
1

Shared Subtree Concept and Implementation and
Applications in the Linux Kernel

Ram Pai
linuxram@us.ibm.com

Al Viro
viro@ftp.linux.org.uk

mnt

1 2

3 6

root

7

4 5

tmp

1 2

3 6

7

4 5

OTTAWA LINUX SYMPOSIUM 2006

2

Agenda

● Background.
● Requirement/Applications.
● Shared subtree solution.
● Shared subtree semantics.
● Implementation detail.
● Future work.

3

Background

mount semantics in Linux® VFS

● normal device mount (mount /dev/sda0 /mnt)
● bind mount (mount –bind /mnt /tmp)
● rbind mount (mount –rbind /mnt /tmp)
● move mount (mount –move /mnt /tmp)
● namespaces (CLONE_NS flag for sys_clone())
● unmount (umount [-l] /mnt)

4

tmp

mnt
roottmp1

Background

5

jfs

tmp

mnt
roottmp1

● normal device mount (mount /dev/sda0 /mnt)

m1

Background

6

jfs
jfs

tmp

mnt
roottmp1

m1

● bind mount (mount –bind /mnt /tmp)

m1

Background

7

jfs
jfs

tmp

mnt
roottmp1

xfs

m1

● normal device mount (mount /dev/sda1 /tmp/m1)

m1

Background

8

jfs
jfs

tmp

mnt
root

jfs

tmp1

xfs

m1

xfs

m1

● rbind mount (mount –rbind /tmp /tmp1)

m1

Background

9

jfs

tmp

mnt
root

jfs

tmp1

xfs

m1

xfs

m1

t1

● rbind mount (mount –move /tmp /mnt/t1)● rbind mount (mount –move /tmp /mnt/t1)

m1

Background

10

Background

jfs

tmp
mnt

root

jfs

tmp1

xfs

m1

xfs

m1

t1 jfs

tmp
mnt

root

jfs

tmp1

xfs

m1

xfs

m1

t1

● clone namespace

11

Requirement

● share mount trees.
➢ containers: all containers share the same mount tree
➢ MVFS: all views share the same mount tree
➢ automounter: mount automatically visible on all filesystem-

namespaces

● Private changes to a mount-subtree.
➢ FUSE: mount invisible to anybody else.
➢ SeLinux LSPP: mount invisible to anybody else.
➢ Containers: private mounts not visible to other containers.
● How?

➢ clone-namespace (CLONE_NEWNS in clone()).
➢ rbind (mount –rbind src dest)

12

Problem

● bind mounts are static.

root

namespace1

bind

13

Problem

● bind mounts are static.
- submounts in one mount

 instance do not reflect
 in the other mount instance.

root

namespace1

bind

14

Problem

● bind mounts are static.
- submounts in one mount

 instance do not reflect
 in the other mount instance.

● filesystem-namespaces are isolated.
- mounts in system namespace

 are invisible to cloned
 namespace.

root

namespace1

root

namespace2

bind

15

Problem

● bind mounts are static.
- submounts in one mount

 instance do not reflect
 in the other mount instance.

● filesystem-namespaces are isolated.
- mounts in system namespace

 are invisible to cloned
 namespace.

root

namespace1

root

namespace2

bind

16

Shared subtree solution

RFC proposed by Al Viro in Jan 2005
● http://lwn.net/Articles/119232/

Ram Pai provided the Linux implementation
● feature accepted for 2.6.15 Linux kernel

17

Shared mount

/mnt

mount –bind /mnt /tmp

/tmp/mnt

/mnt

mount –make-shared /mnt

/mnt

18

Shared mount

● shared mount
 - mount, unmount events propagate to each other
● peer group

- group of shared mounts that propagate to each other

tmpmnt
shared mountpeer group

shared mount

root mount tree

19

Shared mount

● shared mount
 - mount, unmount events propagate to each other
● peer group

- group of shared mounts that propagate to each other

tmpmnt
shared mountpeer group

a a

shared mount

root mount tree

20

MVFS

ext3

root

view ext3

root

view

v2
v1

usr

Shared mount application in MVFS

21

MVFS

ext3

root

view

v1

ext3

root

view

v2v1

v2

usr

usr

Shared mount application in MVFS

22

MVFS

ext3

root

view

v1

ext3

root

view

v2v1

v2

usr

usr

ext3

root

view

v2v1

usr

Shared mount application in MVFS

23

MVFS

ext3

root

view

v1

ext3

root

view

v2v1

v2

usr

usrext3

root

view

v2v1

mvfs

mvfs

usr

mvfs

Shared mount application in MVFS

24

Slave mount

mount –make-slave /tmp

/mnt

mount –bind /tmp /tmp1

/mnt

/tmp
/tmp

/tmp1

/tmp/mnt /mnt

/tmp

25

Slave mount

● slave mount
 - mount,unmount events propagate towards it from

 master not vice-versa.
● propagation tree

- dictates the flow of mount and unmount events.

tmpmnt

shared mount

root
peer group

/tmp1

/tmp2

slave mount

propagation tree

26

Slave mount

● slave mount.
 - mount,unmount events propagate towards it from

 master not vice-versa.
● propagation tree.

- dictates the flow of mount and unmount events.

tmpmnt

shared mount

a a

root
peer group

/tmp1

/tmp2

a

a

slave mount

propagation tree

27

Slave mount

tmpmnt

shared mount

a a

root
peer group

/tmp1

/tmp2

a

a
b

slave mount

propagation tree

● slave mount.
 - mount,unmount events propagate towards it from

 master not vice-versa.
● propagation tree.

- dictates the flow of mount and unmount events.

28

MVFS

ext3

root

container

c2
c1

usr

Slave mount application in
Containers.

usr1

29

ext3

root

container

c1

ext3

root

container

c2c1

c2

usr

usr

usr1

usr1

Slave mount application in
Containers.

30

ext3

root

container

c1

ext3

root

container

c2c1

c2

usr

usr

usr1

usr1
ext3

root

container

c2c1

usr usr1

Slave mount application in
Containers.

31

ext3

root

container

c1

ext3

root

container

c2c1

c2

usr

usr

usr1

usr1
ext3

root

container

c2c1

usr usr1

xfs

xfs
xfs

Slave mount application in
Containers.

32

ext3

root

container

c1

ext3

root

container

c2c1

c2

usr

usr

usr1

usr1
ext3

root

container

c2c1

usr
usr1

xfs

xfs
xfs

Slave mount application in
Containers.

jfs

33

Unbindable mount

● unbindable mounts
 - no propagation.
 - not bindable.

unbindable mount

/tmp
mount –bind /tmp /tmp1

INVALID!

34

Mount explosion problem
root

usr
home

container

c1 c2

35

Mount explosion problem
root

usr

root

home

usr
homehome

c1

container

container

c2

36

Mount explosion problem!!Mount explosion!!
root

usr

root

home
container

root

usr
homehome

usr home

root

usr
homehome

c1 c2

root

usr home

root

usr
home

c2
container container

container

37

Mount explosion problem
root

usr

root

home

root root

usr
homehome

usr home usr home

root

homehome

root root

usr

homehome
usr home

root

c1 c2 c3

usrroot

usr home

root

usr
home

c2

usrroot

usr home

c2

c1

c1

c1

c1

usr
home

root root

home usr home

root root

usr

homehome
usr home

root

usrroot

usr home

root
c3

root

home

root
c3

root
root
c3

root

rootroot

home

c3root

home

usr

c3
root

home

container

container

container

container

container
container

container

container

container

container

container

38

Mount explosion solution!!
root

usr
homecontainer

c1

c2
c3

unbindable mount

39

Mount explosion solution!!
root

usr
homecontainer

v1

v2
v3root

usr
homehome

unbindable mount

40

Mount explosion solution!!
root

usr
homecontainer

v1

v2

v3root

usr
homehome

root

usr
homehome

unbindable mount

41

Mount explosion solution!!
root

usr
homecontainer

c1

c2
c3

root

usr
homehome

root

usr
homehome

root

usr
homehome

unbindable mount

42

Shared and Slave mount

● shared and slave mount
 - mount,unmount events propagate towards it from

 master and it propagates them to its slaves

tmpmntshared mount

root
peer group

tmp1 tmp2

shared & slave mount

propagation tree

tmp3

43

Shared and Slave mount

● shared and slave mount
 - mount,unmount events propagate towards it from

 master and it propagates them to its slaves

tmpmnt

shared mount

a a

root
peer group

tmp1 tmp2

a a

shared & slave mount

propagation tree

tmp3

a

44

Shared and Slave mount

● shared and slave mount
 - mount,unmount events propagate towards it from

 master and it propagates them to its slaves

tmpmnt

shared mount

a a

root
peer group

tmp1 tmp2

a a

b

shared & slave mount

propagation tree

tmp3

b

ba

45

Private mount

mount –bind /mnt /tmp

/mnt

mount –make-private /mnt

/mnt

/mnt /mnt

/tmp

/mnt

mount –make-private /mnt

/mnt

46

Private mount

● private mounts.
 - no propagation.
 - mounts by default are private.

tmpmnt

root

tmp1

private mount

47

Private mount

● private mounts.
 - no propagation.
 - mounts by default are private.

tmpmnt

a a

root

tmp1

private mount

48

● rbind
 - applies the bind-mount rules for each mount in the

 mount-tree
 - prunes out unbindable mounts

Rbind

mnt mount –rbind /mnt /tmp

1 2

3 5 64

root

tmp7

49

● rbind
 - applies the bind-mount rules for each mount in the

 mount-tree
 - prunes out unbindable mounts

Rbind

mnt mount –rbind /mnt /tmp

1 2

3 5 64

mnt

1

3' 4 4'3

tmp

1' 2 2'

5'6 5

root
root

tmp7

7

50

● move
 - invalid if parent is a shared mount.
 - invalid if the tree contains unbindable mount
 and moved under a shared mount*

Move

mnt
 mount –move /mnt /tmp

1 2

tmp tmp1

root

2

51

● move
 - invalid if parent is a shared mount
 - invalid if the tree contains unbindable mount
 and moved under a shared mount

Move

mnt
 mount –move /mnt /tmp

1 2

tmp

mnt

1' 2 2'1

tmp1

mnt'
tmp tmp1

root

root

2

mnt

52

Clone namespace

root sysclone(...,CLONE_NS);

1

3 4

● clone namespace
- Clones all the mounts including unbindable mounts
- adds the new shared and slave mounts in their respective

propagation trees

namespace1

2

53

Clone namespace

root sysclone(...,CLONE_NS);

1

3 4

● clone namespace
- Clones all the mounts including unbindable mounts
- adds the new shared and slave mounts in their respective

propagation trees

root

1

2

4

3

root

1' 2'

3 4

namespace1 namespace1 namespace2

2

54

Umount

root

 umount /mnt/a
mnt1

● umount
 - fail if the mount has submounts
 - unmount all child mounts on the mounts belonging
 to the parent's propagation tree (only if the child

 mounts do not have children mounts)

mnt2
a a

a

mnt

55

Umount

root

 umount /mnt/a

● umount
 - fail if the mount has submounts
 - unmount all child mounts on the mounts belonging
 to the parent's propagation tree (only if the child

 mounts do not have children mounts)

mnt1
mnt2

a a
a

root

mnt1
mnt2

a

mnt
mnt

56

tmp1

tmp2
a

tmp2

a
tmp3

umount tmp/tmp2/tmp3

?

57

Side-mounts/Over-mounts

dentry x on
slave mount M”

A
dentry x on

shared/slave mount M'
dentry x on

shared mount M

visible

58

Side-mounts/Over-mounts

dentry x on
slave mount M”

A B'
dentry x on

shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount. (eg. A and B')
● Least recent side-mount always visible. (A is visible)

dentry x on
shared mount M

visiblevisible
visible

59

Side-mounts/Over-mounts

dentry x on
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B

● Side-mount: vfsmount mounted on the same dentry. (eg A and B')
● Over-mount: vfsmount on top of another vfsmount. (eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).

dentry x on
shared mount M

visible
visible

visible

60

Side-mounts/Over-mounts

dentry x on
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B
dentry x on

shared mount M

visible
visible

D D' D”

visible

● Side-mount: vfsmount mounted on the same dentry. (eg A, B' and D”)
● Over-mount: vfsmount on top of another vfsmount. (eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).

61

Side-mounts/Over-mounts

dentry x on
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B)

dentry x on
shared mount M

visible
visible

D D' D”

visible

E E' E”

62

Side-mounts/Over-mounts

dentry x on
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B)
● Explicit-unmount unmounts the specified mount and propagates it. (eg E”).

dentry x on
shared mount M

visible
visible

D D' D”

visible

E E'

63

Side-mounts/Over-mounts

dentry x on
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B).
● Explicit-unmount unmounts the specified mount and propagates it. (eg E”).
● Propagated unmount always unmounts the most recent mount on the dentry.

dentry x on
shared mount M

visible visible
visible

D D' D”

64

Side-mounts/Over-mounts

dentry x on
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B).
● Explicit-unmount unmounts the specified mount and propagates it. (eg E”).
● Propagated unmount always unmounts the most recent side-mount.

dentry x on
shared mount M

visible visible
visible

65

Implementation detail

additions to vfsmount structure
● ->mnt_share circular list of peer mounts
● ->mnt_master if slave, points to master mount
● ->mnt_slave_list list of slave mounts
● ->mnt_slave slave list entry
● additional flags in ->mnt_flags

- MNT_SHARED
- MNT_UNBINDABLE

66

Propagation tree representation

R4R1 R2 R3

B1

G1 G2 G3

M2M1

Y4Y1 Y2 Y3

List of slaves
->mnt_slave_list
and ->mnt_slave

list of peers
->mnt_share

O1

slave only

shared
shared and
slave

67

Implementation (continued)

crux of the bind/move operation in
- attach_recursive_mnt()

 - clone a copy of the source mount tree for
 each mount that receives propagation from the
 destination (propagate_mnt()/copy_tree())
 - build-up the propagation tree for each of the child
 mount (clone_mnt())
 - if successful, attach the trees to their parents
 and place them in the hash list.
 (commit_tree())
 - if allocation fails, release all the newly allocated
 mount trees (propagate_mnt()/umount_tree())

68

tmpmnt

root

tmp1 tmp2 tmp3src

69

tmpmnt

root

tmp1 tmp2 tmp3src

src'

● src' notes its would-be parent mnt
● mnt's vfsmount and mountpoint dentry has its refcount incremented
● mnt unware of src' (not linked in mnt_child or mnt_hash).
● all mounts under src' are linked to their parent's mnt_child and mnt_hash
● src' added to the propagation tree of src.

70

tmpmnt

root

tmp1 tmp2 tmp3src

src' src''

● src'' notes its would-be parent tmp
● tmp's vfsmount and mountpoint dentry has its refcount incremented
● tmp unware of src'' (not linked in mnt_child or mnt_hash).
● all mounts under src'' are linked to their parent's mnt_child and mnt_hash
● src'' added to the propagation tree of src.

71

tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

● src''' notes its would-be parent tmp1
● tmp1's vfsmount and mountpoint dentry has its refcount incremented
● tmp1 unware of src''' (not linked in mnt_child or mnt_hash).
● all mounts under src''' are linked to their parent's mnt_child and mnt_hash
● src''' added to the propagation tree of src.

72

tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

src''''

● src'''' notes its would-be parent tmp2
● tmp2's vfsmount and mountpoint dentry has its refcount incremented
● tmp2 unware of src'''' (not linked in mnt_child or mnt_hash).
● all mounts under src'''' are linked to their parent's mnt_child and mnt_hash
● src'''' added to the propagation tree of src.

73

tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

src''''

src'''''

● src''''' notes its would-be parent tmp3
● tmp3's vfsmount and mountpoint dentry has its refcount incremented
● tmp3 unware of src''''' (not linked in mnt_child or mnt_hash).
● all mounts under src''''' are linked to their parent's mnt_child and mnt_hash
● src''''' added to the propagation tree of src.

74

tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

src''''

src'''''

● src, src', src'', src''', src'''',src''''' are all added to their parent's mnt_child and
mnt_hash list

75

crux of the umount operation in
- umount_tree()

 - collect all the mount trees that can be unmounted
 (propagate_umount())
 - unhash the mounts. No longer available through
 lookup_mnt().
 - detach them from their propagation trees.
 (change_mnt_propagation())
 - detach each mount from their mount trees.
 (release_mounts())

Implementation (continued)

76

Pointers to documentation

Al Viro's RFC:
http://lwn.net/Articles/119232/

Ram Pai's implementation history:
https://www.sudhaa.com/~ram/sharedsubtree

Extensive Documentation:
http://lwn.net/Articles/159077/

This paper (updated):
https://www.sudhaa.com/~ram/sharedsubtree/paper/sharedsubtree.pdf

77

per-user namespace

A user-space solution

● maintain /share as a shared mount in original namespace.
● maintain a mount for each user in /share.
● when user logs in, sshd clones-off a new namespace.
● rbind /share/$USER /home/$USER
● mount –make-private /share
● umount -l /share

78

Future work

● /proc interface to view the propagation tree.
● /proc/mount confusion fix.
● mount command using the new interfaces.

– may need revamp of /proc/mount interface or
something similar

● user-mount accounting.
● Ability to lazy unmount a tree without

dismantling it.
● union-mount semantics definition and

implementation.

79

Summary

● Ability to share mount tree.
– fixes namespace isolation

– makes bind/rbind dynamic

● provides building blocks for
– per-user-namespace.

– versioned filesystem.

– containers.

80

Legal Statement
This work represents the view of the author and does not

necessarily represent the view of IBM.

IBM is a registered trademark of International Business
Machines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds.

Red Hat, the Red Hat “Shadow Man” logo, and all the Red
Hat-based trademarks are trademarks or registered
trademarks of Red Hat Inc.

Other company, product, and service names may be
trademarks or service marks of others.

81

tmp tmp2

root

tmp1

a a a

tmp

tmp2

root

tmp1

a a

mount –move /tmp2 /tmp/a

tmp2'tmp2

a
tmp2'''

tmp2

82

● pivot_root
- parent of current-root cannot be shared
- parent of new-root cannot be shared
- new-root cannot be shared

Pivot root

mnt
 pivot_root /mnt/newroot /mnt/newroot/a

current-root

newroot

newroot

current-root

mnta

a

system root

83

Requirement

● Ability to maintain multiple identical mount
trees, each tree associated with some entity.

➢ containers (associate a system mount tree per container)
➢ MVFS (associate a mount tree per view)

● Ability to make private changes to part of a tree.
➢ FUSE (private mount that is not visible to anybody else).
➢ SeLinux LSPP (private mounts not visible to anybody else).

● How?
● Filesystem Namespace (per-process namespace)?
● Rbind?

