
d
erver.

er
This is the Java Transaction API (JTA) specification. JTA specifies high-level
interfaces between a transaction manager and the parties involved in a distribute
transaction system: the application, the resource manager, and the application s
This document also provides general usage scenarios and implementation
considerations to support JTA in a component-based enterprise application serv
environment.

Please send technical comments on this specification to:

jta@eng.sun.com

Copyright © 1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

Susan Cheung & Vlada Matena
Version 1.0.1 April 29, 1999

Sun Microsystems Inc.

Java Transaction API (JTA)

Java Transaction API

e,
erty
uting
from
n
itle or

or
er.

(a).

with

arks or
Copyright 1997-1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved. Copyright in this document is owned by Sun Microsystems Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferabl
perpetual, worldwide, limited license (without the right to sublicense) under SUN's intellectual prop
rights that are essential to practice this specification for the limited purpose of creating and distrib
implementations of this specification, provided however, that such implementations do not derive
any SUN source code or binary materials and do not include any SUN binary materials without a
appropriate and separate license from SUN. Other than this limited license, you acquire no right, t
interest in or to this specification or any other SUN intellectual property. No right, title, or interest in
to any trademarks, service marks, or trade names of SUN or SUN’s licensors is granted hereund

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1

This specification contains the proprietary information of SUN and may only be used in accordance
the license terms set forth above.

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
YOU AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION OR ITS
DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Java, Enterprise JavaBeans, JDBC, and JDK are tradem
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
Sun Microsystems Inc. 2 May 12, 1999

Java Transaction API

0

2

6

0

Table of Contents
1. Introduction ... 4

1.1 Background .. 4
1.2 Target Audience ... 6

2. Relationship to Other Java APIs .. 7

2.1 Enterprise JavaBeans ... 7
2.2 JDBC 2.0 Standard Extension ...7
2.3 Java Message Service .. 7
2.4 Java Transaction Service ... 7

3. Java Transaction API ... 8

3.1 UserTransaction Interface .. 8
3.1.1 UserTransaction Support in EJB Server 8
3.1.2 UserTransaction Support for Transactional Clients 9

3.2 TransactionManager Interface .. 9
3.2.1 Starting a Transacation .. 10
3.2.2 Completing a Transaction .. 10
3.2.3 Suspending and Resuming a Transaction 1

3.3 Transaction Interface .. 11
3.3.1 Resource Enlistment ... 12
3.3.2 Transaction Synchronization.. 13
3.3.3 Transaction Completion ... 14
3.3.4 Transaction Equality and Hash Code 14

3.4 XAResource Interface ... 14
3.4.1 Opening a Resource Manager .. 16
3.4.2 Closing a Resource Manager ... 16
3.4.3 Thread of Control ... 17
3.4.4 Transaction Association ... 17
3.4.5 Externally Controlled Connections ... 18
3.4.6 Resource Sharing ... 18
3.4.7 Local and Global Transactions ... 19
3.4.8 Failures Recovery ... 19
3.4.9 Identifying The Resource Manager Instance 20
3.4.10 Dynamic Registration .. 21

3.3 Xid Interface .. 21

4. JTA Support in Application Server ...22

4.1 Connection-Based Resource Usage Scenario .. 2
4.2 Transaction Association and Connection Request Flow 24

5. Java Transaction API Reference .. 2

6. Related Documents.. 6
Sun Microsystems Inc. 3 May 12, 1999

Java Transaction API

va
d

erver.

d

y

ers:
ication
ibutes
f

ail-
rs
C
n-
1 Introduction

This document describes the Java Transaction API (JTA). JTA specifies local Ja
interfaces between a transaction manager and the parties involved in a distribute
transaction system: the application, the resource manager, and the application s

The JTA package consists of three parts:

• A high-level application interface that allows a transactional application to
demarcate transaction boundaries.

• A Java mapping of the industry standard X/Open XA protocol that allows a
transactional resource manager to participate in a global transaction controlle
by an external transaction manager.

• A high-level transaction manager interface that allows an application server to
control transaction boundary demarcation for an application being managed b
the application server.

 Note: The JTA interfaces are presented as high-level from the transaction
manager’s perspective. In contrast, a low-level API for the transaction
manager consists of interfaces that are used to implement the transaction
manager. For example, the Java mapping of the OTS are low-level interfaces
used internally by a transaction manager.

1.1 Background

Distributed transaction services in Enterprise Java middleware involves five play
the transaction manager, the application server, the resource manager, the appl
program, and the communication resource manager. Each of these players contr
to the distributed transaction processing system by implementing different sets o
transaction APIs and functionalities.

• A transaction manager provides the services and management functions
required to support transaction demarcation, transactional resource
management, synchronization, and transaction context propagation.

• An application server (or TP monitor) provides the infrastructure required to
support the application run-time environment which includes transaction state
management. An example of such an application server is an EJB server.

• A resource manager (through a resource adapter1) provides the application
access to resources. The resource manager participates in distributed
transactions by implementing a transaction resource interface used by the

1.A Resource Adapter is a system level software library that is used by an application server or client to
connect to a Resource Manager. A Resource Adapter is typically specific to a Resource Manager. It is av
able as a library and is used within the address space of the client using it. Examples of resource adapte
are: JDBC driver to connect to a relational database, ODMG driver to connect to an object database, JRF
library to connect to SAP R/3 system. A resource adapter may provide additional services besides the co
nection API.
Sun Microsystems Inc. 4 May 12, 1999

Java Transaction API

a

nt
h

to be
nd
ose of
pport
nt. In
transaction manager to communicate transaction association, transaction
completion and recovery work. An example of such a resource manager is a
relational database server.

• A component-based transactional application that is developed to operate in
modern application server environment relies on the application server to
provide transaction management support through declarative transaction
attribute settings. An example of this type of applications is an application
developed using the industry standard Enterprise JavaBeans (EJB) compone
architecture. In addition, some other stand-alone Java client programs may wis
to control their transaction boundaries using a high-level interface provided by
the application server or the transaction manager.

• A communication resource manager (CRM) supports transaction context
propagation and access to the transaction service for incoming and outgoing
requests. The JTA document does not specify requirements pertained to
communication. Refer to the JTS Specification [2] for more details on
interoperability between Transaction Managers.

From the transaction manager’s perspective, the actual implementation of the
transaction services does not need to be exposed; only high-level interfaces need
defined to allow transaction demarcation, resource enlistment, synchronization a
recovery process to be driven from the users of the transaction services. The purp
JTA is to define the local Java interfaces required for the transaction manager to su
transaction management in the Java enterprise distributed computing environme
the diagram shown below, the small half-circle represents the JTA specification.
Chapter 3 of the document describes each portion of the specification in details.
Sun Microsystems Inc. 5 May 12, 1999

Java Transaction API
1.2 Target Audience

This document is intended for implementors of:

• Transaction managers such as JTS.

• Resource adapters such as JDBC drivers and JMS providers.

• Transactional resource managers such as RDBMS.

• Application servers such as EJB Servers.

• Advanced transactional applications written in the JavaTM programming
language.

Application

 Application
Server

Resource
ManagerTransaction

Manager

Service
Implementation

Transaction

EJB
JDBC, JMS

JTAJTA
UserTransaction

XAResource

Inbound tx Outbound tx

Protocol specific Protocol specific

(for example, JTS)

TransactionManager
JTA

Communication Resource
Manager (CRM)

Low-level
Sun Microsystems Inc. 6 May 12, 1999

Java Transaction API

D
ion

port
BC

pport
able
m that

ger
ing of
ides
ion
ction
2 Relationship to Other Java APIs

2.1 Enterprise JavaBeans

The Enterprise JavaBeans architecture requires that an EJB Container support
application-level transaction demarcation by implementing the
javax.transaction.UserTransaction interface. TheUserTransaction interface
is intended to be used by both the EJB Bean implementor (for TX_BEAN_MANAGE
Beans) and by the client programmer who wants to explicitly demarcate transact
boundaries within programs that are written in the Java programming language.

Refer tohttp://java.sun.com/products/ejb for further details on EJB.

Note: The EJB Spec and related Java files will be updated to reflect the current
JTA package naming. This work is planned for the next EJB spec release.

2.2 JDBC 2.0 Standard Extension API

One of the new features included in the JDBC 2.0 Extension Specification is sup
for distributed transactions. Two new JDBC interfaces have been created for JD
drivers to support distributed transactions using the Java Transaction API’s
XAResource interface. The new JDBC 2.0 interfaces arejavax.sql.XAConnection

andjavax.sql.XADataSource .

A JDBC driver that supports distributed transactions implements the
javax.transaction.xa.XAResource interface, thejavax.sql.XAConnection

interface, and thejavax.sql.XADataSource interface. Refer to the JDBC 2.0
Standard Extension Specification for further details (http://java.sun.com/products/
jdbc).

2.3 Java Message Service

The Java Transaction API may be used by a Java Message Service provider to su
distributed transactions. A JMS provider that supports the XAResource interface is
to participate as a resource manager in a distributed transaction processing syste
uses a two-phase commit transaction protocol. In particular, a JMS provider
implements thejavax.transaction.xa.XAResource interface, the
javax.jms.XAConnection and thejavax.jms.XASession interface. Refer to the
JMS 1.0 Specification for further details (http://java.sun.com/products/jms).

2.4 Java Transaction Service

Java Transaction Service (JTS) is a specification for building a transaction mana
which supports the JTA interfaces at the high-level and the standard Java mapp
the CORBA Object Transaction Service 1.1 specification at the low-level. JTS prov
transaction interoperability using the CORBA standard IIOP protocol for transact
propagation between servers. JTS is intended for vendors who provide the transa
system infrastructure for enterprise middleware.
Sun Microsystems Inc. 7 May 12, 1999

Java Transaction API

nded
ol
ese

sed

he
ged

ested

e
es.
st be
nager

n

he
relies
the
3 Java Transaction API

The Java Transaction API consists of three elements: a high-level application
transaction demarcation interface, a high-level transaction manager interface inte
for an application server, and a standard Java mapping of the X/Open XA protoc
intended for a transactional resource manager. This chapter specifies each of th
elements in details.

3.1 UserTransaction Interface

The javax.transaction.UserTransaction interface provides the application the
ability to control transaction boundaries programmatically. This interface may be u
by Java client programs or EJB beans.

TheUserTransaction.begin method starts a global transaction and associates t
transaction with the calling thread. The transaction-to-thread association is mana
transparently by the Transaction Manager.

Support for nested tranactions is not required. TheUserTransaction.begin method
throws theNotSupportedException when the calling thread is already associated
with a transaction and the transaction manager implementation does not support n
transactions.

Transaction context propagation between application programs is provided by th
underlying transaction manager implementations on the client and server machin
The transaction context format used for propagation is protocol dependent and mu
negotiated between the client and server hosts. For example, if the transaction ma
is an implementation of the JTS specification, it will use the transaction context
propagation format as specified in the CORBA OTS 1.1 specification. Transactio
propagation is transparent to application programs.

3.1.1 UserTransaction Support in EJB Server

EJB servers are required to support theUserTransaction interface for use by EJB
beans with the TX_BEAN_MANAGED transaction attribute. TheUserTransaction

interface is exposed to EJB components through theEJBContext interface using the
getUserTransaction method. Thus, an EJB application does not interface with t
Transaction Manager directly for transaction demarcation; instead, the EJB bean
on the EJB Server to provide support for all of its transaction work as defined in
Enterprise JavaBeans Specification [5].(The underlying interaction between the EJB
Server and the TM is transparent to the application.)

The code sample below illustrates the usage ofUserTransaction by a
TX_BEAN_MANAGED EJB session bean:

// In the session bean’s setSessionContext method,
// store the bean context in an instance variable
SessionContext ctx = sessionContext;

..
Sun Microsystems Inc. 8 May 12, 1999

Java Transaction API

gh
he

onal
NDI

The

ged.
l EJB
// somewhere else in the bean’s business logic
UserTransaction utx = ctx.getUserTransaction();

// start a transaction
utx.begin();

.. do work

// commit the work
utx.commit();

3.1.2 UserTransaction Support for Transactional Clients

TheUserTransaction interface may be used by Java client programs either throu
support from the application server or support from the transaction manager on t
client host.

The application server vendor is expected to provide tools for an administrator to
configure theUserTransaction object binding in the JNDI namespace. The
implementation of theUserTransaction object must be both
javax.naming.Referenceable andjava.io.Serializable , so that the object can
be stored in all JNDI naming contexts.

If an application server supports transaction demarcation performed by transacti
clients, the application server must support the client program’s ability to use the J
lookup mechanism for obtaining theUserTransaction object reference. As JTA does
not define the JNDI name forUserTransaction , the client program should use an
appropriate configuration mechanism to pass the name string to the JNDIlookup

method.

An example of such an implementation is through the use of a system property.
following sample code is provided for illustrative purposes:

// get the system property value configured by administrator
String utxPropVal = System.getProperty(“jta.UserTransaction”);

// use JNDI to locate the UserTransaction object
Context ctx = new InitialContext();
UserTransaction utx = (UserTransaction)ctx.lookup(utxPropVal);

// start transaction work..
utx.begin();
.. do work
utx.commit();

3.2 TransactionManager Interface

The javax.transaction.TransactionManager interface allows the application
server to control transaction boundaries on behalf of the application being mana
For example, the EJB container manages the transaction states for transactiona
components; the container uses theTransactionManager interface mainly to
Sun Microsystems Inc. 9 May 12, 1999

Java Transaction API

on
ay

he

s

, the

. This

nd

s
e
nly.

ed

d

read.

he
demarcate transaction boundaries where operations affect the calling thread’s
transaction context. The Transaction Manager maintains the transaction context
association with threads as part of its internal data structure. A thread’s transacti
context is eithernull or it refers to a specific global transaction. Multiple threads m
concurrently be associated with the same global transaction.

Support for nested tranactions is not required.

Each transaction context is encapsulated by aTransaction object, which can be used
to perform operations which are specific to the target transaction, regardless of t
calling thread’s transaction context. The following sections provide more details.

3.2.1 Starting a Transaction

TheTransactionManager.begin method starts a global transaction and associate
the transaction context with the calling thread.

If the Transaction Manager implementation does not support nested transactions
TransactionManager.begin method throws theNotSupportedException when the
calling thread is already associated with a transaction.

TheTransactionManager.getTransaction method returns theTransaction object
that represents the transaction context currently associated with the calling thread
Transaction object can be used to perform various operations on the target
transaction. Examples ofTransaction object operations are resource enlistment a
synchronization registration. TheTransaction interface is described in section 3.3
below.

3.2.2 Completing a Transaction

TheTransactionManager.commit method completes the transaction currently
associated with the calling thread. After thecommit method returns, the calling thread
is not associated with a transaction. If thecommit method is called when the thread i
not associated with any transaction context, the TM throws an exception. In som
implementations, the commit operation is restricted to the transaction originator o
If the calling thread is not allowed to commit the transaction, the TM throws an
exception.

TheTransactionManager.rollback method rolls back the transaction associated
with the current thread. After therollback method completes, the thread is associat
with no transaction.

3.2.3 Suspending and Resuming a Transaction

A call to theTransactionManager .suspend method temporarily suspends the
transaction that is currently associated with the calling thread. If the thread is not
associated with any transaction, anull object reference is returned; otherwise, a vali
Transaction object is returned. TheTransaction object can later be passed to the
resume method to reinstate the transaction context association with the calling th

TheTransactionManager.resume method re-associates the specified transaction
context with the calling thread. If the transaction specified is a valid transaction, t
Sun Microsystems Inc. 10 May 12, 1999

Java Transaction API

tion to

e
ist

sures

n
h the

urces
tained
ated
y the
source
ls the

n
action
4 for
transaction context is associated with the calling thread; otherwise, the thread is
associated with no transaction.

Transaction tobj = TransactionManager.suspend();

..
TransactionManager.resume(tobj);

If TransactionManager.resume is invoked when the calling thread is already
associated with another transaction, the Transaction Manager throws the
IllegalStateException exception.

Note that some transaction manager implementations allow a suspended transac
be resumed by a different thread. This feature is not required by JTA.

The application server is responsible for ensuring that the resources in use by th
application are properly delisted from the suspended transaction. A resource del
operation triggers the Transaction Manager to inform the resource manager to
disassociate the transaction from the specified resource object
(XAResource.end(TMSUSPEND)).

When the application’s transaction context is resumed, the application server en
that the resource in use by the application is again enlisted with the transaction.
Enlisting a resource as a result of resuming a transaction triggers the Transactio
Manager to inform the resource manager to re-associate the resource object wit
resumed transaction (XAResource.start(TMRESUME)). Refer to Sections 3.3.1 and
3.4.4 for more details on resource enlistment and transaction association.

In the EJB environment, the EJB server typically manages the transactional reso
in use by the applications (The EJB bean’s resource requests are tracked and main
in the bean’s instance context). When suspending a transaction currently associ
with an EJB instance, the application server examines the list of resources in use b
bean instance to determine whether any resources need to be delisted. For each re
that is currently enlisted with the suspended transaction, the application server cal
Transaction.delistResource method to disassociate the resource from the
transaction. When the transaction is resumed for the EJB instance, the applicatio
server examines the list of resources in use and enlists the resources with the trans
manager before giving control to the bean’s business method. Refer to Chapter
further discussion on JTA support in an application server.

3.3 Transaction Interface

TheTransaction interface allows operations to be performed on the transaction
associated with the target object. Every global transaction is associated with one
Transaction object when the transaction is created. TheTransaction object can be
used to:

• Enlist the transactional resources in use by the application.

• Register for transaction synchronization callbacks.

• Commit or rollback the transaction.
Sun Microsystems Inc. 11 May 12, 1999

Java Transaction API

s

ome
r an

sed in

is

ch
t

ough

ce.
ing

n

l

seen
• Obtain the status of the transaction.

These functions are described in the sections below.

3.3.1 Resource Enlistment

An application server provides the application run-time infrastructure that include
transactional resource management. Transactional resources such as database
connections are typically managed by the application server in conjunction with s
resource adapter and optionally with connection pooling optimization. In order fo
external transaction manager to coordinate transactional work performed by the
resource managers, the application server must enlist and delist the resources u
the transaction.

Resource enlistment performed by an application server serves two purposes:

• It informs the Transaction Manager about the resouce manager instance that
participating in the global transaction. This allows the Transaction Manager to
inform the participating resource manager on transaction association with the
work performed through the connection (resource) object.

• It enables the Transaction Manager to group the resource types in use by ea
transaction. The resource grouping allows the Transaction Manager to conduc
the two-phase commit transaction protocol between the TM and the RMs, as
defined by the X/Open XA specification.

For each resource in use by the application, the application server invokes the
enlistResource method and specifies theXAResource object that identifies the
resource in use.

TheenlistResource request results in the Transaction Manager informing the
resource manager to start associating the transaction with the work performed thr
the corresponding resource—by invoking theXAResource.start method. The
Transaction Manager is responsible for passing the appropriate flag in its
XAResource.start method call to the resource manager. TheXAResource interface
is described in section 3.4.

If the target transaction already has anotherXAResource object participating in the
transaction, the Transaction Manager invokes theXAResource.isSameRM method to
determine if the specifiedXAResource represents the same resource manager instan
This information allows the TM to group the resource managers who are perform
work on behalf of the transaction.

• If the XAResource object represents a resource manager instance who has see
the global transaction before, the TM groups the newly registered resource
together with the previousXAResource object and ensures that the same RM
only receives one set of prepare-commit calls for completing the target globa
transaction.

If the XAResource object represents a resource manager who has not previously

the global transaction, the TM establishes a different transaction branch ID1 and
Sun Microsystems Inc. 12 May 12, 1999

Java Transaction API

etion

ger to

urce.

 the
ction

s

h.
r-
r
e

ensures tha this new resource manager is informed about the transaction compl
with proper prepare-commit calls.

The isSameRM method is discussed in section 3.4.9.

TheTransaction.delistResource method is used to disassociate the specified
resource from the transaction context in the target object. The application server
invokes thedelistResource method with the following two parameters:

• TheXAResource object that represents the resource.

• A flag to indicate whether the delistment was due to:

• The transaction being suspended (TMSUSPEND).
• A portion of the work has failed (TMFAIL).
• A normal resource release by the application (TMSUCCESS).

An example ofTMFAIL could be the situation where an application receives an
exception on its connection operation.

The delist request results in the transaction manager informing the resource mana
end the association of the transaction with the targetXAResource . The flag value allows
the application server to indicate whether it intends to come back to the same reso
The transaction manager passes the appropriate flag value in itsXAResource.end

method call to the underlying resource manager.

3.3.2 Transaction Synchronization

Transaction synchronization allows the application server to get notification from
transaction manager before and after the transaction completes. For each transa
started, the application server may optionally register a
javax.transaction.Synchronization callback object to be invoked by the
transaction manager:

• TheSynchronization.beforeCompletion method is called prior to the start
of the two-phase transaction commit process. This call is executed with the
transaction context of the transaction that is being committed.

• TheSynchronization.afterCompletion method is called after the
transaction has completed. The status of the transaction is supplied in the
parameter.

1.Transaction Branch is defined in the X/Open XA spec [1] as follows: “A global transaction has one or
more transaction branches. A branch is a part of the work in support of a global transaction for which the
TM and the RM engage in a separate but coordinated transaction commitment protocol. Each of the RM’
internal units of work in support of a global transaction is part of exactly one branch. .. After the TM begins
the transaction commitment protocol, the RM receives no additional work to do on that transaction branc
The RM may receive additional work on behalf of the same transaction, from different branches. The diffe
ent branches are related in that they must be completed atomically. Each transaction branch identifier (o
XID) that the TM gives the RM identifies both a global transaction and a specific branch. The RM may us
this information to optimise its use of shared resources and locks.”
Sun Microsystems Inc. 13 May 12, 1999

Java Transaction API

ame

ager

an be

e

y

 a
 A

n

3.3.3 Transaction Completion

TheTransaction.commit andTransaction.rollback methods allow the target
object to be comitted or rolled back. The calling thread is not required to have the s
transaction associated with the thread.

If the calling thread is not allowed to commit the transaction, the transaction man
throws an exception.

3.3.4 Transaction Equality and Hash Code

The transaction manager must implement theTransaction object’sequals method
to allow comparison between the target object and anotherTransaction object. The
equals method should returntrue if the target object and the parameter object both
refer to the same global transaction.

For example, the application server may need to compare twoTransaction objects
when trying to reuse a resource that is already enlisted with a transaction. This c
done using theequals method.

Transaction txObj = TransactionManager.getTransaction();
Transaction someOtherTxObj = ..

..
boolean isSame = txObj.equals(someOtherTxObj);

In addition, the transaction manager must implement theTransaction object’s
hashCode method so that if twoTransaction objects are equal, they have the sam
hash code. However, the converse is not necessarily true. TwoTransaction objects
with the same hash code are not necessarily equal.

3.4 XAResource Interface

Thejavax.transaction.xa.XAResource interface is a Java mapping of the industr
standard XA interface based on the X/Open CAE Specification (Distributed
Transaction Processing: The XA Specification).

TheXAResource interface defines the contract between a Resource Manager and
Transaction Manager in a distributed transaction processing (DTP) environment.
resource adapter for a resource manager implements theXAResource interface to
support association of a global transaction to a transaction resource, such as a
connection to a relational database.

A global transaction is a unit of work that is performed by one or more resource
managers (RM) in a DTP system. Such a system relies on an external transactio
manager, such as Java Transaction Service (JTS), to coordinate transactions.
Sun Microsystems Inc. 14 May 12, 1999

Java Transaction API

that
tions
ce is a

. The
n
th

ction

y the
 the

nt,

re
TheXAResource interface can be supported by any transactional resource adapter
is intended to be used by application programs in an environment where transac
are controlled by an external transaction manager. An example of such a resour
database management system. An application may access data through multiple
database connections. Each database connection is associated with anXAResource

object that serves as a proxy object to the underlying resource manager instance
transaction manager obtains anXAResource for each resource manager participating i
a global transaction. It uses thestart method to associate the global transaction wi
the resource, and it uses theend method to disassociate the transaction from the
resource. The resource manager is responsible for associating the global transa
with all work performed on its data between thestart andend method invocations.

At transaction commit time, these transactional resource managers are informed b
transaction manager to prepare, commit, or rollback the transaction according to
two-phase commit protocol.

TheXAResource interface, in order to be better integrated with the Java environme
differs from the standard X/Open XA interface in the following ways:

• The resource manager initialization is done implicitly by the resource adapter
when the resource (connection) is acquired. There is noxa_openequivalent in
theXAResource interface. This obviates the need for a resource manager to
provide a different syntax to open a resource for use within the distributed
transaction environment from the syntax used in the environment without
distributed transactions.

• Rmidis not passed as an argument. We use an object-oriented approach whe
eachRmid is represented by a separateXAResource object.

• Asynchronous operations are not supported. Java supports multi-threaded
processing and most databases do not support asynchronous operations.

javax.transaction.
xa.XAResource

Resource
Managers
 (RMs)

Transaction

 Manager
 (TM)

Database 1
Database 2

Java Application

Application Server

javax.transaction.
TransactionManager

JDBC 2.0
JMS 1.0

Message
Queue
Server
Sun Microsystems Inc. 15 May 12, 1999

Java Transaction API

r that
w how
rce

and

er

he
prised

losed)

n and
voke
.

nup
ling

ot
• Error return values that are caused by the transaction manager’s improper
handling of theXAResource object are mapped to Java exceptions via the
XAException class.

• The DTP concept of “Thread of Control” maps to all Java threads that are given
access to theXAResource andConnection objects. For example, it is legal
(although in practice rarely used) for two different Java threads to perform the
start andend operations on the sameXAResource object.

• Association migration and dynamic registration (optional X/Open XA features)
are not supported. We’ve omitted these features for a simplerXAResource

interface and simpler resource adapter implementation.

3.4.1 Opening a Resource Manager

The X/Open XA interface specifies that the transaction manager must initialize a
resource manager (xa_open) prior to any otherxa_calls. We believe that the knowledge
of initializing a resource manager should be embedded within the resource adapte
represents the resource manager. The transaction manager does not need to kno
to initialize a resource manager. The TM is only responsible for informing the resou
manager about when to start and end work associated with a global transaction
when to complete the transaction.

The resource adapter is responsible for opening (initializing) the resource manag
when the connection to the resource manager is established.

3.4.2 Closing a Resource Manager

A resource manager is closed by the resource adapter as a result of destroying t
transactional resource. A transaction resource at the resource adapter level is com
of two separate objects:

• An XAResource object that allows the transaction manager to start and end the
transaction association with the resource in use and to coordinate transaction
completion process.

• A connection object that allows the application to perform operations on the
underlying resource (for example, JDBC operations on an RDBMS).

The resource manager, once opened, is kept open until the resource is released (c
explicitly. When the application invokes the connection’sclose method, the resource
adapter invalidates the connection object reference that was held by the applicatio
notifies the application server about the close. The transaction manager should in
theXAResource.end method to disassociate the transaction from that connection

Theclose notification allows the application server to perform any necessary clea
work and to mark the physical XA connection as free for reuse, if connection poo
is in place.

3.4.3 Thread of Control

The X/Open XA interface specifies that the transaction association relatedxa calls must
be invoked from the same thread context. This thread-of-control requirement is n
Sun Microsystems Inc. 16 May 12, 1999

Java Transaction API

ent,
e.

e
g on
ved
t
’s

 with

e
text.

 it is

y the

 a

ted
applicable to the object-oriented component-based application run-time environm
in which application threads are dispatched dynamically at method invocation tim
Different Java threads may be using the same connection resource to access th
resource manager if the connection spans multiple method invocation. Dependin
the implementation of the application server, different Java threads may be invol
with the sameXAResource object. The resource context and the transaction contex
may be operated independent of thread context. This means, for example, that it
possible for different threads to be invoking theXAResource .start and
XAResource.end methods.

If the application server allows multiple threads to use a singleXAResource object and
the associated connection to the resource manager, it is the responsibility of the
application server to ensure that there is only one transaction context associated
the resource at any point of time.

Thus theXAResource interface specified in this document requires that the resourc
managers be able to support the two-phase commit protocol from any thread con

3.4.4 Transaction Association

Global transactions are associated with a transactional resource via the
XAResource.start method, and disassociated from the resource via the
XAResource.end method. The resource adapter is responsible for internally
maintaining an association between the resource connection object and theXAResource

object. At any given time, a connection is associated with a single transaction or
not associated with any transaction at all.

Interleaving multiple transaction contexts using the same resource may be done b
transaction manager as long asXAResource.start andXAResource.end are invoked
properly for each transaction context switch. Each time the resource is used with
different transaction, the methodXAResource.end must be invoked for the previous
transaction that was associated with the resource, andXAResource.start must be
invoked for the current transaction context.

XAResource does not support nested transactions. It is an error for the
XAResource.start method to be invoked on a connection that is currently associa
with a different transaction.

Table 1: Transaction Association

XAResource
Methods

XAResource Transaction States

Not
Associated

T0

Associated

T1

Association
Suspended

T2

start() T1

start (TMRESUME) T1
Sun Microsystems Inc. 17 May 12, 1999

Java Transaction API

 by an
action

the
h the

ltiple
quest
nt
tion

, it is
isted
he
same

we

urce
3.4.5 Externally Controlled Connections

Resources for transactional applications, whose transaction states are managed
application server, must also be managed by the application server so that trans
association is performed properly. If an application is associated with a global
transaction, it is an error for the application to perform transactional work through
connection without having the connection’s resource object already associated wit
global transaction. The application server must ensure that theXAResource object in
use is associated with the transaction. This is done by invoking the
Transaction.enlistResource method.

If a server side transactional application retains its database connection across mu
client requests, the application server must ensure, before dispatching a client re
to the application thread, that the resource is enlisted with the application’s curre
transaction context. This implies that the application server manages the connec
resource usage status across multiple method invocations.

3.4.6 Resource Sharing

When the same transactional resource is used to interleave multiple transactions
the responsibility of the application server to ensure that only one transaction is enl
with the resource at any given time. To initiate the transaction commit process, t
transaction manager is allowed to use any of the resource objects connected to the
resource manager instance. The resource object used for the two-phase commit
protocol need not have been involved with the transaction being completed.

The resource adapter must be able to handle multiple threads invoking theXAResource

methods concurrently for transaction commit processing. For example, suppose
have a transactional resourcer1 . Global transactionxid1 wasstarted andended with
r1 . Then a different global transactionxid2 is associated withr1 . Meanwhile, the
transaction manager may start the two phase commit process forxid1 usingr1 or any
other transactional resource connected to the same resource manager. The reso

start (TMJOIN) T1

end(TMSUSPEND) T2

end (TMFAIL) T 0 T0

end (TMSUCCESS) T0 T0

recover() T0 T1 T2

Table 1: Transaction Association

XAResource
Methods

XAResource Transaction States

Not
Associated

T0

Associated

T1

Association
Suspended

T2
Sun Microsystems Inc. 18 May 12, 1999

Java Transaction API

al

. The

the

n the
tion.

urce
nager,
adapter needs to allow the commit process to be executed while the resource is
currently associated with a different global transaction.

The sample code below illustrates the above scenario:

// Suppose we have some transactional connection-based
// resource r1 that is connected to an enterprise information
// service system.
//
XAResource xares = r1.getXAResource();

xares.start(xid1); // associate xid1 to the connection
..
xares.end(xid1); // dissociate xid1 to the connection
..

xares.start(xid2); // associate xid2 to the connection
..

// While the connection is associated with xid2,
// the TM starts the commit process for xid1

status = xares.prepare(xid1);
..
xares.commit(xid1, false);

3.4.7 Local and Global Transactions

The resource adapter is encouraged to support the usage of both local and glob
transactions within the same transactional connection. Local transactions are
transactions that are started and coordinated by the resource manager internally
XAResource interface is not used for local transactions.

When using the same connection to perform both local and global transactions,
following rules apply:

• The local transaction must be committed (or rolled back) before starting a
global transaction in the connection.

• The global transaction must be disassociated from the connection before any
local transaction is started.

If a resource adapter does not support mixing local and global transactions withi
same connection, the resource adapter should throw the resource specific excep
For example,java.sql.SQLException is thrown to the application if the resource
manager for the underlying RDBMS does not support mixing local and global
transactions within the same JDBC connection.

3.4.8 Failures Recovery

During recovery, the Transaction Manager must be able to communicate to all reso
managers that are in use by the applications in the system. For each resource ma
Sun Microsystems Inc. 19 May 12, 1999

Java Transaction API

that
urce

ry

tion

stem
kup

action
er
ted
at do

get
sented

rwise,
ge.
the Transaction Manager uses theXAResource.recover method to retrieve the list of
transactions that are currently in a prepared or heuristically completed state.

Typically, the system administrator configures all transactional resource factories
are used by the applications deployed on the system. An example of such a reso
factory is the JDBCXADataSource object, which is a factory for the JDBC
XAConnection objects. The implementation of these transactional resource facto
objects are bothjavax.naming.Referenceable andjava.io.Serializable so that
they can be stored in all JNDI naming contexts.

BecauseXAResource objects are not persistent across system failures, the Transac
Manager needs to have some way to acquire theXAResource objects that represent the
resource managers which might have participated in the transactions prior to the sy
failure. For example, a Transaction Manager might, through the use of the JNDI loo
mechanism and cooperation from the application server, acquire anXAResource object
representing each of the Resource Manager configured in the system. The Trans
Manager then invokes theXAResource.recover method to ask each resource manag
to return any transactions that are currently in a prepared or heuristically comple
state. It is the responsibility of the Transaction Manager to ignore transactions th
not belong to it.

3.4.9 Identifying Resource Manager Instance

TheisSameRM method is invoked by the Transaction Manager to determine if the tar
XAResource object represents the same resource manager instance as that repre
by theXAResource object in the parameter. TheisSameRM method returnstrue if the
specified target object is connected to the same resource manager instance; othe
the method returnsfalse. The semi-pseudo code below illustrates the intended usa

public boolean enlistResource(XAResource xares)
{ ..

// Assuming xid1 is the target transaction and
// xid1 already has another resource object xaRes1
// participating in the transaction

boolean sameRM = xares.isSameRM(xaRes1);
if (sameRM) {

//
// Same underlying resource manager instance,
// group together with xaRes1 and join the transaction
//
xares.start(xid1, TMJOIN);

} else {
//
// This is a different RM instance,
// make a new transaction branch for xid1
//
xid1NewBranch = makeNewBranch(xid1);
xares.start(xid1NewBranch, TMNOFLAGS);

}
..
Sun Microsystems Inc. 20 May 12, 1999

Java Transaction API

:

n

er

used

ation
}

3.4.10 Dynamic Registration

Dynamic registration is not supported inXAResource because of the following reasons

• In the Java component-based application server environment, connections to
the resource manager are acquired dynamically when the application explicitly
requests for a connection. These resources are enlisted with the transaction
manager on an “as-needed” basis (unlike the static xa_switch table that exists i
the C-XA procedural model).

• If a resource manager requires a way to dynamically register its work to the
global transaction, then the implementation can be done at the resource adapt
level via a private interface between the resource adapter and the underlying
resource manager.

3.5 Xid Interface

The javax.transaction.xa.Xid interface is a Java mapping of the X/Open transaction
identifier XID structure. This interface specifies three accessor methods which are
to retrieve a global transaction’s format ID, a global transaction ID, and a branch
qualifier. TheXid interface is used by the transaction manager and the resource
managers. This interface is not visible to the application programs nor the applic
server.
Sun Microsystems Inc. 21 May 12, 1999

Java Transaction API

 for
s the
erver.
r is
ource
base,
m, and
based

called

s

at

t
oes

ace
rce
 of
4 JTA Support in the Application Server

This chapter provides a discussion on implementation and usage considerations
application servers to support the Java Transaction API. Our discussion assume
application’s transactions and resource usage are managed by the application s
We further assume that access to the underlying transactional resource manage
through some Java API implemented by the resource adapter representing the res
manager. For example, a JDBC 2.0 driver may be used to access a relational data
a SAP connector resource adapter may be used to access the SAP R/3 ERP syste
so on. This section focuses on the usage of JTA and assumes a generic connection
transactional resource is in use without being specific about a particular type of
resource manager.

4.1 Connection-Based Resource Usage Scenario

Let’s assume that the resource adapter provides a connection-based resource API
TransactionalResource to access the underlying resource manager.

In a typical usage scenario, the application server invokes the resource adapter’
resource factory to create aTransactionalResource object. The resource adapter
internally associates theTransactionalResourcewith two other entities: an object that
implements the specific resource adapter’s connection interface and an object th
implements thejavax.transaction.xa.XAResource interface.

The application server obtains aTransactionalResource object and uses it in the
following way. The application server obtains theXAResource object via a
getXAResource method. The application server enlists theXAResource to the
Transaction Manager (TM) using theTransaction.enlistResource method. The
TM informs the Resource Manager to associate the work performed (through tha
connection) with the transaction currently associated with the application. The TM d
it by invoking theXAResource.start method.

The application server then invokes somegetConnection method to obtain a
Connection object and returns it to the application. Note that the Connection interf
is implemented by the resource adapter and it is specific to the underlying resou
supported by the resource manager. The diagram below illustrates a general flow
acquiring resource and enlisting the resource to the Transaction Manager.
Sun Microsystems Inc. 22 May 12, 1999

Java Transaction API

he

In this usage scenario, theXAResource interface is transparent to the application
program, and theConnection interface is transparent to the transaction manager. T
application server is the only party that holds a reference to some
TransactionalResource object.

The code sample below illustrate how the application server obtains theXAResource

object reference and enlists it with the Transaction Manager.

// Acquire some connection-based transactional resource to
// access the resource manager

Context ctx = InitialContext();
ResourceFactory rf =(ResourceFactory)ctx.lookup(“MyEISResource”);
TransactionalResource res = rf.getTransactionalResource();

// Obtain the XAResource part of the connection and
// enlist it with the Transaction Manager

XAResource xaRes = res.getXAResource();
(TransactionManager.getTransaction()).enlistResource(xaRes);

// get the connection part of the transaction resource
Connection con = (Connection)res.getConnection();

.. return the connection to the application

XAResource Connection

obj-ref
obj-refobj-ref

getTransactionalResource
getConnectiongetXAResource

javax.transaction. javax.tbd.

Resource Manager

Adapter

AppServer

Transaction
Manager

Java
Application

TransactionalResource

javax.transaction.xa.

enlistResource

XAResource.start

getResourceTransaction.
Sun Microsystems Inc. 23 May 12, 1999

Java Transaction API

le a
e of

n

part
using

ome

apter

ction.

.

4.2 Transaction Association and Connection Request Flow

This session provides a brief walkthrough of how an application server may hand
connection request from the application. The figure that follows illustrates the usag
JTA. The steps shown are for illustrative purposes, they are not prescriptive:

1. Assuming a client invokes an EJB bean with a TX_REQUIRED transactio
attribute and the client is not associated with a global transaction, the EJB
container starts a global transaction by invoking the
TransactionManager.begin method.

2. After the the transaction starts, the container invokes the bean method. As
of the business logic, the bean requests for a connection-based resource
the API provided by the resource adapter of interest.

3. The application server obtains a resource from the resource adapter via s
ResourceFactory.getTransactionalResourcemethod.

4. The resource adapter creates theTransactionalResource object and the
associatedXAResource andConnection objects.

5. The application server invokes thegetXAResource method.

6. The application server enlists the resource to the transaction manager.

7. The transaction manager invokesXAResource.start to associate the current
transaction to the resource.

8. The application server invokes thegetConnection method.

9. The application server returns theConnection object reference to the
application.

10. The application performs one or more operations on the connection.

11. The application closes the connection.

12. The application server delist the resource when notified by the resource ad
about the connection close.

13. The transaction manager invokesXAResource.end to disassociate the
transaction from theXAResource .

14. The application server asks the transaction manager to commit the transa

15. The transaction manager invokesXAResource.prepare to inform the resource
manager to prepare the transaction work for commit.

16. The transaction manager invokesXAResource.commit to commit the
transaction.

This example illustrates the application server’s usage of theTransactionManager

andXAResource interfaces as part of the application connection request handling
Sun Microsystems Inc. 24 May 12, 1999

Java Transaction API
new

Transactional
Application

Application
Resource- Transactional

XAResource
Server

new

new

getXAResource

getConnection

start

getConnection

return connection

application perfoms operations

end

prepare)

close

new

getTransactionalResource

Connection

commit

Transaction
Manager

Interfaces implemented by the resource adapter

enlistResource

delistResource

commit

Factory Resource

begin
Sun Microsystems Inc. 25 May 12, 1999

Java Transaction API

art of

APIs.
5 Java Transaction API Reference

This chapter provides the documentation of the interfaces and classes that are p
the Java Transaction API standard extension. Thejavax.transaction package is
relevant to the Enterprise JavaBeans, JDBC, JMS, and JTS standard extension

packagejavax.transaction:

Interface:

public interface javax.transaction.Status
public interface javax.transaction.Synchronization
public interface javax.transaction.Transaction
public interface javax.transaction.TransactionManager
public interface javax.transaction.UserTransaction

Classes:

public class javax.transaction.HeuristicCommitException
public class javax.transaction.HeuristicMixedException
public class javax.transaction.HeuristicRollbackException
public class javax.transaction.InvalidTransactionException
public class javax.transaction.NotSupportedException
public class javax.transaction.RollbackException
public class javax.transaction.TransactionRequiredException
public class javax.transaction.TransactionRolledbackException
public class javax.transaction.SystemException

packagejavax.transaction.xa:

Interfaces:

public interface javax.transaction.xa.XAResource
public interface javax.transaction.xa.Xid

Classes:

public class javax.transaction.xa.XAException
Sun Microsystems Inc. 26 May 12, 1999

Java Transaction API

ns this
s unless

xists,

tation
se it is

ult of a

m-
Interface Status

interface javax.transaction. Status
{

public final static int STATUS_ACTIVE;
public final static int STATUS_COMMITTED;
public final static int STATUS_COMMITTING;
public final static int STATUS_MARKED_ROLLBACK;
public final static int STATUS_NO_TRANSACTION;
public final static int STATUS_PREPARED;
public final static int STATUS_PREPARING;
public final static int STATUS_ROLLEDBACK;
public final static int STATUS_ROLLING_BACK;
public final static int STATUS_UNKNOWN;

}

Variables

• STATUS_ACTIVE

public final static int STATUS_ACTIVE

A transaction is associated with the target object and it is in the active state. An implementation retur
status after a transaction has been started and prior to a transaction coordinator issuing any prepare
the transaction has been marked for rollback.

• STATUS_COMMITTED

public final static int STATUS_COMMITTED

A transaction is associated with the target object and it has been committed. It is likely that heuristics e
otherwise the transaction would have been destroyed and NoTransaction returned.

• STATUS_COMMITTING

public final static int STATUS_COMMITTING

A transaction is associated with the target object and it is in the process of committing. An implemen
returns this status if it has decided to commit, but has not yet completed the process, probably becau
waiting for responses from one or more Resources.

• STATUS_MARKED_ROLLBACK

public final static int STATUS_MARKED_ROLLBACK

A transaction is associated with the target object and it has been marked for rollback, perhaps as a res
setRollbackOnly operation.

• STATUS_NO_TRANSACTION

public final static int STATUS_NO_TRANSACTION

No transaction is currently associated with the target object. This will occur after a transaction has co
pleted.

• STATUS_PREPARED

public final static int STATUS_PREPARED
Sun Microsystems Inc. 27 May 12, 1999

Java Transaction API

ed.

tion
e it is

 It is
turned.

tation
use it is

a tran-
A transaction is associated with the target object and it has been prepared, i.e. all subordinates have
responded Vote.Commit. The target object may be waiting for a superior's instruction as how to proce

• STATUS_PREPARING

public final static int STATUS_PREPARING

A transaction is associated with the target object and it is in the process of preparing. An implementa
returns this status if it has started preparing, but has not yet completed the process, probably becaus
waiting for responses to prepare from one or more Resources.

• STATUS_ROLLEDBACK

public final static int STATUS_ROLLEDBACK

A transaction is associated with the target object and the outcome has been determined as rollback.
likely that heuristics exist, otherwise the transaction would have been destroyed and NoTransaction re

• STATUS_ROLLING_BACK

public final static int STATUS_ROLLING_BACK

A transaction is associated with the target object and it is in the process of rolling back. An implemen
returns this status if it has decided to rollback, but has not yet completed the process, probably beca
waiting for responses from one or more Resources.

• STATUS_UNKNOWN

public final static int STATUS_UNKNOWN

A transaction is associated with the target object but its current status cannot be determined. This is
sient condition and a subsequent invocation will ultimately return a different status.
Sun Microsystems Inc. 28 May 12, 1999

Java Transaction API

before
isters a

tion
 com-

rolled

turned
Interface Synchronization

interface javax.transaction. Synchronization
{

public abstract void beforeCompletion ();
public abstract void afterCompletion (int status);

}

The transaction manager provides a synchronization protocol that allows the interested party to be notified
and after the transaction completes. Using the registerSynchronization method, the application server reg
Synchronization object for the transaction currently associated with the target Transaction object.

Methods

• beforeCompletion

public abstract void beforeCompletion()

ThebeforeCompletion method is called by the transaction manager prior to the start of the transac
completion process. This call is executed with the transaction context of the transaction that is being
mitted.

• afterCompletion

public abstract void afterCompletion(int status)

The afterCompletion method is called by the transaction manager after the transaction is committed or
back.

Parameters:
status

Status of the transaction that was completed. The value provided is the same as that re
by getStatus.
Sun Microsystems Inc. 29 May 12, 1999

Java Transaction API

sac-

status

been

been

t.
Interface Transaction

interface javax.transaction. Transaction
{

public abstract void commit ();
public abstract boolean delistResource (XAResource xaRes, int flag);
public abstract boolean enlistResource (XAResource xaRes);
public abstract int getStatus ();
public abstract void registerSynchronization (Synchronization sync);
public abstract void rollback ();
public abstract void setRollbackOnly ();

}

TheTransaction interface allows operations to be performed against the transaction in the target Tran
tioin object. A Transaction object is created corresponding to each global transaction creation.TheTransac-
tion object can be used for resource enlistment, synchronization registration, transaction completion and
query operations.

Methods

• commit

public abstract void commit() throws RollbackException,
HeuristicMixedException, HeuristicRollbackException,
SecurityException, SystemException

Complete the transaction associated with the target Transaction object.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have
rolled back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: IllegalStateException
Thrown if the transaction in the target object is inactive.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• delistResource

public abstract boolean delistResource(XAResource xaRes, int flag)
throws IllegalStateException, SystemException

Disassociate the resource specified from the transaction associated with the target Transaction objec

Parameters:
xaRes
Sun Microsystems Inc. 30 May 12, 1999

Java Transaction API

tends

can

.

ns the
TheXAResource object associated with the resource (connection).
flag

TMSUSPEND - the resource should be dissociated with the suspend mode, the caller in
to come back to the current state.
TMFAIL - the resource is dissociated because part of the work has failed. This typically
be caused by an error exception encountered on the resource in use.
TMSUCCESS - the resource is dissociated as part of the normal work completion.

Returns:
true if the dissociation of the resource is successful; otherwisefalse.

Throws: IllegalStateException
Thrown if the transaction in the target object is inactive.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• enlistResource

public abstract boolean enlistResource (XAResource xaRes)
throws RollbackException , IllegalStateException,
SystemException

Enlist the resource specified with the transaction associated with the target Transaction object.

Parameters:
xaRes

The XAResource object associated with the resource (connection).

Returns:
true if the enlistment is successful; otherwisefalse.

Throws: IllegalStateException
Thrown if the transaction in the target object is in prepared state or the transaction is inactive

Throws: RollbackException
Thrown to indicate that the transaction has been marked for rollback only.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getStatus

public abstract int getStatus() throws SystemException

Obtain the status of the transaction associated with the target object.

Returns:
The transaction status. If no transaction is associated with the target object, this method retur
STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• registerSynchronization

public void registerSynchronization (Synchronization sync)
throws RollbackException , IllegalStateException,
SystemException
Sun Microsystems Inc. 31 May 12, 1999

Java Transaction API

transc-
s.

t.

.

ansac-
Register a synchronization object for the transaction currently associated with the target object. The
tion manager invokes thebeforeCompletion method prior to starting the transaction commit proces
After the transaction is completed, the transaction manager invokes theafterCompletion method.

Parameters:
sync

The Synchronization object for the transaction currently associated with the target objec

Throws: IllegalStateException
Thrown if the transaction in the target object is in prepared state or the transaction is inactive

Throws: RollbackException
Thrown to indicate that the transaction has been marked for rollback only.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• rollback

public abstract void rollback()
throws IllegalStateException, SyetemException

Rollback the transaction associated with the target Transaction object.

Throws: IllegalStateException
Thrown if the target object is not associtated with any transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setRollbackOnly

public abstract void setRollbackOnly()
throws IllegalStateException, SystemException

Modify the transaction associated with the target object such that the only possible outcome of the tr
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the target object is not associtated with any transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

Variables

• TMSUCCESS

public final static int TMSUCCESS = 0x04000000

Dissociate caller from transaction branch.

• TMSUSPEND

public final static int TMSUSPEND = 0x02000000

Caller is suspending (not ending) association with transaction branch.
Sun Microsystems Inc. 32 May 12, 1999

Java Transaction API
• TMFAIL

public final static int TMFAIL = 0x20000000

Dissociates the caller and mark the transaction branch rollback-only.
Sun Microsystems Inc. 33 May 12, 1999

Java Transaction API

ger for
n EJB
.

es not

d

been

been
Interface TransactionManager

interface javax.transaction. TransactionManager
{

public abstract void begin ();
public abstract void commit ();
public abstract int getStatus ();
public abstract Transaction getTransaction ();
public void resume (Transaction tobj);
public abstract void rollback ();
public abstract void setRollbackOnly ();
public abstract void setTransactionTimeout (int seconds);
public abstract Transaction suspend () ;

}

The TransactionManager interface allows the application server to communicate to the Transaction Mana
transaction boundaries demarcation on behalf of the application. For example, this interface is used by a
server to communicate to the transaction manager on behalf of the container-managed EJB components

Methods

• begin

public abstract void begin()
throws NotSupportedException, SystemException

Create a new transaction and associate it with the current thread.

Throws: NotSupportedException
Thrown if the thread is already associated with a transaction and the Transaction Manager do
support nested transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• commit

public abstract void commit()
 throws RollbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException,
IllegalStateException, SystemException

Complete the transaction associated with the current thread. When this method completes, the threa
becomes associated with no transaction.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have
rolled back.
Sun Microsystems Inc. 34 May 12, 1999

Java Transaction API

turns

lling

 the sup-
n con-

ad.
Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getStatus

public abstract int getStatus() throws SystemException

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. If no transaction is associated with the current thread, this method re
the Status.STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getTransaction

public abstract Transaction getTransaction () throws SystemException

Get the transaction object that represents the transaction context of the calling thread.

Returns:
The Transaction object that represents the transaction context of the calling thread. If the ca
thread is not associated with a transaction, a null object reference is returned.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• resume

public void resume(Transaction tobj)
throws InvalidTransactionException,

IllegalStateException, SystemException

Resume the transaction context association of the calling thread with the transaction represented by
plied Transaction object. When this method returns, the calling thread is associated with the transactio
text specified.

Parameters:
tobj

The Transaction object that consists of the transaction to be resumed for the calling thre

Throws: InvalidTransactionException
Thrown if the parametertobj refers to an invalid transaction.

Throws: IllegalStateException
Thrown if the current thread is already associated with another transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• rollback

public abstract void rollback()
Sun Microsystems Inc. 35 May 12, 1999

Java Transaction API

d

ansac-

read

ransac-

s the

hat rep-
ion, the
th no

ead.
 throws IllegalStateException, SecurityException, SystemException

Roll back the transaction associated with the current thread. When this method completes, the threa
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setRollbackOnly

public abstract void setRollbackOnly()
throws IllegalStateException, SystemException

Modify the transaction associated with the current thread such that the only possible outcome of the tr
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setTransactionTimeout

public abstract void setTransactionTimeout(int seconds)
throws SystemException

Modify the value of the timeout value that is associated with the transactions started by the current th
with the begin method.

If an application has not called this method, the transaction service uses some default value for the t
tion timeout.

Parameters:
seconds

The value of the timeout in seconds. If the value is zero, the transaction service restore
default value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• suspend

public abstract Transaction suspend () throws SystemException

Suspend the transaction currently associated with the calling thread and return a Transaction object t
resents the transaction context being suspended. If the calling thread is not associated with a transact
method returns a null object reference. When this method returns, the calling thread is associated wi
transaction.

Returns:
The Transaction object that represents the transaction context associated with the calling thr
Null if the calling thread is not associated with a transaction.

Throws: SystemException
Sun Microsystems Inc. 36 May 12, 1999

Java Transaction API
Thrown if the transaction manager encounters an unexpected error condition.
Sun Microsystems Inc. 37 May 12, 1999

Java Transaction API

action

ple-

d

been

been
Interface UserTransaction

public interface javax.transaction. UserTransaction
{

public abstract void begin ();
public abstract void commit ();
public abstract int getStatus ();
public abstract void rollback ();
public abstract void setRollbackOnly ();
public abstract void setTransactionTimeout (int seconds);

}

The UserTransaction interface defines the methods that allow an application to explicitly manage trans
boundaries.

Methods

• begin

public abstract void begin()
 throws NotSupportedException, SystemException

Create a new transaction and associate it with the current thread.

Throws: NotSupportedException
Thrown if the thread is already associated with a transaction and the Transaction Manager im
mentation does not support nested transactions.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• commit

public abstract void commit()
 throws RollbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException,
IllegalStateException, SystemException

Complete the transaction associated with the current thread. When this method completes, the threa
becomes associated with no transaction.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have
rolled back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: IllegalStateException
Sun Microsystems Inc. 38 May 12, 1999

Java Transaction API

turns

d

ansac-

read

ransac-
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getStatus

public abstract int getStatus() throws SystemException

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. If no transaction is associated with the current thread, this method re
the STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• rollback

public abstract void rollback()
 throws IllegalStateException, SecurityException, SystemException

Roll back the transaction associated with the current thread. When this method completes, the threa
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setRollbackOnly

public abstract void setRollbackOnly()
throws IllegalStateException, SystemException

Modify the transaction associated with the current thread such that the only possible outcome of the tr
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setTransactionTimeout

public abstract void setTransactionTimeout(int seconds)
throws SystemException

Modify the value of the timeout value that is associated with the transactions started by the current th
with the begin method.

If an application has not called this method, the transaction service uses some default value for the t
tion timeout.

Parameters:
seconds
Sun Microsystems Inc. 39 May 12, 1999

Java Transaction API

s the
The value of the timeout in seconds. If the value is zero, the transaction service restore
default value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.
Sun Microsystems Inc. 40 May 12, 1999

Java Transaction API

efer to:
t No.

ork

 to
man-

ociates

te.
Interface XAResource

public interface javax.transaction.xa. XAResource
{

public abstract void commit (Xid xid, boolean onePhase);
public abstract void end (Xid xid, int flags);
public abstract void forget (Xid xid);
public abstract int getTransactionTimeout ();
public abstract boolean isSameRM(XAResource xares);
public abstract int prepare (Xid xid);
public abstract Xid[] recover (int flag);
public abstract void rollback (Xid xid);
public abstract boolean setTransactionTimeout (int seconds);
public abstract void start (Xid xid, int flags);

}

XAResource interface is a Java mapping of the industry standard XA resource manager interface. Please r
X/Open CAE Specification – Distributed Transaction Processing: The XA Specification, X/Open Documen
XO/CAE/91/300 or ISBN 1 872630 24 3.

Methods

• commit

 commit(Xid xid, boolean onePhase) throws XAException

This method is called to commit the global transaction specified byxid .

Parameters :
 xid

A global transaction identifier.

 onePhase
If true, the resource manager should use a one-phase commit protocol to commit the w
done on behalf ofxid.

Throws: XAException
An error has occurred. Possible XAExceptions are XA_HEURHAZ, XA_HEURCOM,
XA_HEURRB, XA_HEURMIX, XAER_RMERR, XAER_RMFAIL, XAER_NOTA,
XAER_INVAL, or XAER_PROTO.

If the resource manager did not commit the transaction and the paramether onePhase is settrue,
the resource manager may throw one of the XA_RB* exceptions. Upon return, the resource
ager has rolled back the branch’s work and has released all held resources.

• end

 int end(Xid xid, int flags) throws XAException

This method ends the work performed on behalf of a transaction branch. The resource manager diss
the XA resource from the transaction branch specified and let the transaction be completed.

If TMSUSPEND is specified inflags, the transaction branch is temporarily suspended in incomplete sta
The transaction context is in suspened state and must be resumed viastart with TMRESUME specified.
Sun Microsystems Inc. 41 May 12, 1999

Java Transaction API

n as

,

on

he

t is the
If TMFAIL is specified, the portion of work has failed. The resource manager may mark the transactio
rollback-only.

If TMSUCCESS is specified, the portion of work has completed successfully.

Parameters :
 xid

A global transaction identifier that is the same as what was used previously in thestart
method.

 flags
One of TMSUCCESS, TMFAIL, or TMSUSPEND.

Throws: XAException
An error has occurred. Possible XAException values are XAER_RMERR, XAER_RMFAILED
XAER_NOTA, XAER_INVAL, XAER_PROTO, or XA_RB*.

• forget

void forget(Xid xid) throws XAException

This method is called to tell the resource manager to forget about a heuristically completed transacti
branch.

Parameters :
xid

A global transaction identifier.

 Throws: XAException
An error has occurred. Possible exception values are XAER_RMERR, XAER_RMFAIL,
XAER_NOTA, XAER_INVAL, or XAER_PROTO.

• getTransactionTimeout

int getTransactionTimeout() throws XAException

This method returns the transaction timeout value set for thisXAResource instance. IfXARe-
source.setTransactionTimeout was not use prior to invoking this method, the return value is t
default timeout set for the resource manager; otherwise, the value used in the previoussetTransac-
tionTimeout call is returned.

Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL.

Returns:
The transaction timeout values in seconds.

• isSameRM

boolean isSameRM(XAResource xares) throws XAException

This method is called to determine if the resource manager instance represented by the target objec
same as the resource manager instance represented by the parameterxares .

Parameters :
xares

An XAResource object.

Returns:
true if same RM instance; otherwisefalse.
Sun Microsystems Inc. 42 May 12, 1999

Java Transaction API

tion

le val-
, it

ransac-
ntly in

od may
marks

cover

e list

urce

cation

f the

turns
o-

be
Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL.

• prepare

int prepare(Xid xid) throws XAException

This method is called to ask the resource manager to prepare for a transaction commit of the transac
specified inxid.

Parameters :
xid

A global transaction identifier.

Throws: XAException
An error has occurred. Possible exception values are: XA_RB*, XAER_RMERR,
XAER_RMFAIL, XAER_NOTA, XAER_INVAL, or XAER_PROTO.

Returns :
A value indicating the resource manager’s vote on the outcome of the transaction. The possib
ues are: XA_RDONLY or XA_OK. If the resource manager wants to roll back the transaction
should do so by throwing an appropriate XAException in theprepare method.

• recover

 xid[] recover(int flag) throws XAException

This method is called to obtain a list of prepared transaction branches from a resource manager. The t
tion manager calls this method during recovery to obtain the list of transaction branches that are curre
prepared or heuristically completed states.

The flag parameter indicates where the recover scan should start or end, or start and end. This meth
be invoked one or more times during a recovery scan. The resource manager maintains a cursor which
the current position of the prepared or heuristically completed transaction list. Each invocation of the re
method moves the cursor passed the set of Xids that are returned.

Two consecutive invocation of this method that starts from the beginning of the list must return the sam
of transaction branches unless one of the following takes place:

- the transaction manager invokes the commit, forget, prepare, or rollback method for that reso
manager, between the two consecutive invocation of the recovery scan.

- the resource manager heuristically completes some transaction branches between the two invo
of the recovery scan.

 Parameters :
 flag

One of TMSTARTRSCAN, TMENDRSCAN, TMNOFLAGS. TMNOFLAGS must be used
when no other flags are used.

TMSTARTRSCAN - indicates that the recovery scan should be started at the beginning o
prepared or heuristically completed transaction list.

TMENDRSCAN - indicates that the recovery scan should be ended after the method re
the Xid list. If this flag is used in conjunction with the TMSTARTRSCAN, this method inv
cation starts and ends the recovery scan.

TMNOFLAGS - this flag must be used when no other flags are specified. This flag may
Sun Microsystems Inc. 43 May 12, 1999

Java Transaction API

tly in a
man-

.

t

eout
used only if the recovery scan has already been started. The list of Xids are returned

 Returns: xid[]
The resource manager returns zero or more Xids for the transaction branches that are curren
prepared or heuristically completed state. If an error occurs during the operation, the resource
ager should throw the appropriateXAException .

 Throws: XAException
An error has occurred. Possible values are XAER_RMERR, XAER_RMFAIL, XAER_INVAL,
and XAER_PROTO.

• rollback

 void rollback(Xid xid) throws XAException

 This method informs the resource manager to roll back work done on behalf of a transaction branch

Parameters :
 xid

A global transaction identifier.

Throws: XAException
An error has occurred.

• setTransactionTimeout

boolean setTransactionTimeout(int seconds) throws XAException

This method sets the transaction timeout value for thisXAResource instance. Once set, this timeout value
is effective untilsetTransactionTimeout is invoked again with a different value. To reset the timeou
value to the default value used by the resource manager, set the value to zero.

If the timeout operation is performed successfully, the method returnstrue; otherwisefalse. If a resource
manager does not support transaction timeout value to be set explicitly, this method returnsfalse.

Parameters :
 seconds

An positive integer specifying the timout value in seconds. Zero resets the transaction tim
value to the default one used by the resource manager. A negative value results inXAExcep-
tion to be thrown with XAER_INVAL error code.

Returns :
true if transaction timeout value is set successfully; otherwisefalse.

Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL, or
XAER_INVAL.

• start

 void start(Xid xid, int flags) throws XAException

This method starts work on behalf of a transaction branch.

If TMJOIN is specified, the start is for joining an exisiting transaction branchxid . If TMRESUME is spec-
ified, the start is to resume a suspended transaction branch specified inxid .

If neither TMJOIN nor TMRESUME is specified and the transaction branch specified inxid already exists,
the resource manager throw the XAException with XAER_DUPID error code.
Sun Microsystems Inc. 44 May 12, 1999

Java Transaction API
Parameters :
 xid

A global transaction identifier to be associated with the resource.

 flags
One of TMNOFLAGS, TMJOIN, or TMRESUME.

Throws: XAException
An error has occurred. Possible exceptions are XA_RB*, XAER_RMERR, XAER_RMFAIL,
XAER_DUPID, XAER_OUTSIDE, XAER_NOTA, XAER_INVAL, or XAER_PROTO.

Variables

• TMENDRSCAN

public final static int TMENDRSCAN = 0x00800000

End a recovery scan.

• TMFAIL

public final static int TMFAIL = 0x20000000

Dissociates the caller and mark the transaction branch rollback-only.

• TMJOIN

public final static int TMJOIN = 0x00200000

Caller is joining existing transaction branch.

• TMNOFLAGS

public final static int TMNOFLAGS = 0x00000000

Use TMNOFLAG to indicate no flags value is selected.

• TMONEPHASE

public final static int TMONEPHASE = 0x40000000

Caller is using one-phase optimization.

• TMRESUME

public final static int TMRESUME = 0x08000000

Caller is resuming association with with suspended transaction branch.

• TMSTARTRSCAN

public final static int TMSTARTRSCAN = 0x01000000

Start a recovery scan.

• TMSUCCESS

public final static int TMSUCCESS = 0x04000000

Dissociate caller from transaction branch.
Sun Microsystems Inc. 45 May 12, 1999

Java Transaction API
• TMSUSPEND

public final static int TMSUSPEND = 0x02000000

Caller is suspending (not ending) association with transaction branch.
Sun Microsystems Inc. 46 May 12, 1999

Java Transaction API

r asso-
Interface Xid

public interface javax.transaction.xa. Xid
{

int getFormatId ();
byte[] getGlobalTransactionId ();
byte[] getBranchQualifier ();

}

TheXid interface is a Java mapping of the X/Open transaction identifierXid structure. This
interface is used by the transaction manager to communicate to the resource manager fo
ciating a transaction to theXAResource .

Variables

• MAXGTRIDSIZE

final static int MAXGTRIDSIZE = 64

Maximum number of bytes returned bygetGlobalTransactionId method.

• MAXBQUALSIZE

final static int MAXBQUALSIZE = 64

Maximum number of bytes returned bygetBranchQualifier method

Methods

• getFormatId

int getFormatID()

Obtain the format identifier part of the Xid.

 Returns:
Format identifier. 0 means the OSI CCR format.

• getGlobalTransactionId

byte[] getGtrid()

Obtain the global transaction identifier part of the Xid in a byte array.

Returns:
A byte array containing the global transaction identifier.

• getBranchQualifier

byte[] getBqual()

Obtain the transaction branch qualifier part of the Xid in a byte array.

Returns:
A byte array containing the branch qualifier of the transaction.
Sun Microsystems Inc. 47 May 12, 1999

Java Transaction API

made
Class HeuristicCommitException

public class javax.transaction. HeuristicCommitException
extends java.lang. Exception

{
 public HeuristicCommitException ();
 public HeuristicCommitException (String msg);
}

This exception is thrown by the rollback operation on a resource to report that a heuristic decision was
and that all relevant updates have been committed.

Constructors

• HeuristicCommitException

public HeuristicCommitException()

• HeuristicCommitException

public HeuristicCommitException(String msg)
Sun Microsystems Inc. 48 May 12, 1999

Java Transaction API

 have
Class HeuristicMixedException

public class javax.transaction. HeuristicMixedException
extends java.lang. Exception

{
 public HeuristicMixedException ();
 public HeuristicMixedException (String msg);
}

This exception is thrown to report that a heuristic decision was made and that some relevant updates
been committed and others have been rolled back.

Constructors

• HeuristicMixedException

public HeuristicMixedException()

• HeuristicMixedException

public HeuristicMixedException(String msg)
Sun Microsystems Inc. 49 May 12, 1999

Java Transaction API

at all
Class HeuristicRollbackException

public class javax.transaction. HeuristicRollbackException
extends java.lang. Exception

{
 public HeuristicRollbackException ();
 public HeuristicRollbackException (String msg);
}

This exception is thrown by the commit operation to report that a heuristic decision was made and th
relevant updates have been rolled back.

Constructors

• HeuristicRollbackException

public HeuristicRollbackException()

• HeuristicRollbackException

public HeuristicRollbackException(String msg)
Sun Microsystems Inc. 50 May 12, 1999

Java Transaction API

by any
Class InvalidTransactionException

public class javax.transaction. InvalidTransactionException
extends java.rmi. RemoteException

{
 public InvalidTransactionException ();
 public InvalidTransactionException (String msg);
}

This exception indicates that the request carried an invalid transaction context. This exception is used
module that needs to indicate the invalid transaction context to the remote client.

Constructors

• InvalidTransactionException

public InvalidTransactionException()

• InvalidTransactionException

public InvalidTransactionException(String msg)
Sun Microsystems Inc. 51 May 12, 1999

Java Transaction API

 can be

 Man-
saction
Class NotSupportedException

public class javax.transaction. NotSupportedException
extends java.lang. Exception

{
 public NotSupportedException ();
 public NotSupportedException (String msg);
}

This exception is thrown when the requested operation is not supported. For example, this exception
thrown by the Transaction Manager to indicate that nested transaction is not supported. IfTransaction begin
is called when the calling thread is already associated with a transaction context and the Transaction
ager implementation does not support nested transactions, then this exception is thrown by the Tran
Manager.

Constructors

• NotSupportedException

public NotSupportedException()

• NotSupportedException

public NotSupportedException(String msg)
Sun Microsystems Inc. 52 May 12, 1999

Java Transaction API

s been
Class RollbackException

public class javax.transaction. RollbackException
extends java.lang. Exception

{
 public RollbackException ();
 public RollbackException (String msg);
}

This exception is thrown when the transaction has been marked for rollback only or the transaction ha
rolledback instead of committed. This is a local exception thrown by methods in theUserTransaction ,
Transaction andTransactionManager interfaces.

Constructors

• RollbackException

public RollbackException()

• RollbackException

public RollbackExcpetion(String msg)
Sun Microsystems Inc. 53 May 12, 1999

Java Transaction API

x-
Class SystemException

public class javax.transaction. SystemException extends java.lang. Exception
{

public SystemException ();
public SystemException (String s);
public SystemException (int errCode);

}

TheSystemException is thrown by the Transaction Manager to indicate that it has encountered an une
pected error condition that prevents future transaction services from proceeding.

Constructors

• SystemException

public SystemException()

Create aSystemException .

• SystemException

public SystemException(String s)

Create aSystemException with the specified string.

• SystemException

public SystemException(int errCode)

Create aSystemException with the specified error code.

Variables

• errorCode

public int errorCode

Error code for the exception
Sun Microsystems Inc. 54 May 12, 1999

Java Transaction API

s an
 client
Class TransactionRequiredException

public class javax.transaction. TransactionRequiredException
 extends java.rmi. RemoteException
{
 public TransactionRequiredException ();
 public TransactionRequiredException (String msg);
}

This exception indicates that a request carried a null transaction context, but the target object require
active transaction. This exception is used by the system module that needs to indicate to the remote
about the error condition.

Constructors

• TransactionRequiredException

public TransactionRequiredException()

• TransactionRequiredException

public TransactionRequiredException(String msg)
Sun Microsystems Inc. 55 May 12, 1999

Java Transaction API

d back,
rmed
 by a
Class TransactionRolledbackException

public class javax.transaction. TransactionRolledbackException
 extends java.rmi. RemoteException
{
 public TransactionRolledbackException ();
 public TransactionRolledbackException (String msg);
}

This exception indicates that the transaction associated with processing of the request has been rolle
or marked for roll back. Thus the requested operation either could not be performed or was not perfo
because further computation on behalf of the transaction would be fruitless. This exception is thrown
system module to indicate to the remote client about the aborted transaction.

Constructors

• TransactionRolledbackException

public TransactionRolledbackException()

• TransactionRolledbackException

public TransactionRolledbackException(String msg)
Sun Microsystems Inc. 56 May 12, 1999

Java Transaction API

coun-
Class XAException

public class javax.transactioin.xa. XAException extends java.lang. Exception
{

public XAException ();
public XAException (String s);
public XAException (int errCode);

}

The XAException is thown by the Resource Manager (RM) to inform the Transaction Manager of error en
tered for the transaction involved.

Constructors

• XAException

public XAException()

Create an XAException.

• XAException

public XAExeption(String s)

Create an XAException with the specified string.

• XAException

public XAException(int errCode)

Create an XAException with the specified error code.

Variables

• errorCode

public int errorCode

Error code for the exception

• XA_RBBASE

public final static int XA_RBBASE = 100

The inclusive lower bound of the rollback code.

• XA_RBROLLBACK

public final static int XA_RBROLLBACK = XA_RBBASE

The rollback was caused by an unspecified reason.

• XA_RBCOMMFAIL

public final static int XA_RBCOMMFAIL = XA_RBBASE + 1

The rollback was caused by a communication failure.
Sun Microsystems Inc. 57 May 12, 1999

Java Transaction API
• XA_RBDEADLOCK

public final static int XA_RBDEADLOCK = XA_RBBASE + 2

A deadlock was detected.

• XA_RBINTEGRITY

public final static int XA_RBINTEGRITY = XA_RBBASE + 3

A condition that violates the integrity of the resources was detected.

• XA_RBOTHER

public final static int XA_RBOTHER = XA_RBBASE + 4

The resouce manager rolled back the transaction branch for a reason not on this list.

• XA_RBPROTO

public final static int XA_RBPROTO = XA_RBBASE + 5

A protocol error occurred in the resource manager.

• XA_RBTIMEOUT

public final static int XA_RBRBTIMEOUT = XA_RBBASE + 6

A transaction branch took too long.

• XA_RBTRANSIENT

public final static int XA_RBTRANSIENT = XA_RBBASE + 7

May retry the transaction branch

• XA_RBEND

public final static int XA_RBEND = XA_RBTRANSIENT

The inclusive upper bound of the rollback codes.

• XA_NOMIGRATE

public final static int XA_NOMIGRATE = 9

Resumption must occur where suspension occurred.

• XA_HEURHAZ

public final static int XA_HEURHAZ = 8

The transaction branch may have been heuristically completed.

• XA_HEURCOM

public final static int XA_HEURCOM = 7

The transaction branch has been heuristically committed.

• XA_HEURRB

public final static int XA_HEURRB = 6

The transaction branch has been heuristically rolled back.
Sun Microsystems Inc. 58 May 12, 1999

Java Transaction API
• XA_HEURMIX

public final static int XA_HEURMIX = 5

The transaction branch has been heuristically committed and rolled back.

• XA_RDONLY

public final static int XA_RDONLY = 3

The transaction branch was read-only and has been committed.

• XAER_RMERR

public final static int XAER_RMERR = -3

A resource manager error occurred in the transaction branch

• XAER_NOTA

public final static int XAER_NOTA = -4

The XID is not valid.

• XAER_INVAL

public final static int XAER_INVAL = -5

Invalid arguments were given.

• XAER_PROTO

public final static int XAER_PROTO = -6

Routine invoked in an improper context.

• XAER_RMFAIL

public final static int XAER_RMFAIL = -7

Resource manager unavailable.

• XAER_DUPID

public final static int XAER_DUPID = -8

The XID already exists.

• XAER_OUTSIDE

public final static int XAER_OUTSIDE = -9

Resource manager doing work outside global transaction.
Sun Microsystems Inc. 59 May 12, 1999

Java Transaction API

ifi-
6 Related documents

[1] X/Open CAE Specification – Distributed Transaction Processing: The XA Spec
cation, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3

[2] Java Transaction Service (JTS).http://java.sun.com/products/jts

[3] OMG Object Transaction Service (OTS 1.1)
http://www.omg.org/corba/sectrans.html#trans.

[4] ORB Portability Submission, OMG document orbos/97-04-14.

[5] Enterprise JavaBeansTM. http://java.sun.com/products/ejb.

[6] JDBCTM 2.0.http://java.sun.com/products/jdbc.

[7] Java Message Service.http://java.sun.com/products/jms
Sun Microsystems Inc. 60 May 12, 1999

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Target Audience

	2 Relationship to Other Java APIs
	2.1 Enterprise JavaBeans
	2.2 JDBC 2.0 Standard Extension API
	2.3 Java Message Service
	2.4 Java Transaction Service

	3 Java Transaction API
	3.1 UserTransaction Interface
	3.1.1 UserTransaction Support in EJB Server
	3.1.2 UserTransaction Support for Transactional Clients

	3.2 TransactionManager Interface
	3.2.1 Starting a Transaction
	3.2.2 Completing a Transaction
	3.2.3 Suspending and Resuming a Transaction

	3.3 Transaction Interface
	3.3.1 Resource Enlistment
	3.3.2 Transaction Synchronization
	3.3.3 Transaction Completion
	3.3.4 Transaction Equality and Hash Code

	3.4 XAResource Interface
	3.4.1 Opening a Resource Manager
	3.4.2 Closing a Resource Manager
	3.4.3 Thread of Control
	3.4.4 Transaction Association
	Table 1: Transaction Association

	3.4.5 Externally Controlled Connections
	3.4.6 Resource Sharing
	3.4.7 Local and Global Transactions
	3.4.8 Failures Recovery
	3.4.9 Identifying Resource Manager Instance
	3.4.10 Dynamic Registration

	3.5 Xid Interface

	4 JTA Support in the Application Server
	4.1 Connection-Based Resource Usage Scenario
	4.2 Transaction Association and Connection Request Flow
	1. Assuming a client invokes an EJB bean with a TX_REQUIRED transaction attribute and the client ...
	2. After the the transaction starts, the container invokes the bean method. As part of the busine...
	3. The application server obtains a resource from the resource adapter via some ResourceFactory.g...
	4. The resource adapter creates the TransactionalResource object and the associated XAResource an...
	5. The application server invokes the getXAResource method.
	6. The application server enlists the resource to the transaction manager.
	7. The transaction manager invokes XAResource.start to associate the current transaction to the r...
	8. The application server invokes the getConnection method.
	9. The application server returns the Connection object reference to the application.
	10. The application performs one or more operations on the connection.
	11. The application closes the connection.
	12. The application server delist the resource when notified by the resource adapter about the co...
	13. The transaction manager invokes XAResource.end to disassociate the transaction from the XARes...
	14. The application server asks the transaction manager to commit the transaction.
	15. The transaction manager invokes XAResource.prepare to inform the resource manager to prepare ...
	16. The transaction manager invokes XAResource.commit to commit the transaction.

	5 Java Transaction API Reference
	Interface Status
	Variables
	• STATUS_ACTIVE
	• STATUS_COMMITTED
	• STATUS_COMMITTING
	• STATUS_MARKED_ROLLBACK
	• STATUS_NO_TRANSACTION
	• STATUS_PREPARED
	• STATUS_PREPARING
	• STATUS_ROLLEDBACK
	• STATUS_ROLLING_BACK
	• STATUS_UNKNOWN

	Interface Synchronization
	Methods
	• beforeCompletion
	• afterCompletion

	Interface Transaction
	Methods
	• commit
	• delistResource
	• enlistResource
	• getStatus
	• registerSynchronization
	• rollback
	• setRollbackOnly

	Variables
	• TMSUCCESS
	• TMSUSPEND
	• TMFAIL

	Interface TransactionManager
	Methods
	• begin
	• commit
	• getStatus
	• getTransaction
	• resume
	• rollback
	• setRollbackOnly
	• setTransactionTimeout
	• suspend

	Interface UserTransaction
	Methods
	• begin
	• commit
	• getStatus
	• rollback
	• setRollbackOnly
	• setTransactionTimeout

	Interface XAResource
	Methods
	• commit
	• end
	• forget
	• getTransactionTimeout
	• isSameRM
	• prepare
	• recover
	• rollback
	• setTransactionTimeout
	• start

	Variables
	• TMENDRSCAN
	• TMFAIL
	• TMJOIN
	• TMNOFLAGS
	• TMONEPHASE
	• TMRESUME
	• TMSTARTRSCAN
	• TMSUCCESS
	• TMSUSPEND

	Interface Xid
	Variables
	• MAXGTRIDSIZE
	• MAXBQUALSIZE

	Methods
	• getFormatId
	• getGlobalTransactionId
	• getBranchQualifier

	Class HeuristicCommitException
	Constructors
	• HeuristicCommitException
	• HeuristicCommitException

	Class HeuristicMixedException
	Constructors
	• HeuristicMixedException
	• HeuristicMixedException

	Class HeuristicRollbackException
	Constructors
	• HeuristicRollbackException
	• HeuristicRollbackException

	Class InvalidTransactionException
	Constructors
	• InvalidTransactionException
	• InvalidTransactionException

	Class NotSupportedException
	Constructors
	• NotSupportedException
	• NotSupportedException

	Class RollbackException
	Constructors
	• RollbackException
	• RollbackException

	Class SystemException
	Constructors
	• SystemException
	• SystemException
	• SystemException

	Variables
	• errorCode

	Class TransactionRequiredException
	Constructors
	• TransactionRequiredException
	• TransactionRequiredException

	Class TransactionRolledbackException
	Constructors
	• TransactionRolledbackException
	• TransactionRolledbackException

	Class XAException
	Constructors
	• XAException
	• XAException
	• XAException

	Variables
	• errorCode
	• XA_RBBASE
	• XA_RBROLLBACK
	• XA_RBCOMMFAIL
	• XA_RBDEADLOCK
	• XA_RBINTEGRITY
	• XA_RBOTHER
	• XA_RBPROTO
	• XA_RBTIMEOUT
	• XA_RBTRANSIENT
	• XA_RBEND
	• XA_NOMIGRATE
	• XA_HEURHAZ
	• XA_HEURCOM
	• XA_HEURRB
	• XA_HEURMIX
	• XA_RDONLY
	• XAER_RMERR
	• XAER_NOTA
	• XAER_INVAL
	• XAER_PROTO
	• XAER_RMFAIL
	• XAER_DUPID
	• XAER_OUTSIDE

	6 Related documents
	[1] X/Open CAE Specification – Distributed Transaction Processing: The XA Specification, X/Open D...
	[2] Java Transaction Service (JTS). http://java.sun.com/products/jts
	[3] OMG Object Transaction Service (OTS 1.1)
	[4] ORB Portability Submission, OMG document orbos/97-04-14.
	[5] Enterprise JavaBeansTM. http://java.sun.com/products/ejb.
	[6] JDBCTM 2.0. http://java.sun.com/products/jdbc.
	[7] Java Message Service. http://java.sun.com/products/jms

