Note: This documentation is preliminary and is subject to change.


[image: image3.png]Microsoft




[image: image2.jpg]My
Microsoft" l'.
Windows Server2003




Getting Started Guide for 
the Windows PowerShell

Microsoft Corporation

Abstract

This document provides a set of commonly used commands to help you get started with the Windows PowerShell and the Windows PowerShell scripting language.
[image: image1.png].. Microsoft:
Ay Windows Server System




Copyright

This document supports a preliminary release of a software product that may be changed substantially prior to final commercial release.  This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document.  Information in this document, including URL and other Internet Web site references, is subject to change without notice.  The entire risk of the use or the results from the use of this document remains with the user.  Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.  Complying with all applicable copyright laws is the responsibility of the user.  Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document.  Except as expressly provided in any written license agreement from Microsoft; the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2006 Microsoft Corporation.  All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows 2000, Windows XP, and Windows Server 2003, are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Table of Contents
1Getting Started Guide for  the Windows PowerShell


1Abstract


2Copyright


3Table of Contents


4Goal of the Shell and Language


4Primary Focus


4A New Shell


4A New View of an Old Friend


5A New Term - Cmdlet


5A New Scripting Language


5A New Concept - Object Pipelines


6Key Features of the Shell


6An Interactive Environment


6Support for Scripting


6Starting the Windows PowerShell


7Shell Startup


7Using the Windows PowerShell


7Execution Policy


8Command Output


8Using Cmdlets


9Using Cmdlet Parameters


10Common Parameters


11Errors


11More Information


12Using Existing Commands and Utilities


12Aliases


14Finding Stuff


14Getting Help


14Navigation


16Registry


18Appendix A - Cmdlet List


24Appendix B - Startup Troubleshooting




Goal of the Shell and Language             

The goal of the shell is to enable the administration of the Windows platform from a rich, robust, and extendible command-line environment.  To achieve that goal, the shell provides for an ability to combine many different activities and actions to affect system change.  This follows from the development model that most administrators use today:

1. Start an interactive shell
2. Run commands to see their output
3. Pipe the output into a set of utilities to accomplish the desired task
4. Iterate until the task is complete
5. Put the results in a script file and clean up for sharing
Primary Focus

The primary focus of this document is to aid shell users in getting started with the Windows PowerShell.  This document is not an exhaustive examination of the features of the shell, but only those elements that are needed to start using the shell.  The User Guide is the detailed examination of the shell, its features, and examples of how to use the shell.

A New Shell             

A New View of an Old Friend

Most shells (such as Windows Cmd.exe and the UNIX shells SH, KSH, CSH, and BASH) operate by executing a command or utility in a new process, and presenting the results (or errors) to the user as text.  Text-based processing is the way in which system interaction is done with these shells.  Over the years, a large number of text processing utilities—such as sed, AWK, and PERL—have evolved to support this interaction.  The heritage of this operational process is very rich.

These shells also have another type of command; these commands are built-in to the shell and do not start a new process, but run within the process context of the shell.  Examples of built-in commands are the KSH typeset command and the Cmd.exe DIR command.  In most shells, the number of built-in commands is somewhat small, so over time a large number of utilities have been created.

The Windows PowerShell is very different from these traditional shells.  First, this shell does not use text as the basis for interaction with the system, but uses an object model based on the .NET platform.  As we will see, this provides a much different, and a better way to interact with the system.  Second, the list of built-in commands is much larger; this is done to ensure that the interaction with the object model is accomplished with the highest regard to integrity with respect to interacting with the system.  Third, the shell provides consistency with regard to interacting with built-in commands through the use of a single parser, rather than relying on each command to create its own parser for parameters.

A New Term - Cmdlet

In the documentation included with the shell, you will find the term "cmdlet" used frequently.  A cmdlet (pronounced "command-let") is the smallest unit of functionality in the Windows PowerShell and it is directly analogous to the built-in commands in other shells.  In a traditional shell such as Cmd.exe or KSH, commands are executable programs that range from the very simple (such as Attrib.exe) to the very complex (such as Netsh.exe).  With the Windows PowerShell, most commands are very simple and very small, hence the term cmdlet.

A cmdlet is referred to by a verb and noun pair, separated by a "-":

get-process 

To improve the consistency of the experience, cmdlets are generally singular, rather than plural (Process vs. Processes).

A New Scripting Language

A new language was created to better interact with the object model that it presents.  Many have asked why a current shell language was not just extended rather than creating a new shell language.  The answer is multi-fold.
First and foremost is the desire to create an environment that is tailored to the .NET platform but still contains elements that will be familiar to users of other shells.  A new language helps provide a consistent environment where cmdlets can be executed.  A full-featured language can be designed to create complicated behaviors without increasing the complexity of simple operations.  The new language provides a "Glide-Path" to higher-level languages such as C#.

A New Concept - Object Pipelines
As mentioned above traditional shells use text as the basis for command-to-command communication.  This communication is known as "piping."  One can "pipe" the output of one command as the input to another command.  Traditional shells ensure that when output is piped from one command to another, the output of the first command is sent as input to the second command.  This allows the data that is generated by one command to be manipulated or displayed by a different command.  The flexibility of this approach has proven to be extremely valuable for more than 30 years.
However, since most traditional commands emit text with a specific format, additional efforts are needed to ensure that the output of one command is understood as input to the next command.  This usually means that certain lines in output have to be discarded because they contain headers or other titles and some data need not be used. A significant amount of string manipulation must be performed before the output of one command can be used as input in another command.  

The Windows PowerShell addresses this issue by providing a new conceptual model for interaction that is based on objects, rather than text.  The objects that cmdlets emit allow other cmdlets to act directly on the properties and methods of the object.  Instead of manipulating the text, you can refer directly to the needed value by name.  This creates an experience where you refer to the interesting data by name rather than calculating where the interesting data is in the output.
Key Features of the Shell

An Interactive Environment

Like other shells, the Windows PowerShell is an interactive environment.  It is possible to use the shell very successfully without ever creating a script.  The PowerShell acts much the same way as other shells and Cmd.exe.  Enter the name of a command or utility and the output will be displayed in the shell window.  You can take the output of one command and pass it to another command using pipes.  A pipe takes the output of one command and passes it to another command as input.  The following example shows an example of how a pipe takes the output of the ipconfig command and passes that output to the findstr command.   
PS> ipconfig | findstr "Address"

        IP Address. . . . . . . . . . . . : 172.28.21.5

        IP Address. . . . . . . . . . . . : 172.30.160.225
Support for Scripting

After running your commands on the command line, it is likely that certain operations will be done more than once, or that you will need to run the same series of commands multiple times.  By putting these command lines in a file, you can create a script that can be run repeatedly without having to remember the sequence of command-line commands.  The Windows PowerShell fully supports scripting.  By creating a file with an extension of .PS1, you can run a script in the same way that you would run a command or Cmdlet.  For more information about running scripts, see the section about Execution Policy. 
This shell also supports a very rich scripting language similar to that in other shells.  It allows you to create scripts from the simplest to the very complex.  Language constructs for looping, conditional, flow-control, and variable assignment are all supported. 
Starting the Windows PowerShell
To run the shell, select Windows PowerShell from the Start Menu or enter the following command at the Cmd.exe command prompt:
C:\> powershell
After the shell starts, you can enter the following command to view the available Windows PowerShell start options:
C:\> powershell -help
Shell Startup

When the shell starts, a number of things occur.  Similar to other shells, profiles are run to set up the environment to improve the experience of running the shell.  A number of profiles are run.  The following is a listing and description of the files, in the order of execution:

1. Documents and Settings\All Users\Documents\PSConfiguration\profile.ps1
This file is executed for all Windows PowerShells on the system for every user.  It is used by the system administrator to create common settings for any user of the Windows PowerShell.
2. Documents and Settings\All Users\Documents\PSH\Microsoft.PowerShell_profile.ps1
This file is executed for all users of this shell (the one to which this document pertains).  It is used by the system administrator to set specific settings for any user of this shell.
3. $HOME\My Documents\PSConfiguration\profile.ps1
This file contains user-specific information that is run for all Windows PowerShells.
4. $HOME\My Documents\PSH\Microsoft.PowerShell_profile.ps1
This file contains user-specific information that is run for all Windows PowerShells.  It is expected that most users will have this profile.
When you are starting the shell for the very first time, you are likely to see a message indicating that scripts are disabled and none of the above profiles are executed.  This is safe, secure behavior which you can adjust by making some configuration changes.  This is explained below under Execution Policy.

There are a number of options that you can use when starting the shell.  Usually, when the shell starts, you will see a message similar to the following:

Windows(R) PowerShell

Copyright (C) 2005 Microsoft Corporation. All rights reserved.

You can disable this message by starting the shell with the -NoLogo parameter

C:\Program Files\Windows PowerShell> powershell -nologo
You can also execute commands with the -command parameter.  This allows you to easily use cmdlets from .BAT scripts.
C:\> FOR /F "usebackq delims==" %i IN (`powershell -nologo -noprofile get-process`) DO @echo %i

Using the Windows PowerShell
Execution Policy

The shell is, by default, a secure environment.  If history is any guide, then we know that executing scripts can be dangerous; therefore, by default, scripts are not enabled for execution.  Also, there is no extension mapping that will allow you to run a script by double-clicking on it from the Windows Explorer.  Before enabling scripts for execution, be sure to consider the risks associated with running scripts.  
To enable scripts for execution, enter the following command at the shell prompt:

PS> set-executionpolicy allsigned
This command sets the execution policy to require that all scripts must have a trusted signature to execute.  If you would like a less restrictive environment, you can enter the following command:

PS> set-executionpolicy remotesigned
This command indicates that the shell will execute scripts downloaded from the web only if they are signed by a trusted source.  The least secure execution policy may be set as follows:

PS> set-executionpolicy unrestricted
This command sets the execution policy to run scripts regardless of whether they have a digital signature.

Also, it is important to note that the current directory may not be part of the path.  If you wish to run a script that is not in a directory that is part of the path, you must first use "./" when you specify the script at the command prompt: 

PS> ./myscript
Command Output

When you run a command, the output may be displayed to you in a number of different ways.  If you are running an existing command, such asIpconfig.exe, you will see the output in the same way as if you ran it from Cmd.exe.  However, if you run a cmdlet, the output may appear differently.  Our cmdlets have a number of different ways (or views) to display results.  Some cmdlets, such as the Get-Command cmdlet will output the data as a table, other cmdlets, such as the Get-Host cmdlet will present its output as a list, while other cmdlets, such as the Get-Date cmdlet will output their results as a simple string.  
We have made decisions about how we believe that the output is most usable, and we have provided a specific presentation of the data with what we think is the most effective way to show the results.  It is possible to change the way the output looks using the formatting capabilities of the shell.
It is important to note that our display does not actually alter the object nature of the results.  Right at the time that the data is displayed, we impose a view of the data.  The view is chosen based on the type of the results.
Using Cmdlets

Cmdlets are used the same way as traditional commands and utilities are used.  Since cmdlets are not case sensitive, you can use a combination of both upper case and lower case characters.  After starting the shell, you can enter the name of the cmdlet at the prompt and it will run, like the other command-line commands.
PS> get-date

Thursday, November 10, 2005 4:43:50 PM

To discover what cmdlets are available, you can use the Get-Command cmdlet.

PS> get-command

CommandType     Name                            Definition

-----------     ----                            ----------

Cmdlet          Add-Content                     Add-Content [-Path] <String[...

Cmdlet          Add-History                     Add-History [[-InputObject] ...

Cmdlet          Add-Member                      Add-Member [-MemberType] <PS...

Cmdlet          Add-PSSnapin                    Add-PSSnapin [-Name] <String...

Cmdlet          Clear-Content                   Clear-Content [-Path] <Strin...

Cmdlet          Clear-Item                      Clear-Item [-Path] <String[]...

Cmdlet          Clear-ItemProperty              Clear-ItemProperty [-Path] <...

Cmdlet          Clear-Variable                  Clear-Variable [-Name] <Stri...

Cmdlet          Compare-Object                  Compare-Object [-ReferenceOb...

Cmdlet          ConvertFrom-SecureString        ConvertFrom-SecureString [-S...

Cmdlet          Convert-Path                    Convert-Path [-Path] <String...

Cmdlet          ConvertTo-Html                  ConvertTo-Html [[-Property] ...

…
As you can see from the output, the output is provided in three columns, the CommandType, the Name, and the Definition of the cmdlet.  The definition describes how the Cmdlet is used; it includes the parameters the types of values that the parameter will accept.  You should also notice that the lines end with "…"; this indicates that there is more data to be seen, but it is truncated at the right side of the console window.  This prevents information from wrapping to the next line, which can be hard to read.
The Get-Command cmdlet can also tell you about commands that are not cmdlets.  By adding an wildcard "*.exe" argument to the Get-Command cmdlet, you can view all the .exe files that are available.

PS> get-command *.exe

CommandType Name                   Definition

----------- ----                   ----------

Application 000StTHK.exe           C:\WINDOWS\system32\000StTHK.exe

Application 00THotkey.exe          C:\WINDOWS\system32\00THotkey.exe

Application accwiz.exe             C:\WINDOWS\system32\accwiz.exe

Application actmovie.exe           C:\WINDOWS\system32\actmovie.exe

…

In this case, you will notice that the definition does not include the available parameters; this is because we cannot determine what those parameters are, as we can with cmdlets.  We provide the full path to the executable instead.
Using Cmdlet Parameters

All cmdlet parameters are designated with an initial "-", there is no inconsistency with sometimes having "/" or "-" as a parameter designator - it will always be "-".  However, to reduce the amount of typing, some parameters are position sensitive.  You do not always have to type the parameter name and then its value.  For position sensitive parameters, you only need to type the value.  The following shows the Definition output of the Get-Command cmdlet for Get-Process:

Cmdlet      get-process    get-process [[-ProcessName] String[]] [-Verbose] ...

The use of square brackets is very important - it tells us a number of things.  First, when square brackets enclose a parameter name (such as "[-ProcessName]"), it indicates that we can omit the use of the parameter when using the Get-Command cmdlet:

PS> get-process -processname outlook

Handles  NPM(K)    PM(K)      WS(K) VS(M)   CPU(s)     Id ProcessName

-------  ------    -----      ----- -----   ------     -- -----------

   2065      28    25640      34216   450    76.75   3080 OUTLOOK

PS> get-process outlook

Handles  NPM(K)    PM(K)      WS(K) VS(M)   CPU(s)     Id ProcessName

-------  ------    -----      ----- -----   ------     -- -----------

   2065      28    25640      34216   450    76.75   3080 OUTLOOK

If you must use the parameter, you only need to use as much as is needed to disambiguate the parameter that you want from other parameters.

PS> get-process -p outlook

Handles  NPM(K)    PM(K)      WS(K) VS(M)   CPU(s)     Id ProcessName

-------  ------    -----      ----- -----   ------     -- -----------

   2065      28    25640      34216   450    76.75   3080 OUTLOOK
Common Parameters

We have done more to make using cmdlets consistent.  All Cmdlets support a set of common parameters that are called "Common Parameters".   These parameters are defined in the following table.

	Parameter Name
	Function

	Debug
	Provides programming-level information about the operation

	ErrorAction
	Controls command behavior when an error occurs

	ErrorVariable
	Name of variable (in addition to $error) in which to place objects to which an error has occurred

	OutVariable
	Name of variable in which to place output objects (equivalent to piping the command set-variable <name> -passthru true)

	Confirm
	Prompts the user before taking any action that modifies the system

	Verbose
	Provides detailed information about the operation

	WhatIf
	Provides information about the changes that would occur, but does not make those changes


For these parameters to be used, the cmdlet must implement code to take advantage of these parameters, so not all cmdlets support all of these parameters.  However, you can always determine what parameters are available with the Get-Command cmdlet. 
Errors

Errors will certainly occur when you use the shell, whether you are trying to set your location to a nonexistent directory or trying to remove a file for which you do not have access privileges.  In this shell, there are two types of errors; errors that halt the execution of the cmdlet and errors that do not halt the execution of the cmdlet.  For example, if you wanted to remove all of the .TMP files from a directory, you would not necessarily want to stop if one of the files could not be removed. You would most likely want to remove all of the files that you can, and then go back to the files that you were not able to remove.  The error that occurs when you cannot remove one of those files is called a nonterminating error, that is, the Cmdlet keeps executing and removes all the files that it can.  Errors of this kind are reported to the user as the following example shows.
PS> get-childitem *.tmp

Mode                LastWriteTime     Length Name

----                -------------     ------ ----

-a---        11/11/2005   3:35 PM          0 1.tmp

-a---        11/11/2005   3:35 PM          0 10.tmp

-ar--        11/11/2005   3:35 PM          0 2.tmp

-a---        11/11/2005   3:35 PM          0 3.tmp

-ar--        11/11/2005   3:35 PM          0 4.tmp

-a---        11/11/2005   3:35 PM          0 5.tmp

-a---        11/11/2005   3:35 PM          0 6.tmp

-a---        11/11/2005   3:35 PM          0 7.tmp

-a---        11/11/2005   3:35 PM          0 8.tmp

-a---        11/11/2005   3:35 PM          0 9.tmp

PS> remove-item *.tmp

remove-item : Could not remove item C:\PowerShell\2.tmp: Not Enough permission to perform operation.

At line:1 char:12

+ remove-item  <<<< *.tmp

remove-item : Could not remove item C:\PowerShell\4.tmp: Not Enough permission to perform operation.

At line:1 char:12

+ remove-item  <<<< *.tmp

PS> get-childitem *.tmp

Mode                LastWriteTime     Length Name

----                -------------     ------ ----

-ar--        11/11/2005   3:35 PM          0 2.tmp

-ar--        11/11/2005   3:35 PM          0 4.tmp

Other errors are more serious and cause the cmdlet to stop running.  These are called terminating errors.  These are errors that stop all processing in the current pipeline.
More Information
The Windows PowerShell User Guide contains more specific information about using Cmdlets.  The end of this document has a list of available Cmdlets. 
Using Existing Commands and Utilities

Your current applications will run just fine when they are started from the Windows PowerShell.  They will continue to run the way they always have; you can start graphical applications such as notepad and calculator from the shell.  For those applications that output text, it is possible to capture that output from your current applications, and use that text in the new shell much the same way as is possible with most standard shells.  The Windows PowerShell User Guide shows how the text output from these commands can be used in this new shell. 

To run applications such as notepad, the executable must reside in a directory that is part of the PATH environment variable.  The shell checks the directories in the path variable looking for the command that you typed.  If the command is found, it is run.  The PATH variable also dictates where the Windows PowerShell looks for applications, utilities, and scripts.  You can see what directories are in the PATH by entering the following:

PS> $env:path

If you want to add directories to this variable, enter the following the following:

PS> $env:path += ";newdirectory"

For example, if you wanted to be able to run WordPad, you can enter either of the following:

PS> &"C:\Program Files\Windows NT\Accessories\wordpad.exe"

or 
PS> $env:path += ";C:\Program Files\Windows NT\Accessories"

Within the current session, you can type enter the following:

PS> wordpad
If you want to be sure that this directory is part of your path every time you start the shell, you can add $env:path += "; C:\Program Files\Windows NT\Accessories" to your profile.

It is important to note that cmdlets are like built-in commands rather than stand-alone executables—they are not affected by $env:path.

Aliases

So far, you have probably noticed that using the new cmdlets may require a little more typing than you might be used to.  This is because one of our design goals was to be sure that this new shell and its cmdlets have a high amount of consistency.  We decided on a verb-noun naming scheme to ensure that our new command names were predictable.  It is easy to see that if you wanted to know all of the cmdlets that got some information, you would enter the following command:
PS> get-command get*

If you wanted to see all of the cmdlets that have to do with processes, you would enter the following command:
PS> get-command *process

This functionality allows you to predict the names of cmdlets that you do not know about.  

We created an aliasing capability that allows you to customize your environment after you know how you want to operate.  Also, to make it easier to move from other shells (such as Cmd.exe or BASH), we have created a number of aliases using the terms that are usually found in other environments.  The following table lists the aliases that are provided by default.
	Cmdlet
	Alias
	Cmdlet
	Alias
	Cmdlet
	Alias

	Add-Content
	ac
	Add-PSSnapin
	asnp
	Clear-Content
	clc

	Clear-Item
	cli
	Clear-ItemProperty
	clp
	Clear-Variable
	clv

	Copy-Item
	cpi
	Copy-ItemProperty
	cpp
	Convert-Path
	cvpa

	Compare-Object
	diff
	Export-Alias
	epal
	Export-Csv
	epcsv

	Format-Custom
	fc
	Format-List
	fl
	ForEach-Object
	foreach

	ForEach-Object
	%
	Format-Table
	ft
	Format-Wide
	fw

	Get-Alias
	gal
	Get-Content
	gc
	Get-ChildItem
	gci

	Get-Command
	gcm
	Get-PSDrive
	gdr
	Get-History
	ghy

	Get-Item
	gi
	Get-Location
	gl
	Get-Member
	gm

	Get-ItemProperty
	gp
	Get-Process
	gps
	Group-Object
	group

	Get-Service
	gsv
	Get-PSSnapin
	gsnp
	Get-Unique
	gu

	Get-Variable
	gv
	Get-WmiObject
	gwmi
	Invoke-Expression
	iex

	Invoke-History
	ihy
	Invoke-Item
	ii
	Import-Alias
	ipal

	Import-Csv
	ipcsv
	Move-Item
	mi
	Move-ItemProperty
	mp

	New-Alias
	nal
	New-PSDrive
	ndr
	New-Item
	ni

	New-Variable
	nv
	Out-Host
	oh
	Remove-PSDrive
	rdr

	Remove-Item
	ri
	Rename-Item
	rni
	Rename-ItemProperty
	rnp

	Remove-ItemProperty
	rp
	Remove-PSSnapin
	rsnp
	Remove-Variable
	rv

	Resolve-Path
	rvpa
	Set-Alias
	sal
	Start-Service
	sasv

	Set-Content
	sc
	Select-Object
	select
	Set-Item
	si

	Set-Location
	sl
	Start-Sleep
	sleep
	Sort-Object
	sort

	Set-ItemProperty
	sp
	Stop-Process
	spps
	Stop-Service
	spsv

	Set-Variable
	sv
	Tee-Object
	tee
	Where-Object
	where

	Where-Object
	?
	Write-Output
	write
	Get-Content
	cat

	Set-Location
	cd
	Clear-Host
	clear
	Copy-Item
	cp

	Get-History
	h
	Get-History
	history
	Stop-Process
	kill

	Out-Printer
	lp
	Get-ChildItem
	ls
	New-PSDrive
	mount

	Move-Item
	mv
	Pop-Location
	popd
	Get-Process
	ps

	Push-Location
	pushd
	Get-Location
	pwd
	Invoke-History
	r

	Remove-Item
	rm
	Remove-Item
	rmdir
	Write-Output
	echo

	Clear-Host
	cls
	Set-Location
	chdir
	Copy-Item
	copy

	Remove-Item
	del
	Get-ChildItem
	dir
	Remove-Item
	erase

	Move-Item
	move
	Remove-Item
	rd
	Rename-Item
	ren

	Set-Variable
	set
	Get-Content
	type
	
	


Notice that some cmdlets have more than one alias; this is because we want to provide a glide path for users who are used to Cmd.exe and UNIX shells.  You can create your own aliases as well with the Set-Alias cmdlet.  
If you wanted to create an alias for a Get-Process named "tlist", you would type the following command:
PS> set-alias tlist get-process

For the rest of the session, "tlist" will retrieve the list of processes running on the system.  If you want to have this alias every time you start the shell, enter the following command in your $profile file:
set-alias tlist get-process

Finding Stuff

Getting Help

To display detailed help information, use the Get-Help cmdlet.  This cmdlet returns information that is similar to the UNIX man command.  The following are examples of commands that you can use to retrieve help information:
PS> Get-Help 

PS> Get-Help foreach

PS> Get-Help Get-Process

PS> Get-Process -?

PS> Get-Help about_while
Help for both cmdlet and language topics are available; the complete list of help topics may be found by using the Get-Help cmdlet without using any arguments.  

Navigation

The Windows PowerShell provides access to system resources in a number of ways.  As discussed above, cmdlets provide a way to access system resources, but the Windows PowerShell environment provides additional access via "drives."  These "drives" provide access to system resources such as the registry in a manner that is similar to the way in which Filesystem drives access file data. 
To display the list of Windows PowerShell drive mappings, enter the following command:

PS> get-drive
To change to a different location (like the Cmd.exe command cd), enter the Set-Location command:

PS> set-location c:\

PowerShell has a cd alias (like most shells).  

PS> cd c:\

Either "/" or "\" is supported as a path separator, so you can enter:

PS> cd C:/Windows\System32

One major difference between the Windows PowerShell and Cmd.exe is the way that you change location from drive to drive.  In Cmd.exe, you would type the drive letter followed by a colon.  With the Windows PowerShell, you would use the set-location cmdlet in combination with the drive letter.  This has the advantage of enabling you to not only change drives but also to change directories at the same time.

In Cmd.exe, you would enter:
C:\> D:

D:\> cd music

D:\Music>

In the Windows PowerShell, you would enter:
PS C:\> cd D:\music

PS D:\Music>

To ease the transition from Cmd.exe, you can enter the drive followed by colon to change drives.
C:\> D:

D:\>

To change to a different location while pushing the current location on the stack (pushd), enter the Push-Location command: 

PS> push-location c:\
To restore the location to the last saved location (popd), enter the Pop-Location command:

PS> pop-location
The Windows PowerShell supports the setting of your location to UNC paths, but you must know the name of your share.  For example, if you wanted to set your location to the share music on the server MediaServer, you would enter the following command:

PS> set-location \\MediaServer\music
You can use the existing net command to identify the shares that are available:
PS> net view MediaServer

To see the contents of a directory, enter the Get-Childitem command (which has aliases gci, dir, and ls).  

PS> cd c:\

PS> dir

    Directory: Microsoft.Management.Automation.Core\FileSystem::C:\

Mode                LastWriteTime     Length Name

----                -------------     ------ ----

-a---         2/15/2005   6:11 AM          0 AUTOEXEC.BAT

-a---         4/22/2005   3:35 PM        159 PatchInfo.txt

-a---         4/17/2005   8:08 PM      19081 readme.htm

d----        10/17/2005   4:21 PM            Documents and Settings

d----         9/13/2005   3:27 PM            PSH
d-r--         11/8/2005   4:52 PM            Program Files

d----         6/16/2005   5:10 PM            temp

d----        11/11/2005   9:54 AM            WINDOWS

You will notice that the output looks similar to the standard Cmd.exe output. 

Registry

This shell also provides direct access to the system's registry.  Two drives can be used to access the registry:
	Drive Name
	Registry Location

	HKLM
	HKEY_LOCAL_MACHINE

	HKCU
	HKEY_CURRENT_USER


The registry may be navigated to via these two drives.  The following example demonstrates how to collect the information from the registry.  Specifically, it retrieves the value of the WINDIR key from the environment subkey of the registry.

PS> cd HKLM:/System

PS> dir
SKC  VC ChildName                      Property

---  -- ---------                      --------

  4   0 ControlSet001                  {}

  4   0 ControlSet002                  {}

  1   0 LastKnownGoodRecovery          {}

  0  25 MountedDevices                 {\??\Volume{ee61bc00-a29e-11d7-b9ec...

  0   4 Select                         {Current, Default, Failed, LastKnownGood}

  3   7 Setup                          {SetupType, SystemSetupInProgress,... 

 10   0 WPA                            {}

  4   0 CurrentControlSet              {}

Notice that the output of dir (or get-childitem) is different from the file system.  Because this is a different drive with different information, we provide a different view of the data.  In this case, it is more important to know how many subkeys (SKC which is an abbreviation of SubKeyCount) and properties (VC which is an abbreviation of ValueCount) are present.  The other information that is of interest is the names of those subkeys and the properties that are available in those subkeys.
PS> cd "CurrentControlSet\Control\Session Manager"

PS> dir
    Hive: Registry::HKEY_LOCAL_MACHINE\system\CurrentControlSet\Control\Session

Manager

SKC  VC ChildName                      Property

---  -- ---------                      --------

  0   1 AppCompatibility               {AppCompatCache}

 15   0 AppPatches                     {}

  0   7 DOS Devices                    {AUX, MAILSLOT, NUL, PIPE, PRN, UNC, f...

  0  34 Environment                    {bar, ComSpec, DISPLAY, EDITOR, foo, h...

  0   3 Executive                      {AdditionalCriticalWorkerThreads, Addi...

  0   0 FileRenameOperations           {}

  0   2 kernel                         {obcaseinsensitive, ObUnsecureGlobalNa...

  0  21 KnownDLLs                      {advapi32, comdlg32, DllDirectory, gdi...

  1  15 Memory Management              {ClearPageFileAtShutdown, DisablePagin...

  0  13 Power                          {AcProcessorPolicy, DcProcessorPolicy,...

  0   2 SFC                            {ProgramFilesDir, CommonFilesDir}

  1   6 SubSystems                     {Debug, Kmode, Optional, Posix, Requir...

We will start using more cmdlets and some of the syntax of the language.  These cmdlets and concepts are fully described in the Windows PowerShell User Guide.  For now, we will just use them so we can see how the environment works.

PS> $a = Get-Item environment

PS> $a.Property

AVENGINE

. . .

windir

XNLSPATH

PS> Get-ItemProperty -path environment -name windir

PSHPath       : Registry::HKEY_LOCAL_MACHINE\system\CurrentControlSet\Control\S

                ession Manager\environment

PshParentPath : Registry::HKEY_LOCAL_MACHINE\system\CurrentControlSet\Control\S

                ession Manager

PshChildName  : environment

PshDrive      : HKLM

PshProvider   : System.Management.Automation.ProviderInfo

windir        : C:\WINDOWS

PS> $env = “environment”

This next line takes advantage of the pipelining capabilities and the filtering of cmdlets.  

PS> (Get-Item $env).property | foreach { $_; "  " + (Get-ItemProperty $env).$_ }
AVENGINE

  C:\PROGRA~1\CA\SHARED~1\SCANEN~1

ComSpec

  C:\WINDOWS\system32\cmd.exe

. . .

OS

  Windows_NT

Path

  C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\PROGRA~1\CA\SHARED

~1\SCANEN~1;C:\PROGRA~1\CA\ETRUST~1;C:\SFU\Perl\bin\;C:\SFU\common\;c:\PSH\19

4;C:\Program Files\LocStudio\

PATHEXT

  .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;

PROCESSOR_ARCHITECTURE

  x86

PROCESSOR_IDENTIFIER

  x86 Family 6 Model 13 Stepping 8, GenuineIntel

PROCESSOR_LEVEL

  6

PROCESSOR_REVISION

  0d08

. . .

TMP

  C:\WINDOWS\TEMP

UATOOLSPATH

  C:\

windir

  C:\WINDOWS

Appendix A - Cmdlet List

This table provides the names and short descriptions of available Cmdlets sorted by noun. To find basic information about a command, you can use the get-command command.  To get more detailed information, use the get-help command.
	CmdletName
	Cmdlet Short Description

	Add-Content
	Adds to the contents of the specified items.

	Add-History
	Adds entries to the session history.

	Add-Member
	Adds a user-defined custom member to an object.

	Add-PSSnapin
	Adds one or more PSSnapIns to the current PowerShell console.

	Clear-Content
	Removes the content from an item or file while leaving the file intact.

	Clear-Item
	Sets the items at the specified location to the "clear" value specified by the provider.

	Clear-ItemProperty
	Removes the property value from a property.

	Clear-Variable
	Removes the value from a variable.

	Compare-Object
	Compares the properties of objects.

	ConvertFrom-SecureString
	Export a securestring to a safe, persistable format.

	Convert-Path
	Converts the path of the item given from a PS path to a provider path.

	ConvertTo-Html
	Converts the input into an HTML table.

	ConvertTo-SecureString
	Creates a securestring from a normal string created by export-securestring.

	Copy-Item
	Calls a provider to copy an item from one location to another within a namespace.

	Copy-ItemProperty
	Copies a property between locations or namespaces.

	Export-Alias
	Exports an alias list to a file.

	Export-Clixml
	Produces a clixml representation of a PS object or objects.

	Export-Console
	Exports the changes made to the current console. This action overwrites any existing console file.

	Export-Csv
	Forms CSV strings from the input.

	ForEach-Object
	Applies script blocks to each object in the pipeline.

	Format-Custom
	Formats output display as defined in additions to the formatter file.

	Format-List
	Formats objects as a list of their properties displayed vertically.

	Format-Table
	Formats the output as a table.

	Format-Wide
	Formats objects as a table of their properties.

	Get-Acl
	Gets the access control list (ACL) associated with a file or object.

	Get-Alias
	Returns alias names for cmdlets.

	Get-AuthenticodeSignature
	Gets the signature object associated with a file.

	Get-ChildItem
	Retrieves the child items of the specified locations in a drive.

	Get-Command
	Retrieves basic information about a command.

	Get-Content
	Gets the content from the item at the specified location.

	Get-Credential
	Gets a credential object based on a password.

	Get-Culture
	Gets the culture information.

	Get-Date
	Gets the current date and time.

	Get-EventLog
	Gets the eventlog data for the machine.

	Get-ExecutionPolicy
	Gets the effective execution policy for the current shell.

	Get-Help
	Opens the help files.

	Get-History
	Gets a listing of the session history.

	Get-Host
	Gets the host information.

	Get-Item
	Returns an object that represents an item in a namespace.

	Get-ItemProperty
	Retrieves the properties of an object.

	Get-Location
	Displays the current location.

	Get-Member
	Enumerates the properties, methods, typeinfo, and property sets of the objects given to it.

	Get-PfxCertificate
	Gets the pfx certificate information.

	Get-Process
	Gets a list of processes on a machine.

	Get-PSDrive
	Gets the drive information (DriveInfo) for the specified PS Drive.

	Get-PSProvider
	Gets the information for the specified provider.

	Get-PSSnapin
	Lists registered PSSnapIns.

	Get-Service
	Gets a list of services.

	Get-TraceSource
	Lists properties for given trace sources.

	Get-UICulture
	Gets the uiculture information.

	Get-Unique
	Gets the unique items in a sorted list.

	Get-Variable
	Gets a PS variable.

	Get-WmiObject
	Produce a WMI object or the list of WMI classes available on the system.

	Group-Object
	Groups the objects that contain the same value for a common property.

	Import-Alias
	Imports an alias list from a file.

	Import-Clixml
	Imports a clixml file and rebuilds the PS object.

	Import-Csv
	Takes values from a CSV list and sends objects down the pipeline.

	Invoke-Expression
	Executes a string as an expression.

	Invoke-History
	Invokes a previously executed command.

	Invoke-Item
	Invokes an executable or opens a file.

	Join-Path
	Combines the path elements into a single path.

	Measure-Command
	Tracks the running time for script blocks and cmdlets.

	Measure-Object
	Measures various aspects of objects or their properties.

	Move-Item
	Moves an item from one location to another.

	Move-ItemProperty
	Moves a property from one location to another.

	New-Alias
	Creates a new cmdlet-alias pairing.

	New-Item
	Creates a new item in a namespace.

	New-ItemProperty
	Sets a new property of an item at a location.

	New-Object
	Creates a new .NET object.

	New-PSDrive
	Installs a new drive on the machine.

	New-Service
	Creates a new service.

	New-TimeSpan
	Creates a timespan object.

	New-Variable
	Creates a new variable.

	Out-Default
	The default controller of output.

	Out-File
	Sends command output to a file.

	Out-Host
	Sends the pipelined output to the host.

	Out-Null
	Sends ouput to a null.

	Out-Printer
	Sends the output to a printer.

	Out-String
	Sends output to the pipleline as strings.

	Pop-Location
	Changes the current working location to the location specified by the last entry pushed onto the stack.

	Push-Location
	Pushes a location to the stack.

	Read-Host
	Reads a line of input from the host console.

	Remove-Item
	Calls a provider to remove an item.

	Remove-ItemProperty
	Removes a property and its value from the location.

	Remove-PSDrive
	Removes a drive from its location.

	Remove-PSSnapin
	Remove PSSnapIns from the current console process.

	Remove-Variable
	Removes a variable and its value.

	Rename-Item
	Changes the name of an existing item.

	Rename-ItemProperty
	Renames a property at its location.

	Resolve-Path
	Resolves the wildcards in a path.

	Restart-Service
	Restarts a stopped service.

	Resume-Service
	Resumes a suspended service.

	Select-Object
	Selects objects based on parameters set in the cmdlet command string.

	Select-String
	Searches through strings or files for patterns.

	Set-Acl
	Sets a resource's access control list (ACL) properties.

	Set-Alias
	Maps an alias to a cmdlet.

	Set-AuthenticodeSignature
	Places an authenticode signature in an PS script or other file.

	Set-Content
	Sets the content in the item at the specified location.

	Set-Date
	Sets the system time on the host system.

	Set-ExecutionPolicy
	Sets the execution policy for the current shell.

	Set-Item
	Sets the value of a pathname within a provider to the specified value.

	Set-ItemProperty
	Sets a property at the specified location to a specified value.

	Set-Location
	Sets the current working location to a specified location.

	Set-PSDebug
	Turns PS script debugging features on and off, and sets the trace level.

	Set-Service
	Makes and sets changes to the properties of a service.

	Set-TraceSource
	Sets or removes the specified options and trace listeners from the specified trace source instances.

	Set-Variable
	Sets data in a variable and creates a variable if one with the requested name does not exist.

	Sort-Object
	Sorts the input objects by property values.

	Split-Path
	Given a PS path, it streams a string with the qualifier, parent path, or leaf item.

	Start-Service
	Starts a stopped service.

	Start-Sleep
	Suspend shell, script, or runspace activity for the specified period of time.

	Start-Transcript
	Starts a transcript of a command shell session.

	Stop-Process
	Stops a running process.

	Stop-Service
	Stops a running service.

	Stop-Transcript
	Stops the transcription process.

	Suspend-Service
	Suspends a running service.

	Tee-Object
	Sends input objects to two places.

	Test-Path
	Returns true if the path exists; otherwise, it returns false.

	Trace-Command
	Enables the tracing of the specified trace source instances for the duration of the expression or command.

	Update-FormatData
	Updates and appends format data files.

	Update-TypeData
	Updates the types.psxml file in the Windows PowerShell.

	Where-Object
	Filters the input from the pipeline allowing operation on only certain objects.

	Write-Debug
	Writes a debug message to the host display.

	Write-Error
	Writes an error object and sends it to the pipeline.

	Write-Host
	Displays objects through the user feedback mechanism.

	Write-Output
	Writes an object to the pipeline.

	Write-Progress
	Sends a progress record to the host.

	Write-Verbose
	Writes a string to the host's verbose display.

	Write-Warning
	Writes a warning message.


Appendix B - Startup Troubleshooting
This section of the document reviews some of the common errors and messages that can occur when starting the Windows PowerShell.

The following error can occur if the signature in a file has been corrupted.

Windows(R) PowerShell

Copyright (C) 2006 Microsoft Corporation. All rights reserved.
The file C:\Documents and Settings\All Users\Documents\PSH\profile.ps1 cannot be loaded. An internal certificate chaining error has occurred.

At line:1 char:2

+ .  <<<< 'C:\Documents and Settings\All Users\Documents\PSH\profile.ps1'

PS C:\Documents and Settings\user1>

To correct this error, you should either resign the script (if you have a valid signature with which to sign), or, you can remove the signature from the file with an editor.  Please note that if you have your ExecutionPolicy set to AllSigned, this will prevent the file from executing until the file has a valid certificate.
