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Overview

● Approaches to Realtime
● The Role of RCU in Realtime
● What Do Realtime Kernels Need from RCU?
● RCU Options for Aggressive Realtime
● Current Status
● Summary
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Approaches to Realtime
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Why Realtime Linux?

● Way too many RTOSes!
– Software balkanization
– But there are workloads that can only be 

handled by hand-coded assembly on bare metal
● “Nintendo generation” & sub-reflex response

– Some of us old guys are impatient, too!!!
● With machines talking to machines, delays 

accumulate
● In developed countries, people are spendy
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So What is the Big Deal?

● Linux was not designed to be a realtime OS
– Neither was any other UNIX

● Non-realtime assumptions are scattered 
throughout the kernel

● Any excessive latency anywhere in the 
kernel, no matter how infrequently executed, 
will mess up realtime latency

● But the same used to be true of SMP...
– And still is, to some extent...
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Realtime Strategies

● Preemption
– CONFIG_PREEMPT

● Kernel is preemptable except for critical sections

– CONFIG_PREEMPT_RT
● Kernel is preemptable almost everywhere

● Nested OS (e.g., RT Linux, Adeos)
● Dual OS (dual core, hypervisor)
● Migration
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Classifying RT Approaches

● Quality:
– Hard vs. soft, probability, redundancy
– Timeframe: ps, ns, us, ms, s, ...
– Services: interrupt, process, user-mode, I/O, ...

● API: POSIX, Windows, Ad Hoc
● Visibility: global vs. split
● Configurations: UP/SMP, #devices, ...
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non-CONFIG_PREEMPT

● Soft realtime
● 10s of milliseconds
● All services (but some I/O can still slow)
● POSIX API, limited RT extensions
● Global visibility
● All configurations, including SMP
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CONFIG_PREEMPT

● Soft realtime
● 100s of microseconds
● Process scheduling, some syscalls
● POSIX API, limited RT extensions
● Global visibility
● All configurations, including SMP

– But UP much more common
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CONFIG_PREEMPT_RT

● Soft realtime
● 10s of microseconds
● Process scheduling, a few syscalls

– Can in theory give hard realtime to user code...
● POSIX API, limited RT extensions
● Global visibility
● All configurations, including SMP

– But UP much more stable
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Nested OS
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Nested OS

● Hard realtime
● ~10 microseconds
● “All realtime services”, often quite limited
● Subset of POSIX API, with RT extensions
● Linux runs as process in RTOS instance
● All configurations, including SMP

– But UP much more common
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Dual OS / Dual Core
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Dual OS / Dual Core

● Hard realtime
● Can be sub-microsecond
● “All realtime services”, often quite limited

– In extreme cases, bare metal
● Subset of POSIX API, with RT extensions
● Separate RTOS instance
● All configurations, including SMP
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Migration
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Migration

● You have all heard about preemption...
– CONFIG_PREEMPT_RT's RCU preempted my 

work on the migration version of realtime.  :-/
● The abstract for this talk is therefore 

somewhat obsolete
● But if you want a speculative evaluation of 

migration...
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Migration

● Hard realtime
● Can be sub-microsecond
● User-level execution

– Can adapt system-call by system-call
– Avoids “pinning” syscalls holding critical locks

● Subset of POSIX API, with RT extensions
● Global visibility
● All configurations, but need SMP (real or 

emulated)
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Realtime Summary

● There are a number of realtime approaches 
for Linux

● They all have their own peculiar strengths 
and shortcomings

● Thus far, one size does not fit all
● It would be good to get to one size that fits all

– Will require combination of approaches
– Or will require additional innovation...
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The Role of RCU in 
Realtime
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What is Synchronization?

spin_lock(&my_lock);
p = head;
/* Can mess with struct to by p */
spin_unlock(&my_lock);

/* Can -not- mess with struct pointed to by p!!! */

spin_lock(&my_lock);
/* Can -not- mess with struct pointed to by p!!! */
p = head;
/* Can again mess with struct to by p */
spin_unlock(&my_lock);
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What is Synchronization?

● Mechanism plus coding convention
– Locking: must hold lock to reference or update
– NBS: must use carefully crafted sequences of 

atomic operations to do references and updates
– RCU coding convention:

● Must define “quiescent states” (QS)
– e.g., context switch in non-CONFIG_PREEMPT kernels

● QSes must not appear in read-side critical sections
● CPU in QSes are guaranteed to have completed all 

preceding read-side critical sections
● RCU mechanism: “lazy barrier” that 

computes “grace period” given QSes.
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What is RCU? (1)

● Reader-writer synchronization mechanism
– Best for read-mostly data structures

● Writers create new versions atomically
– Normally create new and delete old elements

● Readers can access old versions 
independently of subsequent writers
– Old versions garbage-collected by “poor man's” 

GC, deferring destruction
– Readers must signal “GC” when done
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What is RCU? (2)

● Readers incur little or no overhead
● Writers incur substantial overhead

– Writers must synchronize with each other
– Writers must defer destructive actions until 

readers are done
– The “poor man's” GC also incurs some overhead
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RCU's Deferred Destruction
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What Do Realtime Kernels 
Need From RCU?
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Realtime RCU Requirements

● Reliable
● Callable from IRQ
● Preemptible read side
● Small memory footprint
● Synchronization-free read side
● Independent of memory blocks
● Freely nestable read side
● Unconditional read-to-write upgrade
● Compatible API
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Trouble in RCU-Land
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RCU Options for 
Aggressive Realtime
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I Wrote the Paper At This Point...

● RCU gets twisted pretty badly by realtime
● No good RCU implementation exists

– There is not even a poor implementation, they all 
have serious shortcomings

● Some potential advantage
– Marking read side with update lock nice
– But what if no update lock?  Or lots of them?

● Something better is needed!!!
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Tom Hart Confused Me

SMR QSBR EBR
Concurrently-readable CR-SMR CR-QSBR CR-EBR
Lock-free LF-SMR LF-QSBR LF-EBR

SMR QSBR EBR
Lock-based update CR-SMR CR-QSBR CR-EBR
Lock-free update LF-SMR LF-QSBR LF-EBR
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Solution From Confusion

SMR QSBR EBR “LBR”
Lock-based update CR-SMR CR-QSBR CR-EBR ???
Lock-free update LF-SMR LF-QSBR LF-EBR ???

We can use locking to force grace period...

Or counters to suppress grace periods
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Simple Lock-Based Deferred Free

void rcu_read_lock(void)
{
   read_lock(&rcu_ctrlblk.lock);
}

void rcu_read_unlock(void)
{
   read_unlock(&rcu_ctrlblk.lock);
}

void synchronize_kernel(void)
{
   write_lock_bh(&rcu_ctrlblk.lock);
   write_unlock_bh(&rcu_ctrlblk.lock);
}
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Grace Periods
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Simple LBDF Issues

● Latencies can be communicated from one 
read side to another
– Reader 1 in critical section
– synchronize_kernel() waiting for reader 1's lock
– Reader 2 blocked waiting for synchronize_kernel 

● Locks on read side – heavy overhead!!!
● Also, PREEMPT_RT allows only one reader
● But this simple mechanism is Paul 

McKenney's PREEMPT_RT “lesson plan”
– Crude version runs on 4-CPU machine
– If using 0.7.41-14 version of PREEMPT_RT
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Grace Period Suppression

● Increment a per-CPU counter in 
rcu_read_lock()
– decrement same counter in rcu_read_unlock()
– track counter in task struct (preemption!)

● While a given CPU's counter is non-zero, 
ignore any quiescent states that this CPU 
goes through
– could result in extremely long grace periods
– possibly fix via “count flipping”.
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Current Status



37

Improvements in RCU-Land
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Summary
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Summary

● Numerous motivations for realtime Linux
● No mechanism currently suits all workloads

– But Linux is becoming more capable
● RCU still an issue with aggressive realtime

– However, several possible solutions identified
– Some of which are positively mediocre
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