
Towards a Highly Adaptable
Filesystem Framework for Linux

Su parn a Bh attach arya, LTC, IBM In dia
System s an d Tech n ology Lab

Dilm a Da Silva, IBM T.J. Watson Research
Cen ter

Orran Krieger, IBM T.J. Watson Research
Cen ter

Ottawa Lin u x Sym p osiu m , Ju ly 2006

Linux has a very flexible file system
framework...

● Powerful VFS
– Object oriented framework

● Abstractions for superblock, inodes etc
● Variety of file system types

– Common helpers for data caching, libfs etc
● Rising no. of general purpose file systems

– Different “sweet- spot” usage patterns
– Advantage of parallel innovation

● Each filesystem is evolving independently
– Advances in storage, protocols, appl reqmts
– Change with compatibility

● Adding options for new features (tune2fs, chattr)
● Occasionally break off next gen as a new filesystem

... but only a limited degree of
adaptability

● Problem of switching on- disk formats
– Virtual lock- in to a choice
– High lead time to adoption of format

enhancements
– Compounded on distribution across multiple

disks
● Fragmentat ion from a user perspect ive

– Choosing the right Linux filesystem charts
– Low reuse of low- level building blocks

● One file layout does not f it all
– Small vs large, streaming vs slow growing vs

random, dense vs sparse, read- mostly vs r/ w

What if we push this flexibility further all
the way ?

● All resources represented by storage objects (self
describing)
– e.g., No disk region for inodes

● Separation of concerns into re- usable objects
– e.g., block mapping (physical) separated from inode

(logical)
● Recursive use of OO design

– Object stored within other object
– Objects partit ion work to other objects

● Could enable
– Per- file- element level adaptability
– Addition of new formats while retaining old ones
– Reuse of low- level layout structures

How is this different from what we do
today ?

Basic LSO
Inode

Composite
distribution

PSO LSOLSOData Blocks

Indirect DoubleIndirect

Indirect
Indirect

LSOLSOData Blocks

LSOLSOData Blocks

Basic PSO
disk 1

Basic PSO
disk 2

LSOLSO
DiskBlock

PSOs LSOLSO
DiskBlock

PSOs

How meta-data may be stored recursively

Attributes
....

PSO

OT_LSO_BASIC OT_PRIM_UNIX

Disk Blocks

Record Map

Type

Member
data

Object Token

LSOBasicFile PSOSmall

Intuitively the overhead of flexibility in
mapping ext2 is small

● Cached data handled mostly by VFS
● Cached meta data access has small extra

overhead.
● IO for meta data should be about the

same

While enabling new layout
implementations to be added with ease

● Extent based
● Write near disk head
● File in inode
● Inode in directory
● Replicat ion across disks
● Redundancy on per- f ile, per- directory

basis

A few ways in which flexibility may be
exploited

● Simple hints, different defaults
● HPC, Database, Applicat ion specif ic

formats
● Old data can retain its old format
● Natural transit ion/ decision points

– File growth, aging/ hot, multiple links ...
● Agents that determine workload

characterist ics, usage patterns, CPO

There is a framework to explore such an
extreme approach to flexibility

● HFS (Hurricane Filesystem) [Krieger, 1994]
– A research filesystem designed to support:

● f ine grained flexibility
● a wide variety of file structures and policies
● dynamic changes in representation

– Intended for large- scale SMP running diverse
loads

● Explored flexibility to maximize perf & scalability
● Object- oriented building block approach
● Achieved with low processing and I/ O overhead

– Led to the evolution of Tornado and K42 OS
● KFS (K42 f ilesystem)

– Implemented the ideas of HFS in a Linux-
compatible OS

A Full Example of an HFS file : 3 layer architecture

The logical
and physical
layers of KFS
were derived
from HFS

Initial results on Linux 2.6 with
tiobench on unoptimized KFS

Avg of 3 ru n s . (Each
ru n followed by
reboot an d form at).

File s iz e : 100MB p er
th read

Sequ en t ial Write

Read Write Read Write
0

100

200

300

400

500

600

700

800

900

1000

Tiobench results

KFS

EXT2

R
a

te
 (

M
B

/s
e

c)

1 thread 4 threads

Initial results on Linux 2.6 with
Postmark on unoptimized KFS

Base No of f iles : 20000

Transactions : 100000

Sub- directories : 400

(Avg of 3 runs and each
run is followed by a
reboot and remount)Transac-

tion
Create Read Append Delete

0

100

200

300

400

500

600

700

800

900

1000

Postmark Results

KFS

EXT2

T
ra

ns
a

ct
io

n
p

e
r

se
c

The way forward: Pursue multiple
aspects to adaptable Linux filesystems

● Full embedding of an existing filesystem format to
 evaluate if KFS is an appropriate starting point

● Demonstrate 2 or more embedded filesystems
with negligible performance overhead
– Explore building block sharing across filesystems

● Switch formats to suit access patterns
– Add new formats, work with mult iple formats

● Discard experimental layout changes
– Continuat ion inodes (ArjanV, Val Henson)

● Evaluate alternate layouts and policies
– Collocat ion of f ile data and meta- data
– Other ideas from file system workshop

● Study reliability aspects
– Adaptability in the file system checker

In Summary
● The very flexibility that has been the strength of

the Linux VFS, appears to have exposed its own
set of problems over t ime

● We hypothetize that pushing the flexibility all the
way through to on- disk layouts could help us
address these problems in the long run

● While we are exploring KFS as one possible
starting point towards such a framework, we have
yet to understand whether it is an appropriate
approach

● There are many open questions to explore, and we
welcome community involvement in this excit ing
endeavour

Our Thanks to ...
● KFS Contributors

– Livio Soares (KFS on K42 & Linux 2.4)
– Ajit Burad & Tarun Mittal (KFS on Linux 2.6)

● And to
– Suzuki K.P., V Srivatsa, Mingming Cao, Dave Kleikamp,

Stephen Tweedie, Theodore Tso, Andreas Dilger, Val
Henson, Paul McKenney, H. Peter Anvin, Chris Mason,
Arjan Van De Ven, Christoph Hellwig, Mel Gorman

 Availability: http:/ / www.research.ibm.com/ k42

Legal Statement
This work represents the view of the authors and does not necessarily
represent the view of IBM.

IBM and DB2 are trademarks or registered trademarks of
International Business Machines Corporation in the United States and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

Other company, product, and service names may be trademarks or
service marks of others.

The benchmarks discussed in this presentation were conducted for
research purposes only, under laboratory conditions. Results will not be
realised in all computing environments

BACKUP

KFS is based on composition &
specialization of building blocks

● Physical Server Object (PSO)
– PSODiskBlock
– PSOSmall, PSOSmallMeta
– PSOExtent
– PSOReplicated, PSOStriped

● Logical Server Object (LSO)
– LSOBasicFile,
– LSOBasicDir,
– LSOEmbDir
– LSOBasicSymLink

A variety of file system element types
may be defined

 OT_PRIM_UNIX = 2, /* primitive unix like file <- replace this */
 OT_PRIM_UNIX_META = 3, /* primitive unix like file for meta-data */
 OT_STRIPED = 4, /* striped file <- replace this */
 OT_BASIC_RW = 5, // A basic per/disk read/write object
 OT_BASIC_SPARSE = 6, // A basic per/disk sparse object
 OT_BASIC_DENSE = 7, // A basic per/disk dense object
 OT_NM_SMALL = 8, // A non-mapped small object
 OT_RECORD_MAP = 9, // A non-mapped record store object
 OT_COMP_STR = 10, // A composite striped object
 OT_COMP_REP = 11, // A composite replicated object
 OT_COMP_DIS = 12,
 OT_COMP_CHCK = 13,
 OT_COMP_PAR = 14,
 OT_LSO_BASIC = 16,
 OT_LSO_BASIC_DIR = 17,
 OT_LSO_BASIC_LNK = 18,
 OT_DISK_BLOCK = 20, // Low-level disk-based object
 OT_BASIC_EXTENT = 21,
 OT_SYMLINK_EXT = 22,
 OT_LSO_DIR_EMB = 23

Example Scenario for adaptation to
access patterns

● Start with a PSORecEmb which stores data in the
PSO record itself

● As file grows, switch to a PSOSmall which
employs direct- block mapping

● As file grows further, depending on contiguity
of blocks, add a PSO sub- obj that is either
PSOExtent (extent maps) or PSOBasicRW
(indirect blocks) or PSOSparse (sparse maps) or
PSOPreallocSeq/ PSOPreallocRan (preallocated)

● As file grows to require 64 bit relative block
number, add a PSO64 sub- obj of the
corresponding type (or use a distribution PSO).

Example Collocated Meta-data

● 64 bit Object ID = recmap id + rec id
● Local record maps vs global record map
● LSODirEmb embeds records within the

directory

KFS for Linux 2.6 is currently under
stabilization

● KFS on Linux 2.4 [Silva, Soares, Krieger]
– Proof of concept

● KFS on Linux 2.6
– Under stabilization and optimization by Ajit

Burad and Tarun Mittal
– Results will be made available at

http:/ / k42.ozlabs.org/ Wiki/ KfsExperiments

