
Libsysfs - a programming interface to gather device information
in Linux

Ananth N. Mavinakayanahalli
Linux Technology Center
IBM India Software Lab

ananth@in.ibm.com

Daniel Stekloff
Linux Technology Center

IBM Beaverton
dsteklof@us.ibm.com

Abstract

The Linux r© 2.6 kernels include a new driver model,
a set of common data structures and operations
abstracted from various subsystems. Sysfs, a new
RAM-based file system included in the 2.6 kernels,
takes advantage of the new driver model by expos-
ing system device information to User Space. Sysfs
is intended to be the device tree for Linux.

We present Libsysfs, which is a User Space library
that provides applications with a programming in-
terface to the sysfs file system and system device
data. The library reduces the need for each appli-
cation to know how the file system is arranged and
managed, providing common calls to query device
attributes and relationships. The API is also meant
to be stable, providing an interface that will not
change while sysfs may change underneath it.

Libsysfs currently obtains system device informa-
tion based on bus, class, and devices. The three
categories reflect sysfs’s device representation. The
bus subsystem under sysfs represents a bus view of
system buses and their devices. Class refers to sys-
tem device classes like net, scsi host, and usb. De-
vices represents the hierarchical view of all system
devices. The library provides functions for listing
devices by these categories as well as reading and
writing to device attributes, represented as sysfs
files.

There are three applications currently being devel-
oped that use Libsysfs to query system device in-
formation. Greg Kroah-Hartman’s udev - a User

Space replacement for devfs, Linux Event Logging
project’s Error Log Analysis, and Linux Diagnos-
tic Tools project’s sysdiag diagnostic command-line
interface.

This paper especially discusses:

1. Need for Libsysfs

2. The APIs associated with Libsysfs

3. Design of Libsysfs

4. Current state of Libsysfs.

1 Introduction

The 2.6 Linux kernel includes a new feature called
sysfs, a virtual file system that exposes system de-
vice information and attributes to User Space. Lib-
sysfs’s purpose is to provide a stable and consistant
programming interface to the sysfs file system and
device information. The library removes applica-
tions’s need for common file system knowledge and
code while providing interfaces for retrieving device
information based on bus or class. Libsysfs’s inter-
faces will be stable for applications to depend upon
while sysfs matures.

Section 2 provides a brief background about the
driver model and sysfs. Section 3 outlines Libsysfs’s
purpose. Section 4 gives an overview of aspects of
sysfs that had to be considered while designing the

library. It also details the conventions that were
followed to extract information from sysfs and how
this information is presented to users. Section 5
describes the API naming conventions. Section 6
describes the data structures used in the library to
represent sysfs’s directory, file and link. Section 7
describes the basic abstraction of a device in sysfs
as well as its Libsysfs representation. Section 8 de-
scribes Libsysfs’s representation of buses. It also
details how the library provides interfaces to deter-
mine device/driver details from a bus perspective.
Section 9 describes the class representation in Lib-
sysfs and functions available to users to access class
information. Section 10 describes how Libsysfs im-
plements access to drivers. Section 11 gives exam-
ples for using the library. Section 12 talks about the
future of the library.

Note that we assume /sys as the sysfs mount point
for subsequent discussions.

2 Background

This section provides a brief history about the new
Linux Driver Model and sysfs.

2.1 Driver Model

A new driver model [01] was adopted early in the
Linux 2.5 development cycle. Its purpose was
to unify drivers, abstracting data common to all
drivers into general device structures. The model
defined common interfaces as well.

Developed by Patrick Mochel, the initial intention in
moving towards the new driver model was to make
the power management tasks easy. The main struc-
tures that constitute the new driver model (defined
in include/linux/device.h in the linux source code
tree) are:

• device

• device driver

• bus type

• class

• class device

The device structure (which will be statically de-
fined as part of the bigger, bus specific structure)
consists of, among other things, the device name, a
pointer to the device’s parent, a pointer to the de-
vice’s device driver structure, and a list of the de-
vice’s children. It also contains the device’s power
state.

The device driver structure contains a list of devices
that use this driver. It also contains references to
probe, remove, shutdown, suspend and resume rou-
tines for devices that use this driver.

The bus type structure is used to represent a spe-
cific bus type. The structure consists, among other
things, of lists of devices and drivers that are regis-
tered with the bus. It also contains functions point-
ers to bus specific routines to match a device and
its driver, adding a device in the hierarchy, hotplug
notification and power management.

The class and class device structures are used to
classify devices based on functionality. The class
structure consists of a list of class devices that be-
long to the class and functions for hotplug and
class device release notifications. The class device
structure consists of pointers to the class it belongs
to, the physical or logical device that implements
the class device.

Attributes for each of these subsystems can be ex-
ported to userspace through show/store methods.

The design of the new Linux driver model lends itself
to usage in different scenarios as

1. Hotplug

2. Device hierarchy representation

3. Power management

Detailed information about the driver model is
available elsewhere [02, 04].

2.2 Sysfs

With the advent of the new driver model, a method
was necessary to debug it. This necessity culmi-
nated in the creation of a new RAM-based filesys-
tem called driverfs, which was later renamed sysfs.
Sysfs provides a number of views of system devices:

• Hierarchical: The topology tree of devices in a
system.

• Bus specific: What devices are connected to
what bus.

• Class based : Classification based on function-
ality.

Sysfs is compiled into all 2.5/2.6 kernels and can be
mounted using:

mount -t sysfs sysfs /sys

Salient features of sysfs includes:

1. A hierarchical view of the complete device tree
where the various components of the driver
model are organized as directories, attributes
as files, and interconnections as links.

2. A type-safe kernel interface.

3. A facility by which any layer can export its at-
tributes.

4. A true representation of the various relation-
ships that exist between devices, buses, and
drivers in the system.

More details about sysfs can be found elsewhere [03,
05].

3 Goals of Libsysfs

Sysfs already has an interface, a very easy to use file
system. Commands like echo, cat, ls, and find
are already available as are functions like open(),
read(), and close(). Why is Libsysfs needed?

3.1 Encapsulate Sysfs

The first goal of Libsysfs’s is to encapsulate sysfs-
specific knowledge required for retrieving device in-
formation, reducing the need for applications to
know how sysfs is structured. Applications can use
Libsysfs to retrieve a device and its attributes with-
out knowing specifically how that information is or-
ganized in sysfs. Encapsulation enables users to

concentrate on what they’re intended to do - work
with devices. Users can leave the file system knowl-
edge and how sysfs organizes device information to
Libsysfs.

A user could, for example, use Libsysfs to retrieve
specific device information using the sysfs path to
the device. The library internally collects infor-
mation including parent, children, bus, and driver
name and returns it all to the user. Without the li-
brary, the user would need to know where to retrieve
that information, like being able to discern what di-
rectories below the device directory are child devices
and where to find bus information.

3.2 Reduce Duplicate Code

The library’s second goal, which is related to the
first, is to reduce duplicate code needed by appli-
cations to work with the file system and to retrieve
sysfs specific information. Libsysfs includes func-
tions for reading and writing files and traversing
directories. Libsysfs also, as mentioned in the ex-
ample above, includes code to easily wrap up device
information rather than requiring each application
to duplicate it.

3.3 Provide a Stable API

Libsysfs’s final goal is to provide a stable program-
ming interface that applications can depend upon
to work with system devices. Sysfs is still matur-
ing; new features are being added with each kernel
release. Its structure, outside perhaps the bus, class,
and devices subsystems, isn’t firm. Block devices,
currently, are considered a separate subsystem and
aren’t under the class subsystem. Libsysfs gives ap-
plications a stable interface to depend upon while
allowing sysfs to evolve.

Libsysfs is intended to be the API to use to access
sysfs information.

4 Design of Libsysfs

4.1 Modeling sysfs

Libsysfs is modeled directly from sysfs. Sysfs con-
tains three major subsystems: bus, class, and de-
vices. The library represents these subsystems and
their devices as objects like sysfs device, sysfs bus
and sysfs class. The library represents the relation-
ships between the sysfs objects - linking, for exam-
ple, a sysfs class device under the class subsystem
to a sysfs device under the devices subsystem. Lib-
sysfs objects have attributes like their sysfs counter-
parts. The library also contains objects for directo-
ries, files, and links because sysfs is, after all, a file
system.

Libsysfs’s design was influenced by application re-
quirements. Libsysfs emerged from common re-
quirements from three applications: Greg Kroah-
Hartman’s udev, Linux Diagnostic Tools project’s
sysdiag, and Linux Event Logging project’s Error
Log Analysis.

4.1.1 Devices, Classes, and Buses

The devices subsystem represents the physical lay-
out of devices in a given system. The top-level di-
rectory under the subsystem contains root devices
from which other devices hang. For instance, PCI
devices on a small workstation all hang off PCI
device pci0000:00. Libsysfs represents these root
devices with sysfs root device objects. The devices
that are represented as directories under the devices
subsystem of sysfs are represented using the struc-
ture sysfs device in Libsysfs.

In many cases, users are more interested in the
function(s) devices perform rather than their phys-
ical location. The class subsystem is a repre-
sentation of devices based on their functional-
ity. Devices, once registered, can be associated
with one or more classes based on the functions
they perform. Libsysfs uses the sysfs class struc-
ture to represent classes like net or scsi host, and
the sysfs class device to represent devices in those
classes like eth0 or host1.

Currently under sysfs there’s a subsystem, on level
with the three major subsystems, for block devices.

Since the block subsystem describes a class of de-
vices and since it is our understanding that it will be
moved under the class subsystem, Libsysfs presently
handles it as another class.

The bus subsystem represents how devices are con-
nected, which devices are connected to which bus,
and so on. More importantly, it provides informa-
tion about drivers that are registered with the bus
and the devices they manage. Libsysfs represents
buses with the sysfs bus structure and drivers with
the sysfs driver structure.

4.1.2 Directories, Files and Links

One of the important design considerations for Lib-
sysfs was to faithfully represent the sysfs file system.

From the kernel’s point of view, sysfs directories rep-
resent kobjects [07] and files in the directories repre-
sent attributes [05, 06]. Sysfs extensively uses links
to faithfully bring out the relationships between the
various subsystems. As an example, the device link
under any sysfs driver directory (such as e100 for an
Intel r© Ethernet Pro adapter) points to the physical
device under the devices subsystem (Example illus-
trated in figure 12).

Libsysfs uses the sysfs directory, sysfs attribute and
sysfs link structures to represent sysfs’s directories,
attributes, and links, respectively. Libsysfs provides
functions to retrieve relevent information from these
structures. Navigation of these structures directly
by applications is discouraged.

To reduce the memory footprint of the library and
to minimize the possibility of stale values being pre-
sented to the user, a conscious decision was made to
classify the structure and dlist related elements of
all subsystem structures as private data, available
only on request. With this design, reading of direc-
tories, links, and attributes can be postponed until
such time the user application explicitly requests the
data.

The elements of structures that are classified as be-
ing for internal use may not contain valid data un-
til such time that the user calls appropriate helper
functions that populate them. These helper routines
return handles to the private structure elements.

5 Calling conventions in Libsysfs

Libsysfs uses a very simple calling convention for
its APIs. All open calls have a corresponding close
API. An open call returns a reference to a structure
that has been opened. Any structure that is opened
must be closed with a call to its corresponding close
function.

Libsysfs provides get calls for user applications to
obtain references to the private elements of the data
structures. References obtained from such calls need
not be closed explicitly.

The following sections describe the various struc-
tures used in Libsysfs and the APIs associated with
them. While most APIs are self explanatory, some
explanation is provided for quick reference. Details
about all of Libsysfs’s APIs can be found in lib-
sysfs.txt that is shipped with the sysfsutils and udev
packages.

6 Working with Directories, Files
and Links

Libsysfs contains functions and structures for work-
ing with directories, files, and links. The Libsysfs
calls are modeled after the file system calls: direc-
tories, files (attributes), and links must be opened
and closed. The library’s functions include common
code like getting a directory’s files, subdirectories,
and links or getting a link’s target. Libsysfs also
provides special sysfs domain information, such as
checking whether a file or attribute is a show and/or
store method.

6.1 Directories

Sysfs directories can represent subsystems (like bus
or class), devices, or even sets of device attributes.
Libsysfs provides functions to work with directories.
Libsysfs also provides functions and structures to
work with bus, class, or device objects, which all use
the directory routines internally. The Libsysfs direc-
tory functions are meant to generalize retrieval of
directory information including subdirectories, files,
and links.

The sysfs directory structure acts as a handle for
working with sysfs directories. It contains lists of
subdirectories, links, and attributes along with the
directory’s name and path.

struct sysfs_directory {

unsigned char name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

/* Private: for internal use only */

struct dlist *subdirs;

struct dlist *links;

struct dlist *attributes;

};

Figure 1: sysfs directory in Libsysfs

The sysfs directory structure contains:

• name - The directory name

• path - The absolute sysfs path to this

directory

• subdirs - The list of subdirectories under

this directory

• links - The list of links in this directory

• attributes - The list of attributes (files)

in this directory

The following sysfs directory functions exist:

• struct sysfs directory

*sysfs open directory(const unsigned char

*path);

• void sysfs close directory(struct

sysfs directory *sysdir);

• int sysfs read dir attributes(struct

sysfs directory *sysdir);

• int sysfs read dir links(struct

sysfs directory *sysdir);

• int sysfs read dir subdirs(struct

sysfs directory *sysdir);

• dlist *sysfs get dir attributes(struct

sysfs directory *dir);

• dlist *sysfs get dir links(struct

sysfs directory *dir);

• dlist *sysfs get dir subdirs(struct

sysfs directory *dir);

• int sysfs refresh dir attributes(struct

sysfs directory *sysdir);

• int sysfs refresh dir links(struct

sysfs directory *sysdir);

• int sysfs refresh dir subdirs(struct

sysfs directory *sysdir);

• int sysfs read directory(struct

sysfs directory *sysdir);

• int sysfs read all subdirs(struct

sysfs directory *sysdir);

• struct sysfs directory

*sysfs get subdirectory(struct

sysfs directory *dir, unsigned char

*subname);

• struct sysfs link

*sysfs get directory link(struct

sysfs directory *dir, unsigned char

*linkname);

• struct sysfs link

*sysfs get subdirectory link(struct

sysfs directory *dir, unsigned char

*linkname);

• struct sysfs attribute

*sysfs get directory attribute(struct

sysfs directory *dir, unsigned char

*attrname);

The sysfs open directory() function takes a path
to the directory to be opened and used. The func-
tion allocates the basic sysfs directory structure, fills
in path and name, and returns the directory struc-
ture to the caller. The lists of subdirectories, links,
and attributes are left unpopulated.

The sysfs close directory() function closes the
sysfs directory structure provided. It goes through
any lists of subdirectories, attributes, and links and
closes all of them before deallocating the structure.

While individual lists of a sysfs directory can
be read using the appropriate sysfs read dir *
functions, the sysfs read directory() function
reads the provided directory, opening subdirecto-
ries and links. Those objects are added to the
sysfs directory’s lists. This function doesn’t recur-
sively read subdirectories, only the directory.

The sysfs get dir * functions can be used to re-
trieve references to the appropriate dlist of the
sysfs directory structure.

The sysfs refresh dir * functions can be used in
cases when the attributes, links and/or subdirecto-
ries of a given sysfs directory need to be reread. The
refresh functions need to be used with care since ref-
erences held to elements of the lists prior to calling
the refresh functions will not be valid upon return
from these functions.

The sysfs read all subdirs() function reads all
subdirectories. It traverses the sysfs directory’s sub-
directory list, individually reading every subdirec-
tory it finds.

The sysfs get subdirectory() function re-
trieves a specific subdirectory by name from a
sysfs directory. The function travels the subdi-
rectory list in the sysfs directory structure and
returns a reference to the indicated subdirectory.
The returned subdirectory reference does not need
to be closed, but will be closed when the parent’s
directory is eventually closed.

The sysfs get directory link() retrieves a spe-
cific link from a sysfs directory’s list of links. It
doesn’t search the directory’s subdirectories. It re-
turns a reference to the link if found. The reference
doesn’t need to be closed separately.

The sysfs get subdirectory link() searches the
current directory and all of its subdirectories for the
given link name. If found, the function returns a
reference to the link.

The sysfs get directory attribute() returns a
reference to a specific attribute if found in the given
directory. As with the other get functions, the ref-
erence doesn’t need to be closed.

6.2 Files

Sysfs files represent attributes for devices, drivers,
classes, and buses. They are a means to communi-
cate with kernel objects from User Space. Files can
be readable, writeable, or both, reflecting the driver
model show and store methods. If an attribute im-
plements show, a user or application can read from
the file to receive the show information. The ven-
dor file in a device directory is a show method: by
reading the file, a user can see the device’s vendor
information. A store method is represented with a
writeable file. The SCSI host class device has a scan
attribute; a user can invoke a scan by writing to the

file. Up to a page of data can be transferred be-
tween a user and the kernel through sysfs in either
binary or ASCII form.

struct sysfs_attribute {

unsigned char *value;

unsigned short len;

unsigned short method;

unsigned char name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

};

Figure 2: sysfs attribute in Libsysfs

Libsysfs uses the sysfs attribute structure to repre-
sents sysfs files. The attribute structure contains
the following members:

• value - The value to be read from or

written to the file

• len - The size of buffer value

• method - Bitfield to designate if attribute

is a show method, store method, or both

• name - The name of the attribute file

• path - The absolute sysfs path to the

attribute file

The library contains the following functions to work
with attributes:

• struct sysfs attribute *sysfs open attribute

(const unsigned char *path);

• void sysfs close attribute(struct

sysfs attribute *sysattr);

• int sysfs read attribute(struct

sysfs attribute *sysattr);

• int sysfs read attribute value(const

unsigned char *attrpath, unsigned char

*value, size t vsize);

• int sysfs read dir attributes(struct

sysfs directory *sysdir);

• unsigned char *sysfs get value from attributes

(struct dlist *attr, const unsigned char

*name);

• int sysfs write attribute(struct

sysfs attribute *sysattr, const unsigned

char *new value, size t len);

The library contains a function to open
and another to close an attribute. The
sysfs open attribute() function takes the path
to the file to open. It allocates the sysfs attribute
structure, fills in the file name and path infor-
mation, and then uses stat() to determine if
the file is a show and/or store method. The
file isn’t read or opened at this point. The
sysfs close attribute() function deallocates the
created sysfs attribute structure.

The sysfs file is opened only when a read or a
write is performed. The sysfs read attribute()
function opens, reads, and closes the file pointed
to by the opened sysfs attribute structure. The
data read from the file is assigned to the value
field and its length to the sysfs attribute’s len field.
The sysfs write attribute() function performs
the reverse: it opens the file, writes from the pro-
vided buffer, and then closes the file.

The sysfs read attribute value() function is
provided for convenience. The caller doesn’t need
to open and handle a sysfs attribute structure, it
merely supplies the file path, a buffer, and a buffer
length. The function is a wrapper around the open,
read, and close sysfs attribute functions.

The sysfs read dir attributes() function com-
pliments the sysfs read directory() function, in
that it reads the sysfs directory provided and opens
up the list of attributes for the directory.

The sysfs get value from attributes() func-
tion retrieves a specific attribute’s value from a list
of attributes. This function is useful if a user has
opened a directory with a list of attributes and
wishes to get a specific attribute’s value from the
list. It doesn’t require the user to open or close at-
tributes, which are already opened and contained
in the attribute list. The function traverses the at-
tribute list looking for the attribute with the pro-
vided name and returns its value.

6.2.1 Write attribute support in Libsysfs

As discussed earlier, attributes in sysfs are exported
to userspace as normal files. Quite a few attributes
of the driver model components are configurable,
and sysfs provides a method to alter these attributes
by providing write permission to such attribute files.
Libsysfs provides the following function to modify

such attribute values:

• int sysfs write attribute(struct

sysfs attribute *sysattr, const unsigned

char *new value, size t len);

sysfs write attribute() returns an error when:

• The sysfs attribute supplied is not “writable”.

• The return value on write() is not equal to the
supplied len. In such a case, the initial value of
the attribute will be restored before returning
to the calling function.

Upon return from this function, sysattr->value
will contain the current value of the attribute.

6.3 Links

Links are used in sysfs to relate objects to one an-
other, such as a physical device to its block device
representation or a class device to its physical de-
vice. Libsysfs uses the sysfs link structure to rep-
resent the important link information including the
link’s name, path, and target path.

struct sysfs_link {

unsigned char name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

unsigned char target[SYSFS_PATH_MAX];

};

Figure 3: sysfs link in Libsysfs

The sysfs link structure contains:

• name - The name of the link

• path - The absolute sysfs path to the link

• target - The absolute sysfs path to where

this link points to

Libsysfs has the following functions for working with
sysfs links:

• struct sysfs link *sysfs open link(const

unsigned char *lnpath);

• void sysfs close link(struct sysfs link

*ln);

• int sysfs get link(const unsigned char

*path, unsigned char *target, size t len);

The sysfs open link function allocates
and returns the sysfs link structure. The
sysfs close link function deallocates the opened
sysfs link structure.

The sysfs get link function takes a link path and
returns its target in the supplied target buffer. The
function uses readlink() to get the target.

7 Working with Devices

7.1 Definition

A device is a logical or physical system resource. It
is associated with a bus and is usually managed by
a driver.

7.2 Devices in sysfs

Every device has its own directory in sysfs under the
devices subsystem. Device attributes are exposed as
files in the device directory. The device’s directory
name is its bus id or kernel name.

Links are used in the bus and class subsystems to
refer to specific devices. Each bus directory contains
device links to those devices registered with it. A
device directory must have one link only from the
bus subsystem. If class devices refer to a specific
physical device, they will have a link to the device
they represent.

7.3 Device Structure in Libsysfs

Figure 5 shows how the library represents a sysfs
device.

The sysfs device structure contains:

• name - The name of the device (same as

bus id as of now)

[stekloff@... sys]$ tree /sys/devices/pci0000:05/

0000:05:02.0/

/sys/devices/pci0000:05/0000:05:02.0/

|-- class

|-- config

|-- detach_state

|-- device

|-- irq

|-- power

| ‘-- state

|-- resource

|-- subsystem_device

|-- subsystem_vendor

‘-- vendor

Figure 4: Device Directory in sysfs Example

struct sysfs_device {

unsigned char name[SYSFS_NAME_LEN];

unsigned char bus_id[SYSFS_NAME_LEN];

unsigned char bus[SYSFS_NAME_LEN];

unsigned char driver_name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

/* Private: for internal use only */

struct sysfs_device *parent;

struct dlist *children;

struct sysfs_directory *directory;

};

Figure 5: sysfs device in Libsysfs

• bus id - The kernel representation of this

device

• bus - The bus this device is registered

with

• driver name - The name of the sysfs driver

used by this device

• path - The absolute path to the device

• parent - The reference to a device’s parent

• children - The list of child devices that

spawn off this device

• directory - The sysfs directory

representation for the device directory

7.4 Device Functions

Libsysfs provides the following functions to work
with devices:

• struct sysfs device

*sysfs open device path(const unsigned

char *path);

• struct sysfs device *sysfs open device(const

unsigned char *bus, const unsigned char

*bus id);

• void sysfs close device(struct sysfs device

*device);

• struct sysfs device

*sysfs get device parent(struct sysfs device

*dev);

• int sysfs get device bus(struct sysfs device

*dev);

• struct dlist *sysfs get device attributes

(struct sysfs device

• struct dlist *sysfs refresh device attributes

(struct sysfs device *device);

• struct sysfs attribute

*sysfs get device attr(struct sysfs device

*dev, const unsigned char *name);

• struct sysfs attribute

*sysfs open device attr (const unsigned

char *bus, const unsigned char *bus id,

const unsigned char *attrib);

The sysfs open device path() takes the absolute
sysfs path to the device as an argument and returns
a reference to the sysfs device structure.

The sysfs open device() function can be used to
obtain a reference to the sysfs device structure for a
device whose kernel representation (bus id) and bus
are known.

The sysfs close device() function closes the
given sysfs device. It walks the list of device children
and closes all of them before freeing the structure.

The sysfs get device parent() function returns
a reference to the sysfs device structure of the par-
ent of the device dev.

The sysfs get device bus() function returns the
name of the bus the device is registered on in the bus
field of the sysfs device structure upon successful
return.

The sysfs get device attributes() function re-
turns a reference to a list of defined at-
tributes for the given sysfs device. The function

sysfs refresh device attributes() is intended
to be used in situations where the attributes need to
be reread. Prior references to attributes from this
list will not be valid upon return from the refresh
function.

The sysfs get device attr() function returns a
reference to the sysfs attribute structure for the re-
quested name attribute and device dev.

The function sysfs open device attr() returns a
reference to the sysfs attribute as defined for a device
(bus id) whose bus is known. The sysfs attribute
reference obtained upon successful return has to be
closed with a call to sysfs close attribute().

Libsysfs also provides for a root device represen-
tation. A sysfs root device is basically a represen-
tation for kobjects under the /devices directory.
These kobjects are the nodes from which the de-
vice topology tree originate. Figure 6 shows the
sysfs root device structure.

struct sysfs_root_device {

unsigned char name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

/* Private: for internal use only */

struct dlist *devices;

struct sysfs_directory *directory;

};

Figure 6: sysfs root device in Libsysfs

The following functions work on the root kobjects:

• struct sysfs root device

*sysfs open root device(const unsigned

char *name);

• void sysfs close root device(struct

sysfs root device *root);

• struct dlist *sysfs get root devices(struct

sysfs root device *root);

The sysfs open root device() function re-
turns a handle to the sysfs root device structure
corresponding to /sys/devices/name, while
sysfs close root device() deallocates the struc-
ture, closing the devices list and its directory
handle in the process.

Once a root device is opened, the function
sysfs get root devices() can be used to get the

device tree under the root device.

8 Working with Buses

8.1 Definition

A bus is a medium used to connect a set of simi-
lar devices. It acts as a transport for transfering
data between devices on the bus using a common
protocol.

8.2 Buses in sysfs

Every bus that is supported on a system has
its own directory under /sys/bus/. Devices
that are registered with the bus are repre-
sented under /sys/bus/xxx/devices and drivers
under /sys/bus/xxx/drivers. Entries under
/sys/bus/xxx/devices are symbolic links to actual
devices (physical or virtual) under the devices sub-
system.

8.3 Bus Structures

The sysfs bus structure (shown in Figure 8) acts as a
handle to access bus related information. It contains
lists of devices and drivers that are registered with
this bus.

The sysfs bus structure contains:

• name - The bus name

• path - The absolute sysfs path to the bus

• drivers - The list of drivers registered

with this bus

• devices - The list of devices registered

with this bus

• directory - The sysfs directory

representation for the bus kobject

[ananth@...sys]$ tree /sys/bus/

/sys/bus/

|- ide

|- pci

|- platform

|- pnp

|- pseudo

‘- scsi

|- devices

| |- 1:0:0:0 -> ../../../devices/

| | pci0000:02/0000:02:01.1/host1/1:0:0:0

| |- 1:0:1:0 -> ../../../devices/

| | pci0000:02/0000:02:01.1/host1/1:0:1:0

| |- 1:0:8:0 -> ../../../devices/

| | pci0000:02/0000:02:01.1/host1/1:0:8:0

| ‘- 4:0:3:0 -> ../../../devices/pci0000:05/

| 0000:05:04.0/host4/4:0:3:0

‘- drivers

|- sd

| |- 1:0:0:0 -> ../../../../devices/

| | pci0000:02/0000:02:01.1/host1/1:0:0:0

| |- 1:0:1:0 -> ../../../../devices/

| | pci0000:02/0000:02:01.1/host1/1:0:1:0

| |- 2:0:0:0 -> ../../../../devices/

| | pseudo_0/adapter0/host2/2:0:0:0

| ‘- 4:0:3:0 -> ../../../../devices/

| pci0000:05/0000:05:04.0/host4/4:0:3:0

‘-- sr

Figure 7: Bus example in sysfs

8.4 Bus Functions

The following functions are available to work with
buses in Libsysfs:

• struct sysfs bus *sysfs open bus(const

unsigned char *name);

• void sysfs close bus(struct sysfs bus *bus);

• struct dlist *sysfs get bus devices(struct

sysfs bus *bus);

• struct dlist *sysfs get bus drivers(struct

sysfs bus *bus);

• struct sysfs device

*sysfs get bus device(struct sysfs bus *bus,

unsigned char *id);

• struct sysfs driver

*sysfs get bus driver(struct sysfs bus *bus,

unsigned char *drvname);

• struct dlist *sysfs refresh bus attributes

(struct sysfs bus *bus);

struct sysfs_bus {

unsigned char name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

/* Private: internal use only */

struct dlist *drivers;

struct dlist *devices;

struct sysfs_directory *directory;

};

Figure 8: sysfs bus in Libsysfs

• struct dlist *sysfs get bus attributes

(struct sysfs bus *bus);

• struct sysfs attribute

*sysfs get bus attr(struct sysfs bus *bus,

unsigned char *attrname);

• struct sysfs device

*sysfs open bus device(unsigned char

*busname, unsigned char *dev id);

• int sysfs find driver bus(const unsigned

char *driver, unsigned char *busname,

size t bsize);

The sysfs open bus() function returns the refer-
ence to a sysfs bus structure corresponding to the
bus name.

The sysfs close bus() function closes the given
sysfs bus structure. It walks the list of devices and
drivers closing them in the process before freeing
the structure.

The sysfs get bus devices() and
sysfs get bus drivers() functions respectively
return references to lists of devices and drivers
registered with the bus.

Given a sysfs bus structure, the
sysfs get bus device() function returns the
sysfs device structure reference corresponding to
device id. Similarly, the sysfs get bus driver()
function returns the sysfs driver structure reference
for driver with name drvname.

The sysfs get bus attributes() function returns
a list of attributes for the given bus while
the sysfs get bus attr() function returns the
sysfs attribute structure corresponding to attrname.

The sysfs open bus device() function returns the
sysfs device structure reference for a device whose

bus and its kernel name (bus id) are known. The
sysfs device reference thus obtained must be closed
with a call to the sysfs close device() function.

The function sysfs find driver bus() can be
used to determine what bus a driver is registered
with. bsize is the size of buffer busname in which to
return the name of the bus.

9 Working with Classes

9.1 Definition

A class represents an aggregation of similar objects.

9.2 Classes in sysfs

A sysfs class is a set of logical devices that perform
a similar function. The sysfs class subsystem ex-
ports these device sets to User Space. For example,
all network interfaces are represented under the net
class and usb devices are represented under the usb
class. One device may be associated with more than
one class depending on the functions it performs.

Libsysfs defines devices under classes to be
sysfs class devices, different from sysfs devices. A
class device represents one function of a logical de-
vice. The logical device may or may not point to
a physical device. A class device’s directory nor-
mally contains, in addition to attributes, a link to
its physical device (under the devices subsystem)
and possibly a link to its driver.

Block devices are currently represented under the
block subsystem immediately under the sysfs root.
Libsysfs, however, considers block devices to be part
of the class subsystem. All class functions work with
block devices.

9.3 Classes in Libsysfs

Libsysfs provides two structures for working with
the class subsystem.

The sysfs class structure (shown in Figure 10) is
used to represent a sysfs class.

[ananth@.. class] tree /sys/class/

/sys/class/

|- input

|- net

| |- dummy0

| |- eth0

| |- eth1

| |- eth2

| ‘- lo

|- scsi_device

|- scsi_host

| |- host0

| |- host1

| |- host2

| ‘- host4

‘- tty

Figure 9: Class example in sysfs

struct sysfs_class {

unsigned char name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

/* Private: for internal use only */

struct dlist *devices;

struct sysfs_directory *directory;

};

Figure 10: sysfs class in Libsysfs

The sysfs class structure contains:

• name - The class name

• path - The absolute sysfs path to the class

• devices - The list of class devices under

this class

• directory - The sysfs directory

representation for the bus kobject

The sysfs class device structure (shown in Fig-
ure 11) represents a device (name) belonging to a
class (classname).

The sysfs class device structure contains:

• name - The name of the class device.

• classname - The class name to which this

class device belongs to

• path - The absolute sysfs path to the class

struct sysfs_class_device {

unsigned char name[SYSFS_NAME_LEN];

unsigned char classname[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

/* Private: for internal use only */

struct sysfs_class_device *parent;

struct sysfs_device *sysdevice;

struct sysfs_driver *driver;

struct sysfs_directory *directory;

};

Figure 11: sysfs class device in Libsysfs

• parent - The sysfs class device for the

parent of this class device

• sysdevice - The sysfs device reference for

this class device

• driver - The sysfs driver reference for

this class device

• directory - The sysfs directory

representation for the bus kobject

9.4 Class Functions

The following functions are provided to work with
sysfs classes and class devices:

• struct sysfs class *sysfs open class (const

unsigned char *name);

• void sysfs close class(struct sysfs class

*cls);

• struct dlist *sysfs get class devices(struct

sysfs class *cls);

• struct sysfs class device

*sysfs get class device(struct sysfs class

*class, unsigned char *name);

• struct sysfs class device

*sysfs open class device path(const unsigned

char *path);

• struct sysfs open class device(const

unsigned char *class, const unsigned char

*name);

• void sysfs close class device(struct

sysfs class device *dev);

• struct sysfs device

*sysfs get classdev device(struct

sysfs class device *clsdev);

• struct sysfs driver

*sysfs get classdev driver(struct

sysfs class device *clsdev);

• struct sysfs class device

*sysfs get classdev parent(struct

sysfs class device *clsdev);

• struct dlist *sysfs get classdev attributes

(struct sysfs class device *cdev);

• struct dlist *sysfs refresh classdev attributes

(struct sysfs class device *cdev);

• struct sysfs attribute

*sysfs get classdev attr (struct

sysfs class device *clsdev, const unsigned

char *name);

• struct sysfs open classdev attr(const

unsigned char *classname, const unsigned

char *dev, const unsigned char *attrib);

The sysfs open class() returns a sysfs class
structure reference for the given class (name).

The sysfs close class() walks the list of devices
and closes them in turn. It then frees the sysfs class
structure.

The sysfs get class devices() function returns
a list of class devices belonging to the given class.

The sysfs get class device() function returns a
sysfs device structure reference for the class device
with the given name.

Given the absolute sysfs path to a class device
(name), the sysfs open class device path() re-
turns its sysfs class device structure reference.

If the class device’s classname and its ker-
nel representation (dev) is known, the function
sysfs open classdev attr() returns the reference
for attribute with name attrib. In keeping with Lib-
sysfs’s convention with ”open” calls, the attribute
reference thus obtained must be closed with a call
to the sysfs close attribute() function.

The sysfs close class device() closes the device
and the driver before freeing the sysfs class device
structure.

Given a sysfs class class, the
sysfs get class device() looks for the
sysfs class device structure corresponding to
name from among its list of devices.

The sysfs get classdev device() and
sysfs get classdev driver() functions can
be used to obtain references to sysfs device and
sysfs driver for the given class device (clsdev).

The sysfs get classdev parent() func-
tion returns a valid reference to the parent
sysfs class device of clsdev, if one is available. This
function is particularly useful in cases when a
block partition is considered as a class device. For
example, if this function is called with a clsdev
reference of sda1, it returns the sysfs class device
for sda.

The reference to a list of attributes for a given
class device (cdev) can be obtained using the
function sysfs get classdev attributes(). The
sysfs refresh classdev attributes() function
rereads the attributes list for the class device cdev.
Prior references held to attributes from the list will
not be valid upon return from the refresh routine.

The sysfs get classdev attr() function returns
a sysfs attribute structure corresponding to name of
sysfs class device clsdev.

If the device’s class and its ker-
nel representation (name) is known,
sysfs open class device by name() can be used
to get its sysfs class device structure reference.

10 Working with Drivers

10.1 Definition

Device drivers are software modules that manage
logical and physical devices. Drivers provide an in-
terface between applications and a device. They
are responsible for registering managed devices with
sysfs and implementing the callbacks that expose a
managed device’s information and configuration.

10.2 Drivers in sysfs

Drivers are represented in sysfs under the bus sub-
system. Each bus directory contains a drivers di-
rectory. That directory contains directories for each
registered driver on that bus. Each driver directory

contains a link or links to devices registered with
the driver. The driver directory also contains any
driver attributes exposed through sysfs. Figure 12
is an example directory listing for a pci e100 driver.

[stekloff@.. eth0]$ tree /sys/bus/pci/drivers/

e100/

/sys/bus/pci/drivers/e100

|-- 0000:01:08.0 -> ../../../../devices/

| pci0000:00/0000:00:1e.0/0000:01:08.0

|-- 0000:01:0e.0 -> ../../../../devices/

| pci0000:00/0000:00:1e.0/0000:01:0e.0

‘-- new_id

Figure 12: Driver Directory in sysfs Example

The e100 device driver is currently managing
two devices, the first device is at pci address
0000:01:08.0 and the second is at 0000:01:0e.0. The
e100 driver’s directory under bus contains a link for
each device. It also includes a driver attribute called
new id.

The driver’s device links point to the device’s direc-
tory under the devices subsystem. There currently
isn’t a link back from a device to its driver, so refer-
encing a device’s driver must be done from the bus
subsystem or the class subsystem.

In some cases, the class subsystem contains links
to drivers from class devices. The net class is an
example, where, as shown in figure 13, the device
driver for network interface eth0 is e100.

[stekloff@... eth0]$ tree /sys/class/net/eth0

/sys/class/net/eth0

|-- addr_len

|-- address

|-- broadcast

|-- device -> ../../../devices/pci0000:00/

| 0000:00:1e.0/0000:01:08.0

|-- driver -> ../../../bus/pci/drivers/e100

|-- features

|-- flags

|-- ifindex

|-- iflink

|-- mtu

|-- statistics

|-- tx_queue_len

‘-- type

Figure 13: Class Device Driver Reference in sysfs
Example

Eth0 is being managed by the e100 driver.

10.3 Driver Structure in Libsysfs

Libsysfs implements a sysfs driver structure to rep-
resent a driver in sysfs. The structure can be used
as a handle to retrieve driver information including
driver attributes and devices.

struct sysfs_driver {

unsigned char name[SYSFS_NAME_LEN];

unsigned char path[SYSFS_PATH_MAX];

/* internal use only */

struct dlist *devices;

struct sysfs_directory *directory;

};

Figure 14: sysfs driver in Libsysfs

The structure includes the following:

• name - Name of the file

• path - Absolute path to the file

• devices - List of devices the driver

manages

• directory - Directory handle for internal

use

10.4 Driver Functions in Libsysfs

Libsysfs contains the following functions for working
with drivers:

• struct sysfs driver

*sysfs open driver path(const unsigned

char *path);

• struct sysfs driver *sysfs open driver(const

unsigned char *bus name, const unsigned

char *drv name);

• void sysfs close driver(struct sysfs driver

*driver);

• struct dlist *sysfs get driver devices(struct

sysfs driver *driver);

• struct dlist *sysfs refresh driver devices

(struct sysfs driver *driver);

• struct sysfs device

*sysfs get driver device(struct sysfs driver

*driver, const unsigned char *name);

• struct sysfs attribute

*sysfs get driver attr(struct sysfs driver

*drv, const unsigned char *name);

• struct dlist *sysfs get driver attributes

(struct sysfs driver *driver);

• struct dlist *sysfs refresh driver attributes

(struct sysfs driver *driver);

• struct dlist *sysfs get driver links(struct

sysfs driver *driver);

• struct sysfs attribute

*sysfs open driver attr(const unsigned

char *bus, const unsigned char *drv, const

unsigned char *attrib);

As with other objects in Libsysfs, the sysfs driver
must be opened to be used and closed when fin-
ished. The sysfs open driver path() function
opens the driver at the supplied path, allocates
the structure, and returns it to the caller. The
sysfs open driver() function takes the bus name
the driver is registered with and the driver name as
parameters and returns a sysfs driver reference for
the driver.

The sysfs close driver() function deallocates
the driver structure, closing its internal directory
handle and all the devices that had been added to
the devices list.

The sysfs get driver devices() function returns
a reference to the list of all devices that this driver
manages. The sysfs refresh driver devices()
function can be used to reread the list of devices
managed by this driver. Please note that prior ref-
erences to the devices the driver manages will not
be valid upon return from the refresh function.

The sysfs get driver device() function returns
a sysfs device reference for the device with name
name using the driver driver.

The sysfs get driver attr() function takes a
sysfs driver and an attribute name and returns a
reference to the driver’s requested sysfs attribute.
The returned attribute reference doesn’t need to be
closed, it will be closed when the driver object is
closed.

The sysfs get driver attributes() func-
tion returns a reference to the list con-
taining all of the driver’s attributes. The

sysfs refresh driver attributes function
rereads the attributes list for the given driver.
Prior references to any attributes for the driver will
not be valid upon return from this function. The
sysfs get driver links() function, similarly,
returns a reference to a list containing all of the
driver’s links. The driver’s links represent the
devices it manages. As above and as convention
with Libsysfs’s get functions, the referenced dlist
returned with these functions doesn’t need to be
closed.

The sysfs open driver attr() function retrieves
a specific driver’s attribute using the driver’s name,
its bus, and the name of the needed attribute. This
function allows the caller to work with a driver’s at-
tribute without working with the sysfs driver struc-
ture. Both of these functions require the caller to ei-
ther close the sysfs driver or close the sysfs attribute
when finished.

11 API Usage Example: Accessing
Network Device Eth0

This example outlines the steps necessary for open-
ing and obtaining information from network class
device eth0. We can use the class device handle to
get information from eth0 including its phsyical de-
vice, its attributes like statistics or MAC address,
and its controlling driver.

The first task is to open the class device han-
dle for eth0, which is done using the function
sysfs open class device. The function takes the
name of the class the device is in and the class de-
vice name. It returns a sysfs class device structure
that can is to be used as a handle for working with
the class device. This structure must eventually be
closed.

class_device = sysfs_open_class_device

("net", "eth0);

Figure 15: Opening a sysfs class device in Libsysfs

Once a handle has been opened, we can use get
functions to retrieve the class device’s informa-
tion. If, for example, we wanted to retrieve the
class device’s physical device, we would use the
sysfs get classdev device function. This func-
tion returns a handle to the class device’s sysfs

device. The sysfs device handle that’s returned
doesn’t need to be closed, it is referenced through
the class device’s handle and will be cleaned up
when the class device is closed.

device = sysfs_get_classdev_device

(class_device);

Figure 16: Getting a Class Device’s sysfs device in
Libsysfs

We can also use the class device’s handle to get a
specific attribute, like eth0’s address. We would use
the sysfs get classdev attr function that takes
the class device and the name of the desired at-
tribute. It returns a sysfs attribute handle.

attr = sysfs_get_classdev_attr

(class_device, "address");

Figure 17: Getting a Class Device’s sysfs attribute
in Libsysfs

Once we’ve finished accessing the class device, we
must close it using the sysfs close class device
function. This function cleans up and closes every-
thing that was referenced with the get functions.

12 Future

Libsysfs was envisioned to be the library to use for
accessing sysfs information. As sysfs evolves, there
will be changes to its structure and hence Libsysfs
has to keep pace with these changes.

Many applications already are using Libsysfs. Ex-
amples are Greg Kroah-Hartman’s udev - the User
Space implementation of devfs, Patrick Mansfield’s
scsi id utility, IBM LTC’s sysdiag which acts as
a single interface to a number of diagnostic utili-
ties and IBM LTC’s Event Log Analyzer (ELA).
Other applications that use the library include
Christophe Varoqui’s multipath utility and the
OpenHPI project.

It is our endeavour to provide applications a stable
API irrespective of changes to the basic sysfs struc-
ture.

Many of the additions/changes to Libsysfs are a
direct consequence of requirements of applications

that are using it. This is an ongoing activity.

13 Conclusion

The authors of the library set out with the goal of
making sysfs access easy. Libsysfs is still evolving
and it is hoped that the library is viewed as the the
gateway to sysfs. Applications that use the library
and other apps that ship with the library (such as
systool) serve as examples for Libsysfs usage. As
more and more applications start using the library
and with active community involvement, it is hoped
that Libsysfs will be more efficient and robust in the
days to come.

14 Availability

The latest version of the library and utilities that
come with it (as part of the sysfsutils package) can
always be found at:

http://linux-diag.sourceforge.net

References

[01] Patrick Mochel, The Linux Kernel Device
Model, Ottawa Linux Symposium, 2002

[02] Patrick Mochel, Documentation/driver-
model/*

[03] Patrick Mochel, Documenta-
tion/filesystems/sysfs.txt

[04] Jonathan Corbet, Driver porting: Device model
overview, http://lwn.net/Articles/31185

[05] Jonathan Corbet, Driver porting: kobjects and
sysfs, http://lwn.net/Articles/54651

[06] Jonathan Corbet, Driver porting: Devices and
attributes, http://lwn.net/Articles/31220

[07] Jonathan Corbet, Driver porting: The zen of
kobjects, http://lwn.net/Articles/51437

15 Trademarks and Disclaimer

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds.

Intel, Intel Inside (logos), MMX and Pentium are
trademarks of Intel Corporation in the United
States, other countries, or both.

Other company, product or service names may be
trademarks or service marks of others.

Appendix

A Utility Functions

Libsysfs provides a set of utility functions. Some of
them are listed here:

• int sysfs get fs mnt path(const unsigned

char *fs type, unsigned char *mnt path,

size t len);

• int sysfs get mnt path(unsigned char

*mnt path, size t len);

• int sysfs get link(const unsigned char

*path, unsigned char *target, size t len);

• void sysfs close list(struct dlist *list);

• struct dlist *sysfs open subsystem list

(unsigned char *name);

• struct dlist *sysfs open bus devices list

(unsigned char *name);

• int sysfs path is dir(const unsigned char

*path);

• int sysfs path is link(const unsigned char

*path);

• int sysfs path is file(const unsigned char

*path);

The function sysfs get fs mnt path() can be used
to obtain the mount point of any file system. It
takes the fs type as argument and returns the mount
point in buffer mnt path which is a user supplied
buffer of size len bytes. If there is more than one
filesystem of the same fs type, this function returns
the first successful match on a getmntent() call.

The sysfs get mnt path() function is used to find
the sysfs mount point on the system. Parameters to
the function are mnt path which is a buffer of size
len to return the sysfs mount point.

The function sysfs get link() uses readlink()
to retrieve the symbolic link path and returns its
absolute sysfs path in buffer target which is of size
len bytes.

sysfs close list() is a generic list close function.
This function can be used in all cases where the list
elements are simple character pointers.

The sysfs open subsystem list() function re-
turns a reference to a list of kobjects under
the name subsystem in sysfs. For example,
sysfs open subsystem list(bus) returns a refer-
ence to a list containing supported buses (such
as pci, scsi ..). The list obtained upon suc-
cessful return has to be closed by a call to
sysfs close list().

The sysfs open bus devices list() function re-
turns a reference to the list of devices under bus
name. As before, the list thus obtained has to be
closed using sysfs close list().

The sysfs path is * functions can be used to val-
idate if the given path is a directory, a link or a file.

B dlist usage

Libsysfs implements its own double linked list mech-
anism that’s lightweight and full featured. Dlist
users allocate their own data and give it to dlist.
Dlist supports Perl style list semantics including
dlist push(), dlist pop(), dlist shift(), and
dlist unshift(). There are inserts and deletes

that take a directional parameter to specify in which
direction the data should be added or deleted. Dlist
also includes several dlist for each() macros for
working on each list member depending on direc-
tion and working only with dlist data. Finally, dlist
supports custom delete functions for complex data
or simply uses free().

Dlist defines the Dlist type for managing lists. The
structure is used as a handle for working with linked
lists. It includes:

• marker - Internal pointer to keep track of

current list position

• count - Number of list members

• data size - Size of data kept in the list

• del func - Reference to custom delete

function, if necessary

• headnode - List head node

• head - Pointer to head of list

typedef struct dlist {

DL_node *marker;

unsigned long count;

size_t data_size;

void (*del_func)(void *);

DL_node headnode;

DL_node *head;

} Dlist;

Figure 18: Dlist Handle in Libsysfs

Dlists are created either simply by dlist new()
for simple data or dlist new with delete() for
complex data. The latter takes a reference to a
delete function that matches this prototype (void
)(del(void)).

• Dlist *dlist new(size t datasize);

• Dlist *dlist new with delete(size t

datasize,void (*del func)(void*));

There are numerous methods for inserting data into
or removing it from a dlist. There are the Perl push,
pop, shift, and unshift functions, that have already
been mentioned. Dlist also includes the following
functions and macros for inserting and deleting ele-
ments:

• void *dlist insert(Dlist *,void *,int);

• void *dlist insert sorted(struct dlist

*list, void *new, int (*sorter)(void *,

void *));

• void dlist delete(Dlist *,int);

• dlist insert before(A,B)

• dlist insert after(A,B)

• dlist delete before(A)

• dlist delete after(A)

Dlist implements multiple macros for traversing
and working with lists. The dlist prev() and
dlist next() macros help navigate through lists
while the dlist for each() macros help iterate
through the list working with each element.

• dlist prev(A)

• dlist next(A)

• dlist for each(list)

• dlist for each rev(list)

• dlist for each nomark(list, iterator)

• dlist for each nomark rev(list, iterator)

• dlist for each data(list, data iterator,

datatype)

• dlist for each data rev(list, data iterator,

datatype)

• dlist for each data nomark(list, iterator,

data iterator, datatype)

• dlist for each data nomark rev(list,

iterator, data iterator, datatype)

Finally, to clean up a dlist a user must call
dlist destroy(). The destroy function will iterate
through the list removing members. If the list was
created with a custom delete function, that function
will be called to remove the data. Otherwise, it will
use free().

