
Brian M. Shire

PHP Tek 2007, Chicago
May 17th, 10:15-11:15 am

Facebook © 2007



About Facebook

A social utility that connects you with people around you

Networks based around a workplace, region, high school or college

Share information with people you know

See what’s going on with your friends

Look up people around you

60+ Engineers

200+ Total Employees

23 Million active users in the last 30 days

Typical uses:

Facebook:



Facebook Growth

●

●
●●
●●
●●

●
●
●●●●

●

●

●

●
●
●

●
●

●

●
●●
●

●

●

●

●
●

●
●

●
●
●

●●●

●

●

●

●

●
●
●
●

●

●

●

●●●
●

●

●

●

●
●

●●

●

●

●

●●
●
●

●

●

●

●
●
●
●

●

●

●

●●●

●

●

●

●

●
●●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●
●
●

●

●

●

●●●
●

●

●●

●

●
●●
●

●
●

●●●
●
●

●

●

●●●
●
●

●

●

●●●
●
●

●

●

●●●
●

●

●●
●

●
●●

●

●

●

●●
●
●
●

●

●

●●
●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

2005 2006 2007

Date (1.1.2005 to 1.17.2007)

200

400

600

800

1000

18

1026

Page Views
(Millions per Day)

●●●●●
●●●●●

●●
●●●

●●
●●
●●●

●●
●●
●●●

●●
●●
●●●

●●
●●●

●●●●
●●●

●●●●
●●●●

●●●
●
●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●

●●●
●●
●●
●●●

●●●
●●
●●●

●●
●●
●●●

●●
●●
●●●

●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●
●
●●●

●
●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●
●●
●●
●●●

●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●
●
●
●
●●
●
●
●
●
●
●
●●
●
●
●
●
●●
●●
●
●●
●●
●●
●●
●●
●●●

●●
●●
●●●

●●
●●
●●●

●●
●●●

●●
●●
●●●

●●
●●
●●●

●●●
●●●●

●●
●●
●●●

●●●
●●
●●●●●

●

●●●●
●●●●

●●●●●
●●●●●

●●●
●●●●

●●
●●●

●●●
●●
●●●

●●
●●
●●●

●●
●●●

●●●
●●●

●●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●

●●

●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●●
●●●

●●●●
●●●

●

●

●

●●●

●●●
●●●

●●
●●●

●●●
●●●

●●
●●
●●●●

●●●
●●●

●●
●●●

●●●
●●
●●●●

●●●●
●●●

●
●●
●●
●●
●●
●●
●●●

●●
●●
●●
●●
●
●
●
●●
●
●
●
●
●
●●
●●
●
●
●●
●●
●
●●
●●
●●
●●
●
●●
●●
●

●

●

●

●
●
●
●

●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●
●
●
●
●
●
●
●●

●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●

2

4

6

8

10

12

14

1.5

15.5

User Accounts
(Millions)

●

●

●

●

User Accounts

●

●

●

●

Page Views per Day

Exponential (k=1.56/year)

Exponential (k=0.96/year)



Super Bowl XLI: February 4th, 2007

Ac
tiv

e 
Us

er
s 

La
st

 M
in

ut
e

Superbowl
Begins

Superbowl
EndsHalf

time

10 12 2 4 6 8 10

Time of Day (10am to 10pm PST)

100

150

200

250

Active Users
(in Thousands per Minute)

Sunday, Feb. 11

Sunday, Feb. 4



Grey’s Anatomy: February 22, 2007

Grey's Anatomy 6−7pm PST

4 5 6 7 8

Time of Day (4pm to 8pm PST)

650

700

750

800

850

900

Active Users
(in Thousands per 15 Minutes)



The Open Source Advantage

Facebook proudly uses:

Allows proprietary code alterations

Improvements contributed to open source community

Extended range of engineering possibilities

Discussions get voiced in a public forum

http://developers.facebook.com/opensource.php

and the Alternative PHP Cache (APC)...

Some Facebook open source projects include Thrift, phpsh and the Firefox Toolbar.

Apache Linux GNU MySQLPHP

Vallgrind

Callgrind

Kcachegrind

APD

XDebug

OProfile

Memcached

Python

. . .

http://developers.facebook.com/opensource.php
http://developers.facebook.com/opensource.php


Alternative PHP Cache (APC)
http://pecl.php.net/packages/APC/

APC is a PHP intermediate opcode cache.

Provides a significant PHP interpreter performance increase.

Local user variable cache can also be used for application specific benefits.

Open source allows collaboration, bug fixes and optimizations.

http://pecl.php.net/packages/APC/
http://pecl.php.net/packages/APC/


Requests per second provide a blunt measurement of performance gains on Facebook’s profile.php page.

The APC Advantage

Measurements made using Apache Bench (ab) with 1000  total requests, concurrency of 40.
Executed on a dual Dual Core AMD Opteron 2.2Ghz, 8GB RAM.

PHP

APC User

APC User & File

Facebook

 2.47 rps.

 5.24 rps.

22.01 rps.

29.56 rps.

 2.12 x

 8.91 x

11.96 x

Apache/PHP Requests Per Second

Configuration Requests Per Second



Start Request

Compilation:

Convert PHP source 

into opcodes

Execute opcodes

End Request

APC hook Opcode

Cache

Store
APC hook

Miss

Hit

Start Request

Compilation:

Convert PHP source 

into opcodes

Execute opcodes

End Request

PHP     vs.    APC



1 <?php
2 $output = ’Hello World!’;
3 echo $output;
4 ?>

PHP Source
1 ASSIGN  !0  ‘Hello+World%21’
2 ECHO    !0
3 RETURN  1
4 ZEND_HANDLE_EXCEPTION

Opcodes

Opcode output generated with the Vulcan Logic Dissassembler (VLD)
by Derick Rethans  (http://pecl.php.net/packages/VLD/)

From Code to Opcode

http://pecl.php.net/packages/vld/
http://pecl.php.net/packages/vld/


1 <?php
2 $output = ’Hello World’;
3 if($_GET[‘exclaim’]) {
4   $output .= ‘!’;
5 } else {
6   $output .= ‘.’;
7 }
8 echo $output;
9 ?>

PHP Source

 1 ASSIGN             !0, ‘HELLO+WORLD’
 2 FETCH_R     GLOBAL $1, ‘_GET’
 3 FETCH_DIM_R        $2, $1, ‘exclaim’
 4 JMPZ               $2, ->6
 5 ASSIGN_CONCAT      !0, ‘%21’
 6 JMP                ->7
 7 ASSIGN_CONCAT      !0, ‘.’
 8 ECHO               $0
 9 RETURN             1
10 ZEND_HANDLE_EXCEPTION

Opcodes

Opcode output generated with the Vulcan Logic Dissassembler (VLD)
by Derick Rethans  (http://pecl.php.net/packages/VLD/)

From Code to Opcode

http://pecl.php.net/packages/vld/
http://pecl.php.net/packages/vld/


<?   phpinfo();   ?>

phpinfo() displays configuration information

Verify configuration settings have taken place

Debug configuration problems



Basic Configuration Options

Enable APC when running via the command line

apc.mmap_file_mask NULL

Enable APC

apc.enabled_cli 0

apc.enable 0

Name of the file mask where as specified by mmap



Cache Size and Hints

apc.shm_segments 1

apc.shm_size 30

apc.num_files_hint 1000

apc.user_entries_hint 4096

One shared memory segment required

Size needs to hold all file and user entries

Monitor usage using apc.php

Extra space is required for deleted entries

Behaves poorly when memory is at capacity

Hints optimize hash lookup tables

Maximum number of files or user entries

@ Facebook:

apc.shm_segments=1
apc.shm_size=648

@ Facebook:

apc.num_files_hint=100
apc.user_entries_hint=640000



Locking Mechanisms
Uses file locking operations

Faster alternative to file locks

Stable, not effecient

Architecture specific, Linux Kernel 2.6.x or later

Significant performance gain

Better alternative to Linux Futex Locks

Same performance gain

More stable, more architecture support

Ported from the PostgreSQL project

Runs in user space

Locking type

File Locks

IPC Semaphore Locks

Linux Futex Locks

pthread mutex Locks

spin Locks

Currently Used @ Facebook

EXPERIMENTAL

EXPERIMENTAL

EXPERIMENTAL

Default



Locking Performance

Clean up graph,

Cut graph, to shorten and show 
more data/precision (zig-zag)

large font

0

50

100

File

0

50

100

IPC Sem

0

50

100

Futex

0

50

100

Pthread

Spin

0 10 15 20 25 30 60 120 180

0

50

100

Seconds

Pe
rc

en
t

User CPU

System CPU



Locking Performance (Overlayed)

0

50

100

File

0

50

100

IPC Sem

0

50

100

Futex

0

50

100

Pthread

Spin

0 10 15 20 25 30 60 120 180

0

50

100

Seconds

Pe
rc

en
t

User CPU

System CPU



To Stat or Not To Stat?

APC stats files to determine if they’ve been updated
Start Request

Compilation:

Convert PHP source 

into opcodes

Execute opcodes

End Request

APC hook Opcode

Cache

Store
APC hook

Miss

Hit

apc.stat_ctime FALSE

apc.stat TRUE

stat()Disabling updates will increase performance

Requires restart or apc_cache_clear() to update

CVS, SVN and rsync backdate modified times

stat_ctime checks the creation time for updates

@ Facebook:
apc.stat=FALSE

@ Facebook:
apc.stat_ctime=FALSE



Slam Defenses & TTL

Inline garbage collector removes deleted entries from cache as soon as possible. 

apc.file_update_protection 2

Spreads load on startup by only caching given percent of requests

A non-blocking write lock provides a better solution to setting slam_defense

Read updated files after given delay to prevent loading incomplete files

“Time to Live”

Entries still in use by a request will be removed after the gc_ttl has expired.

Maximum time a cache entry can remain in cache. 

apc.ttl 0

apc.user_ttl 0

apc.gc_ttl 3600

apc.write_lock 1

apc.slam_defense 0



Filters

Limits the maximum file size that will be cached.

A regular expression that excludes files from being cached.

apc.cache_by_default 1 Setting to zero causes files to only cache if they match apc.filters.

apc.report_autofilter 0

apc.filters NULL

apc.max_file_size 1M

Logs files excluded due to early/late binding issues



Recent Features

Optimizes include_once() callsapc.include_once_override 0

EXPERIMENTAL

EXPERIMENTAL

EXPERIMENTAL

Upload progress support

A process localized cache

apc.rfc1867 0

apc.localcache 0

apc.localcache_size 512



apc.php
APC
Opcode Cache

Refresh Data View Host Stats System Cache Entries User Cache Entries Version Check

Login

General Cache Information

APC Version 3.0.15-dev

PHP Version 5.2.2-dev

APC Host shirebook.local

Server Software Apache/1.3.37 (Darwin) PHP/5.2.2-dev

Shared Memory 1 Segment(s) with 800.0 MBytes 
(mmap memory, file locking)

Start Time 2007/04/30 23:32:27

Uptime 3 minutes

File Upload Support 1

File Cache Information

Cached Files 2 (397.6 KBytes)

Hits 15

Misses 2

Request Rate (hits, misses) 0.08 cache requests/second

Hit Rate 0.07 cache requests/second

Miss Rate 0.01 cache requests/second

Insert Rate 0.01 cache requests/second

Cache full count 0

User Cache Information

Cached Variables 0 ( 0.0 Bytes)

Hits 0

Misses 0

Request Rate (hits, misses) 0.00 cache requests/second

Hit Rate 0.00 cache requests/second

Miss Rate 0.00 cache requests/second

Insert Rate 0.00 cache requests/second

Cache full count 0

Runtime Settings

apc.cache_by_default 1

apc.enable_cli 1

apc.enabled 1

apc.file_update_protection 0

apc.filters

apc.gc_ttl 3600

apc.include_once_override 0

apc.localcache 0

apc.localcache.size 512

apc.max_file_size 1M

apc.mmap_file_mask /tmp/apc.IXpNut

apc.num_files_hint 200

apc.report_autofilter 0

apc.rfc1867 0

apc.shm_segments 1

apc.shm_size 800

apc.slam_defense 0

apc.stat 1

apc.stat_ctime 0

apc.ttl 7500

apc.user_entries_hint 162000

apc.user_ttl 7500

apc.write_lock 1

Host Status Diagrams

Memory Usage Hits & Misses

 Free: 798.3 MBytes (99.8%)  Hits: 15 (88.2%)

 Used: 1.7 MBytes (0.2%)  Misses: 2 (11.8%)

Detailed Memory Usage and Fragmentation

 
Fragmentation: 0%

apc.php is located in the APC source directory

User and file cache browser

Graphs of hit rates and memory usage



boolean apc_add(string key, mixed value, int ttl)

API
http://us.php.net/manual/en/ref.apc.php

array    apc_cache_info(string cache, boolean limited)

boolean apc_clear_cache(string cache)

array    apc_sma_info(boolean limited)

boolean apc_store(string key, mixed value, int ttl)

mixed   apc_fetch(string key)

boolean apc_delete(string key)

boolean apc_compile_file(string file)

boolean apc_define_constants(string key, 
                                                   array constants
                                                   bool case_sensitive)
boolean apc_load_constants(string key, 
                                                bool case_sensitive)

Cache information

Shared memory segment information.

Store key/value pair in cache.

Add key/value pair if key isn’t in cache.

Fetch the value associated with key.

Delete the value associated with key.

Clear all entries from the cache.

Define an array of key/value constants.

Assign each key/value constants in cache using define()

Compile given file and store in cache, bypass all filters.

http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????


The User’s Cache

User cache stores PHP variables across multiples requests on a per server basis.

boolean apc_store(string key, mixed value)

mixed apc_fetch(string key)

Primary commands for utilizing the user cache:

Optimize...

Application configuration

Statistics such as site usage, request types, error conditions, timing

Nth tier cache in addition to memcache or other caching service

HTML or other output

Database backed values that only change rarely like product listings

Site behavior like new features, A/B tests, or rate controls

http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????


Site-wide Server Variables:  “Sitevars”
Facebook controls site configuration and features via the user cache.

Datacenter 'B

web Servers:

Datacenter 'A'

Web Servers:

apc_sitevar.php

Spawns requests 
to multiple web 
servers

The site updates in the time 
it takes to make HTTP requests.

Updates are simple and fast 
for the Engineer.

Engineers Users

Controlling Site Behavior with "Sitevars"



Optimus Prime

Facebook primes it’s cache before each code push or server restart.

Ready to serve requests without delay due to compilation or updating cache values.

Handles immediate flood of requests with limited warm-up time.

Starts with same cache state limiting differences between servers.

boolean apc_store(string key, mixed value)

boolean apc_compile_file(string file)

http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????
http://php.net/documentation/??????????????????????????


Serialize Cache Values

Stop Apache

Disallow connections via 

iptables or load balancer

Deserialize and apc_store() 

values.

Start Apache

apc_compile_file()

PHP source

Allow connections via

iptables or load balancer

Serialized User 

Cache Values

Serialized User 

Cache Values

Distributed to Web Servers

Master Restart Script

Single Control Server Multiple Web Servers

System

Apache

PHP & APC

Local Disk

APC Priming and Restart



Getting Started

Installation via “pecl install apc”
or source http://pecl.php.net/packages/APC/

Start with a basic apc.ini file:

apc.enabled=1
apc.shm_size=100M

Install apc.php under the DocumentRoot, configure the USER and PASS variables
Monitor apc.php for usage and adjust configuration

Try tuning some of the discussed settings to meet application needs

Add some APC user variables

Try different locking types

Try the apc.stat=0 setting

Measure changes in CPU usage and maximum requests per second 

http://pecl.php.net/packages/APC/
http://pecl.php.net/packages/APC/


Thank you!

APC Developers

George Schlossnagle

Daniel Cowgill

Rasmus Lerdorf

Gopal Vijayaraghavan

Edin Kadribasic

Ilia Alshanetsky

Marcus Börger

Sara Golemon




