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Agenda

●  Background.
●  Requirement/Applications.
●  Shared subtree solution.
●  Shared subtree semantics.
●  Implementation detail.
●  Future work.
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Background

mount semantics in Linux® VFS

●   normal device mount  (mount /dev/sda0 /mnt)
●   bind mount   (mount –bind /mnt /tmp)
●   rbind mount  (mount –rbind /mnt /tmp)
●   move mount  (mount –move /mnt /tmp)
●   namespaces    (CLONE_NS flag for sys_clone())
●   unmount   (umount [-l] /mnt)
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Requirement

●  share mount trees.
➢ containers: all containers share the same mount tree
➢ MVFS: all views share the same mount tree
➢ automounter: mount automatically visible on all filesystem-

namespaces

●  Private changes to a mount-subtree.
➢ FUSE: mount invisible to anybody else.
➢ SeLinux LSPP: mount invisible to anybody else.
➢ Containers: private mounts not visible to other containers.
● How? 

➢ clone-namespace (CLONE_NEWNS in clone()).
➢ rbind  (mount –rbind src dest)
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Problem 

●  bind mounts are static.
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Problem 

●  bind mounts are static.
- submounts in one mount 

        instance do not reflect
        in the other mount instance.
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Problem 

●  bind mounts are static.
- submounts in one mount 

        instance do not reflect
        in the other mount instance.

●  filesystem-namespaces are isolated.
- mounts in system namespace 

        are invisible to cloned
        namespace.
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Shared subtree solution

    
RFC proposed by Al Viro in Jan 2005
●      http://lwn.net/Articles/119232/

Ram Pai provided the Linux implementation
●      feature accepted for 2.6.15 Linux kernel



17

Shared mount

  
  

/mnt

mount –bind /mnt /tmp

/tmp/mnt

/mnt

mount –make-shared /mnt

/mnt
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Shared mount
 
●  shared mount
       - mount, unmount events propagate to each other 
●  peer group

-  group of shared mounts that propagate to each other

tmpmnt
shared mountpeer group

shared mount

root mount tree
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Shared mount
 
●  shared mount
       - mount, unmount events propagate to each other 
●  peer group

-  group of shared mounts that propagate to each other
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MVFS
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Slave mount

mount –make-slave  /tmp

/mnt

mount –bind /tmp /tmp1

/mnt

/tmp
/tmp

/tmp1

/tmp/mnt /mnt

/tmp
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Slave mount
 
●  slave mount
         - mount,unmount events propagate towards it from 

    master not vice-versa.
● propagation tree

- dictates the flow of mount and unmount events.
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Slave mount
 
●  slave mount.
         - mount,unmount events propagate towards it from 

    master not vice-versa.
● propagation tree.

- dictates the flow of mount and unmount events.
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Slave mount
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●  slave mount.
         - mount,unmount events propagate towards it from 

    master not vice-versa.
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- dictates the flow of mount and unmount events.
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Unbindable mount

●   unbindable mounts
         -  no propagation.
          -   not bindable.

unbindable mount

/tmp
mount –bind /tmp /tmp1

INVALID!
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Mount explosion problem
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Mount explosion solution!!
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Shared and Slave mount
 
●  shared and slave mount
         - mount,unmount events propagate towards it from 

    master and it propagates them to its slaves

tmpmntshared mount
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tmp1 tmp2

shared & slave mount
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Shared and Slave mount
 
●  shared and slave mount
         - mount,unmount events propagate towards it from 

    master and it propagates them to its slaves
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Shared and Slave mount
 
●  shared and slave mount
         - mount,unmount events propagate towards it from 

    master and it propagates them to its slaves
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Private mount

mount –bind /mnt /tmp

/mnt

mount –make-private /mnt

/mnt

/mnt /mnt

/tmp

/mnt

mount –make-private /mnt

/mnt
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Private mount

●  private mounts.
   - no propagation.
    - mounts by default are private.
    

tmpmnt

root
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private mount
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Private mount

●  private mounts.
   - no propagation.
    - mounts by default are private.
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●   rbind 
     -  applies the bind-mount rules for each mount in the 

       mount-tree
     - prunes out unbindable mounts
  
  

Rbind 

mnt    mount –rbind /mnt /tmp
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3 5 64

root

tmp7
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●   rbind 
     -  applies the bind-mount rules for each mount in the 

       mount-tree
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●   move
     -  invalid if parent is a shared mount.
     -  invalid if the tree contains unbindable mount
              and moved under a shared mount*
  
  

Move

mnt
   mount –move /mnt /tmp

1 2
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●   move
     -  invalid if parent is a shared mount
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Clone namespace

root    sysclone(...,CLONE_NS);

1

3 4

●  clone namespace 
-  Clones all the mounts including unbindable mounts
-  adds the new shared and slave mounts in their respective 

propagation trees

namespace1

2
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Clone namespace

root    sysclone(...,CLONE_NS);
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-  adds the new shared and slave mounts in their respective 
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Umount

root

   umount /mnt/a
mnt1

●  umount
     - fail if the mount has submounts
     - unmount all child mounts on the mounts belonging 
        to the parent's propagation tree (only if the child        

      mounts do not have children mounts)
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Umount
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●  umount
     - fail if the mount has submounts
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Side-mounts/Over-mounts

dentry x on 
slave mount M”

A
dentry x on

shared/slave mount M'
dentry x on

shared  mount M

visible
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Side-mounts/Over-mounts

dentry x on 
slave mount M”

A B'
dentry x on

shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount. (eg. A and B')
● Least recent side-mount always visible. (A is visible)

dentry x on
shared  mount M

visiblevisible
visible
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Side-mounts/Over-mounts

dentry x on 
slave mount M”
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B

● Side-mount: vfsmount mounted on the same dentry. (eg A and B')
● Over-mount: vfsmount on top of another vfsmount. (eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
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Side-mounts/Over-mounts
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● Side-mount: vfsmount mounted on the same dentry. (eg A, B' and D”)
● Over-mount: vfsmount on top of another vfsmount. (eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
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Side-mounts/Over-mounts
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● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B)
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Side-mounts/Over-mounts

dentry x on 
slave mount M”
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● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B)
● Explicit-unmount unmounts the specified mount and propagates it. (eg E”).
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Side-mounts/Over-mounts

dentry x on 
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B).
● Explicit-unmount unmounts the specified mount and propagates it. (eg E”).
● Propagated unmount always unmounts the most recent mount on the dentry.
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Side-mounts/Over-mounts

dentry x on 
slave mount M”

A B'
C

dentry x on
shared/slave mount M'

B

● Side-mount: vfsmounts on the same dentry of a vfsmount.(eg A, B' and D”)
● Over-mount: vfsmounts on top of another vfsmount.(eg C over-mount on A)
● Least recent side-mount always visible.(provided there is no over-mount).
● Over-mount on a side-mount is obscured too. (E' is obscured by B).
● Explicit-unmount unmounts the specified mount and propagates it. (eg E”).
● Propagated unmount always unmounts the most recent side-mount.

dentry x on
shared  mount M

visible visible
visible



65

Implementation detail

additions to vfsmount structure
● ->mnt_share    circular list of peer mounts
● ->mnt_master   if slave, points to master mount
● ->mnt_slave_list  list of slave mounts
● ->mnt_slave         slave list entry
● additional flags in ->mnt_flags

- MNT_SHARED
- MNT_UNBINDABLE
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Propagation tree representation

R4R1 R2 R3

B1

G1 G2 G3

M2M1

Y4Y1 Y2 Y3

List of slaves
->mnt_slave_list
and ->mnt_slave

list of peers
->mnt_share

O1

slave only

shared
shared and 
slave
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Implementation (continued)

crux of the bind/move operation in
- attach_recursive_mnt()

            - clone a copy of the source mount tree for 
                     each mount that receives propagation from the 
                     destination (propagate_mnt()/copy_tree())
              - build-up the propagation tree for each of the child
                     mount (clone_mnt())
              - if successful, attach the trees to their parents
                 and place them in the hash list.
                    (commit_tree())
              - if allocation fails, release all the newly allocated
                   mount trees (propagate_mnt()/umount_tree())
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tmpmnt

root

tmp1 tmp2 tmp3src

src'

● src' notes its would-be parent mnt
● mnt's vfsmount and mountpoint dentry has its refcount incremented
● mnt unware of src'  (not linked in mnt_child or mnt_hash).
● all mounts under src' are linked to their parent's mnt_child and mnt_hash
● src' added to the propagation tree of src.
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tmpmnt

root

tmp1 tmp2 tmp3src

src' src''

● src'' notes its would-be parent tmp
● tmp's vfsmount and mountpoint dentry has its refcount incremented
● tmp unware of src'' (not linked in mnt_child or mnt_hash).
● all mounts under src'' are linked to their parent's mnt_child and mnt_hash
● src'' added to the propagation tree of src.
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tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

● src''' notes its would-be parent tmp1
● tmp1's vfsmount and mountpoint dentry has its refcount incremented
● tmp1 unware of src''' (not linked in mnt_child or mnt_hash).
● all mounts under src''' are linked to their parent's mnt_child and mnt_hash
● src''' added to the propagation tree of src.
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tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

src''''

● src'''' notes its would-be parent tmp2
● tmp2's vfsmount and mountpoint dentry has its refcount incremented
● tmp2 unware of src'''' (not linked in mnt_child or mnt_hash).
● all mounts under src'''' are linked to their parent's mnt_child and mnt_hash
● src'''' added to the propagation tree of src.
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tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

src''''

src'''''

● src''''' notes its would-be parent tmp3
● tmp3's vfsmount and mountpoint dentry has its refcount incremented
● tmp3 unware of src''''' (not linked in mnt_child or mnt_hash).
● all mounts under src''''' are linked to their parent's mnt_child and mnt_hash
● src''''' added to the propagation tree of src.
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tmpmnt

root

tmp1 tmp2 tmp3src

src' src''
src'''

src''''

src'''''

● src, src', src'', src''', src'''',src''''' are all added to their parent's mnt_child and 
mnt_hash list
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crux of the umount operation in
- umount_tree()

            - collect all the mount trees that can be unmounted
                          (propagate_umount())
              - unhash the mounts. No longer available through
                            lookup_mnt().
              - detach them from their propagation trees.
                           (change_mnt_propagation())
              - detach each mount from their mount trees.
                           (release_mounts())

Implementation (continued)
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Pointers to documentation

Al Viro's RFC: 
http://lwn.net/Articles/119232/

Ram Pai's implementation history:
https://www.sudhaa.com/~ram/sharedsubtree

Extensive Documentation:    
http://lwn.net/Articles/159077/

This  paper (updated):
https://www.sudhaa.com/~ram/sharedsubtree/paper/sharedsubtree.pdf



77

per-user namespace

A user-space solution

●   maintain /share as a shared mount in original namespace.
●   maintain a mount for each user in /share.
●   when user logs in, sshd clones-off a new namespace.
●   rbind /share/$USER   /home/$USER
●   mount –make-private /share
●   umount -l /share
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Future work

● /proc interface to view the propagation tree.
● /proc/mount confusion fix.
● mount command using the new interfaces.

– may need revamp of /proc/mount interface or 
something similar

● user-mount accounting.
● Ability to lazy unmount a tree without 

dismantling it.
● union-mount semantics definition and 

implementation.
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Summary

● Ability to share mount tree.
– fixes namespace isolation

– makes bind/rbind dynamic

● provides building blocks for
– per-user-namespace.

– versioned filesystem.

– containers.
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Linux is a registered trademark of Linus Torvalds.
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tmp tmp2

root

tmp1

a a a

tmp

tmp2

root

tmp1

a a

mount –move /tmp2  /tmp/a

tmp2'tmp2

a
tmp2'''

tmp2
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●   pivot_root
- parent of current-root cannot be shared
- parent of new-root cannot be shared
- new-root cannot be shared
  
  

Pivot root

mnt
  pivot_root /mnt/newroot /mnt/newroot/a

current-root

newroot

newroot

current-root

mnta

a

system root
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Requirement

●  Ability to maintain multiple identical mount
trees, each tree associated with some entity.

➢ containers (associate a system mount tree per container)
➢ MVFS (associate a mount tree per view)

●  Ability to make private changes to part of a tree.
➢ FUSE (private mount that is not visible to anybody else).
➢ SeLinux LSPP (private mounts not visible to anybody else).

● How? 
● Filesystem Namespace (per-process namespace)?
● Rbind?


