
15 Ways to Kill Your
MySQL Application
Performance

Jay Pipes
Community Relations Manager, North America

MySQL, Inc.
jay@mysql.com

5/17/07 php|tek - Chicago page 2

Before we get started...a quick poll

➔ 3.23? 4.0? 4.1? 5.0? 5.1? 5.2/6.0?
➔ PostgreSQL? Oracle? SQL Server?

DB2? SQLite? Others?
➔ OLAP? OLTP? Mix?
➔ MyISAM? InnoDB? Others? (Falcon

or PBXT, anyone?)
➔ Developer? DBA? Mix?

5/17/07 php|tek - Chicago page 3

Oh, and one more thing...

The answer to every question will
be...

It depends.

5/17/07 php|tek - Chicago page 4

Get your learn on.

➔ 15 tips of what not to do
➔ Some may surprise you
➔ Others won't (but you probably still do them)

➔ Have a short question? Just ask it
➔ Longer questions, save to the end

5/17/07 php|tek- Chicago page 5

#1: Thinking too small

If you need to move
some serious data or
deal with massive
scale, you need to
think about the
ecosystem in which
MySQL lives.

5/17/07 php|tek - Chicago page 6

The dolphin swims in a big sea

✔ Surrounded by web servers,
application servers, DNS servers,
etc

✔ Proxies and caching at every
level

✔ No major website exists without
caching heavily

✔ See Ask Hansen's slides
(develooper.com) and Ilia's great tutorial

5/17/07 php|tek - Chicago page 7

Architect for scale out from the start

✔ Detach components and
application pieces from each
other

✔ Never rely on a single “big box”
architecture

✔ Plan for replication and/or
partitioning early

✔ Keep session data for transient,
small data sets (oh, and don't use file-based sessions)

5/17/07 php|tek- Chicago page 8

But wait! Don't think too big

The biggest
performance gains
will come from
changes in the way
you write your SQL
code, design your
schema, and apply
indexing strategies

Remember,

performance != scalability

5/17/07 php|tek- Chicago page 9

#2: Not using EXPLAIN

Clients

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB Cluster
(Ndb)

Connection
Handling &

Net I/O

“Packaging”

5/17/07 php|tek - Chicago page 10

Explaining EXPLAIN

✔ Simply append EXPLAIN before any
SELECT statement

✔ Returns the execution plan chosen
by the optimizer

✔ Each row in output represents a set
of information used in the SELECT

✔ A real schema table
✔ A virtual table (derived table)
✔ A subquery in SELECT or WHERE
✔ A unioned set

5/17/07 php|tek - Chicago page 11

Sample EXPLAIN output

mysql> EXPLAIN SELECT f.film_id, f.title, c.name
 > FROM film f INNER JOIN film_category fc
 > ON f.film_id=fc.film_id INNER JOIN category c
 > ON fc.category_id=c.category_id WHERE f.title LIKE 'T%' \G
*************************** 1. row ***************************
 select_type: SIMPLE
 table: c
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16
 Extra:
*************************** 2. row ***************************
 select_type: SIMPLE
 table: fc
 type: ref
possible_keys: PRIMARY,fk_film_category_category
 key: fk_film_category_category
 key_len: 1
 ref: sakila.c.category_id
 rows: 1
 Extra: Using index
*************************** 3. row ***************************
 select_type: SIMPLE
 table: f
 type: eq_ref
possible_keys: PRIMARY,idx_title
 key: PRIMARY
 key_len: 2
 ref: sakila.fc.film_id
 rows: 1
 Extra: Using where

An estimate of rows in
this set

The “access strategy”
chosen

The available indexes,
and the one(s) chosen

A covering index is used

5/17/07 php|tek - Chicago page 12

Tips on using EXPLAIN

✔ There is a huge difference between
“index” in the type column and “Using
index” in the Extra column

✔ In the type column, it means a full
index scan (bad!)

✔ In the Extra column, it means a
covering index was found (good!)

✔ 5.0+ look for the index_merge
optimization

✔ Prior to 5.0, only one index used,
even if more than one were useful

5/17/07 php|tek - Chicago page 13

index_merge example

mysql> EXPLAIN SELECT * FROM rental
 -> WHERE rental_id IN (10,11,12)
 -> OR rental_date = '2006-02-01' \G
*************************** 1. row ************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: index_merge
possible_keys: PRIMARY,rental_date
 key: rental_date,PRIMARY
 key_len: 8,4
 ref: NULL
 rows: 4
 Extra: Using sort_union(rental_date,PRIMARY);
Using where
1 row in set (0.04 sec)Prior to 5.0, the optimizer would have to

choose which index would be best for
winnowing the overall result and then do a
secondary pass to determine the OR
condition, or, more likely, perform a full
table scan and perform the WHERE
condition on each row

5/17/07 php|tek- Chicago page 14

#3: Choosing the wrong data types

A concept to remember:

The more index (and data) records
can fit into a single block of memory,
the faster your queries will be.

Period.

5/17/07 php|tek- Chicago page 15

Journey to the center of the database

Ahh,
normalization...

http://thedailywtf.com/forums/thread/75982.aspx

5/17/07 php|tek - Chicago page 16

Smaller, smaller, smaller

✔ Use the smallest data type
possible

✔ Do you really need that BIGINT?

✔ The smaller your data types, the
more index (and data) records
can fit into a single block of
memory

✔ Especially important for indexed fields

5/17/07 php|tek - Chicago page 17

Store IP addresses as INT, not CHAR

✔ An IP address always reduces
down to an INT UNSIGNED

✔ Each subnet part corresponds to
one 8-byte division of the
underlying INT UNSIGNED

✔ Use INET_ATON() to convert from
a string to an integer

✔ Use INET_NTOA() to convert from
integer to string

5/17/07 php|tek- Chicago page 18

IP address example

CREATE TABLE Sessions (
 session_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, ip_address INT UNSIGNED NOT NULL // Compared to CHAR(15)!!
, session_data TEXT NOT NULL
, PRIMARY KEY (session_id)
, INDEX (ip_address)
) ENGINE=InnoDB;

// Find all sessions coming from a local subnet
SELECT * FROM Sessions
WHERE ip_address BETWEEN
INET_ATON('192.168.0.1') AND INET_ATON('192.168.0.255');

The INET_ATON() function reduces the string to a constant INT
and a highly optimized range operation will be performed for:

SELECT * FROM Sessions
WHERE ip_address BETWEEN 3232235521 AND 3232235775

5/17/07 php|tek- Chicago page 19

#4: Using persistent connections in PHP

● Persistent connections don't jive
with a shared nothing architecture

● If you zombie a process in Apache
that has a persistent connection
attached, you just lost that
resource

● Connections to MySQL are 10 to
100 times faster than Oracle or
PostgreSQL
● Specifically designed to be

lightweight and short-lived

5/17/07 php|tek- Chicago page 20

#5: Using a heavy DB abstraction layer

● If you don't need to worry about
portability, do not use a heavy
abstraction layer
● e.g. ADODB, MDB2, PearDB, etc)

● Use a lightweight layer
● e.g. PDO (recommended) or a

homegrown wrapper if desired
● Wrapper for scale-out support

within your library

5/17/07 php|tek- Chicago page 21

#6: Not understanding storage engines

Clients

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB Cluster
(Ndb)

Connection
Handling &

Net I/O

“Packaging”

5/17/07 php|tek - Chicago page 22

Storage engines

✔ Single most mis-understood part
of MySQL

✔ Learn both the benefits and
drawbacks of each engine

✔ Single-engine architectures are
typically not optimal

✔ Index → Data layout is most
overlooked difference between
engines

5/17/07 php|tek - Chicago page 23

Often over-looked engines - ARCHIVE

✔ Incredible insert speeds
✔ Great compression rates (zlib)

✔ Typically 6-8x smaller than MyISAM

✔ No UPDATEs
✔ Ideal for auditing and, duh,

archiving
✔ Web traffic records
✔ CDROM bulk tables (table scans only)
✔ Data that can never be updated

5/17/07 php|tek - Chicago page 24

Often over-looked engines - MEMORY

✔ Data lost on server restart
✔ Use init_file to load up the table on

restart

✔ Allows indexes to be specified as
either HASH or BTREE

✔ Ideal for summary and transient
data

✔ “Weekly top X” tables
✔ Table counts for InnoDB tables
✔ Data you want to “pin” in memory

5/17/07 php|tek- Chicago page 25

#7: Not understanding index layouts

Very important in order to make the
right decisions on index and storage

engine choices

5/17/07 php|tek - Chicago page 26

Clustered vs. Non-clustered layout

✔ Engines implement how they “lay
out” both data and index records
in memory and on disk

✔ A clustered organization stores
it's data on disk in the order of
the primary key (sort of.)

✔ A non-clustered organization has
no implicit order to the data
records, only the index records

5/17/07 php|tek- Chicago page 27

Non-clustered layout

1-100

Data file
containing
unordered

data records

1-33 34-66 67-100

Root Index Node stores a directory
of keys, along with pointers to non-
leaf nodes (or leaf nodes for a very

small index)

Leaf nodes
store sub-

directories of
index keys

with pointers
into the data

file to a
specific record

5/17/07 php|tek- Chicago page 28

Clustered layout

1-100

1-33

In a clustered
layout, the leaf
nodes actually

contain all the data
for the record (not
just the index key,

like in the non-
clustered layout)

Root Index Node stores a directory
of keys, along with pointers to non-
leaf nodes (or leaf nodes for a very

small index)

34-66 67-100

So, bottom line:

When looking up a record by a primary key,
for a clustered layout/organization, the
lookup operation (following the pointer
from the leaf node to the data file) involved in
a non-clustered layout is not needed.

5/17/07 php|tek - Chicago page 29

A word on clustered layouts

✔ Very important to have as small a
clustering key (primary key) as
possible

✔ Why? Because every secondary index
built on the table will have the primary
key appended to each index record

✔ If you don't pick a primary key (bad
idea!), one will be created for you,
behind the scenes, and with you having
no control over the key (this is a 6 byte
number with InnoDB...)

5/17/07 php|tek- Chicago page 30

#8: Not understanding the Query Cache

Clients

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB Cluster
(Ndb)

Connection
Handling &

Net I/O

“Packaging”

5/17/07 php|tek - Chicago page 31

The query cache

✔ Must understand application
read/write ratio

✔ QC design is a compromise
between CPU usage and read
performance

✔ Bigger query cache != better
performance, even for heavy
read applications

5/17/07 php|tek - Chicago page 32

Query cache invalidation

✔ Coarse invalidation designed to
prevent CPU overuse during
finding and storing cache entries

✔ This means any modification to
any table referenced in the
SELECT will invalidate any cache
entry which uses that table

✔ Remedy with vertical table
partitioning

5/17/07 php|tek- Chicago page 33

Solving cache invalidation

CREATE TABLE Products (
 product_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB; // Or MyISAM

CREATE TABLE Products (
 product_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB; // Or MyISAM

CREATE TABLE ProductCounts (
 product_id INT UNSIGNED NOT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
) ENGINE=InnoDB;

5/17/07 php|tek- Chicago page 34

#9: Using stored procedures...

...without understanding what is going
on behind the scenes with stored

procedure compilation

5/17/07 php|tek - Chicago page 35

The problem with stored procedures

✔ Unlike every other RDBMS, compiled
stored procedure execution plans kept on
the connection thread

✔ This means that if you issue a stored
procedure to just get data and only issue it
once in a PHP page request, you're just
wasting cycles (~7-8% regression)

✔ Solution: just use prepared statements
and dynamic SQL for everything but:

✔ ETL-type procedures

✔ Stuff that's complex and not executed often

✔ Stuff that's simple and executed multiple times per
request

5/17/07 php|tek- Chicago page 36

#10: Operating on indexed column with a function

● Indexes speed up SELECTs on a
column, but...

● If you operate upon that indexed
column with a function (or bitwise operator,

BTW), the index cannot be used
● Most of the time, there are ways to

rewrite the query to isolate the
indexed column on one side of the
equation

5/17/07 php|tek- Chicago page 37

Rewrite for indexed column isolation

mysql> EXPLAIN SELECT * FROM film WHERE title LIKE 'Tr%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: range
possible_keys: idx_title
 key: idx_title
 key_len: 767
 ref: NULL
 rows: 15
 Extra: Using where

mysql> EXPLAIN SELECT * FROM film WHERE LEFT(title,2) = 'Tr' \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra: Using where

Nice. In the top query,
we have a fast range
access on the indexed
field

Oops. In the bottom
query, we have a
slower full table scan
because of the
function operating on
the indexed field (the
LEFT() function)

5/17/07 php|tek- Chicago page 38

Rewrite for indexed column isolation #2

SELECT * FROM Orders
WHERE TO_DAYS(CURRENT_DATE())
– TO_DAYS(order_created) <= 7;

Not a good idea! Lots
o' problems with this...

SELECT * FROM Orders
WHERE order_created
>= CURRENT_DATE() ­ INTERVAL 7 DAY;

Better... Now the index
on order_created will be
used at least. Still a
problem, though...

SELECT order_id, order_created, customer
FROM Orders
WHERE order_created
>= '2007­02­11' ­ INTERVAL 7 DAY;

Best. Now the query
cache can cache this
query, and given no
updates, only run it
once a day...

replace the CURRENT_DATE() function with a constant string in your
programming language du jour... for instance, in PHP, we'd do:

$sql= “SELECT order_id, order_created, customer FROM Orders WHERE
order_created >= '“ .
date('Y-m-d') . “' - INTERVAL 7 DAY”;

5/17/07 php|tek- Chicago page 39

#11: Having missing or useless indexes

● Indexes speed up SELECTs on a
column, but only if there is a
decent selectivity associated with
the column

➔ S = d/n

➔ Number of distinct values in a column divided by the
total records in the table

● But... each index will slow down
INSERT, UPDATE, and DELETE
operations

5/17/07 php|tek- Chicago page 40

First, get rid of useless indexes

SELECT
 t.TABLE_SCHEMA
 , t.TABLE_NAME
 , s.INDEX_NAME
 , s.COLUMN_NAME
 , s.SEQ_IN_INDEX
 , (
 SELECT MAX(SEQ_IN_INDEX)
 FROM INFORMATION_SCHEMA.STATISTICS s2
 WHERE s.TABLE_SCHEMA = s2.TABLE_SCHEMA
 AND s.TABLE_NAME = s2.TABLE_NAME
 AND s.INDEX_NAME = s2.INDEX_NAME
) AS `COLS_IN_INDEX`
 , s.CARDINALITY AS "CARD"
 , t.TABLE_ROWS AS "ROWS"
 , ROUND(((s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) * 100), 2) AS `SEL %`
FROM INFORMATION_SCHEMA.STATISTICS s
 INNER JOIN INFORMATION_SCHEMA.TABLES t
 ON s.TABLE_SCHEMA = t.TABLE_SCHEMA
 AND s.TABLE_NAME = t.TABLE_NAME
WHERE t.TABLE_SCHEMA != 'mysql'
AND t.TABLE_ROWS > 10
AND s.CARDINALITY IS NOT NULL
AND (s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) < 1.00
ORDER BY `SEL %`, TABLE_SCHEMA, TABLE_NAME
LIMIT 10;

+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
| TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | COLUMN_NAME | SEQ_IN_INDEX | COLS_IN_INDEX | CARD | ROWS | SEL % |
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
worklog	amendments	text	text	1	1	1	33794	0.00
planetmysql	entries	categories	categories	1	3	1	4171	0.02
planetmysql	entries	categories	title	2	3	1	4171	0.02
planetmysql	entries	categories	content	3	3	1	4171	0.02
sakila	inventory	idx_store_id_film_id	store_id	1	2	1	4673	0.02
sakila	rental	idx_fk_staff_id	staff_id	1	1	3	16291	0.02
worklog	tasks	title	title	1	2	1	3567	0.03
worklog	tasks	title	description	2	2	1	3567	0.03
sakila	payment	idx_fk_staff_id	staff_id	1	1	6	15422	0.04
mysqlforge	mw_recentchanges	rc_ip	rc_ip	1	1	2	996	0.20
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+

5/17/07 php|tek - Chicago page 41

The missing indexes

✔ Always have an index on join
conditions

✔ Nicely, if you add a foreign key constraint, you'll have
one automatically

✔ Look to add indexes on columnd
used in WHERE and GROUP BY
expressions

✔ Look for opportunities for covering
indexes

✔ e.g. If you do a bunch of reads of product_id and
inventory_count, consider putting an index on both
columns (in that order)

5/17/07 php|tek- Chicago page 42

Be aware of column order in indexes!

mysql> EXPLAIN SELECT project, COUNT(*) as num_tags
 -> FROM Tag2Project
 -> GROUP BY project;
+-------------+-------+---------+--+
| table | type | key | Extra |
+-------------+-------+---------+--+
| Tag2Project | index | PRIMARY | Using index; Using temporary; Using filesort |
+-------------+-------+---------+--+

mysql> EXPLAIN SELECT tag, COUNT(*) as num_projects
 -> FROM Tag2Project
 -> GROUP BY tag;
+-------------+-------+---------+-------------+
| table | type | key | Extra |
+-------------+-------+---------+-------------+
| Tag2Project | index | PRIMARY | Using index |
+-------------+-------+---------+-------------+

mysql> CREATE INDEX project ON Tag2Project (project);
Query OK, 701 rows affected (0.01 sec)
Records: 701 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT project, COUNT(*) as num_tags
 -> FROM Tag2Project
 -> GROUP BY project;
+-------------+-------+---------+-------------+
| table | type | key | Extra |
+-------------+-------+---------+-------------+
| Tag2Project | index | project | Using index |
+-------------+-------+---------+-------------+

The Tag2Project Table:

CREATE TABLE Tag2Project (
tag INT UNSIGNED NOT NULL
, project INT UNSIGNED NOT NULL
, PRIMARY KEY (tag, project)
) ENGINE=MyISAM;

5/17/07 php|tek- Chicago page 43

#12: Not being a join-fu master

Knowledge of
black-belt SQL

coding, including
the rewriting of

subqueries to
standard joins

and eliminating
cursors through

joins, is the
foundation for

good MySQL
performance

5/17/07 php|tek - Chicago page 44

The small things... SQL Coding

✔ Keep things simple
✔ Break complex SQL into its

corresponding sets of information
✔ Think in terms of sets, not for-

each loops!
✔ For-each thinking leads to

correlated subqueries (bad!)
✔ Set-based thinking leads to

joins (good!)

5/17/07 php|tek - Chicago page 45

Set-based SQL thinking

“Show the maximum price that each
product was sold, along with the product
name for each product”
✔ Many programmers think:

✔ OK, for each product, find the maximum
price the product was sold and output that
with the product's name (bad!)

✔ Think instead:
✔ OK, I have 2 sets of data here. One set of

product names and another set of
maximum sold prices

5/17/07 php|tek- Chicago page 46

Sometimes, things look tricky...

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM payment p
 -> WHERE p.payment_date =
 -> (SELECT MAX(payment_date)
 -> FROM payment
 -> WHERE customer_id=p.customer_id);
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
| select_type | table | type | possible_keys | key | ref | rows | Extra |
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
| PRIMARY | p | ALL | NULL | NULL | NULL | 16451 | Using where |
| DEPENDENT SUBQUERY | payment | ref | idx_fk_customer_id,payment_date | payment_date | p.customer_id | 12 | Using index |
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
3 rows in set (0.00 sec)

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM (
 -> SELECT customer_id, MAX(payment_date) as last_order
 -> FROM payment
 -> GROUP BY customer_id
 ->) AS last_orders
 -> INNER JOIN payment p
 -> ON p.customer_id = last_orders.customer_id
 -> AND p.payment_date = last_orders.last_order;
+-------------+------------+-------+-------------------------+--------------------+--------------------------------+-------+
| select_type | table | type | possible_keys | key | ref | rows |
+-------------+------------+-------+---------------------------------+--------------------+------------------------+-------+
PRIMARY	<derived2>	ALL	NULL	NULL	NULL	599
PRIMARY	p	ref	idx_fk_customer_id,payment_date	payment_date	customer_id,last_order	1
DERIVED	payment	index	NULL	idx_fk_customer_id	NULL	16451
+-------------+------------+-------+---------------------------------+--------------------+------------------------+-------+
3 rows in set (0.10 sec)

5/17/07 php|tek- Chicago page 47

...but perform much better!

mysql> SELECT
 -> p.*
 -> FROM payment p
 -> WHERE p.payment_date =
 -> (SELECT MAX(payment_date)
 -> FROM payment
 -> WHERE customer_id=p.customer_id);
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
| payment_id | customer_id | staff_id | rental_id | amount | payment_date | last_update |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
<snip>
| 16049 | 599 | 2 | 15725 | 2.99 | 2005-08-23 11:25:00 | 2006-02-15 19:24:13 |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
623 rows in set (0.49 sec)

mysql> SELECT
 -> p.*
 -> FROM (
 -> SELECT customer_id, MAX(payment_date) as last_order
 -> FROM payment
 -> GROUP BY customer_id
 ->) AS last_orders
 -> INNER JOIN payment p
 -> ON p.customer_id = last_orders.customer_id
 -> AND p.payment_date = last_orders.last_order;
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
| payment_id | customer_id | staff_id | rental_id | amount | payment_date | last_update |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
<snip>
| 16049 | 599 | 2 | 15725 | 2.99 | 2005-08-23 11:25:00 | 2006-02-15 19:24:13 |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
623 rows in set (0.09 sec)

5/17/07 php|tek- Chicago page 48

#13: Not accounting for deep scans

Web applications
with search

functionality can
be crippled by
search engine

spider deep scans

5/17/07 php|tek - Chicago page 49

The deep scan problem

“Show the maximum price that each
product was sold, along with the product
name for each product”
✔ Many programmers think:
✔ The deep scan will put offsets in the hundreds

or thousands...

✔ This means that the full (or close to full) data
set must be returned as an ordered set, and
then skipped through to the offset

✔ Can get very slow, as loads of temporary
tables could be created to deal with the
large set sorting

SELECT
 p.product_id
, p.name as product_name
, p.description as product_description
, v.name as vendor_name
FROM products p
INNER JOIN vendors v
ON p.vendor_id = v.vendor_id
ORDER BY modified_on DESC
LIMIT $offset, $count;

5/17/07 php|tek- Chicago page 50

Solving deep scan slowdowns

/*
 * Along with the offset, pass in the last key value
 * of the ordered by column in the current page of results
 * Here, we assume a “next page” link...
 */
$last_key_where= (empty($_GET['last_key'])
 ? “WHERE p.name >= '{$_GET['last_key']}' “
 : '');

$sql= “SELECT
 p.product_id
, p.name as product_name
, p.description as product_description
, v.name as vendor_name
FROM products p
INNER JOIN vendors v
ON p.vendor_id = v.vendor_id
$last_key_where
ORDER BY p.name
LIMIT $offset, $count”;

/*
 * Now you will only be retrieving a fraction of the
 * needs-to-be-sorted result set for those larger
 * offsets
 */

5/17/07 php|tek- Chicago page 51

#14: SELECT COUNT(*) with no WHERE on an
InnoDB table

● There is a bad performance
problem when issuing a SELECT
COUNT(*) on an InnoDB table when
you don't specify a WHERE on an
indexed column

● i.e. Getting a count of the total number of
records in the table

● The cause has to do with the
complexity of the MVCC
implementation which keeps a
version of each record for
transaction isolation

5/17/07 php|tek- Chicago page 52

Solving InnoDB SELECT COUNT(*)

// Got 1M products in an InnoDB table?
// Don't do this!

SELECT COUNT(*) AS num_products
FROM products;

CREATE TABLE TableCounts (
 num_products INT UNSIGNED NOT NULL
, num_customers INT UNSIGNED NOT NULL
, num_users INT UNSIGNED NOT NULL
...
) ENGINE=MEMORY;

SELECT num_products FROM TableCounts;

// And, when modifying Products...
DELIMITER ;;
CREATE TRIGGER trg_ai_products
AFTER INSERT ON Products
UPDATE TableCounts
SET num_products = num_products +1;
END;;

CREATE TRIGGER trg_ad_products
AFTER DELETE ON Products
UPDATE TableCounts
SET num_products = num_products -1;
END;;

5/17/07 php|tek- Chicago page 53

#15: Not profiling or benchmarking

Profiling is the concept of
diagnosing a system for

bottlenecks

Benchmarking is the
process of evaluating

application
performance change

over time and testing
the load an application

can withstand

5/17/07 php|tek - Chicago page 54

Profiling concepts

✔ Try to profile on a testing or stage
environment

✔ If on a staging environment, make sure your data set is
realistic!

✔ You are looking for bottlenecks in
✔ Memory

✔ Disk I/O

✔ CPU

✔ Network I/O and OS

✔ Slow query logging
✔ log_slow_queries=/path/to/log

✔ log_queries_not_using_indexes

5/17/07 php|tek - Chicago page 55

Benchmarking concepts

✔ Track changes in application performance
over time

✔ Comparing the deltas after making a change

✔ Isolate to a single changed variable

✔ Record everything
✔ Configuration files (my.cnf/ini)

✔ SQL changes

✔ Schema and indexing changes

✔ Shut off unnecessary programs

✔ Disable query cache

5/17/07 php|tek - Chicago page 56

Your toolbox

super-smack

MyBench

mysqlslap

ApacheBench (ab)

SysBench EXPLAIN

SHOW PROFILE

Slow Query Log

JMeter/Ant

MyTop/innotop

5/17/07 php|tek- Chicago page 57

#16: Not using AUTO_INCREMENT

● MySQL is highly optimized for primary
keys created as AUTO_INCREMENTing
integers

● Enables high-performance concurrent
inserts

✔ Lockless reading and appending

● Establishes a “hot spot” in memory
and on disk which reduces swapping

● Reduces disk and page fragmentation
by keeping new records together

But wait,
there's
more!

5/17/07 php|tek- Chicago page 58

#17: Not using ON DUPLICATE KEY UPDATE

● Cleans up your code
✔ Prevents all that if

(record_exists()) ... do_update() ...
else ... do_insert()

● Avoids a round trip from
connection to server

● ~5-6% faster than issuing two
statements (SELECT and then
INSERT or UPDATE)

● Can be even greater with large
incoming data sets

But wait,
there's even

more!

5/17/07 php|tek - Chicago page 59

Recap

1.Thinking too small

2.Not using EXPLAIN

3.Choosing the wrong data types

4.Using persistent connections in PHP

5.Using a heavy DB abstraction layer

6.Not understanding storage engines

7.Not understanding index layouts

8.Not understanding how the query
cache works

5/17/07 php|tek - Chicago page 60

Recap

9.Using stored procedures improperly

10.Operating on an indexed column with a
function

11.Having missing or useless indexes

12.Not being a join-fu master

13.Not accounting for deep scans

14.Doing SELECT COUNT(*) without WHERE on
an InnoDB table

15.Not profiling or benchmarking

16.Not using AUTO_INCREMENT

17.Not using ON DUPLICATE KEY UPDATE

5/17/07 php|tek - Chicago page 61

Final thoughts

✔ Get involved!
✔ http://forge.mysql.com
✔ http://forge.mysql.com/worklog/

✔ MySQL Camp II
✔ August 23-24
✔ Brooklyn, NYC – Polytechnic
University

✔ Grab MySQL 6.0 now and hammer it
✔ Email me questions and feedback
please! <jay@mysql.com>

http://forge.mysql.com/
http://forge.mysql.com/worklog/

