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Agenda

• Introduction and rationale
• A simple service using SOAP
• Compound data structures
• Other RPC-style protocols
• Resource-oriented protocols
• A custom protocol
• Wrap-up
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What is SCA for ?

• Service Component Architecture (SCA) is for PHP 
developers working with a mixture of technologies in a 
changing environment 

• SCA is intended to help you to:
– write reusable code by keeping separate the business logic and 

the communications code
– support several protocols at once without duplicating code
– provide local / remote transparency
– easily consume external Web services
– easily expose Web services to others

• without having to:
– hand-edit service descriptions (like WSDL)
– create external configuration files 
– introduce new deployment steps
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Making your component reusable

• Do not entangle the business logic with the “wiring”

1. Be flexible about how you are called
– Expose as many ‘bindings’ as needed – make sure your business logic does not need to 

know how it was called

2. Be flexible about your dependencies
– Declare the dependencies – but make sure your business logic does not need to know 

how to resolve these 
– Ideally get something else to “wire up” the components (Inversion of Control; Dependency 

Injection patterns)

Accounts
Service
(SOAP)

Accounts
Service

LogService

Directory
Service
(LDAP)

2. Be flexible about 

your dependencies

1. Be flexible about 

how you are called

Accounts
Service
(REST)
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The SCA_SDO PECL package

PECL : http://pecl.php.net/sca_sdo
Mail    : http://www.google.com/group/phpsoa
Web   : http://www.osoa.org/display/PHP
Specs: Google for “osoa”



Using SCA
Using SCA to expose and 

consume services
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An SCA service

• It’s just a PHP class
– includes SCA.php (last) 
– uses phpDocumentor-style 

annotations to declare
capabilities 

– methods must assume pass-
by-value

• But other than this, job done!
– make sure SDO extension is 

loaded (sdo.so or 
php_sdo.dll)

– drop the class file into Apache
– the EmailService is now 

exposed as a Web service

<?php

include 'SCA/SCA.php' ;

/**
* Service for sending emails
* 
* @service
* @binding.soap
*/

class EmailService {
…
/**
* Send a simple text email
*
* @param string $to The "to" email address
* @param string $from The "from" email address
* @param string $subject The subject of the email
* @param string $message The email message
* @return boolean
*/

public function send ( $to, $from , $subject , $message ) {
…

}
}

?>
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Consuming a service from a PHP script

$to = $_POST['to'];
$from = $_POST['from'];
$subject = $_POST['subject'];
$message = $_POST['message'];

include 'SCA/SCA.php';

$email_service = SCA::getService( 
‘http://www.example.com/EmailService.php?wsdl');

$success = $email_service->send($to, $from, $subject, $message);
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A simple email form 

• Write an SCA Component

• Expose it as a Web service
• Generate the WSDL
• Consume it in a client script

Email
(SOAP) Email

To:

Subject:

Message:

From:

Email
(SOAP)

EmailService.php

email_form.html

EmailClient.php

SOAP sniffer version email_form.html
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Aside: what would that look like with ext/soap?

• first generate the WSDL 
(somehow) and copy it to 
the client 

• service must create a 
SoapServer and add the 
Email service to it

• client must 
– create a SoapClient
– wrap and unwrap 

parameters

$server = new
SoapServer('./EmailService.wsdl'); 

$server->setClass('EmailService'); 
$server->handle(); 

class EmailService {
…

}

$soap_client = new
SoapClient('./EmailService.wsdl'); 

$send_params = array(
'to'=>$to,
'from'=>$from,
'subject'=>$subject,
'message'=>$message); 

$send_response =
$soap_client->send($send_params); 

$success = $send_response->sendReturn; 
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Consuming a service from a component

/**
* Service for sending emails (supports shortnames)

* @service
*/

class ContactEmailService {

/**
* @reference
* @binding.soap ./EmailService.wsdl
*/

public $email_service ;

/** … */
public function send( $to, $from , $subject , $message ) {

…
// a proxy to the service is ‘injected’ so we 
// can just use it…
$this ->email_service->

send( $to, $from , $subject , $message );
...

}
}
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Add a service with a service reference

• Write a new SCA component
• Expose it as a Local service

• Have it reference the Email service
• Consume it in the client script

Email
(SOAP) Email

To:

Subject:

Message:

From:

Email
(SOAP)

EmailService.php

Contact
Email

ContactEmailService.php

email_form.html

EmailClient.php



Using SDO to work with 
compound data
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Handling compound data

• Not all services exchange scalars!

• SCA uses Service Data Objects to handle 
compound data

• SDO requires a description of the data 
structures
– currently XML schema
– future: annotated PHP classes
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/**
* Service for managing email contacts
* @service
* @types http://example.org/contacts contacts.xsd
*/

class ContactService {

/**
* Retrieve contact details
*
* @param string $shortname Short name of the contact
* @return contact http://example.org/contacts The c ontact
*/

public function retrieve( $shortname ) {
$contact = SCA::createDataObject(

‘http://example.org/contacts’ , ‘contact’ );
…
return $contact ;

}
}

Annotations for compound data

• Three steps to 
providing a service 
with complex types

1. create a schema for the 
data structure

2. annotate class to map 
namespaces to schema 
files

3. document the class 
methods to show where 
the types are used

<schema xmlns ="http://www.w3.org/2001/XMLSchema"
targetNamespace ="http://example.org/contacts" >

<element name="contact" >
<complexType >

<sequence >
<element name="shortname" type ="string" />
<element name="fullname" type ="string" />
<element name="email" type ="string" />

</sequence >
</complexType >

</element >

</schema >

3

1

2
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Refactoring the contacts functionality

• Create a new Contact service
• Design the data structure to represent a contact
• Adding data structures to the contact service
• Reference the Contact service from the ContactEmail service
• Use data structures in the ContactEmail service

ContactEmail

Contact Contact

Email
(SOAP) Email

To:

Subject:

Message:

From:

EmailClient.php

Email
(SOAP)

ContactEmailService.php

EmailService.php

ContactService.php
SDOs flow
along here

Contacts DB

email_form.html

contacts.xsd



Other RPC-style bindings
Other RPC-style bindings
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Supporting several bindings

• Need to be able to choose protocols
– As a provider: different clients (customers) prefer or require 

different protocols
• Java client (soap/http), JavaScript client (json-rpc), …

– As a consumer: no one protocol is supported by all service 
providers

• Various bindings available
– Local
– SOAP
– JSON-RPC 
– XML-RPC
– REST-RPC

• Intend to provide others

Contact
(json-rpc ) Contact

Contact
(soap )

Contact
(xml-rpc )

ContactService.php

ContactService.smd (formatted)
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AJAX application calling SCA service

• Add a json-rpc binding to the Contact and Email services
• Call the services directly from a DOJO-based AJAX 

application via json-rpc

Contact
(JSON-RPC) Contact Contact

Email
(JSON-RPC) Email

DOJO

To:

Subject:

Message:

From:

EmailService.php

ContactService.php

Contacts DB

email_client.html



Resource-oriented bindings
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Other styles of services

• What we’ve seen up to now is a number of RPC-style services
• Other styles exist that are equally valid

– Resource-Oriented REST (REpresentational State Transfer)
– Plain Old XML (POX)
– Syndication (Atompub, RSS)
– …and many more…

• No clean taxonomy/terminology exists
– http://www.intertwingly.net/blog/2006/11/03/REST-Web-Services
– http://www.trachtenberg.com/blog/2006/11/06/rest-vs-httppox-vs-soap/
– http://www.ibm.com/developerworks/xml/library/ws-restvsoap/
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Resource-Oriented REST background

• An architectural style for well-designed Web applications, not a standard
• Considers the Web to be a state machine

– A network of Resources (e.g. Web pages) – a virtual state machine 
– Navigating resources via links results in representations of states being

transferred to the user agent (e.g. browser)

• This concept is used to describe a class of Web services
– URIs identify Resources on the Web
– HTTP used to access and modify these Resources

• REST says nothing about the representations (formats) – might be HTML, 
XML, JSON, serialized PHP, …

DeleteDelete

UpdatePut

RetrieveGet

CreatePost

OperationHTTP verb
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Syndication Services

• RSS and Atom are service types used to 
publish information

• Give the appearance of publish-subscribe 
but actually still request-response under 
the covers

• Not just about syndicating news feeds
• Can be thought of as standardized 

Resource-oriented REST services
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Contact Syndication (EXPERIMENTAL)

• Syndication services through SCA

Contact
(Atom )

Contact Contact

ContactService.php

Contact
Feed

ContactFeed.php

Contact
Channel

ContactChannel.php

Contact
(RSS)

Contacts DB



A custom binding for eBay
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Custom Bindings

• Many real-world services are complex and 
difficult to call through a generic binding 
(eBay, Google GData, and so on)

• SCA allows people to write and contribute 
custom bindings
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eBay SOAP binding example

• eBay Soap requires a client to provide:
– Soap Body (the main request)

– Soap Header (the security information)

– Url Query String Parameters (for eBay to route requests)

POST /?callname=GetSearchResults&siteid=1&version=4 95&appid=…&Routing=default HTTP/1.1
Host: api.sandbox.ebay.com

<SOAP-ENV:Header >
<RequesterCredentials ...>

<eBayAuthToken >AgAAAA**AQAAA...ST+aWf1 </eBayAuthToken >
<Credentials >

<AppId >IBMUN...</AppId >
<DevId>...</DevId>
<AuthCert >...</AuthCert >

</Credentials >
</RequesterCredentials >

</SOAP-ENV:Header >

<SOAP-ENV:Body >
<GetSearchResultsRequest ...>

<Version >495</Version >
<Query >ipod </Query >
<Pagination >

<EntriesPerPage >10</EntriesPerPage >
</Pagination >

</GetSearchResultsRequest >
</SOAP-ENV:Body >
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eBay SOAP binding example

• Solution: create “ebaysoap” binding extending 
the “soap” binding with eBay-specific 
configuration

eBayConsumer
eBay

(SOAP)

eBayConsumer.php

Country: GB

ItemID: 12959433

Listing Details: Blah, blah

Currency: GBP

eBayClient.php

/**
* eBay service reference
* 
* @reference
* @binding.ebay eBaySvc.wsdl
* @config ebay.ini
*/

public $ebay;

Bindings_ebay_Proxy.php

Run eBayClient.php



Almost the end
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Where might things go in the future?

• PHP classes for data structures
– Simpler but less capable than xsd

• Simple database services
– A CRUD service for a table

• Other bindings
– Improve: Atom, RSS
– New: Resource-oriented REST, Google GData, 

Yahoo!
• Annotation overriding

– Externally changing service targets, bindings, 
properties



15 May 2007 31

Summary

• SCA for PHP enables a PHP programmer to write components in 
PHP which are unaware of local/remote and protocol differences 
and can focus on providing reusable business logic.

• Components use PHP annotations both to declare their 
dependencies on other components, and to define the interface 
which they expose as a service. The SCA for PHP runtime 
resolves all of these. 

• Deploying a PHP component as a ‘Web service’ can be as simple 
as copying it into a web server’s document root.  The SCA for 
PHP runtime automatically generates service descriptions (WSDL, 
SMD) for these when requested.
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How To Find Out More…

• The PECL package
– Go to PECL and search for SCA, SDO or SCA_SDO
– http://pecl.php.net/sca_sdo

• Web Site
– As well as the information in the PHP Manual there is a web site.
– http://www.osoa.org/display/PHP/

• Mail List
– For rants, questions, feedback etc. there is a Google Groups mail 

list called PHPSOA
– http://groups.google.com/group/phpsoa

• Documents Describing SCA and SDO in more detail
– Google for OSOA
– http://www.osoa.org/display/Main/Home



The end


