
1

Libsysfs

A programming interface to gather device
information in Linux®

Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Linux Technology Center
IBM India Software Lab

Daniel Stekloff <dsteklof@us.ibm.com>
Linux Technology Center

IBM Beaverton

16 January, 2004

2

Agenda

� Overview of the Driver Model and sysfs

� History and motivation behind Libsysfs

� The basic design of Libsysfs

� Subsystems representation in Libsysfs

� Calling conventions and API usage example

� Future

� Availability

3

Driver Model overview

� Developed by Patrick Mochel

� Primary intention – make Power Management tasks easy

� Abstracts common elements of different driver models to
a standard set of structures

� Lends itself to usage in different scenarios

� Hotplug

� Device hierarchy representation

� Power Management

4

Driver Model (contd...)

� Basic abstractions in the driver model

� Device – a physical or logical system resource

� Driver – software modules that manage physical or virtual
devices

� Bus – a medium to connect a set of similar devices

� Class – an aggregation of similar objects or an
aggregation of objects that perform a similar function

5

Sysfs – a brief overview

� RAM-based filesystem present in Linux Kernel v2.6

� A by-product of the design of the new driver model

� Original intention was to debug the new driver model

� Always built-in with 2.6 kernels

� Provides different views of system devices

� Hierarchical – topology tree of devices in the system

� Bus specific – what devices are connected to what bus?

� Class based – depending on the functionality of the device

6

History behind Libsysfs

� What was intended

� Model specific subsystems to provide diagnostic
information from sysfs to applications

� Work only with device subsystems such as PCI, SCSI and
USB

	 Drawbacks of this approach

� Code for individual subsystems was huge

� Applications that provided diagnostic information on
these subsystems already existed (lspci, sg3_utils, lsusb)

� General feedback: “The library should not interpret
information. That is an apps' job”

7

Motivation for Libsysfs

 Make sysfs access easy irrespective of the subsystem

 Provide a programmatic interface to sysfs

� Provide a C API for applications to access sysfs

 Abstract sysfs structure from users

� Applications need not know how information is organized

� Provide a consistent interface to sysfs even though the
sysfs structure underneath may change

 Application requirements

� udev, sysdiag, Event Log Analysis, etc.

8

The model the filesystem approach

� Why?

 Libsysfs was written to make access to a filesystem
easy

� How?

 Use a standard set of data structures that constitute
the basic building blocks for the design

� Advantages

 A subsystem agnostic method to access information

 Data management and navigation easy

9

The basic building blocks

� Three structures constitute the basic building blocks:

� sysfs_directory

� Contains lists of subdirectories, attributes and links under
the directory

� sysfs_attribute

� Contains the attribute name, value, size and its permissions

� sysfs_link

� Contains the name of the link and its target

10

Subsystems representation in Libsysfs

� The main device subsystems in sysfs have their
own representation in Libsysfs

� bus

� devices

� class (the block subsystem is considered a
class)

� In addition, Libsysfs has a driver representation

11

� Sysfs structure
ananth@...:~>tree /sys/devices/..../0000\:01\:08.0/

/sys/devices/pci0000:00/0000:00:1e.0/0000:01:08.0/

|-- class

|-- config

|-- detach_state

|-- device

|-- host0 --> this is a scsi host bus adapter

|-- irq

|-- resource

|-- subsystem_device

|-- subsystem_vendor

`-- vendor

The device representation

� Libsysfs representation

struct sysfs_device {

 unsigned char *name;

 unsigned char *bus_id;

 unsigned char *bus;

 unsigned char *driver_name;

 unsigned char *path;

 /* Private: for internal use only */

 struct sysfs_device *parent;

 struct dlist *children;

 struct sysfs_directory *directory;

};

12

The driver representation

� Sysfs structure
ananth@...:~> tree /sys/bus/scsi/drivers/sd/

/sys/bus/scsi/drivers/sd/

|-- 0:0:5:0 -> ../../../../devices/pci0000:00/.../host0/0:0:5:0

`-- 1:0:0:0 ->
../../../../devices/pseudo_0/adapter0/host1/1:0:0:0

� Libsysfs representation

struct sysfs_driver {

 unsigned char *name;

 unsigned char *path;

 /* Private: for internal use only */

 struct dlist *devices;

 struct sysfs_directory *directory;

};

13

The class_device representation

� Sysfs structure
ananth@...:~> tree /sys/class/net/eth0/

/sys/class/net/eth0/

|-- addr_len

|-- address

|-- broadcast

|-- device -> ../../../devices/pci0000:00/.../0000:01:0a.0

|-- driver -> ../../../bus/pci/drivers/3c59x

|-- flags

|-- mtu

|-- statistics

|-- tx_queue_len

`-- type

� Libsysfs representation

struct sysfs_class_device {

 unsigned char *name;

 unsigned char *classname;

 unsigned char *path;

 /* Private: for internal use only */

 struct sysfs_class_device *parent;

 struct sysfs_device *sysdevice;

 struct sysfs_driver *driver;

 struct sysfs_directory *directory;

};

14

The bus representation

 Sysfs structure
ananth@...:~> tree -d /sys/bus/usb/

/sys/bus/usb/

|-- devices

| |-- 1-0:1.0 -> ../../../devices/pci0000:00/.../usb1/1-0:1.0

| `-- usb1 -> ../../../devices/pci0000:00/0000:00:1f.2/usb1

`-- drivers

 |-- hub

 |-- usb

 `-- usbfs

! Libsysfs representation

struct sysfs_bus {

 unsigned char *name;

 unsigned char *path;

 /* Private: for internal use only */

 struct dlist *drivers;

 struct dlist *devices;

 struct sysfs_directory *directory;

};

15

Calling conventions in Libsysfs

" API names are self explanatory

All sysfs_open_xxx functions have a corresponding
sysfs_close_xxx function

$ All opened structures must be closed with a call to their
corresponding close function

% sysfs_get_xxx functions must be used to obtain handles to
elements of opened structures that are lists or handles to
other structures

& Refer libsysfs.txt (shipped with sysfsutils and udev
packages) for the complete list of functions and their
explanation

16

API usage example

' To obtain information about the network interface eth0, the
sequence of calls would be:

(Get a handle to the class device

) struct sysfs_class_device *class_device = sysfs_open_class_device(“net”,
“eth0”);

* Get a handle to the list of attributes for this class device

+ struct dlist *attrlist = sysfs_get_classdev_attributes(class_device);

, Get the physical device reference for eth0

- struct sysfs_device *device = sysfs_get_classdev_device(class_device);

. Get the driver reference that is used by the device

/ struct sysfs_driver *driver = sysfs_get_classdev_driver(class_device);

0 Close the class device

1 void sysfs_close_class_device(class_device);

17

API usage example – udev

2 One of the environment variables on a hotplug event will be a
string of type “/block/sdb/sdb1”

3 udev uses the following code snippet to get the sysfs_class_device
for this class device

 strcpy(dev_path, sysfs_path);

 strcat(dev_path, device_name);

 dbg("looking at '%s'", dev_path);

 /* open up the sysfs class device for this thing... */

 class_dev = sysfs_open_class_device_path(dev_path);

 if (class_dev == NULL) {

 dbg ("sysfs_open_class_device_path failed");

 goto exit;

 }

 dbg("class_dev->name='%s'", class_dev->name); Contd...

18

API usage example – udev (contd..)

4 To get the dev attribute for this class device
 struct sysfs_attribute *attr = NULL;

 attr = sysfs_get_classdev_attr(class_dev, "dev");

 if (attr == NULL)

 goto exit;

 dbg("dev='%s'", attr->value);

5 To get the parent class device reference
 class_dev_parent = sysfs_get_classdev_parent(class_dev);

 if (class_dev_parent)

 dbg("really a partition");

19

Applications that use Libsysfs

6 Greg Kroah-Hartman's udev

7 IBM LTC's systool, lsbus – utilities shipped with
sysfsutils package

8 IBM LTC's sysdiag – diagnostics command line utility

9 Patrick Mansfield's scsi_id utility, shipped as part of the
udev package

: Christophe Varoqui's multipath utility, also shipped with
udev

; The OpenHPI project

20

Resources

< Libsysfs is shipped as part of the sysfsutils
package

= Latest version of sysfsutils can always be found at

http://linux-diag.sourceforge.net

> Mailing list

linux-diag-devel@lists.sourceforge.net

21

Future

? Solidify API

@ Keep pace with changes in sysfs

A Add new interfaces as and when necessary

22

Disclaimers and Trademarks

B This work represents the view of the authors and
does not necessarily represent the view of IBM.

C IBM is a registered trademark of International
Business Machines Corporation in the United
States and/or other countries

D Linux is a registered trademark of Linus Torvalds

E Other company, product or service names may be
trademarks or service marks of others.

23

Thank You!

