
May 15, 2007 Hyatt Regency Chicago, Illinois

Jason E. Sweat
blog.casey-sweat.us
jsweat_php@yahoo.com

Test Driven Development



May 15, 2007 Hyatt Regency Chicago, Illinois 2

$this->assertTrue(intro());

class PhpTekTestDrivenDevelopmentTestCase extends UnitTestCase {
  function TestAuthor() {
    $talk = new PhpTekTestDrivenDevelopment;
    $author = $talk->getAuthor();
    
    $this->assertTrue($author->introduction());
    $this->assertEqual('Jason', $author->first_name);
  }
  function TestPresentation() {
    $talk = new PhpTekTestDrivenDevelopment;
    
    $this->assertTrue($talk->introduceTesting());
    $this->assertTrue($talk->liveExample());
    $this->assertTrue($talk->introduceTestDrivenDevelopement());
    $this->assertTrue($talk->showSimpleTest());
    $this->assertTrue($talk->continueExample(new AudianceParticipation));
    $this->assertTrue($talk->questionsAndAnswers());
  }
}
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What is Testing?

• Unit Tests are code written to exercise pieces—units—of 
your application and verify the results meet your 
expectations

• Various Unit Testing frameworks exist to let you run this 
tests in an automated manner
– http://simpletest.org/
– http://pear.php.net/package/PHPUnit2/ 
– http://qa.php.net/write-test.php 
– Others (90% of all PHP testing frameworks are named phpunit) - 

http://www.google.com/search?q=phpunit

• Nearly all modeled off of junit
– http://junit.org/

• TAP (Test Anything Protocol)

http://simpletest.org/
http://simpletest.org/
http://pear.php.net/package/PHPUnit2/
http://pear.php.net/package/PHPUnit2/
http://qa.php.net/write-test.php
http://qa.php.net/write-test.php
http://www.google.com/search?q=phpunit
http://www.google.com/search?q=phpunit
http://junit.org/
http://junit.org/
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SimpleTest

• Many PHP Testing Frameworks available

• SimpleTest used here because
– PHP4 or PHP5
– Well documented (api, tutorials, articles)
– Support for MockObjects
– Support for WebTesting
– Marcus Baker is a sharp coder, a great 

teacher, and a really great guy

Lets get started…
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Some Code to Test
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A Test
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A Test

• Run It

• What happened?
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Fixing our Code
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Fixing our Code

• We had:

• We forgot to return the value L

• Now we rerun the test and are rewarded with our green bar J
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More Assertions
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More Assertions
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Test Driven Development

• Now we have reviewed the SimpleTest 
framework

• Look at the agile development 
methodology of Test Driven Development
– Popularized by XP – eXtreme Programming

• Turns the testing process on it’s head
– Instead of writing tests once you have your 

code
– Write tests before you code
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TDD Steps

• Write a test
• Observe the failure

– Red bar

• Write the code to allow your test to pass
– Do the simplest thing that will work

• Run the passing test
– Green bar

• Refactor if required
– Eliminate the sins of code duplication

• Repeat with the first step for new requirements



May 15, 2007 Hyatt Regency Chicago, Illinois 11

TDD Steps

• Write a test
• Observe the failure

– Red bar

• Write the code to allow your test to pass
– Do the simplest thing that will work

• Run the passing test
– Green bar

• Refactor if required
– Eliminate the sins of code duplication

• Repeat with the first step for new requirements



May 15, 2007 Hyatt Regency Chicago, Illinois 12

TDD Live!

• Rule #1 - Audience Participation
– We pick a project together
– We start coding – TDD style

• Code a test
• Watch it fail
• Code the application
• Watch it pass
• Refactor if necessary
• Repeat

– TDD Mantra – Red/Green/Refactor
– Ask any questions that come up
– After we get the feel for it, we can talk more about the 

benefits of TDD 
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Why Test?

• You already test your code
– Run it to make sure there are no parse errors
– Send in parameters and verify you get what you 

expect
– var_dump() or printr() in those “tricky” spots to make 

sure you know what you are dealing with
– Maybe a colleague or a QA person also poke around 

in some different areas
– Perhaps you occasionally help test your colleagues 

code by hand (code review sessions?)
• Then boredom sets in

– Why test those parts of the code you already tested? 
After all, you did not change anything in that part of 
your code.
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Comments?

• You do comment your code right?
– At least what you intend for major classes or 

functions to do
– Maybe docblocks for automatic source code 

documentation

• Comments get stale
– Do you always change comments when you 

change the code?
– Do you trust someone else’s comments 

regarding code?
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Bug Hunts

• By definition, you have 0 productivity when 
you are debugging, rather than 
programming or designing

• The more complex and greater in scope 
your application is, the more intrusive 
debugging measures you will need to 
undertake

• Bugs do not always manifest immediately, 
you may have to sift back through weeks or 
months of code to locate it
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Code Rot

• Systems evolve
– Typically get bigger
– More complex
– Much of the complexity derives from 

interactions between different parts of the 
code

• Programmer turnover
– Often people maintaining software are not the 

original authors

• Fear of changing the code sets in
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Why Automated Tests?

• Testing changes is not the same as having tests
• Define explicit successful behavior for your code

– Tests read like comments which can’t lie

– Tests are explicit documentation of how objects are 
expected to behave

• Build more test coverage over time
– You continuously apply your successful behavior 

criteria, even after you are no longer working on that 
part of your application
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So What Does Testing Buy You?

• Freedom
– How can this be? Spending extra time writing 

tests to verify code I know is good has to be 
confining, not introducing freedom.

• Confidence
– Know when you have solved a problem
– Know changes you have made recently do not 

have unintended consequences in other parts 
of your application
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UnitTesting Benefits

• Tests are easy to run, so you run them more 
often

• Tests are more complete than random manual 
validation in the area of your application you are 
currently working on
– You are more likely to detect changes which affect 

other portions of your code base
• Test coverage is a key step in Refactoring
• Bug reports can be defined as test cases

– Changing to a passing test indicates you have solved 
the bug

– The test remains part of your test suite so you are 
sure the bug will not creep back into you code base
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Terminology

• UnitTests – tests of a “unit” of code, typically a class or a 
function, generally written by the developer

• AcceptanceTest – test for the end functionality of an 
application, generally written to a customers specification 
a.k.a. functional tests 

• BlackBox Testing – testing of only the publicly visible API of 
a system, i.e. you don’t know what is inside of the box a.k.a. 
behavioral testing

• WhiteBox Testing – testing with greater knowledge of the 
implementation (may give you greater initial confidence by 
may also lead to brittle tests) a.k.a. structural testing

• Assertion – a statement which creates an expectation about 
the code

• TestMethod – a function grouping one or more related 
assertions

• TestCase – a group of one or more related test methods
• GroupTest – several related test cases
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SimpleTest in more depth-
Roll Your Own Assertions

• Write a method in your TestCase which 
does not start with Test
– Use combination of existing assertions
– I call this a “helper method”

• Use AssertExpectation()
– Subclass SimpleExpectation
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Example Problem Requiring New Assertion
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Adding a new assertion to the TestCase

• Add a new “helper method”
– Function name must not start with “test”
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Adding Assertions using Expectations

• Extend SimpleExpectation
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Different Test Reporters

• Make it as easy as possible to test
– Allow running from either command line or 

from browsing to a web page

• Now $test will run with the appropriate 
reporter
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• Change you choice of reporter

• And view the output

If you miss your colored bars in CLI
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MockObjects

• A MockObject is an object which you can 
use to substitute for another object in a 
test, and validate expected interactions 
took place during the test

• MockObjects have two main roles:
– Respond appropriately to method calls (this is 

the “actor” role, that of the ServerStub testing 
pattern)

– Verify method calls were made on the Mock 
Object (this is the “critic” role, and what 
distinguishes a Mock from a Stub)
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Using MockObjects

• SimpleTest has an implementation to 
dynamically generate the MockObjects 
from your existing class

• Use of MockObjects in your testing
– Isolates your code to just the unit you are 

testing
– Focuses your attention on interface rather 

than implementation
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Some Code to Test
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We Don’t Need More Than The API

• We can flesh out the details of the other 
classes implementations later
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Testing with MockObjects
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And Another Test Method
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WebTesting

• Testing the application by using the site
– Application acts like a user

• Similar to jWebUnit (http://jwebunit.sf.net/)

http://jwebunit.sf.net/
http://jwebunit.sf.net/
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WebTestCase Assertions 
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TDD Benefits

• Steady predictable development cycle
• Automatically builds more complete code 

coverage in your tests
• Shifts focus towards interfaces between related 

objects, as opposed to just implementation details
– Towards a goal of higher cohesion – lower coupling 

design
• Good idea to begin with
• Make testing easier

• Builds team communications
• No Big Up Front Design

– You code evolves with actual use cases, not what you 
think you might need
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Acronyms to Remember

• TDD – Test Driven Development

• DRY – Don’t Repeat Yourself
• YAGNI – You Ain’t Gonna Need It

– Do the simplest thing that works

• XP – eXtreme Programming
• BUFD – Big Up Front Design
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TDD Live Environment

• OS
– Linux
– Running on vmware workstation

• PHP
– Version 5.1.2
– CLI and mod_php

• Apache2
– Version 2.0.55

• MySQL
– Version 4.1.14

• PHP Software
– Simpletest – cvs
– ADOdb – 450
– phpMyAdmin – 2.7.0
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Resources

• Kent Beck Test-driven development: by 
example Addison-Wesley, 2003 

• Martin Fowler Refactoring: improving the 
design of existing code  Addison-Wesley, 
1999 

• Jason E. Sweat Php Architect's Guide to 
Php Design Patterns Marco Tabini & 
Associates, 2005
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Online Resources

• General Testing Links
– http://www.testdriven.com/
– http://www.mockobjects.com/

• Recommended Testing Frameworks
– http://simpletest.org/
– http://www.edwardh.com/jsunit/

• Articles
– http://www.developerspot.com/tutorials/php/

test-driven-development/ 

http://www.testdriven.com/
http://www.testdriven.com/
http://www.mockobjects.com/
http://www.mockobjects.com/
http://simpletest.org/
http://simpletest.org/
http://www.edwardh.com/jsunit/
http://www.edwardh.com/jsunit/
http://www.developerspot.com/tutorials/php/test-driven-development/
http://www.developerspot.com/tutorials/php/test-driven-development/
http://www.developerspot.com/tutorials/php/test-driven-development/
http://www.developerspot.com/tutorials/php/test-driven-development/
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Conclusion

• Introduced you to automated testing

• Reviewed SimpleTest as a unit testing 
framework

• Examined the Test Driven Development 
process

• Tried our hand at a live example

I hope you all are now “Test Infected”
http://junit.sourceforge.net/doc/testinfected/

testing.htm 

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm

