
May 15, 2007 Hyatt Regency Chicago, Illinois

Jason E. Sweat
blog.casey-sweat.us
jsweat_php@yahoo.com

Test Driven Development

May 15, 2007 Hyatt Regency Chicago, Illinois 2

$this->assertTrue(intro());

class PhpTekTestDrivenDevelopmentTestCase extends UnitTestCase {
 function TestAuthor() {
 $talk = new PhpTekTestDrivenDevelopment;
 $author = $talk->getAuthor();

 $this->assertTrue($author->introduction());
 $this->assertEqual('Jason', $author->first_name);
 }
 function TestPresentation() {
 $talk = new PhpTekTestDrivenDevelopment;

 $this->assertTrue($talk->introduceTesting());
 $this->assertTrue($talk->liveExample());
 $this->assertTrue($talk->introduceTestDrivenDevelopement());
 $this->assertTrue($talk->showSimpleTest());
 $this->assertTrue($talk->continueExample(new AudianceParticipation));
 $this->assertTrue($talk->questionsAndAnswers());
 }
}

May 15, 2007 Hyatt Regency Chicago, Illinois 3

What is Testing?

• Unit Tests are code written to exercise pieces—units—of
your application and verify the results meet your
expectations

• Various Unit Testing frameworks exist to let you run this
tests in an automated manner
– http://simpletest.org/
– http://pear.php.net/package/PHPUnit2/
– http://qa.php.net/write-test.php
– Others (90% of all PHP testing frameworks are named phpunit) -

http://www.google.com/search?q=phpunit

• Nearly all modeled off of junit
– http://junit.org/

• TAP (Test Anything Protocol)

http://simpletest.org/
http://simpletest.org/
http://pear.php.net/package/PHPUnit2/
http://pear.php.net/package/PHPUnit2/
http://qa.php.net/write-test.php
http://qa.php.net/write-test.php
http://www.google.com/search?q=phpunit
http://www.google.com/search?q=phpunit
http://junit.org/
http://junit.org/

May 15, 2007 Hyatt Regency Chicago, Illinois 4

SimpleTest

• Many PHP Testing Frameworks available

• SimpleTest used here because
– PHP4 or PHP5
– Well documented (api, tutorials, articles)
– Support for MockObjects
– Support for WebTesting
– Marcus Baker is a sharp coder, a great

teacher, and a really great guy

Lets get started…

May 15, 2007 Hyatt Regency Chicago, Illinois 5

Some Code to Test

May 15, 2007 Hyatt Regency Chicago, Illinois 6

A Test

May 15, 2007 Hyatt Regency Chicago, Illinois 6

A Test

• Run It

• What happened?

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

• We forgot to return the value L

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

• We forgot to return the value L

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

• We forgot to return the value L

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

• We forgot to return the value L

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

• We forgot to return the value L

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

• We forgot to return the value L

May 15, 2007 Hyatt Regency Chicago, Illinois 7

Fixing our Code

• We had:

• We forgot to return the value L

• Now we rerun the test and are rewarded with our green bar J

May 15, 2007 Hyatt Regency Chicago, Illinois 8

More Assertions

May 15, 2007 Hyatt Regency Chicago, Illinois 9

More Assertions

May 15, 2007 Hyatt Regency Chicago, Illinois 10

Test Driven Development

• Now we have reviewed the SimpleTest
framework

• Look at the agile development
methodology of Test Driven Development
– Popularized by XP – eXtreme Programming

• Turns the testing process on it’s head
– Instead of writing tests once you have your

code
– Write tests before you code

May 15, 2007 Hyatt Regency Chicago, Illinois 11

TDD Steps

• Write a test
• Observe the failure

– Red bar

• Write the code to allow your test to pass
– Do the simplest thing that will work

• Run the passing test
– Green bar

• Refactor if required
– Eliminate the sins of code duplication

• Repeat with the first step for new requirements

May 15, 2007 Hyatt Regency Chicago, Illinois 11

TDD Steps

• Write a test
• Observe the failure

– Red bar

• Write the code to allow your test to pass
– Do the simplest thing that will work

• Run the passing test
– Green bar

• Refactor if required
– Eliminate the sins of code duplication

• Repeat with the first step for new requirements

May 15, 2007 Hyatt Regency Chicago, Illinois 12

TDD Live!

• Rule #1 - Audience Participation
– We pick a project together
– We start coding – TDD style

• Code a test
• Watch it fail
• Code the application
• Watch it pass
• Refactor if necessary
• Repeat

– TDD Mantra – Red/Green/Refactor
– Ask any questions that come up
– After we get the feel for it, we can talk more about the

benefits of TDD

May 15, 2007 Hyatt Regency Chicago, Illinois 13

Why Test?

• You already test your code
– Run it to make sure there are no parse errors
– Send in parameters and verify you get what you

expect
– var_dump() or printr() in those “tricky” spots to make

sure you know what you are dealing with
– Maybe a colleague or a QA person also poke around

in some different areas
– Perhaps you occasionally help test your colleagues

code by hand (code review sessions?)
• Then boredom sets in

– Why test those parts of the code you already tested?
After all, you did not change anything in that part of
your code.

May 15, 2007 Hyatt Regency Chicago, Illinois 14

Comments?

• You do comment your code right?
– At least what you intend for major classes or

functions to do
– Maybe docblocks for automatic source code

documentation

• Comments get stale
– Do you always change comments when you

change the code?
– Do you trust someone else’s comments

regarding code?

May 15, 2007 Hyatt Regency Chicago, Illinois 15

Bug Hunts

• By definition, you have 0 productivity when
you are debugging, rather than
programming or designing

• The more complex and greater in scope
your application is, the more intrusive
debugging measures you will need to
undertake

• Bugs do not always manifest immediately,
you may have to sift back through weeks or
months of code to locate it

May 15, 2007 Hyatt Regency Chicago, Illinois 16

Code Rot

• Systems evolve
– Typically get bigger
– More complex
– Much of the complexity derives from

interactions between different parts of the
code

• Programmer turnover
– Often people maintaining software are not the

original authors

• Fear of changing the code sets in

May 15, 2007 Hyatt Regency Chicago, Illinois 17

Why Automated Tests?

• Testing changes is not the same as having tests
• Define explicit successful behavior for your code

– Tests read like comments which can’t lie

– Tests are explicit documentation of how objects are
expected to behave

• Build more test coverage over time
– You continuously apply your successful behavior

criteria, even after you are no longer working on that
part of your application

May 15, 2007 Hyatt Regency Chicago, Illinois 18

So What Does Testing Buy You?

• Freedom
– How can this be? Spending extra time writing

tests to verify code I know is good has to be
confining, not introducing freedom.

• Confidence
– Know when you have solved a problem
– Know changes you have made recently do not

have unintended consequences in other parts
of your application

May 15, 2007 Hyatt Regency Chicago, Illinois 19

UnitTesting Benefits

• Tests are easy to run, so you run them more
often

• Tests are more complete than random manual
validation in the area of your application you are
currently working on
– You are more likely to detect changes which affect

other portions of your code base
• Test coverage is a key step in Refactoring
• Bug reports can be defined as test cases

– Changing to a passing test indicates you have solved
the bug

– The test remains part of your test suite so you are
sure the bug will not creep back into you code base

May 15, 2007 Hyatt Regency Chicago, Illinois 20

Terminology

• UnitTests – tests of a “unit” of code, typically a class or a
function, generally written by the developer

• AcceptanceTest – test for the end functionality of an
application, generally written to a customers specification
a.k.a. functional tests

• BlackBox Testing – testing of only the publicly visible API of
a system, i.e. you don’t know what is inside of the box a.k.a.
behavioral testing

• WhiteBox Testing – testing with greater knowledge of the
implementation (may give you greater initial confidence by
may also lead to brittle tests) a.k.a. structural testing

• Assertion – a statement which creates an expectation about
the code

• TestMethod – a function grouping one or more related
assertions

• TestCase – a group of one or more related test methods
• GroupTest – several related test cases

May 15, 2007 Hyatt Regency Chicago, Illinois 21

SimpleTest in more depth-
Roll Your Own Assertions

• Write a method in your TestCase which
does not start with Test
– Use combination of existing assertions
– I call this a “helper method”

• Use AssertExpectation()
– Subclass SimpleExpectation

May 15, 2007 Hyatt Regency Chicago, Illinois 22

Example Problem Requiring New Assertion

May 15, 2007 Hyatt Regency Chicago, Illinois 23

Adding a new assertion to the TestCase

• Add a new “helper method”
– Function name must not start with “test”

May 15, 2007 Hyatt Regency Chicago, Illinois 24

Adding Assertions using Expectations

• Extend SimpleExpectation

May 15, 2007 Hyatt Regency Chicago, Illinois 25

Different Test Reporters

• Make it as easy as possible to test
– Allow running from either command line or

from browsing to a web page

• Now $test will run with the appropriate
reporter

May 15, 2007 Hyatt Regency Chicago, Illinois 26

• Change you choice of reporter

• And view the output

If you miss your colored bars in CLI

May 15, 2007 Hyatt Regency Chicago, Illinois 27

MockObjects

• A MockObject is an object which you can
use to substitute for another object in a
test, and validate expected interactions
took place during the test

• MockObjects have two main roles:
– Respond appropriately to method calls (this is

the “actor” role, that of the ServerStub testing
pattern)

– Verify method calls were made on the Mock
Object (this is the “critic” role, and what
distinguishes a Mock from a Stub)

May 15, 2007 Hyatt Regency Chicago, Illinois 28

Using MockObjects

• SimpleTest has an implementation to
dynamically generate the MockObjects
from your existing class

• Use of MockObjects in your testing
– Isolates your code to just the unit you are

testing
– Focuses your attention on interface rather

than implementation

May 15, 2007 Hyatt Regency Chicago, Illinois 29

Some Code to Test

May 15, 2007 Hyatt Regency Chicago, Illinois 30

We Don’t Need More Than The API

• We can flesh out the details of the other
classes implementations later

May 15, 2007 Hyatt Regency Chicago, Illinois 31

Testing with MockObjects

May 15, 2007 Hyatt Regency Chicago, Illinois 32

And Another Test Method

May 15, 2007 Hyatt Regency Chicago, Illinois 33

WebTesting

• Testing the application by using the site
– Application acts like a user

• Similar to jWebUnit (http://jwebunit.sf.net/)

http://jwebunit.sf.net/
http://jwebunit.sf.net/

May 15, 2007 Hyatt Regency Chicago, Illinois 34

WebTestCase Assertions

May 15, 2007 Hyatt Regency Chicago, Illinois 35

TDD Benefits

• Steady predictable development cycle
• Automatically builds more complete code

coverage in your tests
• Shifts focus towards interfaces between related

objects, as opposed to just implementation details
– Towards a goal of higher cohesion – lower coupling

design
• Good idea to begin with
• Make testing easier

• Builds team communications
• No Big Up Front Design

– You code evolves with actual use cases, not what you
think you might need

May 15, 2007 Hyatt Regency Chicago, Illinois 36

Acronyms to Remember

• TDD – Test Driven Development

• DRY – Don’t Repeat Yourself
• YAGNI – You Ain’t Gonna Need It

– Do the simplest thing that works

• XP – eXtreme Programming
• BUFD – Big Up Front Design

May 15, 2007 Hyatt Regency Chicago, Illinois 37

TDD Live Environment

• OS
– Linux
– Running on vmware workstation

• PHP
– Version 5.1.2
– CLI and mod_php

• Apache2
– Version 2.0.55

• MySQL
– Version 4.1.14

• PHP Software
– Simpletest – cvs
– ADOdb – 450
– phpMyAdmin – 2.7.0

May 15, 2007 Hyatt Regency Chicago, Illinois 38

Resources

• Kent Beck Test-driven development: by
example Addison-Wesley, 2003

• Martin Fowler Refactoring: improving the
design of existing code Addison-Wesley,
1999

• Jason E. Sweat Php Architect's Guide to
Php Design Patterns Marco Tabini &
Associates, 2005

May 15, 2007 Hyatt Regency Chicago, Illinois 39

Online Resources

• General Testing Links
– http://www.testdriven.com/
– http://www.mockobjects.com/

• Recommended Testing Frameworks
– http://simpletest.org/
– http://www.edwardh.com/jsunit/

• Articles
– http://www.developerspot.com/tutorials/php/

test-driven-development/

http://www.testdriven.com/
http://www.testdriven.com/
http://www.mockobjects.com/
http://www.mockobjects.com/
http://simpletest.org/
http://simpletest.org/
http://www.edwardh.com/jsunit/
http://www.edwardh.com/jsunit/
http://www.developerspot.com/tutorials/php/test-driven-development/
http://www.developerspot.com/tutorials/php/test-driven-development/
http://www.developerspot.com/tutorials/php/test-driven-development/
http://www.developerspot.com/tutorials/php/test-driven-development/

May 15, 2007 Hyatt Regency Chicago, Illinois 40

Conclusion

• Introduced you to automated testing

• Reviewed SimpleTest as a unit testing
framework

• Examined the Test Driven Development
process

• Tried our hand at a live example

I hope you all are now “Test Infected”
http://junit.sourceforge.net/doc/testinfected/

testing.htm

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm

