
15 May 2007

Caroline Maynard
IBM
caroline.maynard@uk.ibm.com
cem@php.net

Services made simple with PHP

15 May 2007 2

Agenda

• Introduction and rationale
• A simple service using SOAP
• Compound data structures
• Other RPC-style protocols
• Resource-oriented protocols
• A custom protocol
• Wrap-up

15 May 2007 3

What is SCA for ?

• Service Component Architecture (SCA) is for PHP
developers working with a mixture of technologies in a
changing environment

• SCA is intended to help you to:
– write reusable code by keeping separate the business logic and

the communications code
– support several protocols at once without duplicating code
– provide local / remote transparency
– easily consume external Web services
– easily expose Web services to others

• without having to:
– hand-edit service descriptions (like WSDL)
– create external configuration files
– introduce new deployment steps

15 May 2007 4

Making your component reusable

• Do not entangle the business logic with the “wiring”

1. Be flexible about how you are called
– Expose as many ‘bindings’ as needed – make sure your business logic does not need to

know how it was called

2. Be flexible about your dependencies
– Declare the dependencies – but make sure your business logic does not need to know

how to resolve these
– Ideally get something else to “wire up” the components (Inversion of Control; Dependency

Injection patterns)

Accounts
Service
(SOAP)

Accounts
Service

LogService

Directory
Service
(LDAP)

2. Be flexible about

your dependencies

1. Be flexible about

how you are called

Accounts
Service
(REST)

15 May 2007 5

The SCA_SDO PECL package

PECL : http://pecl.php.net/sca_sdo
Mail : http://www.google.com/group/phpsoa
Web : http://www.osoa.org/display/PHP
Specs: Google for “osoa”

Using SCA
Using SCA to expose and

consume services

15 May 2007 7

An SCA service

• It’s just a PHP class
– includes SCA.php (last)
– uses phpDocumentor-style

annotations to declare
capabilities

– methods must assume pass-
by-value

• But other than this, job done!
– make sure SDO extension is

loaded (sdo.so or
php_sdo.dll)

– drop the class file into Apache
– the EmailService is now

exposed as a Web service

<?php

include 'SCA/SCA.php' ;

/**
* Service for sending emails
*
* @service
* @binding.soap
*/

class EmailService {
…
/**
* Send a simple text email
*
* @param string $to The "to" email address
* @param string $from The "from" email address
* @param string $subject The subject of the email
* @param string $message The email message
* @return boolean
*/

public function send ($to, $from , $subject , $message) {
…

}
}

?>

15 May 2007 8

Consuming a service from a PHP script

$to = $_POST['to'];
$from = $_POST['from'];
$subject = $_POST['subject'];
$message = $_POST['message'];

include 'SCA/SCA.php';

$email_service = SCA::getService(
‘http://www.example.com/EmailService.php?wsdl');

$success = $email_service->send($to, $from, $subject, $message);

15 May 2007 9

A simple email form

• Write an SCA Component

• Expose it as a Web service
• Generate the WSDL
• Consume it in a client script

Email
(SOAP) Email

To:

Subject:

Message:

From:

Email
(SOAP)

EmailService.php

email_form.html

EmailClient.php

SOAP sniffer version email_form.html

15 May 2007 10

Aside: what would that look like with ext/soap?

• first generate the WSDL
(somehow) and copy it to
the client

• service must create a
SoapServer and add the
Email service to it

• client must
– create a SoapClient
– wrap and unwrap

parameters

$server = new
SoapServer('./EmailService.wsdl');

$server->setClass('EmailService');
$server->handle();

class EmailService {
…

}

$soap_client = new
SoapClient('./EmailService.wsdl');

$send_params = array(
'to'=>$to,
'from'=>$from,
'subject'=>$subject,
'message'=>$message);

$send_response =
$soap_client->send($send_params);

$success = $send_response->sendReturn;

15 May 2007 11

Consuming a service from a component

/**
* Service for sending emails (supports shortnames)

* @service
*/

class ContactEmailService {

/**
* @reference
* @binding.soap ./EmailService.wsdl
*/

public $email_service ;

/** … */
public function send($to, $from , $subject , $message) {

…
// a proxy to the service is ‘injected’ so we
// can just use it…
$this ->email_service->

send($to, $from , $subject , $message);
...

}
}

15 May 2007 12

Add a service with a service reference

• Write a new SCA component
• Expose it as a Local service

• Have it reference the Email service
• Consume it in the client script

Email
(SOAP) Email

To:

Subject:

Message:

From:

Email
(SOAP)

EmailService.php

Contact
Email

ContactEmailService.php

email_form.html

EmailClient.php

Using SDO to work with
compound data

15 May 2007 14

Handling compound data

• Not all services exchange scalars!

• SCA uses Service Data Objects to handle
compound data

• SDO requires a description of the data
structures
– currently XML schema
– future: annotated PHP classes

15 May 2007 15

/**
* Service for managing email contacts
* @service
* @types http://example.org/contacts contacts.xsd
*/

class ContactService {

/**
* Retrieve contact details
*
* @param string $shortname Short name of the contact
* @return contact http://example.org/contacts The c ontact
*/

public function retrieve($shortname) {
$contact = SCA::createDataObject(

‘http://example.org/contacts’ , ‘contact’);
…
return $contact ;

}
}

Annotations for compound data

• Three steps to
providing a service
with complex types

1. create a schema for the
data structure

2. annotate class to map
namespaces to schema
files

3. document the class
methods to show where
the types are used

<schema xmlns ="http://www.w3.org/2001/XMLSchema"
targetNamespace ="http://example.org/contacts" >

<element name="contact" >
<complexType >

<sequence >
<element name="shortname" type ="string" />
<element name="fullname" type ="string" />
<element name="email" type ="string" />

</sequence >
</complexType >

</element >

</schema >

3

1

2

15 May 2007 16

Refactoring the contacts functionality

• Create a new Contact service
• Design the data structure to represent a contact
• Adding data structures to the contact service
• Reference the Contact service from the ContactEmail service
• Use data structures in the ContactEmail service

ContactEmail

Contact Contact

Email
(SOAP) Email

To:

Subject:

Message:

From:

EmailClient.php

Email
(SOAP)

ContactEmailService.php

EmailService.php

ContactService.php
SDOs flow
along here

Contacts DB

email_form.html

contacts.xsd

Other RPC-style bindings
Other RPC-style bindings

15 May 2007 18

Supporting several bindings

• Need to be able to choose protocols
– As a provider: different clients (customers) prefer or require

different protocols
• Java client (soap/http), JavaScript client (json-rpc), …

– As a consumer: no one protocol is supported by all service
providers

• Various bindings available
– Local
– SOAP
– JSON-RPC
– XML-RPC
– REST-RPC

• Intend to provide others

Contact
(json-rpc) Contact

Contact
(soap)

Contact
(xml-rpc)

ContactService.php

ContactService.smd (formatted)

15 May 2007 19

AJAX application calling SCA service

• Add a json-rpc binding to the Contact and Email services
• Call the services directly from a DOJO-based AJAX

application via json-rpc

Contact
(JSON-RPC) Contact Contact

Email
(JSON-RPC) Email

DOJO

To:

Subject:

Message:

From:

EmailService.php

ContactService.php

Contacts DB

email_client.html

Resource-oriented bindings

15 May 2007 21

Other styles of services

• What we’ve seen up to now is a number of RPC-style services
• Other styles exist that are equally valid

– Resource-Oriented REST (REpresentational State Transfer)
– Plain Old XML (POX)
– Syndication (Atompub, RSS)
– …and many more…

• No clean taxonomy/terminology exists
– http://www.intertwingly.net/blog/2006/11/03/REST-Web-Services
– http://www.trachtenberg.com/blog/2006/11/06/rest-vs-httppox-vs-soap/
– http://www.ibm.com/developerworks/xml/library/ws-restvsoap/

15 May 2007 22

Resource-Oriented REST background

• An architectural style for well-designed Web applications, not a standard
• Considers the Web to be a state machine

– A network of Resources (e.g. Web pages) – a virtual state machine
– Navigating resources via links results in representations of states being

transferred to the user agent (e.g. browser)

• This concept is used to describe a class of Web services
– URIs identify Resources on the Web
– HTTP used to access and modify these Resources

• REST says nothing about the representations (formats) – might be HTML,
XML, JSON, serialized PHP, …

DeleteDelete

UpdatePut

RetrieveGet

CreatePost

OperationHTTP verb

15 May 2007 23

Syndication Services

• RSS and Atom are service types used to
publish information

• Give the appearance of publish-subscribe
but actually still request-response under
the covers

• Not just about syndicating news feeds
• Can be thought of as standardized

Resource-oriented REST services

15 May 2007 24

Contact Syndication (EXPERIMENTAL)

• Syndication services through SCA

Contact
(Atom)

Contact Contact

ContactService.php

Contact
Feed

ContactFeed.php

Contact
Channel

ContactChannel.php

Contact
(RSS)

Contacts DB

A custom binding for eBay

15 May 2007 26

Custom Bindings

• Many real-world services are complex and
difficult to call through a generic binding
(eBay, Google GData, and so on)

• SCA allows people to write and contribute
custom bindings

15 May 2007 27

eBay SOAP binding example

• eBay Soap requires a client to provide:
– Soap Body (the main request)

– Soap Header (the security information)

– Url Query String Parameters (for eBay to route requests)

POST /?callname=GetSearchResults&siteid=1&version=4 95&appid=…&Routing=default HTTP/1.1
Host: api.sandbox.ebay.com

<SOAP-ENV:Header >
<RequesterCredentials ...>

<eBayAuthToken >AgAAAA**AQAAA...ST+aWf1 </eBayAuthToken >
<Credentials >

<AppId >IBMUN...</AppId >
<DevId>...</DevId>
<AuthCert >...</AuthCert >

</Credentials >
</RequesterCredentials >

</SOAP-ENV:Header >

<SOAP-ENV:Body >
<GetSearchResultsRequest ...>

<Version >495</Version >
<Query >ipod </Query >
<Pagination >

<EntriesPerPage >10</EntriesPerPage >
</Pagination >

</GetSearchResultsRequest >
</SOAP-ENV:Body >

15 May 2007 28

eBay SOAP binding example

• Solution: create “ebaysoap” binding extending
the “soap” binding with eBay-specific
configuration

eBayConsumer
eBay

(SOAP)

eBayConsumer.php

Country: GB

ItemID: 12959433

Listing Details: Blah, blah

Currency: GBP

eBayClient.php

/**
* eBay service reference
*
* @reference
* @binding.ebay eBaySvc.wsdl
* @config ebay.ini
*/

public $ebay;

Bindings_ebay_Proxy.php

Run eBayClient.php

Almost the end

15 May 2007 30

Where might things go in the future?

• PHP classes for data structures
– Simpler but less capable than xsd

• Simple database services
– A CRUD service for a table

• Other bindings
– Improve: Atom, RSS
– New: Resource-oriented REST, Google GData,

Yahoo!
• Annotation overriding

– Externally changing service targets, bindings,
properties

15 May 2007 31

Summary

• SCA for PHP enables a PHP programmer to write components in
PHP which are unaware of local/remote and protocol differences
and can focus on providing reusable business logic.

• Components use PHP annotations both to declare their
dependencies on other components, and to define the interface
which they expose as a service. The SCA for PHP runtime
resolves all of these.

• Deploying a PHP component as a ‘Web service’ can be as simple
as copying it into a web server’s document root. The SCA for
PHP runtime automatically generates service descriptions (WSDL,
SMD) for these when requested.

15 May 2007 32

How To Find Out More…

• The PECL package
– Go to PECL and search for SCA, SDO or SCA_SDO
– http://pecl.php.net/sca_sdo

• Web Site
– As well as the information in the PHP Manual there is a web site.
– http://www.osoa.org/display/PHP/

• Mail List
– For rants, questions, feedback etc. there is a Google Groups mail

list called PHPSOA
– http://groups.google.com/group/phpsoa

• Documents Describing SCA and SDO in more detail
– Google for OSOA
– http://www.osoa.org/display/Main/Home

The end

