
1

Towards Hard Realtime Response
from the Linux Kernel:

Adapting RCU to Hard Realtime

Paul E. McKenney
IBM Beaverton

2005 linux.conf.au

Copyright © 2005 IBM Corporation

2

Overview

● Approaches to Realtime
● The Role of RCU in Realtime
● What Do Realtime Kernels Need from RCU?
● RCU Options for Aggressive Realtime
● Current Status
● Summary

3

Approaches to Realtime

4

Why Realtime Linux?

● Way too many RTOSes!
– Software balkanization
– But there are workloads that can only be

handled by hand-coded assembly on bare metal
● “Nintendo generation” & sub-reflex response

– Some of us old guys are impatient, too!!!
● With machines talking to machines, delays

accumulate
● In developed countries, people are spendy

5

So What is the Big Deal?

● Linux was not designed to be a realtime OS
– Neither was any other UNIX

● Non-realtime assumptions are scattered
throughout the kernel

● Any excessive latency anywhere in the
kernel, no matter how infrequently executed,
will mess up realtime latency

● But the same used to be true of SMP...
– And still is, to some extent...

6

Realtime Strategies

● Preemption
– CONFIG_PREEMPT

● Kernel is preemptable except for critical sections

– CONFIG_PREEMPT_RT
● Kernel is preemptable almost everywhere

● Nested OS (e.g., RT Linux, Adeos)
● Dual OS (dual core, hypervisor)
● Migration

7

Classifying RT Approaches

● Quality:
– Hard vs. soft, probability, redundancy
– Timeframe: ps, ns, us, ms, s, ...
– Services: interrupt, process, user-mode, I/O, ...

● API: POSIX, Windows, Ad Hoc
● Visibility: global vs. split
● Configurations: UP/SMP, #devices, ...

8

non-CONFIG_PREEMPT

● Soft realtime
● 10s of milliseconds
● All services (but some I/O can still slow)
● POSIX API, limited RT extensions
● Global visibility
● All configurations, including SMP

9

CONFIG_PREEMPT

● Soft realtime
● 100s of microseconds
● Process scheduling, some syscalls
● POSIX API, limited RT extensions
● Global visibility
● All configurations, including SMP

– But UP much more common

10

CONFIG_PREEMPT_RT

● Soft realtime
● 10s of microseconds
● Process scheduling, a few syscalls

– Can in theory give hard realtime to user code...
● POSIX API, limited RT extensions
● Global visibility
● All configurations, including SMP

– But UP much more stable

11

Nested OS

RTOS

Linux
(RTOS

Process)
Li

nu
x

P
ro

ce
ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

R
ea

lti
m

e
P

ro
ce

ss

R
ea

lti
m

e
P

ro
ce

ss

R
ea

lti
m

e
P

ro
ce

ss

12

Nested OS

● Hard realtime
● ~10 microseconds
● “All realtime services”, often quite limited
● Subset of POSIX API, with RT extensions
● Linux runs as process in RTOS instance
● All configurations, including SMP

– But UP much more common

13

Dual OS / Dual Core

RTOS

CPU 0 CPU 1
Li

nu
x

P
ro

ce
ss

Li
nu

x
P

ro
ce

ss

R
ea

lti
m

e
P

ro
ce

ss

R
ea

lti
m

e
P

ro
ce

ss

R
ea

lti
m

e
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss
Linux

14

Dual OS / Dual Core

● Hard realtime
● Can be sub-microsecond
● “All realtime services”, often quite limited

– In extreme cases, bare metal
● Subset of POSIX API, with RT extensions
● Separate RTOS instance
● All configurations, including SMP

15

Migration

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Li
nu

x
P

ro
ce

ss

Linux

CPU 0
Non-Realtime

Request

16

Migration

● You have all heard about preemption...
– CONFIG_PREEMPT_RT's RCU preempted my

work on the migration version of realtime. :-/
● The abstract for this talk is therefore

somewhat obsolete
● But if you want a speculative evaluation of

migration...

17

Migration

● Hard realtime
● Can be sub-microsecond
● User-level execution

– Can adapt system-call by system-call
– Avoids “pinning” syscalls holding critical locks

● Subset of POSIX API, with RT extensions
● Global visibility
● All configurations, but need SMP (real or

emulated)

18

Realtime Summary

● There are a number of realtime approaches
for Linux

● They all have their own peculiar strengths
and shortcomings

● Thus far, one size does not fit all
● It would be good to get to one size that fits all

– Will require combination of approaches
– Or will require additional innovation...

19

The Role of RCU in
Realtime

20

What is Synchronization?

spin_lock(&my_lock);
p = head;
/* Can mess with struct to by p */
spin_unlock(&my_lock);

/* Can -not- mess with struct pointed to by p!!! */

spin_lock(&my_lock);
/* Can -not- mess with struct pointed to by p!!! */
p = head;
/* Can again mess with struct to by p */
spin_unlock(&my_lock);

21

What is Synchronization?

● Mechanism plus coding convention
– Locking: must hold lock to reference or update
– NBS: must use carefully crafted sequences of

atomic operations to do references and updates
– RCU coding convention:

● Must define “quiescent states” (QS)
– e.g., context switch in non-CONFIG_PREEMPT kernels

● QSes must not appear in read-side critical sections
● CPU in QSes are guaranteed to have completed all

preceding read-side critical sections
● RCU mechanism: “lazy barrier” that

computes “grace period” given QSes.

22

What is RCU? (1)

● Reader-writer synchronization mechanism
– Best for read-mostly data structures

● Writers create new versions atomically
– Normally create new and delete old elements

● Readers can access old versions
independently of subsequent writers
– Old versions garbage-collected by “poor man's”

GC, deferring destruction
– Readers must signal “GC” when done

23

What is RCU? (2)

● Readers incur little or no overhead
● Writers incur substantial overhead

– Writers must synchronize with each other
– Writers must defer destructive actions until

readers are done
– The “poor man's” GC also incurs some overhead

24

RCU's Deferred Destruction

CPU 0

CPU 1

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
i d

e
C

ri
ti

ca
l S

e c
ti

o
n

R
em

o
ve

E
le

m
en

t

C
o

n
te

xt
S

w
it

ch

C
o

n
te

xt
S

w
it

c h

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

May hold reference
Can't hold reference to old

version, but RCU can't tell

Can't hold reference

to old version

Can't hold reference

to old version

C
o

n
te

xt
S

w
it

c h

25

What Do Realtime Kernels
Need From RCU?

26

Realtime RCU Requirements

● Reliable
● Callable from IRQ
● Preemptible read side
● Small memory footprint
● Synchronization-free read side
● Independent of memory blocks
● Freely nestable read side
● Unconditional read-to-write upgrade
● Compatible API

27

Trouble in RCU-Land

 R
el

ia
bl

e

 C
al

la
bl

e
F

ro
m

 IR
Q

 P
re

em
pt

ib
le

 R
ea

d
S

id
e

 S
m

al
l M

em
or

y
F

oo
tp

rin
t

 S
yn

c-
F

re
e

R
ea

d
S

id
e

 In
dp

t o
f M

em
or

y
B

lo
ck

s

 N
es

ta
bl

e
R

ea
d

S
id

e

 U
nc

on
d

R
-W

 U
pg

ra
de

 C
om

pa
tib

le
 A

P
I

Classic RCU N N
rcu-preempt X N
Jim Houston Patch N N
Reader-Writer Locking N N N n
Unconditional Hazard Pointers X n N
Hazard Pointers: Failure n n N N
Hazard Pointers: Panic N n n N
Hazard Pointers: Blocking N n n N
Reference Counters N n N
rcu_donereference() n N N

28

RCU Options for
Aggressive Realtime

29

I Wrote the Paper At This Point...

● RCU gets twisted pretty badly by realtime
● No good RCU implementation exists

– There is not even a poor implementation, they all
have serious shortcomings

● Some potential advantage
– Marking read side with update lock nice
– But what if no update lock? Or lots of them?

● Something better is needed!!!

30

Tom Hart Confused Me

SMR QSBR EBR
Concurrently-readable CR-SMR CR-QSBR CR-EBR
Lock-free LF-SMR LF-QSBR LF-EBR

SMR QSBR EBR
Lock-based update CR-SMR CR-QSBR CR-EBR
Lock-free update LF-SMR LF-QSBR LF-EBR

31

Solution From Confusion

SMR QSBR EBR “LBR”
Lock-based update CR-SMR CR-QSBR CR-EBR ???
Lock-free update LF-SMR LF-QSBR LF-EBR ???

We can use locking to force grace period...

Or counters to suppress grace periods

32

Simple Lock-Based Deferred Free

void rcu_read_lock(void)
{
 read_lock(&rcu_ctrlblk.lock);
}

void rcu_read_unlock(void)
{
 read_unlock(&rcu_ctrlblk.lock);
}

void synchronize_kernel(void)
{
 write_lock_bh(&rcu_ctrlblk.lock);
 write_unlock_bh(&rcu_ctrlblk.lock);
}

33

Grace Periods

CPU 0

CPU 1

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
i d

e
C

ri
ti

ca
l S

e c
ti

o
n

D
el

et
e

E
le

m
en

t

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

R
C

U
 R

ea
d

-S
id

e
C

ri
ti

ca
l S

ec
ti

o
n

A
cq

u
ir

e
L

o
c k

 0

A
cq

u
ir

e
L

o
ck

 1

May hold reference
Can't hold reference

to old version

W
ai

t
fo

r
C

P
U

 0
. ..

34

Simple LBDF Issues

● Latencies can be communicated from one
read side to another
– Reader 1 in critical section
– synchronize_kernel() waiting for reader 1's lock
– Reader 2 blocked waiting for synchronize_kernel

● Locks on read side – heavy overhead!!!
● Also, PREEMPT_RT allows only one reader
● But this simple mechanism is Paul

McKenney's PREEMPT_RT “lesson plan”
– Crude version runs on 4-CPU machine
– If using 0.7.41-14 version of PREEMPT_RT

35

Grace Period Suppression

● Increment a per-CPU counter in
rcu_read_lock()
– decrement same counter in rcu_read_unlock()
– track counter in task struct (preemption!)

● While a given CPU's counter is non-zero,
ignore any quiescent states that this CPU
goes through
– could result in extremely long grace periods
– possibly fix via “count flipping”.

36

Current Status

37

Improvements in RCU-Land

 R
el

ia
bl

e

 C
al

la
bl

e
Fr

om
 IR

Q

 P
re

em
pt

ib
le

 R
ea

d
S

id
e

 S
m

al
l M

em
or

y
Fo

ot
pr

in
t

 S
yn

c-
Fr

ee
 R

ea
d

S
id

e

 In
dp

t o
f M

em
or

y
B

lo
ck

s

 N
es

ta
bl

e
R

ea
d

S
id

e

 U
nc

on
d

R
-W

 U
pg

ra
de

 C
om

pa
tib

le
 A

P
I

Classic RCU N N
rcu-preempt X N
Jim Houston Patch N N
Reader-Writer Locking N N N n
Unconditional Hazard Pointers X n N
Hazard Pointers: Failure n n N N
Hazard Pointers: Panic N n n N
Hazard Pointers: Blocking N n n N
Reference Counters N n N
rcu_donereference() n N N
Lock-Based Deferred Free N
Read-Side Counter GP Suppression N n
Read-Side Counters w/ “Flipping”? n

38

Summary

39

Summary

● Numerous motivations for realtime Linux
● No mechanism currently suits all workloads

– But Linux is becoming more capable
● RCU still an issue with aggressive realtime

– However, several possible solutions identified
– Some of which are positively mediocre

40

Legal Statement

● This work represents the view of the author, and does not
necessarily represent the view of IBM.

● IBM is a registered trademarks of International Business
Machines in the United States, other countries, or both.

● Linux is a registered trademark of The Open Group in the
United States and other countries.

● Other company, product, and service names may be
trademarks or service marks of others.

