OTTAWA LINUX SYMPOSIUM 2006

Shared Subtree Concept and Implementation and
Applications 1n the Linux Kernel

Ram Pai
linuxram(@us.ibm.com

Al Viro
viro@ftp.linux.org.uk

Agenda

* Background.

* Requirement/Applications.
* Shared subtree solution.

* Shared subtree semantics.
* Implementation detail.

* Future work.

Background

mount semantics in Linux® VFS

normal device mount (mount /dev/sda0 /mnt)
bind mount (mount —bind /mnt /tmp)

rbind mount (mount —rbind /mnt /tmp)

move mount (mount —move /mnt /tmp)

namespaces (CLONE NS flag for sys clone())
unmount (umount [-1] /mnt)

Background

tmp 1 ;

Background

tmp 1 S0t

* normal device mount (mount /dev/sda0 /mnt)

Background

tmp 1

{

* bind mount (mount—bind /mnt /tmp)

Background

tmp 1

* normal device mount (mount /dev/sdal /tmp/m1)

Background

tmp! 00!

* rbind mount (mount —rbind /tmp /tmp]l)

Background

tmp 1 S0t

* rbind mount (mount —move /tmp /mnt/tl)

10

Background

* clone namespace

Requirement

e share mount trees.

> containers: all containers share the same mount tree

> MVEFS: all views share the same mount tree

> automounter: mount automatically visible on all filesystem-
namespaces

* Private changes to a mount-subtree.

> FUSE: mount invisible to anybody else.

> SeLinux LSPP: mount invisible to anybody else.

> Containers: private mounts not visible to other containers.

* How?
> clone-namespace (CLONE NEWNS in clone()).
> rbind (mount —rbind src dest)

11

Problem

* bind mounts are static.

namespacel

12

Problem

® bind mounts are static.

- submounts 1n one mount
instance do not reflect
in the other mount instance.

namespacel

13

Problem

®* bind mounts are static.

- submounts 1n one mount
instance do not reflect
1n the other mount instance.

* filesystem-namespaces are 1solated.

- mounts 1n system namespace
are 1nvisible to cloned
namespace.

namespacel
Croot>
C })
O

namespace?2

14

Problem

®* bind mounts are static.

- submounts 1n one mount
instance do not reflect
1n the other mount instance.

* filesystem-namespaces are 1solated.

- mounts 1n system namespace
are 1nvisible to cloned
namespace.

namespacel
Croot>
C })
O

namespace?2

15

Shared subtree solution

RFC proposed by Al Viro in Jan 2005
® http://lwn.net/Articles/119232/

Ram Pai1 provided the Linux implementation
e feature accepted for 2.6.15 Linux kernel

16

<D

<>

Shared mount

mount —make-shared /mnt

- (@O
mount —bind /mnt /tmp

- (G G

17

Shared mount

* shared mount
- mount, unmount events propagate to each other
* peer group
- group of shared mounts that propagate to each other

@ mount tree

peer group \ shared mount

Gty Camp>

shared mount

18

Shared mount

* shared mount
- mount, unmount events propagate to each other
* peer group
- group of shared mounts that propagate to each other

@ mount tree

peer group \ shared mount
shared mount /

> O

19

Shared mount application in MVFS

vl

20

Shared mount application in MVFS

View usr
v2
VieW @ uSr

T

21

Shared mount application in MVFS
(root>

T~

\

P @ W @

22

Shared mount application in MVFS

view @
Iy

o :
V /Vi@(@ Vi@

. T

23

Slave mount

24

Slave mount

* slave mount
- mount,unmount events propagate towards it from
master not vice-versa.

* propagation tree
- dictates the tflow of mount and unmount events.

propagation tree

peer group \ — slave mount
\

Cont> G

/tmp1
shared mount

25

Slave mount

* slave mount.
- mount,unmount events propagate towards it from
master not vice-versa.

* propagation tree.
- dictates the tflow of mount and unmount events.

propagation tree

peer group \\ —~ [slave mount

Cont) Gomp /tmp2

/ tmp 1 /

/ a
O GG

shared mount

26

Slave mount

* slave mount.
- mount,unmount events propagate towards it from
master not vice-versa.

* propagation tree.
- dictates the flow of mount and unmount events.

propagation tree

peer group \\ —~ [slave mount

@ @ /tmp2 \

/ tmp 1 /

shared mount @
/ a
ONONg

27

Slave mount application in
Containers.

/Don lle usrl
cl L\
c2

28

Slave mount application 1n
Containers.

container usr usrl
cl / \
root\ c2
/ \\1
Ner &xt3
\

contai
cl/ c2

29

Slave mount application 1n
Containers.

container usr usrl
cl / \
root\ c2
/ \\1
Ner &xt3
\

. root
001}31 ST ysrl " / \\J
Qe coMaNEr 63 ust usrl
cl c2

30

Slave mount application 1n
Containers.

container @ usrl
cl / \
root c2
./ \\U root
contamsr ext3 UST) \\u\
i / xfs contami:r &xtd usr
cl X

2 / P usrl

c2

31

32
Slave mount application 1n

Containers.

container @ usrl
cl / \

root c2
containér \3\usr {00 1
ext usrl 4 \\u usr
xfs container ST
i ntiner 3 T (G
cl

b xfs

Unbindable mount

* unbindable mounts
- no propagation.
- not bindable.

unbindable mount

@ - INVALID!

mount —bind /tmp /tmp1

33

Mount explosion problem
oo

C n@
cl c2

34

container

Mount explosion problem

i @
container
c2

35

ontai

Contamer

} taine{ @

Mount explosion!!

GQome;

36

37

Mount explosion problem

100>
container
Cust G

ool —Tontainer
@ GQome

, @ @ %tame gé)
- ; \

U.SI'

Mount explosion solution!!
FooD>

unbindable mount ctaider @ ‘@

cl

> c3

38

Mount explosion solution!!

39

Mount explosion solution!!
FooD>

unbindable mount @
Gome

cdntainer

og®

40

Mount explosion solution!!

CLoot
unbindable mount crtaider @ ‘@
cl

c3
c2 @

(tood
Y@ Yo

D

41

42

Shared and Slave mount

* shared and slave mount
- mount,unmount events propagate towards it from
master and 1t propagates them to 1ts slaves

propagation tree

@ shared & slave mount
peer group \\

\ _
~
shared mount - tmp3

43

Shared and Slave mount

* shared and slave mount
- mount,unmount events propagate towards it from
master and 1t propagates them to 1ts slaves

propagation tree

shared & slave mount
peer group \

@ @ ED} e

shared mount a

O O

44

Shared and Slave mount

* shared and slave mount
- mount,unmount events propagate towards it from
master and 1t propagates them to 1ts slaves

propagation tree

shared & slave mount
peer group \

shared mount

O O @@

Private mount

mount —bind /mnt /tmp

<D D

mount —make-private /mnt
) - @

mount —make-private /mnt

/mnt > @

45

Private mount

* private mounts.
- no propagation.
- mounts by default are private.

private mount

46

Private mount

* private mounts.
- no propagation.
- mounts by default are private.

=
==

47

Rbind

rbind

- applies the bind-mount rules for each mount in the
mount-tree
- prunes out unbindable mounts

Croot>

mount —rbind /mnt /tmp

@%@

>

48

49

Rbind

®* roind

- applies the bind-mount rules for each mount 1n the
mount-tree

- prunes out unbindable mounts

Croot>

mount —rbind /mnt /tmp

® Mmove
- 1nvalid
- 1nvalid

Move

|1f parent 1s a shared mount.
| 1f the tree contains unbindable mount

and

| moved under a shared mount*

mount —move /mnt /tmp
>

50

® Mmove
- 1nvalid
- 1nvalid

Move

|1f parent 1s a shared mount
| 1f the tree contains unbindable mount

and

| moved under a shared mount

51

Clone namespace

* clone namespace
- Clones all the mounts including unbindable mounts
- adds the new shared and slave mounts in their respective
propagation trees

GooD sysclone(...,CLONE NS);
\ -
2

namespacel

52

Clone namespace

* clone namespace
- Clones all the mounts including unbindable mounts

- adds the new shared and slave mounts in t|

propagation trees

namespacel

sysclone(...,CLONE |

>

53

heir respective

@ 2

)
S

namespace?2

Umount

®* umount
- fail if the mount has submounts
- unmount all child mounts on the mounts belonging
to the parent's propagation tree (only if the child
mounts do not have children mounts)

umount /mnt/a

54

55

Umount

®* umount
- fail if the mount has submounts
- unmount all child mounts on the mounts belonging
to the parent's propagation tree (only if the child
mounts do not have children mounts)

CLoot>
mnt \
umount /mnt/a () mnpl

— " mnt2

3

umount tmp/tmp2/tmp3

>

(?

56

Side-mounts/Over-mounts

visible

57

58

Side-mounts/Over-mounts

visible
visible \
B B'

* Side-mount: vfsmounts on the same dentry of a vfsmount. (eg. A and B')
* Least recent side-mount always visible. (A 1s visible)

59

Side-mounts/Over-mounts

visible
visible visible \
B B'

* Side-mount: vfsmount mounted on the same dentry. (eg A and B')
* Over-mount: vismount on top of another vismount. (eg C over-mount on A)
* Least recent side-mount always visible.(provided there 1s no over-mount).

60

Side-mounts/Over-mounts

visible
visible visible \
- -- B! D”

* Side-mount: vfsmount mounted on the same dentry. (eg A, B' and D”)
* Over-mount: vismount on top of another vismount. (eg C over-mount on A)
* Least recent side-mount always visible.(provided there 1s no over-mount).

61

Side-mounts/Over-mounts

visible
visible visible \
E”
B! D”

* Side-mount: vfsmounts on the same dentry of a vismount.(eg A, B' and D”)
* Over-mount: vismounts on top of another vismount.(eg C over-mount on A)
* Least recent side-mount always visible.(provided there is no over-mount).

* Over-mount on a side-mount 1s obscured too. (E' 1s obscured by B)

62

Side-mounts/Over-mounts

visible
visible visible \

| |

B! D”

* Side-mount: vfsmounts on the same dentry of a vismount.(eg A, B' and D”)
* Over-mount: vismounts on top of another vismount.(eg C over-mount on A)
* [east recent side-mount always visible.(provided there 1s no over-mount).

* Over-mount on a side-mount 1s obscured too. (E' 1s obscured by B)

* Explicit-unmount unmounts the specified mount and propagates it. (eg E”).

Side-mounts/Over-mounts

visible visible visible
D ‘Bl D' B'

D)’

63

* Side-mount: vismounts on the same dentry of a vismount.(eg A, B' and D”)
* Over-mount: vismounts on top of another vismount.(eg C over-mount on A)

* Least recent side-mount always visible.(provided there 1s no over-mount).
* Over-mount on a side-mount is obscured too. (E' is obscured by B).
* Explicit-unmount unmounts the specified mount and propagates it. (eg E).

* Propagated unmount always unmounts the most recent mount on the dentry.

64

Side-mounts/Over-mounts

visible visible visible
B B'

* Side-mount: vismounts on the same dentry of a vismount.(eg A, B' and D”)
* Over-mount: vismounts on top of another vismount.(eg C over-mount on A)
* Least recent side-mount always visible.(provided there 1s no over-mount).

* Over-mount on a side-mount is obscured too. (E' is obscured by B).

* Explicit-unmount unmounts the specified mount and propagates it. (eg E).
* Propagated unmount always unmounts the most recent side-mount.

Implementation detail

additions to vismount structure
*->mnt_share circular list of peer mounts
*->mnt_master 1f slave, points to master mount
*->mnt slave list list of slave mounts
*->mnt_slave slave list entry
* additional flags in ->mnt flags

- MNT SHARED

- MNT UNBINDABLE

65

66

Propagation tree representation

@) @ (D

Bl

= DIIDID

List of slaves
->mnt slave list

and ->mnt_slave
slave only

list of peers O shared and
->mnt_share O shared slave

Implementation (continued)

crux of the bind/move operation in

- attach recursive mnt()

- clone a copy of the source mount tree for
cach mount that receives propagation from the
destination (propagate mnt()/copy tree())
- build-up the propagation tree for each of the child
mount (clone mnt())
- if successful, attach the trees to their parents
and place them in the hash list.
(commit tree())
- 1f allocation fails, release all the newly allocated
mount trees (propagate mnt()/umount tree())

67

68

69

G -

\
|
|

5 O

® src' notes its would-be parent mnt

* mnt's vismount and mountpoint dentry has its refcount incremented

* mnt unware of src’ (not linked in mnt child or mnt _hash).

* all mounts under src’ are linked to their parent's mnt child and mnt hash
e ¢’ added to the nronacation tree of src.

| ﬁ
/
O O A ~

/ /

O O

* src' notes 1ts would-be parent tmp

* tmp's vismount and mountpoint dentry has its refcount incremented

* tmp unware of src'' (not linked 1n mnt child or mnt hash).

* all mounts under src” are linked to their parent's mnt child and mnt hash
e ¢7c'" added to the nropagcation tree of src.

70

tmp3

O

ﬁ ﬂ

o O /

* src"" notes its would-be parent tmp 1 O
* tmpl's vismount and mountpoint dentry has its refcount incremented
* tmpl unware of src'"’ (not linked in mnt child or mnt hash).

e all mounts under src
° SI"C’”

e

are linked to their parent's mnt child and mnt hash

added to the propagation tree of src.

71

72

s ? t
— = @ C \

e

* src""" notes its would-be parent tmp2 O

* tmp2's vismount and mountpoint dentry has its refcount incremented

* tmp2 unware of src""" (not linked 1n mnt child or mnt hash).

* all mounts under src""" are linked to their parent's mnt child and mnt_éh

e ¢7c"""" added to the pronacation tree of src.

73

/
O

rere

* src"""" notes its would-be parent tmp3 O

* tmp3's vismount and mountpoint dentry has its refcount incremented
* tmp3 unware of src'""' (not linked in mnt child or mnt hash). /

* all mounts under src”"" are linked to their parent's mnt child and mnt {%vh
e ¢77c""""" added to the nropacation tree of src.

® src, src’ src' src'” src'" src
mnt _hash list

IIIII

O

74

Implementation (continued)

crux of the umount operation in

- umount tree()

- collect all the mount trees that can be unmounted
(propagate umount())

- unhash the mounts. No longer available through

lookup mnt().

- detach them from their propagation trees.
(change mnt propagation())

- detach each mount from their mount trees.
(release _mounts())

75

Pointers to documentation

Al Viro's RFC:
http://Iwn.net/Articles/119232/

Ram Pai's implementation history:
https://www.sudhaa.com/~ram/sharedsubtree

Extensive Documentation:
hitp://lwn.net/Articles/159077/

This paper (updated):
https://www.sudhaa.com/~ram/sharedsubtree/paper/sharedsubtree.pdf

76

PECTr-usScr Namespace

A user-space solution

maintain /share as a shared mount in original namespace.
maintain a mount for each user in /share.

when user logs in, sshd clones-off a new namespace.
rbind /share/SUSER /home/$SUSER

mount —make-private /share

umount -1 /share

77

Future work

* /proc interface to view the propagation tree.

* /proc/mount confusion fix.

* mount command using the new interfaces.

— may need revamp of /proc/mount interface or
something similar

* user-mount accounting.

* Ability to lazy unmount a tree without
dismantling 1it.

* ynion-mount semantics definition and
implementation.

78

Summary

* Ability to share mount tree.
— fixes namespace isolation
— makes bind/rbind dynamic

e provides building blocks for

— per-user-namespace.
— versioned filesystem.

— containers.

79

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

M is a registered trademark of International Business
Machines Corporation in the United States, other
countries, or both.

Linux 1s a registered trademark of Linus Torvalds.

Red Hat, the Red Hat “Shadow Man” logo, and all the Red
Hat-based trademarks are trademarks or registered
trademarks of Red Hat Inc.

Other company, product, and service names may be
trademarks or service marks of others.

80

@ mount —move /tmp2 /tmp/a

81

Pivot root

* pivot root
- parent of current-root cannot be shared

- parent of new-root cannot be shared
- new-root cannot be shared

O
>
/

system root

pivot root /mnt/newroot /mnt/newroot/a

82

Requirement

* Ability to maintain multiple identical mount

trees, each tree associated with some entity.

~ containers (associate a system mount tree per container)
>~ MVFS (associate a mount tree per view)

* Ability to make private changes to part of a tree.

> FUSE (private mount that 1s not visible to anybody else).
> SeLinux LSPP (private mounts not visible to anybody else).

* How?
* Filesystem Namespace (per-process namespace)?
* Rbind?

83

