Libsysfts

A programming interface to gather device
information in Linux®

Ananth N Mavinakayanahalli <ananth@1in.ibm.com>

Linux Technology Center
I[BM India Software Lab

Daniel Stekloff <dsteklof @us.ibm.com>
Linux Technology Center
IBM Beaverton

16 January, 2004

Agenda

> Overview of the Driver Model and sysfs

> History and motivation behind Libsysfs

> The basic design of Libsysfs

> Subsystems representation in Libsysfs

> Calling conventions and API usage example
> Future

> Availability

Driver Model overview

> Developed by Patrick Mochel
> Primary intention — make Power Management tasks easy

> Abstracts common elements of different driver models to
a standard set of structures

> Lends itself to usage in different scenarios
- Hotplug
- Device hierarchy representation

- Power Management

Driver Model (contd...)

» Basic abstractions in the driver model

- Device — a physical or logical system resource

- Driver — software modules that manage physical or virtual
devices

- Bus — a medium to connect a set of similar devices

- Class — an aggregation of similar objects or an
aggregation of objects that perform a similar function

Systs — a brief overview

> RAM-based filesystem present in Linux Kernel v2.6
> A by-product of the design of the new driver model

- Original intention was to debug the new driver model
> Always built-in with 2.6 kernels
> Provides different views of system devices

- Hierarchical — topology tree of devices in the system
- Bus specific — what devices are connected to what bus?

- Class based — depending on the functionality of the device

History behind Libsysfs

» What was intended

- Model specific subsystems to provide diagnostic
information from sysfs to applications

- Work only with device subsystems such as PCI, SCSI and
USB

> Drawbacks of this approach

- Code for individual subsystems was huge

- Applications that provided diagnostic information on
these subsystems already existed (Ispci, sg3_utils, Isusb)

- General feedback: “The library should not interpret
information. That is an apps' job”

Motivation for Libsysfts

> Make sysis access easy irrespective of the subsystem

> Provide a programmatic interface to sysfs
- Provide a C API for applications to access sysfs
> Abstract sysfs structure from users

- Applications need not know how information 1s organized

- Provide a consistent interface to sysfs even though the
sysfs structure underneath may change

> Application requirements

- udev, sysdiag, Event Log Analysis, etc.

The model the filesystem approach

> Why?

- Libsysfs was written to make access to a filesystem
easy

> How?

- Use a standard set of data structures that constitute
the basic building blocks for the design

> Advantages
- A subsystem agnostic method to access information

- Data management and navigation easy

The basic building blocks

> Three structures constitute the basic building blocks:

- sysfs_directory

* Contains lists of subdirectories, attributes and links under
the directory

- sysfs_attribute
* Contains the attribute name, value, size and its permissions
- sysfs_link

* Contains the name of the link and its target

Subsystems representation in Libsysfs

> The main device subsystems in sysfs have their
own representation in Libsysfs

- bus
- devices

- class (the block subsystem 1s considered a
class)

> In addition, Libsysfs has a driver representation

10

The device representation

> Sysfs structure > Libsysfs representation

ananth@...:~>tree /sys/devices/..../0000\:01\:08.0/ struct sysfs_device {

/sys/devices/pci0000:00/0000:00: 1e.0/0000:01:08.0/ unsi ane d char *name:

|-- class . .
unsigned char *bus_id;
|- config
unsigned char *bus;
|-- detach_state

unsigned char *driver_name;

l-- device

I-- host0 --> this is a scsi host bus adapter unSigned char *path;

|- irq /* Private: for internal use only */
- resource struct sysfs_device *parent;

|-- subsystem_device . .
YR struct dlist *children;

|-- subsystem_vendor . .
struct sysfs_directory *directory;
“-- vendor

11

The driver representation

> Sysfs structure > Libsysfs representation

ananth@...:~> tree /sys/bus/scsi/drivers/sd/ struct sysfs_driver {

/sys/bus/scsi/drivers/sd/ unsigned char *name;

l-- 0:0:5:0 -> ../../../../devices/pci0000:00/.../host0/0:0:5:0)
unsigned char *path;

*--1:0:0:0 ->
..I..1..1../devices/pseudo_0/adapter0/host1/1:0:0:0 /* Private: for internal use only */
struct dlist *devices;

struct sysfs_directory *directory;

12

The class_device representation

> Sysfs structure > Libsysfs representation
ananth@...:~> tree /sys/class/net/ethO/ struct sysfs_class_device {
/sys/class/net/ethO/ unsigned char *name:
|-- addr_len .

unsigned char *classname;
|l-- address

unsigned char *path;
|l-- broadcast

- device -> ../../../devices/pci0000:00/.../0000:01:0a.0 /* Private: for internal use only */

I-- driver -> ../../../bus/pci/drivers/3c59x struct sysfs_class_device *parent;
I-- flags struct sysfs_device *sysdevice;
l-- mtu

struct sysfs_driver *driver;

|-- statistics . gy
struct sysfs_directory *directory;

l-- tx_queue_len

- type

13

The bus representation

> Sysfs structure

ananth@...:~> tree -d /sys/bus/usb/
/sys/bus/usb/
l-- devices
| 1--1-0:1.0 -> ../../../devices/pci0000:00/.../usb1/1-0:1.0
| “--usbl ->../../../devices/pci0000:00/0000:00:1f.2/usb1
“-- drivers

-- hub

|-- usb

“-- usbfs

> Libsysfs representation
struct sysfs_bus {
unsigned char *name;
unsigned char *path;
/* Private: for internal use only */
struct dlist *drivers;
struct dlist *devices;

struct sysfs_directory *directory;

14

Calling conventions in Libsysfs

> API names are self explanatory

— All sysfs_open_xxx functions have a corresponding
sysfs_close_xxx function

— All opened structures must be closed with a call to their
corresponding close function

- sysfs_get_xxx functions must be used to obtain handles to

elements of opened structures that are lists or handles to
other structures

> Refer libsysfs.txt (shipped with sysfsutils and udev

packages) for the complete list of functions and their
explanation

15

API usage example

To obtain information about the network interface ethQ, the
sequence of calls would be:

Get a handle to the class device

> struct sysfs_class_device *class_device = sysfs_open_class_device(“net”,
C‘GthO,Q);

Get a handle to the list of attributes for this class device

> struct dlist *attrlist = sysfs_get_classdev_attributes(class_device);
Get the physical device reference for ethO

> struct sysfs_device *device = sysfs_get_classdev_device(class_device);
Get the driver reference that is used by the device

> struct sysfs_driver *driver = sysfs_get_classdev_driver(class_device);

Close the class device

> void sysfs_close_class_device(class_device);

16

API usage example — udev

> One of the environment variables on a hotplug event will be a
string of type “/block/sdb/sdb1”

> udev uses the following code snippet to get the sysfs_class_device
for this class device

strcpy(dev_path, sysfs_path);
strcat(dev_path, device_name);
dbg("looking at '%s"", dev_path);
/* open up the sysfs class device for this thing... */
class_dev = sysfs_open_class_device_path(dev_path);
if (class_dev == NULL) {
dbg ("sysfs_open_class_device_path failed");
goto exit;
}

dbg("class_dev->name="'%s

, class_dev->name); Contd...

API usage example — udev (contd..)

> To get the dev attribute for this class device

struct sysfs_attribute *attr = NULL;
attr = sysfs_get_classdev_attr(class_dev, "dev");
if (attr == NULL)

goto exit;

dbg("dev="%s'"", attr->value);

> To get the parent class device reference

class_dev_parent = sysfs_get_classdev_parent(class_dev);
if (class_dev_parent)

dbg("really a partition");

18

Applications that use Libsysfs

Greg Kroah-Hartman's udev

IBM LTC's systool, Isbus — utilities shipped with
sysfsutils package

IBM LTC's sysdiag — diagnostics command line utility

Patrick Mansfield's scsi_id utility, shipped as part of the
udev package

Christophe Varoqui's multipath utility, also shipped with
udev

The OpenHPI project

19

Resources

> Libsysts 1s shipped as part of the sysfsutils
package

> Latest version of sysfsutils can always be found at
http://linux-diag.sourceforge.net
> Mailing list

linux-diag-devel @lists.sourceforge.net

20

Future

> Solidify API
> Keep pace with changes in sysfs

> Add new interfaces as and when necessary

21

Disclaimers and Trademarks

> This work represents the view of the authors and
does not necessarily represent the view of IBM.

> IBM 1s a registered trademark of International
Business Machines Corporation in the United
States and/or other countries

> Linux 1s a registered trademark of Linus Torvalds

> Other company, product or service names may be
trademarks or service marks of others.

22

Thank You!

23

