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Abstract

Many past topics at Ottawa Linux Symposium
have covered Linux Scalability. While still
quite valid, most of these topics have left out a
hot feature in computing: Virtualization. Vir-
tualization adds a layer of resource isolation
and control that allows many virtual systems to
co-exist on the same physical machine. How-
ever, this layer also adds overhead which can
be very light or very heavy. We will use the
Xen hypervisor, Linux 2.6 kernels, and many
freely available workloads to accurately quan-
tify the scaling and overhead of the hypervisor.
Areas covered will include: (1) SMP Scaling:
use several workloads on a large SMP system
to quantify performance with a hypervisor. (2)
Performance Tools: discuss how resource mon-
itoring, statistical profiling, and tracing tools
work differently in a virtualized environment.
(3) NUMA: discuss how Xen can best make
use of large system which have Non-Uniform

Memory Access.

1 Introduction

Although virtualization has recently received
much press and attention, it is not a new
concept in computing. It was first added to
IBM mainframes in 1968 and has continued
to evolve ever since[1]. Traditionally, virtu-
alization has been a capability that only high
end systems possessed, but that has begun to
change in recent years. Commodity x86 servers
first gained virtualization capabilities through a
technique that is known as full virtualization
where each guest operating system was pro-
vided a completely emulated environment in
which to run. While functional, this approach
suffers degradations in performance due to the
fact that all interaction between the guest oper-
ating system and the physical hardware must be

1



intercepted and emulated by the hypervisor.

A competing approach to full virtualization
known as paravirtualization has emerged that
attempts to address the deficiencies of full vir-
tualization. Para-virtualization is a technique
where guest operating system are modified to
provide optimal interaction between the guest
and the hypervisor layer upon which it is run-
ning. By modifying the guest operating system,
some of the performance overheads that are as-
sociated with full virtualization are eliminated
which leads to increased throughput capability
and resource utilization. Para-virtualization is,
however, not without its own challenges. The
requirement that the guest operating system be
modified is chief among these. Each and every
guest that the end user desires to run in the vir-
tualized environment must be modified in this
manner. This is a high cost to pay in time and
manpower. It also means that the support of
closed source operating systems is entirely at
the discretion of the controlling development
organization.

This paper focuses on paravirtualization as im-
plemented by the Xen[2][3] project. While the
expectation that the overhead of paravirtualiza-
tion with Xen is low, its original design and de-
velopment occurred on relatively small systems
such as those with one or two CPUs. It is only
in the last year of development that support for
SMP guests has been added along with support
for greater than 4GB of memory through the
addition of 32bit PAE and native 64bit support.
For these reasons, many of the design decisions
were aimed at excising the utmost performance
in these types of configurations, but these deci-
sions may not lend themselves to scaling up-
ward with similar performance expectations.
As x86 hardware becomes increasingly com-
petitive at the high end—systems with 128 log-
ical CPUs and hundreds of gigabytes of mem-
ory are now possible—the desire to run virtual-
ized environments on systems of this scale will

increase. This paper will examine the perfor-
mance characteristics of Xen in this type of en-
vironment and identify areas that development
should focus on for scaling enablement.

2 What is scalability?

For this study, scalability applies to scaling up
the number of processors within a single sys-
tem. As such, we proceeded to measure and an-
alyze various workloads running from one to as
many as 16 processor cores. Without a hypervi-
sor, using a single operating system, the process
to measure scalability was fairly clear: start
with one processor, run workload(s), record re-
sults and analysis data, and repeat, increment-
ing processors until a maximum is reached.
However, introducing a hypervisor adds a twist
to measuring scalability. We still want to mea-
sure the throughput increase as we scale up the
processors, but how exactly do we do this? Not
only can we scale up the number of proces-
sors, but we can also scale up the number of
guest operating systems. So, we have take a
two pronged approach to this:

1. Start with one processor running a work-
load on one guest; guest is assigned that
processor. Add a processor and a new
guest; new guest is pinned to the new pro-
cessor. Scale to N processors.

2. Start with one processor running a work-
load on one guest; guest is assigned that
processor. Add a processor, but not a new
guest; assign the processor to the existing
guest. Scale to N processors.

To compare these results, we also have two sce-
narios which do not use a hypervisor:
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1. Start with one processor running a work-
load on Linux. Add a processor and a
new instance of the workload on the same
Linux OS. Scale to N processors.

2. Start with one processor running a work-
load on one Linux OS; Add a processor
and repeat. Scale to N processors.

3 Tools

Virtualization of resources such as processors,
I/O, and time can create some unique problems
for scalability analysis. Abstracting these re-
sources can cause traditional performance and
resource analysis tools not accurately reporting
information. Many tools need to be modified to
work correctly with the hypervisor layer. The
following were used to conduct this study.

3.1 sysstat package

The sysstat[4] package provides the sar and
iostat system performance utilities. sar
takes a snapshot of the system at periodic inter-
vals, gathering performance data such as CPU
utilization, memory usage, interrupt rate, con-
text switches, and process creation. iostat
takes a snapshot of the system at periodic in-
tervals, gathering information about the block
devices for the disks such as reads per second,
writes per second, average queue size, average
queue depth, and average wait time. Both of
these utilities will only gather the statistics for
the domain in which they are running. To get
a more complete view of the system perfor-
mance, it sometimes helps to run the utilities
simultaneously in multiple domains. For ex-
ample, iostat running in a guest domain will
only gather the disk I/O statistics as seen within
the domain. To get a more complete picture of
the disk I/O behavior one can run iostat in

CPU Total Pct Virtual CPUs
0 [070.5] d0-0[006.3] d2-1[064.2]
1 [065.0] d0-1[000.0] d2-2[065.0]
2 [072.3] d0-2[000.1] d2-3[072.1]
3 [087.3] d0-3[000.2] d2-0[087.1]

Figure 1: Sample vm-stat output

Domain 0 to also gather the statistics for the
backend devices that are mapped to the guest
domain.

3.2 vm-stat

As mentioned above, the sar utility gathers
statistics for CPU utilization. When running
in a guest domain, however, the CPU utiliza-
tion statistics are meaningless since the do-
main does not have full usage of the physical
CPUs. What is needed is a complete view of
total system CPU usage broken down by do-
main. The xentop utility provides CPU uti-
lization statistics, but it displays them in real
time using an ncurses interface. xentop is not
useful when running automated performance
tests where the performance data are collected
for later analysis. Therefore, we wrote a new
utility, vm-stat, which queries the Xen hy-
pervisor at periodic intervals to get the CPU
utilization statistics, broken down by domain.
vm-stat writes its output to standard out,
making it useful for automated performance
tests.

Figure 1 shows sample output from vm-stat.
The first two columns show the physical CPU
usage. The subsequent columns show how
each physical CPU was allocated to a virtual
CPU in the various domains. For example,
d2-3[072.1] states that the CPU was allo-
cated to domain ID 2, virtual CPU 3 for 72.1%
of the time.
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3.3 Xenoprof

Xenoprof[5][6] adds extensions to OProfile[7].

From the OProfile About page:

OProfile is a system-wide profiler for
Linux systems, capable of profiling
all running code at low overhead.
OProfile is released under the GNU
GPL.

It consists of a kernel driver and a
daemon for collecting sample data,
and several post-profiling tools for
turning data into information.

OProfile leverages the hardware per-
formance counters of the CPU to en-
able profiling of a wide variety of
interesting statistics, which can also
be used for basic time-spent profil-
ing. All code is profiled: hardware
and software interrupt handlers, ker-
nel modules, the kernel, shared li-
braries, and applications.

From the Xenoprof home page:

Xenoprof allows profiling of con-
currently executing virtual machines
(which includes the operating sys-
tem and applications running in
each virtual machine) and the Xen
VMM [virtual machine monitor] it-
self. Xenoprof provides profiling
data at the fine granularity of individ-
ual processes and routines executing
in either the virtual machine or in the
Xen VMM.

Xenoprof is modeled on the OPro-
file profiling tool available on Linux
systems. Xenoprof consists of
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Figure 2: Overhead of OProfile and Xenoprof
by benchmark

three components: extensions to the
Xen virtual machine environment, an
OProfile kernel module adapted to
the Xen environment, and OProfile
user-level tools adapted to the Xen
environment.

Others have contributed to Xenoprof since it’s
release. Xiaowei Yang added enhancements
to map IP samples of passive domains to the
Xen/kernel symbol tables. Andrew Theurer
added support for the x86_64 architecture.

One of our concerns was whether Xenoprof
added sufficient overhead to change the charac-
teristics of a workload being profiled. It would
be difficult to diagnose performance issues of
a certain workload if the profiler significantly
changed the behavior of the system under the
workload. We ran a series of benchmarks with
and without profiling code to determine the
profiling overhead for both OProfile and Xeno-
prof. The results are shown in Figure 2.

The data revealed that Xenoprof adds overhead
that is comparable to that of OProfile. Since in
our experience we have not noticed the over-
head of OProfile to significantly change the
characteristics of a workload being profiled, we
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expect that Xenoprof will have a similar negli-
gible effect on workloads that it is profiling.

4 Scaling up the number of do-
mains

It is possible that in certain workload situations,
running several small domains can yield perfor-
mance that is preferable to that of running a sin-
gle large Linux instance on the same hardware.
One such instance is illustrated in Figure 3. In
this particular case, we have the dbench work-
load running in two different configurations. In
the first configuration, labelled “instances”, we
are running one instance of dbench per CPU
(the task is pinned on the CPU) on indepen-
dently mounted tmpfs file systems. Each of
these tasks represents a separate workload in-
stance running side by side on the same sys-
tem image. While a simple concept, this setup
illustrates a fundamental scaling problem with
the Linux kernel, the system wide dcache lock.
Dbench stresses the dcache lock. The more
work that is added, the more the system begins
to strain under the load.

Xen offers an approach that can be used to
overcome this deficiency and not only main-
tain performance but actually yield sizable per-

formance advantages. By running separate
Linux guest domains (each domain pinned on
a single CPU, just like the dbench instances
on baremetal Linux) we can effectively add
more dcache locks which reduces contention
and therefore increases performance. As the
“Domains” line in the figure indicates, testing
of this configuration on Xen yields a very high
performance setup for this particular workload.

4.1 NUMA Support

Scaling up the number of domains on a large
box can involve spanning multiple NUMA
nodes. Without NUMA policies in the hyper-
visor, guests which have processors from one
node may have memory allocated from another
node, increasing memory latency and reducing
throughput.

The core strategy for Xen on NUMA systems
is to provide local resources whenever possible
with exceptions for function. The two main re-
sources are physical CPUs and memory. With
minimal information extracted from ACPI ta-
bles, we are able to provide mechanisms for
domains to acquire local resources leading to
domains using CPUs and memory contained
within a single NUMA node. Xen also allows
for a domain’s resources to span more than one
NUMA node. Currently, we are not providing
any optimizations for providing dynamic topol-
ogy information to the guest, though that is an
area of future work.

By utilizing the Xen’s existing infrastructure
for mapping virtual CPUs to physical CPUs,
we create domains and specify which physical
CPUs will be utilized initially by each domain.
Exposing the topology of which physical CPUs
are within which nodes of a NUMA system is
all that is needed to ensure proper selection of
physical CPUs for an in-node domain.
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The NUMA-aware page allocator for Xen
strives to provide memory local to the re-
quester as much as possible. We do, however,
make exceptions for DMA pages. Without an
IOMMU, we currently must prefer a non-local,
but DMA-able page if a guest specifically re-
quests such pages. Without this bias one can
imagine a scenario where the resulting page is
local to the requester but ultimately the guest
cannot make use of a page beyond 32-bit DMA
limits.

In responding to a domain’s request for mem-
ory, we can utilize the vcpu to CPU mapping
as a method of equitable distribution of mem-
ory across the nodes that a domain might be
within. This ensures that a domain, no matter
which virtual CPU is running, will have some
memory local to the node to which the physical
CPU belongs.

4.1.1 Topology Discovery

Xen’s NUMA topology discovery is depen-
dent on the presence of an ACPI System Re-
source Affinity Table (SRAT). This table pro-
vides mapping information for memory and
CPU resources to their respective proximity do-
main (node). Parsing of the memory affin-
ity tables contained within the SRAT yields an
array of physical memory address ranges and
the node to which they belong. The CPU to
proximity domain mapping populates a CPU
to node structure. This discovery is invoked
prior to initializing Xen’s heap and provides
topology information required for initializing
the per-node heap array properly.

4.1.2 Page Allocator Implementation

Xen’s heap of free pages is implemented as a
buddy allocator. The heap is split into three

zones: xen, domain, dma. There are vari-
ous methods for requesting memory pages from
each zone. To aide in handing out pages lo-
cal to the node of the requester, we further di-
vide each zone in to a collection of pages per-
node. When we initialize and add pages to the
heap, we determine to which node the pages be-
long and insert accordingly. When handing out
pages, we can provide pages from the required
zone (required for functionality when request-
ing DMA-able pages) by exhausting the avail-
able memory for the target node before using
pages from a non-local node.

In addition to subdiving the heap’s zones, we
also wanted to preserve the existing, non-
NUMA aware API for requesting pages from
the heap. This allows us to progressively mod-
ify areas to make them NUMA aware through
performance tuning.

4.1.3 Performance with NUMA policy

Memwrite is a simple C program designed to
calculate memory access throughput. We use it
to stress the importance of node-local memory
allocation. The benchmark allocates a buffer
of memory and proceeds to write across the
entire buffer. We calculate the throughput by
dividing the size of the buffer and the time it
took to write a particular value to the entire
buffer. Memwrite also can fork off any num-
ber of child processes which will duplicate the
write of the buffer. Multiple parallel writes
add additional stress to the NUMA memory
interconnect which is bandwidth and latency
constrained as compared to local processor to
memory access.

Running baremetal NUMA-aware Linux, we
utilized the numactl tool to force the memory
and CPU selection to illustrate possible scenar-
ios for guests running on NUMA hardware, but
without NUMA support in Xen.
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We benchmarked two worst-case allocation
scenarios against allocating the memory local
to each node. The results are shown in Fig-
ure 4. The first case, labeled “Interleaving”,
distributes the memory across a set of nodes,
which creates significant traffic over the inter-
connect. The second case, labelled “Remote”,
selects CPUs from one node and the memory
on a separate node. Both of these cases can
happen without NUMA support to help allocate
memory and processors. With NUMA-aware
Xen, the processor and memory selection can
be controlled to provide local-only resources
resulting in increased performance.

5 Scaling up the size of a single do-
main

In this section we attempt to scale a single
Linux guest, running on top of the Xen hypervi-
sor, to many processors. In doing so, we show
that some parts of the hypervisor inhibit the
guest’s ability to scale to 16 processors, com-
pared to Linux running without a hypervisor.

For these tests, we are using reAIM bench-
mark’s file server workload. This workload em-
ulates the characteristics of a Linux file server.
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Figure 5: Guest scalability: baseline

Running with just Linux, no hypervisor, yields
excellent scalability to 16 processors. Through-
put from 2 processors to 16 has a scaling fac-
tor of 7.47 (out of 8.0). The same Linux ker-
nel, patched to with work Xen, has a scaling
factor of 0.932 at 16 processors. The results
from these two runs are shown in Figure 5. Ob-
viously, we have some serious challenges pro-
hibiting similar scalability.

5.1 Scaling Issues

There are several scaling issues with this type
of situation. Most of them center around Xen’s
implementation of guest memory management.
When a guest makes changes to an applica-
tion’s memory, it must keep Xen in the loop.
Operations like page fault handling, fork, etc.,
require Xen’s participation. This is critical to
keep a guest from accessing other guests’ mem-
ory.

Xen allows the guest to write directly to a tem-
porarily detached page table. The guest can
update this page table with machine addresses
rather than pseudo-physical addresses. Since
there is no shadow page table, Xen must verify
the entries that are written by the guest. Virtu-
ally all of the operations to support this are pro-
tected by a single, domain-wide spinlock. The
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Figure 6: Guest scalability: added per CPU
writable page tables

spinlock protects primarily the two (and only
two) writable page tables per guest.

We have prototyped a change to support two
writable page-tables per virtual processor and
reduced the number of uses of the domain-wide
lock. The results are shown in Figure 6. This
alone can yield up to four times throughput gain
on 16-way guests.

However, scalability still lacks on large pro-
cessor guests. We turn to OProfile to find our
next problem. As we increase processors in
the guest, we see a disproportionate increase in
functions related to TLB flushing. On closer
inspection we see that most TLB flushes use
a CPU bit-mask containing all processors cur-
rently running that guest. Many of these TLB
flushes are for a particular application context,
and thus only need to flush processors which
are: (1) running the same guest and, (2) are run-
ning in the same context. As of this writing, we
do not have a implementation for this, but we
believe this could yield a substantial improve-
ment.

There are also other issues with TLB flush-
ing. Xen uses a system-wide spinlock when
implementing an interprocessor interrupt (IPI)
to flush many processors. Xen will flush the lo-
cal processor’s TLB, then acquire the lock, then
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Figure 7: Guest scalability: added TLB filter

send an IPI to other processors in the bit-mask
to invalidate their TLB. With many processors
trying to flush a set of processors at the same
time, we have lock contention on the flush lock.
Invariably many of the processors wanting to
aquire this lock will wait, and in doing so, many
of the processors it would like to flush will have
been flushed while waiting for this lock. If we
can determine which processors were flushed
after we flushed our local processor, but before
we acquired the lock, we can remove those pro-
cessors from the IPI bit-mask.

To do this, we make use of an existing feature
in Xen, the “tlbflushclock”. The tlbflushclock
is a global clock which is incremented by all
processors’ TLB flush. Xen also keeps a per-
processor clock value for their own most recent
flush. So, we use this to reduce the bit-mask
before we send an IPI to TLB flush. When
a processor wants to flush a set of processors,
it first flushes its own TLB, then records the
tlbflushclock value. It then spins for the flush-
lock, after which we check to see if any of the
CPUs in the bit-mask have their own tlbflush-
clock value greater (more recent flush) than our
local flush. If so, those processors have already
TLB flushed and don’t need a flush again, re-
ducing the bit-mask for the IPI. The effect of
this patch is shown in Figure 7.
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write emulation

We still have some scaling challenges, so we
asked the question, “Are the writable page ta-
bles really efficient on an SMP guest?” We hy-
pothesize that with many processors, we have
a much greater chance that writable page tables
may be flushed back early, with few entries up-
dated. The overhead to replicate and detach an
entire page, only to flush the page back in and
verify changes, may be too much if there are
only a few changes to the page. Simply by-
passing writable page tables and verifying each
write as it occurs may have less overhead. So,
we modified Xen to always handle each page
table write fault individually. The results for
SMP, shown in Figure 8, demonstrate that this
is a more efficient method.

6 Conclusion

Although Xen’s paravirtualization technique
has previously shown to perform extremely
well on uniprocessor guests on UP and 2-way
SMP systems, this paper has exposed many
challenges to achieve similar performance on
large SMP systems. However, we believe that
with more analysis and development, the Xen
hypervisor will overcome these obstacles.
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