling system will then add a message
indicating an SEQ number problem. To correct this, the two system administrators must get
together and correct the files manually.

Log Files

The log files on V2 are quite different from HDB log files. Unlike HDB, all of the log entries
are placed into a single file in /ust/spool/uucp, appropriately named LOGFILE. A second file
exists called SYSLOG, which records the actual amount of data transferred and the time it
took to do it. The LOGFILE will grow continually. If you are running short of disk space, this
is the first place to check.

138 Part I: Managing Internet Security

An entry from LOGFILE looks like this:
user system date/time comment

root unilabs (2/12-5:42) NO (AVAILABLE DEVICE)

root unilabs (2/12-5:42) FAILED (call to unilabs)
root unilabs (2/12-5:59) QUEUED (C.unilabsn@297)

root unilabs (2/12-5:59) QUEUED (C.unilabsn@298)

root unilabs (2/12-5:59) SUCCEEDED (call to unilabs)
root unilabs (2/12-5:59) HANDSHAKE FAILED (LOGIN)
unilabs unilabs (2/12-18:35) OK (startup)

In the next few entries, you can see that the files /tmp/spool and /tmp/sys were sent to unilabs.
Files that are sent show in a REQUEST entry with an S followed by the name of the file.

root unilabs (2/12-18:35) REQUEST (S /tmp/spool ~ root)
root unilabs (2/12-18:35) REQUEST (SUCCEEDED)

root unilabs (2/12-18:35) REQUEST (S /tmp/sys ~ root)
root unilabs (2/12-18:35) REQUEST (SUCCEEDED)

root unilabs (2/12-18:35) OK (conversation complete)

These log entries don’t contain as much information as the log files in HDB, but fortunately
you have a second log file, SYSLOG, that can be examined for other important information.

The SYSLOG file contains information of the actual transfer. The first few examples shown
here indicate that this machine received data from the remote machine, unilabs.

user system date/time secs comments

chare unilabs (11/21-22:56) (722404580) received data 148 bytes 2 secs
chare unilabs (11/21-22:56) (722404593) received data 1197 bytes 6 secs
chare unilabs (11/21-22:56) (722404601) received data 148 bytes 1 secs

These entries relate to the two files you saw transferred in the LOGFILE, namely /tmp/sys and
/tmp/spool. These two files were sent from bugs to unilabs.

root unilabs (2/12-18:35) (729560123) sent data 97 bytes 0 secs
root unilabs (2/12-18:35) (729560125) sent data 115 bytes 0 secs

It takes time to process and review logfile information. Consequently, an understanding of this
information is essential to the system troubleshooter.

Maintenance

Version 2 maintenance is simplified somewhat through the use of the uuclean command,
which operates a lot like HDB. The uuclean command cleans up the UUCP spool directory
(usr/spool/uucp, typically) somewhat intelligently. For systems that cannot be reached, a mail

Using UUCP 139

message is sent back to the originator. uuclean works by deleting locally created rnews files,
executing remotely created rnews files, and removing everything that shouldn’t be there.

The periodic removal of logfiles should also be performed to eliminate redundant UUCP log
information and free up disk space. However, the original Version 2 UUCP implementation
cannot perform this task automatically.

Configuring UUCP over TCP/IP

Although some feel that using the UUCP protocol over the TCP/IP transport is redundant, it
can be useful at times. If, for example, you have been using a Usenet news feed over UUCP,
you can switch to a TCP/IP transport until you are ready to implement INN or some other
TCP/IP-based news server software using your existing implementation. UUCP use over TCP/
IP is restricted to the Basic Networking Ultilities, which are also known as HoneyDanBer
UUCP.

Two files need to be changed before TCP/IP can be used as the transport: the Systems and
Devices files. Although the UUCP g protocol can be used, the UUCP e protocol is optimized
for the transport characteristics of TCP/IP. The desired protocol type is included with the
device identification. Because the UUCP g protocol has extensive error-checking built into it,
it is considered to be a waste of resources when used with a high-speed connection such as
TCP/IP. In this case, protocol e is often used. To define the protocol, follow the dataport with
a comma and the protocol to use, as shown in the following example:

TCPnet TCP,e

Aside from direct serial and modem connections, UUCP also supports connections over other
transports, such as TCP/IP and the Streams-based TLIS connections. Connections using the
TLIS are not directly supported by all vendors of Unix.

TLIS connections are configured in the Devices file. It is possible to configure TLIS to make a
connection with or without the Network Listener Service. TCP/IP connections do not use this
service. To establish a direct connection to another machine using the TLIS, but not the
Network Listener, the device entry would be as follows:

STARLAN,eg starlan - - TLIS \D

This would define an entry to access the STARLAN network, and allow both the ‘¢’ and ‘g’
protocols to be used, depending on what was determined at connect time. The device being
used is called starlan, with no dialer-port or speed associated with the device. The dialer-token
is set to TLIS, and the \D instructs uucico to use the phone number, which is defined in the
Systems file.

140

Part I: Managing Internet Security

The TCP/IP entry for the device file looks quite similar to the TLIS network device:
TCP TCP,e - Any TCP 540

This entry defines a device called TCP that uses the UUCP e protocol. This TCP keyword is
known to UUCP systems that support TCP/IP connections. Notice that the protocol in use
here is protocol e, which is the best choice when using end-to-end error free connections.
There is no dialer port, and the speed of the connection in this example is Any. The dialer used
is TCP, and the TCP/IP port number is defined as 540 for connecting to the remote machine.

To use either the TLIS or the TCP transports, the administrator of the other system must have
previously configured his or her system to allow a connection in this manner.

Although it works, the configuration and use of the TCP/IP transport is not common for
UUCP. It is more common for UUCP to be completely removed when TCP/IP is placed into
operation.

Code Listings

The following two programs can assist you in analyzing log files and building a secure
USERFILE for use with Version 2 UUCP.

Listing 3.1—gtimes.c

The gtimes program takes a Unix clock value and converts it to a human readable date. The
UUCTP log files use this Unix clock value to save disk space. To make sense of the log, how-
ever, you must have the real date.

To use gtimes, compile it using your system’s C compiler. This can be easily done by using the
following command:

make gtimes

To use the command, execute gtimes with the clock value as seen in the following examples.

nms% gtimes 100394857
Clock : 100394857
Date : Wed Mar 7 18:27:37 1973

nms% gtimes 809283745

Clock : 809283745

Date : Thu Aug 24 13:02:25 1995

/* __

NAME

Using UUCP

gtimes.c - Calculate clock times.
SYNOPSIS

gtimes [clock value]

- where clock value is a long integer that was previously returned

by the time system call.
DESCRIPTION
This program without an argument will report the current system

time both as an ASCII string, and as a long integer that is
directly reported from time(S).

Invocation with an argument results in the ASCII time string that

matches the clock value on the command line.
RETURN VALUE

Always returns 0.
WARNINGS

There are no provisions for bad data, or overflow.

/* Copyright 1988 Chris Hare */

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include <errno.h>

main(argc, argv)
int argc;
char *argv[];

{
char *ctime(), /* declare ctime(S) */
timestr; / storage area for time string */
long int t_secs, /* return value from time(S) */
0_secs, /* long integer value of command argument */
atol(), /* declare atol(S) */
time(); /* declare time(S) */

struct tm *mytime;
struct tm *localtime();
char *atime_str;

141

142 Part I: Managing Internet Security

if (argc == 1)
t_secs = time(OL);
else
t_secs = atol(argv[1]);
timestr = ctime(&t_secs);
printf("Clock : %ld\nDate : %s\n", t_secs, timestr);

exit(0);

}

Listing 3.2—genUSER

The genUSER program creates a standard USERFILE for the users on your system. It reads
the /etc/passwd file and creates a USERFILE entry for each password file entry.

To use genUSER, execute it and the results will be written to a file called USERFILE in your
current directory.

A sample USERFILE generated is shown here:

noc, /usr/spool/uucppublic /home/noc
ansnoc, /usr/spool/uucppublic /home/noc
danc, /usr/spool/uucppublic /home/danc

briand, /usr/spool/uucppublic /home/briand

#

@(#) genUSER - generate a USERFILE from /etc/passwd

CHris Hare, 1993

#

This script will process /etc/passwd, and create a default USERFILE for
use with Version 2 UUCP.

#

PASSWD=/etc/passwd # Location of /wtc/passwd
USERFILE=./USERFILE # Location of USERFILE
OLD_IFS="S$IFS" # Save current Field Separators
IFS=":" # Set new field separator

#

Process the entire passwd file

#

exec < /etc/passwd

#

Read each entry

#

while read USERNAME PWORD UID GID COMMENT HOME SHELL
do

Using UUCP 143

#

write each entyry consisting of
USERNAME,

/usr/spool/uucppublic

HOME directory

echo "${USERNAME}, /usr/spool/uucppublic $HOME" >> $USERFILE
done
#
exit ... you are finished
#

exit 0

Audit Trails

he National Computer Security Center in Fort Meade,
Maryland, defines an audit trail in its Rainbow series of

security publications as follows:

“A chronological record of system activities that is sufficient to
enable the reconstruction, reviewing, and examination of the
sequence of environments and activities surrounding or
leading to an operation, a procedure, or an event in a trans-

action from its inception to final results.”

In layman’s terms, audit trails are any files that record the
time users log in, from where they log in, what they try to do,
and any other action an administrator might want to save for

later analysis.

When used intelligently, audit trails can provide system
administrators valuable information in tracking security

violations and break-in attempts.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

146 Part I: Managing Internet Security

Audit Trails under Unix

Unix is by far the most prevalent operating system in use on the Internet. Luckily for adminis-
trators, Unix provides a large number of auditing and logging tools and utilities. Many of these
logs are generated automatically by utilities that are part of the default configuration of every

Unix machine. Other logging utilities must be turned on and configured by the administrator.

Common Unix Logs

The Unix operating system stores most of its logging in ASCII text files, through which you
can sort easily with normal text-editing utilities. Some logs, however, are stored in various
binary formats and require specialized utilities for their contents to be viewed.

lastlog

The lastlog file keeps track of each user’s most recent login time and each user’s originating
destination. When a user logs in to a Unix system, the login program looks for the user’s UID
in the lastlog file. If the program finds it, Unix displays the time and TTY of the user’s last
login. Some versions of Unix display successful logins as well as unsuccessful login attempts.

BSDI BSD/386 1.1 unixbox (ttyp5)

login: phrack

Password:

Last login: Sun Apr 2 16:35:49 from phrack.com

The login program then updates the lastlog file with the new login time and TTY information.
Further, the program updates the UTMP and WTMP files.

UTMP

The Unix operating system keeps track of users currently logged in to the system with a file
called the UTMP. This file is constantly changing as users enter and leave the system. It does
not keep a long historical tally of users who have been on the system; it only keeps track of
those online at the exact moment.

UTMP might not contain entirely accurate information. Sporadic errors can cause a user’s
shell to terminate without UTMP having been updated. UTMP is also not particularly reliable
because it comes world-writable by default on many Unix platforms.

The normal user’s ability to modify this file makes it very easy for an intruder to hide from
view.

The UTMP log is usually stored in the file /etc/utmp, although you might find it in other
locations on some Unix versions. UTMP is usually viewed with commands such as who or w,
but you can also access the file through other commands, such as finger, rwho, and users.

Audit Trails 147

The following is sample output from the who command:

freeside % who

phrack ttyp3 Apr 2 16:35 (phrack)

user ttyp4 Apr 2 17:12 (fakehost.com)
slipt ttya® Apr 2 17:13

ppp1 ttyal Apr 2 16:29

cecr ttya6 Apr 2 16:35

ppp2 ttyb2 Apr 2 13:48

freeside %

WTMP

The WTMP file keeps track of logins and logouts. It is similar to the UTMP file but continu-
ally grows in length with each login or logout. In some Unix versions, programs such as ftp

record access information in WTMP as well. WTMP also records the times of normal system
shutdowns, such as those caused by the reboot or shutdown commands. Unix generally stores

WTMP in the file /var/adm/wtmp.

The WTMP file is normally accessed by the last command. Unix displays output generated by
the last command in reverse order—the most recent information appears first, followed by
older entries. The last command also can generate reports based on name, TTY or event (such
as shutdown); or print only a specified number of entries.

freeside % last -10

slipt ttya0 Sun Apr 2 17:13 still logged in
user ttyp4 fakehost.com Sun Apr 2 17:12 still logged in
Uaust ttyao Sun Apr 2 17:10 - 17:11 (00:00)
user2 ftp college.edu Sun Apr 2 17:07 - 17:11 (00:03)
slipi ttya3 Sun Apr 2 16:50 - 16:53 (00:03)
slip2 ttyb5s Sun Apr 2 16:46 - 16:48 (00:01)
aco ttyas Sun Apr 2 16:45 - 17:09 (00:24)
dzz ttyp4 slip00 Sun Apr 2 16:45 - 16:47 (00:02)
ppp2 ttya3 Sun Apr 2 16:44 - 16:45 (00:00)
dzz ftp slip00 Sun Apr 2 16:43 - 16:48 (00:04)

freeside %

Another command, ac, formats the data stored in the WTMP file in a different way. It can
generate its reports either by person (ac -p) or by day (ac -d). These reports might quickly alert
the administrator to improper usage. An inactive account that suddenly starts logging numer-
ous hours of connect time, for example, is easily spotted in an ac report.

freeside % ac -p
ftp 573.56
foo 898.05
spot 125.62
rickm 39.24
faust 27.21
test 4.02
ji 178.77

148

Part I: Managing Internet Security

cma 10.97
gre 10.73
erikb 12.39
sp 0.18

total 1880.73

The ac report can also be sorted by user and date combined. If the administrator feels, for
example, that the utilization of 898.05 connect hours for the foo account looks out of place,
that administrator can run a more specific ac report:

freeside % ac -dp foo
Apr 1 total 10.30
Apr 2 total 12.50
Apr 3 total 8.20
Apr 4 total 815.04
Apr 5 total 12.01

The April 4 system usage is obviously out of character for the foo account. Logs, unfortunately,
aren’t usually this easy to read. With the growing use of multiple login instances through
applications such as X-windows, a single user can easily record several hundred hours worth of
connect time in just a few days.

syslog

syslog is an extremely useful message-logging facility. Originally developed for BSD-based
Unix as a companion to sendmail, it is now included with almost every Unix variant. syslog
makes it easier for administrators to keep track of logs generated by a variety of programs by
providing a central reference point for the destination of log entries.

To utilize syslog, a daemon called syslogd is executed at startup and runs in the background.
This daemon listens for log messages from three sources:

/dev/log. A Unix domain socket that receives messages generated by processes running
on the local machine.

/dev/Klog. A device that receives messages from the Unix kernel.

port 514. An Internet domain socket that receives syslog messages generated by other
machines through UDP.

When syslogd receives a message from any of these sources, it checks its configuration file—
syslog.conf—for the appropriate destination of the message. A message can go to multiple destina-
tions, or it might be ignored, depending on the corresponding entries in the configuration file.

Entries in the syslog.conf file are comprised of two basic parts:
Selector field. Tells syslog what kind of messages to log (see tables 4.1 and 4.2).

Action field. Tells syslog what to do with the message it receives.

Audit Trails

The selector field is comprised of a program that is sending the log message, often called the
facility, and the severity level of the message. Table 4.1 shows syslog facilities.

Table 4.1
syslog Facilities

Facility Name

Originating Program

kern
user
mail
auth

lpr
daemon
news
uucp
cron
mark
local0-7
syslog
authpriv

fep

*

The kernel

User processes

The mail system

Programs using security (login, su, and so forth)
The line printer system

System daemons

The news system

UuCP

The cron daemon

Regularly generated timestamps
Locally generated messages
Syslogd messages

Other authorization messages
ftpd messages

All facilities (except mark)

Table 4.2 shows syslog severity levels.

Table 4.2
syslog Severity Levels

Severity Level

Meaning

emerg
alert

crit

Emergency situations, such as system crashes potential
Urgent conditions that need correction immediately

Critical conditions

continues

149

150

Part I: Managing Internet Security

Table 4.2, Continued

syslog Severity Levels
Severity Level Meaning
err Ordinary errors
warning Warning messages
notice Non-error related that might need special attention
info Informational messages
debug Messages used when debugging

The following text is an example syslog.conf file:

#

syslog configuration file.

#

*.err;kern.debug;auth.notice; /dev/console
*.err;kern.debug;daemon.infoj;auth.notice; /var/adm/messages
mail.crit;daemon.info; /var/adm/messages
lpr.debug /var/adm/lpd-errs
*.alert;kern.err;daemon.err; operator

*.alert; root

*.emerg; *

auth.notice @logginghost.com

In the above example, all emergency messages (*.emerg) go to all users on the system (*). All
regular errors (*.err), kernel debugging messages (kern.debug), and authorization failures—
such as illegal logins (auth.notice)—are reported to the system console as well as to the file
/var/adm/messages. Authorization failures are also sent to a separate host (@logginghost.com)
over the network, where they are picked up by that machine’s syslog program listening to port
514.

syslog passes most messages to the /var/adm/messages file. In most default configurations,
nearly all messages are passed to this file.

sulog

The switch user command, su, also records its usage through syslog. This information is often
also stored in a file called sulog, in the /var/adm directory. Some intruders might use the su
command to switch to usernames that have rlogin access to other hosts. This activity is
reported in the sulog.

Many sites are now using the sudo command rather than su. By using sudo, properly autho-
rized users can execute commands as another user without having to actually log in with the

Audit Trails 15 1

password of that user (as they would using su). sudo also logs its usage through the syslog
facility. sudo logs the command executed, the username of the requester, the time the com-
mand was executed, and the directory from which the command was invoked.

A log entry of an authorized user, fred, using sudo to edit the /etc/group file would look
something like the following:

Apr 2 06:45:22 hostname sudo: fred: PWD=/usr/fred; COMMAND=/bin/vi /etc/group

aculog

When a user employs dial-out facilities, such as tip or cu, a log entry is made to a file called
aculog. This file is most often stored as /var/adm/aculog. This log contains a record of the user
name, time and date, phone number dialed, and completion status of the call. UUCP-related
commands also record their information in the aculog file.

A typical aculog entry looks like the following:

uucp:daemon (Mon Apr 3 12:31:03 1995) <host, 5551212, usr> call completed

Checking aculog entries would be valuable if an intruder were using the Unix host as a
conduit, when dialing out to other systems, as a means of avoiding long-distance charges, or
avoiding a direct telephone trace.

cron

The cron utility maintains records of the utilities that are executed by cron. Usually this utility
is in the file /var/log/cron, but because cron versions now make use of syslog, the messages
could be stored in a variety of files.

If intruders can manipulate the crontab file or programs or scripts named in that file, they
might be able to use the cron utility to gain higher privileges. Logs generated by cron offer
clues to such improper usage.

sendmail Logs

The sendmail program performs its logging with syslog. Messages generated by sendmail are
labeled with the facility “mail” and the severity levels “debug” through “crit,” depending on
the severity of the message generated. All messages generated by the program include the
sendmail program name within the message text.

sendmail has a command-line option (-L), which specifies the lowest severity level that will
cause it to log. Higher values of the -L option cause more information to be logged. An -L
value of 0 means no logging will occur.

sendmail logs provide important clues to the administrator when intruders are attempting to
exploit bugs from the SMTP port.

152

Part I: Managing Internet Security

UUCP Logs

The UUCP utilities store information in various log files, depending on the version of UUCP
being used. On BSD-based Unix platforms, a file called LOGFILE contains information
regarding UUCP usage. This file is updated both by local UUCP activity and by actions
initiated by remote sites. Information in this file consists of calls atctempted or received,
requests attempted, by whom, at what time, and from what host.

The UUCP log file syslog (not to be confused with the message-handling utility) contains
information regarding file transfer statistics. The file shows the byte count of each UUCP
transaction, the username and site requesting the file, the time and date of the transaction, and
the time needed to complete the transfer.

The ERRLOG file contains any errors that occur during UUCP operation.

Today, most intruders don’t utilize UUCP in their activities, because many hosts either don’t
use it, or don’t have it installed. If UUCP is in use, however, logs should be audited for
suspicious activity, because files can be compromised from a remote site using UUCP.

LPD Logs

The Ipd-errs file represents one of the most common logs dealing with printers. This file is
usually designated as /var/adm/lpd-errs in the syslog.conf file. In most instances, the informa-
tion this file has to offer is not of any use in tracking security incidents. Given the recent
discovery of lpd-related bugs, however, any number of odd errors might turn up as a result of
an intruder attempting to exploit a bug. Further, any entries that occur on systems that don’t
even use the line printer daemon are certainly worth investigating.

The following is sample data from an Ipd-errs file:

Feb 19 17:14:31 host1 1pd[208]: 1lp0: output filter died (26)
Feb 19 17:14:31 host1 1pd[208]: restarting 1p@

Feb 19 17:17:08 host1 1pd[311]: 1p@: output filter died (0)
Feb 19 17:17:08 host1 1lpd[311]: restarting 1p@

Feb 19 17:31:48 host1 1pd[524]: 1p@: unknown mode -cCs

Feb 19 17:33:12 host1 1lpd[523]: exiting

Feb 19 17:33:24 host1 1pd[541]: 1p@: unknown mode -cs8

Feb 19 17:34:02 host1 1lpd[540]: exiting

ftp Logs

Most current versions of the ftp daemon, ftpd, can be set to log incoming connections. ftpd
uses syslog to handle the messages it generates.

Logging is activated by executing ftpd with the -1 option. The line that invokes ftpd in the
inetd.conf file should read as follows:

ftp stream tcp nowait root /etc/ftpd ftpd -1

Audit Trails 153

The syslog.conf should also be edited to add the following:

daemon.info ftplogfile

HTTPD Logs

With the emergence of the World Wide Web as one of the dominating Internet services,
almost every domain has set up a WWW server to advertise, inform, and entertain Internet
users. HTTPD servers can log every Web access and also report errors generated during
normal operation. Many administrators keep these logs to generate demographic usage
reports—what hosts access the server most often, what pages are the most popular, and so on.

Two separate files are typically generated—one containing errors and the other containing the
accesses. The filenames for these log files are set in the httpd.conf file.

History Logs
One of the most overlooked logs kept under Unix is the shell history log. This file keeps a

record of recent commands entered by the user. Both the C shell and the Korn shell support
the command history feature.

An environment variable determines the number of command lines retained. Under the C
shell, the variable is $history; under the Korn shell, the variable is $HISTSIZE. The com-
mands are stored in a file under the user’s home directory. Under the C shell, the file is called
.history. Under the Korn shell, the file is called .sh_history by default but can be changed with
the $HISTFILE environment variable.

The history command displays the contents of the history logs in chronological order, with
preceding numbers. Using the history command with an -h option causes the contents to be
displayed without the preceding numbers.

Many intruders forget to erase their shell histories upon initial access to a new system. Even
after they edit other logs and replace utilities, every command they have entered remains
clearly visible in the history file of the account with which they initially gained access.

Process Accounting

In the past, process accounting was an important part of computing resources. When users
were billed solely on the actual amount of CPU time they used, computer centers could not
have functioned properly without mechanisms in place that kept track of each command
entered.

Today, many systems do not use process accounting; most Unix platforms disable it by default.
When it is enabled, however, the process accounting logs often can help administrators locate
any intruders that might have gained access to the system.

154 Part I: Managing Internet Security

Enabling Process Accounting

Process accounting is turned on at startup by using the accton command in the following
format: accton logfilename. The log file is usually

/var/adm/acct or /var/adm/pacct

Note Executing accton without a file-name parameter turns off process accounting.

Because process accounting immediately begins recording a great deal of information when
enabled, the administrator must make sure that plenty of free disk space is available on the file
system storing the process accounting log.

Many administrators review and purge their process accounting logs regularly because of the
rapid speed with which the accounting file grows. Some even have cron jobs configured to
handle rotating the process accounting files.

Generating Reports

The lastcomm command supplies information on all commands executed on the system. It
formats its output to show the command executed, the user who executed the command, what
tty that user was using, the time to complete execution, and the time and date the command
was executed.

The following output is a small portion of lastcomm data. Because process accounting stores
every command executed by every user, normal output could continue scrolling for several

minutes.

freeside % lastcomm

whoami F root ttypbs 0.01 secs Sun Apr 2 17:17
sh F user ttyp4 0.00 secs Sun Apr 2 17:16
rm F user ttyp4 0.02 secs Sun Apr 2 17:16
sendmail F user ttyp4 0.00 secs Sun Apr 2 17:16
sendmail F phrack ttyp4 0.34 secs Sun Apr 2 17:16
sh F user ttyp4 0.03 secs Sun Apr 2 17:16
sh F user ttyp4 0.00 secs Sun Apr 2 17:16
sh F phrack ttypbs 0.02 secs Sun Apr 2 17:16
more F phrack ttypbs 0.05 secs Sun Apr 2 17:16
lastcomm FX phrack ttypbs 0.23 secs Sun Apr 2 17:16
sendmail F user ttyp4 0.20 secs Sun Apr 2 17:16
sh F user ttyp4 0.02 secs Sun Apr 2 17:16
rm F user ttyp4 0.02 secs Sun Apr 2 17:16
sendmail F user ttyp4 0.31 secs Sun Apr 2 17:16
sendmail F user ttyp4 0.00 secs Sun Apr 2 17:16
sh F user ttyp4 0.02 secs Sun Apr 2 17:16
sh F user ttyp4 0.02 secs Sun Apr 2 17:16
httpd SF www . 0.05 secs Sun Apr 2 17:16
pico F cer ttya6 0.05 secs Sun Apr 2 17:15

Audit Trails 155

Careful examination of the preceding sample output reveals possible intruder activity. During
the two-minute span shown in the sample, several users—root, www, ccr, user, and phrack—
are running commands. Look closely at the output; the root command entry occurred at the
same time and on the same tty as the phrack account. Because the phrack account did not
execute an su or sudo command, more than likely the user of that account did something
improper to become root. The fact that sendmail was the last command executed by the
phrack account before this discrepancy indicates that the user might have exploited some kind

of sendmail-based bug.

The sa command offers another useful command for generating reports from the process
accounting logs. This command generates output based on CPU time consumed either by
users (sa -m) or by commands (sa -s). The sa command helps administrators locate the source
of users or commands that are allocating too many system resources.

freeside % sa —m

root 73271 500.85cpu 22747961tio 112295694k*sec
daemon 1668 5.45cpu 817411tio 353179k*sec
sys 4239 20.79cpu 4840469tio 411555k*sec
gopherd 66 0.77cpu 17194tio 94396k*sec
www 30935 119.68cpu 2674466tio 4345219k*sec
bobs 8 0.23cpu 52076tio 60909k *sec
erikb 447 2.43cpu 386568tio 389052k*sec
rickm 5325 111.08cpu 7892131tio -4722301k*sec
cma 121 0.78cpu 149312tio 111471k*sec
faust 1349 11.47cpu 1355051tio 2629341k*sec
ji 489 6.37cpu 1069151tio 1231814k*sec
gre 4 0.11cpu 98032tio 13844k*sec
foo 14574 87.25cpu 432077tio 4170422k*sec
sqr 46641 877.97cpu 63720573t1io0 243279830k*sec
nobody 209 4.69cpu 321321tio 1601114k*sec

Useful Utilities in Auditing

Several other utilities can greatly help the system administrator conduct audits. Although these
utilities might not make use of specific log files to generate their information, you can collect
output from these utilities and use them in conjunction with other logs to create a much
clearer picture of the true state of the system.

ps
Individual users often have better luck with the ps command than they do with commands
such as who or users when tracking system utilization. The ps command displays the following
information: current process IDs, the associated TTY, owner of the process, execution time,
and the actual command being executed. Because ps draws from the kernel’s process table in
generating its report, ps output cannot be altered by simply editing a log file.

156

Part I: Managing Internet Security

The ps command is useful for locating background processes left running by intruders, for
locating user processes running on active TTYs for which no UTMP entries exist, and for
tracking all activity of given users.

The following sample is a portion of ps output from a BSDI Unix machine:

freeside % ps -uax

USER PID S%CPU SMEM VSz RSS TT STAT STARTED TIME COMMAND
root 73 2.1 0.0 1372 1004 ?? S 24Mar95 84:38.60 gated
root 0 0.0 0.0 0 0 ?? DLs 24Mar95 0:00.38 (swapper)
root 1 0.0 0.0 244 116 ?? Is 24Mar95 3:21.42 init —
root 2 0.0 0.0 0 12 ?? DL 24Mar95 0:03.42 (pagedaemon)
root 35 0.0 0.0 208 144 ?? Ss 24Mar95 4:50.63 syslogd
root 68 0.0 0.0 72 28 ?? Ss 24Mar95 29:03.42 update
root 70 0.0 0.0 280 160 ?? Is 24Mar95 0:17.43 cron
root 76 0.0 0.0 10660 10612 ?? Ss 24Mar95 46:10.08 named
root 80 0.0 0.0 236 52 ?? IWs 24Mar95 0:00.10 1pd

root 83 0.0 0.0 172 96 ?? Is 24Mar95 0:00.08 portmap
root 88 0.0 0.0 244 180 ?? Is 24Mar95 0:00.13 mountd
root 9 0.0 0.0 140 16 ?? IWs 24Mar95 0:00.02 (nfsd)
root 99 0.0 0.0 100 16 ?? I 24Mar95 0:00.22 nfsiod 4
root 104 0.0 0.0 216 112 ?? Ss 24Mar95 1:46.96 inetd
root 2106 0.0 0.0 240 172 po- I 25Mar95 1:18.26 freeside
root 5747 0.0 0.0 520 220 ?? Is Wed12PM 2:07.20 (sendmail)
phrack 14289 0.0 0.0 240 176 bt- I Wedo6PM 0:00.15 archie
phrack 22626 0.0 0.0 752 712 p4 Ss+ 12:30PM 0:42.35 irc
phrack 26785 0.6 0.0 584 464 p4 Ss 11:57PM 0:00.40 -tcsh
phrack 26793 0.0 0.0 320 224 p4 R+ 11:57PM 0:00.06 ps -uax

freeside %

The preceding example shows several root processes running as background processes. The
sample also shows several current processes running that the phrack account owns. One
process in particular—14289—might warrant a closer look. It appears to be an archie request
that has been running for longer than normal, and is on a different TTY than the phrack
account is currently logged in on. This discrepancy could be the result of a process that did not
exit properly, but it also could be a malicious utility running in the background, a utility
compiled with an inconspicuous name to avoid suspicion.

netstat

The netstat command displays useful information regarding the state of the TCP/IP network
traffic running to and from the host computer. In some instances, netstat is the only monitor-
ing tool the administrator has to locate intruders.

In the active connections portion of netstat output a list of addresses corresponding to open
incoming connections is given. Even if an intruder has removed himself from UTMP or other
logs, his incoming connection might still be visible through netstat.

Audit Trails 157

The following sample is a portion of netstat output on a BSDI Unix machine:

freeside% netstat
Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tep 0 0 freeside. 1581 bbs.sdd8.nanaimo.smtp ESTABLISHED
tep 0 0 freeside. 1580 avarice.mrrr.lut.smtp ESTABLISHED
tep 0 0 freeside.http slip09.1125 TIME_WAIT
tep 0 6 freeside. 1579 tibal.supernet..smtp ESTABLISHED
tcp 0 0 freeside.http slip0.1124 TIME_WAIT
tep 0 0 freeside.http slip0.1123 TIME_WAIT
tep 0 0 freeside.http slip0.1122 TIME_WAIT
tep 0 0 freeside. 1576 vangogh.rtppc.ep.smtp TIME_WAIT
tcp 0 0 freeside.http slip@.1121 TIME_WAIT
tep 0 0 freeside.http slip0.1120 TIME_WAIT
tep 0 468 freeside.telnet phrack.1032 ESTABLISHED
tecp 0 0 freeside.1572 vulcan.cblink.co.smtp TIME_WAIT
tcp 0 0 freeside.1568 dewey.cs.texas.e.6667 ESTABLISHED
tep 0 0 freeside. 1493 zilla.nntp ESTABLISHED
tcp 0 0 freeside.4897 yod.texas.net.6667 ESTABLISHED
tcp 0 4096 freeside.http cicaa2-5.dial.1246 LAST_ACK
tcp 0 3584 freeside.http cicaa2-5.dial.1245 LAST_ACK
tecp 0 1627 freeside.http cicaa2-5.dial. 1241 LAST_ACK
tcp 0 3584 freeside.http cicaa2-5.dial.1237 LAST_ACK
tep 0 3584 freeside.http p.cincinnati.1327 LAST_ACK
tcp 0 1 freeside.telnet pcnet.utsa.ed.16014 CLOSING

udp 0 0 loopback.domain *.*

udp 0 0 freeside.domain *.*

udp 0 0 freeside.1042 raw.2049

udp 0 0 freeside.1039 bull.2049

udp 0 0 freeside.1036 zilla.2049

As seen in the preceding output, the full hostname information might not be displayed in the
foreign address field due to length restrictions, but it is often more than enough to determine
the true address. The local domain, for example, has incoming telnet sessions from
penet.utsa.edu and from the phrack host. If no users are known from pcnet.utsa.edu, then
connections from the host might be a good indicator of possible intruder activity.

Ethernet Sniffers

An ethernet sniffer is a program that logs all activity over the local ethernet segment. Some Unix
versions might include sniffing utilities, like tcpdump or snoop, but utilities such as these are
available on the Internet as well.

Ethernet sniffer programs are priceless for debugging network problems such as broadcast
storms, or for locating the source of problem output; but in the wrong hands they can be
deadly. Because the purpose of the program is to intercept and view (or log) all packets on the
network, many intruders run these utilities to intercept username and password information as
it passes across the network.

158 Part I: Managing Internet Security

Administrators who use these tools should take precautions to ensure that normal users cannot
access them. Administrators also might want to check periodically for any indication that an
intruder has started his own ethernet sniffer; an administrator can do so by looking to see if
any of the machines’ ethernet interfaces are running in promiscuous mode.

Other Reporting Tools Available Online

A plethora of monitoring and logging utilities have been written in recent years to help system
administrators keep track of potential break-in attempts and other problems.

Many such udilities are available for free in various ftp archive sites on the Internet, and new
ones are released continuously.

asax

The advanced security audit trail analyzer on Unix (asax) utility helps system administrators
process and analyze data maintained in log files. Sorting through numerous large files of logged
data can be extremely tiresome and difficult. asax is designed to remove some of that burden.

asax can be found at the following ftp site:

ftp.fc.net
/pub/security/asax-1.0.tar.gz

chklastlog and chkwtmp

chklastlog and chkwtmp analyze the lastlog and WTMP files to ensure that no entries have
been deleted.

These two utilities can be found at the following ftp site:

ftp.fc.net
/pub/security/chklastlog-1.0.tar.gz
/pub/security/chkwtmp-1.0.tar.gz

Isof

Isof lists all open files being used by running processes. Based on the files that the process
accesses, this utility can clearly illustrate whether a particular process is actually benign or a
disguised piece of malicious software.

The Isof utility can be found at the following ftp site:

ftp.cert.org
/pub/tools/1lsof/1lsof_3.02.tar.gz

Audit Trails 159

netlog

netlog is an advanced sniffer package containing three utilities:

TcPLOGGER. Logs all TCP connections on a subnet.

UpPLOGGER. Logs all UDP connections on a subnet.

EXTRACT. Processes the logs generated by tcplogger and udplogger.
Administrators at Texas A&M University developed and implemented these programs.
The netlog package can be found at the following ftp site:

ftp.fc.net/pub/security/netlog-1.2.tar.gz

NFS watch

The NFS watch utility monitors NES requests to specific machines or to all machines on the
local network. Its main function is to monitor NFES client traffic, but it also logs reply traffic
from NES servers to measure traffic statistics, such as response times.

NEFS watch can be found at the following ftp site:

ftp.fc.net
/pub/security/nfswatch4.1.tar.gz

TCP wrapper

Wietse Venema’s TCP wrapper utility enables the administrator to easily monitor and filter
incoming TCP traffic to network services such as systat, finger, ftp, telnet, rlogin, rsh, talk, and
others.

This program can be found at the following ftp site:

ftp.cert.org
/pub/tools/tcp_wrappers/tcp_wrappers_7.2.tar

tripwire

tripwire is a useful tool that measures all changes to a Unix file system. It keeps a database of
inode information and logs of file and directory information based on a user-defined configu-
ration file. Each time it is run, tripwire compares the stored values against flags set in the
configuration file. If any deviations from the original value show up, the program alerts the
administrator.

tripwire can be found at the following ftp site:

ftp.cert.org
/pub/tools/tripwire/tripwire-1.2.tar.z

160 Part I: Managing Internet Security

Audit Trails under Windows NT

Almost every transaction under Windows NT can be audited to some degree. Administrators,
therefore, should choose carefully the actions they want to audit so as not to tie up system
resources and needlessly fill up disk space.

Auditing can be turned on in two places under Windows NT—the File Manager, and the User
Manager. Under the File Manager, choose Security and then Auditing to activate the Directory
Auditing dialog box (see fig. 4.1). From this window, the administrator can select to track both
valid and invalid file accesses.

Figure 4.1

Conﬁgurzng Directory: D:\temp
ﬁl@—ﬂf(‘fﬁ audztzng g Replace Auditing on Subdirectories Cancel
3 Replace Auditing on Existing Files
under Windows NT.

N

Remove

[Events to Audit

Success Failure
Read [l |
Write O O
Execute O O
Delete Il 1
Change Pemissions O B
Take Ownership B [}

Under the User Manager, the administrator has the option to select audit policy based on the
success and failure of several user events, such as login and logout, file access, rights violations,
and shutdowns (see fig. 4.2).

Figure 4.2

Domain: CATS

Setting user audit policy

under Windows NT. © Do Not Audit
—® iAudit These Events::

o
o
3
5]
a

Success Failure Help

Logon and Logoff

4

File and Dbject Access

Usze of User Rights

User and Group Management
Security Policy Changes
Restart, Shutdown, and System

ORRXKOOR
OREXOO

Process Tracking

Audit Trails 1 61

Using the Event Viewer

Windows NT stores its log files in a special format that can be read using the Event Viewer
application. The Event Viewer is found in the Administrative Tools program group. The
Event Viewer’s Filter option enables the administrator to select the log entries he wants to view
based on criteria such as category, user, and message type (sce fig. 4.3).

Figure 4.3
[View From ™ ["View Thiough Selecting filter criteria
@i @ Lest Event under the Event Viewer.
> Events On: Events On:
ENEESS [578954
B:31:UIJPMH‘ 5:52:43PM[:|‘
[Types

[Information
Warning

[Success Audit
Failure Audit

Error

Source: |[AII]

Category: |[A||]

User: |

Computer: |

I | 3 3

Event 1D |

The Event Viewer (see fig. 4.4) differentiates various types of messages by using small icons,
each representing one of five distinct types of entries:

A red stop sign indicates an error.
An exclamation point within a yellow circle indicates a warning message.
The letter I within a blue circle indicates an informational message.
A gray padlock indicates an invalid authorization message.
A gold key indicates a successful authorization message.
Windows NT stores auditing information in three separate log files:
Application Log
Security Log

System Log

The Application Log contains information generated by applications registered with the NT
Security Authority.

162

Part I: Managing Internet Security

Figure 4.4 Event Viewer - System Log on WMARLBORO
Log Yiew Options Hel
One of the three Windows e =P
NT auditing logs under
NT Event Viewer. 5:52:48 PN BROWSER Naone

€5/8/95 B:52:48 PM BROWSER MNone 8015 /A
@ 5/8/95 5:52:49 P Service Confrol MarNone 7001 NIA
D 5/8/95 5:52:41 P NETLOGOM Mane 5712 MNiA
@ 5/8/95 5:52:40 P Service Confrol MarNone 7000 MNiA
€ 5/8/95 5:52:03 P Serial Mane 2 MNiA
€5/8/95 5:52:03 P Serial Mane 3 MNiA
@ 5/6/95 5:52:03 PM Serial Mane 29 TNiA
€ 5/0/95 5:51:59 P EwentLog MNone 6005 /A
@ 5/8/95 5:50:15 P BROWSER MNane 8033 A
@ 5/8/95 5:50:13 PM BROWSER MNane 8033 A
€ r5/8/95 55013 PM BROWSER MNane 8033 A
€ 5/5/95 10:59:44 AM NETLOGON MNane 5711 A
@© 5/8/95 10:39:35 AM NETLOGON MNaone 5723 A
€ 5/5/95 10:29:44 AM NETLOGON MNaone 5711 A 3

The Security Log contains information about system accesses through NT-recognized security
providers and clients. Other events—such as illegal file accesses, invalid password entries,
access to certain privileged objects, and account name or password changes—can be tracked as
well if the administrator chooses to do so. Individual applications also can assign their own
security events, which appear in both the Security Log and the Application Log.

The System Log contains information on all system-related events, some of which might also
be in the Security Log, the Applications Log, or both. The System Log acts as a default storage
file for much of the regularly generated Windows NT auditing information.

Logging the ftp Server Service

Incoming ftp connections can be logged under Windows NT, but only after changes have been
made in the Registry. You can specify whether NT should log connections made by anony-
mous ftp users, by normal ftp users, or by both. These log entries can be viewed in the System
Log by using the Event Viewer.

Warning You can seriously disable Windows NT if you make incorrect changes to the
Registry when using the Registry Editor. Unix provides no error warnings when you
improperly change values with the Registry Editor. Exercise caution when using this
utility.

To enable logging with ftp, perform the following tasks:
1. Run the REGEDIT32.EXE utility.

2. When the Registry Editor window appears, select HKEY_LOCAL_MACHINE on Local
Machine, then click on the icons for the SYSTEM subtree until you reach the following
subkey:

\SYSTEM\CurrentControlSet\Services\ftpsvc\Parameters

Audit Trails 163

3. The relevant parameters for enabling logging are LogAnonymous and
LogNonAnonymous. The possible values are 0 and 1. The default value is 0, which
means do not log. Changing the values to 1 turns on the logging option.

4. Restart the ftp Server service for the changes to take effect.

Logging httpd Transactions

The NT httpd service enables administrators to log access attempts to a specified file. The
logging feature can be activated by selecting a check box on the httpd configuration utility,
found in the Control Panel (see fig. 4.5). The httpd server adds entries to the Application Log
and maintains its own logs in a filename specified during configuration.

Figure 2.5

Data directory: | The NT HTTPD
TCPAP port configuration dialog box.

File extension to MIME type mapping:

(Default) application/octet-string + -

AU audio/basic [New mapping |
pocC application/msword -
HTH text/himl
HTML text/himl
JPEG image/jpeg Delete mapping
JPG image/jpeg
MPEG video/mpeg
MPG video/mpeqg L

[Log HTTP transactions [Permit directory browsing

Log file directory: |d:\httpdala |

| oK I | Cancel I | Defaults I | Help I

HTTPS wersion 0 96

Logging by Other TCP/IP Applications under NT

Other NT-based applications that utilize the TCP/IP suite of protocols can provide the
administrator with valuable auditing information. This section offers an overview of these
applications.

SNMP

The Windows SNMP service can provide the administrator with useful traffic statistics from
the local network, from the server itself, and from applications that use TCP/IP.

The application also can be configured to accept SNMP information from only certain IP
addresses and to send traps for failed SNMP authentications. Only the administrator can
configure SNMP options.

164

Part I: Managing Internet Security

SQL Server

The SQL Server for NT automatically logs its transaction requests in the Application Log.

Systems Management Server

The Systems Management Server (SMS) product contains an application called Network
Monitor that allows the administrator to monitor all TCP/IP traffic. Network Monitor is an
ethernet sniffer program similar to Novell’s Lanalyzer product. You can configure it to record
data based on protocol type, source address, and destination address. This utility can be a
valuable tool in monitoring suspicious traffic both to and from the LAN.

Audit Trails under DOS

Because access to the network in many installations comes from DOS-based workstations,
administrators might want to begin tracking all usage from the moment end users turn on
their PCs. In many cases, however, this tracking might be more work than is desired; main-
taining logs on multiple machines requires a great deal of logistical planning on the part of the
administrator.

A large number of PC-auditing packages are available on the market. Some are even available
as shareware. These programs generally allow for multiple-user logins or multiple-security
levels; device control, such as keyboard locking, serial port locking, and screen blanking; boot
control; encryption; file access control; and audit trail features.

PC/DACS

Mergent International’s PC/DACS product maintains logs pertaining to three types of events:
Session events
Operation events
Violations

The session events logged include logins, logouts, user time-outs, and logins generated after
system time-outs.

Operation events tracked include program executions (normal or TSRs); subdirectory creation
and deletion; user additions and deletions; changes to access rules; COM and LPT port
accesses; and file attributes.

Violations tracked include invalid user ids; invalid passwords; unauthorized attempts to write to
COM and LPT ports; and unauthorized file and directory accesses or modification attempts.

Audit Trails

PC/DACS enables the administrator to generate standard reports based on system events men-
tioned previously. It also has the option to extract various audit log information to a text file.

Watchdog

Fisher’s Watchdog product audits user command activity; directory accesses; program execu-
tion; date and time changes; and illegal and legal login attempts.

Audit trail reports can be displayed to the screen, printed, or saved to a file. The package has
a report generator that enables the administrator to predefine multiple-report formats for
later use.

LOCK

Secure Computing’s LOCK, a shareware product, offers many of the same features as the
commercial products. It enables user authentication; access control over files, directories, and
ports; encryption; and audit trail features.

LOCK’s auditing features enable administrators to track command execution; invalid login or
password entries; unauthorized file or directory access; and changes to any settings.

LOCK is available on the Internet at the following ftp site:

ftp.fc.net
/pub/security/lock.zip

Using System Logs to Discover Intruders

Because daily system upkeep and user support is so overwhelming at times, many administra-
tors cannot undertake all the security-related duties they would like. When a system is properly
configured to monitor and log user and network activity, however, discovering intrusion
attempts is much easier.

By implementing a combination of logging utilities, such as process accounting and TCP
wrappers (along with the regular verification of standard system logs), an administrator can
almost certainly detect any suspicious activity.

Common Break-In Indications

The most common indicator of a computer break-in involves improper account usage. An
account that has been inactive for months that suddenly starts utilizing large amounts of
system time is definitely suspect. An account designated for the secretarial staff that suddenly
starts trying to view files owned by an engineering group is another good indication of possible
intruder activity.

166

Part I: Managing Internet Security

Some common security bugs used by intruders often leave traces in various system logs. Recent
sendmail bugs have caused errors to be generated during the invocation of the bug. These
showed up in the sendmail log files and in the postmaster mail spool. Another recent Ipd bug
has caused errors to be reported to printer error log. Staying informed of security holes
exploited by intruders and knowing how their aftereffects can be revealed in system logs is
critical for the security-minded administrator.

Regular reviews of TCP wrapper logs often reveal activities indicative of break-in attempts.
Incoming TCP-based connections—such as telnet, ftp, and finger—from strange sites might
be warning signs of intruder activity.

Potential Problems

Even though system logs provide the administrator with a wealth of information, they by no
means offer a complete solution for tracking security violations. System logs are subject to
data corruption, modification, and deletion. In many cases, they only generate entries after a
break-in has occurred. The practice of reactive security measures, rather than proactive, is not

a good idea.

Note On more than one occasion, individuals have generated fake syslog messages to
have it appear as if numerous invalid root login attempts had occurred by specific
users from foreign sites. In some cases, these acts were done to frame other users;
in other cases, they were done to draw attention away from other, more serious
breaches of security. The logs were determined to be false by comparing login
records at the remote site and determining that the user indicated in the logs was
not online at the time the syslog messages indicated.

Today, most computer break-ins involve several steps, as follows:
Probing available services or in-roads to the system
Utilizing known bugs or bad password entries to gain access
Gaining super-user access
Erasing any indications of the break-in

Modifying utilities to ensure undetected future access

Compromised System Logs

When intruders gain access to a system, they almost immediately try to remove themselves
from view. Most intruders have a wide array of tools to edit lastlog, WTMP, UTMP, and
other logs. Such logs are usually modifiable only by root, but a surprisingly large number of
systems still have UTMP world-writable.

Audit Trails 167

Depending on how careless the intruder was and the tools used to edit the logs, some indica-
tions of the modification might be left visible to the administrator. One common lastlog editor
used by the underground community writes null characters over the entry it wants to remove,
rather than actually completely removing it. Although it appears as if the entry has been
removed when viewed with last, an examination of the log file clearly shows that the entry has
been tampered with.

Modified System Ultilities

To ensure that they can always get back into a system after they have broken into it the first
time, most intruders replace utilities with modified versions that contain backdoor passwords.
Along with these back doors, the modified utilities also remove any routines that generate log
entries. An intruder might install a modified login program, for example, that allows him
super-user access when a certain backdoor password is entered, and grants him shell access
without updating UTMP, WTMP, or lastlog.

Because source code for almost all Unix platforms has fallen into the hands of the underground
community, it stands to reason that members of that community have the capability to modify
every utility that contributes logging information. It doesn’t take too much time or skill to
search through source code and look for syslog calls or other logging functions.

In some recent cases, the intruders had recompiled the Unix kernel itself with a special set of
instructions to use when dealing with specific utilities such as ifconfig, netstat, ls, ps, and login.
Not only had these utilities been modified to hide the intruders, but whenever the kernel
received instructions to open or execute these files, it was set to report back information that
made it look as if they had not been modified. Because the kernel itself was modified to report
back false information about itself, administrators would have never found the intruders had
they not booted from the distribution CD and mounted their old root file system under a
different kernel to do a full investigation.

In most cases, when an administrator feels that a utility has been tampered with, he merely
replaces it with an original from a distribution tape or CD. In this case, however, the adminis-
trators reinstalled the entire operating system and rebuilt the kernel.

RFC 1244—The Site Security
Handbook

he following document is REC 1244— The Site
Security Handbook from the Interner Task Force. This
is the original document first written in July 1991 that
is commonly looked to as the working administrators’
bible. Currently, progress is underway to rewrite the
handbook with a proposed RFC publication date of
March 1996.

This handbook is the product of the Site Security Policy
Handbook Working Group (SSPHWG), a combined
effort of the Security Area and User Services Area of the
Internet Engineering Task Force (IETF). This FYI
RFC provides information for the Internet community.
It does not specify an Internet standard. Distribution of

this memo is unlimited.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

170

Part I: Managing Internet Security

Contributing Authors

1.

The following are the authors of the Site Security Handbook. Without their dedication, this
handbook would not have been possible.

Dave Curry (Purdue University), Sean Kirkpatrick (Unisys), Tom Longstaff (LLNL), Greg
Hollingsworth (Johns Hopkins University), Jeffrey Carpenter (University of Pittsburgh),
Barbara Fraser (CERT), Fred Ostapik (SRI NISC), Allen Sturtevant (LLNL), Dan Long
(BBN), Jim Duncan (Pennsylvania State University), and Frank Byrum (DEC).

Editors’ Note

This FYI RFC is a first attempt at providing Internet users guidance on how to deal with
security issues in the Internet. As such, this document is necessarily incomplete. There are
some clear shortfalls; for example, this document focuses mostly on resources available in the
United States. In the spirit of the Internet’s “Request for Comments” series of notes, we
encourage feedback from users of this handbook. In particular, those who utilize this docu-
ment to craft their own policies and procedures.

This handbook is meant to be a starting place for further research and should be viewed as a
useful resource, but not the final authority. Different organizations and jurisdictions will have
different resources and rules. Talk to your local organizations, consult an informed lawyer, or
consult with local and national law enforcement. These groups can help fill in the gaps that
this document cannot hope to cover.

Finally, we intend for this FYI RFC to grow and evolve. Please send comments and sug-
gestions to:

ssphwg@cert.sei.cmu.edu.

Introduction

1.1 Purpose of this Work

This handbook is a guide to setting computer security policies and procedures for sites that
have systems on the Internet. This guide lists issues and factors that a site must consider when
setting their own policies. It makes some recommendations and gives discussions of relevant
areas.

This guide is only a framework for setting security policies and procedures. In order to have an
effective set of policies and procedures, a site will have to make many decisions, gain agree-
ment, and then communicate and implement the policies.

RFC 1244—The Site Security Handbook 171

1.2 Audience

The audience for this work are system administrators and decision makers (who are more
Y
traditionally called “administrators” or “middle management”) at sites. This document is not
directed at programmers or those trying to create secure programs or systems. The focus of this
prog rying prog Yy
document is on the policies and procedures that need to be in place to support any technical
p p p pp y
security features that a site may be implementing.

The primary audience for this work are sites that are members of the Internet community.
However, this document should be useful to any site that allows communication with other
sites. As a general guide to security policies, this document may also be useful to sites with
isolated systems.

1.3 Definitions

For the purposes of this guide, a site” is any organization that owns computers or network-
related resources. These resources may include host computers that users use, routers, terminal
servers, PC’s or other devices that have access to the Internet. A site may be a end user of
Internet services or a service provider such as a regional network. However, most of the focus
of this guide is on those end users of Internet services.

We assume that the site has the ability to set policies and procedures for itself with the
concurrence and support from those who actually own the resources.

The “Internet” is those set of networks and machines that use the TCP/IP protocol suite,
connected through gateways, and sharing a common name and address spaces [1].

The term “system administrator” is used to cover all those who are responsible for the day-to-
day operation of resources. This may be a number of individuals or an organization.
y op Y 8

The term “decision maker” refers to those people at a site who set or approve policy. These are
often (but not always) the people who own the resources.

1.4 Related Work

The IETF Security Policy Working Group (SPWG) is working on a set of recommended
security policy guidelines for the Internet [23]. These guidelines may be adopted as policy by
regional networks or owners of other resources. This handbook should be a useful tool to help
sites implement those policies as desired or required. However, even implementing the
proposed policies isn’t enough to secure a site. The proposed Internet policies deal only with
network access security. It says nothing about how sites should deal with local security issues.

172

Part I: Managing Internet Security

1.5 Scope

This document covers issues about what a computer security policy should contain, what kinds
of procedures are need to enforce security, and some recommendations about how to deal with
the problem. When developing a security policy, close attention should be made not only on
the security needs and requirements of the local network, but also the security needs and
requirements of the other interconnected networks.

This is not a cookbook for computer security. Each site has different needs; the security needs
of a corporation might well be different than the security needs of an academic institution.
Any security plan has to conform to the needs and culture of the site.

This handbook does not cover details of how to do risk assessment, contingency planning, or
physical security. These things are essential in setting and implementing effective security
policy, but this document leaves treatment of those issues to other documents.

We will try to provide some pointers in that direction.

This document also doesn’t talk about how to design or implement secure systems or pro-
grams.

1.6 Why Do We Need Security
Policies and Procedures?

For most sites, the interest in computer security is proportional to the perception of risk and
threats. The world of computers has changed dramatically over the past twenty-five years.
Twenty-five years ago, most computers were centralized and managed by data centers.
Computers were kept in locked rooms and staffs of people made sure they were carefully
managed and physically secured. Links outside a site were unusual.

Computer security threats were rare, and were basically concerned with insiders: authorized
users misusing accounts, theft and vandalism, and so forth. These threats were well understood
and dealt with using standard techniques: computers behind locked doors, and accounting for
all resources.

Computing in the 1990’s is radically different. Many systems are in private offices and labs,
often managed by individuals or persons employed outside a computer center. Many systems
are connected into the Internet, and from there around the world: the United States, Europe,
Asia, and Australia are all connected together. Security threats are different today. The time
honored advice says “don’t write your password down and put it in your desk” lest someone
find it. With world-wide Internet connections, someone could get into your system from the
other side of the world and steal your password in the middle of the night when your building
is locked up.

RFC 1244—The Site Security Handbook

Viruses and worms can be passed from machine to machine. The Internet allows the electronic
equivalent of the thief who looks for open windows and doors; now a person can check
hundreds of machines for vulnerabilities in a few hours.

System administrators and decision makers have to understand the security threats that exist,
what the risk and cost of a problem would be, and what kind of action they want to take (if
any) to prevent and respond to security threats.

As an illustration of some of the issues that need to be dealt with in security problems, consider
the following scenarios (thanks to Russell Brand [2, BRAND] for these):

A system programmer gets a call reporting that a major underground cracker newsletter
is being distributed from the administrative machine at his center to five thousand sites
in the US and Western Europe.

Eight weeks later, the authorities call to inform you the information in one of these
newsletters was used to disable “911” in a major city for five hours.

A user calls in to report that he can’t login to his account at 3 o’clock in the morning on
a Saturday. The system staffer can’t login either. After rebooting to single user mode, he
finds that password file is empty.

By Monday morning, your staff determines that a number of privileged file transfers
took place between this machine and a local university.

Tuesday morning a copy of the deleted password file is found on the university machine
along with password files for a dozen other machines.

A week later you find that your system initialization files had been altered in a hostile
fashion.

You receive a call saying that a breakin to a government lab occurred from one of your
center’s machines. You are requested to provide accounting files to help trackdown the
attacker.

A week later you are given a list of machines at your site that have been broken into.

A reporter calls up asking about the breakin at your center. You haven’t heard of any
such breakin. Three days later, you learn that there was a breakin. The center director
had his wife’s name as a password.

A change in system binaries is detected. The day that it is corrected, they again are
changed. This repeats itself for some weeks.

If an intruder is found on your system, should you leave the system open to monitor the
situation or should you close down the holes and open them up again later?

173

174 Part I: Managing Internet Security

If an intruder is using your site, should you call law enforcement? Who makes that
decision? If law enforcement asks you to leave your site open, who makes that decision?

What steps should be taken if another site calls you and says they see activity coming
from an account on your system? What if the account is owned by a local manager?

1.7 Basic Approach

Setting security policies and procedures really means developing a plan for how to deal with
computer security. One way to approach this task is suggested by Fites, et. al. [3, FITES]:

Look at what you are trying to protect.

Look at what you need to protect it from.

Determine how likely the threats are.

Implement measures which will protect your assets in a cost-effective manner.
Review the process continuously, and improve things every time a weakness is found.

This handbook will concentrate mostly on the last two steps, but the first three are critically
important to making effective decisions about security. One old truism in security is that the
cost of protecting yourself against a threat should be less than the cost recovering if the threat
were to strike you. Without reasonable knowledge of what you are protecting and what the
likely threats are, following this rule could be difficult.

1.8 Organization of this Document

This document is organized into seven parts in addition to this introduction.

The basic form of each section is to discuss issues that a site might want to consider in creating
a computer security policy and setting procedures to implement that policy. In some cases,
possible options are discussed along with some of the ramifications of those choices. As far as
possible, this document tries not to dictate the choices a site should make, since these depend
on local circumstances. Some of the issues brought up may not apply to all sites. Nonetheless,
all sites should at least consider the issues brought up here to ensure that they do not miss
some important area.

The overall flow of the document is to discuss policy issues followed by the issues that come up
in creating procedures to implement the policies.

Section 2 discusses setting official site policies for access to computing resources. It also goes
into the issue of what happens when the policy is violated. The policies will drive the proce-
dures that need to be created, so decision makers will need to make choices about policies
before many of the procedural issues in following sections can be dealt with. A key part of

RFC 1244—The Site Security Handbook 175

creating policies is doing some kind of risk assessment to decide what really needs to be
protected and the level of resources that should be applied to protect them.

Once policies are in place, procedures to prevent future security problems should be estab-
lished. Section 3 defines and suggests actions to take when unauthorized activity is suspected.
Resources to prevent secruity breaches are also discussed. Section 4 discusses types of proce-
dures to prevent security problems.

Prevention is a key to security; as an example, the Computer Emergency Response Team/
Coordination Center (CERT/CC) at Carnegie-Mellon University (CMU) estimates that 80%
or more of the problems they see have to do with poorly chosen passwords.

Section 5 discusses incident handling: what kinds of issues does a site face when someone
violates the security policy. Many decisions will have to made on the spot as the incident
occurs, but many of the options and issues can be discussed in advance. At very least, responsi-
bilities and methods of communication can be established before an incident. Again, the
choices here are influenced by the policies discussed in section 2.

Section 6 deals with what happens after a security violation has been dealt with. Security
planning is an on-going cycle; just after an incident has occurred is an excellent opportunity to
improve policies and procedures.

The rest of the document provides references and an annotated bibliography.

2. Establishing Official Site Policy on
Computer Security

2.1 Brief Overview

2.1.1 Organization Issues

The goal in developing an official site policy on computer security is to define the
organization’s expectations of proper computer and network use and to define procedures to
prevent and respond to security incidents. In order to do this, aspects of the particular organi-
zation must be considered.

First, the goals and direction of the organization should be considered. For example, a military
base may have very different security concerns from a those of a university.

Second, the site security policy developed must conform to existing policies, rules, regulations
and laws that the organization is subject to. Therefore it will be necessary to identify these and
take them into consideration while developing the policy.

176

Part I: Managing Internet Security

Third, unless the local network is completely isolated and standalone, it is necessary to
consider security implications in a more global context. The policy should address the issues
when local security problems develop as a result of a remote site as well as when problems
occur on remote systems as a result of a local host or user.

2.1.2 Who Makes the Policy?

Policy creation must be a joint effort by technical personnel, who understand the full ramifica-
tions of the proposed policy and the implementation of the policy, and by decision makers
who have the power to enforce the policy. A policy which is neither implementable nor
enforceable is useless.

Since a computer security policy can affect everyone in an organization, it is worth taking some
care to make sure you have the right level of authority on the policy decisions. Though a
particular group (such as a campus information services group) may have responsibility for
enforcing a policy, an even higher group may have to support and approve the policy.

2.1.3 Who is Involved?

Establishing a site policy has the potential for involving every computer user at the site in a
variety of ways. Computer users may be responsible for personal password administration.
Systems managers are obligated to fix security holes and to oversee the system.

It is critical to get the right set of people involved at the start of the process. There may already
be groups concerned with security who would consider a computer security policy to be their
area. Some of the types of groups that might be involved include auditing/control, organiza-
tions that deal with physical security, campus information systems groups, and so forth. Asking
these types of groups to “buy in” from the start can help facilitate the acceptance of the policy.

2.1.4 Responsibilities

A key element of a computer security policy is making sure everyone knows their own respon-
sibility for maintaining security.

A computer security policy cannot anticipate all possibilities; however, it can ensure that
each kind of problem does have someone assigned to deal with it. There may be levels of
responsibility associated with a policy on computer security. At one level, each user of a
computing resource may have a responsibility to protect his account. A user who allows his
account to be compromised increases the chances of compromising other accounts or
resources.

System managers may form another responsibility level: they must help to ensure the security
of the computer system. Network managers may reside at yet another level.

RFC 1244—The Site Security Handbook 177

2.2 Risk Assessment

2.2.1 General Discussion

One of the most important reasons for creating a computer security policy is to ensure that
efforts spent on security yield cost effective benefits. Although this may seem obvious, it is
possible to be mislead about where the effort is needed. As an example, there is a great deal of
publicity about intruders on computers systems; yet most surveys of computer security show
that for most organizations, the actual loss from “insiders” is much greater.

Risk analysis involves determining what you need to protect, what you need to protect it from,
and how to protect it. Is is the process of examining all of your risks, and ranking those risks
by level of severity. This process involves making cost-effective decisions on what you want to
protect. The old security adage says that you should not spend more to protect something than
it is actually worth.

A full treatment of risk analysis is outside the scope of this document. [3, FITES] and [16,
PFLEEGER] provide introductions to this topic. However, there are two elements of a risk
analysis that will be briefly covered in the next two sections:

1. Identifying the assets
2. Identifying the threats

For each asset, the basic goals of security are availability, confidentiality, and integrity. Each
threat should be examined with an eye to how the threat could affect these areas.

2.2.2 Identifying the Assets

One step in a risk analysis is to identify all the things that need to be protected. Some things
are obvious, like all the various pieces of hardware, but some are overlooked, such as the people
who actually use the systems. The essential point is to list all things that could be affected by a
security problem.

One list of categories is suggested by Pfleeger [16, PELEEGER, page 459]; this list is adapted
from that source:

1. Hardware: cpus, boards, keyboards, terminals, workstations, personal computers, printers,
disk drives, communication lines, terminal servers, routers.

2. Software: source programs, object programs, utilities, diagnostic programs, operating
systems, communication programs.

3. Data: during execution, stored on-line, archived off-line, backups, audit logs, databases,
in transit over communication media.

4. People: users, people needed to run systems.

178 Part I: Managing Internet Security

5. Documentation: on programs, hardware, systems, local administrative procedures.

6. Supplies: paper, forms, ribbons, magnetic media.

2.2.3 Identifying the Threats

Once the assets requiring protection are identified, it is necessary to identify threats to those
assests. The threats can then be examined to determine what potential for loss exists. It helps to
consider from what threats you are trying to protect your assets.

The following sections describe a few of the possible threats.

2.2.3.1 Unauthorized Access

A common threat that concerns many sites is unauthorized access to computing facilities.
Unauthorized access takes many forms.

One means of unauthorized access is the use of another user’s account to gain access to a
system. The use of any computer resource without prior permission may be considered
unauthorized access to computing facilities.

The seriousness of an unauthorized access will vary from site to site. For some sites, the mere
act of granting access to an unauthorized user may cause irreparable harm by negative media
coverage. For other sites, an unauthorized access opens the door to other security threats. In
addition, some sites may be more frequent targets than others; hence the risk from unautho-
rized access will vary from site to site. The Computer Emergency Response Team (CERT - see
section 3.9.7.3.1) has observed that well-known universities, government sites, and military
sites seem to attract more intruders.

2.2.3.2 Disclosure of Information

Another common threat is disclosure of information. Determine the value or sensitivity of the
information stored on your computers. Disclosure of a password file might allow for future
unauthorized accesses. A glimpse of a proposal may give a competitor an unfair advantage. A
technical paper may contain years of valuable research.

2.2.3.3 Denial of Service

Computers and networks provide valuable services to their users. Many people rely on these
services in order to perform their jobs efficiently. When these services are not available when
called upon, a loss in productivity results. Denial of service comes in many forms and might
affect users in a number of ways. A network may be rendered unusable by a rogue packet,
jamming, or by a disabled network component. A virus might slow down or cripple a com-
puter system. Each site should determine which services are essential, and for each of these
services determine the affect to the site if that service were to become disabled.

RFC 1244—The Site Security Handbook

2.3 Policy Issues

There are a number of issues that must be addressed when developing a security policy.
These are:

1.

2.

6.

7.

Who is allowed to use the resources?

What is the proper use of the resources?

. Who is authorized to grant access and approve usage?

Who may have system administration privileges?

. What are the user’s rights and responsibilities?

What are the rights and responsibilities of the system administrator vs. those of the user?

What do you do with sensitive information?

These issues will be discussed below. In addition you may wish to include a section in your

policy concerning ethical use of computing resources. Parker, Swope and Baker [17,
PARKER90] and Forester and Morrison [18, FORESTER] are two useful references that
address ethical issues.

2.3.1 Who is Allowed to use the Resources?

One step you must take in developing your security policy is defining who is allowed to use

your system and services. The policy should explicitly state who is authorized to use what

resources.

2.3.2 What is the Proper Use of the Resources?

After determining who is allowed access to system resources it is necessary to provide guide-

lines for the acceptable use of the resources. You may have different guidelines for different

types of users (i.e., students, faculty, external users). The policy should state what is acceptable

use as well as unacceptable use.

It should also include types of use that may be restricted. Define limits to access and authority.

You will need to consider the level of access various users will have and what resources will be

available or restricted to various groups of people.

Your acceptable use policy should clearly state that individual users are responsible for their

actions. Their responsibility exists regardless of the security mechanisms that are in place. It

should be clearly stated that breaking into accounts or bypassing security is not permitted. The

following points should be covered when developing an acceptable use policy:

Is breaking into accounts permitted?

179

180

Part I: Managing Internet Security

Is cracking passwords permitted?
Is disrupting service permitted?

Should users assume that a file being world-readable grants them the authorization to
read it?

Should users be permitted to modify files that are not their own even if they happen to
have write permission?

Should users share accounts?
The answer to most of these questions will be “no.”

You may wish to incorporate a statement in your policies concerning copyrighted and licensed
software. Licensing agreements with vendors may require some sort of effort on your part to
ensure that the license is not violated. In addition, you may wish to inform users that the
copying of copyrighted software may be a violation of the copyright laws, and is not permitted.

Specifically concerning copyrighted and/or licensed software, you may wish to include the
following information:

Copyrighted and licensed software may not be duplicated unless it is explicitly stated
that you may do so.

Methods of conveying information on the copyright/licensed status of software.
When in doubt, DON’T COPY.

Your acceptable use policy is very important. A policy which does not clearly state what is not
permitted may leave you unable to prove that a user violated policy.

There are exception cases like tiger teams and users or administrators wishing for “licenses to
hack”—you may face the situation where users will want to “hack” on your services for security
research purposes. You should develop a policy that will determine whether you will permit
this type of research on your services and if so, what your guidelines for such research will be.

Points you may wish to cover in this area:
Whether it is permitted at all.
What type of activity is permitted: breaking in, releasing worms, releasing viruses, etc..

What type of controls must be in place to ensure that it does not get out of control (e.g.,
separate a segment of your network for these tests).

How you will protect other users from being victims of these activities, including
external users and networks.

RFC 1244—The Site Security Handbook 181

The process for obtaining permission to conduct these tests.

In cases where you do permit these activities, you should isolate the portions of the network
that are being tested from your main network. Worms and viruses should never be released on
a live network.

You may also wish to employ, contract, or otherwise solicit one or more people or organiza-
tions to evaluate the security of your services, one of which may include “hacking.” You may
wish to provide for this in your policy.

2.3.3 Who Is Authorized to Grant Access and Approve Usage?

Your policy should state who is authorized to grant access to your services. Further, it must be
determined what type of access they are permitted to give. If you do not have control over who
is granted access to your system, you will not have control over who is using your system.
Controlling who has the authorization to grant access will also enable you to know who was or
was not granting access if problems develop later.

There are many schemes that can be developed to control the distribution of access to your
services. The following are the factors that you must consider when determining who will
distribute access to your services:

Will you be distributing access from a centralized point or at various points?

You can have a centralized distribution point to a distributed system where various sites
or departments independently authorize access. The trade off is between security and
convenience. The more centralized, the easier to secure.

What methods will you use for creating accounts and terminating access?

From a security standpoint, you need to examine the mechanism that you will be using to
create accounts. In the least restrictive case, the people who are authorized to grant access
would be able to go into the system directly and create an account by hand or through vendor
supplied mechanisms. Generally, these mechanisms place a great deal of trust in the person
running them, and the person running them usually has a large amount of privileges. If this is
the choice you make, you need to select someone who is trustworthy to perform this task. The
opposite solution is to have an integrated system that the people authorized to create accounts
run, or the users themselves may actually run. Be aware that even in the restrictive case of
having a mechanized facility to create accounts does not remove the potential for abuse. You
should have specific procedures developed for the creation of accounts. These procedures
should be well documented to prevent confusion and reduce mistakes. A security vulnerability
in the account authorization process is not only possible through abuse, but is also possible if a
mistake is made. Having clear and well documented procedure will help ensure that these
mistakes won’t happen. You should also be sure that the people who will be following these
procedures understand them.

182

Part I: Managing Internet Security

The granting of access to users is one of the most vulnerable of times. You should ensure that
the selection of an initial password cannot be easily guessed. You should avoid using an initial
password that is a function of the username, is part of the user’s name, or some algorithmically
generated password that can easily be guessed. In addition, you should not permit users to
continue to use the initial password indefinitely. If possible, you should force users to change
the initial password the first time they login. Consider that some users may never even login,
leaving their password vulnerable indefinitely. Some sites choose to disable accounts that have
never been accessed, and force the owner to reauthorize opening the account.

2.3.4 Who May Have System Administration Privileges?

One security decision that needs to be made very carefully is who will have access to system
administrator privileges and passwords for your services. Obviously, the system administrators
will need access, but inevitably other users will request special privileges. The policy should
address this issue. Restricting privileges is one way to deal with threats from local users. The
challenge is to balance restricting access to these to protect security with giving people who
need these privileges access so that they can perform their tasks. One approach that can be
taken is to grant only enough privilege to accomplish the necessary tasks.

Additionally, people holding special privileges should be accountable to some authority and
this should also be identified within the site’s security policy. If the people you grant privileges
to are not accountable, you run the risk of losing control of your system and will have diffi-
culty managing a compromise in security.

2.3.5 What Are The Users’ Rights and Responsibilities?

The policy should incorporate a statement on the users’ rights and responsibilities concerning
the use of the site’s computer systems and services. It should be clearly stated that users are
responsible for understanding and respecting the security rules of the systems they are using.
The following is a list of topics that you may wish to cover in this area of the policy:

What guidelines you have regarding resource consumption (whether users are restricted,
and if so, what the restrictions are).

What might constitute abuse in terms of system performance.
Whether users are permitted to share accounts or let others use their accounts.
How “secret” users should keep their passwords.

How often users should change their passwords and any other password restrictions or
requirements.

Whether you provide backups or expect the users to create their own.

RFC 1244—The Site Security Handbook 183

Disclosure of information that may be proprietary.
Statement on Electronic Mail Privacy (Electronic Communications Privacy Act).

Your policy concerning controversial mail or postings to mailing lists or discussion
groups (obscenity, harassment, etc.).

Policy on electronic communications: mail forging, etc.

The Electronic Mail Association sponsored a white paper on the privacy of electronic mail in
companies [4]. Their basic recommendation is that every site should have a policy on the
protection of employee privacy. They also recommend that organizations establish privacy
policies that deal with all media, rather than singling out electronic mail.

They suggest five criteria for evaluating any policy:
1. Does the policy comply with law and with duties to third parties?

2. Does the policy unnecessarily compromise the interest of the employee, the employer or
third parties?

3. Is the policy workable as a practical matter and likely to be enforced?

4. Does the policy deal appropriately with all different forms of communications and record
keeping with the office?

5. Has the policy been announced in advance and agreed to by all concerned?

2.3.6 What Are The Rights and Responsibilities of System
Administrators Versus Rights of Users

There is a tradeoff between a user’s right to absolute privacy and the need of system adminis-
trators to gather sufficient information to diagnose problems. There is also a distinction
between a system administrator’s need to gather information to diagnose problems and
investigating security violations. The policy should specify to what degree system administra-
tors can examine user files to diagnose problems or for other purposes, and what rights you
grant to the users. You may also wish to make a statement concerning system administrators’
obligation to maintaining the privacy of information viewed under these circumstances. A few
questions that should be answered are:

Can an administrator monitor or read a user’s files for any reason?
What are the liabilities?

Do network administrators have the right to examine network or host traffic?

184 Part I: Managing Internet Security

2.3.7 What To Do With Sensitive Information

Before granting users access to your services, you need to determine at what level you will
provide for the security of data on your systems. By determining this, you are determining the
level of sensitivity of data that users should store on your systems. You do not want users to
store very sensitive information on a system that you are not going to secure very well. You
need to tell users who might store sensitive information what services, if any, are appropriate
for the storage of sensitive information. This part should include storing of data in different
ways (disk, magnetic tape, file servers, etc.). Your policy in this area needs to be coordinated
with the policy concerning the rights of system administrators versus users (see section 2.3.6).

2.4 What Happens When the Policy is Violated

It is obvious that when any type of official policy is defined, be it related to computer security
or not, it will eventually be broken. The violation may occur due to an individual’s negligence,
accidental mistake, having not been properly informed of the current policy, or not under-
standing the current policy. It is equally possible that an individual (or group of individuals)
may knowingly perform an act that is in direct violation of the defined policy.

When a policy violation has been detected, the immediate course of action should be pre-
defined to ensure prompt and proper enforcement. An investigation should be performed to
determine how and why the violation occurred. Then the appropriate corrective action should
be executed. The type and severity of action taken varies depending on the type of violation
that occurred.

2.4.1 Determining the Response to Policy Violations

Violations to policy may be committed by a wide variety of users. Some may be local users and
others may be from outside the local environment. Sites may find it helpful to define what it
considers “insiders” and “outsiders” based upon administrative, legal or political boundaries.
These boundaries imply what type of action must be taken to correct the offending party; from
a written reprimand to pressing legal charges. So, not only do you need to define actions based
on the type of violation, you also need to have a clearly defined series of actions based on the
kind of user violating your computer security policy. This all seems rather complicated, but
should be addressed long before it becomes necessary as the result of a violation.

One point to remember about your policy is that proper education is your best defense. For
the outsiders who are using your computer legally, it is your responsibility to verify that these
individuals are aware of the policies that you have set forth.

Having this proof may assist you in the future if legal action becomes necessary.

As for users who are using your computer illegally, the problem is basically the same. What
type of user violated the policy and how and why did they do it? Depending on the results of

RFC 1244—The Site Security Handbook

your investigation, you may just prefer to “plug” the hole in your computer security and chalk
it up to experience. Or if a significant amount of loss was incurred, you may wish to take more
drastic action.

2.4.2 What to do When Local Users Violate the Policy of a
Remote Site
In the event that a local user violates the security policy of a remote site, the local site should
have a clearly defined set of administrative actions to take concerning that local user. The site

should also be prepared to protect itself against possible actions by the remote site. These
situations involve legal issues which should be addressed when forming the security policy.

2.4.3 Defining Contacts and Responsibilities
to Outside Organizations

The local security policy should include procedures for interaction with outside organizations.

These include law enforcement agencies, other sites, external response team organizations (e.g.,
the CERT, CIAC) and various press agencies.

The procedure should state who is authorized to make such contact and how it should be
handled. Some questions to be answered include:

Who may talk to the press?
When do you contact law enforcement and investigative agencies?

If a connection is made from a remote site, is the system manager authorized to contact
that site?

Can data be released? What kind?

Detailed contact information should be readily available along with clearly defined procedures
to follow.

2.4.4 What are the Responsibilities to our Neighbors and
Other Internet Sites?

The Security Policy Working Group within the IETF is working on a document entitled,
“Policy Guidelines for the Secure Operation of the Internet” [23]. It addresses the issue that
the Internet is a cooperative venture and that sites are expected to provide mutual security
assistance. This should be addressed when developing a site’s policy. The major issue to be
determined is how much information should be released. This will vary from site to site
according to the type of site (e.g., military, education, commercial) as well as the type of
security violation that occurred.

185

186 Part I: Managing Internet Security

2.4.5 Issues for Incident Handling Procedures

Along with statements of policy, the document being prepared should include procedures for
incident handling. This is covered in detail in the next chapter. There should be procedures
available that cover all facets of policy violation.

2.5 Locking In or Out

Whenever a site suffers an incident which may compromise computer security, the strategies
for reacting may be influenced by two opposing pressures.

If management fears that the site is sufficiently vulnerable, it may choose a “Protect and
Proceed” strategy. This approach will have as its primary goal the protection and preservation
of the site facilities and to provide for normalcy for its users as quickly as possible. Attempts
will be made to actively interfere with the intruder’s processes, prevent further access and begin
immediate damage assessment and recovery. This process may involve shutting down the
facilities, closing off access to the network, or other drastic measures. The drawback is that
unless the intruder is identified directly, they may come back into the site via a different path,
or may attack another site.

The alternate approach, “Pursue and Prosecute,” adopts the opposite philosophy and goals.
The primary goal is to allow intruders to continue their activities at the site until the site can
identify the responsible persons. This approach is endorsed by law enforcement agencies and
prosecutors. The drawback is that the agencies cannot exempt a site from possible user lawsuits
if damage is done to their systems and data.

Prosecution is not the only outcome possible if the intruder is identified. If the culprit is an
employee or a student, the organization may choose to take disciplinary actions. The computer
security policy needs to spell out the choices and how they will be selected if an intruder is
caught. Careful consideration must be made by site management regarding their approach to
this issue before the problem occurs. The strategy adopted might depend upon each circum-
stance. Or there may be a global policy which mandates one approach in all circumstances.
The pros and cons must be examined thoroughly and the users of the facilities must be made
aware of the policy so that they understand their vulnerabilities no matter which approach is
taken.

The following are checklists to help a site determine which strategy to adopt: “Protect and
Proceed” or “Pursue and Prosecute.”

Protect and Proceed
1. If assets are not well protected.
2. If continued penetration could result in great financial risk.

3. If the possibility or willingness to prosecute is not present.

4.
5.
6.

RFC 1244—The Site Security Handbook

If user base is unknown.
If users are unsophisticated and their work is vulnerable.

If the site is vulnerable to lawsuits from users, e.g., if their resources are undermined.

Pursue and Prosecute

1.

2.

10.

11.

12.
13.
14.

If assets and systems are well protected.

If good backups are available.

. If the risk to the assets is outweighed by the disruption caused by the present and possibly

future penetrations.

If this is a concentrated attack occurring with great frequency and intensity.

. If the site has a natural attraction to intruders, and consequently regularly attracts

intruders.

If the site is willing to incur the financial (or other) risk to assets by allowing the
penetrator continue.

If intruder access can be controlled.

If the monitoring tools are sufficiently well-developed to make the pursuit worthwhile.

. If the support staff is sufficiently clever and knowledgable about the operating system,

related utilities, and systems to make the pursuit worthwhile.
If there is willingness on the part of management to prosecute.

If the system adminitrators know in general what kind of evidence would lead to prosecu-
tion.

If there is established contact with knowledgeable law enforcement.
If there is a site representative versed in the relevant legal issues.

If the site is prepared for possible legal action from its own users if their data or systems
become compromised during the pursuit.

2.6 Interpreting the Policy

It is important to define who will interpret the policy. This could be an individual or a

committee. No matter how well written, the policy will require interpretation from time to

time and this body would serve to review, interpret, and revise the policy as needed.

187

188

Part I: Managing Internet Security

2.7 Publicizing the Policy

Once the site security policy has been written and established, a vigorous process should be
engaged to ensure that the policy statement is widely and thoroughly disseminated and
discussed. A mailing of the policy should not be considered sufficient. A period for comments
should be allowed before the policy becomes effective to ensure that all affected users have a
chance to state their reactions and discuss any unforeseen ramifications. Ideally, the policy
should strike a balance between protection and productivity. Meetings should be held to elicit
these comments, and also to ensure that the policy is correctly understood. (Policy promulga-
tors are not necessarily noted for their skill with the language.) These meetings should involve
higher management as well as line employees.

Security is a collective effort.

In addition to the initial efforts to publicize the policy, it is essential for the site to maintain a
continual awareness of its computer security policy. Current users may need periodic remind-
ers. New users should have the policy included as part of their site introduction packet. As a
condition for using the site facilities, it may be advisable to have them sign a statement that
they have read and understood the policy. Should any of these users require legal action for
serious policy violations, this signed statement might prove to be a valuable aid.

3. Establishing Procedures to Prevent
Security Problems

The security policy defines what needs to be protected. This section discusses security proce-
dures which specify what steps will be used to carry out the security policy.

3.1 Security Policy Defines What Needs to be
Protected

The security policy defines the WHATs: what needs to be protected, what is most important,
what the priorities are, and what the general approach to dealing with security problems

should be.
The security policy by itself doesn’t say HOW things are protected.

That is the role of security procedures, which this section discusses. The security policy should
be a high level document, giving general strategy. The security procedures need to set out, in
detail, the precise steps your site will take to protect itself. The security policy should include a
general risk assessment of the types of threats a site is mostly likely to face and the conse-
quences of those threats (see section 2.2). Part of doing a risk assessment will include creating a

RFC 1244—The Site Security Handbook 189

general list of assets that should be protected (section 2.2.2). This information is critical in
devising cost-effective procedures.

It is often tempting to start creating security procedures by deciding on different mechanisms
first: “our site should have logging on all hosts, call-back modems, and smart cards for all
users.” This approach could lead to some areas that have too much protection for the risk they
face, and other areas that aren’t protected enough. Starting with the security policy and the
risks it outlines should ensure that the procedures provide the right level of protect for all
assets.

3.2 Identifying Possible Problems

To determine risk vulnerabilities must be identified. Part of the purpose of the policy is to aid
in shoring up the vulnerabilities and thus to decrease the risk in as many areas as possible.
Several of the more popular problem areas are presented in sections below. This list is by no
means complete. In addition, each site is likely to have a few unique vulnerabilities.

3.2.1 Access Points

Access points are typically used for entry by unauthorized users. Having many access points
increases the risk of access to an organization’s computer and network facilities.

Network links to networks outside the organization allow access into the organization for all
others connected to that external network. A network link typically provides access to a large
number of network services, and each service has a potential to be compromised.

Dialup lines, depending on their configuration, may provide access merely to a login port of a
single system. If connected to a terminal server, the dialup line may give access to the entire
network.

Terminal servers themselves can be a source of problem. Many terminal servers do not require
any kind of authentication. Intruders often use terminal servers to disguise their actions,
dialing in on a local phone and then using the terminal server to go out to the local network.
Some terminal servers are configured so that intruders can TELNET [19] in from outside the
network, and then TELNET back out again, again serving to make it difficult to trace them.

3.2.2 Misconfigured Systems

Misconfigured systems form a large percentage of security holes. Today’s operating systems
and their associated software have become so complex that understanding how the system
works has become a full-time job. Often, systems managers will be non-specialists chosen from
the current organization’s staff. Vendors are also partly responsible for misconfigured systems.
To make the system installation process easier, vendors occasionally choose initial configura-
tions that are not secure in all environments.

190

Part I: Managing Internet Security

3.2.3 Software Bugs

Software will never be bug free. Publicly known security bugs are common methods of
unauthorized entry. Part of the solution to this problem is to be aware of the security problems
and to update the software when problems are detected. When bugs are found, they should be
reported to the vendor so that a solution to the problem can be implemented and distributed.

3.2.4 “Insider” Threats

An insider to the organization may be a considerable threat to the security of the computer
systems. Insiders often have direct access to the computer and network hardware components.
The ability to access the components of a system makes most systems easier to compromise.
Most desktop workstations can be easily manipulated so that they grant privileged access.
Access to a local area network provides the ability to view possibly sensitive data traversing the
network.

3.3 Choose Controls to Protect
Assets in a Cost-Effective Way

After establishing what is to be protected, and assessing the risks these assets face, it is necessary
to decide how to implement the controls which protect these assets. The controls and protec-
tion mechanisms should be selected in a way so as to adequately counter the threats found
during risk assessment, and to implement those controls in a cost effective manner. It makes
little sense to spend an exorbitant sum of money and overly constrict the user base if the risk of
exposure is very small.

3.3.1 Choose the Right Set of Controls

The controls that are selected represent the physical embodiment of your security policy. They
are the first and primary line of defense in the protection of your assets. It is therefore most
important to ensure that the controls that you select are the right set of controls. If the major
threat to your system is outside penetrators, it probably doesn’t make much sense to use
biometric devices to authenticate your regular system users. On the other hand, if the major
threat is unauthorized use of computing resources by regular system users, you’ll probably
want to establish very rigorous automated accounting procedures.

3.3.2 Use Common Sense

Common sense is the most appropriate tool that can be used to establish your security policy.
Elaborate security schemes and mechanisms are impressive, and they do have their place, yet
there is little point in investing money and time on an elaborate implementation scheme if the
simple controls are forgotten. For example, no matter how elaborate a system you put into
place on top of existing security controls, a single user with a poor password can still leave your
system open to attack.

RFC 1244—The Site Security Handbook 191

3.4 Use Multiple Strategies to Protect Assets

Another method of protecting assets is to use multiple strategies. In this way, if one strategy
fails or is circumvented, another strategy comes into play to continue protecting the asset. By
using several simpler strategies, a system can often be made more secure than if one very
sophisticated method were used in its place. For example, dial-back modems can be used in
conjunction with traditional logon mechanisms. Many similar approaches could be devised
that provide several levels of protection for assets. However, it’s very easy to go overboard with
extra mechanisms. One must keep in mind exactly what it is that needs to be protected.

3.5 Physical Security

It is a given in computer security if the system itself is not physically secure, nothing else about
the system can be considered secure. With physical access to a machine, an intruder can halt
the machine, bring it back up in privileged mode, replace or alter the disk, plant Trojan horse
programs (see section 2.13.9.2), or take any number of other undesirable (and hard to prevent)
actions. Critical communications links, important servers, and other key machines should be
located in physically secure areas. Some security systems (such as Kerberos) require that the
machine be physically secure.

If you cannot physically secure machines, care should be taken about trusting those machines.
Sites should consider limiting access from non-secure machines to more secure machines. In
particular, allowing trusted access (e.g., the BSD Unix remote commands such as rsh) from
these kinds of hosts is particularly risky. For machines that seem or are intended to be physi-
cally secure, care should be taken about who has access to the machines. Remember that
custodial and maintenance staff often have keys to rooms.

3.6 Procedures to Recognize Unauthorized Activity

Several simple procedures can be used to detect most unauthorized uses of a computer system.
These procedures use tools provided with the operating system by the vendor, or tools publicly
available from other sources.

3.6.1 Monitoring System Use

System monitoring can be done either by a system administrator, or by software written for the
purpose. Monitoring a system involves looking at several parts of the system and searching for
anything unusual. Some of the easier ways to do this are described in this section.

The most important thing about monitoring system use is that it be done on a regular basis.
Picking one day out of the month to monitor the system is pointless, since a security breach
can be isolated to a matter of hours. Only by maintaining a constant vigil can you expect to
detect security violations in time to react to them.

192 Part I: Managing Internet Security

3.6.2 Tools for Monitoring the System

This section describes tools and methods for monitoring a system against unauthorized access
and use.

3.6.2.1 Logging

Most operating systems store numerous bits of information in log files. Examination of these
log files on a regular basis is often the first line of defense in detecting unauthorized use of the
system.

Compare lists of currently logged in users and past login histories. Most users typically
log in and out at roughly the same time each day. An account logged in outside the
“normal” time for the account may be in use by an intruder.

Many systems maintain accounting records for billing purposes. These records can also
be used to determine usage patterns for the system; unusual accounting records may
indicate unauthorized use of the system.

System logging facilities, such as the UNIX “syslog” utility, should be checked for
unusual error messages from system software. For example, a large number of failed login
attempts in a short period of time may indicate someone trying to guess passwords.

Operating system commands which list currently executing processes can be used to
detect users running programs they are not authorized to use, as well as to detect
unauthorized programs which have been started by an intruder.

3.6.2.2 Monitoring Software

Other monitoring tools can easily be constructed using standard operating system software, by
using several, often unrelated, programs together. For example, checklists of file ownerships
and permission settings can be constructed (for example, with “Is” and “find” on UNIX) and
stored off-line. These lists can then be reconstructed periodically and compared against the
master checklist (on UNIX, by using the “diff” utility).

Differences may indicate that unauthorized modifications have been made to the system.

Still other tools are available from third-party vendors and public software distribution sites.
Section 3.9.9 lists several sources from which you can learn what tools are available and how to
get them.

3.6.2.3 Other Tools

Other tools can also be used to monitor systems for security violations, although this is not
their primary purpose. For example, network monitors can be used to detect and log connec-
tions from unknown sites.

RFC 1244—The Site Security Handbook 193

3.6.3 Vary the Monitoring Schedule

The task of system monitoring is not as daunting as it may seem.

System administrators can execute many of the commands used for monitoring periodically
throughout the day during idle moments (e.g., while talking on the telephone), rather than
spending fixed periods of each day monitoring the system. By executing the commands
frequently, you will rapidly become used to seeing “normal” output, and will easily spot things
which are out of the ordinary. In addition, by running various monitoring commands at
different times throughout the day, you make it hard for an intruder to predict your actions.
For example, if an intruder knows that each day at 5:00 p.m. the system is checked to see that
everyone has logged off, he will simply wait until after the check has completed before logging
in. But the intruder cannot guess when a system administrator might type a command to
display all logged-in users, and thus he runs a much greater risk of detection.

Despite the advantages that regular system monitoring provides, some intruders will be aware
of the standard logging mechanisms in use on systems they are attacking. They will actively
pursue and attempt to disable monitoring mechanisms. Regular monitoring therefore is useful
in detecting intruders, but does not provide any guarantee that your system is secure, nor
should monitoring be considered an infallible method of detecting unauthorized use.

3.7 Define Actions to Take When
Unauthorized Activity is Suspected

Sections 2.4 and 2.5 discussed the course of action a site should take when it suspects its
systems are being abused. The computer security policy should state the general approach
towards dealing with these problems.

The procedures for dealing with these types of problems should be written down. Who has
authority to decide what actions will be taken? Should law enforcement be involved? Should
your organization cooperate with other sites in trying to track down an intruder? Answers to all
the questions in section 2.4 should be part of the incident handling procedures.

Whether you decide to lock out or pursue intruders, you should have tools and procedures
ready to apply. It is best to work up these tools and procedures before you need them. Don’t
wait until an intruder is on your system to figure out how to track the intruder’s actions; you
will be busy enough if an intruder strikes.

3.8 Communicating Security Policy

Security policies, in order to be effective, must be communicated to both the users of the
system and the system maintainers. This section describes what these people should be told,
and how to tell them.

194 Part I: Managing Internet Security

3.8.1 Educating the Users

Users should be made aware of how the computer systems are expected to be used, and how to
protect themselves from unauthorized users.

3.8.1.1 Proper Account/Workstation Use

All users should be informed about what is considered the “proper” use of their account or
workstation (“proper” use is discussed in section 2.3.2). This can most easily be done at the
time a user receives their account, by giving them a policy statement. Proper use policies
typically dictate things such as whether or not the account or workstation may be used for
personal activities (such as checkbook balancing or letter writing), whether profit-making
activities are allowed, whether game playing is permitted, and so on. These policy statements
may also be used to summarize how the computer facility is licensed and what software licenses
are held by the institution; for example, many universities have educational licenses which
explicitly prohibit commercial uses of the system. A more complete list of items to consider
when writing a policy statement is given in section 2.3.

3.8.1.2 Account/Workstation Management Procedures

Each user should be told how to properly manage their account and workstation. This
includes explaining how to protect files stored on the system, how to log out or lock the
terminal or workstation, and so on. Much of this information is typically covered in the
“beginning user” documentation provided by the operating system vendor, although many
sites elect to supplement this material with local information.

If your site offers dial-up modem access to the computer systems, special care must be taken to
inform users of the security problems inherent in providing this access. Issues such as making
sure to log out before hanging up the modem should be covered when the user is initially given
dial-up access.

Likewise, access to the systems via local and wide-area networks presents its own set of security
problems which users should be made aware of. Files which grant “trusted host” or “trusted
user” status to remote systems and users should be carefully explained.

3.8.1.3 Determining Account Misuse

Users should be told how to detect unauthorized access to their account. If the system prints
the last login time when a user logs in, he or she should be told to check that time and note
whether or not it agrees with the last time he or she actually logged in.

Command interpreters on some systems (e.g., the UNIX C shell) maintain histories of the last
several commands executed. Users should check these histories to be sure someone has not
executed other commands with their account.

RFC 1244—The Site Security Handbook 195

3.8.1.4 Problem Reporting Procedures

A procedure should be developed to enable users to report suspected misuse of their accounts
or other misuse they may have noticed. This can be done either by providing the name and
telephone number of a system administrator who manages security of the computer system, or
by creating an electronic mail address (e.g., “security”) to which users can address their
problems.

3.8.2 Educating the Host Administrators

In many organizations, computer systems are administered by a wide variety of people. These
administrators must know how to protect their own systems from attack and unauthorized use,
as well as how to communicate successful penetration of their systems to other administrators
as a warning.

3.8.2.1 Account Management Procedures

Care must be taken when installing accounts on the system in order to make them secure.
When installing a system from distribution media, the password file should be examined for
“standard” accounts provided by the vendor. Many vendors provide accounts for use by system
services or field service personnel. These accounts typically have either no password or one
which is common knowledge. These accounts should be given new passwords if they are
needed, or disabled or deleted from the system if they are not.

Accounts without passwords are generally very dangerous since they allow anyone to access the
system. Even accounts which do not execute a command interpreter (e.g., accounts which exist
only to see who is logged in to the system) can be compromised if set up incorrectly. A related
concept, that of “anonymous” file transfer (FTP) [20], allows users from all over the network
to access your system to retrieve files from (usually) a protected disk area. You should carefully
weigh the benefits that an account without a password provides against the security risks of
providing such access to your system. If the operating system provides a “shadow” password
facility which stores passwords in a separate file accessible only to privileged users, this facility
should be used. System V UNIX, SunOS 4.0 and above, and versions of Berkeley UNIX after
4.3BSD Tahoe, as well as others, provide this feature. It protects passwords by hiding their
encrypted values from unprivileged users. This prevents an attacker from copying your
password file to his or her machine and then attempting to break the passwords at his or her
leisure.

Keep track of who has access to privileged user accounts (e.g., “root” on UNIX or “MAINT”
on VMS). Whenever a privileged user leaves the organization or no longer has need of the
privileged account, the passwords on all privileged accounts should be changed.

3.8.2.2 Configuration Management Procedures

When installing a system from the distribution media or when installing third-party software,
it is important to check the installation carefully. Many installation procedures assume a

196

Part I: Managing Internet Security

“trusted” site, and hence will install files with world write permission enabled, or otherwise
compromise the security of files.

Network services should also be examined carefully when first installed. Many vendors provide
default network permission files which imply that all outside hosts are to be “trusted,” which is
rarely the case when connected to wide-area networks such as the Internet.

Many intruders collect information on the vulnerabilities of particular system versions. The
older a system, the more likely it is that there are security problems in that version which have
since been fixed by the vendor in a later release.

For this reason, it is important to weigh the risks of not upgrading to a new operating system
release (thus leaving security holes unplugged) against the cost of upgrading to the new
software (possibly breaking third-party software, etc.).

Bug fixes from the vendor should be weighed in a similar fashion, with the added note that
“security” fixes from a vendor usually address fairly serious security problems.

Other bug fixes, received via network mailing lists and the like, should usually be installed, but
not without careful examination. Never install a bug fix unless you’re sure you know what the

consequences of the fix are - there’s always the possibility that an intruder has suggested a “fix”
which actually gives him or her access to your system.

3.8.2.3 Recovery Procedures—Backups

It is impossible to overemphasize the need for a good backup strategy. File system backups not
only protect you in the event of hardware failure or accidental deletions, but they also protect
you against unauthorized changes made by an intruder. Without a copy of your data the way
it’s “supposed” to be, it can be difficult to undo something an attacker has done.

Backups, especially if run daily, can also be useful in providing a history of an intruder’s
activities. Looking through old backups can establish when your system was first penetrated.
Intruders may leave files around which, although deleted later, are captured on the backup
tapes. Backups can also be used to document an intruder’s activities to law enforcement
agencies if necessary.

A good backup strategy will dump the entire system to tape at least once a month. Partial (or
incremental”) dumps should be done at least twice a week, and ideally they should be done
daily. Commands specifically designed for performing file system backups (e.g., UNIX
“dump” or VMS “BACKUP”) should be used in preference to other file copying commands,
since these tools are designed with the express intent of restoring a system to a known state.

3.8.2.4 Problem Reporting Procedures

s with users, system administrators should have a defined procedure for reporting securi
As with ystem ad trators should h defined procedure for reporting
problems. In large installations, this is often done by creating an electronic mail alias which

RFC 1244—The Site Security Handbook 197

contains the names of all system administrators in the organization. Other methods include
setting up some sort of response team similar to the CERT, or establishing a “hotline” serviced
by an existing support group.

3.9 Resources to Prevent Security Breaches

This section discusses software, hardware, and procedural resources that can be used to support
your site security policy.

3.9.1 Network Connections and Firewalls

A “firewall” is put in place in a building to provide a point of resistance to the entry of flames
into another area. Similarly, a secretary’s desk and reception area provides a point of control-
ling access to other office spaces. This same technique can be applied to a computer site,
particularly as it pertains to network connections.

Some sites will be connected only to other sites within the same organization and will not have
the ability to connect to other networks. Sites such as these are less susceptible to threats from
outside their own organization, although intrusions may still occur via paths such as dial-up
modems. On the other hand, many other organizations will be connected to other sites via
much larger networks, such as the Internet. These sites are susceptible to the entire range of
threats associated with a networked environment.

The risks of connecting to outside networks must be weighed against the benefits. It may be
desirable to limit connection to outside networks to those hosts which do not store sensitive
material, keeping “vital” machines (such as those which maintain company payroll or inven-
tory systems) isolated. If there is a need to participate in a Wide Area Network (WAN),
consider restricting all access to your local network through a single system. That is, all access
to or from your own local network must be made through a single host computer that acts as a
firewall between you and the outside world. This firewall system should be rigorously con-
trolled and password protected, and external users accessing it should also be constrained by
restricting the functionality available to remote users. By using this approach, your site could
relax some of the internal security controls on your local net, but still be afforded the protec-
tion of a rigorously controlled host front end.

Note that even with a firewall system, compromise of the firewall could result in compromise
of the network behind the firewall. Work has been done in some areas to construct a firewall
which even when compromised, still protects the local network [6, CHESWICK].

3.9.2 Confidentiality

Confidentiality, the act of keeping things hidden or secret, is one of the primary goals of
computer security practitioners. Several mechanisms are provided by most modern operating
systems to enable users to control the dissemination of information.

198

Part I: Managing Internet Security

Depending upon where you work, you may have a site where everything is protected, or a site
where all information is usually regarded as public, or something in-between. Most sites lean
toward the in-between, at least until some penetration has occurred.

Generally, there are three instances in which information is vulnerable to disclosure: when the
information is stored on a computer system, when the information is in transit to another
system (on the network), and when the information is stored on backup tapes.

The first of these cases is controlled by file permissions, access control lists, and other similar
mechanisms. The last can be controlled by restricting access to the backup tapes (by locking
them in a safe, for example). All three cases can be helped by using encryption mechanisms.

3.9.2.1 Encryption (Hardware and Software)

Encryption is the process of taking information that exists in some readable form and convert-
ing it into a non-readable form. There are several types of commercially available encryption
packages in both hardware and software forms. Hardware encryption engines have the
advantage that they are much faster than the software equivalent, yet because they are faster,
they are of greater potential benefit to an attacker who wants to execute a brute-force attack on
your encrypted information. The advantage of using encryption is that, even if other access
control mechanisms (passwords, file permissions, etc.) are compromised by an intruder, the
data is still unusable. Naturally, encryption keys and the like should be protected at least as
well as account passwords.

Information in transit (over a network) may be vulnerable to interception as well. Several
solutions to this exist, ranging from simply encrypting files before transferring them (end-to-
end encryption) to special network hardware which encrypts everything it sends without user
intervention (secure links). The Internet as a whole does not use secure links, thus end- to-end
encryption must be used if encryption is desired across the Internet.

3.9.2.1.1 Data Encryption Standard (DES)

DES is perhaps the most widely used data encryption mechanism today. Many hardware and
software implementations exist, and some commercial computers are provided with a software
version. DES transforms plain text information into encrypted data (or ciphertext) by means of
a special algorithm and “seed” value called a key. So long as the key is retained (or remem-
bered) by the original user, the ciphertext can be restored to the original plain text.

One of the pitfalls of all encryption systems is the need to remember the key under which a
thing was encrypted (this is not unlike the password problem discussed elsewhere in this
document). If the key is written down, it becomes less secure. If forgotten, there is little (if
any) hope of recovering the original data.

Most UNIX systems provide a DES command that enables a user to encrypt data using the
DES algorithm.

RFC 1244—The Site Security Handbook 199

3.9.2.1.2 Crypt

Similar to the DES command, the UNIX crypt” command allows a user to encrypt data.
Unfortunately, the algorithm used by “crypt” is very insecure (based on the World War II
“Enigma” device), and files encrypted with this command can be decrypted easily in a matter
of a few hours. Generally, use of the “crypt” command should be avoided for any but the most
trivial encryption tasks.

3.9.2.2 Privacy Enhanced Mail

Electronic mail normally transits the network in the clear (i.e., anyone can read it). This is
obviously not the optimal solution. Privacy enhanced mail provides a means to automatically
encrypt electronic mail messages so that a person eavesdropping at a mail distribution node is
not (easily) capable of reading them. Several privacy enhanced mail packages are currently
being developed and deployed on the Internet.

The Internet Activities Board Privacy Task Force has defined a draft standard, elective protocol
for use in implementing privacy enhanced mail. This protocol is defined in RFCs 1113, 1114,
and 1115 [7,8,9]. Please refer to the current edition of the “IAB Official Protocol Standards”
(currently, RFC 1200 [21]) for the standardization state and status of these protocols.

3.9.3 Origin Authentication

We mostly take it on faith that the header of an electronic mail message truly indicates the
originator of a message. However, it is easy to “spoof,” or forge the source of a mail message.
Origin authentication provides a means to be certain of the originator of a message or other
object in the same way that a Notary Public assures a signature on a legal document. This is
done by means of a “Public Key” cryptosystem.

A public key cryptosystem differs from a private key cryptosystem in several ways. First, a
public key system uses two keys, a Public Key that anyone can use (hence the name) and a
Private Key that only the originator of a message uses. The originator uses the private key to
encrypt the message (as in DES). The receiver, who has obtained the public key for the
originator, may then decrypt the message.

In this scheme, the public key is used to authenticate the originator’s use of his or her private
key, and hence the identity of the originator is more rigorously proven. The most widely
known implementation of a public key cryptosystem is the RSA system [26]. The Internet
standard for privacy enhanced mail makes use of the RSA system.

3.9.4 Information Integrity

Information integrity refers to the state of information such that it is complete, correct, and
unchanged from the last time in which it was verified to be in an “integral” state. The value of
information integrity to a site will vary. For example, it is more important for military and

200

Part I: Managing Internet Security

government installations to prevent the “disclosure” of classified information, whether it is
right or wrong. A bank, on the other hand, is far more concerned with whether the account
information maintained for its customers is complete and accurate.

Numerous computer system mechanisms, as well as procedural controls, have an influence on
the integrity of system information. Traditional access control mechanisms maintain controls
over who can access system information. These mechanisms alone are not sufficient in some
cases to provide the degree of integrity required. Some other mechanisms are briefly discussed
below.

It should be noted that there are other aspects to maintaining system integrity besides these
mechanisms, such as two-person controls, and integrity validation procedures. These are
beyond the scope of this document.

3.9.4.1 Checksums

Easily the simplest mechanism, a simple checksum routine can compute a value for a system
file and compare it with the last known value. If the two are equal, the file is probably un-
changed. If not, the file has been changed by some unknown means.

Though it is the easiest to implement, the checksum scheme suffers from a serious failing in
that it is not very sophisticated and a determined attacker could easily add enough characters
to the file to eventually obtain the correct value.

A specific type of checksum, called a CRC checksum, is considerably more robust than a
simple checksum. It is only slightly more difficult to implement and provides a better degree of
catching errors. It too, however, suffers from the possibility of compromise by an attacker.

Checksums may be used to detect the altering of information.
However, they do not actively guard against changes being made.

For this, other mechanisms such as access controls and encryption should be used.

3.9.4.2 Cryptographic Checksums

Cryptographic checksums (also called cryptosealing) involve breaking a file up into smaller
chunks, calculating a (CRC) checksum for each chunk, and adding the CRCs together.
Depending upon the exact algorithm used, this can result in a nearly unbreakable method of
determining whether a file has been changed. This mechanism suffers from the fact that it is
sometimes computationally intensive and may be prohibitive except in cases where the utmost
integrity protection is desired.

Another related mechanism, called a one-way hash function (or a Manipulation Detection
Code (MDC)) can also be used to uniquely identify a file. The idea behind these functions is
that no two inputs can produce the same output, thus a modified file will not have the same

RFC 1244—The Site Security Handbook 201

hash value. One-way hash functions can be implemented efficiently on a wide variety of
systems, making unbreakable integrity checks possible. (Snefru, a one-way hash function
available via USENET as well as the Internet is just one example of an efficient one-way hash
function.) [10]

3.9.5 Limiting Network Access

The dominant network protocols in use on the Internet, IP (RFC 791) [11], TCP (RFC 793)
[12], and UDP (RFC 768) [13], carry certain control information which can be used to
restrict access to certain hosts or networks within an organization. The IP packet header
contains the network addresses of both the sender and recipient of the packet. Further, the
TCP and UDP protocols provide the notion of a “port,” which identifies the endpoint (usually
a network server) of a communications path. In some instances, it may be desirable to deny
access to a specific TCP or UDP port, or even to certain hosts and networks altogether.

3.9.5.1 Gateway Routing Tables

One of the simplest approaches to preventing unwanted network connections is to simply
remove certain networks from a gateway’s routing tables. This makes it “impossible” for a host
to send packets to these networks. (Most protocols require bidirectional packet flow even for
unidirectional data flow, thus breaking one side of the route is usually sufficient.)

This approach is commonly taken in “firewall” systems by preventing the firewall from
advertising local routes to the outside world. The approach is deficient in that it often prevents
“too much” (e.g., in order to prevent access to one system on the network, access to all systems
on the network is disabled).

3.9.5.2 Router Packet Filtering

Many commercially available gateway systems (more correctly called routers) provide
the ability to filter packets based not only on sources or destinations, but also on source-
destination combinations. This mechanism can be used to deny access to a specific host,
network, or subnet from any other host, network, or subnet.

Gateway systems from some vendors (e.g., cisco Systems) support an even more complex
scheme, allowing finer control over source and destination addresses. Via the use of address
masks, one can deny access to all but one host on a particular network.

The cisco Systems also allow packet screening based on IP protocol type and TCP or UDP
port numbers [14]. This can also be circumvented by “source routing” packets destined for the
“secret” network. Source routed packets may be filtered out by gateways, but this may restrict
other legitimate activities, such as diagnosing routing problems.

202

Part I: Managing Internet Security

3.9.6 Authentication Systems

Authentication refers to the process of proving a claimed identity to the satisfaction of some
permission-granting authority. Authentication systems are hardware, software, or procedural
mechanisms that enable a user to obtain access to computing resources. At the simplest level,
the system administrator who adds new user accounts to the system is part of the system
authentication mechanism. At the other end of the spectrum, fingerprint readers or retinal
scanners provide a very high-tech solution to establishing a potential user’s identity. Without
establishing and proving a user’s identity prior to establishing a session, your site’s computers
are vulnerable to any sort of attack.

Typically, a user authenticates himself or herself to the system by entering a password in
response to a prompt.

Challenge/Response mechanisms improve upon passwords by prompting the user for some
piece of information shared by both the computer and the user (such as mother’s maiden
name, etc.).

3.9.6.1 Kerberos

Kerberos, named after the dog who in mythology is said to stand at the gates of Hades, is a
collection of software used in a large network to establish a user’s claimed identity. Developed
at the Massachusetts Institute of Technology (MIT), it uses a combination of encryption and
distributed databases so that a user at a campus facility can login and start a session from any
computer located on the campus. This has clear advantages in certain environments where
there are a large number of potential users who may establish a connection from any one of a
large number of workstations. Some vendors are now incorporating Kerberos into their
systems. It should be noted that while Kerberos makes several advances in the area of authenti-
cation, some security weaknesses in the protocol still remain [15].

3.9.6.2 Smart Cards

Several systems use smart cards” (a small calculator-like device) to help authenticate users.
These systems depend on the user having an object in their possession. One such system
involves a new password procedure that require a user to enter a value obtained from a “smart
card” when asked for a password by the computer. Typically, the host machine will give the
user some piece of information that is entered into the keyboard of the smart card. The smart
card will display a response which must then be entered into the computer before the session
will be established. Another such system involves a smart card which displays a number which
changes over time, but which is synchronized with the authentication software on the com-
puter.

This is a better way of dealing with authentication than with the traditional password ap-

y g p p
proach. On the other hand, some say it’s inconvenient to carry the smart card. Start-up costs
are likely to be high as well.

RFC 1244—The Site Security Handbook 203

3.9.7 Books, Lists, and Informational Sources

There are many good sources for information regarding computer security. The annotated
bibliography at the end of this document can provide you with a good start. In addition,
information can be obtained from a variety of other sources, some of which are described in
this section.

3.9.7.1 Security Mailing Lists

The UNIX Security mailing list exists to notify system administrators of security problems
before they become common knowledge, and to provide security enhancement information.

It is a restricted-access list, open only to people who can be verified as being principal systems
people at a site. Requests to join the list must be sent by either the site contact listed in the
Defense Data Network’s Network Information Center’s (DDN NIC) WHOIS database, or
from the “root” account on one of the major site machines. You must include the destination
address you want on the list, an indication of whether you want to be on the mail reflector list
or receive weekly digests, the electronic mail address and voice telephone number of the site
contact if it isn’t you, and the name, address, and telephone number of your organization. This
information should be sent to SECURITY-REQUEST@CPD.COM. The RISKS digest is a
component of the ACM Committee on Computers and Public Policy, moderated by Peter G.
Neumann. It is a discussion forum on risks to the public in computers and related systems, and
along with discussing computer security and privacy issues, has discussed such subjects as the
Stark incident, the shooting down of the Iranian airliner in the Persian Gulf (as it relates to the
computerized weapons systems), problems in air and railroad traffic control systems, software
engineering, and so on. To join the mailing list, send a message to RISKS-
REQUEST@CSL.SRI.COM. This list is also available in the USENET newsgroup

« . »
comp.risks.

The VIRUS-L list is a forum for the discussion of computer virus experiences, protection
software, and related topics. The list is open to the public, and is implemented as a moderated
digest. Most of the information is related to personal computers, although some of it may be
applicable to larger systems. To subscribe, send the line:

SUB VIRUS-L your full name

to the address LISTSERV%LEHIIBM1.BITNET@MITVMA.MIT.EDU. This list is also
available via the USENET newsgroup “comp.virus.”

The Computer Underground Digest “is an open forum dedicated to sharing information
among computerists and to the presentation and debate of diverse views.” While not directly a
security list, it does contain discussions about privacy and other security related topics. The list
can be read on USENET as alt.society.cu-digest, or to join the mailing list, send mail to
Gordon Myer (TKOJUT2%NIU.bitnet@mitvma.mit.edu). Submissions may be mailed to:
cud@chinacat.unicom.com.

204

Part I: Managing Internet Security

3.9.7.2 Networking Mailing Lists

The TCP-IP mailing list is intended to act as a discussion forum for developers and
maintainers of implementations of the TCP/IP protocol suite. It also discusses network-related
security problems when they involve programs providing network services, such as “Sendmail.”
To join the TCP-IP list, send a message to TCP-IP-REQUEST@NISC.SRI.COM. This list is
also available in the USENET newsgroup “comp.protocols.tcp-ip.” SUN-NETS is a discussion
list for items pertaining to networking on Sun systems. Much of the discussion is related to
NES, NIS (formally Yellow Pages), and name servers. To subscribe, send a message to

SUN-NETS-REQUEST@UMIACS.UMD.EDU.

The USENET groups misc.security and alt.security also discuss security issues. misc.security is
a moderated group and also includes discussions of physical security and locks. alt.security is
unmoderated.

3.9.7.3 Response Teams

Several organizations have formed special groups of people to deal with computer security
problems. These teams collect information about possible security holes and disseminate it to
the proper people, track intruders, and assist in recovery from security violations. The teams
typically have both electronic mail distribution lists as well as a special telephone number
which can be called for information or to report a problem.

Many of these teams are members of the CERT System, which is coordinated by the National
Institute of Standards and Technology (NIST), and exists to facilitate the exchange of infor-
mation between the various teams.

3.9.7.3.1 DARPA Computer Emergency Response Team

The Computer Emergency Response Team/Coordination Center (CERT/CC) was established
in December 1988 by the Defense Advanced Research Projects Agency (DARPA) to address
computer security concerns of research users of the Internet. It is operated by the Software
Engineering Institute (SEI) at Carnegie-Mellon University (CMU). The CERT can immedi-
ately confer with experts to diagnose and solve security problems, and also establish and
maintain communications with the affected computer users and government authorities as
appropriate.

The CERT/CC serves as a clearing house for the identification and repair of security vulner-
abilities, informal assessments of existing systems, improvement of emergency response
capability, and both vendor and user security awareness. In addition, the team works with
vendors of various systems in order to coordinate the fixes for security problems.

The CERT/CC sends out security advisories to the CERT- ADVISORY mailing list whenever
appropriate. They also operate a 24-hour hotline that can be called to report security problems
(e.g., someone breaking into your system), as well as to obtain current (and accurate) informa-
tion about rumored security problems.

RFC 1244—The Site Security Handbook

To join the CERT-ADVISORY mailing list, send a message to
CERT@CERT.SEI.CMU.EDU and ask to be added to the mailing list. The material sent to
this list also appears in the USENET newsgroup “comp.security.announce.” Past advisories are
available for anonymous FTP from the host CERT.SEI.CMU.EDU. The 24-hour hotline
number is (412) 268- 7090.

The CERT/CC also maintains a CERT-TOOLS list to encourage the exchange of information
on tools and techniques that increase the secure operation of Internet systems. The CERT/CC
does not review or endorse the tools described on the list. To subscribe, send a message to

CERT-TOOLS- REQUEST@CERT.SEI.CMU.EDU and ask to be added to the mailing list.

The CERT/CC maintains other generally useful security information for anonymous FTP
from CERT.SEI.CMU.EDU. Get the README file for a list of what is available.

For more information, contact:

CERT

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7090

cert@cert.sei.cmu.edu.

3.9.7.3.2 DDN Security Coordination Center

For DDN users, the Security Coordination Center (SCC) serves a function similar to CERT.
The SCC is the DDN’s clearing-house for host/user security problems and fixes, and works
with the DDN Network Security Officer. The SCC also distributes the DDN Security
Bulletin, which communicates information on network and host security exposures, fixes, and
concerns to security and management personnel at DDN facilities. It is available online, via
kermit or anonymous FTP, from the host NIC.DDN.MIL, in SCC:DDN-SECURITY-yy-
nn. TXT (where “yy” is the year and “nn” is the bulletin number). The SCC provides immedi-
ate assistance with DDN- related host security problems; call (800) 235-3155 (6:00 a.m. to
5:00 p.m. Pacific Time) or send email to SCC@NIC.DDN.MIL. For 24 hour coverage, call
the MILNET Trouble Desk (800) 451-7413 or AUTOVON 231-1713.

3.9.7.3.3 NIST Computer Security Resource and Response Center

The National Institute of Standards and Technology (NIST) has responsibility within the U.S.
Federal Government for computer science and technology activities. NIST has played a strong
role in organizing the CERT System and is now serving as the CERT System Secretariat.
NIST also operates a Computer Security Resource and Response Center (CSRC) to provide
help and information regarding computer security events and incidents, as well as to raise
awareness about computer security vulnerabilities.

The CSRC team operates a 24-hour hotline, at (301) 975-5200.

205

206

Part I: Managing Internet Security

For individuals with access to the Internet, on-line publications and computer security
information can be obtained via anonymous FTP from the host CSRC.NCSL.NIST.GOV
(129.6.48.87). NIST also operates a personal computer bulletin board that contains informa-
tion regarding computer viruses as well as other aspects of computer security. To access this
board, set your modem to 300/1200/2400 BPS, 1 stop bit, no parity, and 8-bit characters, and
call (301) 948-5717. All users are given full access to the board immediately upon registering.

NIST has produced several special publications related to computer security and computer
viruses in particular; some of these publications are downloadable. For further information,
contact NIST at the following address:

Computer Security Resource and Response Center
A-216 Technology

Gaithersburg, MD 20899

Telephone: (301) 975-3359

Electronic Mail: CSRC@nist.gov

3.9.7.3.4 DOE Computer Incident Advisory Capability (CIAC)
CIAC is the Department of Energy’s (DOE’s) Computer Incident Advisory Capability. CIAC

is a four-person team of computer scientists from Lawrence Livermore National Laboratory
(LLNL) charged with the primary responsibility of assisting DOE sites faced with computer
security incidents (e.g., intruder attacks, virus infections, worm attacks, etc.). This capability is
available to DOE sites on a 24-hour-a-day basis.

CIAC was formed to provide a centralized response capability (including technical assistance),
to keep sites informed of current events, to deal proactively with computer security issues, and
to maintain liaisons with other response teams and agencies. CIAC’s charter is to assist sites
(through direct technical assistance, providing information, or referring inquiries to other
technical experts), serve as a clearinghouse for information about threats/known incidents/
vulnerabilities, develop guidelines for incident handling, develop software for responding to
events/incidents, analyze events and trends, conduct training and awareness activities, and alert
and advise sites about vulnerabilities and potential attacks.

CIAC’s business hours phone number is (415) 422-8193 or FT'S 532-8193. CIAC’s e-mail
address is CIAC@TIGER.LLNL.GOV. 3.9.7.3.5 NASA Ames Computer Network Security
Response Team The Computer Network Security Response Team (CNSRT) is NASA Ames
Research Center’s local version of the DARPA CERT. Formed in August of 1989, the team
has a constituency that is primarily Ames users, but it is also involved in assisting other
NASA Centers and federal agencies. CNSRT maintains liaisons with the DOE’s CIAC

team and the DARPA CERT. It is also a charter member of the CERT System. The team
may be reached by 24 hour pager at (415) 694-0571, or by electronic mail to
CNSRT@AMES.ARC.NASA.GOV.

RFC 1244—The Site Security Handbook

3.9.7.4 DDN Management Bulletins

The DDN Management Bulletin is distributed electronically by the DDN NIC under contract
to the Defense Communications Agency (DCA). It is a means of communicating official
policy, procedures, and other information of concern to management personnel at DDN
facilities.

The DDN Security Bulletin is distributed electronically by the DDN SCC, also under
contract to DCA, as a means of communicating information on network and host security
exposures, fixes, and concerns to security and management personnel at DDN facilities.

Anyone may join the mailing lists for these two bulletins by sending a message to
NIC@NIC.DDN.MIL and asking to be placed on the mailing lists. These messages are also
posted to the USENET newsgroup “ddn.mgt-bulletin.” For additional information, see
section 8.7.

3.9.7.5 System Administration List

The SYSADM-LIST is a list pertaining exclusively to UNIX system administration. Mail
requests to be added to the list to SYSADM-LIST-REQUEST@SYSADMIN.COM.

3.9.7.6 Vendor Specific System Lists

The SUN-SPOTS and SUN-MANAGERS lists are discussion groups for users and administra-
tors of systems supplied by Sun Microsystems. SUN-SPOTS is a fairly general list, discussing
everything from hardware configurations to simple UNIX questions. To subscribe, send a
message to SUN-SPOTS- REQUEST@RICE.EDU. This list is also available in the USENET
newsgroup “comp.sys.sun.” SUN-MANAGERS is a discussion list for Sun system administra-
tors and covers all aspects of Sun system administration. To subscribe, send a message to SUN-

MANAGERS-REQUEST@EECS.NWU.EDU.

The APOLLO list discusses the HP/Apollo system and its software. To subscribe, send a
message to APOLLO- REQUEST@UMIX.CC.UMICH.EDU. APOLLO-L is a similar
list which can be subscribed to by sending SUB APOLLO-L your full name to
LISTSERV%UMRVMB.BITNET@VM1.NODAK.EDU. HPMINI-L pertains to the
Hewlett-Packard 9000 series and HP/UX operating system. To subscribe, send SUB
HPMINI-L your full name to LISTSERV%UAFSYSB.BITNET@VM1.NODAK.EDU.
INFO-IBMPC discusses IBM PCs and compatibles, as well as MS- DOS. To subscribe,
send a note to INFO-IBMPC-REQUEST@WSMR- SIMTEL20.ARMY.MIL.

There are numerous other mailing lists for nearly every popular computer or workstation in
use today. For a complete list, obtain the file “netinfo/interest-groups” via anonymous FTP

from the host FTP.NISC.SRI.COM.

207

208

Part I: Managing Internet Security

3.9.7.7 Professional Societies and Journals

The IEEE Technical Committee on Security & Privacy publishes a quarterly magazine,
“CIPHER.”

IEEE Computer Society
1730 Massachusetts Ave. N.W.
Washington, DC 2036-1903

The ACM SigSAC (Special Interest Group on Security, Audit, and Controls) publishes a
quarterly magazine, “SIGSAC Review.”

Association for Computing Machinery
11 West 42nd St.
New York, NY 10036

The Information Systems Security Association publishes a quarterly magazine called ISSA
Access.”

Information Systems Security Association
P.O. Box 9457
Newport Beach, CA 92658

Computers and Security” is an “international journal for the professional involved with
computer security, audit and control, and data integrity.”

$266/year, 8 issues (1990)

Elsevier Advanced Technology
Journal Information Center
655 Avenue of the Americas
New York, NY 10010

The Data Security Letter” is published “to help data security professionals by providing inside

y p p y p Y p g
information and knowledgable analysis of developments in computer and communications
security.”

$690/year, 9 issues (1990)

Data Security Letter
P.O. Box 1593
Palo Alto, CA 94302

RFC 1244—The Site Security Handbook 209

3.9.8 Problem Reporting Tools
3.9.8.1 Auditing

Auditing is an important tool that can be used to enhance the security of your installation. Not
only does it give you a means of identifying who has accessed your system (and may have done
something to it) but it also gives you an indication of how your system is being used (or
abused) by authorized users and attackers alike. In addition, the audit trail traditionally kept by
computer systems can become an invaluable piece of evidence should your system be pen-
etrated.

3.9.8.1.1 Verify Security

An audit trail shows how the system is being used from day to day. Depending upon how your
site audit log is configured, your log files should show a range of access attempts that can show
what normal system usage should look like. Deviation from that normal usage could be the
result of penetration from an outside source using an old or stale user account. Observing a
deviation in logins, for example, could be your first indication that something unusual is
happening.

3.9.8.1.2 Verify Software Configurations

One of the ruses used by attackers to gain access to a system is by the insertion of a so-called
Trojan Horse program. A Trojan Horse program can be a program that does something useful,
or merely something interesting. It always does something unexpected, like steal passwords or
copy files without your knowledge [25]. Imagine a Trojan login program that prompts for
username and password in the usual way, but also writes that information to a special file that
the attacker can come back and read at will. Imagine a Trojan Editor program that, despite the
file permissions you have given your files, makes copies of everything in your directory space
without you knowing about it.

This points out the need for configuration management of the software that runs on a system,
not as it is being developed, but as it is in actual operation. Techniques for doing this range
from checking each command every time it is executed against some criterion (such as a
cryptoseal, described above) or merely checking the date and time stamp of the executable.
Another technique might be to check each command in batch mode at midnight.

3.9.8.2 Tools

COPS is a security tool for system administrators that checks for numerous common security
problems on UNIX systems [27]. COPS is a collection of shell scripts and C programs that can
easily be run on almost any UNIX variant. Among other things, it checks the following items
and sends the results to the system administrator:

Checks “/dev/kmem” and other devices for world read/writability.

210

Part I: Managing Internet Security

Checks special or important files and directories for “bad” modes (world writable, etc.).
Checks for easily-guessed passwords.

Checks for duplicate user ids, invalid fields in the password file, etc..

Checks for duplicate group ids, invalid fields in the group file, etc..

Checks all users’ home directories and their “.CShI‘C,” “lo in,” “. roﬁle,” and “.rhosts”
g P
files for security problems.

Checks all commands in the “/etc/rc” files and “cron” files for world writability.
Checks for bad “root” paths, NFS file systems exported to the world, etc..

Includes an expert system that checks to see if a given user (usually “root”) can be
compromised, given that certain rules are true.

Checks for changes in the setuid status of programs on the system.

The COPS package is available from the “comp.sources.unix” archive on “ftp.uu.net,” and also
from the UNIX-SW repository on the MILNET host “wsmr-simtel20.army.mil.”

3.9.9 Communication Among Administrators

3.9.9.1 Secure Operating Systems

The following list of products and vendors is adapted from the National Computer Security
Center’s (NCSC) Evaluated Products List. They represent those companies who have either
received an evaluation from the NCSC or are in the process of a product evaluation. This list is
not complete, but it is representative of those operating systems and add on components
available in the commercial marketplace.

For a more detailed listing of the current products appearing in the NCSC EPL, contact the
NCSC at:

National Computer Security Center
9800 Savage Road

Fort George G. Meade, MD 20755-6000
(301) 859-4458

Version Evaluation

Evaluated Product Vendor Evaluated Class

Secure Communications Honeywell Information 2.1 Al
Processor (SCOMP) Systems, Inc.

Multics Honeywell Information MR11.0 B2

Systems, Inc.

RFC 1244—The Site Security Handbook

System V/MLS 1.1.2 on UNIX AT&T 1.1.2 B1
System V 3.1.1 on AT&T 3B2/500and 3B2/600
0S 1100 Unisys Corp. Security Bl

Release 1

MPE V/E Hewlett-Packard Computer G.03.04 C2
Systems Division

AOS/VS on MV/ECLIPSE series Data General Corp. 7.60 C2
VM/SP or VM/SP HPO with CMS, IBM Corp. 5 C2
RACF, DIRMAINT, VMTAPE-MS,

ISPF

MVS/XA with RACF IBM Corp. 2.2,2.3 C2
AX/VMS Digital Equipment Corp. 4.3 C2

NOS Control Data Corp. NOS

Security C2

Eval Product

TOP SECRET CGA Software Products 3.0/163 C2
Group, Inc.

Access Control Facility 2 SKK, Inc. 3.1.3 C2
UTX/32S Gould, Inc. Computer 1.0 C2

Systems Division

A Series MCP/AS with Unisys Corp. 3.7 C2
InfoGuard Security

Enhancements

Primos Prime Computer, Inc. 21.0.1DODC2A C2
Resource Access Control IBM Corp. 1.5 C1
Facility (RACF)

Version Candidate
Candidate Product Vendor Evaluated Class

Boeing MLS LAN Boeing Aerospace A1 M1

Trusted XENIX Trusted Information

Systems, Inc. B2

VSLAN VERDIX Corp. B2

System V/MLS AT&T B1

VM/SP with RACF IBM Corp. 5/1.8.2 C2

Wang SVS/0S with CAP Wang Laboratories, Inc. 1.0 C2

3.9.9.2 Obtaining Fixes for Known Problems

It goes without saying that computer systems have bugs. Even operating systems, upon which
we depend for protection of our data, have bugs. And since there are bugs, things can be
broken, both maliciously and accidentally. It is important that whenever bugs are discovered, a
should fix be identified and implemented as soon as possible. This should minimize any
exposure caused by the bug in the first place.

A corollary to the bug problem is: from whom do I obtain the fixes? Most systems have some
support from the manufacturer or supplier. Fixes coming from that source tend to be imple-
mented quickly after receipt. Fixes for some problems are often posted on the network and are
left to the system administrators to incorporate as they can. The problem is that one wants to

211

212

Part I: Managing Internet Security

have faith that the fix will close the hole and not introduce any others. We will tend to trust
that the manufacturer’s fixes are better than those that are posted on the net.

3.9.9.3 Sun Customer Warning System

Sun Microsystems has established a Customer Warning System (CWS) for handling security
incidents. This is a formal process which includes:

Having a well advertised point of contact in Sun for reporting security problems.

Pro-actively alerting customers of worms, viruses, or other security holes that could affect
their systems.

Distributing the patch (or work-around) as quickly as possible.

They have created an electronic mail address, SECURITY- ALERT@SUN.COM, which will
enable customers to report security problems. A voice-mail backup is available at (415) 688-
9081.

A “Security Contact” can be designated by each customer site; this person will be contacted by
Sun in case of any new security problems. For more information, contact your Sun representa-
tive.

3.9.9.4 Trusted Archive Servers

Several sites on the Internet maintain large repositories of public-domain and freely distribut-
able software, and make this material available for anonymous FTP. This section describes
some of the larger repositories. Note that none of these servers implements secure checksums
or anything else guaranteeing the integrity of their data. Thus, the notion of “trust” should be
taken as a somewhat limited definition.

3.9.9.4.1 Sun Fixes on UUNET

Sun Microsystems has contracted with UUNET Communications Services, Inc., to make fixes
for bugs in Sun software available via anonymous FTP. You can access these fixes by using the
“ftp” command to connect to the host FTP.UU.NET. Then change into the directory “sun-
dist/security,” and obtain a directory listing. The file “README” contains a brief description
of what each file in this directory contains, and what is required to install the fix.

3.9.9.4.2 Berkeley Fixes

The University of California at Berkeley also makes fixes available via anonymous FTP; these
fixes pertain primarily to the current release of BSD UNIX (currently, release 4.3).

However, even if you are not running their software, these fixes are still important, since many
vendors (Sun, DEC, Sequent, etc.) base their software on the Berkeley releases.

RFC 1244—The Site Security Handbook 213

The Berkeley fixes are available for anonymous FTP from the host
UCBARPA.BERKELEY.EDU in the directory “4.3/ucb-fixes.” The file “INDEX” in this
directory describes what each file contains. They are also available from UUNET (see section
3.9.9.4.3).

Berkeley also distributes new versions of “sendmail” and “named” from this machine. New
versions of these commands are stored in the “4.3” directory, usually in the files
“sendmail.tar.Z” and “bind.tar.Z,” respectively.

3.9.9.4.3 Simtel-20 and UUNET

The two largest general-purpose software repositories on the Internet are the hosts WSMR-
SIMTEL20.ARMY.MIL and FTP.UU.NET.

WSMR-SIMTEL20.ARMY.MIL is a TOPS-20 machine operated by the U.S. Army at White
Sands Missile Range (WSMR), New Mexico. The directory “pd2:<unix-c>” contains a large
amount of UNIX software, primarily taken from the “comp.sources” newsgroups. The
directories “pd1l:<msdos>” and “pd2:<msdos2>” contains software for IBM PC systems, and
“pd3:<macintosh>” contains software for the Apple Macintosh.

FTP.UU.NET is operated by UUNET Communications Services, Inc. in Falls Church,
Virginia. This company sells Internet and USENET access to sites all over the country (and
internationally). The software posted to the following USENET source newsgroups is stored
here, in directories of the same name:

comp.sources.games
comp.sources.misc
comp.sources.sun
comp.sources.unix
comp.sources.x

Numerous other distributions, such as all the freely distributable Berkeley UNIX source code,
Internet Request for Comments (RFCs), and so on are also stored on this system.

3.9.9.4.4 Vendors

Many vendors make fixes for bugs in their software available electronically, either via mailing
lists or via anonymous FTP. You should contact your vendor to find out if they offer this
service, and if so, how to access it. Some vendors that offer these services include Sun
Microsystems (see above), Digital Equipment Corporation (DEC), the University of California
at Berkeley (see above), and Apple Computer [5, CURRY].

214 Part I: Managing Internet Security

4. Types of Security Procedures
4.1 System Security Audits

Most businesses undergo some sort of annual financial auditing as a regular part of their
business life. Security audits are an important part of running any computing environment.
Part of the security audit should be a review of any policies that concern system security, as
well as the mechanisms that are put in place to enforce them.

4.1.1 Organize Scheduled Drills

Although not something that would be done each day or week, scheduled drills may be
conducted to determine if the procedures defined are adequate for the threat to be countered.
If your major threat is one of natural disaster, then a drill would be conducted to verify your
backup and recovery mechanisms. On the other hand, if your greatest threat is from external
intruders attempting to penetrate your system, a drill might be conducted to actually try a
penetration to observe the effect of the policies.

Drills are a valuable way to test that your policies and procedures are effective. On the other
hand, drills can be time-consuming and disruptive to normal operations. It is important to
weigh the benefits of the drills against the possible time loss which may be associated with
them.

4.1.2 Test Procedures

If the choice is made to not to use scheduled drills to examine your entire security procedure
at one time, it is important to test individual procedures frequently. Examine your backup
procedure to make sure you can recover data from the tapes. Check log files to be sure that
information which is supposed to be logged to them is being logged to them, etc.. When a
security audit is mandated, great care should be used in devising tests of the security policy. It
is important to clearly identify what is being tested, how the test will be conducted, and results
expected from the test. This should all be documented and included in or as an adjunct to the
security policy document itself.

It is important to test all aspects of the security policy, both procedural and automated, with a
particular emphasis on the automated mechanisms used to enforce the policy. Tests should be
defined to ensure a comprehensive examination of policy features, that is, if a test is defined to
examine the user logon process, it should be explicitly stated that both valid and invalid user
names and passwords will be used to demonstrate proper operation of the logon program.

Keep in mind that there is a limit to the reasonableness of tests. The purpose of testing is to
ensure confidence that the security policy is being correctly enforced, and not to “prove” the
absoluteness of the system or policy. The goal should be to obtain some assurance that the
reasonable and credible controls imposed by your security policy are adequate.

RFC 1244—The Site Security Handbook 215

4.2 Account Management Procedures

Procedures to manage accounts are important in preventing unauthorized access to your
system. It is necessary to decide several things: Who may have an account on the system? How
long may someone have an account without renewing his or her request? How do old accounts
get removed from the system? The answers to all these questions should be explicitly set out in
the policy.

In addition to deciding who may use a system, it may be important to determine what each
user may use the system for (is personal use allowed, for example). If you are connected to an
outside network, your site or the network management may have rules about what the network
may be used for. Therefore, it is important for any security policy to define an adequate
account management procedure for both administrators and users. Typically, the system
administrator would be responsible for creating and deleting user accounts and generally
maintaining overall control of system use. To some degree, account management is also the
responsibility of each system user in the sense that the user should observe any system messages
and events that may be indicative of a policy violation. For example, a message at logon that
indicates the date and time of the last logon should be reported by the user if it indicates an
unreasonable time of last logon.

4.3 Password Management Procedures

A policy on password management may be important if your site wishes to enforce secure
passwords. These procedures may range from asking or forcing users to change their passwords
occasionally to actively attempting to break users” passwords and then informing the user of
how easy it was to do. Another part of password management policy covers who may distribute
passwords - can users give their passwords to other users?

Section 2.3 discusses some of the policy issues that need to be decided for proper password
management. Regardless of the policies, password management procedures need to be carefully
setup to avoid disclosing passwords. The choice of initial passwords for accounts is critical. In
some cases, users may never login to activate an account; thus, the choice of the initial pass-
word should not be easily guessed. Default passwords should never be assigned to accounts:
always create new passwords for each user. If there are any printed lists of passwords, these
should be kept off-line in secure locations; better yet, don’t list passwords.

4.3.1 Password Selection

Perhaps the most vulnerable part of any computer system is the account password. Any
computer system, no matter how secure it is from network or dial-up attack, Trojan horse
programs, and so on, can be fully exploited by an intruder if he or she can gain access via a
poorly chosen password. It is important to define a good set of rules for password selection,
and distribute these rules to all users. If possible, the software which sets user passwords should
be modified to enforce as many of the rules as possible.

216 Part I: Managing Internet Security

A sample set of guidelines for password selection is shown below:
DON’T use your login name in any form (as-is, reversed, capitalized, doubled, etc.).
DON’T use your first, middle, or last name in any form.
DON'’T use your spouse’s or child’s name.

DON’T use other information easily obtained about you. This includes license plate
numbers, telephone numbers, social security numbers, the make of your automobile, the
name of the street you live on, etc..

DON’T use a password of all digits, or all the same letter.

DON’T use a word contained in English or foreign language dictionaries, spelling lists,
or other lists of words.

DON’T use a password shorter than six characters.

DO use a password with mixed-case alphabetics.

DO use a password with non-alphabetic characters (digits or punctuation).

DO use a password that is easy to remember, so you don’t have to write it down.

DO use a password that you can type quickly, without having to look at the
keyboard.

Methods of selecting a password which adheres to these guidelines include:
Choose a line or two from a song or poem, and use the first letter of each word.

Alternate between one consonant and one or two vowels, up to seven or eight characters.
This provides nonsense words which are usually pronounceable, and thus easily remem-

bered.

Choose two short words and concatenate them together with a punctuation character
between them.

Users should also be told to change their password periodically, usually every three to six
months. This makes sure that an intruder who has guessed a password will eventually lose
access, as well as invalidating any list of passwords he/she may have obtained. Many systems
enable the system administrator to force users to change their passwords after an expiration
period; this software should be enabled if your system supports it [5, CURRY].

Some systems provide software which forces users to change their passwords on a regular basis.
Many of these systems also include password generators which provide the user with a set of
passwords to choose from. The user is not permitted to make up his or her own password.

RFC 1244—The Site Security Handbook 217

There are arguments both for and against systems such as these. On the one hand, by using
generated passwords, users are prevented from selecting insecure passwords. On the other
hand, unless the generator is good at making up easy to remember passwords, users will begin
writing them down in order to remember them.

4.3.2 Procedures for Changing Passwords

How password changes are handled is important to keeping passwords secure. Ideally, users
should be able to change their own passwords on-line. (Note that password changing programs
are a favorite target of intruders. See section 4.4 on configuration management for further
information.)

However, there are exception cases which must be handled carefully. Users may forget pass-
words and not be able to get onto the system. The standard procedure is to assign the user a
new password. Care should be taken to make sure that the real person is requesting the change
and gets the new password. One common trick used by intruders is to call or message to a
system administrator and request a new password. Some external form of verification should be
used before the password is assigned. At some sites, users are required to show up in person
with ID.

There may also be times when many passwords need to be changed. If a system is compro-
mised by an intruder, the intruder may be able to steal a password file and take it off the
system. Under these circumstances, one course of action is to change all passwords on the
system. Your site should have procedures for how this can be done quickly and efficiently.
What course you choose may depend on the urgency of the problem. In the case of a known
attack with damage, you may choose to forcibly disable all accounts and assign users new
passwords before they come back onto the system. In some places, users are sent a message
telling them that they should change their passwords, perhaps within a certain time period. If
the password isn’t changed before the time period expires, the account is locked.

Users should be aware of what the standard procedure is for passwords when a security event
has occurred. One well-known spoof reported by the Computer Emergency Response Team
(CERT) involved messages sent to users, supposedly from local system administrators,
requesting them to immediately change their password to a new value provided in the message
[24]. These messages were not from the administrators, but from intruders trying to steal
accounts. Users should be warned to immediately report any suspicious requests such as this to
site administrators.

4.4 Configuration Management Procedures

Configuration management is generally applied to the software development process. How-
ever, it is certainly applicable in a operational sense as well. Consider that the since many of
the system level programs are intended to enforce the security policy, it is important that these
be “known” as correct. That is, one should not allow system level programs (such as the

218

Part I: Managing Internet Security

operating system, etc.) to be changed arbitrarily. At very least, the procedures should state who
is authorized to make changes to systems, under what circumstances, and how the changes
should be documented.

In some environments, configuration management is also desirable as applied to physical
configuration of equipment. Maintaining valid and authorized hardware configuration should
be given due consideration in your security policy.

4.4.1 Non-Standard Configurations

Occasionally, it may be beneficial to have a slightly non-standard configuration in order to
thwart the “standard” attacks used by some intruders. The non-standard parts of the configura-
tion might include different password encryption algorithms, different configuration file
locations, and rewritten or functionally limited system commands.

Non-standard configurations, however, also have their drawbacks. By changing the “standard”
system, these modifications make software maintenance more difficult by requiring extra
documentation to be written, software modification after operating system upgrades, and,
usually, someone with special knowledge of the changes.

Because of the drawbacks of non-standard configurations, they are often only used in environ-
ments with a “firewall” machine (see section 3.9.1). The firewall machine is modified in non-
standard ways since it is susceptible to attack, while internal systems behind the firewall are left
in their standard configurations.

5. Incident Handling

5.1 Overview

This section of the document will supply some guidance to be applied when a computer
security event is in progress on a machine, network, site, or multi-site environment. The
operative philosophy in the event of a breach of computer security, whether it be an external
intruder attack or a disgruntled employee, is to plan for adverse events in advance. There is no
substitute for creating contingency plans for the types of events described above.

Traditional computer security, while quite important in the overall site security plan, usually
falls heavily on protecting systems from attack, and perhaps monitoring systems to detect
attacks. Little attention is usually paid for how to actually handle the attack when it occurs.
The result is that when an attack is in progress, many decisions are made in haste and can be
damaging to tracking down the source of the incident, collecting evidence to be used in
prosecution efforts, preparing for the recovery of the system, and protecting the valuable data
contained on the system.

RFC 1244—The Site Security Handbook 219

5.1.1 Have a Plan to Follow in Case of an Incident

Part of handling an incident is being prepared to respond before the incident occurs. This
includes establishing a suitable level of protections, so that if the incident becomes severe,

the damage which can occur is limited. Protection includes preparing incident handling
guidelines or a contingency response plan for your organization or site. Having written plans
eliminates much of the ambiguity which occurs during an incident, and will lead to a more
appropriate and thorough set of responses. Second, part of protection is preparing a method of
notification, so you will know who to call and the relevant phone numbers. It is important, for
example, to conduct “dry runs,” in which your computer security personnel, system adminis-
trators, and managers simulate handling an incident.

Learning to respond efficiently to an incident is important for numerous reasons. The most
important benefit is directly to human beings—preventing loss of human life. Some comput-
ing systems are life critical systems, systems on which human life depends (e.g., by controlling
some aspect of life-support in a hospital or assisting air traffic controllers).

An important but often overlooked benefit is an economic one. Having both technical and
managerial personnel respond to an incident requires considerable resources, resources which
could be utilized more profitably if an incident did not require their services. If these personnel
are trained to handle an incident efficiently, less of their time is required to deal with that
incident.

A third benefit is protecting classified, sensitive, or proprietary information. One of the major
dangers of a computer security incident is that information may be irrecoverable. Efficient
incident handling minimizes this danger. When classified information is involved, other
government regulations may apply and must be integrated into any plan for incident handling.

A fourth benefit is related to public relations. News about computer security incidents tends to
be damaging to an organization’s stature among current or potential clients. Efficient incident
handling minimizes the potential for negative exposure.

A final benefit of efficient incident handling is related to legal issues. It is possible that in the
near future organizations may be sued because one of their nodes was used to launch a network
attack. In a similar vein, people who develop patches or workarounds may be sued if the
patches or workarounds are ineffective, resulting in damage to systems, or if the patches or
workarounds themselves damage systems. Knowing about operating system vulnerabilities and
patterns of attacks and then taking appropriate measures is critical to circumventing possible
legal problems.

5.1.2 Order of Discussion in this Session Suggests an
Order for a Plan

This chapter is arranged such that a list may be generated from the Table of Contents to
provide a starting point for creating a policy for handling ongoing incidents. The main points
to be included in a policy for handling incidents are:

220

Part I: Managing Internet Security

Overview (what are the goals and objectives in handling the incident).
Evaluation (how serious is the incident).

Notification (who should be notified about the incident).

Response (what should the response to the incident be).

Legal/Investigative (what are the legal and prosecutorial implications of the
incident).

Documentation Logs (what records should be kept from before, during, and after the
incident).

Each of these points is important in an overall plan for handling incidents. The remainder of
this chapter will detail the issues involved in each of these topics, and provide some guidance as
to what should be included in a site policy for handling incidents.

5.1.3 Possible Goals and Incentives for Efficient Incident
Handling

As in any set of pre-planned procedures, attention must be placed on a set of goals to be
obtained in handling an incident. These goals will be placed in order of importance depending
on the site, but one such set of goals might be:

Assure integrity of (life) critical systems.
Maintain and restore data.

Maintain and restore service.

Figure out how it happened.

Avoid escalation and further incidents.
Avoid negative publicity.

Find out who did it.

Punish the attackers.

It is important to prioritize actions to be taken during an incident well in advance of the time
an incident occurs. Sometimes an incident may be so complex that it is impossible to do
everything at once to respond to it; priorities are essential. Although priorities will vary from
institution-to-institution, the following suggested priorities serve as a starting point for
defining an organization’s response:

RFC 1244—The Site Security Handbook 221

Priority one—protect human life and people’s safety; human life always has precedence
over all other considerations.

Priority two—protect classified and/or sensitive data (as regulated by your site or by
government regulations).

Priority three—protect other data, including proprietary, scientific, managerial and other
data, because loss of data is costly in terms of resources.

Priority four—prevent damage to systems (e.g., loss or alteration of system files, damage
to disk drives, etc.); damage to systems can result in costly down time and recovery.

Priority five—minimize disruption of computing resources; it is better in many cases to
shut a system down or disconnect from a network than to risk damage to data or systems.

An important implication for defining priorities is that once human life and national security
considerations have been addressed, it is generally more important to save data than system
software and hardware. Although it is undesirable to have any damage or loss during an
incident, systems can be replaced; the loss or compromise of data (especially classified data),
however, is usually not an acceptable outcome under any circumstances. Part of handling an
incident is being prepared to respond before the incident occurs. This includes establishing a
suitable level of protections so that if the incident becomes severe, the damage which can occur
is limited. Protection includes preparing incident handling guidelines or a contingency
response plan for your organization or site. Written plans eliminate much of the ambiguity
which occurs during an incident, and will lead to a more appropriate and thorough set of
responses. Second, part of protection is preparing a method of notification so you will know
who to call and how to contact them. For example, every member of the Department of
Energy’s CIAC Team carries a card with every other team member’s work and home phone
numbers, as well as pager numbers. Third, your organization or site should establish backup
procedures for every machine and system. Having backups eliminates much of the threat of
even a severe incident, since backups preclude serious data loss. Fourth, you should set up
secure systems. This involves eliminating vulnerabilities, establishing an effective password
policy, and other procedures, all of which will be explained later in this document. Finally,
conducting training activities is part of protection. It is important, for example, to conduct
“dry runs,” in which your computer security personnel, system administrators, and managers
simulate handling an incident.

5.1.4 Local Policies and Regulations Providing Guidance

Any plan for responding to security incidents should be guided by local policies and regula-
tions. Government and private sites that deal with classified material have specific rules that
they must follow.

The policies your site makes about how it responds to incidents (as discussed in sections 2.4
and 2.5) will shape your response. For example, it may make little sense to create mechanisms

222

Part I: Managing Internet Security

to monitor and trace intruders if your site does not plan to take action against the intruders if
they are caught. Other organizations may have policies that affect your plans. Telephone
companies often release information about telephone traces only to law enforcement agencies.

Section 5.5 also notes that if any legal action is planned, there are specific guidelines that must
be followed to make sure that any information collected can be used as evidence.

5.2 Evaluation
5.2.1 Is It Real?

This stage involves determining the exact problem. Of course many, if not most, signs often
associated with virus infections, system intrusions, etc., are simply anomalies such as hardware
failures. To assist in identifying whether there really is an incident, it is usually helpful to
obtain and use any detection software which may be available. For example, widely available
software packages can greatly assist someone who thinks there may be a virus in a Macintosh
computer. Audit information is also extremely useful, especially in determining whether there
is a network attack. It is extremely important to obtain a system snapshot as soon as one
suspects that something is wrong. Many incidents cause a dynamic chain of events to occur,
and an initial system snapshot may do more good in identifying the problem and any source of
attack than most other actions which can be taken at this stage. Finally, it is important to start

a log book.

Recording system events, telephone conversations, time stamps, etc., can lead to a more rapid
and systematic identification of the problem, and is the basis for subsequent stages of incident
handling. There are certain indications or “symptoms” of an incident which deserve special
attention:

System crashes.

New user accounts (e.g., the account RUMPLESTILTSKIN has unexplainedly been
created), or high activity on an account that has had virtually no activity for months.

New files (usually with novel or strange file names, such as data.xx or k).

Accounting discrepancies (e.g., in a UNIX system you might notice that the accounting
file called /usr/admin/lastlog has shrunk, something that should make you very suspi-
cious that there may be an intruder).

Changes in file lengths or dates (e.g., a user should be suspicious if he/she observes that
the .EXE files in an MS DOS computer have unexplainedly grown by over 1800 bytes).

Attempts to write to system (e.g., a system manager notices that a privileged user in a
VMS system is attempting to alter RIGHTSLIST.DAT).

Data modification or deletion (e.g., files start to disappear).

RFC 1244—The Site Security Handbook 223

Denial of service (e.g., a system manager and all other users become locked out of a
UNIX system, which has been changed to single user mode).

Unexplained, poor system performance (e.g., system response time becomes unusually
slow).

Anomalies (e.g., “GOTCHA” is displayed on a display terminal or there are frequent
unexplained “beeps”).

Suspicious probes (e.g., there are numerous unsuccessful login attempts from another

node).

Suspicious browsing (e.g., someone becomes a root user on a UNIX system and accesses
file after file in one user’s account, then another’s).

None of these indications is absolute “proof” that an incident is occurring, nor are all of these
indications normally observed when an incident occurs. If you observe any of these indica-
tions, however, it is important to suspect that an incident might be occurring, and act accord-
ingly. There is no formula for determining with 100 percent accuracy that an incident is
occurring (possible exception: when a virus detection package indicates that your machine has
the nVIR virus and you confirm this by examining contents of the nVIR resource in your
Macintosh computer, you can be very certain that your machine is infected).

It is best at this point to collaborate with other technical and computer security personnel to
make a decision as a group about whether an incident is occurring.

5.2.2 Scope

Along with the identification of the incident is the evaluation of the scope and impact of the
problem. It is important to correctly identify the boundaries of the incident in order to
effectively deal with it. In addition, the impact of an incident will determine its priority in
allocating resources to deal with the event. Without an indication of the scope and impact of
the event, it is difficult to determine a correct response.

In order to identify the scope and impact, a set of criteria should be defined which is appropri-
ate to the site and to the type of connections available. Some of the issues are:

Is this a multi-site incident?

Are many computers at your site effected by this incident?

Is sensitive information involved?

What is the entry point of the incident (network, phone line, local terminal, etc.)?
Is the press involved?

What is the potential damage of the incident?

224

Part I: Managing Internet Security

‘What is the estimated time to close out the incident?

What resources could be required to handle the incident?

5.3 Possible Types of Notification

When you have confirmed that an incident is occurring, the appropriate personnel must be
notified. Who and how this notification is achieved is very important in keeping the event
under control both from a technical and emotional standpoint.

5.3.1 Explicit

First of all, any notification to either local or off-site personnel must be explicit. This requires
that any statement (be it an electronic mail message, phone call, or fax) provides information
about the incident that is clear, concise, and fully qualified. When you are notifying others that
will help you to handle an event, a “smoke screen” will only divide the effort and create
confusion. If a division of labor is suggested, it is helpful to provide information to each
section about what is being accomplished in other efforts. This will not only reduce duplica-
tion of effort, but allow people working on parts of the problem to know where to obtain other
information that would help them resolve a part of the incident.

5.3.2 Factual

Another important consideration when communicating about the incident is to be factual.
Attempting to hide aspects of the incident by providing false or incomplete information may
not only prevent a successful resolution to the incident, but may even worsen the situation.
This is especially true when the press is involved. When an incident severe enough to gain
press attention is ongoing, it is likely that any false information you provide will not be
substantiated by other sources. This will reflect badly on the site and may create enough ill-will
between the site and the press to damage the site’s public relations.

5.3.3 Choice of Language

The choice of language used when notifying people about the incident can have a profound
effect on the way that information is received. When you use emotional or inflammatory
terms, you raise the expectations of damage and negative outcomes of the incident. It is
important to remain calm both in written and spoken notifications.

Another issue associated with the choice of language is the notification to non-technical or
off-site personnel. It is important to accurately describe the incident without undue alarm or
confusing messages. While it is more difficult to describe the incident to a non-technical
audience, it is often more important.

A non-technical description may be required for upper-level management, the press, or law
enforcement liaisons. The importance of these notifications cannot be underestimated and may

RFC 1244—The Site Security Handbook 225

make the difference between handling the incident properly and escalating to some higher level
of damage.

5.3.4 Notification of Individuals

Point of Contact (POC) people (Technical, Administrative, Response Teams, Investiga-
tive, Legal, Vendors, Service providers), and which POCs are visible to whom.

Wider community (users).
Other sites that might be affected.

Finally, there is the question of who should be notified during and after the incident. There are
several classes of individuals that need to be considered for notification. These are the technical
personnel, administration, appropriate response teams (such as CERT or CIAC), law enforce-
ment, vendors, and other service providers. These issues are important for the central point of
contact, since that is the person responsible for the actual notification of others (see section
5.3.6 for further information). A list of people in each of these categories is an important time
saver for the POC during an incident. It is much more difficult to find an appropriate person
during an incident when many urgent events are ongoing.

In addition to the people responsible for handling part of the incident, there may be other sites
affected by the incident (or perhaps simply at risk from the incident). A wider community of
users may also benefit from knowledge of the incident. Often, a report of the incident once it
is closed out is appropriate for publication to the wider user community.

5.3.5 Public Relations—Press Releases

One of the most important issues to consider is when, who, and how much to release to the
general public through the press. There are many issues to consider when deciding this
particular issue.

First and foremost, if a public relations office exists for the site, it is important to use this office
as liaison to the press.

The public relations office is trained in the type and wording of information released, and will
help to assure that the image of the site is protected during and after the incident (if possible).

A public relations office has the advantage that you can communicate candidly with them, and
provide a buffer between the constant press attention and the need of the POC to maintain
control over the incident.

If a public relations office is not available, the information released to the press must be
carefully considered. If the information is sensitive, it may be advantageous to provide only
minimal or overview information to the press. It is quite possible that any information
provided to the press will be quickly reviewed by the perpetrator of the incident. As a contrast

226

Part I: Managing Internet Security

to this consideration, it was discussed above that misleading the press can often backfire and
cause more damage than releasing sensitive information.

While it is difficult to determine in advance what level of detail to provide to the press, some
guidelines to keep in mind are:

Keep the technical level of detail low. Detailed information about the incident may
provide enough information for copy-cat events or even damage the site’s ability to
prosecute once the event is over.

Keep the speculation out of press statements. Speculation of who is causing the incident
or the motives are very likely to be in error and may cause an inflamed view of the
incident.

Work with law enforcement professionals to assure that evidence is protected. If
prosecution is involved, assure that the evidence collected is not divulged to the press.

Try not to be forced into a press interview before you are prepared. The popular press is
famous for the “2am” interview, where the hope is to catch the interviewee off guard and
obtain information otherwise not available.

Do not allow the press attention to detract from the handling of the event. Always
remember that the successful closure of an incident is of primary importance.

5.3.6 Who Needs to Get Involved?

There now exists a number of incident response teams (IRT's) such as the CERT and the
CIAC. (See sections 3.9.7.3.1 and 3.9.7.3.4.) Teams exists for many major government
agencies and large corporations. If such a team is available for your site, the notification of this
team should be of primary importance during the early stages of an incident. These teams are
responsible for coordinating computer security incidents over a range of sites and larger
entities. Even if the incident is believed to be contained to a single site, it is possible that the
information available through a response team could help in closing out the incident.

In setting up a site policy for incident handling, it may be desirable to create an incident
handling team (IHT), much like those teams that already exist, that will be responsible for
handling computer security incidents for the site (or organization). If such a team is created, it
is essential that communication lines be opened between this team and other IHTs.

Once an incident is under way, it is difficult to open a trusted dialogue between other IHT's if
none has existed before.

5.4 Response

A major topic still untouched here is how to actually respond to an event. The response to
an event will fall into the general categories of containment, eradication, recovery, and
follow-up.

RFC 1244—The Site Security Handbook 227

Containment

The purpose of containment is to limit the extent of an attack. For example, it is important to
limit the spread of a worm attack on a network as quickly as possible. An essential part of
containment is decision making (i.e., determining whether to shut a system down, to discon-
nect from a network, to monitor system or network activity, to set traps, to disable functions
such as remote file transfer on a UNIX system, etc.). Sometimes this decision is trivial; shut the
system down if the system is classified or sensitive, or if proprietary information is at risk!

In other cases, it is worthwhile to risk having some damage to the system if keeping the system
up might enable you to identify an intruder.

The third stage, containment, should involve carrying out predetermined procedures. Your
organization or site should, for example, define acceptable risks in dealing with an incident,
and should prescribe specific actions and strategies accordingly.

Finally, notification of cognizant authorities should occur during this stage.
Eradication

Once an incident has been detected, it is important to first think about containing the
incident. Once the incident has been contained, it is now time to eradicate the cause. Software
may be available to help you in this effort. For example, eradication software is available to
eliminate most viruses which infect small systems. If any bogus files have been created, it is
time to delete them at this point. In the case of virus infections, it is important to clean and
reformat any disks containing infected files. Finally, ensure that all backups are clean. Many
systems infected with viruses become periodically reinfected simply because people do not
systematically eradicate the virus from backups.

Recovery

Once the cause of an incident has been eradicated, the recovery phase defines the next stage of
action. The goal of recovery is to return the system to normal. In the case of a network-based
attack, it is important to install patches for any operating system vulnerability which was
exploited.

Follow-up

One of the most important stages of responding to incidents is also the most often
omitted—the follow-up stage. This stage is important because it helps those involved in
handling the incident develop a set of “lessons learned” (see section 6.3) to improve future
performance in such situations. This stage also provides information which justifies an
organization’s computer security effort to management, and yields information which may be
essential in legal proceedings.

The most important element of the follow-up stage is performing a postmortem analysis.
Exactly what happened, and at what times?

228

Part I: Managing Internet Security

How well did the staff involved with the incident perform? What kind of information did the
staff need quickly, and how could they have gotten that information as soon as possible? What
would the staff do differently next time? A follow-up report is valuable because it provides a
reference to be used in case of other similar incidents. Creating a formal chronology of events
(including time stamps) is also important for legal reasons. Similarly, it is also important to as
quickly obtain a monetary estimate of the amount of damage the incident caused in terms of
any loss of software and files, hardware damage, and manpower costs to restore altered files,
reconfigure affected systems, and so forth. This estimate may become the basis for subsequent
prosecution activity by the FBI, the U.S. Attorney General’s Office, etc..

5.4.1 What Will You Do?

Restore control.

Relation to policy.

Which level of service is needed?
Monitor activity.

Constrain or shut down system.

5.4.2 Consider Designating a “Single Point of Contact”

When an incident is under way, a major issue is deciding who is in charge of coordinating the
activity of the multitude of players.

A major mistake that can be made is to have a number of “points of contact” (POC) that are
not pulling their efforts together. This will only add to the confusion of the event, and will
probably lead to additional confusion and wasted or ineffective effort.

The single point of contact may or may not be the person “in charge” of the incident. There
are two distinct rolls to fill when deciding who shall be the point of contact and the person in
charge of the incident. The person in charge will make decisions as to the interpretation of
policy applied to the event. The responsibility for the handling of the event falls onto this
person. In contrast, the point of contact must coordinate the effort of all the parties involved
with handling the event. The point of contact must be a person with the technical expertise to
successfully coordinate the effort of the system managers and users involved in monitoring and
reacting to the attack. Often the management structure of a site is such that the administrator
of a set of resources is not a technically competent person with regard to handling the details of
the operations of the computers, but is ultimately responsible for the use of these resources.

Another important function of the POC is to maintain contact with law enforcement and
other external agencies (such as the CIA, DoD, U.S. Army, or others) to assure that multi-
agency involvement occurs.

RFC 1244—The Site Security Handbook 229

Finally, if legal action in the form of prosecution is involved, the POC may be able to speak for
the site in court. The alternative is to have multiple witnesses that will be hard to coordinate in
a legal sense, and will weaken any case against the attackers. A single POC may also be the
single person in charge of evidence collected, which will keep the number of people accounting
for evidence to a minimum. As a rule of thumb, the more people that touch a potential piece
of evidence, the greater the possibility that it will be inadmissible in court. The section below
(Legal/Investigative) will provide more details for consideration on this topic.

5.5 Legal/Investigative
5.5.1 Establishing Contacts with Investigative Agencies

It is important to establish contacts with personnel from investigative agencies such as the FBI
and Secret Service as soon as possible, for several reasons. Local law enforcement and local
security offices or campus police organizations should also be informed when appropriate. A
primary reason is that once a major attack is in progress, there is little time to call various
personnel in these agencies to determine exactly who the correct point of contact is. Another
reason is that it is important to cooperate with these agencies in a manner that will foster a
good working relationship, and that will be in accordance with the working procedures of
these agencies. Knowing the working procedures in advance and the expectations of your point
of contact is a big step in this direction. For example, it is important to gather evidence that
will be admissible in a court of law. If you don’t know in advance how to gather admissible
evidence, your efforts to collect evidence during an incident are likely to be of no value to the
investigative agency with which you deal. A final reason for establishing contacts as soon as
possible is that it is impossible to know the particular agency that will assume jurisdiction in
any given incident. Making contacts and finding the proper channels early will make respond-
ing to an incident go considerably more smoothly. If your organization or site has a legal
counsel, you need to notify this office soon after you learn that an incident is in progress. At a
minimum, your legal counsel needs to be involved to protect the legal and financial interests of
your site or organization. There are many legal and practical issues, a few of which are:

1. Whether your site or organization is willing to risk negative publicity or exposure to
cooperate with legal prosecution efforts.

2. Downstream liabilitcy—if you leave a compromised system as is so it can be monitored
and another computer is damaged because the attack originated from your system, your
site or organization may be liable for damages incurred.

3. Distribution of information—if your site or organization distributes information about
an attack in which another site or organization may be involved or the vulnerability in a
product that may affect ability to market that product, your site or organization may
again be liable for any damages (including damage of reputation).

230

Part I: Managing Internet Security

4. Liabilities due to monitoring—your site or organization may be sued if users at your site
or elsewhere discover that your site is monitoring account activity without informing
users.

Unfortunately, there are no clear precedents yet on the liabilities or responsibilities of organ-
izations involved in a security incident or who might be involved in supporting an inves-
tigative effort. Investigators will often encourage organizations to help trace and monitor
intruders—indeed, most investigators cannot pursue computer intrusions without extensive
support from the organizations involved. However, investigators cannot provide protection
from liability claims, and these kinds of efforts may drag out for months and may take lots of
effort.

On the other side, an organization’s legal council may advise extreme caution and suggest that
tracing activities be halted and an intruder shut out of the system. This in itself may not
provide protection from liability, and may prevent investigators from identifying anyone.

The balance between supporting investigative activity and limiting liability is tricky; you’ll
need to consider the advice of your council and the damage the intruder is causing (if any) in
making your decision about what to do during any particular incident.

Your legal counsel should also be involved in any decision to contact investigative agencies
when an incident occurs at your site. The decision to coordinate efforts with investigative
agencies is most properly that of your site or organization.

Involving your legal counsel will also foster the multi-level coordination between your site and
the particular investigative agency involved which in turn results in an efficient division of
labor. Another result is that you are likely to obtain guidance that will help you avoid future
legal mistakes.

Finally, your legal counsel should evaluate your site’s written procedures for responding to
incidents. It is essential to obtain a “clean bill of health” from a legal perspective before you
actually carry out these procedures.

5.5.2 Formal and Informal Legal Procedures

One of the most important considerations in dealing with investigative agencies is verifying
that the person who calls asking for information is a legitimate representative from the agency
in question. Unfortunately, many well intentioned people have unknowingly leaked sensitive
information about incidents, allowed unauthorized people into their systems, etc., because a
caller has masqueraded as an FBI or Secret Service agent. A similar consideration is using a
secure means of communication.

Because many network attackers can easily reroute electronic mail, avoid using electronic mail
to communicate with other agencies (as well as others dealing with the incident at hand). Non-
secured phone lines (e.g., the phones normally used in the business world) are also frequent
targets for tapping by network intruders, so be careful!

RFC 1244—The Site Security Handbook 231

There is no established set of rules for responding to an incident when the U.S. Federal
Government becomes involved. Except by court order, no agency can force you to monitor, to
disconnect from the network, to avoid telephone contact with the suspected attackers, etc.. As
discussed in section 5.5.1, you should consult the matter with your legal counsel, especially
before taking an action that your organization has never taken. The particular agency involved
may ask you to leave an attacked machine on and to monitor activity on this machine, for
example.

Your complying with this request will ensure continued cooperation of the agency—usually
the best route towards finding the source of the network attacks and, ultimately, terminating
these attacks.

Additionally, you may need some information or a favor from the agency involved in the
incident. You are likely to get what you need only if you have been cooperative. Of particular
importance is avoiding unnecessary or unauthorized disclosure of information about the
incident, including any information furnished by the agency involved. The trust between your
site and the agency hinges upon your ability to avoid compromising the case the agency will
build; keeping “tight lipped” is imperative.

Sometimes your needs and the needs of an investigative agency will differ. Your site may want
to get back to normal business by closing an attack route, but the investigative agency may
want you to keep this route open. Similarly, your site may want to close a compromised system
down to avoid the possibility of negative publicity, but again the investigative agency may
want you to continue monitoring. When there is such a conflict, there may be a complex set of
tradeoffs (e.g., interests of your site’s management, amount of resources you can devote to the
problem, jurisdictional boundaries, etc.). An important guiding principle is related to what
might be called “Internet citizenship” [22, IAB89, 23] and its responsibilities. Your site can
shut a system down, and this will relieve you of the stress, resource demands, and danger of
negative exposure. The attacker, however, is likely to simply move on to another system,
temporarily leaving others blind to the attacker’s intention and actions until another path of
attack can be detected. Providing that there is no damage to your systems and others, the most
responsible course of action is to cooperate with the participating agency by leaving your
compromised system on. This will allow monitoring (and, ultimately, the possibility of
terminating the source of the threat to systems just like yours). On the other hand, if there is
damage to computers illegally accessed through your system, the choice is more complicated:
shutting down the intruder may prevent further damage to systems, but might make it
impossible to track down the intruder. If there has been damage, the decision about whether it
is important to leave systems up to catch the intruder should involve all the organizations
effected. Further complicating the issue of network responsibility is the consideration that if
you do not cooperate with the agency involved, you will be less likely to receive help from that
agency in the future.

232 Part I: Managing Internet Security

5.6 Documentation Logs

When you respond to an incident, document all details related to the incident. This will
provide valuable information to yourself and others as you try to unravel the course of events.
Documenting all details will ultimately save you time. If you don’t document every relevant
phone call, for example, you are likely to forget a good portion of information you obtain,
requiring you to contact the source of information once again. This wastes yours and others’
time, something you can ill afford. At the same time, recording details will provide evidence
for prosecution efforts, providing the case moves in this direction. Documenting an incident
also will help you perform a final assessment of damage (something your management as well
as law enforcement officers will want to know), and will provide the basis for a follow-up
analysis in which you can engage in a valuable “lessons learned” exercise.

During the initial stages of an incident, it is often infeasible to determine whether prosecution
is viable, so you should document as if you are gathering evidence for a court case. At a
minimum, you should record:

All system events (audit records).
All actions you take (time tagged).

All phone conversations (including the person with whom you talked, the date and time,
and the content of the conversation).

The most straightforward way to maintain documentation is keeping a log book. This allows
you to go to a centralized, chronological source of information when you need it, instead of
requiring you to page through individual sheets of paper. Much of this information is potential
evidence in a court of law. Thus, when you initially suspect that an incident will result in
prosecution or when an investigative agency becomes involved, you need to regularly (e.g.,
every day) turn in photocopied, signed copies of your logbook (as well as media you use to
record system events) to a document custodian who can store these copied pages in a secure
place (e.g., a safe). When you submit information for storage, you should in return receive a
signed, dated receipt from the document custodian. Failure to observe these procedures can
result in invalidation of any evidence you obtain in a court of law.

6. Establishing Post-Incident Procedures

6.1 Overview

In the wake of an incident, several actions should take place. These actions can be summarized
as follows:

1. An inventory should be taken of the systems’ assets, i.e., a careful examination should
determine how the system was affected by the incident,

RFC 1244—The Site Security Handbook 233

2. The lessons learned as a result of the incident should be included in revised security plan
to prevent the incident from re-occurring,

3. A new risk analysis should be developed in light of the incident,

4. An investigation and prosecution of the individuals who caused the incident should
commence, if it is deemed desirable.

All four steps should provide feedback to the site security policy committee, leading to prompt
re-evaluation and amendment of the current policy.

6.2 Removing Vulnerabilities

Removing all vulnerabilities once an incident has occurred is difficult. The key to removing
vulnerabilities is knowledge and understanding of the breach. In some cases, it is prudent to
remove all access or functionality as soon as possible, and then restore normal operation in
limited stages. Bear in mind that removing all access while an incident is in progress will
obviously notify all users, including the alleged problem users, that the administrators are
aware of a problem; this may have a deleterious effect on an investigation. However, allowing
an incident to continue may also open the likelihood of greater damage, loss, aggravation, or
liability (civil or criminal).

If it is determined that the breach occurred due to a flaw in the systems’” hardware or software,
the vendor (or supplier) and the CERT should be notified as soon as possible. Including
relevant telephone numbers (also electronic mail addresses and fax numbers) in the site security
policy is strongly recommended. To aid prompt acknowledgment and understanding of the
problem, the flaw should be described in as much detail as possible, including details about
how to exploit the flaw.

As soon as the breach has occurred, the entire system and all its components should be
considered suspect. System software is the most probable target. Preparation is key to recover-
ing from a possibly tainted system. This includes checksumming all tapes from the vendor
using a checksum algorithm which (hopefully) is resistant to tampering [10]. (See sections
3.9.4.1, 3.9.4.2.) Assuming original vendor distribution tapes are available, an analysis of all
system files should commence, and any irregularities should be noted and referred to all parties
involved in handling the incident. It can be very difficult, in some cases, to decide which
backup tapes to recover from; consider that the incident may have continued for months or
years before discovery, and that the suspect may be an employee of the site, or otherwise have
intimate knowledge or access to the systems. In all cases, the pre-incident preparation will
determine what recovery is possible. At worst-case, restoration from the original manufacturers’
media and a re-installation of the systems will be the most prudent solution.

Review the lessons learned from the incident and always update the policy and procedures to
reflect changes necessitated by the incident.

234 Part I: Managing Internet Security

6.2.1 Assessing Damage

Before cleanup can begin, the actual system damage must be discerned. This can be quite time
consuming, but should lead into some of the insight as to the nature of the incident, and aid
investigation and prosecution. It is best to compare previous backups or original tapes when
possible; advance preparation is the key. If the system supports centralized logging (most do),
go back over the logs and look for abnormalities. If process accounting and connect time
accounting is enabled, look for patterns of system usage. To a lesser extent, disk usage may
shed light on the incident. Accounting can provide much helpful information in an analysis of
an incident and subsequent prosecution.

6.2.2 Cleanup

Once the damage has been assessed, it is necessary to develop a plan for system cleanup. In
general, bringing up services in the order of demand to allow a minimum of user inconve-
nience is the best practice. Understand that the proper recovery procedures for the system are
extremely important and should be specific to the site. It may be necessary to go back to the
original distributed tapes and recustomize the system. To facilitate this worst case scenario, a
record of the original systems setup and each customization change should be kept current
with each change to the system.

6.2.3 Follow up

Once you believe that a system has been restored to a “safe” state, it is still possible that holes
and even traps could be lurking in the system. In the follow-up stage, the system should be
monitored for items that may have been missed during the cleanup stage. It would be
prudent to utilize some of the tools mentioned in section 3.9.8.2 (e.g., COPS) as a start.
Remember, these tools don’t replace continual system monitoring and good systems adminis-
tration procedures.

6.2.4 Keep a Security Log

As discussed in section 5.6, a security log can be most valuable during this phase of removing
vulnerabilities. There are two considerations here; the first is to keep logs of the procedures
that have been used to make the system secure again. This should include command proce-
dures (e.g., shell scripts) that can be run on a periodic basis to recheck the security. Second,
keep logs of important system events. These can be referenced when trying to determine the
extent of the damage of a given incident.

6.3 Capturing Lessons Learned

6.3.1 Understand the Lesson

After an incident, it is prudent to write a report describing the incident, method of discovery,
correction procedure, monitoring procedure, and a summary of lesson learned. This will aid in

RFC 1244—The Site Security Handbook 235

the clear understanding of the problem. Remember, it is difficult to learn from an incident if
you don’t understand the source.

6.3.2 Resources

6.3.2.1 Other Security Devices, Methods

Security is a dynamic, not static process. Sites are dependent on the nature of security available
at each site, and the array of devices and methods that will help promote security.

Keeping up with the security area of the computer industry and their methods will assure a
security manager of taking advantage of the latest technology.

6.3.2.2 Repository of Books, Lists, Information Sources

Keep an on site collection of books, lists, information sources, etc., as guides and references for
securing the system. Keep this collection up to date. Remember, as systems change, so do
security methods and problems.

6.3.2.3 Form a Subgroup

Form a subgroup of system administration personnel that will be the core security staff. This
will allow discussions of security problems and multiple views of the site’s security issues. This
subgroup can also act to develop the site security policy and make suggested changes as
necessary to ensure site security.

6.4 Upgrading Policies and Procedures

6.4.1 Establish Mechanisms for Updating Policies, Procedures,
and Tools

If an incident is based on poor policy, and unless the policy is changed, then one is doomed to
repeat the past. Once a site has recovered from an incident, site policy and procedures should
be reviewed to encompass changes to prevent similar incidents. Even without an incident, it
would be prudent to review policies and procedures on a regular basis. Reviews are imperative
due to today’s changing computing environments.

6.4.2 Problem Reporting Procedures

A problem reporting procedure should be implemented to describe, in detail, the incident and
the solutions to the incident. Each incident should be reviewed by the site security subgroup to
allow understanding of the incident with possible suggestions to the site policy and procedures.

236 Part I: Managing Internet Security

7. References

[1] Quarterman, J., “The Matrix: Computer Networks and Conferencing Systems World-
wide,” Pg. 278, Digital Press, Bedford, MA, 1990.

[2] Brand, R., “Coping with the Threat of Computer Security Incidents: A Primer from
Prevention through Recovery,” R. Brand, available on-line from: cert.sei.cmu.edu:/pub/
info/primer, 8 June 1990.

[3] Fites, M., Kratz, P. and A. Brebner, “Control and Security of Computer Information
Systems,” Computer Science Press, 1989.

[4] Johnson, D., and J. Podesta, “Formulating a Company Policy on Access to and Use and
Disclosure of Electronic Mail on Company Computer Systems,” Available from: The
Electronic Mail Association (EMA) 1555 Wilson Blvd, Suite 555, Arlington VA 22209,
(703) 522-7111, 22 October 1990.

[5] Curry, D., “Improving the Security of Your UNIX System,” SRI International Report
ITSTD-721-FR-90-21, April 1990.

[6] Cheswick, B., “The Design of a Secure Internet Gateway,” Proceedings of the Summer
Usenix Conference, Anaheim, CA, June 1990.

[7] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part [—Message
Encipherment and Authentication Procedures,” RFC 1113, IAB Privacy Task Force,
August 1989.

[8] Kent, S., and J. Linn, “Privacy Enhancement for Internet Electronic Mail: Part II—
Certificate-Based Key Management,” RFC 1114, IAB Privacy Task Force, August 1989.

[9] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part III—Algorithms,
Modes, and Identifiers,” RFC 1115, IAB Privacy Task Force, August 1989.

[10] Merkle, R., “A Fast Software One Way Hash Function,” Journal of Cryptology, Vol. 3,
No. 1.

[11] Postel, J., “Internet Protocol - DARPA Internet Program Protocol Specification,” REC
791, DARPA, September 1981.

[12] Postel, J., “Transmission Control Protocol - DARPA Internet Program Protocol
Specification,” RFC 793, DARPA, September 1981.

[13] Postel, J., “User Datagram Protocol,” RFC 768, USC/Information Sciences Institute, 28
August 1980.

[14] Mogul,]J., “Simple and Flexible Datagram Access Controls for UNIX-based Gateways,”
Digital Western Research Laboratory Research Report 89/4, March 1989.

(23]

(24]

(25]

(26]

(27]

RFC 1244—The Site Security Handbook 237

Bellovin, S., and M. Merritt, “Limitations of the Kerberos Authentication System,”
Computer Communications Review, October 1990.

Pfleeger, C., “Security in Computing,” Prentice-Hall, Englewood Cliffs, N.]., 1989.

Parker, D., Swope, S., and B. Baker, “Ethical Conflicts: Information and Computer
Science, Technology and Business,” QED Information Sciences, Inc., Wellesley, MA.

Forester, T, and P. Morrison, “Computer Ethics: Tales and Ethical Dilemmas in
Computing,” MIT Press, Cambridge, MA, 1990.

Postel, J., and]. Reynolds, “Telnet Protocol Specification,” RFC 854, USC/Information
Sciences Institute, May 1983.

Postel, J., and]. Reynolds, “File Transfer Protocol,” RFC 959, USC/Information
Sciences Institute, October 1985.

Postel, J., Editor, “IAB Official Protocol Standards,” RFC 1200, IAB, April 1991.

Internet Activities Board, “Ethics and the Internet,” RFC 1087, Internet Activities
Board, January 1989.

Pethia, R., Crocker, S., and B. Fraser, “Policy Guidelines for the Secure Operation of the
Internet,” CERT, TIS, CERT, RFC in preparation.

Computer Emergency Response Team (CERT/CC), “Unauthorized Password Change
Requests,” CERT Advisory CA-91:03, April 1991.

Computer Emergency Response Team (CERT/CC), “TELNET Breakin Warning,”
CERT Advisory CA-89:03, August 1989.

CCITT, Recommendation X.509, “The Directory: Authentication Framework,”
Annex C.

Farmer, D., and E. Spafford, “The COPS Security Checker System,” Proceedings of the
Summer 1990 USENIX Conference, Anaheim, CA, Pgs. 165-170, June 1990.

8. Annotated Bibliography

The intent of this annotated bibliography is to offer a representative collection of resources of

information that will help the user of this handbook. It is meant provide a starting point for

further research in the security area. Included are references to other sources of information for

those who wish to pursue issues of the computer security environment.

238 Part I: Managing Internet Security

8.1 Computer Law
[ABA89]

American Bar Association, Section of Science and Technology, “Guide to the Prosecution of
Telecommunication Fraud by the Use of Computer Crime Statutes,” American Bar Associa-
tion, 1989.

[BENDER]

Bender, D., “Computer Law: Evidence and Procedure,” M. Bender, New York, NY, 1978-
present. Kept up to date with supplements. Years covering 1978-1984 focuses on: Computer
law, evidence and procedures. The years 1984 to the current focus on general computer law.
Bibliographical references and index included.

[BLOOMBECKER]
Bloombecker, B., “Spectacular Computer Crimes,” Dow Jones- Irwin, Homewood, IL, 1990.
[CCH]

Commerce Clearing House, “Guide to Computer Law,” (Topical Law Reports), Chicago, IL.,
1989. Court cases and decisions rendered by federal and state courts throughout the United
States on federal and state computer law. Includes Case Table and Topical Index.

[CONLY]

Conly, C., “Organizing for Computer Crime Investigation and Prosecution,” U.S. Dept. of
Justice, Office of Justice Programs, Under Contract Number OJP-86-C-002, National
Institute of Justice, Washington, DC, July 1989.

[FENWICK]

Fenwick, W., Chair, “Computer Litigation, 1985: Trial Tactics and Techniques,” Litigation
Course Handbook Series No. 280, Prepared for distribution at the Computer Litigation, 1985:
Trial Tactics and Techniques Program, February-March 1985.

[GEMIGNANI]

Gemignani, M., “Viruses and Criminal Law,” Communications of the ACM, Vol. 32, No. 6,
Pgs. 669-671, June 1989.

[HUBAND]

Huband, F., and R. Shelton, Editors, “Protection of Computer Systems and Software: New
Approaches for Combating Theft of Software and Unauthorized Intrusion,” Papers presented
at a workshop sponsored by the National Science Foundation, 1986.

RFC 1244—The Site Security Handbook

[MCEWEN]

McEwen, J., “Dedicated Computer Crime Units,” Report Contributors: D. Fester and H.
Nugent, Prepared for the National Institute of Justice, U.S. Department of Justice, by Institute
for Law and Justice, Inc., under contract number OJP-85-C-006, Washington, DC, 1989.

[PARKER]

Parker, D., “Computer Crime: Criminal Justice Resource Manual,” U.S. Dept. of Justice,
National Institute of Justice, Office of Justice Programs, Under Contract Number OJP-86-C-
002, Washington, D.C., August 1989.

[SHAW]

Shaw, E., Jr., “Computer Fraud and Abuse Act of 1986, Congressional Record (3 June 1986),
Washington, D.C., 3 June 1986.

[TRIBLE]

Trible, P., “The Computer Fraud and Abuse Act of 1986,” U.S. Senate Committee on the
Judiciary, 1986.

8.2 Computer Security

[BRAND]

Brand, R., “Coping with the Threat of Computer Security Incidents: A Primer from Preven-
tion through Recovery,” R. Brand, 8 June 1990.

[CAELLI]

Caelli, W., Editor, “Computer Security in the Age of Information,” Proceedings of the Fifth
IFIP International Conference on Computer Security, IFIP/Sec ’88.

[CARROLL]
Carroll, J., “Computer Security,” 2nd Edition, Butterworth Publishers, Stoneham, MA, 1987.
[CHESWICK]

Cheswick, B., “The Design of a Secure Internet Gateway,” Proceedings of the Summer Usenix
Conference, Anaheim, CA, June 1990.

[COOPER]

Cooper,]., “Computer and Communications Security: Strategies for the 1990s,” McGraw-
Hill, 1989.

239

240

Part I: Managing Internet Security

As computer security becomes a more important issue in modern society, it begins to warrant a
systematic approach. The vast majority of the computer security problems and the costs
associated with them can be prevented with simple inexpensive measures. The most important
and cost effective of these measures are available in the prevention and planning phases. These
methods are presented in this paper, followed by a simplified guide to incident handling and
recovery. Available on-line from:

cert.sei.cmu.edu:/pub/info/primer.

Brief abstract (slight paraphrase from the original abstract): AT&T maintains a large internal
Internet that needs to be protected from outside attacks, while providing useful services
between the two. This paper describes AT&T’s Internet gateway. This gateway passes mail and
many of the common Internet services between AT&T internal machines and the Internet.
This is accomplished without IP connectivity using a pair of machines: a trusted internal
machine and an untrusted external gateway. These are connected by a private link. The
internal machine provides a few carefully-guarded services to the external gateway. This
configuration helps protect the internal internet even if the external machine is fully compro-
mised.

This is a very useful and interesting design. Most firewall gateway systems rely on a system
that, if compromised, could allow access to the machines behind the firewall. Also, most
firewall systems require users who want access to Internet services to have accounts on the
firewall machine. AT&T’s design allows AT&T internal internet users access to the standard
services of TELNET and FTP from their own workstations without accounts on the firewall
machine. A very useful paper that shows how to maintain some of the benefits of Internet
connectivity while still maintaining strong security.

[CURRY]

Curry, D., “Improving the Security of Your UNIX System,” SRI International Report ITSTD-
721-FR-90-21, April 1990.

This paper describes measures that you, as a system administrator can take to make your
UNIX system(s) more secure. Oriented primarily at SunOS 4.x, most of the information
covered applies equally well to any Berkeley UNIX system with or without NFS and/or Yellow
Pages (NIS). Some of the information can also be applied to System V, although this is not a
primary focus of the paper. A very useful reference, this is also available on the Internet in
various locations, including the directory cert.sei.cmu.edu:/pub/info.

[FITES]

Fites, M., Kratz, P. and A. Brebner, “Control and Security of Computer Information Sys-
tems,” Computer Science Press, 1989.

This book serves as a good guide to the issues encountered in forming computer security
policies and procedures. The book is designed as a textbook for an introductory course in
information systems security.

RFC 1244—The Site Security Handbook 241

The book is divided into five sections: Risk Management (I), Safeguards: security and control
measures, organizational and administrative (II), Safeguards: Security and Control Measures,
Technical (IIT), Legal Environment and Professionalism (IV), and CICA Computer Control

Guidelines (V).

The book is particularly notable for its straight-forward approach to security, emphasizing that
common sense is the first consideration in designing a security program. The authors note that
there is a tendency to look to more technical solutions to security problems while overlooking
organizational controls which are often cheaper and much more effective. 298 pages, including
references and index.

[GARFINKEL]

Garfinkel, S, and E. Spafford, “Practical Unix Security,” O’Reilly & Associates, ISBN 0-
937175-72-2, May 1991.

Approx 450 pages, $29.95. Orders: 1-800-338-6887
(US & Canada), 1-707-829-0515 (Europe), email: nuts@ora.com

This is one of the most useful books available on Unix security. The first part of the book
covers standard Unix and Unix security basics, with particular emphasis on passwords. The
second section covers enforcing security on the system. Of particular interest to the Internet
user are the sections on network security, which address many of the common security
problems that afflict Internet Unix users. Four chapters deal with handling security incidents,
and the book concludes with discussions of encryption, physical security, and useful checklists
and lists of resources. The book lives up to its name; it is filled with specific references to
possible security holes, files to check, and things to do to improve security. This book is an
excellent complement to this handbook.

[GREENIA90]

Greenia, M., “Computer Security Information Sourcebook,” Lexikon Services, Sacramento,

CA, 1989.

A manager’s guide to computer security. Contains a sourcebook of key reference materials
including access control and computer crimes bibliographies.

[HOFFMAN]

Hoffman, L., “Rogue Programs: Viruses, Worms, and Trojan Horses,” Van Nostrand

Reinhold, NY, 1990.

(384 pages, includes bibliographical references and index.)

242

Part I: Managing Internet Security

[JOHNSON]

Johnson, D., and J. Podesta, “Formulating A Company Policy on Access to and Use and
Disclosure of Electronic Mail on Company Computer Systems.”

A white paper prepared for the EMA, written by two experts in privacy law. Gives background
on the issues, and presents some policy options.

Available from:

The Electronic Mail Association (EMA)
1555 Wilson Blvd, Suite 555
Arlington, VA, 22209

(703) 522-7111

[KENT]

Kent, Stephen, “E-Mail Privacy for the Internet: New Software and Strict Registration
Procedures will be Implemented this Year,” Business Communications Review, Vol. 20, No. 1,

Pg. 55, 1 January 1990.
(LU]

Lu, W., and M. Sundareshan, “Secure Communication in Internet Environments: A
Hierachical Key Management Scheme for End-to-End Encryption,” IEEE Transactions on
Communications, Vol. 37, No. 10, Pg. 1014, 1 October 1989.

[LUT]

Lu, W., and M. Sundareshan, “A Model for Multilevel Security in Computer Networks,”
IEEE Transactions on Software Engineering, Vol. 16, No. 6, Page 647, 1 June 1990.

[NSA]

National Security Agency, “Information Systems Security Products and Services Catalog,”
NSA, Quarterly Publication. NSA’s catalogue contains chapter on: Endorsed Cryptographic
Products List; NSA Endorsed Data Encryption Standard (DES) Products List; Protected
Services List; Evaluated Products List; Preferred Products List; and Endorsed Tools List. The
catalogue is available from the Superintendent of Documents, U.S. Government Printing
Office, Washington, D.C. One may place telephone orders by calling: (202) 783-3238.

[OTA]

United States Congress, Office of Technology Assessment, “Defending Secrets, Sharing Data:
New Locks and Keys for Electronic Information,” OTA-CIT-310, October 1987.

This report, prepared for congressional committee considering Federal policy on the protection
of electronic information, is interesting because of the issues it raises regarding the impact of

RFC 1244—The Site Security Handbook 243

technology used to protect information. It also serves as a reasonable introduction to the
various encryption and information protection mechanisms. 185 pages. Available from the
U.S. Government Printing Office.

[PALMER]

Palmer, L., and G. Potter, “Computer Security Risk Management,” Van Nostrand Reinhold,
NY, 1989.

[PFLEEGER]
Pfleeger, C., “Security in Computing,” Prentice-Hall, Englewood Cliffs, NJ, 1989.

A general textbook in computer security, this book provides an excellent and very readable
introduction to classic computer security problems and solutions, with a particular emphasis
on encryption. The encryption coverage serves as a good introduction to the subject. Other
topics covered include building secure programs and systems, security of database, personal
computer security, network and communications security, physical security, risk analysis and
security planning, and legal and ethical issues. 538 pages including index and bibliography.

[SHIREY]

Shirey, R., “Defense Data Network Security Architecture,” Computer Communication
Review, Vol. 20, No. 2, Page 66, 1 April 1990.

[SPAFFORD]

Spafford, E., Heaphy, K., and D. Ferbrache, “Computer Viruses: Dealing with Electronic
Vandalism and Programmed Threats,” ADAPSO, 1989. (109 pages.)

This is a good general reference on computer viruses and related concerns. In addition to
describing viruses in some detail, it also covers more general security issues, legal recourse in
case of security problems, and includes lists of laws, journals focused on computers security,
and other security-related resources.

Available from: ADAPSO, 1300 N. 17th St, Suite 300, Arlington VA 22209. (703) 522-5055.
[STOLLSS]

Stoll, C., “Stalking the Wily Hacker,” Communications of the ACM, Vol. 31, No. 5, Pgs.
484-497, ACM, New York, NY, May 1988.

This article describes some of the technical means used to trace the intruder that was later
chronicled in “Cuckoo’s Egg” (see below).

[STOLL89]

Stoll, C., “The Cuckoo’s Egg,” ISBN 00385-24946-2, Doubleday, 1989.

244

Part I: Managing Internet Security

Clifford Stoll, an astronomer turned UNIX System Administrator, recounts an exciting, true
story of how he tracked a computer intruder through the maze of American military and
research networks. This book is easy to understand and can serve as an interesting introduction
to the world of networking. Jon Postel says in a book review, “[this book] ... is absolutely
essential reading for anyone that uses or operates any computer connected to the Internet or
any other computer network.”

[VALLA]

allabhaneni, S., “Auditing Computer Security: A Manual with Case Studies,” Wiley, New
York, NY, 1989.

8.3 Ethics

[CPSR89]

Computer Professionals for Social Responsibility, “CPSR Statement on the Computer Virus,”
CPSR, Communications of the ACM, Vol. 32, No. 6, Pg. 699, June 1989.

This memo is a statement on the Internet Computer Virus by the Computer Professionals for

Social Responsibility (CPSR).
[DENNING]

Denning, Peter J., Editor, “Computers Under Attack: Intruders, Worms, and Viruses,” ACM
Press, 1990.

A collection of 40 pieces divided into six sections: the emergence of worldwide computer
networks, electronic breakins, worms, viruses, counterculture (articles examining the world of
the “hacker”), and finally a section discussing social, legal, and ethical considerations. A
thoughtful collection that addresses the phenomenon of attacks on computers. This includes a
number of previously published articles and some new ones. The previously published ones are
well chosen, and include some references that might be otherwise hard to obtain. This book is
a key reference to computer security threats that have generated much of the concern over
computer security in recent years.

[ERMANN]

Ermann, D., Williams, M., and C. Gutierrez, Editors, “Computers, Ethics, and Society,”
Oxford University Press, NY, 1990. (376 pages, includes bibliographical references).

[FORESTER]

Forester, T., and P. Morrison, “Computer Ethics: Tales and Ethical Dilemmas in Comput-
ing,” MIT Press, Cambridge, MA, 1990. (192 pages including index.)

RFC 1244—The Site Security Handbook 245

From the preface: “The aim of this book is two-fold: (1) to describe some of the prob-

lems created by society by computers, and (2) to show how these problems present ethical
dilemmas for computers professionals and computer users. The problems created by computers
arise, in turn, from two main sources: from hardware and software malfunctions and from
misuse by human beings. We argue that computer systems by their very nature are insecure,
unreliable, and unpredictable—and that society has yet to come to terms with the conse-
quences. We also seek to show how society has become newly vulnerable to human misuse of
computers in the form of computer crime, software theft, hacking, the creation of viruses,
invasions of privacy, and so on.” The eight chapters include “Computer Crime,” “Software
Theft,” “Hacking and Viruses,” “Unreliable Computers,” “The Invasion of Privacy,” “Al and
Expert Systems,” and “Computerizing the Workplace.” Includes extensive notes on sources
and an index.

[GOULD]

Gould, C., Editor, “The Information Web: Ethical and Social Implications of Computer
Networking,” Westview Press, Boulder, CO, 1989.

[IAB89]

Internet Activities Board, “Ethics and the Internet,” RFC 1087, IAB, January 1989. Also
appears in the Communications of the ACM, Vol. 32, No. 6, Pg. 710, June 1989.

This memo is a statement of policy by the Internet Activities Board (IAB) concerning the
proper use of the resources of the Internet. Available on-line on host ftp.nisc.sri.com, directory
tfc, filename rfc1087.txt. Also available on host nis.nsf.net, directory RFC, filename
RFC1087.TXT-1.

[MARTIN]
Martin, M., and R. Schinzinger, “Ethics in Engineering,” McGraw Hill, 2nd Edition, 1989.
[MIT89]

Massachusetts Institute of Technology, “Teaching Students About Responsible Use of
Computers,” MIT, 1985-1986. Also reprinted in the Communications of the ACM, Vol. 32,
No. 6, Pg. 704, Athena Project, MIT, June 1989.

This memo is a statement of policy by the Massachusetts Institute of Technology (MIT) on
the responsible use of computers.

[NIST]

National Institute of Standards and Technology, “Computer Viruses and Related Threats: A
Management Guide,” NIST Special Publication 500-166, August 1989.

246

Part I: Managing Internet Security

[NSF88]

National Science Foundation, “NSF Poses Code of Networking Ethics,” Communications of

the ACM, Vol. 32, No. 6, Pg. 688, June 1989.

Also appears in the minutes of the regular meeting of the Division Advisory Panel for Net-
working and Communications Research and Infrastructure, Dave Farber, Chair, November
29-30, 1988.

This memo is a statement of policy by the National Science Foundation (NSF) concerning the
ethical use of the Internet.

[PARKER90]

Parker, D., Swope, S., and B. Baker, “Ethical Conflicts: Information and Computer Science,
Technology and Business,” QED Information Sciences, Inc., Wellesley, MA. (245 pages).
Additional publications on Ethics:

The University of New Mexico (UNM)

The UNM has a collection of ethics documents. Included are legislation from several states
and policies from many institutions.

Access is via FTP, IP address ariel.umn.edu. Look in the directory /ethics.

8.4 The Internet Worm

[BROCK]

Brock, J., “November 1988 Internet Computer Virus and the Vulnerability of National
Telecommunications Networks to Computer Viruses,” GAO/T-IMTEC-89-10, Washington,
DC, 20 July 1989.

Testimonial statement of Jack L. Brock, Director, U. S. Government Information before the
Subcommittee on Telecommunications and Finance, Committee on Energy and Commerce,
House of Representatives.

[EICHINS9]

Eichin, M., and J. Rochlis, “With Microscope and Tweezers: An Analysis of the Internet Virus
of November 1988,” Massachusetts Institute of Technology, February 1989.

Provides a detailed dissection of the worm program. The paper discusses the major points of
the worm program then reviews strategies, chronology, lessons and open issues, Acknowledg-
ments; also included are a detailed appendix on the worm program subroutine by subroutine,
an appendix on the cast of characters, and a reference section.

RFC 1244—The Site Security Handbook 247

[EISENBERG89]

Eisenberg, T., D. Gries,]. Hartmanis, D. Holcomb, M. Lynn, and T. Santoro, “The Com-
puter Worm,” Cornell University, 6 February 1989.

A Cornell University Report presented to the Provost of the University on 6 February 1989 on
the Internet Worm.

[GAO]

U.S. General Accounting Office, “Computer Security - Virus Highlights Need for Improved
Internet Management,” United States General Accounting Office, Washington, DC, 1989.

This 36 page report (GAO/IMTEC-89-57), by the U.S. Government Accounting Office,
describes the Internet worm and its effects. It gives a good overview of the various U.S.
agencies involved in the Internet today and their concerns vis-a-vis computer security and

networking. Available on-line on host nnsc.nsf.net, directory pub, filename GAO_RPT; and
on nis.nsf.net, directory nsfnet, filename GAO_RPT.TXT.

[REYNOLDS89]

The Helminthiasis of the Internet, RFC 1135, USC/Information Sciences Institute, Marina
del Rey, CA, December 1989.

This report looks back at the helminthiasis (infestation with, or disease caused by parasitic
worms) of the Internet that was unleashed the evening of 2 November 1988. This document
provides a glimpse at the infection, its festering, and cure. The impact of the worm on the
Internet community, ethics statements, the role of the news media, crime in the computer
world, and future prevention is discussed. A documentation review presents four publications
that describe in detail this particular parasitic computer program. Reference and bibliography
sections are also included. Available on-line on host ftp.nisc.sri.com directory rfc, filename
rfc1135.txt. Also available on host nis.nsf.net, directory RFC, filename RFC1135.TXT-1.

[SEELEY89]

Seeley, D., “A Tour of the Worm,” Proceedings of 1989 Winter USENIX Conference, Usenix
Association, San Diego, CA, February 1989.

Details are presented as a “walk thru” of this particular worm program. The paper opened with
an abstract, introduction, detailed chronology of events upon the discovery of the worm, an
overview, the internals of the worm, personal opinions, and conclusion.

[SPAFFORDSS]

Spafford, E., “The Internet Worm Program: An Analysis,” Computer Communication
Review, Vol. 19, No. 1, ACM SIGCOM, January 1989. Also issued as Purdue CS Technical
Report CSD-TR-823, 28 November 1988.

248

Part I: Managing Internet Security

Describes the infection of the Internet as a worm program that exploited flaws in utility
programs in UNIX based systems. The report gives a detailed description of the components of
the worm program: data and functions. Spafford focuses his study on two completely indepen-
dent reverse-compilations of the worm and a version disassembled to VAX assembly language.

[SPAFFORD&9]

Spafford, G., “An Analysis of the Internet Worm,” Proceedings of the European Software
Engineering Conference 1989, Warwick England, September 1989.

Proceedings published by Springer-Verlag as: Lecture Notes in Computer Science #387. Also
issued as Purdue Technical Report #CSD-TR-933.

8.5 National Computer Security Center (NCSC)

All NCSC publications, approved for public release, are available from the NCSC Superinten-
dent of Documents.

NCSC = National Computer Security Center
9800 Savage Road
Ft Meade, MD 20755-6000

CSC = Computer Security Center: an older name for the NCSC
NTISS = National Telecommunications and Information Systems Security

NTISS Committee, National Security Agency
Ft Meade, MD 20755-6000

[CSC]

Department of Defense, “Password Management Guideline,” CSC-STD-002-85, 12 April
1985, 31 pages.

The security provided by a password system depends on the passwords being kept secret at all
times. Thus, a password is vulnerable to compromise whenever it is used, stored, or even
known. In a password-based authentication mechanism implemented on an ADP system,
passwords are vulnerable to compromise due to five essential aspects of the password system: 1)
a password must be initially assigned to a user when enrolled on the ADP system; 2) a user’s
password must be changed periodically; 3) the ADP system must maintain a ‘password
database’; 4) users must remember their passwords; and 5) users must enter their passwords
into the ADP system at authentication time. This guideline prescribes steps to be taken to
minimize the vulnerability of passwords in each of these circumstances.

RFC 1244—The Site Security Handbook 249

[NCSC1]

CSC, “A Guide to Understanding AUDIT in Trusted Systems,” NCSC-TG-001, Version-2, 1
June 1988, 25 pages.

Audit trails are used to detect and deter penetration of a computer system and to reveal usage
that identifies misuse. At the discretion of the auditor, audit trails may be limited to specific
events or may encompass all of the activities on a system. Although not required by the
criteria, it should be possible for the target of the audit mechanism to be either a subject or an
object. That is to say, the audit mechanism should be capable of monitoring every time John
accessed the system as well as every time the nuclear reactor file was accessed; and likewise
every time John accessed the nuclear reactor file.

[NCSC2]

NCSC, “A Guide to Understanding DISCRETIONARY ACCESS CONTROL in Trusted
Systems,” NCSC-TG-003, Version-1, 30 September 1987, 29 pages.

Discretionary control is the most common type of access control mechanism implemented in
computer systems today. The basis of this kind of security is that an individual user, or
program operating on the user’s behalf, is allowed to specify explicitly the types of access other
users (or programs executing on their behalf) may have to information under the user’s
control. [...] Discretionary controls are not a replacement for mandatory controls. In any
environment in which information is protected, discretionary security provides for a finer
granularity of control within the overall constraints of the mandatory policy.

[NCSC3]

NCSC, “A Guide to Understanding CONFIGURATION MANAGEMENT in Trusted
Systems,” NCSC-TG-0006, Version-1, 28 March 1988, 31 pages.

Configuration management consists of four separate tasks: identification, control, status
accounting, and auditing. For every change that is made to an automated data processing
(ADP) system, the design and requirements of the changed version of the system should be
identified. The control task of configuration management is performed by subjecting every
change to documentation, hardware, and software/firmware to review and approval by an
authorized authority. Configuration status accounting is responsible for recording and
reporting on the configuration of the product throughout the change. Finally, through the
process of a configuration audit, the completed change can be verified to be functionally
correct, and for trusted systems, consistent with the security policy of the system.

[NTISS]

NTISS, “Advisory Memorandum on Office Automation Security Guideline,” NTISSAM
CONPUSEC/1-87, 16 January 1987, 58 pages.

250

Part I: Managing Internet Security

This document provides guidance to users, managers, security officers, and procurement
officers of Office Automation Systems. Areas addressed include: physical security, personnel
security, procedural security, hardware/software security, emanations security (TEMPEST),
and communications security for stand-alone OA Systems, OA Systems used as terminals
connected to mainframe computer systems, and OA Systems used as hosts in a Local Area
Network (LAN). Differentiation is made between those Office Automation Systems equipped
with removable storage media only (e.g., floppy disks, cassette tapes, removable hard disks) and
those Office Automation Systems equipped with fixed media (e.g., Winchester disks).

Additional NCSC Publications:
[NCSC4]

National Computer Security Center, “Glossary of Computer Security Terms,” NCSC-TG-
004, NCSC, 21 October 1988.

[NCSC5]

National Computer Security Center, “Trusted Computer System Evaluation Criteria,” DoD
5200.28-STD, CSC-STD-001-83, NCSC, December 1985.

[NCSC7]

National Computer Security Center, “Guidance for Applying the Department of Defense
Trusted Computer System Evaluation Criteria in Specific Environments,” CSC-STD-003-85,
NCSC, 25 June 1985.

[NCSC8]

National Computer Security Center, “Technical Rationale Behind CSC-STD-003-85:
Computer Security Requirements,” CSC-STD-004-85, NCSC, 25 June 85.

[NCSC9]

National Computer Security Center, “Magnetic Remanence Security Guideline,” CSC-STD-
005-85, NCSC, 15 November 1985.

This guideline is tagged as a “For Official Use Only” exemption under Section 6, Public Law
86-36 (50 U.S. Code 402). Distribution authorized of U.S. Government agencies and their
contractors to protect unclassified technical, operational, or administrative data relating to
operations of the National Security Agency.

[NCSC10]

National Computer Security Center, “Guidelines for Formal Verification Systems,” Shipping
list no.: 89-660-P, The Center, Fort George G. Meade, MD, 1 April 1990.

RFC 1244—The Site Security Handbook 251

[NCSC11]

National Computer Security Center, “Glossary of Computer Security Terms,” Shipping list
no.: 89-254-P, The Center, Fort George G. Meade, MD, 21 October 1988.

[NCSC12]

National Computer Security Center, “Trusted UNIX Working Group (TRUSIX) rationale for
selecting access control list features for the UNIX system,” Shipping list no.: 90-076-P, The
Center, Fort George G. Meade, MD, 1990.

[NCSC13]

National Computer Security Center, “Trusted Network Interpretation,” NCSC-TG-005,
NCSC, 31 July 1987.

[NCSC14]

Tinto, M., “Computer Viruses: Prevention, Detection, and Treatment,” National Computer
Security Center C1 Technical Report C1-001-89, June 1989.

[NCSC15]

National Computer Security Conference, “12th National Computer Security Conference:
Baltimore Convention Center, Baltimore, MD, 10-13 October, 1989: Information Systems
Security, Solutions for Today - Concepts for Tomorrow,” National Institute of Standards and
National Computer Security Center, 1989.

8.6 Security Checklists

[AUCOIN]

Aucoin, R., “Computer Viruses: Checklist for Recovery,” Computers in Libraries, Vol. 9, No.
2, Pg. 4, 1 February 1989.

[WOOD]

Wood, C., Banks, W., Guarro, S., Garcia, A., Hampel, V., and H. Sartorio, “Computer
Security: A Comprehensive Controls Checklist,” John Wiley and Sons, Interscience Publica-
tion, 1987.

8.7 Additional Publications

Defense Data Network’s Network Information Center (DDN NIC) The DDN NIC main-
tains DDN Security bulletins and DDN Management bulletins online on the machine:

252

Part I: Managing Internet Security

NIC.DDN.MIL. They are available via anonymous FTP. The DDN Security bulletins are in
the directory: SCC, and the DDN Management bulletins are in the directory: DDN-NEWS.

For additional information, you may send a message to:
NIC@NIC.DDN.MIL, or call the DDN NIC at: 1-800-235-3155.
[DDNS8S8]

Defense Data Network, “BSD 4.2 and 4.3 Software Problem Resolution,” DDN MGT
Bulletin #43, DDN Network Information Center, 3 November 1988.

A Defense Data Network Management Bulletin announcement on the 4.2bsd and 4.3bsd
software fixes to the Internet worm.

[DDN89]

DCA DDN Defense Communications System, “DDN Security Bulletin 03,” DDN Security
Coordination Center, 17 October 1989.

IEEE Proceedings

[TEEE]

“Proceedings of the IEEE Symposium on Security and Privacy,” published annually.
IEEE Proceedings are available from:

Computer Society of the IEEE
P.O. Box 80452

Worldway Postal Center

Los Angeles, CA 90080

Other Publications:
Computer Law and Tax Report
Computers and Security
Security Management Magazine
Journal of Information Systems Management
Data Processing & Communications Security
SIG Security, Audit & Control Review

Site Security Policy Handbook Working Group

RFC 1244—The Site Security Handbook 253

9. Acknowledgments

Thanks to the SSPHWG’s illustrious “Outline Squad,” who assembled at USC/Information
Sciences Institute on 12-June-90: Ray Bates (ISI), Frank Byrum (DEC), Michael A. Contino
(PSU), Dave Dalva (Trusted Information Systems, Inc.), Jim Duncan (Penn State Math
Department), Bruce Hamilton (Xerox), Sean Kirkpatrick (Unisys), Tom Longstaff (CIAC/
LLNL), Fred Ostapik (SRI/NIC), Keith Pilotti (SAIC), and Bjorn Satdeva (/sys/admin, inc.).

Many thanks to Rich Pethia and the Computer Emergency Response Team (CERT); much of
the work by Paul Holbrook was done while he was working for CERT. Rich also provided a
very thorough review of this document. Thanks also to Jon Postel and USC/Information
Sciences Institute for contributing facilities and moral support to this effort.

Last, but NOT least, we would like to thank members of the SSPHWG and Friends for their
additional contributions: Vint Cerf (CNRI), Dave Grisham (UNM), Nancy Lee Kirkpatrick

(Typist Extraordinaire), Chris McDonald (WSMR), H. Craig McKee (Mitre), Gene Spafford
(Purdue), and Aileen Yuan (Mitre).

10. Security Considerations

If security considerations had not been so widely ignored in the Internet, this memo would not
have been possible.

11. Authors’ Addresses

J. Paul Holbrook
CICNet, Inc.

2901 Hubbard

Ann Arbor, MI 48105
Phone: (313) 998-7680
EMail: holbrook@cic.net

Joyce K. Reynolds

University of Southern California
Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
Phone: (213) 822-1511

EMail: JKREY@ISI.EDU

	Part 1: Managing Internet Security
	Chapter 1: Understanding TCP/IP
	Chapter 2: Understanding and Creating Daemons
	Chapter 3: Using UUCP
	Chapter 4: Audit Trails
	Chapter 5: RFC 1244—The Site Security Handbook

