PowerShell Tracing
Quick Start
	Enabling tracing for a single command line

	Send output to a file:

trace-command -name <categoryname> -Option All -Expression { <command line> } -FilePath <filename>

trace-command -name <categoryname> -Option All -Command <string> -FilePath <filename>

Send output to the PowerShell host:

trace-command -name <categoryname> -Option All -Expression { <command line> } -PSHost

trace-command -name <categoryname> -Option All -Command <string> -PSHost

Send output to the debugger:

trace-command -name <categoryname> -Option All -Expression { <command line> } -debugger

trace-command -name <categoryname> -Option All -Command <string> -debugger

Note: you can specify multiple destinations at once.

trace-command -name <categoryname> -Option All -Expression { <command line> } -PSHost -FilePath <filename>

	Enabling tracing in the middle of a pipeline

	To a file:

Command1 | trace-command -name <categoryname> -Option All -FilePath <filename> -command <commandName> <command arguments> | command3

To the PowerShell host:

Command1 | trace-command -name <categoryname> -Option All -PSHost -command <commandName> <command arguments> | command3

To the debugger:

Command1 | trace-command -name <categoryname> -Option All -debugger -command <commandName> <command arguments> | command3

	Enabling tracing that spans multiple command lines

	To a file:

set-tracesource - name <categoryname> -Option All -FilePath <filename>

To the PowerShell host:

set-tracesource - name <categoryname> -Option All -PSHost

To the debugger:

set-tracesource - name <categoryname> -Option All -debugger

Note: you can specify multiple destinations at once.

set-tracesource - name <categoryname> -Option All -PSHost -FilePath <filename>

	Disabling tracing that spans multiple command lines

	set-tracesource - name <categoryname> -Option Off -RemoveListener *

	Enabling tracing via app-config file

	To enable tracing before the profile.ps1 is run and before there is an interactive shell, you must enable tracing via the app-config file. This is a file with the same name as the exe with .config appended. This file must be in the same directory as the exe. For example: c:\PS\powershell.exe.config is the app-config file for c:\PS\PowerShell.exe.

To enable tracing of a particular category, add the lines in bold to the app-config file. Note, trace category names must be truncated to 16 characters when specifying the source name.
To the debugger:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.diagnostics>

 <sources>

 <source name="CommandDiscovery" switchValue="All" Option="All">

 <listeners>

 <add name="Debugger" type="System.Diagnostics.DefaultTraceListener" />

 </listeners>

 </source>

 </sources>

 </system.diagnostics>

</configuration>

To the console:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.diagnostics>

 <sources>

 <source name="CommandDiscovery" switchValue="All" Option="All">

 <listeners>

 <add name="Console" type="System.Diagnostics.ConsoleTraceListener" />

 </listeners>

 </source>

 </sources>

 </system.diagnostics>

</configuration>

To a file named trace.log:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.diagnostics>

 <sources>

 <source name="CommandDiscovery" switchValue="All" Option="All">

 <listeners>

 <add name="trace.log" type="System.Diagnostics.TextWriterTraceListener" initializeData="trace.log"/>

 </listeners>

 </source>

 </sources>

 </system.diagnostics>

</configuration>

Enable reading of the config file:
After creating the app-config file you must set “PSEnableTrace” to “True”.

From cmd.exe:

set PSEnableTrace=True

From a PowerShell session:

$env:PSEnableTrace="True"
Run the shell.

	Available values for the -Option parameter

	Generally, All should be used, but other values are possible, the following table presents the list Option and their description

Option

Description

All

All methods for tracing will be enabled
Assert

Assertions are traced
Constructor

Constructors are traced
Data

Methods associated with the Option; Constructor, Dispose, Finalizer, Property and WriteLine will be enabled for tracing
Delegates

Delegate and DelagateHandler are traced
Dispose

Dispose methods are traced
Error

Errors are traced
Errors

Methods associated with Error and Exception will be traced
Events

RaiseEvent and EventHandler are traced
Exception

Exceptions are traced
ExecutionFlow

Methods associated with the Option Constructor, Dispose, Finalizer, Method, Delegates and events will be enabled for tracing
Finalizer

Finalizer methods are traced
Lock

Locks are traced
Method

Methods are traced
None

No tracing
Property

Property accesses are traced
Scope

Scope changes are traced
Verbose

Use of WriteVerbose is traced
Warning

Use of WriteWarning is traced
WriteLine

WriteLine accesses are traced

	Discovering categories to trace

	The following will show all the trace categories which have been loaded. Note, only the code that has been run in the engine will have a trace category shown.
get-tracesource -name *

This is the complete list of categories (which is very large). However, there is a much smaller set of categories that are designed for general usage:

CommandDiscovery - this category shows the command discovery algorithm as it is being run. This allows the user to debug problems when a command, function, or alias is not being found by the system.

ParameterBinding - this category shows how parameters are bound by the engine to Cmdlets. This allows developers to debug problems in their Cmdlets, or end-users debug problems in their scripts when getting ParameterBindingExceptions.
PathResolution - this category shows how the wildcard matching is done when resolving paths using the Cmdlet Providers.

MemberResolution - this category shows how members of an object are chosen when calling a method or a property of an object through the PowerShell language.
TypeConversion - this category shows how an object of one type gets converted to another type.

RunspaceInit - this category shows what is going on in the engine during runspace initialization. This category can only be enabled through an app-config file.

FormatViewBinding - this category shows how a view is selected when an object gets piped through the formatting and output component.

FormatFileLoading - this category shows how the views are loaded from the format.ps1xml files.

